]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
regulator: da9063: Convert to use regulator_set/get_current_limit_regmap
[linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_WW_CLASS(regulator_ww_class);
53 static DEFINE_MUTEX(regulator_nesting_mutex);
54 static DEFINE_MUTEX(regulator_list_mutex);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator *regulator);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static int regulator_balance_voltage(struct regulator_dev *rdev,
109                                      suspend_state_t state);
110 static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
111                                       int min_uV, int max_uV,
112                                       suspend_state_t state);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116 static void _regulator_put(struct regulator *regulator);
117
118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120         if (rdev->constraints && rdev->constraints->name)
121                 return rdev->constraints->name;
122         else if (rdev->desc->name)
123                 return rdev->desc->name;
124         else
125                 return "";
126 }
127
128 static bool have_full_constraints(void)
129 {
130         return has_full_constraints || of_have_populated_dt();
131 }
132
133 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
134 {
135         if (!rdev->constraints) {
136                 rdev_err(rdev, "no constraints\n");
137                 return false;
138         }
139
140         if (rdev->constraints->valid_ops_mask & ops)
141                 return true;
142
143         return false;
144 }
145
146 /**
147  * regulator_lock_nested - lock a single regulator
148  * @rdev:               regulator source
149  * @ww_ctx:             w/w mutex acquire context
150  *
151  * This function can be called many times by one task on
152  * a single regulator and its mutex will be locked only
153  * once. If a task, which is calling this function is other
154  * than the one, which initially locked the mutex, it will
155  * wait on mutex.
156  */
157 static inline int regulator_lock_nested(struct regulator_dev *rdev,
158                                         struct ww_acquire_ctx *ww_ctx)
159 {
160         bool lock = false;
161         int ret = 0;
162
163         mutex_lock(&regulator_nesting_mutex);
164
165         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
166                 if (rdev->mutex_owner == current)
167                         rdev->ref_cnt++;
168                 else
169                         lock = true;
170
171                 if (lock) {
172                         mutex_unlock(&regulator_nesting_mutex);
173                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
174                         mutex_lock(&regulator_nesting_mutex);
175                 }
176         } else {
177                 lock = true;
178         }
179
180         if (lock && ret != -EDEADLK) {
181                 rdev->ref_cnt++;
182                 rdev->mutex_owner = current;
183         }
184
185         mutex_unlock(&regulator_nesting_mutex);
186
187         return ret;
188 }
189
190 /**
191  * regulator_lock - lock a single regulator
192  * @rdev:               regulator source
193  *
194  * This function can be called many times by one task on
195  * a single regulator and its mutex will be locked only
196  * once. If a task, which is calling this function is other
197  * than the one, which initially locked the mutex, it will
198  * wait on mutex.
199  */
200 void regulator_lock(struct regulator_dev *rdev)
201 {
202         regulator_lock_nested(rdev, NULL);
203 }
204 EXPORT_SYMBOL_GPL(regulator_lock);
205
206 /**
207  * regulator_unlock - unlock a single regulator
208  * @rdev:               regulator_source
209  *
210  * This function unlocks the mutex when the
211  * reference counter reaches 0.
212  */
213 void regulator_unlock(struct regulator_dev *rdev)
214 {
215         mutex_lock(&regulator_nesting_mutex);
216
217         if (--rdev->ref_cnt == 0) {
218                 rdev->mutex_owner = NULL;
219                 ww_mutex_unlock(&rdev->mutex);
220         }
221
222         WARN_ON_ONCE(rdev->ref_cnt < 0);
223
224         mutex_unlock(&regulator_nesting_mutex);
225 }
226 EXPORT_SYMBOL_GPL(regulator_unlock);
227
228 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
229 {
230         struct regulator_dev *c_rdev;
231         int i;
232
233         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
234                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
235
236                 if (rdev->supply->rdev == c_rdev)
237                         return true;
238         }
239
240         return false;
241 }
242
243 static void regulator_unlock_recursive(struct regulator_dev *rdev,
244                                        unsigned int n_coupled)
245 {
246         struct regulator_dev *c_rdev;
247         int i;
248
249         for (i = n_coupled; i > 0; i--) {
250                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
251
252                 if (!c_rdev)
253                         continue;
254
255                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
256                         regulator_unlock_recursive(
257                                         c_rdev->supply->rdev,
258                                         c_rdev->coupling_desc.n_coupled);
259
260                 regulator_unlock(c_rdev);
261         }
262 }
263
264 static int regulator_lock_recursive(struct regulator_dev *rdev,
265                                     struct regulator_dev **new_contended_rdev,
266                                     struct regulator_dev **old_contended_rdev,
267                                     struct ww_acquire_ctx *ww_ctx)
268 {
269         struct regulator_dev *c_rdev;
270         int i, err;
271
272         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
273                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
274
275                 if (!c_rdev)
276                         continue;
277
278                 if (c_rdev != *old_contended_rdev) {
279                         err = regulator_lock_nested(c_rdev, ww_ctx);
280                         if (err) {
281                                 if (err == -EDEADLK) {
282                                         *new_contended_rdev = c_rdev;
283                                         goto err_unlock;
284                                 }
285
286                                 /* shouldn't happen */
287                                 WARN_ON_ONCE(err != -EALREADY);
288                         }
289                 } else {
290                         *old_contended_rdev = NULL;
291                 }
292
293                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
294                         err = regulator_lock_recursive(c_rdev->supply->rdev,
295                                                        new_contended_rdev,
296                                                        old_contended_rdev,
297                                                        ww_ctx);
298                         if (err) {
299                                 regulator_unlock(c_rdev);
300                                 goto err_unlock;
301                         }
302                 }
303         }
304
305         return 0;
306
307 err_unlock:
308         regulator_unlock_recursive(rdev, i);
309
310         return err;
311 }
312
313 /**
314  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
315  *                              regulators
316  * @rdev:                       regulator source
317  * @ww_ctx:                     w/w mutex acquire context
318  *
319  * Unlock all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_unlock_dependent(struct regulator_dev *rdev,
322                                        struct ww_acquire_ctx *ww_ctx)
323 {
324         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
325         ww_acquire_fini(ww_ctx);
326 }
327
328 /**
329  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
330  * @rdev:                       regulator source
331  * @ww_ctx:                     w/w mutex acquire context
332  *
333  * This function as a wrapper on regulator_lock_recursive(), which locks
334  * all regulators related with rdev by coupling or supplying.
335  */
336 static void regulator_lock_dependent(struct regulator_dev *rdev,
337                                      struct ww_acquire_ctx *ww_ctx)
338 {
339         struct regulator_dev *new_contended_rdev = NULL;
340         struct regulator_dev *old_contended_rdev = NULL;
341         int err;
342
343         mutex_lock(&regulator_list_mutex);
344
345         ww_acquire_init(ww_ctx, &regulator_ww_class);
346
347         do {
348                 if (new_contended_rdev) {
349                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
350                         old_contended_rdev = new_contended_rdev;
351                         old_contended_rdev->ref_cnt++;
352                 }
353
354                 err = regulator_lock_recursive(rdev,
355                                                &new_contended_rdev,
356                                                &old_contended_rdev,
357                                                ww_ctx);
358
359                 if (old_contended_rdev)
360                         regulator_unlock(old_contended_rdev);
361
362         } while (err == -EDEADLK);
363
364         ww_acquire_done(ww_ctx);
365
366         mutex_unlock(&regulator_list_mutex);
367 }
368
369 /**
370  * of_get_child_regulator - get a child regulator device node
371  * based on supply name
372  * @parent: Parent device node
373  * @prop_name: Combination regulator supply name and "-supply"
374  *
375  * Traverse all child nodes.
