]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/target/io-cmd-bdev.c
b6fca0e421ef1bc3c0cd96394a8649803c03eb81
[linux.git] / drivers / nvme / target / io-cmd-bdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe I/O command implementation.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
10
11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12 {
13         const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14         /* Number of logical blocks per physical block. */
15         const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16         /* Logical blocks per physical block, 0's based. */
17         const __le16 lpp0b = to0based(lpp);
18
19         /*
20          * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21          * NAWUPF, and NACWU are defined for this namespace and should be
22          * used by the host for this namespace instead of the AWUN, AWUPF,
23          * and ACWU fields in the Identify Controller data structure. If
24          * any of these fields are zero that means that the corresponding
25          * field from the identify controller data structure should be used.
26          */
27         id->nsfeat |= 1 << 1;
28         id->nawun = lpp0b;
29         id->nawupf = lpp0b;
30         id->nacwu = lpp0b;
31
32         /*
33          * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34          * NOWS are defined for this namespace and should be used by
35          * the host for I/O optimization.
36          */
37         id->nsfeat |= 1 << 4;
38         /* NPWG = Namespace Preferred Write Granularity. 0's based */
39         id->npwg = lpp0b;
40         /* NPWA = Namespace Preferred Write Alignment. 0's based */
41         id->npwa = id->npwg;
42         /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43         id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44         /* NPDG = Namespace Preferred Deallocate Alignment */
45         id->npda = id->npdg;
46         /* NOWS = Namespace Optimal Write Size */
47         id->nows = to0based(ql->io_opt / ql->logical_block_size);
48 }
49
50 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
51 {
52         int ret;
53
54         ns->bdev = blkdev_get_by_path(ns->device_path,
55                         FMODE_READ | FMODE_WRITE, NULL);
56         if (IS_ERR(ns->bdev)) {
57                 ret = PTR_ERR(ns->bdev);
58                 if (ret != -ENOTBLK) {
59                         pr_err("failed to open block device %s: (%ld)\n",
60                                         ns->device_path, PTR_ERR(ns->bdev));
61                 }
62                 ns->bdev = NULL;
63                 return ret;
64         }
65         ns->size = i_size_read(ns->bdev->bd_inode);
66         ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
67         return 0;
68 }
69
70 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
71 {
72         if (ns->bdev) {
73                 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
74                 ns->bdev = NULL;
75         }
76 }
77
78 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
79 {
80         u16 status = NVME_SC_SUCCESS;
81
82         if (likely(blk_sts == BLK_STS_OK))
83                 return status;
84         /*
85          * Right now there exists M : 1 mapping between block layer error
86          * to the NVMe status code (see nvme_error_status()). For consistency,
87          * when we reverse map we use most appropriate NVMe Status code from
88          * the group of the NVMe staus codes used in the nvme_error_status().
89          */
90         switch (blk_sts) {
91         case BLK_STS_NOSPC:
92                 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
93                 req->error_loc = offsetof(struct nvme_rw_command, length);
94                 break;
95         case BLK_STS_TARGET:
96                 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
97                 req->error_loc = offsetof(struct nvme_rw_command, slba);
98                 break;
99         case BLK_STS_NOTSUPP:
100                 req->error_loc = offsetof(struct nvme_common_command, opcode);
101                 switch (req->cmd->common.opcode) {
102                 case nvme_cmd_dsm:
103                 case nvme_cmd_write_zeroes:
104                         status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
105                         break;
106                 default:
107                         status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
108                 }
109                 break;
110         case BLK_STS_MEDIUM:
111                 status = NVME_SC_ACCESS_DENIED;
112                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
113                 break;
114         case BLK_STS_IOERR:
115                 /* fallthru */
116         default:
117                 status = NVME_SC_INTERNAL | NVME_SC_DNR;
118                 req->error_loc = offsetof(struct nvme_common_command, opcode);
119         }
120
121         switch (req->cmd->common.opcode) {
122         case nvme_cmd_read:
123         case nvme_cmd_write:
124                 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
125                 break;
126         case nvme_cmd_write_zeroes:
127                 req->error_slba =
128                         le64_to_cpu(req->cmd->write_zeroes.slba);
129                 break;
130         default:
131                 req->error_slba = 0;
132         }
133         return status;
134 }
135
136 static void nvmet_bio_done(struct bio *bio)
137 {
138         struct nvmet_req *req = bio->bi_private;
139
140         nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
141         if (bio != &req->b.inline_bio)
142                 bio_put(bio);
143 }
144
145 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
146 {
147         int sg_cnt = req->sg_cnt;
148         struct bio *bio;
149         struct scatterlist *sg;
150         struct blk_plug plug;
151         sector_t sector;
152         int op, i;
153
154         if (!nvmet_check_data_len(req, nvmet_rw_len(req)))
155                 return;
156
157         if (!req->sg_cnt) {
158                 nvmet_req_complete(req, 0);
159                 return;
160         }
161
162         if (req->cmd->rw.opcode == nvme_cmd_write) {
163                 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
164                 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
165                         op |= REQ_FUA;
166         } else {
