]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/perf/arm_spe_pmu.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[linux.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10
11 #define PMUNAME                                 "arm_spe"
12 #define DRVNAME                                 PMUNAME "_pmu"
13 #define pr_fmt(fmt)                             DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/platform_device.h>
31 #include <linux/printk.h>
32 #include <linux/slab.h>
33 #include <linux/smp.h>
34 #include <linux/vmalloc.h>
35
36 #include <asm/barrier.h>
37 #include <asm/cpufeature.h>
38 #include <asm/mmu.h>
39 #include <asm/sysreg.h>
40
41 #define ARM_SPE_BUF_PAD_BYTE                    0
42
43 struct arm_spe_pmu_buf {
44         int                                     nr_pages;
45         bool                                    snapshot;
46         void                                    *base;
47 };
48
49 struct arm_spe_pmu {
50         struct pmu                              pmu;
51         struct platform_device                  *pdev;
52         cpumask_t                               supported_cpus;
53         struct hlist_node                       hotplug_node;
54
55         int                                     irq; /* PPI */
56
57         u16                                     min_period;
58         u16                                     counter_sz;
59
60 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
61 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
62 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
63 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
64 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
65 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
66 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
67         u64                                     features;
68
69         u16                                     max_record_sz;
70         u16                                     align;
71         struct perf_output_handle __percpu      *handle;
72 };
73
74 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
75
76 /* Convert a free-running index from perf into an SPE buffer offset */
77 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
78
79 /* Keep track of our dynamic hotplug state */
80 static enum cpuhp_state arm_spe_pmu_online;
81
82 enum arm_spe_pmu_buf_fault_action {
83         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
84         SPE_PMU_BUF_FAULT_ACT_FATAL,
85         SPE_PMU_BUF_FAULT_ACT_OK,
86 };
87
88 /* This sysfs gunk was really good fun to write. */
89 enum arm_spe_pmu_capabilities {
90         SPE_PMU_CAP_ARCH_INST = 0,
91         SPE_PMU_CAP_ERND,
92         SPE_PMU_CAP_FEAT_MAX,
93         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
94         SPE_PMU_CAP_MIN_IVAL,
95 };
96
97 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
98         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
99         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
100 };
101
102 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
103 {
104         if (cap < SPE_PMU_CAP_FEAT_MAX)
105                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
106
107         switch (cap) {
108         case SPE_PMU_CAP_CNT_SZ:
109                 return spe_pmu->counter_sz;
110         case SPE_PMU_CAP_MIN_IVAL:
111                 return spe_pmu->min_period;
112         default:
113                 WARN(1, "unknown cap %d\n", cap);
114         }
115
116         return 0;
117 }
118
119 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
120                                     struct device_attribute *attr,
121                                     char *buf)
122 {
123         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
124         struct dev_ext_attribute *ea =
125                 container_of(attr, struct dev_ext_attribute, attr);
126         int cap = (long)ea->var;
127
128         return snprintf(buf, PAGE_SIZE, "%u\n",
129                 arm_spe_pmu_cap_get(spe_pmu, cap));
130 }
131
132 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
133         &((struct dev_ext_attribute[]) {                                \
134                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
135         })[0].attr.attr
136
137 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
138         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
139
140 static struct attribute *arm_spe_pmu_cap_attr[] = {
141         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
142         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
143         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
144         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
145         NULL,
146 };
147
148 static struct attribute_group arm_spe_pmu_cap_group = {
149         .name   = "caps",
150         .attrs  = arm_spe_pmu_cap_attr,
151 };
152
153 /* User ABI */
154 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
155 #define ATTR_CFG_FLD_ts_enable_LO               0
156 #define ATTR_CFG_FLD_ts_enable_HI               0
157 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
158 #define ATTR_CFG_FLD_pa_enable_LO               1
159 #define ATTR_CFG_FLD_pa_enable_HI               1
160 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
161 #define ATTR_CFG_FLD_pct_enable_LO              2
162 #define ATTR_CFG_FLD_pct_enable_HI              2
163 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
164 #define ATTR_CFG_FLD_jitter_LO                  16
165 #define ATTR_CFG_FLD_jitter_HI                  16
166 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
167 #define ATTR_CFG_FLD_branch_filter_LO           32
168 #define ATTR_CFG_FLD_branch_filter_HI           32
169 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
170 #define ATTR_CFG_FLD_load_filter_LO             33
171 #define ATTR_CFG_FLD_load_filter_HI             33
172 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
173 #define ATTR_CFG_FLD_store_filter_LO            34
174 #define ATTR_CFG_FLD_store_filter_HI            34
175
176 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
177 #define ATTR_CFG_FLD_event_filter_LO            0
178 #define ATTR_CFG_FLD_event_filter_HI            63
179
180 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
181 #define ATTR_CFG_FLD_min_latency_LO             0
182 #define ATTR_CFG_FLD_min_latency_HI             11
183
184 /* Why does everything I do descend into this? */
185 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
186         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
187
