]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/target/fc.c
media/v4l2-core: set pages dirty upon releasing DMA buffers
[linux.git] / drivers / nvme / target / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17
18
19 /* *************************** Data Structures/Defines ****************** */
20
21
22 #define NVMET_LS_CTX_COUNT              256
23
24 /* for this implementation, assume small single frame rqst/rsp */
25 #define NVME_FC_MAX_LS_BUFFER_SIZE              2048
26
27 struct nvmet_fc_tgtport;
28 struct nvmet_fc_tgt_assoc;
29
30 struct nvmet_fc_ls_iod {
31         struct nvmefc_tgt_ls_req        *lsreq;
32         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
33
34         struct list_head                ls_list;        /* tgtport->ls_list */
35
36         struct nvmet_fc_tgtport         *tgtport;
37         struct nvmet_fc_tgt_assoc       *assoc;
38
39         u8                              *rqstbuf;
40         u8                              *rspbuf;
41         u16                             rqstdatalen;
42         dma_addr_t                      rspdma;
43
44         struct scatterlist              sg[2];
45
46         struct work_struct              work;
47 } __aligned(sizeof(unsigned long long));
48
49 /* desired maximum for a single sequence - if sg list allows it */
50 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
51
52 enum nvmet_fcp_datadir {
53         NVMET_FCP_NODATA,
54         NVMET_FCP_WRITE,
55         NVMET_FCP_READ,
56         NVMET_FCP_ABORTED,
57 };
58
59 struct nvmet_fc_fcp_iod {
60         struct nvmefc_tgt_fcp_req       *fcpreq;
61
62         struct nvme_fc_cmd_iu           cmdiubuf;
63         struct nvme_fc_ersp_iu          rspiubuf;
64         dma_addr_t                      rspdma;
65         struct scatterlist              *next_sg;
66         struct scatterlist              *data_sg;
67         int                             data_sg_cnt;
68         u32                             offset;
69         enum nvmet_fcp_datadir          io_dir;
70         bool                            active;
71         bool                            abort;
72         bool                            aborted;
73         bool                            writedataactive;
74         spinlock_t                      flock;
75
76         struct nvmet_req                req;
77         struct work_struct              defer_work;
78
79         struct nvmet_fc_tgtport         *tgtport;
80         struct nvmet_fc_tgt_queue       *queue;
81
82         struct list_head                fcp_list;       /* tgtport->fcp_list */
83 };
84
85 struct nvmet_fc_tgtport {
86
87         struct nvmet_fc_target_port     fc_target_port;
88
89         struct list_head                tgt_list; /* nvmet_fc_target_list */
90         struct device                   *dev;   /* dev for dma mapping */
91         struct nvmet_fc_target_template *ops;
92
93         struct nvmet_fc_ls_iod          *iod;
94         spinlock_t                      lock;
95         struct list_head                ls_list;
96         struct list_head                ls_busylist;
97         struct list_head                assoc_list;
98         struct ida                      assoc_cnt;
99         struct nvmet_fc_port_entry      *pe;
100         struct kref                     ref;
101         u32                             max_sg_cnt;
102 };
103
104 struct nvmet_fc_port_entry {
105         struct nvmet_fc_tgtport         *tgtport;
106         struct nvmet_port               *port;
107         u64                             node_name;
108         u64                             port_name;
109         struct list_head                pe_list;
110 };
111
112 struct nvmet_fc_defer_fcp_req {
113         struct list_head                req_list;
114         struct nvmefc_tgt_fcp_req       *fcp_req;
115 };
116
117 struct nvmet_fc_tgt_queue {
118         bool                            ninetypercent;
119         u16                             qid;
120         u16                             sqsize;
121         u16                             ersp_ratio;
122         __le16                          sqhd;
123         atomic_t                        connected;
124         atomic_t                        sqtail;
125         atomic_t                        zrspcnt;
126         atomic_t                        rsn;
127         spinlock_t                      qlock;
128         struct nvmet_cq                 nvme_cq;
129         struct nvmet_sq                 nvme_sq;
130         struct nvmet_fc_tgt_assoc       *assoc;
131         struct list_head                fod_list;
132         struct list_head                pending_cmd_list;
133         struct list_head                avail_defer_list;
134         struct workqueue_struct         *work_q;
135         struct kref                     ref;
136         struct nvmet_fc_fcp_iod         fod[];          /* array of fcp_iods */
137 } __aligned(sizeof(unsigned long long));
138
139 struct nvmet_fc_tgt_assoc {
140         u64                             association_id;
141         u32                             a_id;
142         struct nvmet_fc_tgtport         *tgtport;
143         struct list_head                a_list;
144         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
145         struct kref                     ref;
146         struct work_struct              del_work;
147 };
148
149
150 static inline int
151 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
152 {
153         return (iodptr - iodptr->tgtport->iod);
154 }
155
156 static inline int
157 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
158 {
159         return (fodptr - fodptr->queue->fod);
160 }
161
162
163 /*
164  * Association and Connection IDs:
165  *
166  * Association ID will have random number in upper 6 bytes and zero
167  *   in lower 2 bytes
168  *
169  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
170  *
171  * note: Association ID = Connection ID for queue 0
172  */
173 #define BYTES_FOR_QID                   sizeof(u16)
174 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
175 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
176
177 static inline u64
178 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
179 {
180         return (assoc->association_id | qid);
181 }
182
183 static inline u64
184 nvmet_fc_getassociationid(u64 connectionid)
185 {
186         return connectionid & ~NVMET_FC_QUEUEID_MASK;
187 }
188
189 static inline u16
190 nvmet_fc_getqueueid(u64 connectionid)
191 {
192         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
193 }
194
195 static inline struct nvmet_fc_tgtport *
196 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
197 {
198         return container_of(targetport, struct nvmet_fc_tgtport,
199                                  fc_target_port);
200 }
201
202 static inline struct nvmet_fc_fcp_iod *
203 nvmet_req_to_fod(struct nvmet_req *nvme_req)
204 {
205         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
206 }
207
208
209 /* *************************** Globals **************************** */
210
211
212 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
213
214 static LIST_HEAD(nvmet_fc_target_list);
215 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
216 static LIST_HEAD(nvmet_fc_portentry_list);
217
218
219 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
220 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
221 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
222 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
223 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
224 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
225 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
226 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
227 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
228                                         struct nvmet_fc_fcp_iod *fod);
229 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
230
231
232 /* *********************** FC-NVME DMA Handling **************************** */
233
234 /*
235  * The fcloop device passes in a NULL device pointer. Real LLD's will
236  * pass in a valid device pointer. If NULL is passed to the dma mapping
237  * routines, depending on the platform, it may or may not succeed, and
238  * may crash.
239  *
240  * As such:
241  * Wrapper all the dma routines and check the dev pointer.
242  *
243  * If simple mappings (return just a dma address, we'll noop them,
244  * returning a dma address of 0.
245  *
246  * On more complex mappings (dma_map_sg), a pseudo routine fills
247  * in the scatter list, setting all dma addresses to 0.
