]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
scsi: ufs: Unlock on a couple error paths
[linux.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112         if (rdev->constraints && rdev->constraints->name)
113                 return rdev->constraints->name;
114         else if (rdev->desc->name)
115                 return rdev->desc->name;
116         else
117                 return "";
118 }
119
120 static bool have_full_constraints(void)
121 {
122         return has_full_constraints || of_have_populated_dt();
123 }
124
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127         if (!rdev->constraints) {
128                 rdev_err(rdev, "no constraints\n");
129                 return false;
130         }
131
132         if (rdev->constraints->valid_ops_mask & ops)
133                 return true;
134
135         return false;
136 }
137
138 /**
139  * regulator_lock_nested - lock a single regulator
140  * @rdev:               regulator source
141  * @ww_ctx:             w/w mutex acquire context
142  *
143  * This function can be called many times by one task on
144  * a single regulator and its mutex will be locked only
145  * once. If a task, which is calling this function is other
146  * than the one, which initially locked the mutex, it will
147  * wait on mutex.
148  */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150                                         struct ww_acquire_ctx *ww_ctx)
151 {
152         bool lock = false;
153         int ret = 0;
154
155         mutex_lock(&regulator_nesting_mutex);
156
157         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158                 if (rdev->mutex_owner == current)
159                         rdev->ref_cnt++;
160                 else
161                         lock = true;
162
163                 if (lock) {
164                         mutex_unlock(&regulator_nesting_mutex);
165                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166                         mutex_lock(&regulator_nesting_mutex);
167                 }
168         } else {
169                 lock = true;
170         }
171
172         if (lock && ret != -EDEADLK) {
173                 rdev->ref_cnt++;
174                 rdev->mutex_owner = current;
175         }
176
177         mutex_unlock(&regulator_nesting_mutex);
178
179         return ret;
180 }
181
182 /**
183  * regulator_lock - lock a single regulator
184  * @rdev:               regulator source
185  *
186  * This function can be called many times by one task on
187  * a single regulator and its mutex will be locked only
188  * once. If a task, which is calling this function is other
189  * than the one, which initially locked the mutex, it will
190  * wait on mutex.
191  */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194         regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222         struct regulator_dev *c_rdev;
223         int i;
224
225         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228                 if (rdev->supply->rdev == c_rdev)
229                         return true;
230         }
231
232         return false;
233 }
234
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236                                        unsigned int n_coupled)
237 {
238         struct regulator_dev *c_rdev;
239         int i;
240
241         for (i = n_coupled; i > 0; i--) {
242                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244                 if (!c_rdev)
245                         continue;
246
247                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248                         regulator_unlock_recursive(
249                                         c_rdev->supply->rdev,
250                                         c_rdev->coupling_desc.n_coupled);
251
252                 regulator_unlock(c_rdev);
253         }
254 }
255
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257                                     struct regulator_dev **new_contended_rdev,
258                                     struct regulator_dev **old_contended_rdev,
259                                     struct ww_acquire_ctx *ww_ctx)
260 {
261         struct regulator_dev *c_rdev;
262         int i, err;
263
264         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267                 if (!c_rdev)
268                         continue;
269
270                 if (c_rdev != *old_contended_rdev) {
271                         err = regulator_lock_nested(c_rdev, ww_ctx);
272                         if (err) {
273                                 if (err == -EDEADLK) {
274                                         *new_contended_rdev = c_rdev;
275                                         goto err_unlock;
276                                 }
277
278                                 /* shouldn't happen */
279                                 WARN_ON_ONCE(err != -EALREADY);
280                         }
281                 } else {
282                         *old_contended_rdev = NULL;
283                 }
284
285                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286                         err = regulator_lock_recursive(c_rdev->supply->rdev,
287                                                        new_contended_rdev,
288                                                        old_contended_rdev,
289                                                        ww_ctx);
290                         if (err) {
291                                 regulator_unlock(c_rdev);
292                                 goto err_unlock;
293                         }
294                 }
295         }
296
297         return 0;
298
299 err_unlock:
300         regulator_unlock_recursive(rdev, i);
301
302         return err;
303 }
304
305 /**
306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307  *                              regulators
308  * @rdev:                       regulator source
309  * @ww_ctx:                     w/w mutex acquire context
310  *
311  * Unlock all regulators related with rdev by coupling or supplying.
312  */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314                                        struct ww_acquire_ctx *ww_ctx)
315 {
316         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317         ww_acquire_fini(ww_ctx);
318 }
319
320 /**
321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322  * @rdev:                       regulator source
323  * @ww_ctx:                     w/w mutex acquire context
324  *
325  * This function as a wrapper on regulator_lock_recursive(), which locks
326  * all regulators related with rdev by coupling or supplying.
327  */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329                                      struct ww_acquire_ctx *ww_ctx)
330 {
331         struct regulator_dev *new_contended_rdev = NULL;
332         struct regulator_dev *old_contended_rdev = NULL;
333         int err;
334
335         mutex_lock(&regulator_list_mutex);
336
337         ww_acquire_init(ww_ctx, &regulator_ww_class);
338
339         do {
340                 if (new_contended_rdev) {
341                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342                         old_contended_rdev = new_contended_rdev;
343                         old_contended_rdev->ref_cnt++;
344                 }
345
346                 err = regulator_lock_recursive(rdev,
347                                                &new_contended_rdev,
348                                                &old_contended_rdev,
349                                                ww_ctx);
350
351                 if (old_contended_rdev)
352                         regulator_unlock(old_contended_rdev);
353
354         } while (err == -EDEADLK);
355
356         ww_acquire_done(ww_ctx);
357
358         mutex_unlock(&regulator_list_mutex);
359 }
360
361 /**
362  * of_get_child_regulator - get a child regulator device node
363  * based on supply name
364  * @parent: Parent device node
365  * @prop_name: Combination regulator supply name and "-supply"
366  *
367  * Traverse all child nodes.
368  * Extract the child regulator device node corresponding to the supply name.
369  * returns the device node corresponding to the regulator if found, else
370  * returns NULL.
371  */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373                                                   const char *prop_name)
374 {
375         struct device_node *regnode = NULL;
376         struct device_node *child = NULL;
377
378         for_each_child_of_node(parent, child) {
379                 regnode = of_parse_phandle(child, prop_name, 0);
380
381                 if (!regnode) {
382                         regnode = of_get_child_regulator(child, prop_name);
383                         if (regnode)
384                                 goto err_node_put;
385                 } else {
386                         goto err_node_put;
387                 }
388         }
389         return NULL;
390
391 err_node_put:
392         of_node_put(child);
393         return regnode;
394 }
395
396 /**
397  * of_get_regulator - get a regulator device node based on supply name
398  * @dev: Device pointer for the consumer (of regulator) device
399  * @supply: regulator supply name
400  *
401  * Extract the regulator device node corresponding to the supply name.
402  * returns the device node corresponding to the regulator if found, else
403  * returns NULL.
404  */
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406 {
407         struct device_node *regnode = NULL;
408         char prop_name[32]; /* 32 is max size of property name */
409
410         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411
412         snprintf(prop_name, 32, "%s-supply", supply);
413         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414
415         if (!regnode) {
416                 regnode = of_get_child_regulator(dev->of_node, prop_name);
417                 if (regnode)
418                         return regnode;
419
420                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421                                 prop_name, dev->of_node);
422                 return NULL;
423         }
424         return regnode;
425 }
426
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429                             int *min_uV, int *max_uV)
430 {
431         BUG_ON(*min_uV > *max_uV);
432
433         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434                 rdev_err(rdev, "voltage operation not allowed\n");
435                 return -EPERM;
436         }
437
438         if (*max_uV > rdev->constraints->max_uV)
439                 *max_uV = rdev->constraints->max_uV;
440         if (*min_uV < rdev->constraints->min_uV)
441                 *min_uV = rdev->constraints->min_uV;
442
443         if (*min_uV > *max_uV) {
444                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445                          *min_uV, *max_uV);
446                 return -EINVAL;
447         }
448
449         return 0;
450 }
451
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
454 {
455         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456 }
457
458 /* Make sure we select a voltage that suits the needs of all
459  * regulator consumers
460  */
461 int regulator_check_consumers(struct regulator_dev *rdev,
462                               int *min_uV, int *max_uV,
463                               suspend_state_t state)
464 {
465         struct regulator *regulator;
466         struct regulator_voltage *voltage;
467
468         list_for_each_entry(regulator, &rdev->consumer_list, list) {
469                 voltage = &regulator->voltage[state];
470                 /*
471                  * Assume consumers that didn't say anything are OK
472                  * with anything in the constraint range.
473                  */
474                 if (!voltage->min_uV && !voltage->max_uV)
475                         continue;
476
477                 if (*max_uV > voltage->max_uV)
478                         *max_uV = voltage->max_uV;
479                 if (*min_uV < voltage->min_uV)
480                         *min_uV = voltage->min_uV;
481         }
482
483         if (*min_uV > *max_uV) {
484                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485                         *min_uV, *max_uV);
486                 return -EINVAL;
487         }
488
489         return 0;
490 }
491
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494                                         int *min_uA, int *max_uA)
495 {
496         BUG_ON(*min_uA > *max_uA);
497
498         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499                 rdev_err(rdev, "current operation not allowed\n");
500                 return -EPERM;
501         }
502
503         if (*max_uA > rdev->constraints->max_uA)
504                 *max_uA = rdev->constraints->max_uA;
505         if (*min_uA < rdev->constraints->min_uA)
506                 *min_uA = rdev->constraints->min_uA;
507
508         if (*min_uA > *max_uA) {
509                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510                          *min_uA, *max_uA);
511                 return -EINVAL;
512         }
513
514         return 0;
515 }
516
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519                                     unsigned int *mode)
520 {
521         switch (*mode) {
522         case REGULATOR_MODE_FAST:
523         case REGULATOR_MODE_NORMAL:
524         case REGULATOR_MODE_IDLE:
525         case REGULATOR_MODE_STANDBY:
526                 break;
527         default:
528                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529                 return -EINVAL;
530         }
531
532         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533                 rdev_err(rdev, "mode operation not allowed\n");
534                 return -EPERM;
535         }
536
537         /* The modes are bitmasks, the most power hungry modes having
538          * the lowest values. If the requested mode isn't supported
539          * try higher modes. */
540         while (*mode) {
541                 if (rdev->constraints->valid_modes_mask & *mode)
542                         return 0;
543                 *mode /= 2;
544         }
545
546         return -EINVAL;
547 }
548
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 {
552         if (rdev->constraints == NULL)
553                 return NULL;
554
555         switch (state) {
556         case PM_SUSPEND_STANDBY:
557                 return &rdev->constraints->state_standby;
558         case PM_SUSPEND_MEM:
559                 return &rdev->constraints->state_mem;
560         case PM_SUSPEND_MAX:
561                 return &rdev->constraints->state_disk;
562         default:
563                 return NULL;
564         }
565 }
566
567 static ssize_t regulator_uV_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571         int uV;
572
573         regulator_lock(rdev);
574         uV = regulator_get_voltage_rdev(rdev);
575         regulator_unlock(rdev);
576
577         if (uV < 0)
578                 return uV;
579         return sprintf(buf, "%d\n", uV);
580 }
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582
583 static ssize_t regulator_uA_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589 }
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593                          char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return sprintf(buf, "%s\n", rdev_get_name(rdev));
598 }
599 static DEVICE_ATTR_RO(name);
600
601 static const char *regulator_opmode_to_str(int mode)
602 {
603         switch (mode) {
604         case REGULATOR_MODE_FAST:
605                 return "fast";
606         case REGULATOR_MODE_NORMAL:
607                 return "normal";
608         case REGULATOR_MODE_IDLE:
609                 return "idle";
610         case REGULATOR_MODE_STANDBY:
611                 return "standby";
612         }
613         return "unknown";
614 }
615
616 static ssize_t regulator_print_opmode(char *buf, int mode)
617 {
618         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 }
620
621 static ssize_t regulator_opmode_show(struct device *dev,
622                                     struct device_attribute *attr, char *buf)
623 {
624         struct regulator_dev *rdev = dev_get_drvdata(dev);
625
626         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627 }
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629
630 static ssize_t regulator_print_state(char *buf, int state)
631 {
632         if (state > 0)
633                 return sprintf(buf, "enabled\n");
634         else if (state == 0)
635                 return sprintf(buf, "disabled\n");
636         else
637                 return sprintf(buf, "unknown\n");
638 }
639
640 static ssize_t regulator_state_show(struct device *dev,
641                                    struct device_attribute *attr, char *buf)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644         ssize_t ret;
645
646         regulator_lock(rdev);
647         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648         regulator_unlock(rdev);
649
650         return ret;
651 }
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653
654 static ssize_t regulator_status_show(struct device *dev,
655                                    struct device_attribute *attr, char *buf)
656 {
657         struct regulator_dev *rdev = dev_get_drvdata(dev);
658         int status;
659         char *label;
660
661         status = rdev->desc->ops->get_status(rdev);
662         if (status < 0)
663                 return status;
664
665         switch (status) {
666         case REGULATOR_STATUS_OFF:
667                 label = "off";
668                 break;
669         case REGULATOR_STATUS_ON:
670                 label = "on";
671                 break;
672         case REGULATOR_STATUS_ERROR:
673                 label = "error";
674                 break;
675         case REGULATOR_STATUS_FAST:
676                 label = "fast";
677                 break;
678         case REGULATOR_STATUS_NORMAL:
679                 label = "normal";
680                 break;
681         case REGULATOR_STATUS_IDLE:
682                 label = "idle";
683                 break;
684         case REGULATOR_STATUS_STANDBY:
685                 label = "standby";
686                 break;
687         case REGULATOR_STATUS_BYPASS:
688                 label = "bypass";
689                 break;
690         case REGULATOR_STATUS_UNDEFINED:
691                 label = "undefined";
692                 break;
693         default:
694                 return -ERANGE;
695         }
696
697         return sprintf(buf, "%s\n", label);
698 }
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700
701 static ssize_t regulator_min_uA_show(struct device *dev,
702                                     struct device_attribute *attr, char *buf)
703 {
704         struct regulator_dev *rdev = dev_get_drvdata(dev);
705
706         if (!rdev->constraints)
707                 return sprintf(buf, "constraint not defined\n");
708
709         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710 }
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712
713 static ssize_t regulator_max_uA_show(struct device *dev,
714                                     struct device_attribute *attr, char *buf)
715 {
716         struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718         if (!rdev->constraints)
719                 return sprintf(buf, "constraint not defined\n");
720
721         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722 }
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724
725 static ssize_t regulator_min_uV_show(struct device *dev,
726                                     struct device_attribute *attr, char *buf)
727 {
728         struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730         if (!rdev->constraints)
731                 return sprintf(buf, "constraint not defined\n");
732
733         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734 }
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736
737 static ssize_t regulator_max_uV_show(struct device *dev,
738                                     struct device_attribute *attr, char *buf)
739 {
740         struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742         if (!rdev->constraints)
743                 return sprintf(buf, "constraint not defined\n");
744
745         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746 }
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748
749 static ssize_t regulator_total_uA_show(struct device *dev,
750                                       struct device_attribute *attr, char *buf)
751 {
752         struct regulator_dev *rdev = dev_get_drvdata(dev);
753         struct regulator *regulator;
754         int uA = 0;
755
756         regulator_lock(rdev);
757         list_for_each_entry(regulator, &rdev->consumer_list, list) {
758                 if (regulator->enable_count)
759                         uA += regulator->uA_load;
760         }
761         regulator_unlock(rdev);
762         return sprintf(buf, "%d\n", uA);
763 }
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767                               char *buf)
768 {
769         struct regulator_dev *rdev = dev_get_drvdata(dev);
770         return sprintf(buf, "%d\n", rdev->use_count);
771 }
772 static DEVICE_ATTR_RO(num_users);
773
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775                          char *buf)
776 {
777         struct regulator_dev *rdev = dev_get_drvdata(dev);
778
779         switch (rdev->desc->type) {
780         case REGULATOR_VOLTAGE:
781                 return sprintf(buf, "voltage\n");
782         case REGULATOR_CURRENT:
783                 return sprintf(buf, "current\n");
784         }
785         return sprintf(buf, "unknown\n");
786 }
787 static DEVICE_ATTR_RO(type);
788
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790                                 struct device_attribute *attr, char *buf)
791 {
792         struct regulator_dev *rdev = dev_get_drvdata(dev);
793
794         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795 }
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797                 regulator_suspend_mem_uV_show, NULL);
798
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800                                 struct device_attribute *attr, char *buf)
801 {
802         struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805 }
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807                 regulator_suspend_disk_uV_show, NULL);
808
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810                                 struct device_attribute *attr, char *buf)
811 {
812         struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815 }
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817                 regulator_suspend_standby_uV_show, NULL);
818
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820                                 struct device_attribute *attr, char *buf)
821 {
822         struct regulator_dev *rdev = dev_get_drvdata(dev);
823
824         return regulator_print_opmode(buf,
825                 rdev->constraints->state_mem.mode);
826 }
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828                 regulator_suspend_mem_mode_show, NULL);
829
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831                                 struct device_attribute *attr, char *buf)
832 {
833         struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835         return regulator_print_opmode(buf,
836                 rdev->constraints->state_disk.mode);
837 }
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839                 regulator_suspend_disk_mode_show, NULL);
840
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842                                 struct device_attribute *attr, char *buf)
843 {
844         struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846         return regulator_print_opmode(buf,
847                 rdev->constraints->state_standby.mode);
848 }
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850                 regulator_suspend_standby_mode_show, NULL);
851
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853                                    struct device_attribute *attr, char *buf)
854 {
855         struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857         return regulator_print_state(buf,
858                         rdev->constraints->state_mem.enabled);
859 }
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861                 regulator_suspend_mem_state_show, NULL);
862
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864                                    struct device_attribute *attr, char *buf)
865 {
866         struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868         return regulator_print_state(buf,
869                         rdev->constraints->state_disk.enabled);
870 }
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872                 regulator_suspend_disk_state_show, NULL);
873
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875                                    struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_standby.enabled);
881 }
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883                 regulator_suspend_standby_state_show, NULL);
884
885 static ssize_t regulator_bypass_show(struct device *dev,
886                                      struct device_attribute *attr, char *buf)
887 {
888         struct regulator_dev *rdev = dev_get_drvdata(dev);
889         const char *report;
890         bool bypass;
891         int ret;
892
893         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894
895         if (ret != 0)
896                 report = "unknown";
897         else if (bypass)
898                 report = "enabled";
899         else
900                 report = "disabled";
901
902         return sprintf(buf, "%s\n", report);
903 }
904 static DEVICE_ATTR(bypass, 0444,
905                    regulator_bypass_show, NULL);
906
907 /* Calculate the new optimum regulator operating mode based on the new total
908  * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
910 {
911         struct regulator *sibling;
912         int current_uA = 0, output_uV, input_uV, err;
913         unsigned int mode;
914
915         /*
916          * first check to see if we can set modes at all, otherwise just
917          * tell the consumer everything is OK.
918          */
919         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920                 rdev_dbg(rdev, "DRMS operation not allowed\n");
921                 return 0;
922         }
923
924         if (!rdev->desc->ops->get_optimum_mode &&
925             !rdev->desc->ops->set_load)
926                 return 0;
927
928         if (!rdev->desc->ops->set_mode &&
929             !rdev->desc->ops->set_load)
930                 return -EINVAL;
931
932         /* calc total requested load */
933         list_for_each_entry(sibling, &rdev->consumer_list, list) {
934                 if (sibling->enable_count)
935                         current_uA += sibling->uA_load;
936         }
937
938         current_uA += rdev->constraints->system_load;
939
940         if (rdev->desc->ops->set_load) {
941                 /* set the optimum mode for our new total regulator load */
942                 err = rdev->desc->ops->set_load(rdev, current_uA);
943                 if (err < 0)
944                         rdev_err(rdev, "failed to set load %d\n", current_uA);
945         } else {
946                 /* get output voltage */
947                 output_uV = regulator_get_voltage_rdev(rdev);
948                 if (output_uV <= 0) {
949                         rdev_err(rdev, "invalid output voltage found\n");
950                         return -EINVAL;
951                 }
952
953                 /* get input voltage */
954                 input_uV = 0;
955                 if (rdev->supply)
956                         input_uV = regulator_get_voltage(rdev->supply);
957                 if (input_uV <= 0)
958                         input_uV = rdev->constraints->input_uV;
959                 if (input_uV <= 0) {
960                         rdev_err(rdev, "invalid input voltage found\n");
961                         return -EINVAL;
962                 }
963
964                 /* now get the optimum mode for our new total regulator load */
965                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966                                                          output_uV, current_uA);
967
968                 /* check the new mode is allowed */
969                 err = regulator_mode_constrain(rdev, &mode);
970                 if (err < 0) {
971                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972                                  current_uA, input_uV, output_uV);
973                         return err;
974                 }
975
976                 err = rdev->desc->ops->set_mode(rdev, mode);
977                 if (err < 0)
978                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979         }
980
981         return err;
982 }
983
984 static int suspend_set_state(struct regulator_dev *rdev,
985                                     suspend_state_t state)
986 {
987         int ret = 0;
988         struct regulator_state *rstate;
989
990         rstate = regulator_get_suspend_state(rdev, state);
991         if (rstate == NULL)
992                 return 0;
993
994         /* If we have no suspend mode configuration don't set anything;
995          * only warn if the driver implements set_suspend_voltage or
996          * set_suspend_mode callback.
