]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/pci/controller/vmd.c
Merge tag 'upstream-5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/ubifs
[linux.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 enum vmd_features {
35         /*
36          * Device may contain registers which hint the physical location of the
37          * membars, in order to allow proper address translation during
38          * resource assignment to enable guest virtualization
39          */
40         VMD_FEAT_HAS_MEMBAR_SHADOW      = (1 << 0),
41
42         /*
43          * Device may provide root port configuration information which limits
44          * bus numbering
45          */
46         VMD_FEAT_HAS_BUS_RESTRICTIONS   = (1 << 1),
47 };
48
49 /*
50  * Lock for manipulating VMD IRQ lists.
51  */
52 static DEFINE_RAW_SPINLOCK(list_lock);
53
54 /**
55  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
56  * @node:       list item for parent traversal.
57  * @irq:        back pointer to parent.
58  * @enabled:    true if driver enabled IRQ
59  * @virq:       the virtual IRQ value provided to the requesting driver.
60  *
61  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
62  * a VMD IRQ using this structure.
63  */
64 struct vmd_irq {
65         struct list_head        node;
66         struct vmd_irq_list     *irq;
67         bool                    enabled;
68         unsigned int            virq;
69 };
70
71 /**
72  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
73  * @irq_list:   the list of irq's the VMD one demuxes to.
74  * @srcu:       SRCU struct for local synchronization.
75  * @count:      number of child IRQs assigned to this vector; used to track
76  *              sharing.
77  */
78 struct vmd_irq_list {
79         struct list_head        irq_list;
80         struct srcu_struct      srcu;
81         unsigned int            count;
82 };
83
84 struct vmd_dev {
85         struct pci_dev          *dev;
86
87         spinlock_t              cfg_lock;
88         char __iomem            *cfgbar;
89
90         int msix_count;
91         struct vmd_irq_list     *irqs;
92
93         struct pci_sysdata      sysdata;
94         struct resource         resources[3];
95         struct irq_domain       *irq_domain;
96         struct pci_bus          *bus;
97
98 #ifdef CONFIG_X86_DEV_DMA_OPS
99         struct dma_map_ops      dma_ops;
100         struct dma_domain       dma_domain;
101 #endif
102 };
103
104 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
105 {
106         return container_of(bus->sysdata, struct vmd_dev, sysdata);
107 }
108
109 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
110                                            struct vmd_irq_list *irqs)
111 {
112         return irqs - vmd->irqs;
113 }
114
115 /*
116  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
117  * but the MSI entry for the hardware it's driving will be programmed with a
118  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
119  * domain into one of its own, and the VMD driver de-muxes these for the
120  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
121  * and irq_chip to set this up.
122  */
123 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
124 {
125         struct vmd_irq *vmdirq = data->chip_data;
126         struct vmd_irq_list *irq = vmdirq->irq;
127         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
128
129         msg->address_hi = MSI_ADDR_BASE_HI;
130         msg->address_lo = MSI_ADDR_BASE_LO |
131                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
132         msg->data = 0;
133 }
134
135 /*
136  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
137  */
138 static void vmd_irq_enable(struct irq_data *data)
139 {
140         struct vmd_irq *vmdirq = data->chip_data;
141         unsigned long flags;
142
143         raw_spin_lock_irqsave(&list_lock, flags);
144         WARN_ON(vmdirq->enabled);
145         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
146         vmdirq->enabled = true;
147         raw_spin_unlock_irqrestore(&list_lock, flags);
148
149         data->chip->irq_unmask(data);
150 }
151
152 static void vmd_irq_disable(struct irq_data *data)
153 {
154         struct vmd_irq *vmdirq = data->chip_data;
155         unsigned long flags;
156
157         data->chip->irq_mask(data);
158
159         raw_spin_lock_irqsave(&list_lock, flags);
160         if (vmdirq->enabled) {
161                 list_del_rcu(&vmdirq->node);
162                 vmdirq->enabled = false;
163         }
164         raw_spin_unlock_irqrestore(&list_lock, flags);
165 }
166
167 /*
168  * XXX: Stubbed until we develop acceptable way to not create conflicts with
169  * other devices sharing the same vector.