188 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
189         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
190
191 #define GEN_PMU_FORMAT_ATTR(name)                                       \
192         PMU_FORMAT_ATTR(name,                                           \
193         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
194                              ATTR_CFG_FLD_##name##_LO,                  \
195                              ATTR_CFG_FLD_##name##_HI))
196
197 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
198         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
199
200 #define ATTR_CFG_GET_FLD(attr, name)                                    \
201         _ATTR_CFG_GET_FLD(attr,                                         \
202                           ATTR_CFG_FLD_##name##_CFG,                    \
203                           ATTR_CFG_FLD_##name##_LO,                     \
204                           ATTR_CFG_FLD_##name##_HI)
205
206 GEN_PMU_FORMAT_ATTR(ts_enable);
207 GEN_PMU_FORMAT_ATTR(pa_enable);
208 GEN_PMU_FORMAT_ATTR(pct_enable);
209 GEN_PMU_FORMAT_ATTR(jitter);
210 GEN_PMU_FORMAT_ATTR(branch_filter);
211 GEN_PMU_FORMAT_ATTR(load_filter);
212 GEN_PMU_FORMAT_ATTR(store_filter);
213 GEN_PMU_FORMAT_ATTR(event_filter);
214 GEN_PMU_FORMAT_ATTR(min_latency);
215
216 static struct attribute *arm_spe_pmu_formats_attr[] = {
217         &format_attr_ts_enable.attr,
218         &format_attr_pa_enable.attr,
219         &format_attr_pct_enable.attr,
220         &format_attr_jitter.attr,
221         &format_attr_branch_filter.attr,
222         &format_attr_load_filter.attr,
223         &format_attr_store_filter.attr,
224         &format_attr_event_filter.attr,
225         &format_attr_min_latency.attr,
226         NULL,
227 };
228
229 static struct attribute_group arm_spe_pmu_format_group = {
230         .name   = "format",
231         .attrs  = arm_spe_pmu_formats_attr,
232 };
233
234 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
235                                             struct device_attribute *attr,
236                                             char *buf)
237 {
238         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
239
240         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
241 }
242 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
243
244 static struct attribute *arm_spe_pmu_attrs[] = {
245         &dev_attr_cpumask.attr,
246         NULL,
247 };
248
249 static struct attribute_group arm_spe_pmu_group = {
250         .attrs  = arm_spe_pmu_attrs,
251 };
252
253 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
254         &arm_spe_pmu_group,
255         &arm_spe_pmu_cap_group,
256         &arm_spe_pmu_format_group,
257         NULL,
258 };
259
260 /* Convert between user ABI and register values */
261 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
262 {
263         struct perf_event_attr *attr = &event->attr;
264         u64 reg = 0;
265
266         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
267         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
268         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
269
270         if (!attr->exclude_user)
271                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
272
273         if (!attr->exclude_kernel)
274                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
275
276         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
277                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
278
279         return reg;
280 }
281
282 static void arm_spe_event_sanitise_period(struct perf_event *event)
283 {
284         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
285         u64 period = event->hw.sample_period;
286         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
287                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
288
289         if (period < spe_pmu->min_period)
290                 period = spe_pmu->min_period;
291         else if (period > max_period)
292                 period = max_period;
293         else
294                 period &= max_period;
295
296         event->hw.sample_period = period;
297 }
298
299 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
300 {
301         struct perf_event_attr *attr = &event->attr;
302         u64 reg = 0;
303
304         arm_spe_event_sanitise_period(event);
305
306         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
307         reg |= event->hw.sample_period;
308
309         return reg;
310 }
311
312 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
313 {
314         struct perf_event_attr *attr = &event->attr;
315         u64 reg = 0;
316
317         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
318         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
319         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
320
321         if (reg)
322                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
323
324         if (ATTR_CFG_GET_FLD(attr, event_filter))
325                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
326
327         if (ATTR_CFG_GET_FLD(attr, min_latency))
328                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
329
330         return reg;
331 }
332
333 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
334 {
335         struct perf_event_attr *attr = &event->attr;
336         return ATTR_CFG_GET_FLD(attr, event_filter);
337 }
338
339 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
340 {
341         struct perf_event_attr *attr = &event->attr;
342         return ATTR_CFG_GET_FLD(attr, min_latency)
343                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
344 }
345
346 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
347 {
348         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
349         u64 head = PERF_IDX2OFF(handle->head, buf);
350
351         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
352         if (!buf->snapshot)
353                 perf_aux_output_skip(handle, len);
354 }
355
356 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
357 {
358         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
359         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
360         u64 head = PERF_IDX2OFF(handle->head, buf);
361         u64 limit = buf->nr_pages * PAGE_SIZE;
362
363         /*
364          * The trace format isn't parseable in reverse, so clamp
365          * the limit to half of the buffer size in snapshot mode
366          * so that the worst case is half a buffer of records, as
367          * opposed to a single record.