997          */
998         if (rstate->enabled != ENABLE_IN_SUSPEND &&
999             rstate->enabled != DISABLE_IN_SUSPEND) {
1000                 if (rdev->desc->ops->set_suspend_voltage ||
1001                     rdev->desc->ops->set_suspend_mode)
1002                         rdev_warn(rdev, "No configuration\n");
1003                 return 0;
1004         }
1005
1006         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007                 rdev->desc->ops->set_suspend_enable)
1008                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010                 rdev->desc->ops->set_suspend_disable)
1011                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013                 ret = 0;
1014
1015         if (ret < 0) {
1016                 rdev_err(rdev, "failed to enabled/disable\n");
1017                 return ret;
1018         }
1019
1020         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022                 if (ret < 0) {
1023                         rdev_err(rdev, "failed to set voltage\n");
1024                         return ret;
1025                 }
1026         }
1027
1028         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030                 if (ret < 0) {
1031                         rdev_err(rdev, "failed to set mode\n");
1032                         return ret;
1033                 }
1034         }
1035
1036         return ret;
1037 }
1038
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041         struct regulation_constraints *constraints = rdev->constraints;
1042         char buf[160] = "";
1043         size_t len = sizeof(buf) - 1;
1044         int count = 0;
1045         int ret;
1046
1047         if (constraints->min_uV && constraints->max_uV) {
1048                 if (constraints->min_uV == constraints->max_uV)
1049                         count += scnprintf(buf + count, len - count, "%d mV ",
1050                                            constraints->min_uV / 1000);
1051                 else
1052                         count += scnprintf(buf + count, len - count,
1053                                            "%d <--> %d mV ",
1054                                            constraints->min_uV / 1000,
1055                                            constraints->max_uV / 1000);
1056         }
1057
1058         if (!constraints->min_uV ||
1059             constraints->min_uV != constraints->max_uV) {
1060                 ret = regulator_get_voltage_rdev(rdev);
1061                 if (ret > 0)
1062                         count += scnprintf(buf + count, len - count,
1063                                            "at %d mV ", ret / 1000);
1064         }
1065
1066         if (constraints->uV_offset)
1067                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068                                    constraints->uV_offset / 1000);
1069
1070         if (constraints->min_uA && constraints->max_uA) {
1071                 if (constraints->min_uA == constraints->max_uA)
1072                         count += scnprintf(buf + count, len - count, "%d mA ",
1073                                            constraints->min_uA / 1000);
1074                 else
1075                         count += scnprintf(buf + count, len - count,
1076                                            "%d <--> %d mA ",
1077                                            constraints->min_uA / 1000,
1078                                            constraints->max_uA / 1000);
1079         }
1080
1081         if (!constraints->min_uA ||
1082             constraints->min_uA != constraints->max_uA) {
1083                 ret = _regulator_get_current_limit(rdev);
1084                 if (ret > 0)
1085                         count += scnprintf(buf + count, len - count,
1086                                            "at %d mA ", ret / 1000);
1087         }
1088
1089         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090                 count += scnprintf(buf + count, len - count, "fast ");
1091         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092                 count += scnprintf(buf + count, len - count, "normal ");
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094                 count += scnprintf(buf + count, len - count, "idle ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096                 count += scnprintf(buf + count, len - count, "standby");
1097
1098         if (!count)
1099                 scnprintf(buf, len, "no parameters");
1100
1101         rdev_dbg(rdev, "%s\n", buf);
1102
1103         if ((constraints->min_uV != constraints->max_uV) &&
1104             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105                 rdev_warn(rdev,
1106                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110         struct regulation_constraints *constraints)
1111 {
1112         const struct regulator_ops *ops = rdev->desc->ops;
1113         int ret;
1114
1115         /* do we need to apply the constraint voltage */
1116         if (rdev->constraints->apply_uV &&
1117             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118                 int target_min, target_max;
1119                 int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121                 if (current_uV == -ENOTRECOVERABLE) {
1122                         /* This regulator can't be read and must be initialized */
1123                         rdev_info(rdev, "Setting %d-%duV\n",
1124                                   rdev->constraints->min_uV,
1125                                   rdev->constraints->max_uV);
1126                         _regulator_do_set_voltage(rdev,
1127                                                   rdev->constraints->min_uV,
1128                                                   rdev->constraints->max_uV);
1129                         current_uV = regulator_get_voltage_rdev(rdev);
1130                 }
1131
1132                 if (current_uV < 0) {
1133                         rdev_err(rdev,
1134                                  "failed to get the current voltage(%d)\n",
1135                                  current_uV);
1136                         return current_uV;
1137                 }
1138
1139                 /*
1140                  * If we're below the minimum voltage move up to the
1141                  * minimum voltage, if we're above the maximum voltage
1142                  * then move down to the maximum.
1143                  */
1144                 target_min = current_uV;
1145                 target_max = current_uV;
1146
1147                 if (current_uV < rdev->constraints->min_uV) {
1148                         target_min = rdev->constraints->min_uV;
1149                         target_max = rdev->constraints->min_uV;
1150                 }
1151
1152                 if (current_uV > rdev->constraints->max_uV) {
1153                         target_min = rdev->constraints->max_uV;
1154                         target_max = rdev->constraints->max_uV;
1155                 }
1156
1157                 if (target_min != current_uV || target_max != current_uV) {
1158                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159                                   current_uV, target_min, target_max);
1160                         ret = _regulator_do_set_voltage(
1161                                 rdev, target_min, target_max);
1162                         if (ret < 0) {
1163                                 rdev_err(rdev,
1164                                         "failed to apply %d-%duV constraint(%d)\n",
1165                                         target_min, target_max, ret);
1166                                 return ret;
1167                         }
1168                 }
1169         }
1170
1171         /* constrain machine-level voltage specs to fit
1172          * the actual range supported by this regulator.
1173          */
1174         if (ops->list_voltage && rdev->desc->n_voltages) {
1175                 int     count = rdev->desc->n_voltages;
1176                 int     i;
1177                 int     min_uV = INT_MAX;
1178                 int     max_uV = INT_MIN;
1179                 int     cmin = constraints->min_uV;
1180                 int     cmax = constraints->max_uV;
1181
1182                 /* it's safe to autoconfigure fixed-voltage supplies
1183                    and the constraints are used by list_voltage. */
1184                 if (count == 1 && !cmin) {
1185                         cmin = 1;
1186                         cmax = INT_MAX;
1187                         constraints->min_uV = cmin;
1188                         constraints->max_uV = cmax;
1189                 }
1190
1191                 /* voltage constraints are optional */
1192                 if ((cmin == 0) && (cmax == 0))
1193                         return 0;
1194
1195                 /* else require explicit machine-level constraints */
1196                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197                         rdev_err(rdev, "invalid voltage constraints\n");
1198                         return -EINVAL;
1199                 }
1200
1201                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202                 for (i = 0; i < count; i++) {
1203                         int     value;
1204
1205                         value = ops->list_voltage(rdev, i);
1206                         if (value <= 0)
1207                                 continue;
1208
1209                         /* maybe adjust [min_uV..max_uV] */
1210                         if (value >= cmin && value < min_uV)
1211                                 min_uV = value;
1212                         if (value <= cmax && value > max_uV)
1213                                 max_uV = value;
1214                 }
1215
1216                 /* final: [min_uV..max_uV] valid iff constraints valid */
1217                 if (max_uV < min_uV) {
1218                         rdev_err(rdev,
1219                                  "unsupportable voltage constraints %u-%uuV\n",
1220                                  min_uV, max_uV);
1221                         return -EINVAL;
1222                 }
1223
1224                 /* use regulator's subset of machine constraints */
1225                 if (constraints->min_uV < min_uV) {
1226                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227                                  constraints->min_uV, min_uV);
1228                         constraints->min_uV = min_uV;
1229                 }
1230                 if (constraints->max_uV > max_uV) {
1231                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232                                  constraints->max_uV, max_uV);
1233                         constraints->max_uV = max_uV;
1234                 }
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int machine_constraints_current(struct regulator_dev *rdev,
1241         struct regulation_constraints *constraints)
1242 {
1243         const struct regulator_ops *ops = rdev->desc->ops;
1244         int ret;
1245
1246         if (!constraints->min_uA && !constraints->max_uA)
1247                 return 0;
1248
1249         if (constraints->min_uA > constraints->max_uA) {
1250                 rdev_err(rdev, "Invalid current constraints\n");
1251                 return -EINVAL;
1252         }
1253
1254         if (!ops->set_current_limit || !ops->get_current_limit) {
1255                 rdev_warn(rdev, "Operation of current configuration missing\n");
1256                 return 0;
1257         }
1258
1259         /* Set regulator current in constraints range */
1260         ret = ops->set_current_limit(rdev, constraints->min_uA,
1261                         constraints->max_uA);
1262         if (ret < 0) {
1263                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264                 return ret;
1265         }
1266
1267         return 0;
1268 }
1269
1270 static int _regulator_do_enable(struct regulator_dev *rdev);
1271
1272 /**
1273  * set_machine_constraints - sets regulator constraints
1274  * @rdev: regulator source
1275  * @constraints: constraints to apply
1276  *
1277  * Allows platform initialisation code to define and constrain
1278  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279  * Constraints *must* be set by platform code in order for some
1280  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281  * set_mode.
1282  */
1283 static int set_machine_constraints(struct regulator_dev *rdev,
1284         const struct regulation_constraints *constraints)
1285 {
1286         int ret = 0;
1287         const struct regulator_ops *ops = rdev->desc->ops;
1288
1289         if (constraints)
1290                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291                                             GFP_KERNEL);
1292         else
1293                 rdev->constraints = kzalloc(sizeof(*constraints),
1294                                             GFP_KERNEL);
1295         if (!rdev->constraints)
1296                 return -ENOMEM;
1297
1298         ret = machine_constraints_voltage(rdev, rdev->constraints);
1299         if (ret != 0)
1300                 return ret;
1301
1302         ret = machine_constraints_current(rdev, rdev->constraints);
1303         if (ret != 0)
1304                 return ret;
1305
1306         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307                 ret = ops->set_input_current_limit(rdev,
1308                                                    rdev->constraints->ilim_uA);
1309                 if (ret < 0) {
1310                         rdev_err(rdev, "failed to set input limit\n");
1311                         return ret;
1312                 }
1313         }
1314
1315         /* do we need to setup our suspend state */
1316         if (rdev->constraints->initial_state) {
1317                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318                 if (ret < 0) {
1319                         rdev_err(rdev, "failed to set suspend state\n");
1320                         return ret;
1321                 }
1322         }
1323
1324         if (rdev->constraints->initial_mode) {
1325                 if (!ops->set_mode) {
1326                         rdev_err(rdev, "no set_mode operation\n");
1327                         return -EINVAL;
1328                 }
1329
1330                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331                 if (ret < 0) {
1332                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333                         return ret;
1334                 }
1335         } else if (rdev->constraints->system_load) {
1336                 /*
1337                  * We'll only apply the initial system load if an
1338                  * initial mode wasn't specified.
1339                  */
1340                 drms_uA_update(rdev);
1341         }
1342
1343         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344                 && ops->set_ramp_delay) {
1345                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346                 if (ret < 0) {
1347                         rdev_err(rdev, "failed to set ramp_delay\n");
1348                         return ret;
1349                 }
1350         }
1351
1352         if (rdev->constraints->pull_down && ops->set_pull_down) {
1353                 ret = ops->set_pull_down(rdev);
1354                 if (ret < 0) {
1355                         rdev_err(rdev, "failed to set pull down\n");
1356                         return ret;
1357                 }
1358         }
1359
1360         if (rdev->constraints->soft_start && ops->set_soft_start) {
1361                 ret = ops->set_soft_start(rdev);
1362                 if (ret < 0) {
1363                         rdev_err(rdev, "failed to set soft start\n");
1364                         return ret;
1365                 }
1366         }
1367
1368         if (rdev->constraints->over_current_protection
1369                 && ops->set_over_current_protection) {
1370                 ret = ops->set_over_current_protection(rdev);
1371                 if (ret < 0) {
1372                         rdev_err(rdev, "failed to set over current protection\n");
1373                         return ret;
1374                 }
1375         }
1376
1377         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378                 bool ad_state = (rdev->constraints->active_discharge ==
1379                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380
1381                 ret = ops->set_active_discharge(rdev, ad_state);
1382                 if (ret < 0) {
1383                         rdev_err(rdev, "failed to set active discharge\n");
1384                         return ret;
1385                 }
1386         }
1387
1388         /* If the constraints say the regulator should be on at this point
1389          * and we have control then make sure it is enabled.
1390          */
1391         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392                 if (rdev->supply) {
1393                         ret = regulator_enable(rdev->supply);
1394                         if (ret < 0) {
1395                                 _regulator_put(rdev->supply);
1396                                 rdev->supply = NULL;
1397                                 return ret;
1398                         }
1399                 }
1400
1401                 ret = _regulator_do_enable(rdev);
1402                 if (ret < 0 && ret != -EINVAL) {
1403                         rdev_err(rdev, "failed to enable\n");
1404                         return ret;
1405                 }
1406
1407                 if (rdev->constraints->always_on)
1408                         rdev->use_count++;
1409         }
1410
1411         print_constraints(rdev);
1412         return 0;
1413 }
1414
1415 /**
1416  * set_supply - set regulator supply regulator
1417  * @rdev: regulator name
1418  * @supply_rdev: supply regulator name
1419  *
1420  * Called by platform initialisation code to set the supply regulator for this
1421  * regulator. This ensures that a regulators supply will also be enabled by the
1422  * core if it's child is enabled.
1423  */
1424 static int set_supply(struct regulator_dev *rdev,
1425                       struct regulator_dev *supply_rdev)
1426 {
1427         int err;
1428
1429         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1430
1431         if (!try_module_get(supply_rdev->owner))
1432                 return -ENODEV;
1433
1434         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1435         if (rdev->supply == NULL) {
1436                 err = -ENOMEM;
1437                 return err;
1438         }
1439         supply_rdev->open_count++;
1440
1441         return 0;
1442 }
1443
1444 /**
1445  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446  * @rdev:         regulator source
1447  * @consumer_dev_name: dev_name() string for device supply applies to
1448  * @supply:       symbolic name for supply
1449  *
1450  * Allows platform initialisation code to map physical regulator
1451  * sources to symbolic names for supplies for use by devices.  Devices
1452  * should use these symbolic names to request regulators, avoiding the
1453  * need to provide board-specific regulator names as platform data.
1454  */
1455 static int set_consumer_device_supply(struct regulator_dev *rdev,
1456                                       const char *consumer_dev_name,
1457                                       const char *supply)
1458 {
1459         struct regulator_map *node;
1460         int has_dev;
1461
1462         if (supply == NULL)
1463                 return -EINVAL;
1464
1465         if (consumer_dev_name != NULL)
1466                 has_dev = 1;
1467         else
1468                 has_dev = 0;
1469
1470         list_for_each_entry(node, &regulator_map_list, list) {
1471                 if (node->dev_name && consumer_dev_name) {
1472                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1473                                 continue;
1474                 } else if (node->dev_name || consumer_dev_name) {
1475                         continue;
1476                 }
1477
1478                 if (strcmp(node->supply, supply) != 0)
1479                         continue;
1480
1481                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1482                          consumer_dev_name,
1483                          dev_name(&node->regulator->dev),
1484                          node->regulator->desc->name,
1485                          supply,
1486                          dev_name(&rdev->dev), rdev_get_name(rdev));
1487                 return -EBUSY;
1488         }
1489
1490         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1491         if (node == NULL)
1492                 return -ENOMEM;
1493
1494         node->regulator = rdev;
1495         node->supply = supply;
1496
1497         if (has_dev) {
1498                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1499                 if (node->dev_name == NULL) {
1500                         kfree(node);
1501                         return -ENOMEM;
1502                 }
1503         }
1504
1505         list_add(&node->list, &regulator_map_list);
1506         return 0;
1507 }
1508
1509 static void unset_regulator_supplies(struct regulator_dev *rdev)
1510 {
1511         struct regulator_map *node, *n;
1512
1513         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1514                 if (rdev == node->regulator) {
1515                         list_del(&node->list);
1516                         kfree(node->dev_name);
1517                         kfree(node);
1518                 }
1519         }
1520 }
1521
1522 #ifdef CONFIG_DEBUG_FS
1523 static ssize_t constraint_flags_read_file(struct file *file,
1524                                           char __user *user_buf,
1525                                           size_t count, loff_t *ppos)
1526 {
1527         const struct regulator *regulator = file->private_data;
1528         const struct regulation_constraints *c = regulator->rdev->constraints;
1529         char *buf;
1530         ssize_t ret;
1531
1532         if (!c)
1533                 return 0;
1534
1535         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1536         if (!buf)
1537                 return -ENOMEM;
1538
1539         ret = snprintf(buf, PAGE_SIZE,
1540                         "always_on: %u\n"
1541                         "boot_on: %u\n"
1542                         "apply_uV: %u\n"
1543                         "ramp_disable: %u\n"
1544                         "soft_start: %u\n"
1545                         "pull_down: %u\n"
1546                         "over_current_protection: %u\n",
1547                         c->always_on,
1548                         c->boot_on,
1549                         c->apply_uV,
1550                         c->ramp_disable,
1551                         c->soft_start,
1552                         c->pull_down,
1553                         c->over_current_protection);
1554
1555         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1556         kfree(buf);
1557
1558         return ret;
1559 }
1560
1561 #endif
1562
1563 static const struct file_operations constraint_flags_fops = {
1564 #ifdef CONFIG_DEBUG_FS
1565         .open = simple_open,
1566         .read = constraint_flags_read_file,
1567         .llseek = default_llseek,
1568 #endif
1569 };
1570
1571 #define REG_STR_SIZE    64
1572
1573 static struct regulator *create_regulator(struct regulator_dev *rdev,
1574                                           struct device *dev,
1575                                           const char *supply_name)
1576 {
1577         struct regulator *regulator;
1578         char buf[REG_STR_SIZE];
1579         int err, size;
1580
1581         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1582         if (regulator == NULL)
1583                 return NULL;
1584
1585         regulator_lock(rdev);
1586         regulator->rdev = rdev;
1587         list_add(&regulator->list, &rdev->consumer_list);
1588
1589         if (dev) {
1590                 regulator->dev = dev;
1591
1592                 /* Add a link to the device sysfs entry */
1593                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1594                                 dev->kobj.name, supply_name);
1595                 if (size >= REG_STR_SIZE)
1596                         goto overflow_err;
1597
1598                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1599                 if (regulator->supply_name == NULL)
1600                         goto overflow_err;
1601
1602                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603                                         buf);
1604                 if (err) {
1605                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1606                                   dev->kobj.name, err);
1607                         /* non-fatal */
1608                 }
1609         } else {
1610                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611                 if (regulator->supply_name == NULL)
1612                         goto overflow_err;
1613         }
1614
1615         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1616                                                 rdev->debugfs);
1617         if (!regulator->debugfs) {
1618                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1619         } else {
1620                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1621                                    &regulator->uA_load);
1622                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1623                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1624                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1625                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1626                 debugfs_create_file("constraint_flags", 0444,
1627                                     regulator->debugfs, regulator,
1628                                     &constraint_flags_fops);
1629         }
1630
1631         /*
1632          * Check now if the regulator is an always on regulator - if
1633          * it is then we don't need to do nearly so much work for
1634          * enable/disable calls.
1635          */
1636         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1637             _regulator_is_enabled(rdev))
1638                 regulator->always_on = true;
1639
1640         regulator_unlock(rdev);
1641         return regulator;
1642 overflow_err:
1643         list_del(&regulator->list);
1644         kfree(regulator);
1645         regulator_unlock(rdev);
1646         return NULL;
1647 }
1648
1649 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1650 {
1651         if (rdev->constraints && rdev->constraints->enable_time)
1652                 return rdev->constraints->enable_time;
1653         if (rdev->desc->ops->enable_time)
1654                 return rdev->desc->ops->enable_time(rdev);
1655         return rdev->desc->enable_time;
1656 }
1657
1658 static struct regulator_supply_alias *regulator_find_supply_alias(
1659                 struct device *dev, const char *supply)
1660 {
1661         struct regulator_supply_alias *map;
1662
1663         list_for_each_entry(map, &regulator_supply_alias_list, list)
1664                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1665                         return map;
1666
1667         return NULL;
1668 }
1669
1670 static void regulator_supply_alias(struct device **dev, const char **supply)
1671 {
1672         struct regulator_supply_alias *map;
1673
1674         map = regulator_find_supply_alias(*dev, *supply);
1675         if (map) {
1676                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1677                                 *supply, map->alias_supply,
1678                                 dev_name(map->alias_dev));
1679                 *dev = map->alias_dev;
1680                 *supply = map->alias_supply;
1681         }
1682 }
1683
1684 static int regulator_match(struct device *dev, const void *data)
1685 {
1686         struct regulator_dev *r = dev_to_rdev(dev);
1687
1688         return strcmp(rdev_get_name(r), data) == 0;
1689 }
1690
1691 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1692 {
1693         struct device *dev;
1694
1695         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1696
1697         return dev ? dev_to_rdev(dev) : NULL;
1698 }
1699
1700 /**
1701  * regulator_dev_lookup - lookup a regulator device.
