]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/ptp/ptp_clock.c
drm/i915: Fixup preempt-to-busy vs resubmission of a virtual request
[linux.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 /* private globals */
28
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31
32 static DEFINE_IDA(ptp_clocks_map);
33
34 /* time stamp event queue operations */
35
36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42                                        struct ptp_clock_event *src)
43 {
44         struct ptp_extts_event *dst;
45         unsigned long flags;
46         s64 seconds;
47         u32 remainder;
48
49         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50
51         spin_lock_irqsave(&queue->lock, flags);
52
53         dst = &queue->buf[queue->tail];
54         dst->index = src->index;
55         dst->t.sec = seconds;
56         dst->t.nsec = remainder;
57
58         if (!queue_free(queue))
59                 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
60
61         queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
62
63         spin_unlock_irqrestore(&queue->lock, flags);
64 }
65
66 s32 scaled_ppm_to_ppb(long ppm)
67 {
68         /*
69          * The 'freq' field in the 'struct timex' is in parts per
70          * million, but with a 16 bit binary fractional field.
71          *
72          * We want to calculate
73          *
74          *    ppb = scaled_ppm * 1000 / 2^16
75          *
76          * which simplifies to
77          *
78          *    ppb = scaled_ppm * 125 / 2^13
79          */
80         s64 ppb = 1 + ppm;
81         ppb *= 125;
82         ppb >>= 13;
83         return (s32) ppb;
84 }
85 EXPORT_SYMBOL(scaled_ppm_to_ppb);
86
87 /* posix clock implementation */
88
89 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
90 {
91         tp->tv_sec = 0;
92         tp->tv_nsec = 1;
93         return 0;
94 }
95
96 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
97 {
98         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
99
100         return  ptp->info->settime64(ptp->info, tp);
101 }
102
103 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104 {
105         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
106         int err;
107
108         if (ptp->info->gettimex64)
109                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
110         else
111                 err = ptp->info->gettime64(ptp->info, tp);
112         return err;
113 }
114
115 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116 {
117         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118         struct ptp_clock_info *ops;
119         int err = -EOPNOTSUPP;
120
121         ops = ptp->info;
122
123         if (tx->modes & ADJ_SETOFFSET) {
124                 struct timespec64 ts;
125                 ktime_t kt;
126                 s64 delta;
127
128                 ts.tv_sec  = tx->time.tv_sec;
129                 ts.tv_nsec = tx->time.tv_usec;
130
131                 if (!(tx->modes & ADJ_NANO))
132                         ts.tv_nsec *= 1000;
133
134                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135                         return -EINVAL;
136
137                 kt = timespec64_to_ktime(ts);
138                 delta = ktime_to_ns(kt);
139                 err = ops->adjtime(ops, delta);
140         } else if (tx->modes & ADJ_FREQUENCY) {
141                 s32 ppb = scaled_ppm_to_ppb(tx->freq);
142                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
143                         return -ERANGE;
144                 if (ops->adjfine)
145                         err = ops->adjfine(ops, tx->freq);
146                 else
147                         err = ops->adjfreq(ops, ppb);
148                 ptp->dialed_frequency = tx->freq;
149         } else if (tx->modes == 0) {
150                 tx->freq = ptp->dialed_frequency;
151                 err = 0;
152         }
153
154         return err;
155 }
156
157 static struct posix_clock_operations ptp_clock_ops = {
158         .owner          = THIS_MODULE,
159         .clock_adjtime  = ptp_clock_adjtime,
160         .clock_gettime  = ptp_clock_gettime,
161         .clock_getres   = ptp_clock_getres,
162         .clock_settime  = ptp_clock_settime,
163         .ioctl          = ptp_ioctl,
164         .open           = ptp_open,
165         .poll           = ptp_poll,
166         .read           = ptp_read,
167 };
168
169 static void delete_ptp_clock(struct posix_clock *pc)
170 {
171         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
172
173         mutex_destroy(&ptp->tsevq_mux);
174         mutex_destroy(&ptp->pincfg_mux);
175         ida_simple_remove(&ptp_clocks_map, ptp->index);
176         kfree(ptp);
177 }
178
179 static void ptp_aux_kworker(struct kthread_work *work)
180 {
181         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
182                                              aux_work.work);
183         struct ptp_clock_info *info = ptp->info;
184         long delay;
185
186         delay = info->do_aux_work(info);
187
188         if (delay >= 0)
189                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
190 }
191
192 /* public interface */
193
194 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
195                                      struct device *parent)
196 {
197         struct ptp_clock *ptp;
198         int err = 0, index, major = MAJOR(ptp_devt);
199
200         if (info->n_alarm > PTP_MAX_ALARMS)
201                 return ERR_PTR(-EINVAL);
202
203         /* Initialize a clock structure. */
204         err = -ENOMEM;
205         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
206         if (ptp == NULL)
207                 goto no_memory;
208
209         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
210         if (index < 0) {
211                 err = index;
212                 goto no_slot;
213         }
214
215         ptp->clock.ops = ptp_clock_ops;
216         ptp->clock.release = delete_ptp_clock;
217         ptp->info = info;
218         ptp->devid = MKDEV(major, index);
219         ptp->index = index;
220         spin_lock_init(&ptp->tsevq.lock);
221         mutex_init(&ptp->tsevq_mux);