368          */
369         if (head < limit >> 1)
370                 limit >>= 1;
371
372         /*
373          * If we're within max_record_sz of the limit, we must
374          * pad, move the head index and recompute the limit.
375          */
376         if (limit - head < spe_pmu->max_record_sz) {
377                 arm_spe_pmu_pad_buf(handle, limit - head);
378                 handle->head = PERF_IDX2OFF(limit, buf);
379                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
380         }
381
382         return limit;
383 }
384
385 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
386 {
387         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
388         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
389         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
390         u64 limit = bufsize;
391         u64 head, tail, wakeup;
392
393         /*
394          * The head can be misaligned for two reasons:
395          *
396          * 1. The hardware left PMBPTR pointing to the first byte after
397          *    a record when generating a buffer management event.
398          *
399          * 2. We used perf_aux_output_skip to consume handle->size bytes
400          *    and CIRC_SPACE was used to compute the size, which always
401          *    leaves one entry free.
402          *
403          * Deal with this by padding to the next alignment boundary and
404          * moving the head index. If we run out of buffer space, we'll
405          * reduce handle->size to zero and end up reporting truncation.
406          */
407         head = PERF_IDX2OFF(handle->head, buf);
408         if (!IS_ALIGNED(head, spe_pmu->align)) {
409                 unsigned long delta = roundup(head, spe_pmu->align) - head;
410
411                 delta = min(delta, handle->size);
412                 arm_spe_pmu_pad_buf(handle, delta);
413                 head = PERF_IDX2OFF(handle->head, buf);
414         }
415
416         /* If we've run out of free space, then nothing more to do */
417         if (!handle->size)
418                 goto no_space;
419
420         /* Compute the tail and wakeup indices now that we've aligned head */
421         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
422         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
423
424         /*
425          * Avoid clobbering unconsumed data. We know we have space, so
426          * if we see head == tail we know that the buffer is empty. If
427          * head > tail, then there's nothing to clobber prior to
428          * wrapping.
429          */
430         if (head < tail)
431                 limit = round_down(tail, PAGE_SIZE);
432
433         /*
434          * Wakeup may be arbitrarily far into the future. If it's not in
435          * the current generation, either we'll wrap before hitting it,
436          * or it's in the past and has been handled already.
437          *
438          * If there's a wakeup before we wrap, arrange to be woken up by
439          * the page boundary following it. Keep the tail boundary if
440          * that's lower.
441          */
442         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
443                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
444
445         if (limit > head)
446                 return limit;
447
448         arm_spe_pmu_pad_buf(handle, handle->size);
449 no_space:
450         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
451         perf_aux_output_end(handle, 0);
452         return 0;
453 }
454
455 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
456 {
457         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
458         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
459         u64 limit = __arm_spe_pmu_next_off(handle);
460         u64 head = PERF_IDX2OFF(handle->head, buf);
461
462         /*
463          * If the head has come too close to the end of the buffer,
464          * then pad to the end and recompute the limit.