1702  * @dev: device for regulator "consumer".
1703  * @supply: Supply name or regulator ID.
1704  *
1705  * If successful, returns a struct regulator_dev that corresponds to the name
1706  * @supply and with the embedded struct device refcount incremented by one.
1707  * The refcount must be dropped by calling put_device().
1708  * On failure one of the following ERR-PTR-encoded values is returned:
1709  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1710  * in the future.
1711  */
1712 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713                                                   const char *supply)
1714 {
1715         struct regulator_dev *r = NULL;
1716         struct device_node *node;
1717         struct regulator_map *map;
1718         const char *devname = NULL;
1719
1720         regulator_supply_alias(&dev, &supply);
1721
1722         /* first do a dt based lookup */
1723         if (dev && dev->of_node) {
1724                 node = of_get_regulator(dev, supply);
1725                 if (node) {
1726                         r = of_find_regulator_by_node(node);
1727                         if (r)
1728                                 return r;
1729
1730                         /*
1731                          * We have a node, but there is no device.
1732                          * assume it has not registered yet.
1733                          */
1734                         return ERR_PTR(-EPROBE_DEFER);
1735                 }
1736         }
1737
1738         /* if not found, try doing it non-dt way */
1739         if (dev)
1740                 devname = dev_name(dev);
1741
1742         mutex_lock(&regulator_list_mutex);
1743         list_for_each_entry(map, &regulator_map_list, list) {
1744                 /* If the mapping has a device set up it must match */
1745                 if (map->dev_name &&
1746                     (!devname || strcmp(map->dev_name, devname)))
1747                         continue;
1748
1749                 if (strcmp(map->supply, supply) == 0 &&
1750                     get_device(&map->regulator->dev)) {
1751                         r = map->regulator;
1752                         break;
1753                 }
1754         }
1755         mutex_unlock(&regulator_list_mutex);
1756
1757         if (r)
1758                 return r;
1759
1760         r = regulator_lookup_by_name(supply);
1761         if (r)
1762                 return r;
1763
1764         return ERR_PTR(-ENODEV);
1765 }
1766
1767 static int regulator_resolve_supply(struct regulator_dev *rdev)
1768 {
1769         struct regulator_dev *r;
1770         struct device *dev = rdev->dev.parent;
1771         int ret;
1772
1773         /* No supply to resolve? */
1774         if (!rdev->supply_name)
1775                 return 0;
1776
1777         /* Supply already resolved? */
1778         if (rdev->supply)
1779                 return 0;
1780
1781         r = regulator_dev_lookup(dev, rdev->supply_name);
1782         if (IS_ERR(r)) {
1783                 ret = PTR_ERR(r);
1784
1785                 /* Did the lookup explicitly defer for us? */
1786                 if (ret == -EPROBE_DEFER)
1787                         return ret;
1788
1789                 if (have_full_constraints()) {
1790                         r = dummy_regulator_rdev;
1791                         get_device(&r->dev);
1792                 } else {
1793                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1794                                 rdev->supply_name, rdev->desc->name);
1795                         return -EPROBE_DEFER;
1796                 }
1797         }
1798
1799         /*
1800          * If the supply's parent device is not the same as the
1801          * regulator's parent device, then ensure the parent device
1802          * is bound before we resolve the supply, in case the parent
1803          * device get probe deferred and unregisters the supply.
1804          */
1805         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1806                 if (!device_is_bound(r->dev.parent)) {
1807                         put_device(&r->dev);
1808                         return -EPROBE_DEFER;
1809                 }
1810         }
1811
1812         /* Recursively resolve the supply of the supply */
1813         ret = regulator_resolve_supply(r);
1814         if (ret < 0) {
1815                 put_device(&r->dev);
1816                 return ret;
1817         }
1818
1819         ret = set_supply(rdev, r);
1820         if (ret < 0) {
1821                 put_device(&r->dev);
1822                 return ret;
1823         }
1824
1825         /*
1826          * In set_machine_constraints() we may have turned this regulator on
1827          * but we couldn't propagate to the supply if it hadn't been resolved
1828          * yet.  Do it now.
1829          */
1830         if (rdev->use_count) {
1831                 ret = regulator_enable(rdev->supply);
1832                 if (ret < 0) {
1833                         _regulator_put(rdev->supply);
1834                         rdev->supply = NULL;
1835                         return ret;
1836                 }
1837         }
1838
1839         return 0;
1840 }
1841
1842 /* Internal regulator request function */
1843 struct regulator *_regulator_get(struct device *dev, const char *id,
1844                                  enum regulator_get_type get_type)
1845 {
1846         struct regulator_dev *rdev;
1847         struct regulator *regulator;
1848         const char *devname = dev ? dev_name(dev) : "deviceless";
1849         struct device_link *link;
1850         int ret;
1851
1852         if (get_type >= MAX_GET_TYPE) {
1853                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1854                 return ERR_PTR(-EINVAL);
1855         }
1856
1857         if (id == NULL) {
1858                 pr_err("get() with no identifier\n");
1859                 return ERR_PTR(-EINVAL);
1860         }
1861
1862         rdev = regulator_dev_lookup(dev, id);
1863         if (IS_ERR(rdev)) {
1864                 ret = PTR_ERR(rdev);
1865
1866                 /*
1867                  * If regulator_dev_lookup() fails with error other
1868                  * than -ENODEV our job here is done, we simply return it.
1869                  */
1870                 if (ret != -ENODEV)
1871                         return ERR_PTR(ret);
1872
1873                 if (!have_full_constraints()) {
1874                         dev_warn(dev,
1875                                  "incomplete constraints, dummy supplies not allowed\n");
1876                         return ERR_PTR(-ENODEV);
1877                 }
1878
1879                 switch (get_type) {
1880                 case NORMAL_GET:
1881                         /*
1882                          * Assume that a regulator is physically present and
1883                          * enabled, even if it isn't hooked up, and just
1884                          * provide a dummy.
1885                          */
1886                         dev_warn(dev,
1887                                  "%s supply %s not found, using dummy regulator\n",
1888                                  devname, id);
1889                         rdev = dummy_regulator_rdev;
1890                         get_device(&rdev->dev);
1891                         break;
1892
1893                 case EXCLUSIVE_GET:
1894                         dev_warn(dev,
1895                                  "dummy supplies not allowed for exclusive requests\n");
1896                         /* fall through */
1897
1898                 default:
1899                         return ERR_PTR(-ENODEV);
1900                 }
1901         }
1902
1903         if (rdev->exclusive) {
1904                 regulator = ERR_PTR(-EPERM);
1905                 put_device(&rdev->dev);
1906                 return regulator;
1907         }
1908
1909         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1910                 regulator = ERR_PTR(-EBUSY);
1911                 put_device(&rdev->dev);
1912                 return regulator;
1913         }
1914
1915         mutex_lock(&regulator_list_mutex);
1916         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1917         mutex_unlock(&regulator_list_mutex);
1918
1919         if (ret != 0) {
1920                 regulator = ERR_PTR(-EPROBE_DEFER);
1921                 put_device(&rdev->dev);
1922                 return regulator;
1923         }
1924
1925         ret = regulator_resolve_supply(rdev);
1926         if (ret < 0) {
1927                 regulator = ERR_PTR(ret);
1928                 put_device(&rdev->dev);
1929                 return regulator;
1930         }
1931
1932         if (!try_module_get(rdev->owner)) {
1933                 regulator = ERR_PTR(-EPROBE_DEFER);
1934                 put_device(&rdev->dev);
1935                 return regulator;
1936         }
1937
1938         regulator = create_regulator(rdev, dev, id);
1939         if (regulator == NULL) {
1940                 regulator = ERR_PTR(-ENOMEM);
1941                 put_device(&rdev->dev);
1942                 module_put(rdev->owner);
1943                 return regulator;
1944         }
1945
1946         rdev->open_count++;
1947         if (get_type == EXCLUSIVE_GET) {
1948                 rdev->exclusive = 1;
1949
1950                 ret = _regulator_is_enabled(rdev);
1951                 if (ret > 0)
1952                         rdev->use_count = 1;
1953                 else
1954                         rdev->use_count = 0;
1955         }
1956
1957         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1958         if (!IS_ERR_OR_NULL(link))
1959                 regulator->device_link = true;
1960
1961         return regulator;
1962 }
1963
1964 /**
1965  * regulator_get - lookup and obtain a reference to a regulator.
1966  * @dev: device for regulator "consumer"
1967  * @id: Supply name or regulator ID.
1968  *
1969  * Returns a struct regulator corresponding to the regulator producer,
1970  * or IS_ERR() condition containing errno.
1971  *
1972  * Use of supply names configured via regulator_set_device_supply() is
1973  * strongly encouraged.  It is recommended that the supply name used
1974  * should match the name used for the supply and/or the relevant
1975  * device pins in the datasheet.
1976  */
1977 struct regulator *regulator_get(struct device *dev, const char *id)
1978 {
1979         return _regulator_get(dev, id, NORMAL_GET);
1980 }
1981 EXPORT_SYMBOL_GPL(regulator_get);
1982
1983 /**
1984  * regulator_get_exclusive - obtain exclusive access to a regulator.
1985  * @dev: device for regulator "consumer"
1986  * @id: Supply name or regulator ID.
1987  *
1988  * Returns a struct regulator corresponding to the regulator producer,
1989  * or IS_ERR() condition containing errno.  Other consumers will be
1990  * unable to obtain this regulator while this reference is held and the
1991  * use count for the regulator will be initialised to reflect the current
1992  * state of the regulator.
1993  *
1994  * This is intended for use by consumers which cannot tolerate shared
1995  * use of the regulator such as those which need to force the
1996  * regulator off for correct operation of the hardware they are
1997  * controlling.
1998  *
1999  * Use of supply names configured via regulator_set_device_supply() is
2000  * strongly encouraged.  It is recommended that the supply name used
2001  * should match the name used for the supply and/or the relevant
2002  * device pins in the datasheet.
2003  */
2004 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2005 {
2006         return _regulator_get(dev, id, EXCLUSIVE_GET);
2007 }
2008 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2009
2010 /**
2011  * regulator_get_optional - obtain optional access to a regulator.
2012  * @dev: device for regulator "consumer"
2013  * @id: Supply name or regulator ID.
2014  *
2015  * Returns a struct regulator corresponding to the regulator producer,
2016  * or IS_ERR() condition containing errno.
2017  *
2018  * This is intended for use by consumers for devices which can have
2019  * some supplies unconnected in normal use, such as some MMC devices.
2020  * It can allow the regulator core to provide stub supplies for other
2021  * supplies requested using normal regulator_get() calls without
2022  * disrupting the operation of drivers that can handle absent
2023  * supplies.
2024  *
2025  * Use of supply names configured via regulator_set_device_supply() is
2026  * strongly encouraged.  It is recommended that the supply name used
2027  * should match the name used for the supply and/or the relevant
2028  * device pins in the datasheet.
2029  */
2030 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2031 {
2032         return _regulator_get(dev, id, OPTIONAL_GET);
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_get_optional);
2035
2036 /* regulator_list_mutex lock held by regulator_put() */
2037 static void _regulator_put(struct regulator *regulator)
2038 {
2039         struct regulator_dev *rdev;
2040
2041         if (IS_ERR_OR_NULL(regulator))
2042                 return;
2043
2044         lockdep_assert_held_once(&regulator_list_mutex);
2045
2046         /* Docs say you must disable before calling regulator_put() */
2047         WARN_ON(regulator->enable_count);
2048
2049         rdev = regulator->rdev;
2050
2051         debugfs_remove_recursive(regulator->debugfs);
2052
2053         if (regulator->dev) {
2054                 if (regulator->device_link)
2055                         device_link_remove(regulator->dev, &rdev->dev);
2056
2057                 /* remove any sysfs entries */
2058                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2059         }
2060
2061         regulator_lock(rdev);
2062         list_del(&regulator->list);
2063
2064         rdev->open_count--;
2065         rdev->exclusive = 0;
2066         put_device(&rdev->dev);
2067         regulator_unlock(rdev);
2068
2069         kfree_const(regulator->supply_name);
2070         kfree(regulator);
2071
2072         module_put(rdev->owner);
2073 }
2074
2075 /**
2076  * regulator_put - "free" the regulator source
2077  * @regulator: regulator source
2078  *
2079  * Note: drivers must ensure that all regulator_enable calls made on this
2080  * regulator source are balanced by regulator_disable calls prior to calling
2081  * this function.
2082  */
2083 void regulator_put(struct regulator *regulator)
2084 {
2085         mutex_lock(&regulator_list_mutex);
2086         _regulator_put(regulator);
2087         mutex_unlock(&regulator_list_mutex);
2088 }
2089 EXPORT_SYMBOL_GPL(regulator_put);
2090
2091 /**
2092  * regulator_register_supply_alias - Provide device alias for supply lookup
2093  *
2094  * @dev: device that will be given as the regulator "consumer"
2095  * @id: Supply name or regulator ID
2096  * @alias_dev: device that should be used to lookup the supply
2097  * @alias_id: Supply name or regulator ID that should be used to lookup the
2098  * supply
2099  *
2100  * All lookups for id on dev will instead be conducted for alias_id on
2101  * alias_dev.
2102  */
2103 int regulator_register_supply_alias(struct device *dev, const char *id,
2104                                     struct device *alias_dev,
2105                                     const char *alias_id)
2106 {
2107         struct regulator_supply_alias *map;
2108
2109         map = regulator_find_supply_alias(dev, id);
2110         if (map)
2111                 return -EEXIST;
2112
2113         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2114         if (!map)
2115                 return -ENOMEM;
2116
2117         map->src_dev = dev;
2118         map->src_supply = id;
2119         map->alias_dev = alias_dev;
2120         map->alias_supply = alias_id;
2121
2122         list_add(&map->list, &regulator_supply_alias_list);
2123
2124         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2125                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2126
2127         return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2130
2131 /**
2132  * regulator_unregister_supply_alias - Remove device alias
2133  *
2134  * @dev: device that will be given as the regulator "consumer"
2135  * @id: Supply name or regulator ID
2136  *
2137  * Remove a lookup alias if one exists for id on dev.
2138  */
2139 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2140 {
2141         struct regulator_supply_alias *map;
2142
2143         map = regulator_find_supply_alias(dev, id);
2144         if (map) {
2145                 list_del(&map->list);
2146                 kfree(map);
2147         }
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2150
2151 /**
2152  * regulator_bulk_register_supply_alias - register multiple aliases
2153  *
2154  * @dev: device that will be given as the regulator "consumer"
2155  * @id: List of supply names or regulator IDs
2156  * @alias_dev: device that should be used to lookup the supply
2157  * @alias_id: List of supply names or regulator IDs that should be used to
2158  * lookup the supply
2159  * @num_id: Number of aliases to register
2160  *
2161  * @return 0 on success, an errno on failure.
2162  *
2163  * This helper function allows drivers to register several supply
2164  * aliases in one operation.  If any of the aliases cannot be
2165  * registered any aliases that were registered will be removed
2166  * before returning to the caller.
2167  */
2168 int regulator_bulk_register_supply_alias(struct device *dev,
2169                                          const char *const *id,
2170                                          struct device *alias_dev,
2171                                          const char *const *alias_id,
2172                                          int num_id)
2173 {
2174         int i;
2175         int ret;
2176
2177         for (i = 0; i < num_id; ++i) {
2178                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2179                                                       alias_id[i]);
2180                 if (ret < 0)
2181                         goto err;
2182         }
2183
2184         return 0;
2185
2186 err:
2187         dev_err(dev,
2188                 "Failed to create supply alias %s,%s -> %s,%s\n",
2189                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2190
2191         while (--i >= 0)
2192                 regulator_unregister_supply_alias(dev, id[i]);
2193
2194         return ret;
2195 }
2196 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2197
2198 /**
2199  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2200  *
2201  * @dev: device that will be given as the regulator "consumer"
2202  * @id: List of supply names or regulator IDs
2203  * @num_id: Number of aliases to unregister
2204  *
2205  * This helper function allows drivers to unregister several supply
2206  * aliases in one operation.
2207  */
2208 void regulator_bulk_unregister_supply_alias(struct device *dev,
2209                                             const char *const *id,
2210                                             int num_id)
2211 {
2212         int i;
2213
2214         for (i = 0; i < num_id; ++i)
2215                 regulator_unregister_supply_alias(dev, id[i]);
2216 }
2217 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2218
2219
2220 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2221 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2222                                 const struct regulator_config *config)
2223 {
2224         struct regulator_enable_gpio *pin;
2225         struct gpio_desc *gpiod;
2226
2227         gpiod = config->ena_gpiod;
2228
2229         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2230                 if (pin->gpiod == gpiod) {
2231                         rdev_dbg(rdev, "GPIO is already used\n");
2232                         goto update_ena_gpio_to_rdev;
2233                 }
2234         }
2235
2236         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2237         if (pin == NULL)
2238                 return -ENOMEM;
2239
2240         pin->gpiod = gpiod;
2241         list_add(&pin->list, &regulator_ena_gpio_list);
2242
2243 update_ena_gpio_to_rdev:
2244         pin->request_count++;
2245         rdev->ena_pin = pin;
2246         return 0;
2247 }
2248
2249 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2250 {
2251         struct regulator_enable_gpio *pin, *n;
2252
2253         if (!rdev->ena_pin)
2254                 return;
2255
2256         /* Free the GPIO only in case of no use */
2257         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2258                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2259                         if (pin->request_count <= 1) {
2260                                 pin->request_count = 0;
2261                                 gpiod_put(pin->gpiod);
2262                                 list_del(&pin->list);
2263                                 kfree(pin);
2264                                 rdev->ena_pin = NULL;
2265                                 return;
2266                         } else {
2267                                 pin->request_count--;
2268                         }
2269                 }
2270         }
2271 }
2272
2273 /**
2274  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2275  * @rdev: regulator_dev structure
2276  * @enable: enable GPIO at initial use?
2277  *
2278  * GPIO is enabled in case of initial use. (enable_count is 0)
2279  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2280  */
2281 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2282 {
2283         struct regulator_enable_gpio *pin = rdev->ena_pin;
2284
2285         if (!pin)
2286                 return -EINVAL;
2287
2288         if (enable) {
2289                 /* Enable GPIO at initial use */
2290                 if (pin->enable_count == 0)
2291                         gpiod_set_value_cansleep(pin->gpiod, 1);
2292
2293                 pin->enable_count++;
2294         } else {
2295                 if (pin->enable_count > 1) {
2296                         pin->enable_count--;
2297                         return 0;
2298                 }
2299
2300                 /* Disable GPIO if not used */
2301                 if (pin->enable_count <= 1) {
2302                         gpiod_set_value_cansleep(pin->gpiod, 0);
2303                         pin->enable_count = 0;
2304                 }
2305         }
2306
2307         return 0;
2308 }
2309
2310 /**
2311  * _regulator_enable_delay - a delay helper function
2312  * @delay: time to delay in microseconds
2313  *
2314  * Delay for the requested amount of time as per the guidelines in:
2315  *
2316  *     Documentation/timers/timers-howto.rst
2317  *
2318  * The assumption here is that regulators will never be enabled in
2319  * atomic context and therefore sleeping functions can be used.
2320  */
2321 static void _regulator_enable_delay(unsigned int delay)
2322 {
2323         unsigned int ms = delay / 1000;
2324         unsigned int us = delay % 1000;
2325
2326         if (ms > 0) {
2327                 /*
2328                  * For small enough values, handle super-millisecond
2329                  * delays in the usleep_range() call below.
2330                  */
2331                 if (ms < 20)
2332                         us += ms * 1000;
2333                 else
2334                         msleep(ms);
2335         }
2336
2337         /*
2338          * Give the scheduler some room to coalesce with any other
2339          * wakeup sources. For delays shorter than 10 us, don't even
2340          * bother setting up high-resolution timers and just busy-
2341          * loop.
2342          */
2343         if (us >= 10)
2344                 usleep_range(us, us + 100);
2345         else
2346                 udelay(us);
2347 }
2348
2349 static int _regulator_do_enable(struct regulator_dev *rdev)
2350 {
2351         int ret, delay;
2352
2353         /* Query before enabling in case configuration dependent.  */
2354         ret = _regulator_get_enable_time(rdev);
2355         if (ret >= 0) {
2356                 delay = ret;
2357         } else {
2358                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2359                 delay = 0;
2360         }
2361
2362         trace_regulator_enable(rdev_get_name(rdev));
2363
2364         if (rdev->desc->off_on_delay) {
2365                 /* if needed, keep a distance of off_on_delay from last time
2366                  * this regulator was disabled.