170  */
171 static int vmd_irq_set_affinity(struct irq_data *data,
172                                 const struct cpumask *dest, bool force)
173 {
174         return -EINVAL;
175 }
176
177 static struct irq_chip vmd_msi_controller = {
178         .name                   = "VMD-MSI",
179         .irq_enable             = vmd_irq_enable,
180         .irq_disable            = vmd_irq_disable,
181         .irq_compose_msi_msg    = vmd_compose_msi_msg,
182         .irq_set_affinity       = vmd_irq_set_affinity,
183 };
184
185 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
186                                      msi_alloc_info_t *arg)
187 {
188         return 0;
189 }
190
191 /*
192  * XXX: We can be even smarter selecting the best IRQ once we solve the
193  * affinity problem.
194  */
195 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
196 {
197         int i, best = 1;
198         unsigned long flags;
199
200         if (vmd->msix_count == 1)
201                 return &vmd->irqs[0];
202
203         /*
204          * White list for fast-interrupt handlers. All others will share the
205          * "slow" interrupt vector.
206          */
207         switch (msi_desc_to_pci_dev(desc)->class) {
208         case PCI_CLASS_STORAGE_EXPRESS:
209                 break;
210         default:
211                 return &vmd->irqs[0];
212         }
213
214         raw_spin_lock_irqsave(&list_lock, flags);
215         for (i = 1; i < vmd->msix_count; i++)
216                 if (vmd->irqs[i].count < vmd->irqs[best].count)
217                         best = i;
218         vmd->irqs[best].count++;
219         raw_spin_unlock_irqrestore(&list_lock, flags);
220
221         return &vmd->irqs[best];
222 }
223
224 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
225                         unsigned int virq, irq_hw_number_t hwirq,
226                         msi_alloc_info_t *arg)
227 {
228         struct msi_desc *desc = arg->desc;
229         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
230         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
231         unsigned int index, vector;
232
233         if (!vmdirq)
234                 return -ENOMEM;
235
236         INIT_LIST_HEAD(&vmdirq->node);
237         vmdirq->irq = vmd_next_irq(vmd, desc);
238         vmdirq->virq = virq;
239         index = index_from_irqs(vmd, vmdirq->irq);
240         vector = pci_irq_vector(vmd->dev, index);
241
242         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
243                             handle_untracked_irq, vmd, NULL);
244         return 0;
245 }
246
247 static void vmd_msi_free(struct irq_domain *domain,
248                         struct msi_domain_info *info, unsigned int virq)
249 {
250         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
251         unsigned long flags;
252
253         synchronize_srcu(&vmdirq->irq->srcu);
254
255         /* XXX: Potential optimization to rebalance */
256         raw_spin_lock_irqsave(&list_lock, flags);
257         vmdirq->irq->count--;
258         raw_spin_unlock_irqrestore(&list_lock, flags);
259
260         kfree(vmdirq);
261 }
262
263 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
264                            int nvec, msi_alloc_info_t *arg)
265 {
266         struct pci_dev *pdev = to_pci_dev(dev);
267         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
268
269         if (nvec > vmd->msix_count)
270                 return vmd->msix_count;
271
272         memset(arg, 0, sizeof(*arg));
273         return 0;
274 }
275
276 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
277 {
278         arg->desc = desc;
279 }
280
281 static struct msi_domain_ops vmd_msi_domain_ops = {
282         .get_hwirq      = vmd_get_hwirq,
283         .msi_init       = vmd_msi_init,
284         .msi_free       = vmd_msi_free,
285         .msi_prepare    = vmd_msi_prepare,
286         .set_desc       = vmd_set_desc,
287 };
288
289 static struct msi_domain_info vmd_msi_domain_info = {
290         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
291                           MSI_FLAG_PCI_MSIX,
292         .ops            = &vmd_msi_domain_ops,
293         .chip           = &vmd_msi_controller,
294 };
295
296 #ifdef CONFIG_X86_DEV_DMA_OPS
297 /*
298  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
299  * VMD domain need to be mapped for the VMD, not the device requiring
300  * the mapping.