167                 op = REQ_OP_READ;
168         }
169
170         if (is_pci_p2pdma_page(sg_page(req->sg)))
171                 op |= REQ_NOMERGE;
172
173         sector = le64_to_cpu(req->cmd->rw.slba);
174         sector <<= (req->ns->blksize_shift - 9);
175
176         if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) {
177                 bio = &req->b.inline_bio;
178                 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
179         } else {
180                 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
181         }
182         bio_set_dev(bio, req->ns->bdev);
183         bio->bi_iter.bi_sector = sector;
184         bio->bi_private = req;
185         bio->bi_end_io = nvmet_bio_done;
186         bio->bi_opf = op;
187
188         blk_start_plug(&plug);
189         for_each_sg(req->sg, sg, req->sg_cnt, i) {
190                 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
191                                 != sg->length) {
192                         struct bio *prev = bio;
193
194                         bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
195                         bio_set_dev(bio, req->ns->bdev);
196                         bio->bi_iter.bi_sector = sector;
197                         bio->bi_opf = op;
198
199                         bio_chain(bio, prev);
200                         submit_bio(prev);
201                 }
202
203                 sector += sg->length >> 9;
204                 sg_cnt--;
205         }
206
207         submit_bio(bio);
208         blk_finish_plug(&plug);
209 }
210
211 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
212 {
213         struct bio *bio = &req->b.inline_bio;
214
215         if (!nvmet_check_data_len(req, 0))
216                 return;
217
218         bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
219         bio_set_dev(bio, req->ns->bdev);
220         bio->bi_private = req;
221         bio->bi_end_io = nvmet_bio_done;
222         bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
223
224         submit_bio(bio);
225 }
226
227 u16 nvmet_bdev_flush(struct nvmet_req *req)
228 {
229         if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL, NULL))
230                 return NVME_SC_INTERNAL | NVME_SC_DNR;
231         return 0;
232 }
233
234 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
235                 struct nvme_dsm_range *range, struct bio **bio)
236 {
237         struct nvmet_ns *ns = req->ns;
238         int ret;
239
240         ret = __blkdev_issue_discard(ns->bdev,
241                         le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
242                         le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
243                         GFP_KERNEL, 0, bio);
244         if (ret && ret != -EOPNOTSUPP) {
245                 req->error_slba = le64_to_cpu(range->slba);
246                 return errno_to_nvme_status(req, ret);
247         }
248         return NVME_SC_SUCCESS;
249 }
250
251 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
252 {
253         struct nvme_dsm_range range;
254         struct bio *bio = NULL;
255         int i;
256         u16 status;
257
258         for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
259                 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
260                                 sizeof(range));
261                 if (status)
262                         break;
263
264                 status = nvmet_bdev_discard_range(req, &range, &bio);
265                 if (status)
266                         break;
267         }
268
269         if (bio) {
270                 bio->bi_private = req;
271                 bio->bi_end_io = nvmet_bio_done;
272                 if (status)
273                         bio_io_error(bio);
274                 else
275                         submit_bio(bio);
276         } else {
277                 nvmet_req_complete(req, status);
278         }
279 }
280
281 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
282 {
283         if (!nvmet_check_data_len(req, nvmet_dsm_len(req)))
284                 return;
285
286         switch (le32_to_cpu(req->cmd->dsm.attributes)) {
287         case NVME_DSMGMT_AD:
288                 nvmet_bdev_execute_discard(req);
289                 return;
290         case NVME_DSMGMT_IDR:
291         case NVME_DSMGMT_IDW:
292         default:
293                 /* Not supported yet */
294                 nvmet_req_complete(req, 0);
295                 return;
296         }
297 }
298
299 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
300 {
301         struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
302         struct bio *bio = NULL;
303         sector_t sector;
304         sector_t nr_sector;
305         int ret;
306
307         if (!nvmet_check_data_len(req, 0))
308                 return;
309
310         sector = le64_to_cpu(write_zeroes->slba) <<
311                 (req->ns->blksize_shift - 9);
312         nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
313                 (req->ns->blksize_shift - 9));
314
315         ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
316                         GFP_KERNEL, &bio, 0);
317         if (bio) {
318                 bio->bi_private = req;
319                 bio->bi_end_io = nvmet_bio_done;
320                 submit_bio(bio);
321         } else {
322                 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
323         }
324 }
325
326 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
327 {
328         struct nvme_command *cmd = req->cmd;
329
330         switch (cmd->common.opcode) {
331         case nvme_cmd_read:
332         case nvme_cmd_write:
333                 req->execute = nvmet_bdev_execute_rw;
334                 return 0;
335         case nvme_cmd_flush:
336                 req->execute = nvmet_bdev_execute_flush;
337                 return 0;
338         case nvme_cmd_dsm:
339                 req->execute = nvmet_bdev_execute_dsm;
340                 return 0;
341         case nvme_cmd_write_zeroes:
342                 req->execute = nvmet_bdev_execute_write_zeroes;
343                 return 0;
344         default:
345                 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
346                        req->sq->qid);
347                 req->error_loc = offsetof(struct nvme_common_command, opcode);
348                 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
349         }
350 }