2367                  */
2368                 unsigned long start_jiffy = jiffies;
2369                 unsigned long intended, max_delay, remaining;
2370
2371                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2372                 intended = rdev->last_off_jiffy + max_delay;
2373
2374                 if (time_before(start_jiffy, intended)) {
2375                         /* calc remaining jiffies to deal with one-time
2376                          * timer wrapping.
2377                          * in case of multiple timer wrapping, either it can be
2378                          * detected by out-of-range remaining, or it cannot be
2379                          * detected and we get a penalty of
2380                          * _regulator_enable_delay().
2381                          */
2382                         remaining = intended - start_jiffy;
2383                         if (remaining <= max_delay)
2384                                 _regulator_enable_delay(
2385                                                 jiffies_to_usecs(remaining));
2386                 }
2387         }
2388
2389         if (rdev->ena_pin) {
2390                 if (!rdev->ena_gpio_state) {
2391                         ret = regulator_ena_gpio_ctrl(rdev, true);
2392                         if (ret < 0)
2393                                 return ret;
2394                         rdev->ena_gpio_state = 1;
2395                 }
2396         } else if (rdev->desc->ops->enable) {
2397                 ret = rdev->desc->ops->enable(rdev);
2398                 if (ret < 0)
2399                         return ret;
2400         } else {
2401                 return -EINVAL;
2402         }
2403
2404         /* Allow the regulator to ramp; it would be useful to extend
2405          * this for bulk operations so that the regulators can ramp
2406          * together.  */
2407         trace_regulator_enable_delay(rdev_get_name(rdev));
2408
2409         _regulator_enable_delay(delay);
2410
2411         trace_regulator_enable_complete(rdev_get_name(rdev));
2412
2413         return 0;
2414 }
2415
2416 /**
2417  * _regulator_handle_consumer_enable - handle that a consumer enabled
2418  * @regulator: regulator source
2419  *
2420  * Some things on a regulator consumer (like the contribution towards total
2421  * load on the regulator) only have an effect when the consumer wants the
2422  * regulator enabled.  Explained in example with two consumers of the same
2423  * regulator:
2424  *   consumer A: set_load(100);       => total load = 0
2425  *   consumer A: regulator_enable();  => total load = 100
2426  *   consumer B: set_load(1000);      => total load = 100
2427  *   consumer B: regulator_enable();  => total load = 1100
2428  *   consumer A: regulator_disable(); => total_load = 1000
2429  *
2430  * This function (together with _regulator_handle_consumer_disable) is
2431  * responsible for keeping track of the refcount for a given regulator consumer
2432  * and applying / unapplying these things.
2433  *
2434  * Returns 0 upon no error; -error upon error.
2435  */
2436 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2437 {
2438         struct regulator_dev *rdev = regulator->rdev;
2439
2440         lockdep_assert_held_once(&rdev->mutex.base);
2441
2442         regulator->enable_count++;
2443         if (regulator->uA_load && regulator->enable_count == 1)
2444                 return drms_uA_update(rdev);
2445
2446         return 0;
2447 }
2448
2449 /**
2450  * _regulator_handle_consumer_disable - handle that a consumer disabled
2451  * @regulator: regulator source
2452  *
2453  * The opposite of _regulator_handle_consumer_enable().
2454  *
2455  * Returns 0 upon no error; -error upon error.
2456  */
2457 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2458 {
2459         struct regulator_dev *rdev = regulator->rdev;
2460
2461         lockdep_assert_held_once(&rdev->mutex.base);
2462
2463         if (!regulator->enable_count) {
2464                 rdev_err(rdev, "Underflow of regulator enable count\n");
2465                 return -EINVAL;
2466         }
2467
2468         regulator->enable_count--;
2469         if (regulator->uA_load && regulator->enable_count == 0)
2470                 return drms_uA_update(rdev);
2471
2472         return 0;
2473 }
2474
2475 /* locks held by regulator_enable() */
2476 static int _regulator_enable(struct regulator *regulator)
2477 {
2478         struct regulator_dev *rdev = regulator->rdev;
2479         int ret;
2480
2481         lockdep_assert_held_once(&rdev->mutex.base);
2482
2483         if (rdev->use_count == 0 && rdev->supply) {
2484                 ret = _regulator_enable(rdev->supply);
2485                 if (ret < 0)
2486                         return ret;
2487         }
2488
2489         /* balance only if there are regulators coupled */
2490         if (rdev->coupling_desc.n_coupled > 1) {
2491                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2492                 if (ret < 0)
2493                         goto err_disable_supply;
2494         }
2495
2496         ret = _regulator_handle_consumer_enable(regulator);
2497         if (ret < 0)
2498                 goto err_disable_supply;
2499
2500         if (rdev->use_count == 0) {
2501                 /* The regulator may on if it's not switchable or left on */
2502                 ret = _regulator_is_enabled(rdev);
2503                 if (ret == -EINVAL || ret == 0) {
2504                         if (!regulator_ops_is_valid(rdev,
2505                                         REGULATOR_CHANGE_STATUS)) {
2506                                 ret = -EPERM;
2507                                 goto err_consumer_disable;
2508                         }
2509
2510                         ret = _regulator_do_enable(rdev);
2511                         if (ret < 0)
2512                                 goto err_consumer_disable;
2513
2514                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2515                                              NULL);
2516                 } else if (ret < 0) {
2517                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2518                         goto err_consumer_disable;
2519                 }
2520                 /* Fallthrough on positive return values - already enabled */
2521         }
2522
2523         rdev->use_count++;
2524
2525         return 0;
2526
2527 err_consumer_disable:
2528         _regulator_handle_consumer_disable(regulator);
2529
2530 err_disable_supply:
2531         if (rdev->use_count == 0 && rdev->supply)
2532                 _regulator_disable(rdev->supply);
2533
2534         return ret;
2535 }
2536
2537 /**
2538  * regulator_enable - enable regulator output
2539  * @regulator: regulator source
2540  *
2541  * Request that the regulator be enabled with the regulator output at
2542  * the predefined voltage or current value.  Calls to regulator_enable()
2543  * must be balanced with calls to regulator_disable().
2544  *
2545  * NOTE: the output value can be set by other drivers, boot loader or may be
2546  * hardwired in the regulator.
2547  */
2548 int regulator_enable(struct regulator *regulator)
2549 {
2550         struct regulator_dev *rdev = regulator->rdev;
2551         struct ww_acquire_ctx ww_ctx;
2552         int ret;
2553
2554         regulator_lock_dependent(rdev, &ww_ctx);
2555         ret = _regulator_enable(regulator);
2556         regulator_unlock_dependent(rdev, &ww_ctx);
2557
2558         return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_enable);
2561
2562 static int _regulator_do_disable(struct regulator_dev *rdev)
2563 {
2564         int ret;
2565
2566         trace_regulator_disable(rdev_get_name(rdev));
2567
2568         if (rdev->ena_pin) {
2569                 if (rdev->ena_gpio_state) {
2570                         ret = regulator_ena_gpio_ctrl(rdev, false);
2571                         if (ret < 0)
2572                                 return ret;
2573                         rdev->ena_gpio_state = 0;
2574                 }
2575
2576         } else if (rdev->desc->ops->disable) {
2577                 ret = rdev->desc->ops->disable(rdev);
2578                 if (ret != 0)
2579                         return ret;
2580         }
2581
2582         /* cares about last_off_jiffy only if off_on_delay is required by
2583          * device.
2584          */
2585         if (rdev->desc->off_on_delay)
2586                 rdev->last_off_jiffy = jiffies;
2587
2588         trace_regulator_disable_complete(rdev_get_name(rdev));
2589
2590         return 0;
2591 }
2592
2593 /* locks held by regulator_disable() */
2594 static int _regulator_disable(struct regulator *regulator)
2595 {
2596         struct regulator_dev *rdev = regulator->rdev;
2597         int ret = 0;
2598
2599         lockdep_assert_held_once(&rdev->mutex.base);
2600
2601         if (WARN(rdev->use_count <= 0,
2602                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2603                 return -EIO;
2604
2605         /* are we the last user and permitted to disable ? */
2606         if (rdev->use_count == 1 &&
2607             (rdev->constraints && !rdev->constraints->always_on)) {
2608
2609                 /* we are last user */
2610                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2611                         ret = _notifier_call_chain(rdev,
2612                                                    REGULATOR_EVENT_PRE_DISABLE,
2613                                                    NULL);
2614                         if (ret & NOTIFY_STOP_MASK)
2615                                 return -EINVAL;
2616
2617                         ret = _regulator_do_disable(rdev);
2618                         if (ret < 0) {
2619                                 rdev_err(rdev, "failed to disable\n");
2620                                 _notifier_call_chain(rdev,
2621                                                 REGULATOR_EVENT_ABORT_DISABLE,
2622                                                 NULL);
2623                                 return ret;
2624                         }
2625                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2626                                         NULL);
2627                 }
2628
2629                 rdev->use_count = 0;
2630         } else if (rdev->use_count > 1) {
2631                 rdev->use_count--;
2632         }
2633
2634         if (ret == 0)
2635                 ret = _regulator_handle_consumer_disable(regulator);
2636
2637         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2638                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2639
2640         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2641                 ret = _regulator_disable(rdev->supply);
2642
2643         return ret;
2644 }
2645
2646 /**
2647  * regulator_disable - disable regulator output
2648  * @regulator: regulator source
2649  *
2650  * Disable the regulator output voltage or current.  Calls to
2651  * regulator_enable() must be balanced with calls to
2652  * regulator_disable().
2653  *
2654  * NOTE: this will only disable the regulator output if no other consumer
2655  * devices have it enabled, the regulator device supports disabling and
2656  * machine constraints permit this operation.
2657  */
2658 int regulator_disable(struct regulator *regulator)
2659 {
2660         struct regulator_dev *rdev = regulator->rdev;
2661         struct ww_acquire_ctx ww_ctx;
2662         int ret;
2663
2664         regulator_lock_dependent(rdev, &ww_ctx);
2665         ret = _regulator_disable(regulator);
2666         regulator_unlock_dependent(rdev, &ww_ctx);
2667
2668         return ret;
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_disable);
2671
2672 /* locks held by regulator_force_disable() */
2673 static int _regulator_force_disable(struct regulator_dev *rdev)
2674 {
2675         int ret = 0;
2676
2677         lockdep_assert_held_once(&rdev->mutex.base);
2678
2679         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2680                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2681         if (ret & NOTIFY_STOP_MASK)
2682                 return -EINVAL;
2683
2684         ret = _regulator_do_disable(rdev);
2685         if (ret < 0) {
2686                 rdev_err(rdev, "failed to force disable\n");
2687                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2688                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2689                 return ret;
2690         }
2691
2692         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2693                         REGULATOR_EVENT_DISABLE, NULL);
2694
2695         return 0;
2696 }
2697
2698 /**
2699  * regulator_force_disable - force disable regulator output
2700  * @regulator: regulator source
2701  *
2702  * Forcibly disable the regulator output voltage or current.
2703  * NOTE: this *will* disable the regulator output even if other consumer
2704  * devices have it enabled. This should be used for situations when device
2705  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2706  */
2707 int regulator_force_disable(struct regulator *regulator)
2708 {
2709         struct regulator_dev *rdev = regulator->rdev;
2710         struct ww_acquire_ctx ww_ctx;
2711         int ret;
2712
2713         regulator_lock_dependent(rdev, &ww_ctx);
2714
2715         ret = _regulator_force_disable(regulator->rdev);
2716
2717         if (rdev->coupling_desc.n_coupled > 1)
2718                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2719
2720         if (regulator->uA_load) {
2721                 regulator->uA_load = 0;
2722                 ret = drms_uA_update(rdev);
2723         }
2724
2725         if (rdev->use_count != 0 && rdev->supply)
2726                 _regulator_disable(rdev->supply);
2727
2728         regulator_unlock_dependent(rdev, &ww_ctx);
2729
2730         return ret;
2731 }
2732 EXPORT_SYMBOL_GPL(regulator_force_disable);
2733
2734 static void regulator_disable_work(struct work_struct *work)
2735 {
2736         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2737                                                   disable_work.work);
2738         struct ww_acquire_ctx ww_ctx;
2739         int count, i, ret;
2740         struct regulator *regulator;
2741         int total_count = 0;
2742
2743         regulator_lock_dependent(rdev, &ww_ctx);
2744
2745         /*
2746          * Workqueue functions queue the new work instance while the previous
2747          * work instance is being processed. Cancel the queued work instance
2748          * as the work instance under processing does the job of the queued
2749          * work instance.
2750          */
2751         cancel_delayed_work(&rdev->disable_work);
2752
2753         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2754                 count = regulator->deferred_disables;
2755
2756                 if (!count)
2757                         continue;
2758
2759                 total_count += count;
2760                 regulator->deferred_disables = 0;
2761
2762                 for (i = 0; i < count; i++) {
2763                         ret = _regulator_disable(regulator);
2764                         if (ret != 0)
2765                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2766                 }
2767         }
2768         WARN_ON(!total_count);
2769
2770         if (rdev->coupling_desc.n_coupled > 1)
2771                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2772
2773         regulator_unlock_dependent(rdev, &ww_ctx);
2774 }
2775
2776 /**
2777  * regulator_disable_deferred - disable regulator output with delay
2778  * @regulator: regulator source
2779  * @ms: milliseconds until the regulator is disabled
2780  *
2781  * Execute regulator_disable() on the regulator after a delay.  This
2782  * is intended for use with devices that require some time to quiesce.
2783  *
2784  * NOTE: this will only disable the regulator output if no other consumer
2785  * devices have it enabled, the regulator device supports disabling and
2786  * machine constraints permit this operation.
2787  */
2788 int regulator_disable_deferred(struct regulator *regulator, int ms)
2789 {
2790         struct regulator_dev *rdev = regulator->rdev;
2791
2792         if (!ms)
2793                 return regulator_disable(regulator);
2794
2795         regulator_lock(rdev);
2796         regulator->deferred_disables++;
2797         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2798                          msecs_to_jiffies(ms));
2799         regulator_unlock(rdev);
2800
2801         return 0;
2802 }
2803 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2804
2805 static int _regulator_is_enabled(struct regulator_dev *rdev)
2806 {
2807         /* A GPIO control always takes precedence */
2808         if (rdev->ena_pin)
2809                 return rdev->ena_gpio_state;
2810
2811         /* If we don't know then assume that the regulator is always on */
2812         if (!rdev->desc->ops->is_enabled)
2813                 return 1;
2814
2815         return rdev->desc->ops->is_enabled(rdev);
2816 }
2817
2818 static int _regulator_list_voltage(struct regulator_dev *rdev,
2819                                    unsigned selector, int lock)
2820 {
2821         const struct regulator_ops *ops = rdev->desc->ops;
2822         int ret;
2823
2824         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2825                 return rdev->desc->fixed_uV;
2826
2827         if (ops->list_voltage) {
2828                 if (selector >= rdev->desc->n_voltages)
2829                         return -EINVAL;
2830                 if (lock)
2831                         regulator_lock(rdev);
2832                 ret = ops->list_voltage(rdev, selector);
2833                 if (lock)
2834                         regulator_unlock(rdev);
2835         } else if (rdev->is_switch && rdev->supply) {
2836                 ret = _regulator_list_voltage(rdev->supply->rdev,
2837                                               selector, lock);
2838         } else {
2839                 return -EINVAL;
2840         }
2841
2842         if (ret > 0) {
2843                 if (ret < rdev->constraints->min_uV)
2844                         ret = 0;
2845                 else if (ret > rdev->constraints->max_uV)
2846                         ret = 0;
2847         }
2848
2849         return ret;
2850 }
2851
2852 /**
2853  * regulator_is_enabled - is the regulator output enabled
2854  * @regulator: regulator source
2855  *
2856  * Returns positive if the regulator driver backing the source/client
2857  * has requested that the device be enabled, zero if it hasn't, else a
2858  * negative errno code.
2859  *
2860  * Note that the device backing this regulator handle can have multiple
2861  * users, so it might be enabled even if regulator_enable() was never
2862  * called for this particular source.
2863  */
2864 int regulator_is_enabled(struct regulator *regulator)
2865 {
2866         int ret;
2867
2868         if (regulator->always_on)
2869                 return 1;
2870
2871         regulator_lock(regulator->rdev);
2872         ret = _regulator_is_enabled(regulator->rdev);
2873         regulator_unlock(regulator->rdev);
2874
2875         return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2878
2879 /**
2880  * regulator_count_voltages - count regulator_list_voltage() selectors
2881  * @regulator: regulator source
2882  *
2883  * Returns number of selectors, or negative errno.  Selectors are
2884  * numbered starting at zero, and typically correspond to bitfields
2885  * in hardware registers.
2886  */
2887 int regulator_count_voltages(struct regulator *regulator)
2888 {
2889         struct regulator_dev    *rdev = regulator->rdev;
2890
2891         if (rdev->desc->n_voltages)
2892                 return rdev->desc->n_voltages;
2893
2894         if (!rdev->is_switch || !rdev->supply)
2895                 return -EINVAL;
2896
2897         return regulator_count_voltages(rdev->supply);
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2900
2901 /**
2902  * regulator_list_voltage - enumerate supported voltages
2903  * @regulator: regulator source
2904  * @selector: identify voltage to list
2905  * Context: can sleep
2906  *
2907  * Returns a voltage that can be passed to @regulator_set_voltage(),
2908  * zero if this selector code can't be used on this system, or a
2909  * negative errno.
2910  */
2911 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2912 {
2913         return _regulator_list_voltage(regulator->rdev, selector, 1);
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2916
2917 /**
2918  * regulator_get_regmap - get the regulator's register map
2919  * @regulator: regulator source
2920  *
2921  * Returns the register map for the given regulator, or an ERR_PTR value
2922  * if the regulator doesn't use regmap.
2923  */
2924 struct regmap *regulator_get_regmap(struct regulator *regulator)
2925 {
2926         struct regmap *map = regulator->rdev->regmap;
2927
2928         return map ? map : ERR_PTR(-EOPNOTSUPP);
2929 }
2930
2931 /**
2932  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2933  * @regulator: regulator source
2934  * @vsel_reg: voltage selector register, output parameter
2935  * @vsel_mask: mask for voltage selector bitfield, output parameter
2936  *
2937  * Returns the hardware register offset and bitmask used for setting the
2938  * regulator voltage. This might be useful when configuring voltage-scaling
2939  * hardware or firmware that can make I2C requests behind the kernel's back,
2940  * for example.
2941  *
2942  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2943  * and 0 is returned, otherwise a negative errno is returned.
2944  */
2945 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2946                                          unsigned *vsel_reg,
2947                                          unsigned *vsel_mask)
2948 {
2949         struct regulator_dev *rdev = regulator->rdev;
2950         const struct regulator_ops *ops = rdev->desc->ops;
2951
2952         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2953                 return -EOPNOTSUPP;
2954
2955         *vsel_reg = rdev->desc->vsel_reg;
2956         *vsel_mask = rdev->desc->vsel_mask;
2957
2958          return 0;
2959 }
2960 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2961
2962 /**
2963  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2964  * @regulator: regulator source
2965  * @selector: identify voltage to list
2966  *
2967  * Converts the selector to a hardware-specific voltage selector that can be
2968  * directly written to the regulator registers. The address of the voltage
2969  * register can be determined by calling @regulator_get_hardware_vsel_register.
2970  *
2971  * On error a negative errno is returned.
2972  */
2973 int regulator_list_hardware_vsel(struct regulator *regulator,
2974                                  unsigned selector)
2975 {
2976         struct regulator_dev *rdev = regulator->rdev;
2977         const struct regulator_ops *ops = rdev->desc->ops;
2978
2979         if (selector >= rdev->desc->n_voltages)
2980                 return -EINVAL;
2981         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2982                 return -EOPNOTSUPP;
2983
2984         return selector;
2985 }
2986 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2987
2988 /**
2989  * regulator_get_linear_step - return the voltage step size between VSEL values
2990  * @regulator: regulator source
2991  *
2992  * Returns the voltage step size between VSEL values for linear
2993  * regulators, or return 0 if the regulator isn't a linear regulator.
2994  */
2995 unsigned int regulator_get_linear_step(struct regulator *regulator)
2996 {
2997         struct regulator_dev *rdev = regulator->rdev;
2998
2999         return rdev->desc->uV_step;
3000 }
3001 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3002
3003 /**
3004  * regulator_is_supported_voltage - check if a voltage range can be supported
3005  *
3006  * @regulator: Regulator to check.
3007  * @min_uV: Minimum required voltage in uV.
3008  * @max_uV: Maximum required voltage in uV.
3009  *
3010  * Returns a boolean.