301  */
302 static struct device *to_vmd_dev(struct device *dev)
303 {
304         struct pci_dev *pdev = to_pci_dev(dev);
305         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
306
307         return &vmd->dev->dev;
308 }
309
310 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
311                        gfp_t flag, unsigned long attrs)
312 {
313         return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
314 }
315
316 static void vmd_free(struct device *dev, size_t size, void *vaddr,
317                      dma_addr_t addr, unsigned long attrs)
318 {
319         return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
320 }
321
322 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
323                     void *cpu_addr, dma_addr_t addr, size_t size,
324                     unsigned long attrs)
325 {
326         return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
327                         attrs);
328 }
329
330 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
331                            void *cpu_addr, dma_addr_t addr, size_t size,
332                            unsigned long attrs)
333 {
334         return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
335                         attrs);
336 }
337
338 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
339                                unsigned long offset, size_t size,
340                                enum dma_data_direction dir,
341                                unsigned long attrs)
342 {
343         return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
344                         attrs);
345 }
346
347 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
348                            enum dma_data_direction dir, unsigned long attrs)
349 {
350         dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
351 }
352
353 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
354                       enum dma_data_direction dir, unsigned long attrs)
355 {
356         return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
357 }
358
359 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
360                          enum dma_data_direction dir, unsigned long attrs)
361 {
362         dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
363 }
364
365 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
366                                     size_t size, enum dma_data_direction dir)
367 {
368         dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
369 }
370
371 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
372                                        size_t size, enum dma_data_direction dir)
373 {
374         dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
375 }
376
377 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
378                                 int nents, enum dma_data_direction dir)
379 {
380         dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
381 }
382
383 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
384                                    int nents, enum dma_data_direction dir)
385 {
386         dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
387 }
388
389 static int vmd_dma_supported(struct device *dev, u64 mask)
390 {
391         return dma_supported(to_vmd_dev(dev), mask);
392 }
393
394 static u64 vmd_get_required_mask(struct device *dev)
395 {
396         return dma_get_required_mask(to_vmd_dev(dev));
397 }
398
399 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
400 {
401         struct dma_domain *domain = &vmd->dma_domain;
402
403         if (get_dma_ops(&vmd->dev->dev))
404                 del_dma_domain(domain);
405 }
406
407 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
408         do {                                    \
409                 if (source->fn)                 \
410                         dest->fn = vmd_##fn;    \
411         } while (0)
412
413 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
414 {
415         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
416         struct dma_map_ops *dest = &vmd->dma_ops;
417         struct dma_domain *domain = &vmd->dma_domain;
418
419         domain->domain_nr = vmd->sysdata.domain;
420         domain->dma_ops = dest;
421
422         if (!source)
423                 return;
424         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
425         ASSIGN_VMD_DMA_OPS(source, dest, free);
426         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
427         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
428         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
429         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
430         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
431         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
432         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
433         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
434         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
435         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
436         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
437         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
438         add_dma_domain(domain);
439 }
440 #undef ASSIGN_VMD_DMA_OPS
441 #else
442 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
443 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
444 #endif
445
446 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
447                                   unsigned int devfn, int reg, int len)
448 {
449         char __iomem *addr = vmd->cfgbar +
450                              (bus->number << 20) + (devfn << 12) + reg;
451
452         if ((addr - vmd->cfgbar) + len >=
453             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
454                 return NULL;
455
456         return addr;
457 }
458
459 /*
460  * CPU may deadlock if config space is not serialized on some versions of this
461  * hardware, so all config space access is done under a spinlock.