222         mutex_init(&ptp->pincfg_mux);
223         init_waitqueue_head(&ptp->tsev_wq);
224
225         if (ptp->info->do_aux_work) {
226                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
227                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
228                 if (IS_ERR(ptp->kworker)) {
229                         err = PTR_ERR(ptp->kworker);
230                         pr_err("failed to create ptp aux_worker %d\n", err);
231                         goto kworker_err;
232                 }
233         }
234
235         err = ptp_populate_pin_groups(ptp);
236         if (err)
237                 goto no_pin_groups;
238
239         /* Create a new device in our class. */
240         ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
241                                              ptp, ptp->pin_attr_groups,
242                                              "ptp%d", ptp->index);
243         if (IS_ERR(ptp->dev)) {
244                 err = PTR_ERR(ptp->dev);
245                 goto no_device;
246         }
247
248         /* Register a new PPS source. */
249         if (info->pps) {
250                 struct pps_source_info pps;
251                 memset(&pps, 0, sizeof(pps));
252                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
253                 pps.mode = PTP_PPS_MODE;
254                 pps.owner = info->owner;
255                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
256                 if (IS_ERR(ptp->pps_source)) {
257                         err = PTR_ERR(ptp->pps_source);
258                         pr_err("failed to register pps source\n");
259                         goto no_pps;
260                 }
261         }
262
263         /* Create a posix clock. */
264         err = posix_clock_register(&ptp->clock, ptp->devid);
265         if (err) {
266                 pr_err("failed to create posix clock\n");
267                 goto no_clock;
268         }
269
270         return ptp;
271
272 no_clock:
273         if (ptp->pps_source)
274                 pps_unregister_source(ptp->pps_source);
275 no_pps:
276         device_destroy(ptp_class, ptp->devid);
277 no_device:
278         ptp_cleanup_pin_groups(ptp);
279 no_pin_groups:
280         if (ptp->kworker)
281                 kthread_destroy_worker(ptp->kworker);
282 kworker_err:
283         mutex_destroy(&ptp->tsevq_mux);
284         mutex_destroy(&ptp->pincfg_mux);
285         ida_simple_remove(&ptp_clocks_map, index);
286 no_slot:
287         kfree(ptp);
288 no_memory:
289         return ERR_PTR(err);
290 }
291 EXPORT_SYMBOL(ptp_clock_register);
292
293 int ptp_clock_unregister(struct ptp_clock *ptp)
294 {
295         ptp->defunct = 1;
296         wake_up_interruptible(&ptp->tsev_wq);
297
298         if (ptp->kworker) {
299                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
300                 kthread_destroy_worker(ptp->kworker);
301         }
302
303         /* Release the clock's resources. */
304         if (ptp->pps_source)
305                 pps_unregister_source(ptp->pps_source);
306
307         device_destroy(ptp_class, ptp->devid);
308         ptp_cleanup_pin_groups(ptp);
309
310         posix_clock_unregister(&ptp->clock);
311         return 0;
312 }
313 EXPORT_SYMBOL(ptp_clock_unregister);
314
315 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
316 {
317         struct pps_event_time evt;
318
319         switch (event->type) {
320
321         case PTP_CLOCK_ALARM:
322                 break;
323
324         case PTP_CLOCK_EXTTS:
325                 enqueue_external_timestamp(&ptp->tsevq, event);
326                 wake_up_interruptible(&ptp->tsev_wq);
327                 break;
328
329         case PTP_CLOCK_PPS:
330                 pps_get_ts(&evt);
331                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
332                 break;
333
334         case PTP_CLOCK_PPSUSR:
335                 pps_event(ptp->pps_source, &event->pps_times,
336                           PTP_PPS_EVENT, NULL);
337                 break;
338         }
339 }
340 EXPORT_SYMBOL(ptp_clock_event);
341
342 int ptp_clock_index(struct ptp_clock *ptp)
343 {
344         return ptp->index;
345 }
346 EXPORT_SYMBOL(ptp_clock_index);
347
348 int ptp_find_pin(struct ptp_clock *ptp,
349                  enum ptp_pin_function func, unsigned int chan)
350 {
351         struct ptp_pin_desc *pin = NULL;
352         int i;
353
354         mutex_lock(&ptp->pincfg_mux);
355         for (i = 0; i < ptp->info->n_pins; i++) {
356                 if (ptp->info->pin_config[i].func == func &&
357                     ptp->info->pin_config[i].chan == chan) {
358                         pin = &ptp->info->pin_config[i];
359                         break;
360                 }
361         }
362         mutex_unlock(&ptp->pincfg_mux);
363
364         return pin ? i : -1;
365 }
366 EXPORT_SYMBOL(ptp_find_pin);
367
368 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
369 {
370         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
371 }
372 EXPORT_SYMBOL(ptp_schedule_worker);
373
374 /* module operations */
375
376 static void __exit ptp_exit(void)
377 {
378         class_destroy(ptp_class);
379         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
380         ida_destroy(&ptp_clocks_map);
381 }
382
383 static int __init ptp_init(void)
384 {
385         int err;
386
387         ptp_class = class_create(THIS_MODULE, "ptp");
388         if (IS_ERR(ptp_class)) {
389                 pr_err("ptp: failed to allocate class\n");
390                 return PTR_ERR(ptp_class);
391         }
392
393         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
394         if (err < 0) {
395                 pr_err("ptp: failed to allocate device region\n");
396                 goto no_region;
397         }
398
399         ptp_class->dev_groups = ptp_groups;
400         pr_info("PTP clock support registered\n");
401         return 0;
402
403 no_region:
404         class_destroy(ptp_class);
405         return err;
406 }
407
408 subsys_initcall(ptp_init);
409 module_exit(ptp_exit);
410
411 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
412 MODULE_DESCRIPTION("PTP clocks support");
413 MODULE_LICENSE("GPL");