465          */
466         if (limit && (limit - head < spe_pmu->max_record_sz)) {
467                 arm_spe_pmu_pad_buf(handle, limit - head);
468                 limit = __arm_spe_pmu_next_off(handle);
469         }
470
471         return limit;
472 }
473
474 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
475                                           struct perf_event *event)
476 {
477         u64 base, limit;
478         struct arm_spe_pmu_buf *buf;
479
480         /* Start a new aux session */
481         buf = perf_aux_output_begin(handle, event);
482         if (!buf) {
483                 event->hw.state |= PERF_HES_STOPPED;
484                 /*
485                  * We still need to clear the limit pointer, since the
486                  * profiler might only be disabled by virtue of a fault.
487                  */
488                 limit = 0;
489                 goto out_write_limit;
490         }
491
492         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
493                               : arm_spe_pmu_next_off(handle);
494         if (limit)
495                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
496
497         limit += (u64)buf->base;
498         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
499         write_sysreg_s(base, SYS_PMBPTR_EL1);
500
501 out_write_limit:
502         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
503 }
504
505 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
506 {
507         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
508         u64 offset, size;
509
510         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
511         size = offset - PERF_IDX2OFF(handle->head, buf);
512
513         if (buf->snapshot)
514                 handle->head = offset;
515
516         perf_aux_output_end(handle, size);
517 }
518
519 static void arm_spe_pmu_disable_and_drain_local(void)
520 {
521         /* Disable profiling at EL0 and EL1 */
522         write_sysreg_s(0, SYS_PMSCR_EL1);
523         isb();
524
525         /* Drain any buffered data */
526         psb_csync();
527         dsb(nsh);
528
529         /* Disable the profiling buffer */
530         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
531         isb();
532 }
533
534 /* IRQ handling */
535 static enum arm_spe_pmu_buf_fault_action
536 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
537 {
538         const char *err_str;
539         u64 pmbsr;
540         enum arm_spe_pmu_buf_fault_action ret;
541
542         /*
543          * Ensure new profiling data is visible to the CPU and any external
544          * aborts have been resolved.
545          */
546         psb_csync();
547         dsb(nsh);
548
549         /* Ensure hardware updates to PMBPTR_EL1 are visible */
550         isb();
551
552         /* Service required? */
553         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
554         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
555                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
556
557         /*
558          * If we've lost data, disable profiling and also set the PARTIAL
559          * flag to indicate that the last record is corrupted.
560          */
561         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
562                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
563                                              PERF_AUX_FLAG_PARTIAL);
564
565         /* Report collisions to userspace so that it can up the period */
566         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
567                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
568
569         /* We only expect buffer management events */
570         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
571         case SYS_PMBSR_EL1_EC_BUF:
572                 /* Handled below */
573                 break;
574         case SYS_PMBSR_EL1_EC_FAULT_S1:
575         case SYS_PMBSR_EL1_EC_FAULT_S2:
576                 err_str = "Unexpected buffer fault";
577                 goto out_err;
578         default:
579                 err_str = "Unknown error code";
580                 goto out_err;
581         }
582
583         /* Buffer management event */
584         switch (pmbsr &
585                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
586         case SYS_PMBSR_EL1_BUF_BSC_FULL:
587                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
588                 goto out_stop;
589         default:
590                 err_str = "Unknown buffer status code";
591         }
592
593 out_err:
594         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
595                            err_str, smp_processor_id(), pmbsr,
596                            read_sysreg_s(SYS_PMBPTR_EL1),
597                            read_sysreg_s(SYS_PMBLIMITR_EL1));
598         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
599
600 out_stop:
601         arm_spe_perf_aux_output_end(handle);
602         return ret;
603 }
604
605 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
606 {
607         struct perf_output_handle *handle = dev;
608         struct perf_event *event = handle->event;
609         enum arm_spe_pmu_buf_fault_action act;
610
611         if (!perf_get_aux(handle))
612                 return IRQ_NONE;
613
614         act = arm_spe_pmu_buf_get_fault_act(handle);
615         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
616                 return IRQ_NONE;
617
618         /*
619          * Ensure perf callbacks have completed, which may disable the
620          * profiling buffer in response to a TRUNCATION flag.
621          */
622         irq_work_run();
623
624         switch (act) {
625         case SPE_PMU_BUF_FAULT_ACT_FATAL:
626                 /*
627                  * If a fatal exception occurred then leaving the profiling
628                  * buffer enabled is a recipe waiting to happen. Since
629                  * fatal faults don't always imply truncation, make sure
630                  * that the profiling buffer is disabled explicitly before
631                  * clearing the syndrome register.