3011  */
3012 int regulator_is_supported_voltage(struct regulator *regulator,
3013                                    int min_uV, int max_uV)
3014 {
3015         struct regulator_dev *rdev = regulator->rdev;
3016         int i, voltages, ret;
3017
3018         /* If we can't change voltage check the current voltage */
3019         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3020                 ret = regulator_get_voltage(regulator);
3021                 if (ret >= 0)
3022                         return min_uV <= ret && ret <= max_uV;
3023                 else
3024                         return ret;
3025         }
3026
3027         /* Any voltage within constrains range is fine? */
3028         if (rdev->desc->continuous_voltage_range)
3029                 return min_uV >= rdev->constraints->min_uV &&
3030                                 max_uV <= rdev->constraints->max_uV;
3031
3032         ret = regulator_count_voltages(regulator);
3033         if (ret < 0)
3034                 return 0;
3035         voltages = ret;
3036
3037         for (i = 0; i < voltages; i++) {
3038                 ret = regulator_list_voltage(regulator, i);
3039
3040                 if (ret >= min_uV && ret <= max_uV)
3041                         return 1;
3042         }
3043
3044         return 0;
3045 }
3046 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3047
3048 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3049                                  int max_uV)
3050 {
3051         const struct regulator_desc *desc = rdev->desc;
3052
3053         if (desc->ops->map_voltage)
3054                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3055
3056         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3057                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3058
3059         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3060                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3061
3062         if (desc->ops->list_voltage ==
3063                 regulator_list_voltage_pickable_linear_range)
3064                 return regulator_map_voltage_pickable_linear_range(rdev,
3065                                                         min_uV, max_uV);
3066
3067         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3068 }
3069
3070 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3071                                        int min_uV, int max_uV,
3072                                        unsigned *selector)
3073 {
3074         struct pre_voltage_change_data data;
3075         int ret;
3076
3077         data.old_uV = regulator_get_voltage_rdev(rdev);
3078         data.min_uV = min_uV;
3079         data.max_uV = max_uV;
3080         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3081                                    &data);
3082         if (ret & NOTIFY_STOP_MASK)
3083                 return -EINVAL;
3084
3085         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3086         if (ret >= 0)
3087                 return ret;
3088
3089         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3090                              (void *)data.old_uV);
3091
3092         return ret;
3093 }
3094
3095 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3096                                            int uV, unsigned selector)
3097 {
3098         struct pre_voltage_change_data data;
3099         int ret;
3100
3101         data.old_uV = regulator_get_voltage_rdev(rdev);
3102         data.min_uV = uV;
3103         data.max_uV = uV;
3104         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3105                                    &data);
3106         if (ret & NOTIFY_STOP_MASK)
3107                 return -EINVAL;
3108
3109         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3110         if (ret >= 0)
3111                 return ret;
3112
3113         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3114                              (void *)data.old_uV);
3115
3116         return ret;
3117 }
3118
3119 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3120                                            int uV, int new_selector)
3121 {
3122         const struct regulator_ops *ops = rdev->desc->ops;
3123         int diff, old_sel, curr_sel, ret;
3124
3125         /* Stepping is only needed if the regulator is enabled. */
3126         if (!_regulator_is_enabled(rdev))
3127                 goto final_set;
3128
3129         if (!ops->get_voltage_sel)
3130                 return -EINVAL;
3131
3132         old_sel = ops->get_voltage_sel(rdev);
3133         if (old_sel < 0)
3134                 return old_sel;
3135
3136         diff = new_selector - old_sel;
3137         if (diff == 0)
3138                 return 0; /* No change needed. */
3139
3140         if (diff > 0) {
3141                 /* Stepping up. */
3142                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3143                      curr_sel < new_selector;
3144                      curr_sel += rdev->desc->vsel_step) {
3145                         /*
3146                          * Call the callback directly instead of using
3147                          * _regulator_call_set_voltage_sel() as we don't
3148                          * want to notify anyone yet. Same in the branch
3149                          * below.
3150                          */
3151                         ret = ops->set_voltage_sel(rdev, curr_sel);
3152                         if (ret)
3153                                 goto try_revert;
3154                 }
3155         } else {
3156                 /* Stepping down. */
3157                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3158                      curr_sel > new_selector;
3159                      curr_sel -= rdev->desc->vsel_step) {
3160                         ret = ops->set_voltage_sel(rdev, curr_sel);
3161                         if (ret)
3162                                 goto try_revert;
3163                 }
3164         }
3165
3166 final_set:
3167         /* The final selector will trigger the notifiers. */
3168         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3169
3170 try_revert:
3171         /*
3172          * At least try to return to the previous voltage if setting a new
3173          * one failed.
3174          */
3175         (void)ops->set_voltage_sel(rdev, old_sel);
3176         return ret;
3177 }
3178
3179 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3180                                        int old_uV, int new_uV)
3181 {
3182         unsigned int ramp_delay = 0;
3183
3184         if (rdev->constraints->ramp_delay)
3185                 ramp_delay = rdev->constraints->ramp_delay;
3186         else if (rdev->desc->ramp_delay)
3187                 ramp_delay = rdev->desc->ramp_delay;
3188         else if (rdev->constraints->settling_time)
3189                 return rdev->constraints->settling_time;
3190         else if (rdev->constraints->settling_time_up &&
3191                  (new_uV > old_uV))
3192                 return rdev->constraints->settling_time_up;
3193         else if (rdev->constraints->settling_time_down &&
3194                  (new_uV < old_uV))
3195                 return rdev->constraints->settling_time_down;
3196
3197         if (ramp_delay == 0) {
3198                 rdev_dbg(rdev, "ramp_delay not set\n");
3199                 return 0;
3200         }
3201
3202         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3203 }
3204
3205 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3206                                      int min_uV, int max_uV)
3207 {
3208         int ret;
3209         int delay = 0;
3210         int best_val = 0;
3211         unsigned int selector;
3212         int old_selector = -1;
3213         const struct regulator_ops *ops = rdev->desc->ops;
3214         int old_uV = regulator_get_voltage_rdev(rdev);
3215
3216         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3217
3218         min_uV += rdev->constraints->uV_offset;
3219         max_uV += rdev->constraints->uV_offset;
3220
3221         /*
3222          * If we can't obtain the old selector there is not enough
3223          * info to call set_voltage_time_sel().
3224          */
3225         if (_regulator_is_enabled(rdev) &&
3226             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3227                 old_selector = ops->get_voltage_sel(rdev);
3228                 if (old_selector < 0)
3229                         return old_selector;
3230         }
3231
3232         if (ops->set_voltage) {
3233                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3234                                                   &selector);
3235
3236                 if (ret >= 0) {
3237                         if (ops->list_voltage)
3238                                 best_val = ops->list_voltage(rdev,
3239                                                              selector);
3240                         else
3241                                 best_val = regulator_get_voltage_rdev(rdev);
3242                 }
3243
3244         } else if (ops->set_voltage_sel) {
3245                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3246                 if (ret >= 0) {
3247                         best_val = ops->list_voltage(rdev, ret);
3248                         if (min_uV <= best_val && max_uV >= best_val) {
3249                                 selector = ret;
3250                                 if (old_selector == selector)
3251                                         ret = 0;
3252                                 else if (rdev->desc->vsel_step)
3253                                         ret = _regulator_set_voltage_sel_step(
3254                                                 rdev, best_val, selector);
3255                                 else
3256                                         ret = _regulator_call_set_voltage_sel(
3257                                                 rdev, best_val, selector);
3258                         } else {
3259                                 ret = -EINVAL;
3260                         }
3261                 }
3262         } else {
3263                 ret = -EINVAL;
3264         }
3265
3266         if (ret)
3267                 goto out;
3268
3269         if (ops->set_voltage_time_sel) {
3270                 /*
3271                  * Call set_voltage_time_sel if successfully obtained
3272                  * old_selector
3273                  */
3274                 if (old_selector >= 0 && old_selector != selector)
3275                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3276                                                           selector);
3277         } else {
3278                 if (old_uV != best_val) {
3279                         if (ops->set_voltage_time)
3280                                 delay = ops->set_voltage_time(rdev, old_uV,
3281                                                               best_val);
3282                         else
3283                                 delay = _regulator_set_voltage_time(rdev,
3284                                                                     old_uV,
3285                                                                     best_val);
3286                 }
3287         }
3288
3289         if (delay < 0) {
3290                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3291                 delay = 0;
3292         }
3293
3294         /* Insert any necessary delays */
3295         if (delay >= 1000) {
3296                 mdelay(delay / 1000);
3297                 udelay(delay % 1000);
3298         } else if (delay) {
3299                 udelay(delay);
3300         }
3301
3302         if (best_val >= 0) {
3303                 unsigned long data = best_val;
3304
3305                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3306                                      (void *)data);
3307         }
3308
3309 out:
3310         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3311
3312         return ret;
3313 }
3314
3315 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3316                                   int min_uV, int max_uV, suspend_state_t state)
3317 {
3318         struct regulator_state *rstate;
3319         int uV, sel;
3320
3321         rstate = regulator_get_suspend_state(rdev, state);
3322         if (rstate == NULL)
3323                 return -EINVAL;
3324
3325         if (min_uV < rstate->min_uV)
3326                 min_uV = rstate->min_uV;
3327         if (max_uV > rstate->max_uV)
3328                 max_uV = rstate->max_uV;
3329
3330         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3331         if (sel < 0)
3332                 return sel;
3333
3334         uV = rdev->desc->ops->list_voltage(rdev, sel);
3335         if (uV >= min_uV && uV <= max_uV)
3336                 rstate->uV = uV;
3337
3338         return 0;
3339 }
3340
3341 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3342                                           int min_uV, int max_uV,
3343                                           suspend_state_t state)
3344 {
3345         struct regulator_dev *rdev = regulator->rdev;
3346         struct regulator_voltage *voltage = &regulator->voltage[state];
3347         int ret = 0;
3348         int old_min_uV, old_max_uV;
3349         int current_uV;
3350
3351         /* If we're setting the same range as last time the change
3352          * should be a noop (some cpufreq implementations use the same
3353          * voltage for multiple frequencies, for example).
3354          */
3355         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3356                 goto out;
3357
3358         /* If we're trying to set a range that overlaps the current voltage,
3359          * return successfully even though the regulator does not support
3360          * changing the voltage.
3361          */
3362         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3363                 current_uV = regulator_get_voltage_rdev(rdev);
3364                 if (min_uV <= current_uV && current_uV <= max_uV) {
3365                         voltage->min_uV = min_uV;
3366                         voltage->max_uV = max_uV;
3367                         goto out;
3368                 }
3369         }
3370
3371         /* sanity check */
3372         if (!rdev->desc->ops->set_voltage &&
3373             !rdev->desc->ops->set_voltage_sel) {
3374                 ret = -EINVAL;
3375                 goto out;
3376         }
3377
3378         /* constraints check */
3379         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3380         if (ret < 0)
3381                 goto out;
3382
3383         /* restore original values in case of error */
3384         old_min_uV = voltage->min_uV;
3385         old_max_uV = voltage->max_uV;
3386         voltage->min_uV = min_uV;
3387         voltage->max_uV = max_uV;
3388
3389         /* for not coupled regulators this will just set the voltage */
3390         ret = regulator_balance_voltage(rdev, state);
3391         if (ret < 0) {
3392                 voltage->min_uV = old_min_uV;
3393                 voltage->max_uV = old_max_uV;
3394         }
3395
3396 out:
3397         return ret;
3398 }
3399
3400 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3401                                int max_uV, suspend_state_t state)
3402 {
3403         int best_supply_uV = 0;
3404         int supply_change_uV = 0;
3405         int ret;
3406
3407         if (rdev->supply &&
3408             regulator_ops_is_valid(rdev->supply->rdev,
3409                                    REGULATOR_CHANGE_VOLTAGE) &&
3410             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3411                                            rdev->desc->ops->get_voltage_sel))) {
3412                 int current_supply_uV;
3413                 int selector;
3414
3415                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3416                 if (selector < 0) {
3417                         ret = selector;
3418                         goto out;
3419                 }
3420
3421                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3422                 if (best_supply_uV < 0) {
3423                         ret = best_supply_uV;
3424                         goto out;
3425                 }
3426
3427                 best_supply_uV += rdev->desc->min_dropout_uV;
3428
3429                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3430                 if (current_supply_uV < 0) {
3431                         ret = current_supply_uV;
3432                         goto out;
3433                 }
3434
3435                 supply_change_uV = best_supply_uV - current_supply_uV;
3436         }
3437
3438         if (supply_change_uV > 0) {
3439                 ret = regulator_set_voltage_unlocked(rdev->supply,
3440                                 best_supply_uV, INT_MAX, state);
3441                 if (ret) {
3442                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3443                                         ret);
3444                         goto out;
3445                 }
3446         }
3447
3448         if (state == PM_SUSPEND_ON)
3449                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3450         else
3451                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3452                                                         max_uV, state);
3453         if (ret < 0)
3454                 goto out;
3455
3456         if (supply_change_uV < 0) {
3457                 ret = regulator_set_voltage_unlocked(rdev->supply,
3458                                 best_supply_uV, INT_MAX, state);
3459                 if (ret)
3460                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3461                                         ret);
3462                 /* No need to fail here */
3463                 ret = 0;
3464         }
3465
3466 out:
3467         return ret;
3468 }
3469
3470 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3471                                         int *current_uV, int *min_uV)
3472 {
3473         struct regulation_constraints *constraints = rdev->constraints;
3474
3475         /* Limit voltage change only if necessary */
3476         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3477                 return 1;
3478
3479         if (*current_uV < 0) {
3480                 *current_uV = regulator_get_voltage_rdev(rdev);
3481
3482                 if (*current_uV < 0)
3483                         return *current_uV;
3484         }
3485
3486         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3487                 return 1;
3488
3489         /* Clamp target voltage within the given step */
3490         if (*current_uV < *min_uV)
3491                 *min_uV = min(*current_uV + constraints->max_uV_step,
3492                               *min_uV);
3493         else
3494                 *min_uV = max(*current_uV - constraints->max_uV_step,
3495                               *min_uV);
3496
3497         return 0;
3498 }
3499
3500 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3501                                          int *current_uV,
3502                                          int *min_uV, int *max_uV,
3503                                          suspend_state_t state,
3504                                          int n_coupled)
3505 {
3506         struct coupling_desc *c_desc = &rdev->coupling_desc;
3507         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3508         struct regulation_constraints *constraints = rdev->constraints;
3509         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3510         int max_current_uV = 0, min_current_uV = INT_MAX;
3511         int highest_min_uV = 0, target_uV, possible_uV;
3512         int i, ret, max_spread;
3513         bool done;
3514
3515         *current_uV = -1;
3516
3517         /*
3518          * If there are no coupled regulators, simply set the voltage
3519          * demanded by consumers.
3520          */
3521         if (n_coupled == 1) {
3522                 /*
3523                  * If consumers don't provide any demands, set voltage
3524                  * to min_uV
3525                  */
3526                 desired_min_uV = constraints->min_uV;
3527                 desired_max_uV = constraints->max_uV;
3528
3529                 ret = regulator_check_consumers(rdev,
3530                                                 &desired_min_uV,
3531                                                 &desired_max_uV, state);
3532                 if (ret < 0)
3533                         return ret;
3534
3535                 possible_uV = desired_min_uV;
3536                 done = true;
3537
3538                 goto finish;
3539         }
3540
3541         /* Find highest min desired voltage */
3542         for (i = 0; i < n_coupled; i++) {
3543                 int tmp_min = 0;
3544                 int tmp_max = INT_MAX;
3545
3546                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3547
3548                 ret = regulator_check_consumers(c_rdevs[i],
3549                                                 &tmp_min,
3550                                                 &tmp_max, state);
3551                 if (ret < 0)
3552                         return ret;
3553
3554                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3555                 if (ret < 0)
3556                         return ret;
3557
3558                 highest_min_uV = max(highest_min_uV, tmp_min);
3559
3560                 if (i == 0) {
3561                         desired_min_uV = tmp_min;
3562                         desired_max_uV = tmp_max;
3563                 }
3564         }
3565
3566         max_spread = constraints->max_spread[0];
3567
3568         /*
3569          * Let target_uV be equal to the desired one if possible.
3570          * If not, set it to minimum voltage, allowed by other coupled
3571          * regulators.
3572          */
3573         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3574
3575         /*
3576          * Find min and max voltages, which currently aren't violating
3577          * max_spread.
3578          */
3579         for (i = 1; i < n_coupled; i++) {
3580                 int tmp_act;
3581
3582                 if (!_regulator_is_enabled(c_rdevs[i]))
3583                         continue;
3584
3585                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3586                 if (tmp_act < 0)
3587                         return tmp_act;
3588
3589                 min_current_uV = min(tmp_act, min_current_uV);
3590                 max_current_uV = max(tmp_act, max_current_uV);
3591         }
3592
3593         /* There aren't any other regulators enabled */
3594         if (max_current_uV == 0) {
3595                 possible_uV = target_uV;
3596         } else {
3597                 /*
3598                  * Correct target voltage, so as it currently isn't
3599                  * violating max_spread
3600                  */
3601                 possible_uV = max(target_uV, max_current_uV - max_spread);
3602                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3603         }
3604
3605         if (possible_uV > desired_max_uV)
3606                 return -EINVAL;
3607
3608         done = (possible_uV == target_uV);
3609         desired_min_uV = possible_uV;
3610
3611 finish:
3612         /* Apply max_uV_step constraint if necessary */
3613         if (state == PM_SUSPEND_ON) {
3614                 ret = regulator_limit_voltage_step(rdev, current_uV,
3615                                                    &desired_min_uV);
3616                 if (ret < 0)
3617                         return ret;
3618
3619                 if (ret == 0)
3620                         done = false;
3621         }
3622
3623         /* Set current_uV if wasn't done earlier in the code and if necessary */
3624         if (n_coupled > 1 && *current_uV == -1) {
3625
3626                 if (_regulator_is_enabled(rdev)) {
3627                         ret = regulator_get_voltage_rdev(rdev);
3628                         if (ret < 0)
3629                                 return ret;
3630
3631                         *current_uV = ret;
3632                 } else {
3633                         *current_uV = desired_min_uV;
3634                 }
3635         }
3636
3637         *min_uV = desired_min_uV;
3638         *max_uV = desired_max_uV;
3639
3640         return done;
3641 }
3642
3643 static int regulator_balance_voltage(struct regulator_dev *rdev,
3644                                      suspend_state_t state)
3645 {
3646         struct regulator_dev **c_rdevs;
3647         struct regulator_dev *best_rdev;
3648         struct coupling_desc *c_desc = &rdev->coupling_desc;
3649         struct regulator_coupler *coupler = c_desc->coupler;
3650         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3651         unsigned int delta, best_delta;
3652         unsigned long c_rdev_done = 0;
3653         bool best_c_rdev_done;
3654
3655         c_rdevs = c_desc->coupled_rdevs;
3656         n_coupled = c_desc->n_coupled;
3657
3658         /*
3659          * If system is in a state other than PM_SUSPEND_ON, don't check
3660          * other coupled regulators.
3661          */
3662         if (state != PM_SUSPEND_ON)
3663                 n_coupled = 1;
3664
3665         if (c_desc->n_resolved < n_coupled) {
3666                 rdev_err(rdev, "Not all coupled regulators registered\n");
3667                 return -EPERM;
3668         }
3669
3670         /* Invoke custom balancer for customized couplers */
3671         if (coupler && coupler->balance_voltage)
3672                 return coupler->balance_voltage(coupler, rdev, state);
3673
3674         /*
3675          * Find the best possible voltage change on each loop. Leave the loop
3676          * if there isn't any possible change.
3677          */
3678         do {
3679                 best_c_rdev_done = false;
3680                 best_delta = 0;
3681                 best_min_uV = 0;
3682                 best_max_uV = 0;
3683                 best_c_rdev = 0;
3684                 best_rdev = NULL;
3685
3686                 /*
3687                  * Find highest difference between optimal voltage
3688                  * and current voltage.
3689                  */
3690                 for (i = 0; i < n_coupled; i++) {
3691                         /*
3692                          * optimal_uV is the best voltage that can be set for
3693                          * i-th regulator at the moment without violating
3694                          * max_spread constraint in order to balance
3695                          * the coupled voltages.
3696                          */
3697                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3698
3699                         if (test_bit(i, &c_rdev_done))
3700                                 continue;
3701
3702                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3703                                                             &current_uV,
3704                                                             &optimal_uV,
3705                                                             &optimal_max_uV,
3706                                                             state, n_coupled);
3707                         if (ret < 0)
3708                                 goto out;
3709
3710                         delta = abs(optimal_uV - current_uV);
3711
3712                         if (delta && best_delta <= delta) {
3713                                 best_c_rdev_done = ret;
3714                                 best_delta = delta;
3715                                 best_rdev = c_rdevs[i];
3716                                 best_min_uV = optimal_uV;
3717                                 best_max_uV = optimal_max_uV;
3718                                 best_c_rdev = i;
3719                         }
3720                 }
3721
3722                 /* Nothing to change, return successfully */
3723                 if (!best_rdev) {
3724                         ret = 0;
3725                         goto out;
3726                 }
3727
3728                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3729                                                  best_max_uV, state);
3730
3731                 if (ret < 0)
3732                         goto out;
3733
3734                 if (best_c_rdev_done)
3735                         set_bit(best_c_rdev, &c_rdev_done);
3736
3737         } while (n_coupled > 1);
3738
3739 out:
3740         return ret;
3741 }
3742
3743 /**
3744  * regulator_set_voltage - set regulator output voltage
3745  * @regulator: regulator source
3746  * @min_uV: Minimum required voltage in uV
3747  * @max_uV: Maximum acceptable voltage in uV
3748  *
3749  * Sets a voltage regulator to the desired output voltage. This can be set
3750  * during any regulator state. IOW, regulator can be disabled or enabled.