376  * Extract the child regulator device node corresponding to the supply name.
377  * returns the device node corresponding to the regulator if found, else
378  * returns NULL.
379  */
380 static struct device_node *of_get_child_regulator(struct device_node *parent,
381                                                   const char *prop_name)
382 {
383         struct device_node *regnode = NULL;
384         struct device_node *child = NULL;
385
386         for_each_child_of_node(parent, child) {
387                 regnode = of_parse_phandle(child, prop_name, 0);
388
389                 if (!regnode) {
390                         regnode = of_get_child_regulator(child, prop_name);
391                         if (regnode)
392                                 return regnode;
393                 } else {
394                         return regnode;
395                 }
396         }
397         return NULL;
398 }
399
400 /**
401  * of_get_regulator - get a regulator device node based on supply name
402  * @dev: Device pointer for the consumer (of regulator) device
403  * @supply: regulator supply name
404  *
405  * Extract the regulator device node corresponding to the supply name.
406  * returns the device node corresponding to the regulator if found, else
407  * returns NULL.
408  */
409 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410 {
411         struct device_node *regnode = NULL;
412         char prop_name[32]; /* 32 is max size of property name */
413
414         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416         snprintf(prop_name, 32, "%s-supply", supply);
417         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419         if (!regnode) {
420                 regnode = of_get_child_regulator(dev->of_node, prop_name);
421                 if (regnode)
422                         return regnode;
423
424                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425                                 prop_name, dev->of_node);
426                 return NULL;
427         }
428         return regnode;
429 }
430
431 /* Platform voltage constraint check */
432 static int regulator_check_voltage(struct regulator_dev *rdev,
433                                    int *min_uV, int *max_uV)
434 {
435         BUG_ON(*min_uV > *max_uV);
436
437         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438                 rdev_err(rdev, "voltage operation not allowed\n");
439                 return -EPERM;
440         }
441
442         if (*max_uV > rdev->constraints->max_uV)
443                 *max_uV = rdev->constraints->max_uV;
444         if (*min_uV < rdev->constraints->min_uV)
445                 *min_uV = rdev->constraints->min_uV;
446
447         if (*min_uV > *max_uV) {
448                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449                          *min_uV, *max_uV);
450                 return -EINVAL;
451         }
452
453         return 0;
454 }
455
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state)
458 {
459         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460 }
461
462 /* Make sure we select a voltage that suits the needs of all
463  * regulator consumers
464  */
465 static int regulator_check_consumers(struct regulator_dev *rdev,
466                                      int *min_uV, int *max_uV,
467                                      suspend_state_t state)
468 {
469         struct regulator *regulator;
470         struct regulator_voltage *voltage;
471
472         list_for_each_entry(regulator, &rdev->consumer_list, list) {
473                 voltage = &regulator->voltage[state];
474                 /*
475                  * Assume consumers that didn't say anything are OK
476                  * with anything in the constraint range.
477                  */
478                 if (!voltage->min_uV && !voltage->max_uV)
479                         continue;
480
481                 if (*max_uV > voltage->max_uV)
482                         *max_uV = voltage->max_uV;
483                 if (*min_uV < voltage->min_uV)
484                         *min_uV = voltage->min_uV;
485         }
486
487         if (*min_uV > *max_uV) {
488                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489                         *min_uV, *max_uV);
490                 return -EINVAL;
491         }
492
493         return 0;
494 }
495
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev *rdev,
498                                         int *min_uA, int *max_uA)
499 {
500         BUG_ON(*min_uA > *max_uA);
501
502         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503                 rdev_err(rdev, "current operation not allowed\n");
504                 return -EPERM;
505         }
506
507         if (*max_uA > rdev->constraints->max_uA)
508                 *max_uA = rdev->constraints->max_uA;
509         if (*min_uA < rdev->constraints->min_uA)
510                 *min_uA = rdev->constraints->min_uA;
511
512         if (*min_uA > *max_uA) {
513                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514                          *min_uA, *max_uA);
515                 return -EINVAL;
516         }
517
518         return 0;
519 }
520
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev *rdev,
523                                     unsigned int *mode)
524 {
525         switch (*mode) {
526         case REGULATOR_MODE_FAST:
527         case REGULATOR_MODE_NORMAL:
528         case REGULATOR_MODE_IDLE:
529         case REGULATOR_MODE_STANDBY:
530                 break;
531         default:
532                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533                 return -EINVAL;
534         }
535
536         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537                 rdev_err(rdev, "mode operation not allowed\n");
538                 return -EPERM;
539         }
540
541         /* The modes are bitmasks, the most power hungry modes having
542          * the lowest values. If the requested mode isn't supported
543          * try higher modes. */
544         while (*mode) {
545                 if (rdev->constraints->valid_modes_mask & *mode)
546                         return 0;
547                 *mode /= 2;
548         }
549
550         return -EINVAL;
551 }
552
553 static inline struct regulator_state *
554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555 {
556         if (rdev->constraints == NULL)
557                 return NULL;
558
559         switch (state) {
560         case PM_SUSPEND_STANDBY:
561                 return &rdev->constraints->state_standby;
562         case PM_SUSPEND_MEM:
563                 return &rdev->constraints->state_mem;
564         case PM_SUSPEND_MAX:
565                 return &rdev->constraints->state_disk;
566         default:
567                 return NULL;
568         }
569 }
570
571 static ssize_t regulator_uV_show(struct device *dev,
572                                 struct device_attribute *attr, char *buf)
573 {
574         struct regulator_dev *rdev = dev_get_drvdata(dev);
575         ssize_t ret;
576
577         regulator_lock(rdev);
578         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
579         regulator_unlock(rdev);
580
581         return ret;
582 }
583 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
584
585 static ssize_t regulator_uA_show(struct device *dev,
586                                 struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
591 }
592 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
593
594 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
595                          char *buf)
596 {
597         struct regulator_dev *rdev = dev_get_drvdata(dev);
598
599         return sprintf(buf, "%s\n", rdev_get_name(rdev));
600 }
601 static DEVICE_ATTR_RO(name);
602
603 static const char *regulator_opmode_to_str(int mode)
604 {
605         switch (mode) {
606         case REGULATOR_MODE_FAST:
607                 return "fast";
608         case REGULATOR_MODE_NORMAL:
609                 return "normal";
610         case REGULATOR_MODE_IDLE:
611                 return "idle";
612         case REGULATOR_MODE_STANDBY:
613                 return "standby";
614         }
615         return "unknown";
616 }
617
618 static ssize_t regulator_print_opmode(char *buf, int mode)
619 {
620         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621 }
622
623 static ssize_t regulator_opmode_show(struct device *dev,
624                                     struct device_attribute *attr, char *buf)
625 {
626         struct regulator_dev *rdev = dev_get_drvdata(dev);
627
628         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
629 }
630 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
631
632 static ssize_t regulator_print_state(char *buf, int state)
633 {
634         if (state > 0)
635                 return sprintf(buf, "enabled\n");
636         else if (state == 0)
637                 return sprintf(buf, "disabled\n");
638         else
639                 return sprintf(buf, "unknown\n");
640 }
641
642 static ssize_t regulator_state_show(struct device *dev,
643                                    struct device_attribute *attr, char *buf)
644 {
645         struct regulator_dev *rdev = dev_get_drvdata(dev);
646         ssize_t ret;
647
648         regulator_lock(rdev);
649         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
650         regulator_unlock(rdev);
651
652         return ret;
653 }
654 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
655
656 static ssize_t regulator_status_show(struct device *dev,
