]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/of/of_reserved_mem.c
mm: remove CONFIG_HAVE_MEMBLOCK
[linux.git] / drivers / of / of_reserved_mem.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *              http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11
12 #define pr_fmt(fmt)     "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24
25 #define MAX_RESERVED_REGIONS    32
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31         phys_addr_t *res_base)
32 {
33         phys_addr_t base;
34         /*
35          * We use __memblock_alloc_base() because memblock_alloc_base()
36          * panic()s on allocation failure.
37          */
38         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
39         base = __memblock_alloc_base(size, align, end);
40         if (!base)
41                 return -ENOMEM;
42
43         /*
44          * Check if the allocated region fits in to start..end window
45          */
46         if (base < start) {
47                 memblock_free(base, size);
48                 return -ENOMEM;
49         }
50
51         *res_base = base;
52         if (nomap)
53                 return memblock_remove(base, size);
54         return 0;
55 }
56
57 /**
58  * res_mem_save_node() - save fdt node for second pass initialization
59  */
60 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
61                                       phys_addr_t base, phys_addr_t size)
62 {
63         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
64
65         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
66                 pr_err("not enough space all defined regions.\n");
67                 return;
68         }
69
70         rmem->fdt_node = node;
71         rmem->name = uname;
72         rmem->base = base;
73         rmem->size = size;
74
75         reserved_mem_count++;
76         return;
77 }
78
79 /**
80  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
81  *                        and 'alloc-ranges' properties
82  */
83 static int __init __reserved_mem_alloc_size(unsigned long node,
84         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
85 {
86         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
87         phys_addr_t start = 0, end = 0;
88         phys_addr_t base = 0, align = 0, size;
89         int len;
90         const __be32 *prop;
91         int nomap;
92         int ret;
93
94         prop = of_get_flat_dt_prop(node, "size", &len);
95         if (!prop)
96                 return -EINVAL;
97
98         if (len != dt_root_size_cells * sizeof(__be32)) {
99                 pr_err("invalid size property in '%s' node.\n", uname);
100                 return -EINVAL;
101         }
102         size = dt_mem_next_cell(dt_root_size_cells, &prop);
103
104         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
105
106         prop = of_get_flat_dt_prop(node, "alignment", &len);
107         if (prop) {
108                 if (len != dt_root_addr_cells * sizeof(__be32)) {
109                         pr_err("invalid alignment property in '%s' node.\n",
110                                 uname);
111                         return -EINVAL;
112                 }
113                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
114         }
115
116         /* Need adjust the alignment to satisfy the CMA requirement */
117         if (IS_ENABLED(CONFIG_CMA)
118             && of_flat_dt_is_compatible(node, "shared-dma-pool")
119             && of_get_flat_dt_prop(node, "reusable", NULL)
120             && !of_get_flat_dt_prop(node, "no-map", NULL)) {
121                 unsigned long order =
122                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
123
124                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
125         }
126
127         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
128         if (prop) {
129
130                 if (len % t_len != 0) {
131                         pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
132                                uname);
133                         return -EINVAL;
134                 }
135
136                 base = 0;
137
138                 while (len > 0) {
139                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
140                         end = start + dt_mem_next_cell(dt_root_size_cells,
141                                                        &prop);
142
143                         ret = early_init_dt_alloc_reserved_memory_arch(size,
144                                         align, start, end, nomap, &base);
145                         if (ret == 0) {
146                                 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
147                                         uname, &base,
148                                         (unsigned long)size / SZ_1M);
149                                 break;
150                         }
151                         len -= t_len;
152                 }
153
154         } else {
155                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
156                                                         0, 0, nomap, &base);
157                 if (ret == 0)
158                         pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
159                                 uname, &base, (unsigned long)size / SZ_1M);
160         }
161
162         if (base == 0) {
163                 pr_info("failed to allocate memory for node '%s'\n", uname);
164                 return -ENOMEM;
165         }
166
167         *res_base = base;
168         *res_size = size;
169
170         return 0;
171 }
172
173 static const struct of_device_id __rmem_of_table_sentinel
174         __used __section(__reservedmem_of_table_end);
175
176 /**
177  * res_mem_init_node() - call region specific reserved memory init code
178  */
179 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
180 {
181         extern const struct of_device_id __reservedmem_of_table[];
182         const struct of_device_id *i;
183
184         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
185                 reservedmem_of_init_fn initfn = i->data;
186                 const char *compat = i->compatible;
187
188                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
189                         continue;
190
191                 if (initfn(rmem) == 0) {
192                         pr_info("initialized node %s, compatible id %s\n",
193                                 rmem->name, compat);
194                         return 0;
195                 }
196         }
197         return -ENOENT;
198 }
199
200 static int __init __rmem_cmp(const void *a, const void *b)
201 {
202         const struct reserved_mem *ra = a, *rb = b;
203
204         if (ra->base < rb->base)
205                 return -1;
206
207         if (ra->base > rb->base)
208                 return 1;
209
210         return 0;
211 }
212
213 static void __init __rmem_check_for_overlap(void)
214 {
215         int i;