3751  *
3752  * If the regulator is enabled then the voltage will change to the new value
3753  * immediately otherwise if the regulator is disabled the regulator will
3754  * output at the new voltage when enabled.
3755  *
3756  * NOTE: If the regulator is shared between several devices then the lowest
3757  * request voltage that meets the system constraints will be used.
3758  * Regulator system constraints must be set for this regulator before
3759  * calling this function otherwise this call will fail.
3760  */
3761 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3762 {
3763         struct ww_acquire_ctx ww_ctx;
3764         int ret;
3765
3766         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3767
3768         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3769                                              PM_SUSPEND_ON);
3770
3771         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3772
3773         return ret;
3774 }
3775 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3776
3777 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3778                                            suspend_state_t state, bool en)
3779 {
3780         struct regulator_state *rstate;
3781
3782         rstate = regulator_get_suspend_state(rdev, state);
3783         if (rstate == NULL)
3784                 return -EINVAL;
3785
3786         if (!rstate->changeable)
3787                 return -EPERM;
3788
3789         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3790
3791         return 0;
3792 }
3793
3794 int regulator_suspend_enable(struct regulator_dev *rdev,
3795                                     suspend_state_t state)
3796 {
3797         return regulator_suspend_toggle(rdev, state, true);
3798 }
3799 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3800
3801 int regulator_suspend_disable(struct regulator_dev *rdev,
3802                                      suspend_state_t state)
3803 {
3804         struct regulator *regulator;
3805         struct regulator_voltage *voltage;
3806
3807         /*
3808          * if any consumer wants this regulator device keeping on in
3809          * suspend states, don't set it as disabled.
3810          */
3811         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3812                 voltage = &regulator->voltage[state];
3813                 if (voltage->min_uV || voltage->max_uV)
3814                         return 0;
3815         }
3816
3817         return regulator_suspend_toggle(rdev, state, false);
3818 }
3819 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3820
3821 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3822                                           int min_uV, int max_uV,
3823                                           suspend_state_t state)
3824 {
3825         struct regulator_dev *rdev = regulator->rdev;
3826         struct regulator_state *rstate;
3827
3828         rstate = regulator_get_suspend_state(rdev, state);
3829         if (rstate == NULL)
3830                 return -EINVAL;
3831
3832         if (rstate->min_uV == rstate->max_uV) {
3833                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3834                 return -EPERM;
3835         }
3836
3837         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3838 }
3839
3840 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3841                                   int max_uV, suspend_state_t state)
3842 {
3843         struct ww_acquire_ctx ww_ctx;
3844         int ret;
3845
3846         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3847         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3848                 return -EINVAL;
3849
3850         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3851
3852         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3853                                              max_uV, state);
3854
3855         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3856
3857         return ret;
3858 }
3859 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3860
3861 /**
3862  * regulator_set_voltage_time - get raise/fall time
3863  * @regulator: regulator source
3864  * @old_uV: starting voltage in microvolts
3865  * @new_uV: target voltage in microvolts
3866  *
3867  * Provided with the starting and ending voltage, this function attempts to
3868  * calculate the time in microseconds required to rise or fall to this new
3869  * voltage.
3870  */
3871 int regulator_set_voltage_time(struct regulator *regulator,
3872                                int old_uV, int new_uV)
3873 {
3874         struct regulator_dev *rdev = regulator->rdev;
3875         const struct regulator_ops *ops = rdev->desc->ops;
3876         int old_sel = -1;
3877         int new_sel = -1;
3878         int voltage;
3879         int i;
3880
3881         if (ops->set_voltage_time)
3882                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3883         else if (!ops->set_voltage_time_sel)
3884                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3885
3886         /* Currently requires operations to do this */
3887         if (!ops->list_voltage || !rdev->desc->n_voltages)
3888                 return -EINVAL;
3889
3890         for (i = 0; i < rdev->desc->n_voltages; i++) {
3891                 /* We only look for exact voltage matches here */
3892                 voltage = regulator_list_voltage(regulator, i);
3893                 if (voltage < 0)
3894                         return -EINVAL;
3895                 if (voltage == 0)
3896                         continue;
3897                 if (voltage == old_uV)
3898                         old_sel = i;
3899                 if (voltage == new_uV)
3900                         new_sel = i;
3901         }
3902
3903         if (old_sel < 0 || new_sel < 0)
3904                 return -EINVAL;
3905
3906         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3907 }
3908 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3909
3910 /**
3911  * regulator_set_voltage_time_sel - get raise/fall time
3912  * @rdev: regulator source device
3913  * @old_selector: selector for starting voltage
3914  * @new_selector: selector for target voltage
3915  *
3916  * Provided with the starting and target voltage selectors, this function
3917  * returns time in microseconds required to rise or fall to this new voltage
3918  *
3919  * Drivers providing ramp_delay in regulation_constraints can use this as their
3920  * set_voltage_time_sel() operation.
3921  */
3922 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3923                                    unsigned int old_selector,
3924                                    unsigned int new_selector)
3925 {
3926         int old_volt, new_volt;
3927
3928         /* sanity check */
3929         if (!rdev->desc->ops->list_voltage)
3930                 return -EINVAL;
3931
3932         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3933         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3934
3935         if (rdev->desc->ops->set_voltage_time)
3936                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3937                                                          new_volt);
3938         else
3939                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3940 }
3941 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3942
3943 /**
3944  * regulator_sync_voltage - re-apply last regulator output voltage
3945  * @regulator: regulator source
3946  *
3947  * Re-apply the last configured voltage.  This is intended to be used
3948  * where some external control source the consumer is cooperating with
3949  * has caused the configured voltage to change.
3950  */
3951 int regulator_sync_voltage(struct regulator *regulator)
3952 {
3953         struct regulator_dev *rdev = regulator->rdev;
3954         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3955         int ret, min_uV, max_uV;
3956
3957         regulator_lock(rdev);
3958
3959         if (!rdev->desc->ops->set_voltage &&
3960             !rdev->desc->ops->set_voltage_sel) {
3961                 ret = -EINVAL;
3962                 goto out;
3963         }
3964
3965         /* This is only going to work if we've had a voltage configured. */
3966         if (!voltage->min_uV && !voltage->max_uV) {
3967                 ret = -EINVAL;
3968                 goto out;
3969         }
3970
3971         min_uV = voltage->min_uV;
3972         max_uV = voltage->max_uV;
3973
3974         /* This should be a paranoia check... */
3975         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3976         if (ret < 0)
3977                 goto out;
3978
3979         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3980         if (ret < 0)
3981                 goto out;
3982
3983         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3984
3985 out:
3986         regulator_unlock(rdev);
3987         return ret;
3988 }
3989 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3990
3991 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3992 {
3993         int sel, ret;
3994         bool bypassed;
3995
3996         if (rdev->desc->ops->get_bypass) {
3997                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3998                 if (ret < 0)
3999                         return ret;
4000                 if (bypassed) {
4001                         /* if bypassed the regulator must have a supply */
4002                         if (!rdev->supply) {
4003                                 rdev_err(rdev,
4004                                          "bypassed regulator has no supply!\n");
4005                                 return -EPROBE_DEFER;
4006                         }
4007
4008                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4009                 }
4010         }
4011
4012         if (rdev->desc->ops->get_voltage_sel) {
4013                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4014                 if (sel < 0)
4015                         return sel;
4016                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4017         } else if (rdev->desc->ops->get_voltage) {
4018                 ret = rdev->desc->ops->get_voltage(rdev);
4019         } else if (rdev->desc->ops->list_voltage) {
4020                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4021         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4022                 ret = rdev->desc->fixed_uV;
4023         } else if (rdev->supply) {
4024                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4025         } else {
4026                 return -EINVAL;
4027         }
4028
4029         if (ret < 0)
4030                 return ret;
4031         return ret - rdev->constraints->uV_offset;
4032 }
4033
4034 /**
4035  * regulator_get_voltage - get regulator output voltage
4036  * @regulator: regulator source
4037  *
4038  * This returns the current regulator voltage in uV.
4039  *
4040  * NOTE: If the regulator is disabled it will return the voltage value. This
4041  * function should not be used to determine regulator state.
4042  */
4043 int regulator_get_voltage(struct regulator *regulator)
4044 {
4045         struct ww_acquire_ctx ww_ctx;
4046         int ret;
4047
4048         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4049         ret = regulator_get_voltage_rdev(regulator->rdev);
4050         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4051
4052         return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4055
4056 /**
4057  * regulator_set_current_limit - set regulator output current limit
4058  * @regulator: regulator source
4059  * @min_uA: Minimum supported current in uA
4060  * @max_uA: Maximum supported current in uA
4061  *
4062  * Sets current sink to the desired output current. This can be set during
4063  * any regulator state. IOW, regulator can be disabled or enabled.
4064  *
4065  * If the regulator is enabled then the current will change to the new value
4066  * immediately otherwise if the regulator is disabled the regulator will
4067  * output at the new current when enabled.
4068  *
4069  * NOTE: Regulator system constraints must be set for this regulator before
4070  * calling this function otherwise this call will fail.
4071  */
4072 int regulator_set_current_limit(struct regulator *regulator,
4073                                int min_uA, int max_uA)
4074 {
4075         struct regulator_dev *rdev = regulator->rdev;
4076         int ret;
4077
4078         regulator_lock(rdev);
4079
4080         /* sanity check */
4081         if (!rdev->desc->ops->set_current_limit) {
4082                 ret = -EINVAL;
4083                 goto out;
4084         }
4085
4086         /* constraints check */
4087         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4088         if (ret < 0)
4089                 goto out;
4090
4091         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4092 out:
4093         regulator_unlock(rdev);
4094         return ret;
4095 }
4096 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4097
4098 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4099 {
4100         /* sanity check */
4101         if (!rdev->desc->ops->get_current_limit)
4102                 return -EINVAL;
4103
4104         return rdev->desc->ops->get_current_limit(rdev);
4105 }
4106
4107 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4108 {
4109         int ret;
4110
4111         regulator_lock(rdev);
4112         ret = _regulator_get_current_limit_unlocked(rdev);
4113         regulator_unlock(rdev);
4114
4115         return ret;
4116 }
4117
4118 /**
4119  * regulator_get_current_limit - get regulator output current
4120  * @regulator: regulator source
4121  *
4122  * This returns the current supplied by the specified current sink in uA.
4123  *
4124  * NOTE: If the regulator is disabled it will return the current value. This
4125  * function should not be used to determine regulator state.
4126  */
4127 int regulator_get_current_limit(struct regulator *regulator)
4128 {
4129         return _regulator_get_current_limit(regulator->rdev);
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4132
4133 /**
4134  * regulator_set_mode - set regulator operating mode
4135  * @regulator: regulator source
4136  * @mode: operating mode - one of the REGULATOR_MODE constants
4137  *
4138  * Set regulator operating mode to increase regulator efficiency or improve
4139  * regulation performance.
4140  *
4141  * NOTE: Regulator system constraints must be set for this regulator before
4142  * calling this function otherwise this call will fail.
4143  */
4144 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4145 {
4146         struct regulator_dev *rdev = regulator->rdev;
4147         int ret;
4148         int regulator_curr_mode;
4149
4150         regulator_lock(rdev);
4151
4152         /* sanity check */
4153         if (!rdev->desc->ops->set_mode) {
4154                 ret = -EINVAL;
4155                 goto out;
4156         }
4157
4158         /* return if the same mode is requested */
4159         if (rdev->desc->ops->get_mode) {
4160                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4161                 if (regulator_curr_mode == mode) {
4162                         ret = 0;
4163                         goto out;
4164                 }
4165         }
4166
4167         /* constraints check */
4168         ret = regulator_mode_constrain(rdev, &mode);
4169         if (ret < 0)
4170                 goto out;
4171
4172         ret = rdev->desc->ops->set_mode(rdev, mode);
4173 out:
4174         regulator_unlock(rdev);
4175         return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_set_mode);
4178
4179 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4180 {
4181         /* sanity check */
4182         if (!rdev->desc->ops->get_mode)
4183                 return -EINVAL;
4184
4185         return rdev->desc->ops->get_mode(rdev);
4186 }
4187
4188 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4189 {
4190         int ret;
4191
4192         regulator_lock(rdev);
4193         ret = _regulator_get_mode_unlocked(rdev);
4194         regulator_unlock(rdev);
4195
4196         return ret;
4197 }
4198
4199 /**
4200  * regulator_get_mode - get regulator operating mode
4201  * @regulator: regulator source
4202  *
4203  * Get the current regulator operating mode.
4204  */
4205 unsigned int regulator_get_mode(struct regulator *regulator)
4206 {
4207         return _regulator_get_mode(regulator->rdev);
4208 }
4209 EXPORT_SYMBOL_GPL(regulator_get_mode);
4210
4211 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4212                                         unsigned int *flags)
4213 {
4214         int ret;
4215
4216         regulator_lock(rdev);
4217
4218         /* sanity check */
4219         if (!rdev->desc->ops->get_error_flags) {
4220                 ret = -EINVAL;
4221                 goto out;
4222         }
4223
4224         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4225 out:
4226         regulator_unlock(rdev);
4227         return ret;
4228 }
4229
4230 /**
4231  * regulator_get_error_flags - get regulator error information
4232  * @regulator: regulator source
4233  * @flags: pointer to store error flags
4234  *
4235  * Get the current regulator error information.
4236  */
4237 int regulator_get_error_flags(struct regulator *regulator,
4238                                 unsigned int *flags)
4239 {
4240         return _regulator_get_error_flags(regulator->rdev, flags);
4241 }
4242 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4243
4244 /**
4245  * regulator_set_load - set regulator load
4246  * @regulator: regulator source
4247  * @uA_load: load current
4248  *
4249  * Notifies the regulator core of a new device load. This is then used by
4250  * DRMS (if enabled by constraints) to set the most efficient regulator
4251  * operating mode for the new regulator loading.
4252  *
4253  * Consumer devices notify their supply regulator of the maximum power
4254  * they will require (can be taken from device datasheet in the power
4255  * consumption tables) when they change operational status and hence power
4256  * state. Examples of operational state changes that can affect power
4257  * consumption are :-
4258  *
4259  *    o Device is opened / closed.
4260  *    o Device I/O is about to begin or has just finished.
4261  *    o Device is idling in between work.
4262  *
4263  * This information is also exported via sysfs to userspace.
4264  *
4265  * DRMS will sum the total requested load on the regulator and change
4266  * to the most efficient operating mode if platform constraints allow.
4267  *
4268  * NOTE: when a regulator consumer requests to have a regulator
4269  * disabled then any load that consumer requested no longer counts
4270  * toward the total requested load.  If the regulator is re-enabled
4271  * then the previously requested load will start counting again.
4272  *
4273  * If a regulator is an always-on regulator then an individual consumer's
4274  * load will still be removed if that consumer is fully disabled.
4275  *
4276  * On error a negative errno is returned.
4277  */
4278 int regulator_set_load(struct regulator *regulator, int uA_load)
4279 {
4280         struct regulator_dev *rdev = regulator->rdev;
4281         int old_uA_load;
4282         int ret = 0;
4283
4284         regulator_lock(rdev);
4285         old_uA_load = regulator->uA_load;
4286         regulator->uA_load = uA_load;
4287         if (regulator->enable_count && old_uA_load != uA_load) {
4288                 ret = drms_uA_update(rdev);
4289                 if (ret < 0)
4290                         regulator->uA_load = old_uA_load;
4291         }
4292         regulator_unlock(rdev);
4293
4294         return ret;
4295 }
4296 EXPORT_SYMBOL_GPL(regulator_set_load);
4297
4298 /**
4299  * regulator_allow_bypass - allow the regulator to go into bypass mode
4300  *
4301  * @regulator: Regulator to configure
4302  * @enable: enable or disable bypass mode
4303  *
4304  * Allow the regulator to go into bypass mode if all other consumers
4305  * for the regulator also enable bypass mode and the machine
4306  * constraints allow this.  Bypass mode means that the regulator is
4307  * simply passing the input directly to the output with no regulation.
4308  */
4309 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4310 {
4311         struct regulator_dev *rdev = regulator->rdev;
4312         int ret = 0;
4313
4314         if (!rdev->desc->ops->set_bypass)
4315                 return 0;
4316
4317         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4318                 return 0;
4319
4320         regulator_lock(rdev);
4321
4322         if (enable && !regulator->bypass) {
4323                 rdev->bypass_count++;
4324
4325                 if (rdev->bypass_count == rdev->open_count) {
4326                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4327                         if (ret != 0)
4328                                 rdev->bypass_count--;
4329                 }
4330
4331         } else if (!enable && regulator->bypass) {
4332                 rdev->bypass_count--;
4333
4334                 if (rdev->bypass_count != rdev->open_count) {
4335                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4336                         if (ret != 0)
4337                                 rdev->bypass_count++;
4338                 }
4339         }
4340
4341         if (ret == 0)
4342                 regulator->bypass = enable;
4343
4344         regulator_unlock(rdev);
4345
4346         return ret;
4347 }
4348 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4349
4350 /**
4351  * regulator_register_notifier - register regulator event notifier
4352  * @regulator: regulator source
4353  * @nb: notifier block
4354  *
4355  * Register notifier block to receive regulator events.
4356  */
4357 int regulator_register_notifier(struct regulator *regulator,
4358                               struct notifier_block *nb)
4359 {
4360         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4361                                                 nb);
4362 }
4363 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4364
4365 /**
4366  * regulator_unregister_notifier - unregister regulator event notifier
4367  * @regulator: regulator source
4368  * @nb: notifier block
4369  *
4370  * Unregister regulator event notifier block.
4371  */
4372 int regulator_unregister_notifier(struct regulator *regulator,
4373                                 struct notifier_block *nb)
4374 {
4375         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4376                                                   nb);
4377 }
4378 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4379
4380 /* notify regulator consumers and downstream regulator consumers.
4381  * Note mutex must be held by caller.
4382  */
4383 static int _notifier_call_chain(struct regulator_dev *rdev,
4384                                   unsigned long event, void *data)
4385 {
4386         /* call rdev chain first */
4387         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4388 }
4389
4390 /**
4391  * regulator_bulk_get - get multiple regulator consumers
4392  *
4393  * @dev:           Device to supply
4394  * @num_consumers: Number of consumers to register
4395  * @consumers:     Configuration of consumers; clients are stored here.
4396  *
4397  * @return 0 on success, an errno on failure.
4398  *
4399  * This helper function allows drivers to get several regulator
4400  * consumers in one operation.  If any of the regulators cannot be
4401  * acquired then any regulators that were allocated will be freed
4402  * before returning to the caller.
4403  */
4404 int regulator_bulk_get(struct device *dev, int num_consumers,
4405                        struct regulator_bulk_data *consumers)
4406 {
4407         int i;
4408         int ret;
4409
4410         for (i = 0; i < num_consumers; i++)
4411                 consumers[i].consumer = NULL;
4412
4413         for (i = 0; i < num_consumers; i++) {
4414                 consumers[i].consumer = regulator_get(dev,
4415                                                       consumers[i].supply);
4416                 if (IS_ERR(consumers[i].consumer)) {
4417                         ret = PTR_ERR(consumers[i].consumer);
4418                         consumers[i].consumer = NULL;
4419                         goto err;
4420                 }
4421         }
4422
4423         return 0;
4424
4425 err:
4426         if (ret != -EPROBE_DEFER)
4427                 dev_err(dev, "Failed to get supply '%s': %d\n",
4428                         consumers[i].supply, ret);
4429         else
4430                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4431                         consumers[i].supply);
4432
4433         while (--i >= 0)
4434                 regulator_put(consumers[i].consumer);
4435
4436         return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4439
4440 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4441 {
4442         struct regulator_bulk_data *bulk = data;
4443
4444         bulk->ret = regulator_enable(bulk->consumer);
4445 }
4446
4447 /**
4448  * regulator_bulk_enable - enable multiple regulator consumers
4449  *
4450  * @num_consumers: Number of consumers
4451  * @consumers:     Consumer data; clients are stored here.
4452  * @return         0 on success, an errno on failure
4453  *
4454  * This convenience API allows consumers to enable multiple regulator
4455  * clients in a single API call.  If any consumers cannot be enabled
4456  * then any others that were enabled will be disabled again prior to
4457  * return.