657                                    struct device_attribute *attr, char *buf)
658 {
659         struct regulator_dev *rdev = dev_get_drvdata(dev);
660         int status;
661         char *label;
662
663         status = rdev->desc->ops->get_status(rdev);
664         if (status < 0)
665                 return status;
666
667         switch (status) {
668         case REGULATOR_STATUS_OFF:
669                 label = "off";
670                 break;
671         case REGULATOR_STATUS_ON:
672                 label = "on";
673                 break;
674         case REGULATOR_STATUS_ERROR:
675                 label = "error";
676                 break;
677         case REGULATOR_STATUS_FAST:
678                 label = "fast";
679                 break;
680         case REGULATOR_STATUS_NORMAL:
681                 label = "normal";
682                 break;
683         case REGULATOR_STATUS_IDLE:
684                 label = "idle";
685                 break;
686         case REGULATOR_STATUS_STANDBY:
687                 label = "standby";
688                 break;
689         case REGULATOR_STATUS_BYPASS:
690                 label = "bypass";
691                 break;
692         case REGULATOR_STATUS_UNDEFINED:
693                 label = "undefined";
694                 break;
695         default:
696                 return -ERANGE;
697         }
698
699         return sprintf(buf, "%s\n", label);
700 }
701 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
702
703 static ssize_t regulator_min_uA_show(struct device *dev,
704                                     struct device_attribute *attr, char *buf)
705 {
706         struct regulator_dev *rdev = dev_get_drvdata(dev);
707
708         if (!rdev->constraints)
709                 return sprintf(buf, "constraint not defined\n");
710
711         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
712 }
713 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
714
715 static ssize_t regulator_max_uA_show(struct device *dev,
716                                     struct device_attribute *attr, char *buf)
717 {
718         struct regulator_dev *rdev = dev_get_drvdata(dev);
719
720         if (!rdev->constraints)
721                 return sprintf(buf, "constraint not defined\n");
722
723         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
724 }
725 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
726
727 static ssize_t regulator_min_uV_show(struct device *dev,
728                                     struct device_attribute *attr, char *buf)
729 {
730         struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732         if (!rdev->constraints)
733                 return sprintf(buf, "constraint not defined\n");
734
735         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
736 }
737 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
738
739 static ssize_t regulator_max_uV_show(struct device *dev,
740                                     struct device_attribute *attr, char *buf)
741 {
742         struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744         if (!rdev->constraints)
745                 return sprintf(buf, "constraint not defined\n");
746
747         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
748 }
749 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
750
751 static ssize_t regulator_total_uA_show(struct device *dev,
752                                       struct device_attribute *attr, char *buf)
753 {
754         struct regulator_dev *rdev = dev_get_drvdata(dev);
755         struct regulator *regulator;
756         int uA = 0;
757
758         regulator_lock(rdev);
759         list_for_each_entry(regulator, &rdev->consumer_list, list) {
760                 if (regulator->enable_count)
761                         uA += regulator->uA_load;
762         }
763         regulator_unlock(rdev);
764         return sprintf(buf, "%d\n", uA);
765 }
766 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
767
768 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
769                               char *buf)
770 {
771         struct regulator_dev *rdev = dev_get_drvdata(dev);
772         return sprintf(buf, "%d\n", rdev->use_count);
773 }
774 static DEVICE_ATTR_RO(num_users);
775
776 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
777                          char *buf)
778 {
779         struct regulator_dev *rdev = dev_get_drvdata(dev);
780
781         switch (rdev->desc->type) {
782         case REGULATOR_VOLTAGE:
783                 return sprintf(buf, "voltage\n");
784         case REGULATOR_CURRENT:
785                 return sprintf(buf, "current\n");
786         }
787         return sprintf(buf, "unknown\n");
788 }
789 static DEVICE_ATTR_RO(type);
790
791 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
792                                 struct device_attribute *attr, char *buf)
793 {
794         struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
797 }
798 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
799                 regulator_suspend_mem_uV_show, NULL);
800
801 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
802                                 struct device_attribute *attr, char *buf)
803 {
804         struct regulator_dev *rdev = dev_get_drvdata(dev);
805
806         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
807 }
808 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
809                 regulator_suspend_disk_uV_show, NULL);
810
811 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
812                                 struct device_attribute *attr, char *buf)
813 {
814         struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
817 }
818 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
819                 regulator_suspend_standby_uV_show, NULL);
820
821 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
822                                 struct device_attribute *attr, char *buf)
823 {
824         struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826         return regulator_print_opmode(buf,
827                 rdev->constraints->state_mem.mode);
828 }
829 static DEVICE_ATTR(suspend_mem_mode, 0444,
830                 regulator_suspend_mem_mode_show, NULL);
831
832 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
833                                 struct device_attribute *attr, char *buf)
834 {
835         struct regulator_dev *rdev = dev_get_drvdata(dev);
836
837         return regulator_print_opmode(buf,
838                 rdev->constraints->state_disk.mode);
839 }
840 static DEVICE_ATTR(suspend_disk_mode, 0444,
841                 regulator_suspend_disk_mode_show, NULL);
842
843 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
844                                 struct device_attribute *attr, char *buf)
845 {
846         struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848         return regulator_print_opmode(buf,
849                 rdev->constraints->state_standby.mode);
850 }
851 static DEVICE_ATTR(suspend_standby_mode, 0444,
852                 regulator_suspend_standby_mode_show, NULL);
853
854 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
855                                    struct device_attribute *attr, char *buf)
856 {
857         struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859         return regulator_print_state(buf,
860                         rdev->constraints->state_mem.enabled);
861 }
862 static DEVICE_ATTR(suspend_mem_state, 0444,
863                 regulator_suspend_mem_state_show, NULL);
864
865 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
866                                    struct device_attribute *attr, char *buf)
867 {
868         struct regulator_dev *rdev = dev_get_drvdata(dev);
869
870         return regulator_print_state(buf,
871                         rdev->constraints->state_disk.enabled);
872 }
873 static DEVICE_ATTR(suspend_disk_state, 0444,
874                 regulator_suspend_disk_state_show, NULL);
875
876 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
877                                    struct device_attribute *attr, char *buf)
878 {
879         struct regulator_dev *rdev = dev_get_drvdata(dev);
880
881         return regulator_print_state(buf,
882                         rdev->constraints->state_standby.enabled);
883 }
884 static DEVICE_ATTR(suspend_standby_state, 0444,
885                 regulator_suspend_standby_state_show, NULL);
886
887 static ssize_t regulator_bypass_show(struct device *dev,
888                                      struct device_attribute *attr, char *buf)
889 {
890         struct regulator_dev *rdev = dev_get_drvdata(dev);
891         const char *report;
892         bool bypass;
893         int ret;
894
895         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
896
897         if (ret != 0)
898                 report = "unknown";
899         else if (bypass)
900                 report = "enabled";
901         else
902                 report = "disabled";
903
904         return sprintf(buf, "%s\n", report);
905 }
906 static DEVICE_ATTR(bypass, 0444,
907                    regulator_bypass_show, NULL);
908
909 /* Calculate the new optimum regulator operating mode based on the new total
910  * consumer load. All locks held by caller */
911 static int drms_uA_update(struct regulator_dev *rdev)
912 {
913         struct regulator *sibling;
914         int current_uA = 0, output_uV, input_uV, err;
915         unsigned int mode;
916
917         /*
918          * first check to see if we can set modes at all, otherwise just
919          * tell the consumer everything is OK.