248  */
249
250 static inline dma_addr_t
251 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
252                 enum dma_data_direction dir)
253 {
254         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
255 }
256
257 static inline int
258 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
259 {
260         return dev ? dma_mapping_error(dev, dma_addr) : 0;
261 }
262
263 static inline void
264 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
265         enum dma_data_direction dir)
266 {
267         if (dev)
268                 dma_unmap_single(dev, addr, size, dir);
269 }
270
271 static inline void
272 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
273                 enum dma_data_direction dir)
274 {
275         if (dev)
276                 dma_sync_single_for_cpu(dev, addr, size, dir);
277 }
278
279 static inline void
280 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
281                 enum dma_data_direction dir)
282 {
283         if (dev)
284                 dma_sync_single_for_device(dev, addr, size, dir);
285 }
286
287 /* pseudo dma_map_sg call */
288 static int
289 fc_map_sg(struct scatterlist *sg, int nents)
290 {
291         struct scatterlist *s;
292         int i;
293
294         WARN_ON(nents == 0 || sg[0].length == 0);
295
296         for_each_sg(sg, s, nents, i) {
297                 s->dma_address = 0L;
298 #ifdef CONFIG_NEED_SG_DMA_LENGTH
299                 s->dma_length = s->length;
300 #endif
301         }
302         return nents;
303 }
304
305 static inline int
306 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
307                 enum dma_data_direction dir)
308 {
309         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
310 }
311
312 static inline void
313 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
314                 enum dma_data_direction dir)
315 {
316         if (dev)
317                 dma_unmap_sg(dev, sg, nents, dir);
318 }
319
320
321 /* *********************** FC-NVME Port Management ************************ */
322
323
324 static int
325 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
326 {
327         struct nvmet_fc_ls_iod *iod;
328         int i;
329
330         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
331                         GFP_KERNEL);
332         if (!iod)
333                 return -ENOMEM;
334
335         tgtport->iod = iod;
336
337         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
338                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
339                 iod->tgtport = tgtport;
340                 list_add_tail(&iod->ls_list, &tgtport->ls_list);
341
342                 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
343                         GFP_KERNEL);
344                 if (!iod->rqstbuf)
345                         goto out_fail;
346
347                 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
348
349                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
350                                                 NVME_FC_MAX_LS_BUFFER_SIZE,
351                                                 DMA_TO_DEVICE);
352                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
353                         goto out_fail;
354         }
355
356         return 0;
357
358 out_fail:
359         kfree(iod->rqstbuf);
360         list_del(&iod->ls_list);
361         for (iod--, i--; i >= 0; iod--, i--) {
362                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
363                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
364                 kfree(iod->rqstbuf);
365                 list_del(&iod->ls_list);
366         }
367
368         kfree(iod);
369
370         return -EFAULT;
371 }
372
373 static void
374 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
375 {
376         struct nvmet_fc_ls_iod *iod = tgtport->iod;
377         int i;
378
379         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
380                 fc_dma_unmap_single(tgtport->dev,
381                                 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
382                                 DMA_TO_DEVICE);
383                 kfree(iod->rqstbuf);
384                 list_del(&iod->ls_list);
385         }
386         kfree(tgtport->iod);
387 }
388
389 static struct nvmet_fc_ls_iod *
390 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
391 {
392         struct nvmet_fc_ls_iod *iod;
393         unsigned long flags;
394
395         spin_lock_irqsave(&tgtport->lock, flags);
396         iod = list_first_entry_or_null(&tgtport->ls_list,
397                                         struct nvmet_fc_ls_iod, ls_list);
398         if (iod)
399                 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
400         spin_unlock_irqrestore(&tgtport->lock, flags);
401         return iod;
402 }
403
404
405 static void
406 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
407                         struct nvmet_fc_ls_iod *iod)
408 {
409         unsigned long flags;
410
411         spin_lock_irqsave(&tgtport->lock, flags);
412         list_move(&iod->ls_list, &tgtport->ls_list);
413         spin_unlock_irqrestore(&tgtport->lock, flags);
414 }
415
416 static void
417 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
418                                 struct nvmet_fc_tgt_queue *queue)
419 {
420         struct nvmet_fc_fcp_iod *fod = queue->fod;
421         int i;
422
423         for (i = 0; i < queue->sqsize; fod++, i++) {
424                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
425                 fod->tgtport = tgtport;
426                 fod->queue = queue;
427                 fod->active = false;
428                 fod->abort = false;
429                 fod->aborted = false;
430                 fod->fcpreq = NULL;
431                 list_add_tail(&fod->fcp_list, &queue->fod_list);
432                 spin_lock_init(&fod->flock);
433
434                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
435                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
436                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
437                         list_del(&fod->fcp_list);
438                         for (fod--, i--; i >= 0; fod--, i--) {
439                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
440                                                 sizeof(fod->rspiubuf),
441                                                 DMA_TO_DEVICE);
442                                 fod->rspdma = 0L;
443                                 list_del(&fod->fcp_list);
444                         }
445
446                         return;
447                 }
448         }
449 }
450
451 static void
452 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
453                                 struct nvmet_fc_tgt_queue *queue)
454 {
455         struct nvmet_fc_fcp_iod *fod = queue->fod;
456         int i;
457
458         for (i = 0; i < queue->sqsize; fod++, i++) {
459                 if (fod->rspdma)
460                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
461                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
462         }
463 }
464
465 static struct nvmet_fc_fcp_iod *
466 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
467 {
468         struct nvmet_fc_fcp_iod *fod;
469
470         lockdep_assert_held(&queue->qlock);
471
472         fod = list_first_entry_or_null(&queue->fod_list,
473                                         struct nvmet_fc_fcp_iod, fcp_list);
474         if (fod) {
475                 list_del(&fod->fcp_list);
476                 fod->active = true;
477                 /*
478                  * no queue reference is taken, as it was taken by the
479                  * queue lookup just prior to the allocation. The iod
480                  * will "inherit" that reference.
481                  */
482         }
483         return fod;
484 }
485
486
487 static void
488 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
489                        struct nvmet_fc_tgt_queue *queue,
490                        struct nvmefc_tgt_fcp_req *fcpreq)
491 {
492         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
493
494         /*
495          * put all admin cmds on hw queue id 0. All io commands go to
496          * the respective hw queue based on a modulo basis
497          */
498         fcpreq->hwqid = queue->qid ?
499                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
500
501         nvmet_fc_handle_fcp_rqst(tgtport, fod);
502 }
503
504 static void
505 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
506 {
507         struct nvmet_fc_fcp_iod *fod =
508                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
509
510         /* Submit deferred IO for processing */
511         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
512
513 }
514
515 static void
516 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
517                         struct nvmet_fc_fcp_iod *fod)
518 {
519         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
520         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
521         struct nvmet_fc_defer_fcp_req *deferfcp;
522         unsigned long flags;
523
524         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
525                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
526
527         fcpreq->nvmet_fc_private = NULL;
528
529         fod->active = false;
530         fod->abort = false;
531         fod->aborted = false;
532         fod->writedataactive = false;
533         fod->fcpreq = NULL;
534
535         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
536
537         /* release the queue lookup reference on the completed IO */
538         nvmet_fc_tgt_q_put(queue);
539
540         spin_lock_irqsave(&queue->qlock, flags);
541         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
542                                 struct nvmet_fc_defer_fcp_req, req_list);
543         if (!deferfcp) {
544                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
545                 spin_unlock_irqrestore(&queue->qlock, flags);
546                 return;
547         }
548
549         /* Re-use the fod for the next pending cmd that was deferred */
550         list_del(&deferfcp->req_list);
551
552         fcpreq = deferfcp->fcp_req;
553
554         /* deferfcp can be reused for another IO at a later date */
555         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
556
557         spin_unlock_irqrestore(&queue->qlock, flags);
558
559         /* Save NVME CMD IO in fod */
560         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
561
562         /* Setup new fcpreq to be processed */
563         fcpreq->rspaddr = NULL;
564         fcpreq->rsplen  = 0;
565         fcpreq->nvmet_fc_private = fod;
566         fod->fcpreq = fcpreq;
567         fod->active = true;
568
569         /* inform LLDD IO is now being processed */
570         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
571
572         /*
573          * Leave the queue lookup get reference taken when
574          * fod was originally allocated.
575          */
576
577         queue_work(queue->work_q, &fod->defer_work);
578 }
579
580 static struct nvmet_fc_tgt_queue *
581 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
582                         u16 qid, u16 sqsize)
583 {
584         struct nvmet_fc_tgt_queue *queue;
585         unsigned long flags;
586         int ret;
587
588         if (qid > NVMET_NR_QUEUES)
589                 return NULL;
590
591         queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
592         if (!queue)
593                 return NULL;
594
595         if (!nvmet_fc_tgt_a_get(assoc))
596                 goto out_free_queue;
597
598         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
599                                 assoc->tgtport->fc_target_port.port_num,
600                                 assoc->a_id, qid);
601         if (!queue->work_q)
602                 goto out_a_put;
603
604         queue->qid = qid;
605         queue->sqsize = sqsize;
606         queue->assoc = assoc;
607         INIT_LIST_HEAD(&queue->fod_list);
608         INIT_LIST_HEAD(&queue->avail_defer_list);
609         INIT_LIST_HEAD(&queue->pending_cmd_list);
610         atomic_set(&queue->connected, 0);
611         atomic_set(&queue->sqtail, 0);
612         atomic_set(&queue->rsn, 1);
613         atomic_set(&queue->zrspcnt, 0);
614         spin_lock_init(&queue->qlock);
615         kref_init(&queue->ref);
616
617         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
618
619         ret = nvmet_sq_init(&queue->nvme_sq);
620         if (ret)
621                 goto out_fail_iodlist;
622
623         WARN_ON(assoc->queues[qid]);
624         spin_lock_irqsave(&assoc->tgtport->lock, flags);
625         assoc->queues[qid] = queue;
626         spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
627
628         return queue;
629
630 out_fail_iodlist:
631         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
632         destroy_workqueue(queue->work_q);
633 out_a_put:
634         nvmet_fc_tgt_a_put(assoc);
635 out_free_queue:
636         kfree(queue);
637         return NULL;
638 }
639
640
641 static void
642 nvmet_fc_tgt_queue_free(struct kref *ref)
643 {
644         struct nvmet_fc_tgt_queue *queue =
645                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
646         unsigned long flags;
647
648         spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
649         queue->assoc->queues[queue->qid] = NULL;
650         spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
651
652         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
653
654         nvmet_fc_tgt_a_put(queue->assoc);
655
656         destroy_workqueue(queue->work_q);
657
658         kfree(queue);
659 }
660
661 static void
662 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
663 {
664         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
665 }
666
667 static int
668 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
669 {
670         return kref_get_unless_zero(&queue->ref);
671 }
672
673
674 static void
675 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
676 {
677         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
678         struct nvmet_fc_fcp_iod *fod = queue->fod;
679         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
680         unsigned long flags;
681         int i, writedataactive;
682         bool disconnect;
683
684         disconnect = atomic_xchg(&queue->connected, 0);
685
686         spin_lock_irqsave(&queue->qlock, flags);
687         /* about outstanding io's */
688         for (i = 0; i < queue->sqsize; fod++, i++) {
689                 if (fod->active) {
690                         spin_lock(&fod->flock);
691                         fod->abort = true;
692                         writedataactive = fod->writedataactive;
693                         spin_unlock(&fod->flock);
694                         /*
695                          * only call lldd abort routine if waiting for
696                          * writedata. other outstanding ops should finish
697                          * on their own.