462  */
463 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
464                         int len, u32 *value)
465 {
466         struct vmd_dev *vmd = vmd_from_bus(bus);
467         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
468         unsigned long flags;
469         int ret = 0;
470
471         if (!addr)
472                 return -EFAULT;
473
474         spin_lock_irqsave(&vmd->cfg_lock, flags);
475         switch (len) {
476         case 1:
477                 *value = readb(addr);
478                 break;
479         case 2:
480                 *value = readw(addr);
481                 break;
482         case 4:
483                 *value = readl(addr);
484                 break;
485         default:
486                 ret = -EINVAL;
487                 break;
488         }
489         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
490         return ret;
491 }
492
493 /*
494  * VMD h/w converts non-posted config writes to posted memory writes. The
495  * read-back in this function forces the completion so it returns only after
496  * the config space was written, as expected.
497  */
498 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
499                          int len, u32 value)
500 {
501         struct vmd_dev *vmd = vmd_from_bus(bus);
502         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
503         unsigned long flags;
504         int ret = 0;
505
506         if (!addr)
507                 return -EFAULT;
508
509         spin_lock_irqsave(&vmd->cfg_lock, flags);
510         switch (len) {
511         case 1:
512                 writeb(value, addr);
513                 readb(addr);
514                 break;
515         case 2:
516                 writew(value, addr);
517                 readw(addr);
518                 break;
519         case 4:
520                 writel(value, addr);
521                 readl(addr);
522                 break;
523         default:
524                 ret = -EINVAL;
525                 break;
526         }
527         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
528         return ret;
529 }
530
531 static struct pci_ops vmd_ops = {
532         .read           = vmd_pci_read,
533         .write          = vmd_pci_write,
534 };
535
536 static void vmd_attach_resources(struct vmd_dev *vmd)
537 {
538         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
539         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
540 }
541
542 static void vmd_detach_resources(struct vmd_dev *vmd)
543 {
544         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
545         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
546 }
547
548 /*
549  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
550  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
551  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
552  * currently reserved.
553  */
554 static int vmd_find_free_domain(void)
555 {
556         int domain = 0xffff;
557         struct pci_bus *bus = NULL;
558
559         while ((bus = pci_find_next_bus(bus)) != NULL)
560                 domain = max_t(int, domain, pci_domain_nr(bus));
561         return domain + 1;
562 }
563
564 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
565 {
566         struct pci_sysdata *sd = &vmd->sysdata;
567         struct fwnode_handle *fn;
568         struct resource *res;
569         u32 upper_bits;
570         unsigned long flags;
571         LIST_HEAD(resources);
572         resource_size_t offset[2] = {0};
573         resource_size_t membar2_offset = 0x2000, busn_start = 0;
574         struct pci_bus *child;
575
576         /*
577          * Shadow registers may exist in certain VMD device ids which allow
578          * guests to correctly assign host physical addresses to the root ports
579          * and child devices. These registers will either return the host value
580          * or 0, depending on an enable bit in the VMD device.
581          */
582         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
583                 u32 vmlock;
584                 int ret;
585
586                 membar2_offset = 0x2018;
587                 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
588                 if (ret || vmlock == ~0)
589                         return -ENODEV;
590
591                 if (MB2_SHADOW_EN(vmlock)) {
592                         void __iomem *membar2;
593
594                         membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
595                         if (!membar2)
596                                 return -ENOMEM;
597                         offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
598                                                 readq(membar2 + 0x2008);
599                         offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
600                                                 readq(membar2 + 0x2010);
601                         pci_iounmap(vmd->dev, membar2);
602                 }
603         }
604
605         /*
606          * Certain VMD devices may have a root port configuration option which
607          * limits the bus range to between 0-127 or 128-255
608          */
609         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
610                 u32 vmcap, vmconfig;
611
612                 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
613                 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
614                 if (BUS_RESTRICT_CAP(vmcap) &&
615                     (BUS_RESTRICT_CFG(vmconfig) == 0x1))
616                         busn_start = 128;
617         }
618
619         res = &vmd->dev->resource[VMD_CFGBAR];
620         vmd->resources[0] = (struct resource) {
621                 .name  = "VMD CFGBAR",
622                 .start = busn_start,
623                 .end   = busn_start + (resource_size(res) >> 20) - 1,
624                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
625         };
626
627         /*
628          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
629          * put 32-bit resources in the window.