4458  */
4459 int regulator_bulk_enable(int num_consumers,
4460                           struct regulator_bulk_data *consumers)
4461 {
4462         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4463         int i;
4464         int ret = 0;
4465
4466         for (i = 0; i < num_consumers; i++) {
4467                 async_schedule_domain(regulator_bulk_enable_async,
4468                                       &consumers[i], &async_domain);
4469         }
4470
4471         async_synchronize_full_domain(&async_domain);
4472
4473         /* If any consumer failed we need to unwind any that succeeded */
4474         for (i = 0; i < num_consumers; i++) {
4475                 if (consumers[i].ret != 0) {
4476                         ret = consumers[i].ret;
4477                         goto err;
4478                 }
4479         }
4480
4481         return 0;
4482
4483 err:
4484         for (i = 0; i < num_consumers; i++) {
4485                 if (consumers[i].ret < 0)
4486                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4487                                consumers[i].ret);
4488                 else
4489                         regulator_disable(consumers[i].consumer);
4490         }
4491
4492         return ret;
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4495
4496 /**
4497  * regulator_bulk_disable - disable multiple regulator consumers
4498  *
4499  * @num_consumers: Number of consumers
4500  * @consumers:     Consumer data; clients are stored here.
4501  * @return         0 on success, an errno on failure
4502  *
4503  * This convenience API allows consumers to disable multiple regulator
4504  * clients in a single API call.  If any consumers cannot be disabled
4505  * then any others that were disabled will be enabled again prior to
4506  * return.
4507  */
4508 int regulator_bulk_disable(int num_consumers,
4509                            struct regulator_bulk_data *consumers)
4510 {
4511         int i;
4512         int ret, r;
4513
4514         for (i = num_consumers - 1; i >= 0; --i) {
4515                 ret = regulator_disable(consumers[i].consumer);
4516                 if (ret != 0)
4517                         goto err;
4518         }
4519
4520         return 0;
4521
4522 err:
4523         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4524         for (++i; i < num_consumers; ++i) {
4525                 r = regulator_enable(consumers[i].consumer);
4526                 if (r != 0)
4527                         pr_err("Failed to re-enable %s: %d\n",
4528                                consumers[i].supply, r);
4529         }
4530
4531         return ret;
4532 }
4533 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4534
4535 /**
4536  * regulator_bulk_force_disable - force disable multiple regulator consumers
4537  *
4538  * @num_consumers: Number of consumers
4539  * @consumers:     Consumer data; clients are stored here.
4540  * @return         0 on success, an errno on failure
4541  *
4542  * This convenience API allows consumers to forcibly disable multiple regulator
4543  * clients in a single API call.
4544  * NOTE: This should be used for situations when device damage will
4545  * likely occur if the regulators are not disabled (e.g. over temp).
4546  * Although regulator_force_disable function call for some consumers can
4547  * return error numbers, the function is called for all consumers.
4548  */
4549 int regulator_bulk_force_disable(int num_consumers,
4550                            struct regulator_bulk_data *consumers)
4551 {
4552         int i;
4553         int ret = 0;
4554
4555         for (i = 0; i < num_consumers; i++) {
4556                 consumers[i].ret =
4557                             regulator_force_disable(consumers[i].consumer);
4558
4559                 /* Store first error for reporting */
4560                 if (consumers[i].ret && !ret)
4561                         ret = consumers[i].ret;
4562         }
4563
4564         return ret;
4565 }
4566 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4567
4568 /**
4569  * regulator_bulk_free - free multiple regulator consumers
4570  *
4571  * @num_consumers: Number of consumers
4572  * @consumers:     Consumer data; clients are stored here.
4573  *
4574  * This convenience API allows consumers to free multiple regulator
4575  * clients in a single API call.
4576  */
4577 void regulator_bulk_free(int num_consumers,
4578                          struct regulator_bulk_data *consumers)
4579 {
4580         int i;
4581
4582         for (i = 0; i < num_consumers; i++) {
4583                 regulator_put(consumers[i].consumer);
4584                 consumers[i].consumer = NULL;
4585         }
4586 }
4587 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4588
4589 /**
4590  * regulator_notifier_call_chain - call regulator event notifier
4591  * @rdev: regulator source
4592  * @event: notifier block
4593  * @data: callback-specific data.
4594  *
4595  * Called by regulator drivers to notify clients a regulator event has
4596  * occurred. We also notify regulator clients downstream.
4597  * Note lock must be held by caller.
4598  */
4599 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4600                                   unsigned long event, void *data)
4601 {
4602         lockdep_assert_held_once(&rdev->mutex.base);
4603
4604         _notifier_call_chain(rdev, event, data);
4605         return NOTIFY_DONE;
4606
4607 }
4608 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4609
4610 /**
4611  * regulator_mode_to_status - convert a regulator mode into a status
4612  *
4613  * @mode: Mode to convert
4614  *
4615  * Convert a regulator mode into a status.
4616  */
4617 int regulator_mode_to_status(unsigned int mode)
4618 {
4619         switch (mode) {
4620         case REGULATOR_MODE_FAST:
4621                 return REGULATOR_STATUS_FAST;
4622         case REGULATOR_MODE_NORMAL:
4623                 return REGULATOR_STATUS_NORMAL;
4624         case REGULATOR_MODE_IDLE:
4625                 return REGULATOR_STATUS_IDLE;
4626         case REGULATOR_MODE_STANDBY:
4627                 return REGULATOR_STATUS_STANDBY;
4628         default:
4629                 return REGULATOR_STATUS_UNDEFINED;
4630         }
4631 }
4632 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4633
4634 static struct attribute *regulator_dev_attrs[] = {
4635         &dev_attr_name.attr,
4636         &dev_attr_num_users.attr,
4637         &dev_attr_type.attr,
4638         &dev_attr_microvolts.attr,
4639         &dev_attr_microamps.attr,
4640         &dev_attr_opmode.attr,
4641         &dev_attr_state.attr,
4642         &dev_attr_status.attr,
4643         &dev_attr_bypass.attr,
4644         &dev_attr_requested_microamps.attr,
4645         &dev_attr_min_microvolts.attr,
4646         &dev_attr_max_microvolts.attr,
4647         &dev_attr_min_microamps.attr,
4648         &dev_attr_max_microamps.attr,
4649         &dev_attr_suspend_standby_state.attr,
4650         &dev_attr_suspend_mem_state.attr,
4651         &dev_attr_suspend_disk_state.attr,
4652         &dev_attr_suspend_standby_microvolts.attr,
4653         &dev_attr_suspend_mem_microvolts.attr,
4654         &dev_attr_suspend_disk_microvolts.attr,
4655         &dev_attr_suspend_standby_mode.attr,
4656         &dev_attr_suspend_mem_mode.attr,
4657         &dev_attr_suspend_disk_mode.attr,
4658         NULL
4659 };
4660
4661 /*
4662  * To avoid cluttering sysfs (and memory) with useless state, only
4663  * create attributes that can be meaningfully displayed.
4664  */
4665 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4666                                          struct attribute *attr, int idx)
4667 {
4668         struct device *dev = kobj_to_dev(kobj);
4669         struct regulator_dev *rdev = dev_to_rdev(dev);
4670         const struct regulator_ops *ops = rdev->desc->ops;
4671         umode_t mode = attr->mode;
4672
4673         /* these three are always present */
4674         if (attr == &dev_attr_name.attr ||
4675             attr == &dev_attr_num_users.attr ||
4676             attr == &dev_attr_type.attr)
4677                 return mode;
4678
4679         /* some attributes need specific methods to be displayed */
4680         if (attr == &dev_attr_microvolts.attr) {
4681                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4682                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4683                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4684                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4685                         return mode;
4686                 return 0;
4687         }
4688
4689         if (attr == &dev_attr_microamps.attr)
4690                 return ops->get_current_limit ? mode : 0;
4691
4692         if (attr == &dev_attr_opmode.attr)
4693                 return ops->get_mode ? mode : 0;
4694
4695         if (attr == &dev_attr_state.attr)
4696                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4697
4698         if (attr == &dev_attr_status.attr)
4699                 return ops->get_status ? mode : 0;
4700
4701         if (attr == &dev_attr_bypass.attr)
4702                 return ops->get_bypass ? mode : 0;
4703
4704         /* constraints need specific supporting methods */
4705         if (attr == &dev_attr_min_microvolts.attr ||
4706             attr == &dev_attr_max_microvolts.attr)
4707                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4708
4709         if (attr == &dev_attr_min_microamps.attr ||
4710             attr == &dev_attr_max_microamps.attr)
4711                 return ops->set_current_limit ? mode : 0;
4712
4713         if (attr == &dev_attr_suspend_standby_state.attr ||
4714             attr == &dev_attr_suspend_mem_state.attr ||
4715             attr == &dev_attr_suspend_disk_state.attr)
4716                 return mode;
4717
4718         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4719             attr == &dev_attr_suspend_mem_microvolts.attr ||
4720             attr == &dev_attr_suspend_disk_microvolts.attr)
4721                 return ops->set_suspend_voltage ? mode : 0;
4722
4723         if (attr == &dev_attr_suspend_standby_mode.attr ||
4724             attr == &dev_attr_suspend_mem_mode.attr ||
4725             attr == &dev_attr_suspend_disk_mode.attr)
4726                 return ops->set_suspend_mode ? mode : 0;
4727
4728         return mode;
4729 }
4730
4731 static const struct attribute_group regulator_dev_group = {
4732         .attrs = regulator_dev_attrs,
4733         .is_visible = regulator_attr_is_visible,
4734 };
4735
4736 static const struct attribute_group *regulator_dev_groups[] = {
4737         &regulator_dev_group,
4738         NULL
4739 };
4740
4741 static void regulator_dev_release(struct device *dev)
4742 {
4743         struct regulator_dev *rdev = dev_get_drvdata(dev);
4744
4745         kfree(rdev->constraints);
4746         of_node_put(rdev->dev.of_node);
4747         kfree(rdev);
4748 }
4749
4750 static void rdev_init_debugfs(struct regulator_dev *rdev)
4751 {
4752         struct device *parent = rdev->dev.parent;
4753         const char *rname = rdev_get_name(rdev);
4754         char name[NAME_MAX];
4755
4756         /* Avoid duplicate debugfs directory names */
4757         if (parent && rname == rdev->desc->name) {
4758                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4759                          rname);
4760                 rname = name;
4761         }
4762
4763         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4764         if (!rdev->debugfs) {
4765                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4766                 return;
4767         }
4768
4769         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4770                            &rdev->use_count);
4771         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4772                            &rdev->open_count);
4773         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4774                            &rdev->bypass_count);
4775 }
4776
4777 static int regulator_register_resolve_supply(struct device *dev, void *data)
4778 {
4779         struct regulator_dev *rdev = dev_to_rdev(dev);
4780
4781         if (regulator_resolve_supply(rdev))
4782                 rdev_dbg(rdev, "unable to resolve supply\n");
4783
4784         return 0;
4785 }
4786
4787 int regulator_coupler_register(struct regulator_coupler *coupler)
4788 {
4789         mutex_lock(&regulator_list_mutex);
4790         list_add_tail(&coupler->list, &regulator_coupler_list);
4791         mutex_unlock(&regulator_list_mutex);
4792
4793         return 0;
4794 }
4795
4796 static struct regulator_coupler *
4797 regulator_find_coupler(struct regulator_dev *rdev)
4798 {
4799         struct regulator_coupler *coupler;
4800         int err;
4801
4802         /*
4803          * Note that regulators are appended to the list and the generic
4804          * coupler is registered first, hence it will be attached at last
4805          * if nobody cared.
4806          */
4807         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4808                 err = coupler->attach_regulator(coupler, rdev);
4809                 if (!err) {
4810                         if (!coupler->balance_voltage &&
4811                             rdev->coupling_desc.n_coupled > 2)
4812                                 goto err_unsupported;
4813
4814                         return coupler;
4815                 }
4816
4817                 if (err < 0)
4818                         return ERR_PTR(err);
4819
4820                 if (err == 1)
4821                         continue;
4822
4823                 break;
4824         }
4825
4826         return ERR_PTR(-EINVAL);
4827
4828 err_unsupported:
4829         if (coupler->detach_regulator)
4830                 coupler->detach_regulator(coupler, rdev);
4831
4832         rdev_err(rdev,
4833                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4834
4835         return ERR_PTR(-EPERM);
4836 }
4837
4838 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4839 {
4840         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4841         struct coupling_desc *c_desc = &rdev->coupling_desc;
4842         int n_coupled = c_desc->n_coupled;
4843         struct regulator_dev *c_rdev;
4844         int i;
4845
4846         for (i = 1; i < n_coupled; i++) {
4847                 /* already resolved */
4848                 if (c_desc->coupled_rdevs[i])
4849                         continue;
4850
4851                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4852
4853                 if (!c_rdev)
4854                         continue;
4855
4856                 if (c_rdev->coupling_desc.coupler != coupler) {
4857                         rdev_err(rdev, "coupler mismatch with %s\n",
4858                                  rdev_get_name(c_rdev));
4859                         return;
4860                 }
4861
4862                 regulator_lock(c_rdev);
4863
4864                 c_desc->coupled_rdevs[i] = c_rdev;
4865                 c_desc->n_resolved++;
4866
4867                 regulator_unlock(c_rdev);
4868
4869                 regulator_resolve_coupling(c_rdev);
4870         }
4871 }
4872
4873 static void regulator_remove_coupling(struct regulator_dev *rdev)
4874 {
4875         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4876         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4877         struct regulator_dev *__c_rdev, *c_rdev;
4878         unsigned int __n_coupled, n_coupled;
4879         int i, k;
4880         int err;
4881
4882         n_coupled = c_desc->n_coupled;
4883
4884         for (i = 1; i < n_coupled; i++) {
4885                 c_rdev = c_desc->coupled_rdevs[i];
4886
4887                 if (!c_rdev)
4888                         continue;
4889
4890                 regulator_lock(c_rdev);
4891
4892                 __c_desc = &c_rdev->coupling_desc;
4893                 __n_coupled = __c_desc->n_coupled;
4894
4895                 for (k = 1; k < __n_coupled; k++) {
4896                         __c_rdev = __c_desc->coupled_rdevs[k];
4897
4898                         if (__c_rdev == rdev) {
4899                                 __c_desc->coupled_rdevs[k] = NULL;
4900                                 __c_desc->n_resolved--;
4901                                 break;
4902                         }
4903                 }
4904
4905                 regulator_unlock(c_rdev);
4906
4907                 c_desc->coupled_rdevs[i] = NULL;
4908                 c_desc->n_resolved--;
4909         }
4910
4911         if (coupler && coupler->detach_regulator) {
4912                 err = coupler->detach_regulator(coupler, rdev);
4913                 if (err)
4914                         rdev_err(rdev, "failed to detach from coupler: %d\n",
4915                                  err);
4916         }
4917
4918         kfree(rdev->coupling_desc.coupled_rdevs);
4919         rdev->coupling_desc.coupled_rdevs = NULL;
4920 }
4921
4922 static int regulator_init_coupling(struct regulator_dev *rdev)
4923 {
4924         int err, n_phandles;
4925         size_t alloc_size;
4926
4927         if (!IS_ENABLED(CONFIG_OF))
4928                 n_phandles = 0;
4929         else
4930                 n_phandles = of_get_n_coupled(rdev);
4931
4932         alloc_size = sizeof(*rdev) * (n_phandles + 1);
4933
4934         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4935         if (!rdev->coupling_desc.coupled_rdevs)
4936                 return -ENOMEM;
4937
4938         /*
4939          * Every regulator should always have coupling descriptor filled with
4940          * at least pointer to itself.
4941          */
4942         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4943         rdev->coupling_desc.n_coupled = n_phandles + 1;
4944         rdev->coupling_desc.n_resolved++;
4945
4946         /* regulator isn't coupled */
4947         if (n_phandles == 0)
4948                 return 0;
4949
4950         if (!of_check_coupling_data(rdev))
4951                 return -EPERM;
4952
4953         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4954         if (IS_ERR(rdev->coupling_desc.coupler)) {
4955                 err = PTR_ERR(rdev->coupling_desc.coupler);
4956                 rdev_err(rdev, "failed to get coupler: %d\n", err);
4957                 return err;
4958         }
4959
4960         return 0;
4961 }
4962
4963 static int generic_coupler_attach(struct regulator_coupler *coupler,
4964                                   struct regulator_dev *rdev)
4965 {
4966         if (rdev->coupling_desc.n_coupled > 2) {
4967                 rdev_err(rdev,
4968                          "Voltage balancing for multiple regulator couples is unimplemented\n");
4969                 return -EPERM;
4970         }
4971
4972         if (!rdev->constraints->always_on) {
4973                 rdev_err(rdev,
4974                          "Coupling of a non always-on regulator is unimplemented\n");
4975                 return -ENOTSUPP;
4976         }
4977
4978         return 0;
4979 }
4980
4981 static struct regulator_coupler generic_regulator_coupler = {
4982         .attach_regulator = generic_coupler_attach,
4983 };
4984
4985 /**
4986  * regulator_register - register regulator
4987  * @regulator_desc: regulator to register
4988  * @cfg: runtime configuration for regulator
4989  *
4990  * Called by regulator drivers to register a regulator.
4991  * Returns a valid pointer to struct regulator_dev on success
4992  * or an ERR_PTR() on error.
4993  */
4994 struct regulator_dev *
4995 regulator_register(const struct regulator_desc *regulator_desc,
4996                    const struct regulator_config *cfg)
4997 {
4998         const struct regulation_constraints *constraints = NULL;
4999         const struct regulator_init_data *init_data;
5000         struct regulator_config *config = NULL;
5001         static atomic_t regulator_no = ATOMIC_INIT(-1);
5002         struct regulator_dev *rdev;
5003         bool dangling_cfg_gpiod = false;
5004         bool dangling_of_gpiod = false;
5005         struct device *dev;
5006         int ret, i;
5007
5008         if (cfg == NULL)
5009                 return ERR_PTR(-EINVAL);
5010         if (cfg->ena_gpiod)
5011                 dangling_cfg_gpiod = true;
5012         if (regulator_desc == NULL) {
5013                 ret = -EINVAL;
5014                 goto rinse;
5015         }
5016
5017         dev = cfg->dev;
5018         WARN_ON(!dev);
5019
5020         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5021                 ret = -EINVAL;
5022                 goto rinse;
5023         }
5024
5025         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5026             regulator_desc->type != REGULATOR_CURRENT) {
5027                 ret = -EINVAL;
5028                 goto rinse;
5029         }
5030
5031         /* Only one of each should be implemented */
5032         WARN_ON(regulator_desc->ops->get_voltage &&
5033                 regulator_desc->ops->get_voltage_sel);
5034         WARN_ON(regulator_desc->ops->set_voltage &&
5035                 regulator_desc->ops->set_voltage_sel);
5036
5037         /* If we're using selectors we must implement list_voltage. */
5038         if (regulator_desc->ops->get_voltage_sel &&
5039             !regulator_desc->ops->list_voltage) {
5040                 ret = -EINVAL;
5041                 goto rinse;
5042         }
5043         if (regulator_desc->ops->set_voltage_sel &&
5044             !regulator_desc->ops->list_voltage) {
5045                 ret = -EINVAL;
5046                 goto rinse;
5047         }
5048
5049         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5050         if (rdev == NULL) {
5051                 ret = -ENOMEM;
5052                 goto rinse;
5053         }
5054
5055         /*
5056          * Duplicate the config so the driver could override it after
5057          * parsing init data.
5058          */
5059         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5060         if (config == NULL) {
5061                 kfree(rdev);
5062                 ret = -ENOMEM;
5063                 goto rinse;
5064         }
5065
5066         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5067                                                &rdev->dev.of_node);
5068
5069         /*
5070          * Sometimes not all resources are probed already so we need to take
5071          * that into account. This happens most the time if the ena_gpiod comes
5072          * from a gpio extender or something else.
5073          */
5074         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5075                 kfree(config);
5076                 kfree(rdev);
5077                 ret = -EPROBE_DEFER;
5078                 goto rinse;
5079         }
5080
5081         /*
5082          * We need to keep track of any GPIO descriptor coming from the
5083          * device tree until we have handled it over to the core. If the
5084          * config that was passed in to this function DOES NOT contain
5085          * a descriptor, and the config after this call DOES contain
5086          * a descriptor, we definitely got one from parsing the device
5087          * tree.