632                  */
633                 arm_spe_pmu_disable_and_drain_local();
634                 break;
635         case SPE_PMU_BUF_FAULT_ACT_OK:
636                 /*
637                  * We handled the fault (the buffer was full), so resume
638                  * profiling as long as we didn't detect truncation.
639                  * PMBPTR might be misaligned, but we'll burn that bridge
640                  * when we get to it.
641                  */
642                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
643                         arm_spe_perf_aux_output_begin(handle, event);
644                         isb();
645                 }
646                 break;
647         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
648                 /* We've seen you before, but GCC has the memory of a sieve. */
649                 break;
650         }
651
652         /* The buffer pointers are now sane, so resume profiling. */
653         write_sysreg_s(0, SYS_PMBSR_EL1);
654         return IRQ_HANDLED;
655 }
656
657 /* Perf callbacks */
658 static int arm_spe_pmu_event_init(struct perf_event *event)
659 {
660         u64 reg;
661         struct perf_event_attr *attr = &event->attr;
662         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
663
664         /* This is, of course, deeply driver-specific */
665         if (attr->type != event->pmu->type)
666                 return -ENOENT;
667
668         if (event->cpu >= 0 &&
669             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
670                 return -ENOENT;
671
672         if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
673                 return -EOPNOTSUPP;
674
675         if (attr->exclude_idle)
676                 return -EOPNOTSUPP;
677
678         /*
679          * Feedback-directed frequency throttling doesn't work when we
680          * have a buffer of samples. We'd need to manually count the
681          * samples in the buffer when it fills up and adjust the event
682          * count to reflect that. Instead, just force the user to specify
683          * a sample period.
684          */
685         if (attr->freq)
686                 return -EINVAL;
687
688         reg = arm_spe_event_to_pmsfcr(event);
689         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
690             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
691                 return -EOPNOTSUPP;
692
693         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
694             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
695                 return -EOPNOTSUPP;
696
697         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
698             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
699                 return -EOPNOTSUPP;
700
701         reg = arm_spe_event_to_pmscr(event);
702         if (!capable(CAP_SYS_ADMIN) &&
703             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
704                     BIT(SYS_PMSCR_EL1_CX_SHIFT) |
705                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
706                 return -EACCES;
707
708         return 0;
709 }
710
711 static void arm_spe_pmu_start(struct perf_event *event, int flags)
712 {
713         u64 reg;
714         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
715         struct hw_perf_event *hwc = &event->hw;
716         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
717
718         hwc->state = 0;
719         arm_spe_perf_aux_output_begin(handle, event);
720         if (hwc->state)
721                 return;
722
723         reg = arm_spe_event_to_pmsfcr(event);
724         write_sysreg_s(reg, SYS_PMSFCR_EL1);
725
726         reg = arm_spe_event_to_pmsevfr(event);
727         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
728
729         reg = arm_spe_event_to_pmslatfr(event);
730         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
731
732         if (flags & PERF_EF_RELOAD) {
733                 reg = arm_spe_event_to_pmsirr(event);
734                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
735                 isb();
736                 reg = local64_read(&hwc->period_left);
737                 write_sysreg_s(reg, SYS_PMSICR_EL1);
738         }
739
740         reg = arm_spe_event_to_pmscr(event);
741         isb();
742         write_sysreg_s(reg, SYS_PMSCR_EL1);
743 }
744
745 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
746 {
747         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
748         struct hw_perf_event *hwc = &event->hw;
749         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
750
751         /* If we're already stopped, then nothing to do */
752         if (hwc->state & PERF_HES_STOPPED)
753                 return;
754
755         /* Stop all trace generation */
756         arm_spe_pmu_disable_and_drain_local();
757
758         if (flags & PERF_EF_UPDATE) {
759                 /*
760                  * If there's a fault pending then ensure we contain it
761                  * to this buffer, since we might be on the context-switch
762                  * path.
763                  */
764                 if (perf_get_aux(handle)) {
765                         enum arm_spe_pmu_buf_fault_action act;
766
767                         act = arm_spe_pmu_buf_get_fault_act(handle);
768                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
769                                 arm_spe_perf_aux_output_end(handle);
770                         else
771                                 write_sysreg_s(0, SYS_PMBSR_EL1);
772                 }
773
774                 /*
775                  * This may also contain ECOUNT, but nobody else should
776                  * be looking at period_left, since we forbid frequency
777                  * based sampling.