920          */
921         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
922                 rdev_dbg(rdev, "DRMS operation not allowed\n");
923                 return 0;
924         }
925
926         if (!rdev->desc->ops->get_optimum_mode &&
927             !rdev->desc->ops->set_load)
928                 return 0;
929
930         if (!rdev->desc->ops->set_mode &&
931             !rdev->desc->ops->set_load)
932                 return -EINVAL;
933
934         /* calc total requested load */
935         list_for_each_entry(sibling, &rdev->consumer_list, list) {
936                 if (sibling->enable_count)
937                         current_uA += sibling->uA_load;
938         }
939
940         current_uA += rdev->constraints->system_load;
941
942         if (rdev->desc->ops->set_load) {
943                 /* set the optimum mode for our new total regulator load */
944                 err = rdev->desc->ops->set_load(rdev, current_uA);
945                 if (err < 0)
946                         rdev_err(rdev, "failed to set load %d\n", current_uA);
947         } else {
948                 /* get output voltage */
949                 output_uV = _regulator_get_voltage(rdev);
950                 if (output_uV <= 0) {
951                         rdev_err(rdev, "invalid output voltage found\n");
952                         return -EINVAL;
953                 }
954
955                 /* get input voltage */
956                 input_uV = 0;
957                 if (rdev->supply)
958                         input_uV = regulator_get_voltage(rdev->supply);
959                 if (input_uV <= 0)
960                         input_uV = rdev->constraints->input_uV;
961                 if (input_uV <= 0) {
962                         rdev_err(rdev, "invalid input voltage found\n");
963                         return -EINVAL;
964                 }
965
966                 /* now get the optimum mode for our new total regulator load */
967                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
968                                                          output_uV, current_uA);
969
970                 /* check the new mode is allowed */
971                 err = regulator_mode_constrain(rdev, &mode);
972                 if (err < 0) {
973                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
974                                  current_uA, input_uV, output_uV);
975                         return err;
976                 }
977
978                 err = rdev->desc->ops->set_mode(rdev, mode);
979                 if (err < 0)
980                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
981         }
982
983         return err;
984 }
985
986 static int suspend_set_state(struct regulator_dev *rdev,
987                                     suspend_state_t state)
988 {
989         int ret = 0;
990         struct regulator_state *rstate;
991
992         rstate = regulator_get_suspend_state(rdev, state);
993         if (rstate == NULL)
994                 return 0;
995
996         /* If we have no suspend mode configuration don't set anything;
997          * only warn if the driver implements set_suspend_voltage or
998          * set_suspend_mode callback.
999          */
1000         if (rstate->enabled != ENABLE_IN_SUSPEND &&
1001             rstate->enabled != DISABLE_IN_SUSPEND) {
1002                 if (rdev->desc->ops->set_suspend_voltage ||
1003                     rdev->desc->ops->set_suspend_mode)
1004                         rdev_warn(rdev, "No configuration\n");
1005                 return 0;
1006         }
1007
1008         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1009                 rdev->desc->ops->set_suspend_enable)
1010                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1011         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1012                 rdev->desc->ops->set_suspend_disable)
1013                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1014         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1015                 ret = 0;
1016
1017         if (ret < 0) {
1018                 rdev_err(rdev, "failed to enabled/disable\n");
1019                 return ret;
1020         }
1021
1022         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1023                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1024                 if (ret < 0) {
1025                         rdev_err(rdev, "failed to set voltage\n");
1026                         return ret;
1027                 }
1028         }
1029
1030         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1031                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1032                 if (ret < 0) {
1033                         rdev_err(rdev, "failed to set mode\n");
1034                         return ret;
1035                 }
1036         }
1037
1038         return ret;
1039 }
1040
1041 static void print_constraints(struct regulator_dev *rdev)
1042 {
1043         struct regulation_constraints *constraints = rdev->constraints;
1044         char buf[160] = "";
1045         size_t len = sizeof(buf) - 1;
1046         int count = 0;
1047         int ret;
1048
1049         if (constraints->min_uV && constraints->max_uV) {
1050                 if (constraints->min_uV == constraints->max_uV)
1051                         count += scnprintf(buf + count, len - count, "%d mV ",
1052                                            constraints->min_uV / 1000);
1053                 else
1054                         count += scnprintf(buf + count, len - count,
1055                                            "%d <--> %d mV ",
1056                                            constraints->min_uV / 1000,
1057                                            constraints->max_uV / 1000);
1058         }
1059
1060         if (!constraints->min_uV ||
1061             constraints->min_uV != constraints->max_uV) {
1062                 ret = _regulator_get_voltage(rdev);
1063                 if (ret > 0)
1064                         count += scnprintf(buf + count, len - count,
1065                                            "at %d mV ", ret / 1000);
1066         }
1067
1068         if (constraints->uV_offset)
1069                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1070                                    constraints->uV_offset / 1000);
1071
1072         if (constraints->min_uA && constraints->max_uA) {
1073                 if (constraints->min_uA == constraints->max_uA)
1074                         count += scnprintf(buf + count, len - count, "%d mA ",
1075                                            constraints->min_uA / 1000);
1076                 else
1077                         count += scnprintf(buf + count, len - count,
1078                                            "%d <--> %d mA ",
1079                                            constraints->min_uA / 1000,
1080                                            constraints->max_uA / 1000);
1081         }
1082
1083         if (!constraints->min_uA ||
1084             constraints->min_uA != constraints->max_uA) {
1085                 ret = _regulator_get_current_limit(rdev);
1086                 if (ret > 0)
1087                         count += scnprintf(buf + count, len - count,
1088                                            "at %d mA ", ret / 1000);
1089         }
1090
1091         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1092                 count += scnprintf(buf + count, len - count, "fast ");
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1094                 count += scnprintf(buf + count, len - count, "normal ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1096                 count += scnprintf(buf + count, len - count, "idle ");
1097         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1098                 count += scnprintf(buf + count, len - count, "standby");
1099
1100         if (!count)
1101                 scnprintf(buf, len, "no parameters");
1102
1103         rdev_dbg(rdev, "%s\n", buf);
1104
1105         if ((constraints->min_uV != constraints->max_uV) &&
1106             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1107                 rdev_warn(rdev,
1108                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 }
1110
1111 static int machine_constraints_voltage(struct regulator_dev *rdev,
1112         struct regulation_constraints *constraints)
1113 {
1114         const struct regulator_ops *ops = rdev->desc->ops;
1115         int ret;
1116
1117         /* do we need to apply the constraint voltage */
1118         if (rdev->constraints->apply_uV &&
1119             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1120                 int target_min, target_max;
1121                 int current_uV = _regulator_get_voltage(rdev);
1122
1123                 if (current_uV == -ENOTRECOVERABLE) {
1124                         /* This regulator can't be read and must be initialized */
1125                         rdev_info(rdev, "Setting %d-%duV\n",
1126                                   rdev->constraints->min_uV,
1127                                   rdev->constraints->max_uV);
1128                         _regulator_do_set_voltage(rdev,
1129                                                   rdev->constraints->min_uV,
1130                                                   rdev->constraints->max_uV);
1131                         current_uV = _regulator_get_voltage(rdev);
1132                 }
1133
1134                 if (current_uV < 0) {
1135                         rdev_err(rdev,
1136                                  "failed to get the current voltage(%d)\n",
1137                                  current_uV);
1138                         return current_uV;
1139                 }
1140
1141                 /*
1142                  * If we're below the minimum voltage move up to the
1143                  * minimum voltage, if we're above the maximum voltage
1144                  * then move down to the maximum.