698                          */
699                         if (writedataactive) {
700                                 spin_lock(&fod->flock);
701                                 fod->aborted = true;
702                                 spin_unlock(&fod->flock);
703                                 tgtport->ops->fcp_abort(
704                                         &tgtport->fc_target_port, fod->fcpreq);
705                         }
706                 }
707         }
708
709         /* Cleanup defer'ed IOs in queue */
710         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
711                                 req_list) {
712                 list_del(&deferfcp->req_list);
713                 kfree(deferfcp);
714         }
715
716         for (;;) {
717                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
718                                 struct nvmet_fc_defer_fcp_req, req_list);
719                 if (!deferfcp)
720                         break;
721
722                 list_del(&deferfcp->req_list);
723                 spin_unlock_irqrestore(&queue->qlock, flags);
724
725                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
726                                 deferfcp->fcp_req);
727
728                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
729                                 deferfcp->fcp_req);
730
731                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
732                                 deferfcp->fcp_req);
733
734                 /* release the queue lookup reference */
735                 nvmet_fc_tgt_q_put(queue);
736
737                 kfree(deferfcp);
738
739                 spin_lock_irqsave(&queue->qlock, flags);
740         }
741         spin_unlock_irqrestore(&queue->qlock, flags);
742
743         flush_workqueue(queue->work_q);
744
745         if (disconnect)
746                 nvmet_sq_destroy(&queue->nvme_sq);
747
748         nvmet_fc_tgt_q_put(queue);
749 }
750
751 static struct nvmet_fc_tgt_queue *
752 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
753                                 u64 connection_id)
754 {
755         struct nvmet_fc_tgt_assoc *assoc;
756         struct nvmet_fc_tgt_queue *queue;
757         u64 association_id = nvmet_fc_getassociationid(connection_id);
758         u16 qid = nvmet_fc_getqueueid(connection_id);
759         unsigned long flags;
760
761         if (qid > NVMET_NR_QUEUES)
762                 return NULL;
763
764         spin_lock_irqsave(&tgtport->lock, flags);
765         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
766                 if (association_id == assoc->association_id) {
767                         queue = assoc->queues[qid];
768                         if (queue &&
769                             (!atomic_read(&queue->connected) ||
770                              !nvmet_fc_tgt_q_get(queue)))
771                                 queue = NULL;
772                         spin_unlock_irqrestore(&tgtport->lock, flags);
773                         return queue;
774                 }
775         }
776         spin_unlock_irqrestore(&tgtport->lock, flags);
777         return NULL;
778 }
779
780 static void
781 nvmet_fc_delete_assoc(struct work_struct *work)
782 {
783         struct nvmet_fc_tgt_assoc *assoc =
784                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
785
786         nvmet_fc_delete_target_assoc(assoc);
787         nvmet_fc_tgt_a_put(assoc);
788 }
789
790 static struct nvmet_fc_tgt_assoc *
791 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
792 {
793         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
794         unsigned long flags;
795         u64 ran;
796         int idx;
797         bool needrandom = true;
798
799         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
800         if (!assoc)
801                 return NULL;
802
803         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
804         if (idx < 0)
805                 goto out_free_assoc;
806
807         if (!nvmet_fc_tgtport_get(tgtport))
808                 goto out_ida_put;
809
810         assoc->tgtport = tgtport;
811         assoc->a_id = idx;
812         INIT_LIST_HEAD(&assoc->a_list);
813         kref_init(&assoc->ref);
814         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
815
816         while (needrandom) {
817                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
818                 ran = ran << BYTES_FOR_QID_SHIFT;
819
820                 spin_lock_irqsave(&tgtport->lock, flags);
821                 needrandom = false;
822                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
823                         if (ran == tmpassoc->association_id) {
824                                 needrandom = true;
825                                 break;
826                         }
827                 if (!needrandom) {
828                         assoc->association_id = ran;
829                         list_add_tail(&assoc->a_list, &tgtport->assoc_list);
830                 }
831                 spin_unlock_irqrestore(&tgtport->lock, flags);
832         }
833
834         return assoc;
835
836 out_ida_put:
837         ida_simple_remove(&tgtport->assoc_cnt, idx);
838 out_free_assoc:
839         kfree(assoc);
840         return NULL;
841 }
842
843 static void
844 nvmet_fc_target_assoc_free(struct kref *ref)
845 {
846         struct nvmet_fc_tgt_assoc *assoc =
847                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
848         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
849         unsigned long flags;
850
851         spin_lock_irqsave(&tgtport->lock, flags);
852         list_del(&assoc->a_list);
853         spin_unlock_irqrestore(&tgtport->lock, flags);
854         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
855         kfree(assoc);
856         nvmet_fc_tgtport_put(tgtport);
857 }
858
859 static void
860 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
861 {
862         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
863 }
864
865 static int
866 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
867 {
868         return kref_get_unless_zero(&assoc->ref);
869 }
870
871 static void
872 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
873 {
874         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
875         struct nvmet_fc_tgt_queue *queue;
876         unsigned long flags;
877         int i;
878
879         spin_lock_irqsave(&tgtport->lock, flags);
880         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
881                 queue = assoc->queues[i];
882                 if (queue) {
883                         if (!nvmet_fc_tgt_q_get(queue))
884                                 continue;
885                         spin_unlock_irqrestore(&tgtport->lock, flags);
886                         nvmet_fc_delete_target_queue(queue);
887                         nvmet_fc_tgt_q_put(queue);
888                         spin_lock_irqsave(&tgtport->lock, flags);
889                 }
890         }
891         spin_unlock_irqrestore(&tgtport->lock, flags);
892
893         nvmet_fc_tgt_a_put(assoc);
894 }
895
896 static struct nvmet_fc_tgt_assoc *
897 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
898                                 u64 association_id)
899 {
900         struct nvmet_fc_tgt_assoc *assoc;
901         struct nvmet_fc_tgt_assoc *ret = NULL;
902         unsigned long flags;
903
904         spin_lock_irqsave(&tgtport->lock, flags);
905         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
906                 if (association_id == assoc->association_id) {
907                         ret = assoc;
908                         nvmet_fc_tgt_a_get(assoc);
909                         break;
910                 }
911         }
912         spin_unlock_irqrestore(&tgtport->lock, flags);
913
914         return ret;
915 }
916
917 static void
918 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
919                         struct nvmet_fc_port_entry *pe,
920                         struct nvmet_port *port)
921 {
922         lockdep_assert_held(&nvmet_fc_tgtlock);
923
924         pe->tgtport = tgtport;
925         tgtport->pe = pe;
926
927         pe->port = port;
928         port->priv = pe;
929
930         pe->node_name = tgtport->fc_target_port.node_name;
931         pe->port_name = tgtport->fc_target_port.port_name;
932         INIT_LIST_HEAD(&pe->pe_list);
933
934         list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
935 }
936
937 static void
938 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
939 {
940         unsigned long flags;
941
942         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
943         if (pe->tgtport)
944                 pe->tgtport->pe = NULL;
945         list_del(&pe->pe_list);
946         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
947 }
948
949 /*
950  * called when a targetport deregisters. Breaks the relationship
951  * with the nvmet port, but leaves the port_entry in place so that
952  * re-registration can resume operation.
953  */
954 static void
955 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
956 {
957         struct nvmet_fc_port_entry *pe;
958         unsigned long flags;
959
960         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
961         pe = tgtport->pe;
962         if (pe)
963                 pe->tgtport = NULL;
964         tgtport->pe = NULL;
965         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
966 }
967
968 /*
969  * called when a new targetport is registered. Looks in the
970  * existing nvmet port_entries to see if the nvmet layer is
971  * configured for the targetport's wwn's. (the targetport existed,
972  * nvmet configured, the lldd unregistered the tgtport, and is now
973  * reregistering the same targetport).  If so, set the nvmet port
974  * port entry on the targetport.
975  */
976 static void
977 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
978 {
979         struct nvmet_fc_port_entry *pe;
980         unsigned long flags;
981
982         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
983         list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
984                 if (tgtport->fc_target_port.node_name == pe->node_name &&
985                     tgtport->fc_target_port.port_name == pe->port_name) {
986                         WARN_ON(pe->tgtport);
987                         tgtport->pe = pe;
988                         pe->tgtport = tgtport;
989                         break;
990                 }
991         }
992         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
993 }
994
995 /**
996  * nvme_fc_register_targetport - transport entry point called by an
997  *                              LLDD to register the existence of a local
998  *                              NVME subystem FC port.
999  * @pinfo:     pointer to information about the port to be registered
1000  * @template:  LLDD entrypoints and operational parameters for the port
1001  * @dev:       physical hardware device node port corresponds to. Will be
1002  *             used for DMA mappings
1003  * @portptr:   pointer to a local port pointer. Upon success, the routine
1004  *             will allocate a nvme_fc_local_port structure and place its
1005  *             address in the local port pointer. Upon failure, local port
1006  *             pointer will be set to NULL.
1007  *
1008  * Returns:
1009  * a completion status. Must be 0 upon success; a negative errno
1010  * (ex: -ENXIO) upon failure.