778                  */
779                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
780                 hwc->state |= PERF_HES_UPTODATE;
781         }
782
783         hwc->state |= PERF_HES_STOPPED;
784 }
785
786 static int arm_spe_pmu_add(struct perf_event *event, int flags)
787 {
788         int ret = 0;
789         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
790         struct hw_perf_event *hwc = &event->hw;
791         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
792
793         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
794                 return -ENOENT;
795
796         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
797
798         if (flags & PERF_EF_START) {
799                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
800                 if (hwc->state & PERF_HES_STOPPED)
801                         ret = -EINVAL;
802         }
803
804         return ret;
805 }
806
807 static void arm_spe_pmu_del(struct perf_event *event, int flags)
808 {
809         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
810 }
811
812 static void arm_spe_pmu_read(struct perf_event *event)
813 {
814 }
815
816 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
817                                    int nr_pages, bool snapshot)
818 {
819         int i, cpu = event->cpu;
820         struct page **pglist;
821         struct arm_spe_pmu_buf *buf;
822
823         /* We need at least two pages for this to work. */
824         if (nr_pages < 2)
825                 return NULL;
826
827         /*
828          * We require an even number of pages for snapshot mode, so that
829          * we can effectively treat the buffer as consisting of two equal
830          * parts and give userspace a fighting chance of getting some
831          * useful data out of it.
832          */
833         if (!nr_pages || (snapshot && (nr_pages & 1)))
834                 return NULL;
835
836         if (cpu == -1)
837                 cpu = raw_smp_processor_id();
838
839         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
840         if (!buf)
841                 return NULL;
842
843         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
844         if (!pglist)
845                 goto out_free_buf;
846
847         for (i = 0; i < nr_pages; ++i)
848                 pglist[i] = virt_to_page(pages[i]);
849
850         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
851         if (!buf->base)
852                 goto out_free_pglist;
853
854         buf->nr_pages   = nr_pages;
855         buf->snapshot   = snapshot;
856
857         kfree(pglist);
858         return buf;
859
860 out_free_pglist:
861         kfree(pglist);
862 out_free_buf:
863         kfree(buf);
864         return NULL;
865 }
866
867 static void arm_spe_pmu_free_aux(void *aux)
868 {
869         struct arm_spe_pmu_buf *buf = aux;
870
871         vunmap(buf->base);
872         kfree(buf);
873 }
874
875 /* Initialisation and teardown functions */
876 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
877 {
878         static atomic_t pmu_idx = ATOMIC_INIT(-1);
879
880         int idx;
881         char *name;
882         struct device *dev = &spe_pmu->pdev->dev;
883
884         spe_pmu->pmu = (struct pmu) {
885                 .module = THIS_MODULE,
886                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
887                 .attr_groups    = arm_spe_pmu_attr_groups,
888                 /*
889                  * We hitch a ride on the software context here, so that
890                  * we can support per-task profiling (which is not possible
891                  * with the invalid context as it doesn't get sched callbacks).
892                  * This requires that userspace either uses a dummy event for
893                  * perf_event_open, since the aux buffer is not setup until
894                  * a subsequent mmap, or creates the profiling event in a
895                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
896                  * once the buffer has been created.