1145                  */
1146                 target_min = current_uV;
1147                 target_max = current_uV;
1148
1149                 if (current_uV < rdev->constraints->min_uV) {
1150                         target_min = rdev->constraints->min_uV;
1151                         target_max = rdev->constraints->min_uV;
1152                 }
1153
1154                 if (current_uV > rdev->constraints->max_uV) {
1155                         target_min = rdev->constraints->max_uV;
1156                         target_max = rdev->constraints->max_uV;
1157                 }
1158
1159                 if (target_min != current_uV || target_max != current_uV) {
1160                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1161                                   current_uV, target_min, target_max);
1162                         ret = _regulator_do_set_voltage(
1163                                 rdev, target_min, target_max);
1164                         if (ret < 0) {
1165                                 rdev_err(rdev,
1166                                         "failed to apply %d-%duV constraint(%d)\n",
1167                                         target_min, target_max, ret);
1168                                 return ret;
1169                         }
1170                 }
1171         }
1172
1173         /* constrain machine-level voltage specs to fit
1174          * the actual range supported by this regulator.
1175          */
1176         if (ops->list_voltage && rdev->desc->n_voltages) {
1177                 int     count = rdev->desc->n_voltages;
1178                 int     i;
1179                 int     min_uV = INT_MAX;
1180                 int     max_uV = INT_MIN;
1181                 int     cmin = constraints->min_uV;
1182                 int     cmax = constraints->max_uV;
1183
1184                 /* it's safe to autoconfigure fixed-voltage supplies
1185                    and the constraints are used by list_voltage. */
1186                 if (count == 1 && !cmin) {
1187                         cmin = 1;
1188                         cmax = INT_MAX;
1189                         constraints->min_uV = cmin;
1190                         constraints->max_uV = cmax;
1191                 }
1192
1193                 /* voltage constraints are optional */
1194                 if ((cmin == 0) && (cmax == 0))
1195                         return 0;
1196
1197                 /* else require explicit machine-level constraints */
1198                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1199                         rdev_err(rdev, "invalid voltage constraints\n");
1200                         return -EINVAL;
1201                 }
1202
1203                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1204                 for (i = 0; i < count; i++) {
1205                         int     value;
1206
1207                         value = ops->list_voltage(rdev, i);
1208                         if (value <= 0)
1209                                 continue;
1210
1211                         /* maybe adjust [min_uV..max_uV] */
1212                         if (value >= cmin && value < min_uV)
1213                                 min_uV = value;
1214                         if (value <= cmax && value > max_uV)
1215                                 max_uV = value;
1216                 }
1217
1218                 /* final: [min_uV..max_uV] valid iff constraints valid */
1219                 if (max_uV < min_uV) {
1220                         rdev_err(rdev,
1221                                  "unsupportable voltage constraints %u-%uuV\n",
1222                                  min_uV, max_uV);
1223                         return -EINVAL;
1224                 }
1225
1226                 /* use regulator's subset of machine constraints */
1227                 if (constraints->min_uV < min_uV) {
1228                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1229                                  constraints->min_uV, min_uV);
1230                         constraints->min_uV = min_uV;
1231                 }
1232                 if (constraints->max_uV > max_uV) {
1233                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1234                                  constraints->max_uV, max_uV);
1235                         constraints->max_uV = max_uV;
1236                 }
1237         }
1238
1239         return 0;
1240 }
1241
1242 static int machine_constraints_current(struct regulator_dev *rdev,
1243         struct regulation_constraints *constraints)
1244 {
1245         const struct regulator_ops *ops = rdev->desc->ops;
1246         int ret;
1247
1248         if (!constraints->min_uA && !constraints->max_uA)
1249                 return 0;
1250
1251         if (constraints->min_uA > constraints->max_uA) {
1252                 rdev_err(rdev, "Invalid current constraints\n");
1253                 return -EINVAL;
1254         }
1255
1256         if (!ops->set_current_limit || !ops->get_current_limit) {
1257                 rdev_warn(rdev, "Operation of current configuration missing\n");
1258                 return 0;
1259         }
1260
1261         /* Set regulator current in constraints range */
1262         ret = ops->set_current_limit(rdev, constraints->min_uA,
1263                         constraints->max_uA);
1264         if (ret < 0) {
1265                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1266                 return ret;
1267         }
1268
1269         return 0;
1270 }
1271
1272 static int _regulator_do_enable(struct regulator_dev *rdev);
1273
1274 /**
1275  * set_machine_constraints - sets regulator constraints
1276  * @rdev: regulator source
1277  * @constraints: constraints to apply
1278  *
1279  * Allows platform initialisation code to define and constrain
1280  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1281  * Constraints *must* be set by platform code in order for some
1282  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1283  * set_mode.
1284  */
1285 static int set_machine_constraints(struct regulator_dev *rdev,
1286         const struct regulation_constraints *constraints)
1287 {
1288         int ret = 0;
1289         const struct regulator_ops *ops = rdev->desc->ops;
1290
1291         if (constraints)
1292                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1293                                             GFP_KERNEL);
1294         else
1295                 rdev->constraints = kzalloc(sizeof(*constraints),
1296                                             GFP_KERNEL);
1297         if (!rdev->constraints)
1298                 return -ENOMEM;
1299
1300         ret = machine_constraints_voltage(rdev, rdev->constraints);
1301         if (ret != 0)
1302                 return ret;
1303
1304         ret = machine_constraints_current(rdev, rdev->constraints);
1305         if (ret != 0)
1306                 return ret;
1307
1308         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1309                 ret = ops->set_input_current_limit(rdev,
1310                                                    rdev->constraints->ilim_uA);
1311                 if (ret < 0) {
1312                         rdev_err(rdev, "failed to set input limit\n");
1313                         return ret;
1314                 }
1315         }
1316
1317         /* do we need to setup our suspend state */
1318         if (rdev->constraints->initial_state) {
1319                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1320                 if (ret < 0) {
1321                         rdev_err(rdev, "failed to set suspend state\n");
1322                         return ret;
1323                 }
1324         }
1325
1326         if (rdev->constraints->initial_mode) {
1327                 if (!ops->set_mode) {
1328                         rdev_err(rdev, "no set_mode operation\n");
1329                         return -EINVAL;
1330                 }
1331
1332                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1333                 if (ret < 0) {
1334                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1335                         return ret;
1336                 }
1337         } else if (rdev->constraints->system_load) {
1338                 /*
1339                  * We'll only apply the initial system load if an
1340                  * initial mode wasn't specified.