1011  */
1012 int
1013 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1014                         struct nvmet_fc_target_template *template,
1015                         struct device *dev,
1016                         struct nvmet_fc_target_port **portptr)
1017 {
1018         struct nvmet_fc_tgtport *newrec;
1019         unsigned long flags;
1020         int ret, idx;
1021
1022         if (!template->xmt_ls_rsp || !template->fcp_op ||
1023             !template->fcp_abort ||
1024             !template->fcp_req_release || !template->targetport_delete ||
1025             !template->max_hw_queues || !template->max_sgl_segments ||
1026             !template->max_dif_sgl_segments || !template->dma_boundary) {
1027                 ret = -EINVAL;
1028                 goto out_regtgt_failed;
1029         }
1030
1031         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1032                          GFP_KERNEL);
1033         if (!newrec) {
1034                 ret = -ENOMEM;
1035                 goto out_regtgt_failed;
1036         }
1037
1038         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1039         if (idx < 0) {
1040                 ret = -ENOSPC;
1041                 goto out_fail_kfree;
1042         }
1043
1044         if (!get_device(dev) && dev) {
1045                 ret = -ENODEV;
1046                 goto out_ida_put;
1047         }
1048
1049         newrec->fc_target_port.node_name = pinfo->node_name;
1050         newrec->fc_target_port.port_name = pinfo->port_name;
1051         newrec->fc_target_port.private = &newrec[1];
1052         newrec->fc_target_port.port_id = pinfo->port_id;
1053         newrec->fc_target_port.port_num = idx;
1054         INIT_LIST_HEAD(&newrec->tgt_list);
1055         newrec->dev = dev;
1056         newrec->ops = template;
1057         spin_lock_init(&newrec->lock);
1058         INIT_LIST_HEAD(&newrec->ls_list);
1059         INIT_LIST_HEAD(&newrec->ls_busylist);
1060         INIT_LIST_HEAD(&newrec->assoc_list);
1061         kref_init(&newrec->ref);
1062         ida_init(&newrec->assoc_cnt);
1063         newrec->max_sg_cnt = template->max_sgl_segments;
1064
1065         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1066         if (ret) {
1067                 ret = -ENOMEM;
1068                 goto out_free_newrec;
1069         }
1070
1071         nvmet_fc_portentry_rebind_tgt(newrec);
1072
1073         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1074         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1075         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1076
1077         *portptr = &newrec->fc_target_port;
1078         return 0;
1079
1080 out_free_newrec:
1081         put_device(dev);
1082 out_ida_put:
1083         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1084 out_fail_kfree:
1085         kfree(newrec);
1086 out_regtgt_failed:
1087         *portptr = NULL;
1088         return ret;
1089 }
1090 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1091
1092
1093 static void
1094 nvmet_fc_free_tgtport(struct kref *ref)
1095 {
1096         struct nvmet_fc_tgtport *tgtport =
1097                 container_of(ref, struct nvmet_fc_tgtport, ref);
1098         struct device *dev = tgtport->dev;
1099         unsigned long flags;
1100
1101         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1102         list_del(&tgtport->tgt_list);
1103         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1104
1105         nvmet_fc_free_ls_iodlist(tgtport);
1106
1107         /* let the LLDD know we've finished tearing it down */
1108         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1109
1110         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1111                         tgtport->fc_target_port.port_num);
1112
1113         ida_destroy(&tgtport->assoc_cnt);
1114
1115         kfree(tgtport);
1116
1117         put_device(dev);
1118 }
1119
1120 static void
1121 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1122 {
1123         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1124 }
1125
1126 static int
1127 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1128 {
1129         return kref_get_unless_zero(&tgtport->ref);
1130 }
1131
1132 static void
1133 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1134 {
1135         struct nvmet_fc_tgt_assoc *assoc, *next;
1136         unsigned long flags;
1137
1138         spin_lock_irqsave(&tgtport->lock, flags);
1139         list_for_each_entry_safe(assoc, next,
1140                                 &tgtport->assoc_list, a_list) {
1141                 if (!nvmet_fc_tgt_a_get(assoc))
1142                         continue;
1143                 if (!schedule_work(&assoc->del_work))
1144                         nvmet_fc_tgt_a_put(assoc);
1145         }
1146         spin_unlock_irqrestore(&tgtport->lock, flags);
1147 }
1148
1149 /*
1150  * nvmet layer has called to terminate an association
1151  */
1152 static void
1153 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1154 {
1155         struct nvmet_fc_tgtport *tgtport, *next;
1156         struct nvmet_fc_tgt_assoc *assoc;
1157         struct nvmet_fc_tgt_queue *queue;
1158         unsigned long flags;
1159         bool found_ctrl = false;
1160
1161         /* this is a bit ugly, but don't want to make locks layered */
1162         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1163         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1164                         tgt_list) {
1165                 if (!nvmet_fc_tgtport_get(tgtport))
1166                         continue;
1167                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1168
1169                 spin_lock_irqsave(&tgtport->lock, flags);
1170                 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1171                         queue = assoc->queues[0];
1172                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1173                                 if (nvmet_fc_tgt_a_get(assoc))
1174                                         found_ctrl = true;
1175                                 break;
1176                         }
1177                 }
1178                 spin_unlock_irqrestore(&tgtport->lock, flags);
1179
1180                 nvmet_fc_tgtport_put(tgtport);
1181
1182                 if (found_ctrl) {
1183                         if (!schedule_work(&assoc->del_work))
1184                                 nvmet_fc_tgt_a_put(assoc);
1185                         return;
1186                 }
1187
1188                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1189         }
1190         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1191 }
1192
1193 /**
1194  * nvme_fc_unregister_targetport - transport entry point called by an
1195  *                              LLDD to deregister/remove a previously
1196  *                              registered a local NVME subsystem FC port.
1197  * @target_port: pointer to the (registered) target port that is to be
1198  *               deregistered.
1199  *
1200  * Returns:
1201  * a completion status. Must be 0 upon success; a negative errno
1202  * (ex: -ENXIO) upon failure.
1203  */
1204 int
1205 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1206 {
1207         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1208
1209         nvmet_fc_portentry_unbind_tgt(tgtport);
1210
1211         /* terminate any outstanding associations */
1212         __nvmet_fc_free_assocs(tgtport);
1213
1214         nvmet_fc_tgtport_put(tgtport);
1215
1216         return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1219
1220
1221 /* *********************** FC-NVME LS Handling **************************** */
1222
1223
1224 static void
1225 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1226 {
1227         struct fcnvme_ls_acc_hdr *acc = buf;
1228
1229         acc->w0.ls_cmd = ls_cmd;
1230         acc->desc_list_len = desc_len;
1231         acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1232         acc->rqst.desc_len =
1233                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1234         acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1235 }
1236
1237 static int
1238 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1239                         u8 reason, u8 explanation, u8 vendor)
1240 {
1241         struct fcnvme_ls_rjt *rjt = buf;
1242
1243         nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1244                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1245                         ls_cmd);
1246         rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1247         rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1248         rjt->rjt.reason_code = reason;
1249         rjt->rjt.reason_explanation = explanation;
1250         rjt->rjt.vendor = vendor;
1251
1252         return sizeof(struct fcnvme_ls_rjt);
1253 }
1254
1255 /* Validation Error indexes into the string table below */
1256 enum {
1257         VERR_NO_ERROR           = 0,
1258         VERR_CR_ASSOC_LEN       = 1,
1259         VERR_CR_ASSOC_RQST_LEN  = 2,
1260         VERR_CR_ASSOC_CMD       = 3,
1261         VERR_CR_ASSOC_CMD_LEN   = 4,
1262         VERR_ERSP_RATIO         = 5,
1263         VERR_ASSOC_ALLOC_FAIL   = 6,
1264         VERR_QUEUE_ALLOC_FAIL   = 7,
1265         VERR_CR_CONN_LEN        = 8,
1266         VERR_CR_CONN_RQST_LEN   = 9,
1267         VERR_ASSOC_ID           = 10,
1268         VERR_ASSOC_ID_LEN       = 11,
1269         VERR_NO_ASSOC           = 12,
1270         VERR_CONN_ID            = 13,
1271         VERR_CONN_ID_LEN        = 14,
1272         VERR_NO_CONN            = 15,
1273         VERR_CR_CONN_CMD        = 16,
1274         VERR_CR_CONN_CMD_LEN    = 17,
1275         VERR_DISCONN_LEN        = 18,
1276         VERR_DISCONN_RQST_LEN   = 19,
1277         VERR_DISCONN_CMD        = 20,
1278         VERR_DISCONN_CMD_LEN    = 21,
1279         VERR_DISCONN_SCOPE      = 22,
1280         VERR_RS_LEN             = 23,
1281         VERR_RS_RQST_LEN        = 24,
1282         VERR_RS_CMD             = 25,
1283         VERR_RS_CMD_LEN         = 26,
1284         VERR_RS_RCTL            = 27,
1285         VERR_RS_RO              = 28,
1286 };
1287
1288 static char *validation_errors[] = {
1289         "OK",
1290         "Bad CR_ASSOC Length",
1291         "Bad CR_ASSOC Rqst Length",
1292         "Not CR_ASSOC Cmd",
1293         "Bad CR_ASSOC Cmd Length",
1294         "Bad Ersp Ratio",
1295         "Association Allocation Failed",
1296         "Queue Allocation Failed",
1297         "Bad CR_CONN Length",
1298         "Bad CR_CONN Rqst Length",
1299         "Not Association ID",
1300         "Bad Association ID Length",
1301         "No Association",
1302         "Not Connection ID",
1303         "Bad Connection ID Length",
1304         "No Connection",
1305         "Not CR_CONN Cmd",
1306         "Bad CR_CONN Cmd Length",
1307         "Bad DISCONN Length",
1308         "Bad DISCONN Rqst Length",
1309         "Not DISCONN Cmd",
1310         "Bad DISCONN Cmd Length",
1311         "Bad Disconnect Scope",
1312         "Bad RS Length",
1313         "Bad RS Rqst Length",
1314         "Not RS Cmd",
1315         "Bad RS Cmd Length",
1316         "Bad RS R_CTL",
1317         "Bad RS Relative Offset",
1318 };
1319
1320 static void
1321 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1322                         struct nvmet_fc_ls_iod *iod)
1323 {
1324         struct fcnvme_ls_cr_assoc_rqst *rqst =
1325                                 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1326         struct fcnvme_ls_cr_assoc_acc *acc =
1327                                 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1328         struct nvmet_fc_tgt_queue *queue;
1329         int ret = 0;
1330
1331         memset(acc, 0, sizeof(*acc));
1332
1333         /*
1334          * FC-NVME spec changes. There are initiators sending different
1335          * lengths as padding sizes for Create Association Cmd descriptor
1336          * was incorrect.