897                  */
898                 .task_ctx_nr    = perf_sw_context,
899                 .event_init     = arm_spe_pmu_event_init,
900                 .add            = arm_spe_pmu_add,
901                 .del            = arm_spe_pmu_del,
902                 .start          = arm_spe_pmu_start,
903                 .stop           = arm_spe_pmu_stop,
904                 .read           = arm_spe_pmu_read,
905                 .setup_aux      = arm_spe_pmu_setup_aux,
906                 .free_aux       = arm_spe_pmu_free_aux,
907         };
908
909         idx = atomic_inc_return(&pmu_idx);
910         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
911         if (!name) {
912                 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
913                 return -ENOMEM;
914         }
915
916         return perf_pmu_register(&spe_pmu->pmu, name, -1);
917 }
918
919 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
920 {
921         perf_pmu_unregister(&spe_pmu->pmu);
922 }
923
924 static void __arm_spe_pmu_dev_probe(void *info)
925 {
926         int fld;
927         u64 reg;
928         struct arm_spe_pmu *spe_pmu = info;
929         struct device *dev = &spe_pmu->pdev->dev;
930
931         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
932                                                    ID_AA64DFR0_PMSVER_SHIFT);
933         if (!fld) {
934                 dev_err(dev,
935                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
936                         fld, smp_processor_id());
937                 return;
938         }
939
940         /* Read PMBIDR first to determine whether or not we have access */
941         reg = read_sysreg_s(SYS_PMBIDR_EL1);
942         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
943                 dev_err(dev,
944                         "profiling buffer owned by higher exception level\n");
945                 return;
946         }
947
948         /* Minimum alignment. If it's out-of-range, then fail the probe */
949         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
950         spe_pmu->align = 1 << fld;
951         if (spe_pmu->align > SZ_2K) {
952                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
953                         fld, smp_processor_id());
954                 return;
955         }
956
957         /* It's now safe to read PMSIDR and figure out what we've got */
958         reg = read_sysreg_s(SYS_PMSIDR_EL1);
959         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
960                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
961
962         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
963                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
964
965         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
966                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
967
968         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
969                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
970
971         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
972                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
973
974         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
975                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
976
977         /* This field has a spaced out encoding, so just use a look-up */
978         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
979         switch (fld) {
980         case 0:
981                 spe_pmu->min_period = 256;
982                 break;
983         case 2:
984                 spe_pmu->min_period = 512;
985                 break;
986         case 3:
987                 spe_pmu->min_period = 768;
988                 break;
989         case 4:
990                 spe_pmu->min_period = 1024;
991                 break;
992         case 5:
993                 spe_pmu->min_period = 1536;
994                 break;
995         case 6:
996                 spe_pmu->min_period = 2048;
997                 break;
998         case 7:
999                 spe_pmu->min_period = 3072;
1000                 break;
1001         default:
1002                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1003                          fld);
1004                 /* Fallthrough */
1005         case 8:
1006                 spe_pmu->min_period = 4096;
1007         }
1008
1009         /* Maximum record size. If it's out-of-range, then fail the probe */
1010         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1011         spe_pmu->max_record_sz = 1 << fld;
1012         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1013                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1014                         fld, smp_processor_id());
1015                 return;
1016         }
1017
1018         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1019         switch (fld) {
1020         default:
1021                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1022                          fld);
1023                 /* Fallthrough */
1024         case 2:
1025                 spe_pmu->counter_sz = 12;
1026         }
1027
1028         dev_info(dev,
1029                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1030                  cpumask_pr_args(&spe_pmu->supported_cpus),
1031                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1032
1033         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1034         return;
1035 }
1036
1037 static void __arm_spe_pmu_reset_local(void)
1038 {
1039         /*
1040          * This is probably overkill, as we have no idea where we're
1041          * draining any buffered data to...
1042          */
1043         arm_spe_pmu_disable_and_drain_local();
1044
1045         /* Reset the buffer base pointer */
1046         write_sysreg_s(0, SYS_PMBPTR_EL1);
1047         isb();
1048
1049         /* Clear any pending management interrupts */
1050         write_sysreg_s(0, SYS_PMBSR_EL1);
1051         isb();
1052 }
1053
1054 static void __arm_spe_pmu_setup_one(void *info)
1055 {
1056         struct arm_spe_pmu *spe_pmu = info;
1057
1058         __arm_spe_pmu_reset_local();
1059         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1060 }
1061
1062 static void __arm_spe_pmu_stop_one(void *info)
1063 {
1064         struct arm_spe_pmu *spe_pmu = info;
1065
1066         disable_percpu_irq(spe_pmu->irq);
1067         __arm_spe_pmu_reset_local();
1068 }
1069
1070 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1071 {
1072         struct arm_spe_pmu *spe_pmu;
1073
1074         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1075         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1076                 return 0;
1077
1078         __arm_spe_pmu_setup_one(spe_pmu);
1079         return 0;
1080 }
1081
1082 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1083 {
1084         struct arm_spe_pmu *spe_pmu;
1085
1086         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1087         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1088                 return 0;
1089
1090         __arm_spe_pmu_stop_one(spe_pmu);
1091         return 0;
1092 }
1093
1094 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1095 {
1096         int ret;
1097         cpumask_t *mask = &spe_pmu->supported_cpus;
1098
1099         /* Make sure we probe the hardware on a relevant CPU */
1100         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1101         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1102                 return -ENXIO;
1103
1104         /* Request our PPIs (note that the IRQ is still disabled) */
1105         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1106                                  spe_pmu->handle);
1107         if (ret)
1108                 return ret;
1109
1110         /*
1111          * Register our hotplug notifier now so we don't miss any events.