1341                  */
1342                 regulator_lock(rdev);
1343                 drms_uA_update(rdev);
1344                 regulator_unlock(rdev);
1345         }
1346
1347         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348                 && ops->set_ramp_delay) {
1349                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350                 if (ret < 0) {
1351                         rdev_err(rdev, "failed to set ramp_delay\n");
1352                         return ret;
1353                 }
1354         }
1355
1356         if (rdev->constraints->pull_down && ops->set_pull_down) {
1357                 ret = ops->set_pull_down(rdev);
1358                 if (ret < 0) {
1359                         rdev_err(rdev, "failed to set pull down\n");
1360                         return ret;
1361                 }
1362         }
1363
1364         if (rdev->constraints->soft_start && ops->set_soft_start) {
1365                 ret = ops->set_soft_start(rdev);
1366                 if (ret < 0) {
1367                         rdev_err(rdev, "failed to set soft start\n");
1368                         return ret;
1369                 }
1370         }
1371
1372         if (rdev->constraints->over_current_protection
1373                 && ops->set_over_current_protection) {
1374                 ret = ops->set_over_current_protection(rdev);
1375                 if (ret < 0) {
1376                         rdev_err(rdev, "failed to set over current protection\n");
1377                         return ret;
1378                 }
1379         }
1380
1381         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382                 bool ad_state = (rdev->constraints->active_discharge ==
1383                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1384
1385                 ret = ops->set_active_discharge(rdev, ad_state);
1386                 if (ret < 0) {
1387                         rdev_err(rdev, "failed to set active discharge\n");
1388                         return ret;
1389                 }
1390         }
1391
1392         /* If the constraints say the regulator should be on at this point
1393          * and we have control then make sure it is enabled.
1394          */
1395         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396                 if (rdev->supply) {
1397                         ret = regulator_enable(rdev->supply);
1398                         if (ret < 0) {
1399                                 _regulator_put(rdev->supply);
1400                                 rdev->supply = NULL;
1401                                 return ret;
1402                         }
1403                 }
1404
1405                 ret = _regulator_do_enable(rdev);
1406                 if (ret < 0 && ret != -EINVAL) {
1407                         rdev_err(rdev, "failed to enable\n");
1408                         return ret;
1409                 }
1410                 rdev->use_count++;
1411         }
1412
1413         print_constraints(rdev);
1414         return 0;
1415 }
1416
1417 /**
1418  * set_supply - set regulator supply regulator
1419  * @rdev: regulator name
1420  * @supply_rdev: supply regulator name
1421  *
1422  * Called by platform initialisation code to set the supply regulator for this
1423  * regulator. This ensures that a regulators supply will also be enabled by the
1424  * core if it's child is enabled.
1425  */
1426 static int set_supply(struct regulator_dev *rdev,
1427                       struct regulator_dev *supply_rdev)
1428 {
1429         int err;
1430
1431         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1432
1433         if (!try_module_get(supply_rdev->owner))
1434                 return -ENODEV;
1435
1436         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1437         if (rdev->supply == NULL) {
1438                 err = -ENOMEM;
1439                 return err;
1440         }
1441         supply_rdev->open_count++;
1442
1443         return 0;
1444 }
1445
1446 /**
1447  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1448  * @rdev:         regulator source
1449  * @consumer_dev_name: dev_name() string for device supply applies to
1450  * @supply:       symbolic name for supply
1451  *
1452  * Allows platform initialisation code to map physical regulator
1453  * sources to symbolic names for supplies for use by devices.  Devices
1454  * should use these symbolic names to request regulators, avoiding the
1455  * need to provide board-specific regulator names as platform data.
1456  */
1457 static int set_consumer_device_supply(struct regulator_dev *rdev,
1458                                       const char *consumer_dev_name,
1459                                       const char *supply)
1460 {
1461         struct regulator_map *node;
1462         int has_dev;
1463
1464         if (supply == NULL)
1465                 return -EINVAL;
1466
1467         if (consumer_dev_name != NULL)
1468                 has_dev = 1;
1469         else
1470                 has_dev = 0;
1471
1472         list_for_each_entry(node, &regulator_map_list, list) {
1473                 if (node->dev_name && consumer_dev_name) {
1474                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1475                                 continue;
1476                 } else if (node->dev_name || consumer_dev_name) {
1477                         continue;
1478                 }
1479
1480                 if (strcmp(node->supply, supply) != 0)
1481                         continue;
1482
1483                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1484                          consumer_dev_name,
1485                          dev_name(&node->regulator->dev),
1486                          node->regulator->desc->name,
1487                          supply,
1488                          dev_name(&rdev->dev), rdev_get_name(rdev));
1489                 return -EBUSY;
1490         }
1491
1492         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1493         if (node == NULL)
1494                 return -ENOMEM;
1495
1496         node->regulator = rdev;
1497         node->supply = supply;
1498
1499         if (has_dev) {
1500                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1501                 if (node->dev_name == NULL) {
1502                         kfree(node);
1503                         return -ENOMEM;
1504                 }
1505         }
1506
1507         list_add(&node->list, &regulator_map_list);
1508         return 0;
1509 }
1510
1511 static void unset_regulator_supplies(struct regulator_dev *rdev)
1512 {
1513         struct regulator_map *node, *n;
1514
1515         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1516                 if (rdev == node->regulator) {
1517                         list_del(&node->list);
1518                         kfree(node->dev_name);
1519                         kfree(node);
1520                 }
1521         }
1522 }
1523
1524 #ifdef CONFIG_DEBUG_FS
1525 static ssize_t constraint_flags_read_file(struct file *file,
1526                                           char __user *user_buf,
1527                                           size_t count, loff_t *ppos)
1528 {
1529         const struct regulator *regulator = file->private_data;
1530         const struct regulation_constraints *c = regulator->rdev->constraints;
1531         char *buf;
1532         ssize_t ret;
1533
1534         if (!c)
1535                 return 0;
1536
1537         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1538         if (!buf)
1539                 return -ENOMEM;
1540
1541         ret = snprintf(buf, PAGE_SIZE,
1542                         "always_on: %u\n"
1543                         "boot_on: %u\n"
1544                         "apply_uV: %u\n"
1545                         "ramp_disable: %u\n"
1546                         "soft_start: %u\n"
1547                         "pull_down: %u\n"
1548                         "over_current_protection: %u\n",
1549                         c->always_on,
1550                         c->boot_on,
1551                         c->apply_uV,
1552                         c->ramp_disable,
1553                         c->soft_start,
1554                         c->pull_down,
1555                         c->over_current_protection);
1556
1557         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1558         kfree(buf);
1559
1560         return ret;
1561 }
1562
1563 #endif
1564
1565 static const struct file_operations constraint_flags_fops = {
1566 #ifdef CONFIG_DEBUG_FS
1567         .open = simple_open,
1568         .read = constraint_flags_read_file,
1569         .llseek = default_llseek,
1570 #endif
1571 };
1572
1573 #define REG_STR_SIZE    64
1574
1575 static struct regulator *create_regulator(struct regulator_dev *rdev,
1576                                           struct device *dev,