5088          */
5089         if (!cfg->ena_gpiod && config->ena_gpiod)
5090                 dangling_of_gpiod = true;
5091         if (!init_data) {
5092                 init_data = config->init_data;
5093                 rdev->dev.of_node = of_node_get(config->of_node);
5094         }
5095
5096         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5097         rdev->reg_data = config->driver_data;
5098         rdev->owner = regulator_desc->owner;
5099         rdev->desc = regulator_desc;
5100         if (config->regmap)
5101                 rdev->regmap = config->regmap;
5102         else if (dev_get_regmap(dev, NULL))
5103                 rdev->regmap = dev_get_regmap(dev, NULL);
5104         else if (dev->parent)
5105                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5106         INIT_LIST_HEAD(&rdev->consumer_list);
5107         INIT_LIST_HEAD(&rdev->list);
5108         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5109         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5110
5111         /* preform any regulator specific init */
5112         if (init_data && init_data->regulator_init) {
5113                 ret = init_data->regulator_init(rdev->reg_data);
5114                 if (ret < 0)
5115                         goto clean;
5116         }
5117
5118         if (config->ena_gpiod) {
5119                 mutex_lock(&regulator_list_mutex);
5120                 ret = regulator_ena_gpio_request(rdev, config);
5121                 mutex_unlock(&regulator_list_mutex);
5122                 if (ret != 0) {
5123                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5124                                  ret);
5125                         goto clean;
5126                 }
5127                 /* The regulator core took over the GPIO descriptor */
5128                 dangling_cfg_gpiod = false;
5129                 dangling_of_gpiod = false;
5130         }
5131
5132         /* register with sysfs */
5133         rdev->dev.class = &regulator_class;
5134         rdev->dev.parent = dev;
5135         dev_set_name(&rdev->dev, "regulator.%lu",
5136                     (unsigned long) atomic_inc_return(&regulator_no));
5137
5138         /* set regulator constraints */
5139         if (init_data)
5140                 constraints = &init_data->constraints;
5141
5142         if (init_data && init_data->supply_regulator)
5143                 rdev->supply_name = init_data->supply_regulator;
5144         else if (regulator_desc->supply_name)
5145                 rdev->supply_name = regulator_desc->supply_name;
5146
5147         /*
5148          * Attempt to resolve the regulator supply, if specified,
5149          * but don't return an error if we fail because we will try
5150          * to resolve it again later as more regulators are added.
5151          */
5152         if (regulator_resolve_supply(rdev))
5153                 rdev_dbg(rdev, "unable to resolve supply\n");
5154
5155         ret = set_machine_constraints(rdev, constraints);
5156         if (ret < 0)
5157                 goto wash;
5158
5159         mutex_lock(&regulator_list_mutex);
5160         ret = regulator_init_coupling(rdev);
5161         mutex_unlock(&regulator_list_mutex);
5162         if (ret < 0)
5163                 goto wash;
5164
5165         /* add consumers devices */
5166         if (init_data) {
5167                 mutex_lock(&regulator_list_mutex);
5168                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5169                         ret = set_consumer_device_supply(rdev,
5170                                 init_data->consumer_supplies[i].dev_name,
5171                                 init_data->consumer_supplies[i].supply);
5172                         if (ret < 0) {
5173                                 mutex_unlock(&regulator_list_mutex);
5174                                 dev_err(dev, "Failed to set supply %s\n",
5175                                         init_data->consumer_supplies[i].supply);
5176                                 goto unset_supplies;
5177                         }
5178                 }
5179                 mutex_unlock(&regulator_list_mutex);
5180         }
5181
5182         if (!rdev->desc->ops->get_voltage &&
5183             !rdev->desc->ops->list_voltage &&
5184             !rdev->desc->fixed_uV)
5185                 rdev->is_switch = true;
5186
5187         dev_set_drvdata(&rdev->dev, rdev);
5188         ret = device_register(&rdev->dev);
5189         if (ret != 0) {
5190                 put_device(&rdev->dev);
5191                 goto unset_supplies;
5192         }
5193
5194         rdev_init_debugfs(rdev);
5195
5196         /* try to resolve regulators coupling since a new one was registered */
5197         mutex_lock(&regulator_list_mutex);
5198         regulator_resolve_coupling(rdev);
5199         mutex_unlock(&regulator_list_mutex);
5200
5201         /* try to resolve regulators supply since a new one was registered */
5202         class_for_each_device(&regulator_class, NULL, NULL,
5203                               regulator_register_resolve_supply);
5204         kfree(config);
5205         return rdev;
5206
5207 unset_supplies:
5208         mutex_lock(&regulator_list_mutex);
5209         unset_regulator_supplies(rdev);
5210         regulator_remove_coupling(rdev);
5211         mutex_unlock(&regulator_list_mutex);
5212 wash:
5213         kfree(rdev->coupling_desc.coupled_rdevs);
5214         kfree(rdev->constraints);
5215         mutex_lock(&regulator_list_mutex);
5216         regulator_ena_gpio_free(rdev);
5217         mutex_unlock(&regulator_list_mutex);
5218 clean:
5219         if (dangling_of_gpiod)
5220                 gpiod_put(config->ena_gpiod);
5221         kfree(rdev);
5222         kfree(config);
5223 rinse:
5224         if (dangling_cfg_gpiod)
5225                 gpiod_put(cfg->ena_gpiod);
5226         return ERR_PTR(ret);
5227 }
5228 EXPORT_SYMBOL_GPL(regulator_register);
5229
5230 /**
5231  * regulator_unregister - unregister regulator
5232  * @rdev: regulator to unregister
5233  *
5234  * Called by regulator drivers to unregister a regulator.
5235  */
5236 void regulator_unregister(struct regulator_dev *rdev)
5237 {
5238         if (rdev == NULL)
5239                 return;
5240
5241         if (rdev->supply) {
5242                 while (rdev->use_count--)
5243                         regulator_disable(rdev->supply);
5244                 regulator_put(rdev->supply);
5245         }
5246
5247         flush_work(&rdev->disable_work.work);
5248
5249         mutex_lock(&regulator_list_mutex);
5250
5251         debugfs_remove_recursive(rdev->debugfs);
5252         WARN_ON(rdev->open_count);
5253         regulator_remove_coupling(rdev);
5254         unset_regulator_supplies(rdev);
5255         list_del(&rdev->list);
5256         regulator_ena_gpio_free(rdev);
5257         device_unregister(&rdev->dev);
5258
5259         mutex_unlock(&regulator_list_mutex);
5260 }
5261 EXPORT_SYMBOL_GPL(regulator_unregister);
5262
5263 #ifdef CONFIG_SUSPEND
5264 /**
5265  * regulator_suspend - prepare regulators for system wide suspend
5266  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5267  *
5268  * Configure each regulator with it's suspend operating parameters for state.
5269  */
5270 static int regulator_suspend(struct device *dev)
5271 {
5272         struct regulator_dev *rdev = dev_to_rdev(dev);
5273         suspend_state_t state = pm_suspend_target_state;
5274         int ret;
5275
5276         regulator_lock(rdev);
5277         ret = suspend_set_state(rdev, state);
5278         regulator_unlock(rdev);
5279
5280         return ret;
5281 }
5282
5283 static int regulator_resume(struct device *dev)
5284 {
5285         suspend_state_t state = pm_suspend_target_state;
5286         struct regulator_dev *rdev = dev_to_rdev(dev);
5287         struct regulator_state *rstate;
5288         int ret = 0;
5289
5290         rstate = regulator_get_suspend_state(rdev, state);
5291         if (rstate == NULL)
5292                 return 0;
5293
5294         regulator_lock(rdev);
5295
5296         if (rdev->desc->ops->resume &&
5297             (rstate->enabled == ENABLE_IN_SUSPEND ||
5298              rstate->enabled == DISABLE_IN_SUSPEND))
5299                 ret = rdev->desc->ops->resume(rdev);
5300
5301         regulator_unlock(rdev);
5302
5303         return ret;
5304 }
5305 #else /* !CONFIG_SUSPEND */
5306
5307 #define regulator_suspend       NULL
5308 #define regulator_resume        NULL
5309
5310 #endif /* !CONFIG_SUSPEND */
5311
5312 #ifdef CONFIG_PM
5313 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5314         .suspend        = regulator_suspend,
5315         .resume         = regulator_resume,
5316 };
5317 #endif
5318
5319 struct class regulator_class = {
5320         .name = "regulator",
5321         .dev_release = regulator_dev_release,
5322         .dev_groups = regulator_dev_groups,
5323 #ifdef CONFIG_PM
5324         .pm = &regulator_pm_ops,
5325 #endif
5326 };
5327 /**
5328  * regulator_has_full_constraints - the system has fully specified constraints
5329  *
5330  * Calling this function will cause the regulator API to disable all
5331  * regulators which have a zero use count and don't have an always_on
5332  * constraint in a late_initcall.
5333  *
5334  * The intention is that this will become the default behaviour in a
5335  * future kernel release so users are encouraged to use this facility
5336  * now.
5337  */
5338 void regulator_has_full_constraints(void)
5339 {
5340         has_full_constraints = 1;
5341 }
5342 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5343
5344 /**
5345  * rdev_get_drvdata - get rdev regulator driver data
5346  * @rdev: regulator
5347  *
5348  * Get rdev regulator driver private data. This call can be used in the
5349  * regulator driver context.
5350  */
5351 void *rdev_get_drvdata(struct regulator_dev *rdev)
5352 {
5353         return rdev->reg_data;
5354 }
5355 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5356
5357 /**
5358  * regulator_get_drvdata - get regulator driver data
5359  * @regulator: regulator
5360  *
5361  * Get regulator driver private data. This call can be used in the consumer
5362  * driver context when non API regulator specific functions need to be called.
5363  */
5364 void *regulator_get_drvdata(struct regulator *regulator)
5365 {
5366         return regulator->rdev->reg_data;
5367 }
5368 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5369
5370 /**
5371  * regulator_set_drvdata - set regulator driver data
5372  * @regulator: regulator
5373  * @data: data
5374  */
5375 void regulator_set_drvdata(struct regulator *regulator, void *data)
5376 {
5377         regulator->rdev->reg_data = data;
5378 }
5379 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5380
5381 /**
5382  * regulator_get_id - get regulator ID
5383  * @rdev: regulator
5384  */
5385 int rdev_get_id(struct regulator_dev *rdev)
5386 {
5387         return rdev->desc->id;
5388 }
5389 EXPORT_SYMBOL_GPL(rdev_get_id);
5390
5391 struct device *rdev_get_dev(struct regulator_dev *rdev)
5392 {
5393         return &rdev->dev;
5394 }
5395 EXPORT_SYMBOL_GPL(rdev_get_dev);
5396
5397 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5398 {
5399         return rdev->regmap;
5400 }
5401 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5402
5403 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5404 {
5405         return reg_init_data->driver_data;
5406 }
5407 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5408
5409 #ifdef CONFIG_DEBUG_FS
5410 static int supply_map_show(struct seq_file *sf, void *data)
5411 {
5412         struct regulator_map *map;
5413
5414         list_for_each_entry(map, &regulator_map_list, list) {
5415                 seq_printf(sf, "%s -> %s.%s\n",
5416                                 rdev_get_name(map->regulator), map->dev_name,
5417                                 map->supply);
5418         }
5419
5420         return 0;
5421 }
5422 DEFINE_SHOW_ATTRIBUTE(supply_map);
5423
5424 struct summary_data {
5425         struct seq_file *s;
5426         struct regulator_dev *parent;
5427         int level;
5428 };
5429
5430 static void regulator_summary_show_subtree(struct seq_file *s,
5431                                            struct regulator_dev *rdev,
5432                                            int level);
5433
5434 static int regulator_summary_show_children(struct device *dev, void *data)
5435 {
5436         struct regulator_dev *rdev = dev_to_rdev(dev);
5437         struct summary_data *summary_data = data;
5438
5439         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5440                 regulator_summary_show_subtree(summary_data->s, rdev,
5441                                                summary_data->level + 1);
5442
5443         return 0;
5444 }
5445
5446 static void regulator_summary_show_subtree(struct seq_file *s,
5447                                            struct regulator_dev *rdev,
5448                                            int level)
5449 {
5450         struct regulation_constraints *c;
5451         struct regulator *consumer;
5452         struct summary_data summary_data;
5453         unsigned int opmode;
5454
5455         if (!rdev)
5456                 return;
5457
5458         opmode = _regulator_get_mode_unlocked(rdev);
5459         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5460                    level * 3 + 1, "",
5461                    30 - level * 3, rdev_get_name(rdev),
5462                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5463                    regulator_opmode_to_str(opmode));
5464
5465         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5466         seq_printf(s, "%5dmA ",
5467                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5468
5469         c = rdev->constraints;
5470         if (c) {
5471                 switch (rdev->desc->type) {
5472                 case REGULATOR_VOLTAGE:
5473                         seq_printf(s, "%5dmV %5dmV ",
5474                                    c->min_uV / 1000, c->max_uV / 1000);
5475                         break;
5476                 case REGULATOR_CURRENT:
5477                         seq_printf(s, "%5dmA %5dmA ",
5478                                    c->min_uA / 1000, c->max_uA / 1000);
5479                         break;
5480                 }
5481         }
5482
5483         seq_puts(s, "\n");
5484
5485         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5486                 if (consumer->dev && consumer->dev->class == &regulator_class)
5487                         continue;
5488
5489                 seq_printf(s, "%*s%-*s ",
5490                            (level + 1) * 3 + 1, "",
5491                            30 - (level + 1) * 3,
5492                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5493
5494                 switch (rdev->desc->type) {
5495                 case REGULATOR_VOLTAGE:
5496                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5497                                    consumer->enable_count,
5498                                    consumer->uA_load / 1000,
5499                                    consumer->uA_load && !consumer->enable_count ?
5500                                    '*' : ' ',
5501                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5502                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5503                         break;
5504                 case REGULATOR_CURRENT:
5505                         break;
5506                 }
5507
5508                 seq_puts(s, "\n");
5509         }
5510
5511         summary_data.s = s;
5512         summary_data.level = level;
5513         summary_data.parent = rdev;
5514
5515         class_for_each_device(&regulator_class, NULL, &summary_data,
5516                               regulator_summary_show_children);
5517 }
5518
5519 struct summary_lock_data {
5520         struct ww_acquire_ctx *ww_ctx;
5521         struct regulator_dev **new_contended_rdev;
5522         struct regulator_dev **old_contended_rdev;
5523 };
5524
5525 static int regulator_summary_lock_one(struct device *dev, void *data)
5526 {
5527         struct regulator_dev *rdev = dev_to_rdev(dev);
5528         struct summary_lock_data *lock_data = data;
5529         int ret = 0;
5530
5531         if (rdev != *lock_data->old_contended_rdev) {
5532                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5533
5534                 if (ret == -EDEADLK)
5535                         *lock_data->new_contended_rdev = rdev;
5536                 else
5537                         WARN_ON_ONCE(ret);
5538         } else {
5539                 *lock_data->old_contended_rdev = NULL;
5540         }
5541
5542         return ret;
5543 }
5544
5545 static int regulator_summary_unlock_one(struct device *dev, void *data)
5546 {
5547         struct regulator_dev *rdev = dev_to_rdev(dev);
5548         struct summary_lock_data *lock_data = data;
5549
5550         if (lock_data) {
5551                 if (rdev == *lock_data->new_contended_rdev)
5552                         return -EDEADLK;
5553         }
5554
5555         regulator_unlock(rdev);
5556
5557         return 0;
5558 }
5559
5560 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5561                                       struct regulator_dev **new_contended_rdev,
5562                                       struct regulator_dev **old_contended_rdev)
5563 {
5564         struct summary_lock_data lock_data;
5565         int ret;
5566
5567         lock_data.ww_ctx = ww_ctx;
5568         lock_data.new_contended_rdev = new_contended_rdev;
5569         lock_data.old_contended_rdev = old_contended_rdev;
5570
5571         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5572                                     regulator_summary_lock_one);
5573         if (ret)
5574                 class_for_each_device(&regulator_class, NULL, &lock_data,
5575                                       regulator_summary_unlock_one);
5576
5577         return ret;
5578 }
5579
5580 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5581 {
5582         struct regulator_dev *new_contended_rdev = NULL;
5583         struct regulator_dev *old_contended_rdev = NULL;
5584         int err;
5585
5586         mutex_lock(&regulator_list_mutex);
5587
5588         ww_acquire_init(ww_ctx, &regulator_ww_class);
5589
5590         do {
5591                 if (new_contended_rdev) {
5592                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5593                         old_contended_rdev = new_contended_rdev;
5594                         old_contended_rdev->ref_cnt++;
5595                 }
5596
5597                 err = regulator_summary_lock_all(ww_ctx,
5598                                                  &new_contended_rdev,
5599                                                  &old_contended_rdev);
5600
5601                 if (old_contended_rdev)
5602                         regulator_unlock(old_contended_rdev);
5603
5604         } while (err == -EDEADLK);
5605
5606         ww_acquire_done(ww_ctx);
5607 }
5608
5609 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5610 {
5611         class_for_each_device(&regulator_class, NULL, NULL,
5612                               regulator_summary_unlock_one);
5613         ww_acquire_fini(ww_ctx);
5614
5615         mutex_unlock(&regulator_list_mutex);
5616 }
5617
5618 static int regulator_summary_show_roots(struct device *dev, void *data)
5619 {
5620         struct regulator_dev *rdev = dev_to_rdev(dev);
5621         struct seq_file *s = data;
5622
5623         if (!rdev->supply)
5624                 regulator_summary_show_subtree(s, rdev, 0);
5625
5626         return 0;
5627 }
5628
5629 static int regulator_summary_show(struct seq_file *s, void *data)
5630 {
5631         struct ww_acquire_ctx ww_ctx;
5632
5633         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5634         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5635
5636         regulator_summary_lock(&ww_ctx);
5637
5638         class_for_each_device(&regulator_class, NULL, s,
5639                               regulator_summary_show_roots);
5640
5641         regulator_summary_unlock(&ww_ctx);
5642
5643         return 0;
5644 }
5645 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5646 #endif /* CONFIG_DEBUG_FS */
5647
5648 static int __init regulator_init(void)
5649 {
5650         int ret;
5651
5652         ret = class_register(&regulator_class);
5653
5654         debugfs_root = debugfs_create_dir("regulator", NULL);
5655         if (!debugfs_root)
5656                 pr_warn("regulator: Failed to create debugfs directory\n");
5657
5658 #ifdef CONFIG_DEBUG_FS
5659         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5660                             &supply_map_fops);
5661
5662         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5663                             NULL, &regulator_summary_fops);
5664 #endif
5665         regulator_dummy_init();
5666
5667         regulator_coupler_register(&generic_regulator_coupler);
5668
5669         return ret;
5670 }
5671
5672 /* init early to allow our consumers to complete system booting */
5673 core_initcall(regulator_init);
5674
5675 static int regulator_late_cleanup(struct device *dev, void *data)
5676 {
5677         struct regulator_dev *rdev = dev_to_rdev(dev);
5678         const struct regulator_ops *ops = rdev->desc->ops;
5679         struct regulation_constraints *c = rdev->constraints;
5680         int enabled, ret;
5681
5682         if (c && c->always_on)
5683                 return 0;
5684
5685         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5686                 return 0;
5687
5688         regulator_lock(rdev);
5689
5690         if (rdev->use_count)
5691                 goto unlock;
5692
5693         /* If we can't read the status assume it's on. */
5694         if (ops->is_enabled)
5695                 enabled = ops->is_enabled(rdev);
5696         else
5697                 enabled = 1;
5698
5699         if (!enabled)
5700                 goto unlock;
5701
5702         if (have_full_constraints()) {
5703                 /* We log since this may kill the system if it goes
5704                  * wrong. */
5705                 rdev_info(rdev, "disabling\n");
5706                 ret = _regulator_do_disable(rdev);
5707                 if (ret != 0)
5708                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5709         } else {
5710                 /* The intention is that in future we will
5711                  * assume that full constraints are provided
5712                  * so warn even if we aren't going to do
5713                  * anything here.
5714                  */
5715                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5716         }
5717
5718 unlock:
5719         regulator_unlock(rdev);
5720
5721         return 0;
5722 }
5723
5724 static void regulator_init_complete_work_function(struct work_struct *work)
5725 {
5726         /*
5727          * Regulators may had failed to resolve their input supplies
5728          * when were registered, either because the input supply was
5729          * not registered yet or because its parent device was not
5730          * bound yet. So attempt to resolve the input supplies for
5731          * pending regulators before trying to disable unused ones.
5732          */
5733         class_for_each_device(&regulator_class, NULL, NULL,
5734                               regulator_register_resolve_supply);
5735
5736         /* If we have a full configuration then disable any regulators
5737          * we have permission to change the status for and which are
5738          * not in use or always_on.  This is effectively the default
5739          * for DT and ACPI as they have full constraints.
5740          */
5741         class_for_each_device(&regulator_class, NULL, NULL,
5742                               regulator_late_cleanup);
5743 }
5744
5745 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5746                             regulator_init_complete_work_function);
5747
5748 static int __init regulator_init_complete(void)
5749 {
5750         /*
5751          * Since DT doesn't provide an idiomatic mechanism for
5752          * enabling full constraints and since it's much more natural
5753          * with DT to provide them just assume that a DT enabled
5754          * system has full constraints.
5755          */
5756         if (of_have_populated_dt())
5757                 has_full_constraints = true;
5758
5759         /*
5760          * We punt completion for an arbitrary amount of time since
5761          * systems like distros will load many drivers from userspace
5762          * so consumers might not always be ready yet, this is
5763          * particularly an issue with laptops where this might bounce
5764          * the display off then on.  Ideally we'd get a notification
5765          * from userspace when this happens but we don't so just wait
5766          * a bit and hope we waited long enough.  It'd be better if
5767          * we'd only do this on systems that need it, and a kernel
5768          * command line option might be useful.
5769          */
5770         schedule_delayed_work(&regulator_init_complete_work,
5771                               msecs_to_jiffies(30000));
5772
5773         return 0;
5774 }
5775 late_initcall_sync(regulator_init_complete);