630          *
631          * There's no hardware reason why a 64-bit window *couldn't*
632          * contain a 32-bit resource, but pbus_size_mem() computes the
633          * bridge window size assuming a 64-bit window will contain no
634          * 32-bit resources.  __pci_assign_resource() enforces that
635          * artificial restriction to make sure everything will fit.
636          *
637          * The only way we could use a 64-bit non-prefechable MEMBAR is
638          * if its address is <4GB so that we can convert it to a 32-bit
639          * resource.  To be visible to the host OS, all VMD endpoints must
640          * be initially configured by platform BIOS, which includes setting
641          * up these resources.  We can assume the device is configured
642          * according to the platform needs.
643          */
644         res = &vmd->dev->resource[VMD_MEMBAR1];
645         upper_bits = upper_32_bits(res->end);
646         flags = res->flags & ~IORESOURCE_SIZEALIGN;
647         if (!upper_bits)
648                 flags &= ~IORESOURCE_MEM_64;
649         vmd->resources[1] = (struct resource) {
650                 .name  = "VMD MEMBAR1",
651                 .start = res->start,
652                 .end   = res->end,
653                 .flags = flags,
654                 .parent = res,
655         };
656
657         res = &vmd->dev->resource[VMD_MEMBAR2];
658         upper_bits = upper_32_bits(res->end);
659         flags = res->flags & ~IORESOURCE_SIZEALIGN;
660         if (!upper_bits)
661                 flags &= ~IORESOURCE_MEM_64;
662         vmd->resources[2] = (struct resource) {
663                 .name  = "VMD MEMBAR2",
664                 .start = res->start + membar2_offset,
665                 .end   = res->end,
666                 .flags = flags,
667                 .parent = res,
668         };
669
670         sd->vmd_domain = true;
671         sd->domain = vmd_find_free_domain();
672         if (sd->domain < 0)
673                 return sd->domain;
674
675         sd->node = pcibus_to_node(vmd->dev->bus);
676
677         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
678         if (!fn)
679                 return -ENODEV;
680
681         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
682                                                     x86_vector_domain);
683         irq_domain_free_fwnode(fn);
684         if (!vmd->irq_domain)
685                 return -ENODEV;
686
687         pci_add_resource(&resources, &vmd->resources[0]);
688         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
689         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
690
691         vmd->bus = pci_create_root_bus(&vmd->dev->dev, busn_start, &vmd_ops,
692                                        sd, &resources);
693         if (!vmd->bus) {
694                 pci_free_resource_list(&resources);
695                 irq_domain_remove(vmd->irq_domain);
696                 return -ENODEV;
697         }
698
699         vmd_attach_resources(vmd);
700         vmd_setup_dma_ops(vmd);
701         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
702
703         pci_scan_child_bus(vmd->bus);
704         pci_assign_unassigned_bus_resources(vmd->bus);
705
706         /*
707          * VMD root buses are virtual and don't return true on pci_is_pcie()
708          * and will fail pcie_bus_configure_settings() early. It can instead be
709          * run on each of the real root ports.