1577                                           const char *supply_name)
1578 {
1579         struct regulator *regulator;
1580         char buf[REG_STR_SIZE];
1581         int err, size;
1582
1583         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1584         if (regulator == NULL)
1585                 return NULL;
1586
1587         regulator_lock(rdev);
1588         regulator->rdev = rdev;
1589         list_add(&regulator->list, &rdev->consumer_list);
1590
1591         if (dev) {
1592                 regulator->dev = dev;
1593
1594                 /* Add a link to the device sysfs entry */
1595                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1596                                 dev->kobj.name, supply_name);
1597                 if (size >= REG_STR_SIZE)
1598                         goto overflow_err;
1599
1600                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1601                 if (regulator->supply_name == NULL)
1602                         goto overflow_err;
1603
1604                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1605                                         buf);
1606                 if (err) {
1607                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1608                                   dev->kobj.name, err);
1609                         /* non-fatal */
1610                 }
1611         } else {
1612                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1613                 if (regulator->supply_name == NULL)
1614                         goto overflow_err;
1615         }
1616
1617         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1618                                                 rdev->debugfs);
1619         if (!regulator->debugfs) {
1620                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1621         } else {
1622                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1623                                    &regulator->uA_load);
1624                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1625                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1626                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1627                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1628                 debugfs_create_file("constraint_flags", 0444,
1629                                     regulator->debugfs, regulator,
1630                                     &constraint_flags_fops);
1631         }
1632
1633         /*
1634          * Check now if the regulator is an always on regulator - if
1635          * it is then we don't need to do nearly so much work for
1636          * enable/disable calls.
1637          */
1638         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1639             _regulator_is_enabled(rdev))
1640                 regulator->always_on = true;
1641
1642         regulator_unlock(rdev);
1643         return regulator;
1644 overflow_err:
1645         list_del(&regulator->list);
1646         kfree(regulator);
1647         regulator_unlock(rdev);
1648         return NULL;
1649 }
1650
1651 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1652 {
1653         if (rdev->constraints && rdev->constraints->enable_time)
1654                 return rdev->constraints->enable_time;
1655         if (!rdev->desc->ops->enable_time)
1656                 return rdev->desc->enable_time;
1657         return rdev->desc->ops->enable_time(rdev);
1658 }
1659
1660 static struct regulator_supply_alias *regulator_find_supply_alias(
1661                 struct device *dev, const char *supply)
1662 {
1663         struct regulator_supply_alias *map;
1664
1665         list_for_each_entry(map, &regulator_supply_alias_list, list)
1666                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1667                         return map;
1668
1669         return NULL;
1670 }
1671
1672 static void regulator_supply_alias(struct device **dev, const char **supply)
1673 {
1674         struct regulator_supply_alias *map;
1675
1676         map = regulator_find_supply_alias(*dev, *supply);
1677         if (map) {
1678                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1679                                 *supply, map->alias_supply,
1680                                 dev_name(map->alias_dev));
1681                 *dev = map->alias_dev;
1682                 *supply = map->alias_supply;
1683         }
1684 }
1685
1686 static int regulator_match(struct device *dev, const void *data)
1687 {
1688         struct regulator_dev *r = dev_to_rdev(dev);
1689
1690         return strcmp(rdev_get_name(r), data) == 0;
1691 }
1692
1693 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1694 {
1695         struct device *dev;
1696
1697         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1698
1699         return dev ? dev_to_rdev(dev) : NULL;
1700 }
1701
1702 /**
1703  * regulator_dev_lookup - lookup a regulator device.
1704  * @dev: device for regulator "consumer".
1705  * @supply: Supply name or regulator ID.
1706  *
1707  * If successful, returns a struct regulator_dev that corresponds to the name
1708  * @supply and with the embedded struct device refcount incremented by one.
1709  * The refcount must be dropped by calling put_device().
1710  * On failure one of the following ERR-PTR-encoded values is returned:
1711  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1712  * in the future.
1713  */
1714 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1715                                                   const char *supply)
1716 {
1717         struct regulator_dev *r = NULL;
1718         struct device_node *node;
1719         struct regulator_map *map;
1720         const char *devname = NULL;
1721
1722         regulator_supply_alias(&dev, &supply);
1723
1724         /* first do a dt based lookup */
1725         if (dev && dev->of_node) {
1726                 node = of_get_regulator(dev, supply);
1727                 if (node) {
1728                         r = of_find_regulator_by_node(node);
1729                         if (r)
1730                                 return r;
1731
1732                         /*
1733                          * We have a node, but there is no device.
1734                          * assume it has not registered yet.
1735                          */
1736                         return ERR_PTR(-EPROBE_DEFER);
1737                 }
1738         }
1739
1740         /* if not found, try doing it non-dt way */
1741         if (dev)
1742                 devname = dev_name(dev);
1743
1744         mutex_lock(&regulator_list_mutex);
1745         list_for_each_entry(map, &regulator_map_list, list) {
1746                 /* If the mapping has a device set up it must match */
1747                 if (map->dev_name &&
1748                     (!devname || strcmp(map->dev_name, devname)))
1749                         continue;
1750
1751                 if (strcmp(map->supply, supply) == 0 &&
1752                     get_device(&map->regulator->dev)) {
1753                         r = map->regulator;
1754                         break;
1755                 }
1756         }
1757         mutex_unlock(&regulator_list_mutex);
1758
1759         if (r)
1760                 return r;
1761
1762         r = regulator_lookup_by_name(supply);
1763         if (r)
1764                 return r;
1765
1766         return ERR_PTR(-ENODEV);
1767 }
1768
1769 static int regulator_resolve_supply(struct regulator_dev *rdev)
1770 {
1771         struct regulator_dev *r;
1772         struct device *dev = rdev->dev.parent;
1773         int ret;
1774
1775         /* No supply to resolve? */
1776         if (!rdev->supply_name)
1777                 return 0;
1778
1779         /* Supply already resolved? */
1780         if (rdev->supply)
1781                 return 0;
1782
1783         r = regulator_dev_lookup(dev, rdev->supply_name);
1784         if (IS_ERR(r)) {
1785                 ret = PTR_ERR(r);
1786
1787                 /* Did the lookup explicitly defer for us? */
1788                 if (ret == -EPROBE_DEFER)
1789                         return ret;
1790
1791                 if (have_full_constraints()) {
1792                         r = dummy_regulator_rdev;
1793                         get_device(&r->dev);
1794                 } else {
1795                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1796                                 rdev->supply_name, rdev->desc->name);
1797                         return -EPROBE_DEFER;
1798                 }
1799         }
1800
1801         /*
1802          * If the supply's parent device is not the same as the
1803          * regulator's parent device, then ensure the parent device
1804          * is bound before we resolve the supply, in case the parent
1805          * device get probe deferred and unregisters the supply.