1112          * This will enable the IRQ for any supported CPUs that are already
1113          * up.
1114          */
1115         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1116                                        &spe_pmu->hotplug_node);
1117         if (ret)
1118                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1119
1120         return ret;
1121 }
1122
1123 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1124 {
1125         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1126         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1127 }
1128
1129 /* Driver and device probing */
1130 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1131 {
1132         struct platform_device *pdev = spe_pmu->pdev;
1133         int irq = platform_get_irq(pdev, 0);
1134
1135         if (irq < 0) {
1136                 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1137                 return -ENXIO;
1138         }
1139
1140         if (!irq_is_percpu(irq)) {
1141                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1142                 return -EINVAL;
1143         }
1144
1145         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1146                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1147                 return -EINVAL;
1148         }
1149
1150         spe_pmu->irq = irq;
1151         return 0;
1152 }
1153
1154 static const struct of_device_id arm_spe_pmu_of_match[] = {
1155         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1156         { /* Sentinel */ },
1157 };
1158 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1159
1160 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1161 {
1162         int ret;
1163         struct arm_spe_pmu *spe_pmu;
1164         struct device *dev = &pdev->dev;
1165
1166         /*
1167          * If kernelspace is unmapped when running at EL0, then the SPE
1168          * buffer will fault and prematurely terminate the AUX session.
1169          */
1170         if (arm64_kernel_unmapped_at_el0()) {
1171                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1172                 return -EPERM;
1173         }
1174
1175         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1176         if (!spe_pmu) {
1177                 dev_err(dev, "failed to allocate spe_pmu\n");
1178                 return -ENOMEM;
1179         }
1180
1181         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1182         if (!spe_pmu->handle)
1183                 return -ENOMEM;
1184
1185         spe_pmu->pdev = pdev;
1186         platform_set_drvdata(pdev, spe_pmu);
1187
1188         ret = arm_spe_pmu_irq_probe(spe_pmu);
1189         if (ret)
1190                 goto out_free_handle;
1191
1192         ret = arm_spe_pmu_dev_init(spe_pmu);
1193         if (ret)
1194                 goto out_free_handle;
1195
1196         ret = arm_spe_pmu_perf_init(spe_pmu);
1197         if (ret)
1198                 goto out_teardown_dev;
1199
1200         return 0;
1201
1202 out_teardown_dev:
1203         arm_spe_pmu_dev_teardown(spe_pmu);
1204 out_free_handle:
1205         free_percpu(spe_pmu->handle);
1206         return ret;
1207 }
1208
1209 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1210 {
1211         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1212
1213         arm_spe_pmu_perf_destroy(spe_pmu);
1214         arm_spe_pmu_dev_teardown(spe_pmu);
1215         free_percpu(spe_pmu->handle);
1216         return 0;
1217 }
1218
1219 static struct platform_driver arm_spe_pmu_driver = {
1220         .driver = {
1221                 .name           = DRVNAME,
1222                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1223         },
1224         .probe  = arm_spe_pmu_device_dt_probe,
1225         .remove = arm_spe_pmu_device_remove,
1226 };
1227
1228 static int __init arm_spe_pmu_init(void)
1229 {
1230         int ret;
1231
1232         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1233                                       arm_spe_pmu_cpu_startup,
1234                                       arm_spe_pmu_cpu_teardown);
1235         if (ret < 0)
1236                 return ret;
1237         arm_spe_pmu_online = ret;
1238
1239         ret = platform_driver_register(&arm_spe_pmu_driver);
1240         if (ret)
1241                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1242
1243         return ret;
1244 }
1245
1246 static void __exit arm_spe_pmu_exit(void)
1247 {
1248         platform_driver_unregister(&arm_spe_pmu_driver);
1249         cpuhp_remove_multi_state(arm_spe_pmu_online);
1250 }
1251
1252 module_init(arm_spe_pmu_init);
1253 module_exit(arm_spe_pmu_exit);
1254
1255 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1256 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1257 MODULE_LICENSE("GPL v2");