1337          * Accept anything of "minimum" length. Assume format per 1.15
1338          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1339          * trailing pad length is.
1340          */
1341         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1342                 ret = VERR_CR_ASSOC_LEN;
1343         else if (be32_to_cpu(rqst->desc_list_len) <
1344                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1345                 ret = VERR_CR_ASSOC_RQST_LEN;
1346         else if (rqst->assoc_cmd.desc_tag !=
1347                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1348                 ret = VERR_CR_ASSOC_CMD;
1349         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1350                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1351                 ret = VERR_CR_ASSOC_CMD_LEN;
1352         else if (!rqst->assoc_cmd.ersp_ratio ||
1353                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1354                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1355                 ret = VERR_ERSP_RATIO;
1356
1357         else {
1358                 /* new association w/ admin queue */
1359                 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1360                 if (!iod->assoc)
1361                         ret = VERR_ASSOC_ALLOC_FAIL;
1362                 else {
1363                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1364                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1365                         if (!queue)
1366                                 ret = VERR_QUEUE_ALLOC_FAIL;
1367                 }
1368         }
1369
1370         if (ret) {
1371                 dev_err(tgtport->dev,
1372                         "Create Association LS failed: %s\n",
1373                         validation_errors[ret]);
1374                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1375                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1376                                 FCNVME_RJT_RC_LOGIC,
1377                                 FCNVME_RJT_EXP_NONE, 0);
1378                 return;
1379         }
1380
1381         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1382         atomic_set(&queue->connected, 1);
1383         queue->sqhd = 0;        /* best place to init value */
1384
1385         /* format a response */
1386
1387         iod->lsreq->rsplen = sizeof(*acc);
1388
1389         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1390                         fcnvme_lsdesc_len(
1391                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1392                         FCNVME_LS_CREATE_ASSOCIATION);
1393         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1394         acc->associd.desc_len =
1395                         fcnvme_lsdesc_len(
1396                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1397         acc->associd.association_id =
1398                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1399         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1400         acc->connectid.desc_len =
1401                         fcnvme_lsdesc_len(
1402                                 sizeof(struct fcnvme_lsdesc_conn_id));
1403         acc->connectid.connection_id = acc->associd.association_id;
1404 }
1405
1406 static void
1407 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1408                         struct nvmet_fc_ls_iod *iod)
1409 {
1410         struct fcnvme_ls_cr_conn_rqst *rqst =
1411                                 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1412         struct fcnvme_ls_cr_conn_acc *acc =
1413                                 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1414         struct nvmet_fc_tgt_queue *queue;
1415         int ret = 0;
1416
1417         memset(acc, 0, sizeof(*acc));
1418
1419         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1420                 ret = VERR_CR_CONN_LEN;
1421         else if (rqst->desc_list_len !=
1422                         fcnvme_lsdesc_len(
1423                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1424                 ret = VERR_CR_CONN_RQST_LEN;
1425         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1426                 ret = VERR_ASSOC_ID;
1427         else if (rqst->associd.desc_len !=
1428                         fcnvme_lsdesc_len(
1429                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1430                 ret = VERR_ASSOC_ID_LEN;
1431         else if (rqst->connect_cmd.desc_tag !=
1432                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1433                 ret = VERR_CR_CONN_CMD;
1434         else if (rqst->connect_cmd.desc_len !=
1435                         fcnvme_lsdesc_len(
1436                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1437                 ret = VERR_CR_CONN_CMD_LEN;
1438         else if (!rqst->connect_cmd.ersp_ratio ||
1439                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1440                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1441                 ret = VERR_ERSP_RATIO;
1442
1443         else {
1444                 /* new io queue */
1445                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1446                                 be64_to_cpu(rqst->associd.association_id));
1447                 if (!iod->assoc)
1448                         ret = VERR_NO_ASSOC;
1449                 else {
1450                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1451                                         be16_to_cpu(rqst->connect_cmd.qid),
1452                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1453                         if (!queue)
1454                                 ret = VERR_QUEUE_ALLOC_FAIL;
1455
1456                         /* release get taken in nvmet_fc_find_target_assoc */
1457                         nvmet_fc_tgt_a_put(iod->assoc);
1458                 }
1459         }
1460
1461         if (ret) {
1462                 dev_err(tgtport->dev,
1463                         "Create Connection LS failed: %s\n",
1464                         validation_errors[ret]);
1465                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1466                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1467                                 (ret == VERR_NO_ASSOC) ?
1468                                         FCNVME_RJT_RC_INV_ASSOC :
1469                                         FCNVME_RJT_RC_LOGIC,
1470                                 FCNVME_RJT_EXP_NONE, 0);
1471                 return;
1472         }
1473
1474         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1475         atomic_set(&queue->connected, 1);
1476         queue->sqhd = 0;        /* best place to init value */
1477
1478         /* format a response */
1479
1480         iod->lsreq->rsplen = sizeof(*acc);
1481
1482         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1483                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1484                         FCNVME_LS_CREATE_CONNECTION);
1485         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1486         acc->connectid.desc_len =
1487                         fcnvme_lsdesc_len(
1488                                 sizeof(struct fcnvme_lsdesc_conn_id));
1489         acc->connectid.connection_id =
1490                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1491                                 be16_to_cpu(rqst->connect_cmd.qid)));
1492 }
1493
1494 static void
1495 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1496                         struct nvmet_fc_ls_iod *iod)
1497 {
1498         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1499                         (struct fcnvme_ls_disconnect_assoc_rqst *)iod->rqstbuf;
1500         struct fcnvme_ls_disconnect_assoc_acc *acc =
1501                         (struct fcnvme_ls_disconnect_assoc_acc *)iod->rspbuf;
1502         struct nvmet_fc_tgt_assoc *assoc;
1503         int ret = 0;
1504
1505         memset(acc, 0, sizeof(*acc));
1506
1507         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_assoc_rqst))
1508                 ret = VERR_DISCONN_LEN;
1509         else if (rqst->desc_list_len !=
1510                         fcnvme_lsdesc_len(
1511                                 sizeof(struct fcnvme_ls_disconnect_assoc_rqst)))
1512                 ret = VERR_DISCONN_RQST_LEN;
1513         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1514                 ret = VERR_ASSOC_ID;
1515         else if (rqst->associd.desc_len !=
1516                         fcnvme_lsdesc_len(
1517                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1518                 ret = VERR_ASSOC_ID_LEN;
1519         else if (rqst->discon_cmd.desc_tag !=
1520                         cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1521                 ret = VERR_DISCONN_CMD;
1522         else if (rqst->discon_cmd.desc_len !=
1523                         fcnvme_lsdesc_len(
1524                                 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1525                 ret = VERR_DISCONN_CMD_LEN;
1526         /*
1527          * As the standard changed on the LS, check if old format and scope
1528          * something other than Association (e.g. 0).
1529          */
1530         else if (rqst->discon_cmd.rsvd8[0])
1531                 ret = VERR_DISCONN_SCOPE;
1532         else {
1533                 /* match an active association */
1534                 assoc = nvmet_fc_find_target_assoc(tgtport,
1535                                 be64_to_cpu(rqst->associd.association_id));
1536                 iod->assoc = assoc;
1537                 if (!assoc)
1538                         ret = VERR_NO_ASSOC;
1539         }
1540
1541         if (ret) {
1542                 dev_err(tgtport->dev,
1543                         "Disconnect LS failed: %s\n",
1544                         validation_errors[ret]);
1545                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1546                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1547                                 (ret == VERR_NO_ASSOC) ?
1548                                         FCNVME_RJT_RC_INV_ASSOC :
1549                                         (ret == VERR_NO_CONN) ?
1550                                                 FCNVME_RJT_RC_INV_CONN :
1551                                                 FCNVME_RJT_RC_LOGIC,
1552                                 FCNVME_RJT_EXP_NONE, 0);
1553                 return;
1554         }
1555
1556         /* format a response */
1557
1558         iod->lsreq->rsplen = sizeof(*acc);
1559
1560         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1561                         fcnvme_lsdesc_len(
1562                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1563                         FCNVME_LS_DISCONNECT_ASSOC);
1564
1565         /* release get taken in nvmet_fc_find_target_assoc */
1566         nvmet_fc_tgt_a_put(iod->assoc);
1567
1568         nvmet_fc_delete_target_assoc(iod->assoc);
1569 }
1570
1571
1572 /* *********************** NVME Ctrl Routines **************************** */
1573
1574
1575 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1576
1577 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1578
1579 static void
1580 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1581 {
1582         struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1583         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1584
1585         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1586                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1587         nvmet_fc_free_ls_iod(tgtport, iod);
1588         nvmet_fc_tgtport_put(tgtport);
1589 }
1590
1591 static void
1592 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1593                                 struct nvmet_fc_ls_iod *iod)
1594 {
1595         int ret;
1596
1597         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1598                                   NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1599
1600         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1601         if (ret)
1602                 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1603 }
1604
1605 /*
1606  * Actual processing routine for received FC-NVME LS Requests from the LLD
1607  */
1608 static void
1609 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1610                         struct nvmet_fc_ls_iod *iod)
1611 {
1612         struct fcnvme_ls_rqst_w0 *w0 =
1613                         (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1614
1615         iod->lsreq->nvmet_fc_private = iod;
1616         iod->lsreq->rspbuf = iod->rspbuf;
1617         iod->lsreq->rspdma = iod->rspdma;
1618         iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1619         /* Be preventative. handlers will later set to valid length */
1620         iod->lsreq->rsplen = 0;
1621
1622         iod->assoc = NULL;
1623
1624         /*
1625          * handlers:
1626          *   parse request input, execute the request, and format the
1627          *   LS response
1628          */
1629         switch (w0->ls_cmd) {
1630         case FCNVME_LS_CREATE_ASSOCIATION:
1631                 /* Creates Association and initial Admin Queue/Connection */
1632                 nvmet_fc_ls_create_association(tgtport, iod);
1633                 break;
1634         case FCNVME_LS_CREATE_CONNECTION:
1635                 /* Creates an IO Queue/Connection */
1636                 nvmet_fc_ls_create_connection(tgtport, iod);
1637                 break;
1638         case FCNVME_LS_DISCONNECT_ASSOC:
1639                 /* Terminate a Queue/Connection or the Association */
1640                 nvmet_fc_ls_disconnect(tgtport, iod);
1641                 break;
1642         default:
1643                 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1644                                 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1645                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1646         }
1647
1648         nvmet_fc_xmt_ls_rsp(tgtport, iod);
1649 }
1650
1651 /*
1652  * Actual processing routine for received FC-NVME LS Requests from the LLD
1653  */
1654 static void
1655 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1656 {
1657         struct nvmet_fc_ls_iod *iod =
1658                 container_of(work, struct nvmet_fc_ls_iod, work);
1659         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1660
1661         nvmet_fc_handle_ls_rqst(tgtport, iod);
1662 }
1663
1664
1665 /**
1666  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1667  *                       upon the reception of a NVME LS request.