216
217         if (reserved_mem_count < 2)
218                 return;
219
220         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
221              __rmem_cmp, NULL);
222         for (i = 0; i < reserved_mem_count - 1; i++) {
223                 struct reserved_mem *this, *next;
224
225                 this = &reserved_mem[i];
226                 next = &reserved_mem[i + 1];
227                 if (!(this->base && next->base))
228                         continue;
229                 if (this->base + this->size > next->base) {
230                         phys_addr_t this_end, next_end;
231
232                         this_end = this->base + this->size;
233                         next_end = next->base + next->size;
234                         pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
235                                this->name, &this->base, &this_end,
236                                next->name, &next->base, &next_end);
237                 }
238         }
239 }
240
241 /**
242  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
243  */
244 void __init fdt_init_reserved_mem(void)
245 {
246         int i;
247
248         /* check for overlapping reserved regions */
249         __rmem_check_for_overlap();
250
251         for (i = 0; i < reserved_mem_count; i++) {
252                 struct reserved_mem *rmem = &reserved_mem[i];
253                 unsigned long node = rmem->fdt_node;
254                 int len;
255                 const __be32 *prop;
256                 int err = 0;
257
258                 prop = of_get_flat_dt_prop(node, "phandle", &len);
259                 if (!prop)
260                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
261                 if (prop)
262                         rmem->phandle = of_read_number(prop, len/4);
263
264                 if (rmem->size == 0)
265                         err = __reserved_mem_alloc_size(node, rmem->name,
266                                                  &rmem->base, &rmem->size);
267                 if (err == 0)
268                         __reserved_mem_init_node(rmem);
269         }
270 }
271
272 static inline struct reserved_mem *__find_rmem(struct device_node *node)
273 {
274         unsigned int i;
275
276         if (!node->phandle)
277                 return NULL;
278
279         for (i = 0; i < reserved_mem_count; i++)
280                 if (reserved_mem[i].phandle == node->phandle)
281                         return &reserved_mem[i];
282         return NULL;
283 }
284
285 struct rmem_assigned_device {
286         struct device *dev;
287         struct reserved_mem *rmem;
288         struct list_head list;
289 };
290
291 static LIST_HEAD(of_rmem_assigned_device_list);
292 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
293
294 /**
295  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
296  *                                        given device
297  * @dev:        Pointer to the device to configure
298  * @np:         Pointer to the device_node with 'reserved-memory' property
299  * @idx:        Index of selected region
300  *
301  * This function assigns respective DMA-mapping operations based on reserved
302  * memory region specified by 'memory-region' property in @np node to the @dev
303  * device. When driver needs to use more than one reserved memory region, it
304  * should allocate child devices and initialize regions by name for each of
305  * child device.
306  *
307  * Returns error code or zero on success.
308  */
309 int of_reserved_mem_device_init_by_idx(struct device *dev,
310                                        struct device_node *np, int idx)
311 {
312         struct rmem_assigned_device *rd;
313         struct device_node *target;
314         struct reserved_mem *rmem;
315         int ret;
316
317         if (!np || !dev)
318                 return -EINVAL;
319
320         target = of_parse_phandle(np, "memory-region", idx);
321         if (!target)
322                 return -ENODEV;
323
324         rmem = __find_rmem(target);
325         of_node_put(target);
326
327         if (!rmem || !rmem->ops || !rmem->ops->device_init)
328                 return -EINVAL;
329
330         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
331         if (!rd)
332                 return -ENOMEM;
333
334         ret = rmem->ops->device_init(rmem, dev);
335         if (ret == 0) {
336                 rd->dev = dev;
337                 rd->rmem = rmem;
338
339                 mutex_lock(&of_rmem_assigned_device_mutex);
340                 list_add(&rd->list, &of_rmem_assigned_device_list);
341                 mutex_unlock(&of_rmem_assigned_device_mutex);
342                 /* ensure that dma_ops is set for virtual devices
343                  * using reserved memory
344                  */
345                 of_dma_configure(dev, np, true);
346
347                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
348         } else {
349                 kfree(rd);
350         }
351
352         return ret;
353 }
354 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
355
356 /**
357  * of_reserved_mem_device_release() - release reserved memory device structures
358  * @dev:        Pointer to the device to deconfigure
359  *
360  * This function releases structures allocated for memory region handling for
361  * the given device.
362  */
363 void of_reserved_mem_device_release(struct device *dev)
364 {
365         struct rmem_assigned_device *rd;
366         struct reserved_mem *rmem = NULL;
367
368         mutex_lock(&of_rmem_assigned_device_mutex);
369         list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
370                 if (rd->dev == dev) {
371                         rmem = rd->rmem;
372                         list_del(&rd->list);
373                         kfree(rd);
374                         break;
375                 }
376         }
377         mutex_unlock(&of_rmem_assigned_device_mutex);
378
379         if (!rmem || !rmem->ops || !rmem->ops->device_release)
380                 return;
381
382         rmem->ops->device_release(rmem, dev);
383 }
384 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
385
386 /**
387  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
388  * @np:         node pointer of the desired reserved-memory region
389  *
390  * This function allows drivers to acquire a reference to the reserved_mem
391  * struct based on a device node handle.
392  *
393  * Returns a reserved_mem reference, or NULL on error.
394  */
395 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
396 {
397         const char *name;
398         int i;
399
400         if (!np->full_name)
401                 return NULL;
402
403         name = kbasename(np->full_name);
404         for (i = 0; i < reserved_mem_count; i++)
405                 if (!strcmp(reserved_mem[i].name, name))
406                         return &reserved_mem[i];
407
408         return NULL;
409 }
410 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);