710          */
711         list_for_each_entry(child, &vmd->bus->children, node)
712                 pcie_bus_configure_settings(child);
713
714         pci_bus_add_devices(vmd->bus);
715
716         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
717                                "domain"), "Can't create symlink to domain\n");
718         return 0;
719 }
720
721 static irqreturn_t vmd_irq(int irq, void *data)
722 {
723         struct vmd_irq_list *irqs = data;
724         struct vmd_irq *vmdirq;
725         int idx;
726
727         idx = srcu_read_lock(&irqs->srcu);
728         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
729                 generic_handle_irq(vmdirq->virq);
730         srcu_read_unlock(&irqs->srcu, idx);
731
732         return IRQ_HANDLED;
733 }
734
735 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
736 {
737         struct vmd_dev *vmd;
738         int i, err;
739
740         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
741                 return -ENOMEM;
742
743         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
744         if (!vmd)
745                 return -ENOMEM;
746
747         vmd->dev = dev;
748         err = pcim_enable_device(dev);
749         if (err < 0)
750                 return err;
751
752         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
753         if (!vmd->cfgbar)
754                 return -ENOMEM;
755
756         pci_set_master(dev);
757         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
758             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
759                 return -ENODEV;
760
761         vmd->msix_count = pci_msix_vec_count(dev);
762         if (vmd->msix_count < 0)
763                 return -ENODEV;
764
765         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
766                                         PCI_IRQ_MSIX);
767         if (vmd->msix_count < 0)
768                 return vmd->msix_count;
769
770         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
771                                  GFP_KERNEL);
772         if (!vmd->irqs)
773                 return -ENOMEM;
774
775         for (i = 0; i < vmd->msix_count; i++) {
776                 err = init_srcu_struct(&vmd->irqs[i].srcu);
777                 if (err)
778                         return err;
779
780                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
781                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
782                                        vmd_irq, IRQF_NO_THREAD,
783                                        "vmd", &vmd->irqs[i]);
784                 if (err)
785                         return err;
786         }
787
788         spin_lock_init(&vmd->cfg_lock);
789         pci_set_drvdata(dev, vmd);
790         err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
791         if (err)
792                 return err;
793
794         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
795                  vmd->sysdata.domain);
796         return 0;
797 }
798
799 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
800 {
801         int i;
802
803         for (i = 0; i < vmd->msix_count; i++)
804                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
805 }
806
807 static void vmd_remove(struct pci_dev *dev)
808 {
809         struct vmd_dev *vmd = pci_get_drvdata(dev);
810
811         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
812         pci_stop_root_bus(vmd->bus);
813         pci_remove_root_bus(vmd->bus);
814         vmd_cleanup_srcu(vmd);
815         vmd_teardown_dma_ops(vmd);
816         vmd_detach_resources(vmd);
817         irq_domain_remove(vmd->irq_domain);
818 }
819
820 #ifdef CONFIG_PM_SLEEP
821 static int vmd_suspend(struct device *dev)
822 {
823         struct pci_dev *pdev = to_pci_dev(dev);
824         struct vmd_dev *vmd = pci_get_drvdata(pdev);
825         int i;
826
827         for (i = 0; i < vmd->msix_count; i++)
828                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
829
830         pci_save_state(pdev);
831         return 0;
832 }
833
834 static int vmd_resume(struct device *dev)
835 {
836         struct pci_dev *pdev = to_pci_dev(dev);
837         struct vmd_dev *vmd = pci_get_drvdata(pdev);
838         int err, i;
839
840         for (i = 0; i < vmd->msix_count; i++) {
841                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
842                                        vmd_irq, IRQF_NO_THREAD,
843                                        "vmd", &vmd->irqs[i]);
844                 if (err)
845                         return err;
846         }
847
848         pci_restore_state(pdev);
849         return 0;
850 }
851 #endif
852 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
853
854 static const struct pci_device_id vmd_ids[] = {
855         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
856         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
857                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
858                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
859         {0,}
860 };
861 MODULE_DEVICE_TABLE(pci, vmd_ids);
862
863 static struct pci_driver vmd_drv = {
864         .name           = "vmd",
865         .id_table       = vmd_ids,
866         .probe          = vmd_probe,
867         .remove         = vmd_remove,
868         .driver         = {
869                 .pm     = &vmd_dev_pm_ops,
870         },
871 };
872 module_pci_driver(vmd_drv);
873
874 MODULE_AUTHOR("Intel Corporation");
875 MODULE_LICENSE("GPL v2");
876 MODULE_VERSION("0.6");