1668  *
1669  * The nvmet-fc layer will copy payload to an internal structure for
1670  * processing.  As such, upon completion of the routine, the LLDD may
1671  * immediately free/reuse the LS request buffer passed in the call.
1672  *
1673  * If this routine returns error, the LLDD should abort the exchange.
1674  *
1675  * @target_port: pointer to the (registered) target port the LS was
1676  *              received on.
1677  * @lsreq:      pointer to a lsreq request structure to be used to reference
1678  *              the exchange corresponding to the LS.
1679  * @lsreqbuf:   pointer to the buffer containing the LS Request
1680  * @lsreqbuf_len: length, in bytes, of the received LS request
1681  */
1682 int
1683 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1684                         struct nvmefc_tgt_ls_req *lsreq,
1685                         void *lsreqbuf, u32 lsreqbuf_len)
1686 {
1687         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1688         struct nvmet_fc_ls_iod *iod;
1689
1690         if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1691                 return -E2BIG;
1692
1693         if (!nvmet_fc_tgtport_get(tgtport))
1694                 return -ESHUTDOWN;
1695
1696         iod = nvmet_fc_alloc_ls_iod(tgtport);
1697         if (!iod) {
1698                 nvmet_fc_tgtport_put(tgtport);
1699                 return -ENOENT;
1700         }
1701
1702         iod->lsreq = lsreq;
1703         iod->fcpreq = NULL;
1704         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1705         iod->rqstdatalen = lsreqbuf_len;
1706
1707         schedule_work(&iod->work);
1708
1709         return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1712
1713
1714 /*
1715  * **********************
1716  * Start of FCP handling
1717  * **********************
1718  */
1719
1720 static int
1721 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1722 {
1723         struct scatterlist *sg;
1724         unsigned int nent;
1725
1726         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1727         if (!sg)
1728                 goto out;
1729
1730         fod->data_sg = sg;
1731         fod->data_sg_cnt = nent;
1732         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1733                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1734                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1735                                 /* note: write from initiator perspective */
1736         fod->next_sg = fod->data_sg;
1737
1738         return 0;
1739
1740 out:
1741         return NVME_SC_INTERNAL;
1742 }
1743
1744 static void
1745 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1746 {
1747         if (!fod->data_sg || !fod->data_sg_cnt)
1748                 return;
1749
1750         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1751                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1752                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1753         sgl_free(fod->data_sg);
1754         fod->data_sg = NULL;
1755         fod->data_sg_cnt = 0;
1756 }
1757
1758
1759 static bool
1760 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1761 {
1762         u32 sqtail, used;
1763
1764         /* egad, this is ugly. And sqtail is just a best guess */
1765         sqtail = atomic_read(&q->sqtail) % q->sqsize;
1766
1767         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1768         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1769 }
1770
1771 /*
1772  * Prep RSP payload.
1773  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1774  */
1775 static void
1776 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1777                                 struct nvmet_fc_fcp_iod *fod)
1778 {
1779         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1780         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1781         struct nvme_completion *cqe = &ersp->cqe;
1782         u32 *cqewd = (u32 *)cqe;
1783         bool send_ersp = false;
1784         u32 rsn, rspcnt, xfr_length;
1785
1786         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1787                 xfr_length = fod->req.transfer_len;
1788         else
1789                 xfr_length = fod->offset;
1790
1791         /*
1792          * check to see if we can send a 0's rsp.
1793          *   Note: to send a 0's response, the NVME-FC host transport will
1794          *   recreate the CQE. The host transport knows: sq id, SQHD (last
1795          *   seen in an ersp), and command_id. Thus it will create a
1796          *   zero-filled CQE with those known fields filled in. Transport
1797          *   must send an ersp for any condition where the cqe won't match
1798          *   this.
1799          *
1800          * Here are the FC-NVME mandated cases where we must send an ersp:
1801          *  every N responses, where N=ersp_ratio
1802          *  force fabric commands to send ersp's (not in FC-NVME but good
1803          *    practice)
1804          *  normal cmds: any time status is non-zero, or status is zero
1805          *     but words 0 or 1 are non-zero.
1806          *  the SQ is 90% or more full
1807          *  the cmd is a fused command
1808          *  transferred data length not equal to cmd iu length
1809          */
1810         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1811         if (!(rspcnt % fod->queue->ersp_ratio) ||
1812             nvme_is_fabrics((struct nvme_command *) sqe) ||
1813             xfr_length != fod->req.transfer_len ||
1814             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1815             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1816             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1817                 send_ersp = true;
1818
1819         /* re-set the fields */
1820         fod->fcpreq->rspaddr = ersp;
1821         fod->fcpreq->rspdma = fod->rspdma;
1822
1823         if (!send_ersp) {
1824                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1825                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1826         } else {
1827                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1828                 rsn = atomic_inc_return(&fod->queue->rsn);
1829                 ersp->rsn = cpu_to_be32(rsn);
1830                 ersp->xfrd_len = cpu_to_be32(xfr_length);
1831                 fod->fcpreq->rsplen = sizeof(*ersp);
1832         }
1833
1834         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1835                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1836 }
1837
1838 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1839
1840 static void
1841 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1842                                 struct nvmet_fc_fcp_iod *fod)
1843 {
1844         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1845
1846         /* data no longer needed */
1847         nvmet_fc_free_tgt_pgs(fod);
1848
1849         /*
1850          * if an ABTS was received or we issued the fcp_abort early
1851          * don't call abort routine again.
1852          */
1853         /* no need to take lock - lock was taken earlier to get here */
1854         if (!fod->aborted)
1855                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1856
1857         nvmet_fc_free_fcp_iod(fod->queue, fod);
1858 }
1859
1860 static void
1861 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1862                                 struct nvmet_fc_fcp_iod *fod)
1863 {
1864         int ret;
1865
1866         fod->fcpreq->op = NVMET_FCOP_RSP;
1867         fod->fcpreq->timeout = 0;
1868
1869         nvmet_fc_prep_fcp_rsp(tgtport, fod);
1870
1871         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1872         if (ret)
1873                 nvmet_fc_abort_op(tgtport, fod);
1874 }
1875
1876 static void
1877 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1878                                 struct nvmet_fc_fcp_iod *fod, u8 op)
1879 {
1880         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1881         struct scatterlist *sg = fod->next_sg;
1882         unsigned long flags;
1883         u32 remaininglen = fod->req.transfer_len - fod->offset;
1884         u32 tlen = 0;
1885         int ret;
1886
1887         fcpreq->op = op;
1888         fcpreq->offset = fod->offset;
1889         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1890
1891         /*
1892          * for next sequence:
1893          *  break at a sg element boundary
1894          *  attempt to keep sequence length capped at
1895          *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1896          *    be longer if a single sg element is larger
1897          *    than that amount. This is done to avoid creating
1898          *    a new sg list to use for the tgtport api.
1899          */
1900         fcpreq->sg = sg;
1901         fcpreq->sg_cnt = 0;
1902         while (tlen < remaininglen &&
1903                fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1904                tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1905                 fcpreq->sg_cnt++;
1906                 tlen += sg_dma_len(sg);
1907                 sg = sg_next(sg);
1908         }
1909         if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1910                 fcpreq->sg_cnt++;
1911                 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1912                 sg = sg_next(sg);
1913         }
1914         if (tlen < remaininglen)
1915                 fod->next_sg = sg;
1916         else
1917                 fod->next_sg = NULL;
1918
1919         fcpreq->transfer_length = tlen;
1920         fcpreq->transferred_length = 0;
1921         fcpreq->fcp_error = 0;
1922         fcpreq->rsplen = 0;
1923
1924         /*
1925          * If the last READDATA request: check if LLDD supports
1926          * combined xfr with response.
1927          */
1928         if ((op == NVMET_FCOP_READDATA) &&
1929             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1930             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1931                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1932                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1933         }
1934
1935         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1936         if (ret) {
1937                 /*
1938                  * should be ok to set w/o lock as its in the thread of
1939                  * execution (not an async timer routine) and doesn't
1940                  * contend with any clearing action
1941                  */
1942                 fod->abort = true;
1943
1944                 if (op == NVMET_FCOP_WRITEDATA) {
1945                         spin_lock_irqsave(&fod->flock, flags);
1946                         fod->writedataactive = false;
1947                         spin_unlock_irqrestore(&fod->flock, flags);
1948                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1949                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1950                         fcpreq->fcp_error = ret;
1951                         fcpreq->transferred_length = 0;
1952                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1953                 }
1954         }
1955 }
1956
1957 static inline bool
1958 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1959 {
1960         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1961         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1962
1963         /* if in the middle of an io and we need to tear down */
1964         if (abort) {
1965                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1966                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1967                         return true;
1968                 }
1969
1970                 nvmet_fc_abort_op(tgtport, fod);
1971                 return true;
1972         }
1973
1974         return false;
1975 }
1976
1977 /*
1978  * actual done handler for FCP operations when completed by the lldd
1979  */
1980 static void
1981 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1982 {
1983         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1984         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1985         unsigned long flags;
1986         bool abort;
1987
1988         spin_lock_irqsave(&fod->flock, flags);
1989         abort = fod->abort;
1990         fod->writedataactive = false;
1991         spin_unlock_irqrestore(&fod->flock, flags);
1992
1993         switch (fcpreq->op) {
1994
1995         case NVMET_FCOP_WRITEDATA:
1996                 if (__nvmet_fc_fod_op_abort(fod, abort))
1997                         return;
1998                 if (fcpreq->fcp_error ||
1999                     fcpreq->transferred_length != fcpreq->transfer_length) {
2000                         spin_lock(&fod->flock);
2001                         fod->abort = true;
2002                         spin_unlock(&fod->flock);
2003
2004                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2005                         return;
2006                 }
2007
2008                 fod->offset += fcpreq->transferred_length;
2009                 if (fod->offset != fod->req.transfer_len) {
2010                         spin_lock_irqsave(&fod->flock, flags);
2011                         fod->writedataactive = true;
2012                         spin_unlock_irqrestore(&fod->flock, flags);
2013
2014                         /* transfer the next chunk */
2015                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2016                                                 NVMET_FCOP_WRITEDATA);
2017                         return;
2018                 }
2019
2020                 /* data transfer complete, resume with nvmet layer */
2021                 fod->req.execute(&fod->req);
2022                 break;
2023
2024         case NVMET_FCOP_READDATA:
2025         case NVMET_FCOP_READDATA_RSP:
2026                 if (__nvmet_fc_fod_op_abort(fod, abort))
2027                         return;
2028                 if (fcpreq->fcp_error ||
2029                     fcpreq->transferred_length != fcpreq->transfer_length) {
2030                         nvmet_fc_abort_op(tgtport, fod);
2031                         return;
2032                 }
2033
2034                 /* success */
2035
2036                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2037                         /* data no longer needed */
2038                         nvmet_fc_free_tgt_pgs(fod);
2039                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2040                         return;
2041                 }
2042
2043                 fod->offset += fcpreq->transferred_length;
2044                 if (fod->offset != fod->req.transfer_len) {
2045                         /* transfer the next chunk */
2046                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2047                                                 NVMET_FCOP_READDATA);
2048                         return;
2049                 }
2050
2051                 /* data transfer complete, send response */
2052
2053                 /* data no longer needed */
2054                 nvmet_fc_free_tgt_pgs(fod);
2055
2056                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2057
2058                 break;
2059
2060         case NVMET_FCOP_RSP:
2061                 if (__nvmet_fc_fod_op_abort(fod, abort))
2062                         return;
2063                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2064                 break;
2065
2066         default:
2067                 break;
2068         }
2069 }
2070
2071 static void
2072 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2073 {
2074         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2075
2076         nvmet_fc_fod_op_done(fod);
2077 }
2078
2079 /*
2080  * actual completion handler after execution by the nvmet layer
2081  */
2082 static void
2083 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2084                         struct nvmet_fc_fcp_iod *fod, int status)
2085 {
2086         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2087         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2088         unsigned long flags;
2089         bool abort;
2090
2091         spin_lock_irqsave(&fod->flock, flags);
2092         abort = fod->abort;
2093         spin_unlock_irqrestore(&fod->flock, flags);
2094
2095         /* if we have a CQE, snoop the last sq_head value */
2096         if (!status)
2097                 fod->queue->sqhd = cqe->sq_head;
2098
2099         if (abort) {
2100                 nvmet_fc_abort_op(tgtport, fod);
2101                 return;
2102         }
2103
2104         /* if an error handling the cmd post initial parsing */
2105         if (status) {
2106                 /* fudge up a failed CQE status for our transport error */
2107                 memset(cqe, 0, sizeof(*cqe));
2108                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2109                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2110                 cqe->command_id = sqe->command_id;
2111                 cqe->status = cpu_to_le16(status);
2112         } else {
2113
2114                 /*
2115                  * try to push the data even if the SQE status is non-zero.
2116                  * There may be a status where data still was intended to
2117                  * be moved
2118                  */
2119                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2120                         /* push the data over before sending rsp */
2121                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2122                                                 NVMET_FCOP_READDATA);
2123                         return;
2124                 }
2125
2126                 /* writes & no data - fall thru */
2127         }
2128
2129         /* data no longer needed */
2130         nvmet_fc_free_tgt_pgs(fod);
2131
2132         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2133 }
2134
2135
2136 static void
2137 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2138 {
2139         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2140         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2141
2142         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2143 }
2144
2145
2146 /*
2147  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2148  */
2149 static void
2150 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2151                         struct nvmet_fc_fcp_iod *fod)
2152 {
2153         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2154         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2155         int ret;
2156
2157         /*
2158          * if there is no nvmet mapping to the targetport there
2159          * shouldn't be requests. just terminate them.
2160          */
2161         if (!tgtport->pe)
2162                 goto transport_error;
2163
2164         /*
2165          * Fused commands are currently not supported in the linux
2166          * implementation.
2167          *
2168          * As such, the implementation of the FC transport does not
2169          * look at the fused commands and order delivery to the upper
2170          * layer until we have both based on csn.
2171          */
2172
2173         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2174
2175         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2176                 fod->io_dir = NVMET_FCP_WRITE;
2177                 if (!nvme_is_write(&cmdiu->sqe))
2178                         goto transport_error;
2179         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2180                 fod->io_dir = NVMET_FCP_READ;
2181                 if (nvme_is_write(&cmdiu->sqe))
2182                         goto transport_error;
2183         } else {
2184                 fod->io_dir = NVMET_FCP_NODATA;
2185                 if (xfrlen)
2186                         goto transport_error;
2187         }
2188
2189         fod->req.cmd = &fod->cmdiubuf.sqe;
2190         fod->req.cqe = &fod->rspiubuf.cqe;
2191         fod->req.port = tgtport->pe->port;
2192
2193         /* clear any response payload */
2194         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2195
2196         fod->data_sg = NULL;
2197         fod->data_sg_cnt = 0;
2198
2199         ret = nvmet_req_init(&fod->req,
2200                                 &fod->queue->nvme_cq,
2201                                 &fod->queue->nvme_sq,
2202                                 &nvmet_fc_tgt_fcp_ops);
2203         if (!ret) {
2204                 /* bad SQE content or invalid ctrl state */
2205                 /* nvmet layer has already called op done to send rsp. */
2206                 return;
2207         }
2208
2209         fod->req.transfer_len = xfrlen;
2210
2211         /* keep a running counter of tail position */
2212         atomic_inc(&fod->queue->sqtail);
2213
2214         if (fod->req.transfer_len) {
2215                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2216                 if (ret) {
2217                         nvmet_req_complete(&fod->req, ret);
2218                         return;
2219                 }
2220         }
2221         fod->req.sg = fod->data_sg;
2222         fod->req.sg_cnt = fod->data_sg_cnt;
2223         fod->offset = 0;
2224
2225         if (fod->io_dir == NVMET_FCP_WRITE) {
2226                 /* pull the data over before invoking nvmet layer */
2227                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2228                 return;
2229         }
2230
2231         /*
2232          * Reads or no data:
2233          *
2234          * can invoke the nvmet_layer now. If read data, cmd completion will
2235          * push the data
2236          */
2237         fod->req.execute(&fod->req);
2238         return;
2239
2240 transport_error:
2241         nvmet_fc_abort_op(tgtport, fod);
2242 }
2243
2244 /**
2245  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2246  *                       upon the reception of a NVME FCP CMD IU.
2247  *
2248  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2249  * layer for processing.
2250  *
2251  * The nvmet_fc layer allocates a local job structure (struct
2252  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2253  * CMD IU buffer to the job structure. As such, on a successful
2254  * completion (returns 0), the LLDD may immediately free/reuse
2255  * the CMD IU buffer passed in the call.
2256  *
2257  * However, in some circumstances, due to the packetized nature of FC
2258  * and the api of the FC LLDD which may issue a hw command to send the
2259  * response, but the LLDD may not get the hw completion for that command
2260  * and upcall the nvmet_fc layer before a new command may be
2261  * asynchronously received - its possible for a command to be received
2262  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2263  * the appearance of more commands received than fits in the sq.
2264  * To alleviate this scenario, a temporary queue is maintained in the
2265  * transport for pending LLDD requests waiting for a queue job structure.
2266  * In these "overrun" cases, a temporary queue element is allocated
2267  * the LLDD request and CMD iu buffer information remembered, and the
2268  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2269  * structure is freed, it is immediately reallocated for anything on the
2270  * pending request list. The LLDDs defer_rcv() callback is called,
2271  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2272  * is then started normally with the transport.
2273  *
2274  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2275  * the completion as successful but must not reuse the CMD IU buffer
2276  * until the LLDD's defer_rcv() callback has been called for the
2277  * corresponding struct nvmefc_tgt_fcp_req pointer.
2278  *
2279  * If there is any other condition in which an error occurs, the
2280  * transport will return a non-zero status indicating the error.
2281  * In all cases other than -EOVERFLOW, the transport has not accepted the
2282  * request and the LLDD should abort the exchange.
2283  *
2284  * @target_port: pointer to the (registered) target port the FCP CMD IU
2285  *              was received on.
2286  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2287  *              the exchange corresponding to the FCP Exchange.
2288  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2289  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2290  */
2291 int
2292 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2293                         struct nvmefc_tgt_fcp_req *fcpreq,
2294                         void *cmdiubuf, u32 cmdiubuf_len)
2295 {
2296         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2297         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2298         struct nvmet_fc_tgt_queue *queue;
2299         struct nvmet_fc_fcp_iod *fod;
2300         struct nvmet_fc_defer_fcp_req *deferfcp;
2301         unsigned long flags;
2302
2303         /* validate iu, so the connection id can be used to find the queue */
2304         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2305                         (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2306                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2307                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2308                 return -EIO;
2309
2310         queue = nvmet_fc_find_target_queue(tgtport,
2311                                 be64_to_cpu(cmdiu->connection_id));
2312         if (!queue)
2313                 return -ENOTCONN;
2314
2315         /*
2316          * note: reference taken by find_target_queue
2317          * After successful fod allocation, the fod will inherit the
2318          * ownership of that reference and will remove the reference
2319          * when the fod is freed.
2320          */
2321
2322         spin_lock_irqsave(&queue->qlock, flags);
2323
2324         fod = nvmet_fc_alloc_fcp_iod(queue);
2325         if (fod) {
2326                 spin_unlock_irqrestore(&queue->qlock, flags);
2327
2328                 fcpreq->nvmet_fc_private = fod;
2329                 fod->fcpreq = fcpreq;
2330
2331                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2332
2333                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2334
2335                 return 0;
2336         }
2337
2338         if (!tgtport->ops->defer_rcv) {
2339                 spin_unlock_irqrestore(&queue->qlock, flags);
2340                 /* release the queue lookup reference */
2341                 nvmet_fc_tgt_q_put(queue);
2342                 return -ENOENT;
2343         }
2344
2345         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2346                         struct nvmet_fc_defer_fcp_req, req_list);
2347         if (deferfcp) {
2348                 /* Just re-use one that was previously allocated */
2349                 list_del(&deferfcp->req_list);
2350         } else {
2351                 spin_unlock_irqrestore(&queue->qlock, flags);
2352
2353                 /* Now we need to dynamically allocate one */
2354                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2355                 if (!deferfcp) {
2356                         /* release the queue lookup reference */
2357                         nvmet_fc_tgt_q_put(queue);
2358                         return -ENOMEM;
2359                 }
2360                 spin_lock_irqsave(&queue->qlock, flags);
2361         }
2362
2363         /* For now, use rspaddr / rsplen to save payload information */
2364         fcpreq->rspaddr = cmdiubuf;
2365         fcpreq->rsplen  = cmdiubuf_len;
2366         deferfcp->fcp_req = fcpreq;
2367
2368         /* defer processing till a fod becomes available */
2369         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2370
2371         /* NOTE: the queue lookup reference is still valid */
2372
2373         spin_unlock_irqrestore(&queue->qlock, flags);
2374
2375         return -EOVERFLOW;
2376 }
2377 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2378
2379 /**
2380  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2381  *                       upon the reception of an ABTS for a FCP command
2382  *
2383  * Notify the transport that an ABTS has been received for a FCP command
2384  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2385  * LLDD believes the command is still being worked on
2386  * (template_ops->fcp_req_release() has not been called).
2387  *
2388  * The transport will wait for any outstanding work (an op to the LLDD,
2389  * which the lldd should complete with error due to the ABTS; or the
2390  * completion from the nvmet layer of the nvme command), then will
2391  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2392  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2393  * to the ABTS either after return from this function (assuming any
2394  * outstanding op work has been terminated) or upon the callback being
2395  * called.
2396  *
2397  * @target_port: pointer to the (registered) target port the FCP CMD IU
2398  *              was received on.
2399  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2400  *              to the exchange that received the ABTS.
2401  */
2402 void
2403 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2404                         struct nvmefc_tgt_fcp_req *fcpreq)
2405 {
2406         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2407         struct nvmet_fc_tgt_queue *queue;
2408         unsigned long flags;
2409
2410         if (!fod || fod->fcpreq != fcpreq)
2411                 /* job appears to have already completed, ignore abort */
2412                 return;
2413
2414         queue = fod->queue;
2415
2416         spin_lock_irqsave(&queue->qlock, flags);
2417         if (fod->active) {
2418                 /*
2419                  * mark as abort. The abort handler, invoked upon completion
2420                  * of any work, will detect the aborted status and do the
2421                  * callback.
2422                  */
2423                 spin_lock(&fod->flock);
2424                 fod->abort = true;
2425                 fod->aborted = true;
2426                 spin_unlock(&fod->flock);
2427         }
2428         spin_unlock_irqrestore(&queue->qlock, flags);
2429 }
2430 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2431
2432
2433 struct nvmet_fc_traddr {
2434         u64     nn;
2435         u64     pn;
2436 };
2437
2438 static int
2439 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2440 {
2441         u64 token64;
2442
2443         if (match_u64(sstr, &token64))
2444                 return -EINVAL;
2445         *val = token64;
2446
2447         return 0;
2448 }
2449
2450 /*
2451  * This routine validates and extracts the WWN's from the TRADDR string.
2452  * As kernel parsers need the 0x to determine number base, universally
2453  * build string to parse with 0x prefix before parsing name strings.
2454  */
2455 static int
2456 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2457 {
2458         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2459         substring_t wwn = { name, &name[sizeof(name)-1] };
2460         int nnoffset, pnoffset;
2461
2462         /* validate if string is one of the 2 allowed formats */
2463         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2464                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2465                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2466                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2467                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2468                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2469                                                 NVME_FC_TRADDR_OXNNLEN;
2470         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2471                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2472                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2473                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2474                 nnoffset = NVME_FC_TRADDR_NNLEN;
2475                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2476         } else
2477                 goto out_einval;
2478
2479         name[0] = '0';
2480         name[1] = 'x';
2481         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2482
2483         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2484         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2485                 goto out_einval;
2486
2487         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2488         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2489                 goto out_einval;
2490
2491         return 0;
2492
2493 out_einval:
2494         pr_warn("%s: bad traddr string\n", __func__);
2495         return -EINVAL;
2496 }
2497
2498 static int
2499 nvmet_fc_add_port(struct nvmet_port *port)
2500 {
2501         struct nvmet_fc_tgtport *tgtport;
2502         struct nvmet_fc_port_entry *pe;
2503         struct nvmet_fc_traddr traddr = { 0L, 0L };
2504         unsigned long flags;
2505         int ret;
2506
2507         /* validate the address info */
2508         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2509             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2510                 return -EINVAL;
2511
2512         /* map the traddr address info to a target port */
2513
2514         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2515                         sizeof(port->disc_addr.traddr));
2516         if (ret)
2517                 return ret;
2518
2519         pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2520         if (!pe)
2521                 return -ENOMEM;
2522
2523         ret = -ENXIO;
2524         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2525         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2526                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2527                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2528                         /* a FC port can only be 1 nvmet port id */
2529                         if (!tgtport->pe) {
2530                                 nvmet_fc_portentry_bind(tgtport, pe, port);
2531                                 ret = 0;
2532                         } else
2533                                 ret = -EALREADY;
2534                         break;
2535                 }
2536         }
2537         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2538
2539         if (ret)
2540                 kfree(pe);
2541
2542         return ret;
2543 }
2544
2545 static void
2546 nvmet_fc_remove_port(struct nvmet_port *port)
2547 {
2548         struct nvmet_fc_port_entry *pe = port->priv;
2549
2550         nvmet_fc_portentry_unbind(pe);
2551
2552         kfree(pe);
2553 }
2554
2555 static void
2556 nvmet_fc_discovery_chg(struct nvmet_port *port)
2557 {
2558         struct nvmet_fc_port_entry *pe = port->priv;
2559         struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2560
2561         if (tgtport && tgtport->ops->discovery_event)
2562                 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2563 }
2564
2565 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2566         .owner                  = THIS_MODULE,
2567         .type                   = NVMF_TRTYPE_FC,
2568         .msdbd                  = 1,
2569         .add_port               = nvmet_fc_add_port,
2570         .remove_port            = nvmet_fc_remove_port,
2571         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2572         .delete_ctrl            = nvmet_fc_delete_ctrl,
2573         .discovery_chg          = nvmet_fc_discovery_chg,
2574 };
2575
2576 static int __init nvmet_fc_init_module(void)
2577 {
2578         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2579 }
2580
2581 static void __exit nvmet_fc_exit_module(void)
2582 {
2583         /* sanity check - all lports should be removed */
2584         if (!list_empty(&nvmet_fc_target_list))
2585                 pr_warn("%s: targetport list not empty\n", __func__);
2586
2587         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2588
2589         ida_destroy(&nvmet_fc_tgtport_cnt);
2590 }
2591
2592 module_init(nvmet_fc_init_module);
2593 module_exit(nvmet_fc_exit_module);
2594
2595 MODULE_LICENSE("GPL v2");