1806          */
1807         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1808                 if (!device_is_bound(r->dev.parent)) {
1809                         put_device(&r->dev);
1810                         return -EPROBE_DEFER;
1811                 }
1812         }
1813
1814         /* Recursively resolve the supply of the supply */
1815         ret = regulator_resolve_supply(r);
1816         if (ret < 0) {
1817                 put_device(&r->dev);
1818                 return ret;
1819         }
1820
1821         ret = set_supply(rdev, r);
1822         if (ret < 0) {
1823                 put_device(&r->dev);
1824                 return ret;
1825         }
1826
1827         /*
1828          * In set_machine_constraints() we may have turned this regulator on
1829          * but we couldn't propagate to the supply if it hadn't been resolved
1830          * yet.  Do it now.
1831          */
1832         if (rdev->use_count) {
1833                 ret = regulator_enable(rdev->supply);
1834                 if (ret < 0) {
1835                         _regulator_put(rdev->supply);
1836                         rdev->supply = NULL;
1837                         return ret;
1838                 }
1839         }
1840
1841         return 0;
1842 }
1843
1844 /* Internal regulator request function */
1845 struct regulator *_regulator_get(struct device *dev, const char *id,
1846                                  enum regulator_get_type get_type)
1847 {
1848         struct regulator_dev *rdev;
1849         struct regulator *regulator;
1850         const char *devname = dev ? dev_name(dev) : "deviceless";
1851         int ret;
1852
1853         if (get_type >= MAX_GET_TYPE) {
1854                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1855                 return ERR_PTR(-EINVAL);
1856         }
1857
1858         if (id == NULL) {
1859                 pr_err("get() with no identifier\n");
1860                 return ERR_PTR(-EINVAL);
1861         }
1862
1863         rdev = regulator_dev_lookup(dev, id);
1864         if (IS_ERR(rdev)) {
1865                 ret = PTR_ERR(rdev);
1866
1867                 /*
1868                  * If regulator_dev_lookup() fails with error other
1869                  * than -ENODEV our job here is done, we simply return it.
1870                  */
1871                 if (ret != -ENODEV)
1872                         return ERR_PTR(ret);
1873
1874                 if (!have_full_constraints()) {
1875                         dev_warn(dev,
1876                                  "incomplete constraints, dummy supplies not allowed\n");
1877                         return ERR_PTR(-ENODEV);
1878                 }
1879
1880                 switch (get_type) {
1881                 case NORMAL_GET:
1882                         /*
1883                          * Assume that a regulator is physically present and
1884                          * enabled, even if it isn't hooked up, and just
1885                          * provide a dummy.
1886                          */
1887                         dev_warn(dev,
1888                                  "%s supply %s not found, using dummy regulator\n",
1889                                  devname, id);
1890                         rdev = dummy_regulator_rdev;
1891                         get_device(&rdev->dev);
1892                         break;
1893
1894                 case EXCLUSIVE_GET:
1895                         dev_warn(dev,
1896                                  "dummy supplies not allowed for exclusive requests\n");
1897                         /* fall through */
1898
1899                 default:
1900                         return ERR_PTR(-ENODEV);
1901                 }
1902         }
1903
1904         if (rdev->exclusive) {
1905                 regulator = ERR_PTR(-EPERM);
1906                 put_device(&rdev->dev);
1907                 return regulator;
1908         }
1909
1910         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1911                 regulator = ERR_PTR(-EBUSY);
1912                 put_device(&rdev->dev);
1913                 return regulator;
1914         }
1915
1916         mutex_lock(&regulator_list_mutex);
1917         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1918         mutex_unlock(&regulator_list_mutex);
1919
1920         if (ret != 0) {
1921                 regulator = ERR_PTR(-EPROBE_DEFER);
1922                 put_device(&rdev->dev);
1923                 return regulator;
1924         }
1925
1926         ret = regulator_resolve_supply(rdev);
1927         if (ret < 0) {
1928                 regulator = ERR_PTR(ret);
1929                 put_device(&rdev->dev);
1930                 return regulator;
1931         }
1932
1933         if (!try_module_get(rdev->owner)) {
1934                 regulator = ERR_PTR(-EPROBE_DEFER);
1935                 put_device(&rdev->dev);
1936                 return regulator;
1937         }
1938
1939         regulator = create_regulator(rdev, dev, id);
1940         if (regulator == NULL) {
1941                 regulator = ERR_PTR(-ENOMEM);
1942                 put_device(&rdev->dev);
1943                 module_put(rdev->owner);
1944                 return regulator;
1945         }
1946
1947         rdev->open_count++;
1948         if (get_type == EXCLUSIVE_GET) {
1949                 rdev->exclusive = 1;
1950
1951                 ret = _regulator_is_enabled(rdev);
1952                 if (ret > 0)
1953                         rdev->use_count = 1;
1954                 else
1955                         rdev->use_count = 0;
1956         }
1957
1958         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1959
1960         return regulator;
1961 }
1962
1963 /**
1964  * regulator_get - lookup and obtain a reference to a regulator.
1965  * @dev: device for regulator "consumer"
1966  * @id: Supply name or regulator ID.
1967  *
1968  * Returns a struct regulator corresponding to the regulator producer,
1969  * or IS_ERR() condition containing errno.
1970  *
1971  * Use of supply names configured via regulator_set_device_supply() is
1972  * strongly encouraged.  It is recommended that the supply name used
1973  * should match the name used for the supply and/or the relevant
1974  * device pins in the datasheet.
1975  */
1976 struct regulator *regulator_get(struct device *dev, const char *id)
1977 {
1978         return _regulator_get(dev, id, NORMAL_GET);
1979 }
1980 EXPORT_SYMBOL_GPL(regulator_get);
1981
1982 /**
1983  * regulator_get_exclusive - obtain exclusive access to a regulator.
1984  * @dev: device for regulator "consumer"
1985  * @id: Supply name or regulator ID.
1986  *
1987  * Returns a struct regulator corresponding to the regulator producer,
1988  * or IS_ERR() condition containing errno.  Other consumers will be
1989  * unable to obtain this regulator while this reference is held and the
1990  * use count for the regulator will be initialised to reflect the current
1991  * state of the regulator.
1992  *
1993  * This is intended for use by consumers which cannot tolerate shared
1994  * use of the regulator such as those which need to force the
1995  * regulator off for correct operation of the hardware they are
1996  * controlling.
1997  *
1998  * Use of supply names configured via regulator_set_device_supply() is
1999  * strongly encouraged.  It is recommended that the supply name used
2000  * should match the name used for the supply and/or the relevant
2001  * device pins in the datasheet.
2002  */
2003 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2004 {
2005         return _regulator_get(dev, id, EXCLUSIVE_GET);
2006 }
2007 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2008
2009 /**
2010  * regulator_get_optional - obtain optional access to a regulator.
2011  * @dev: device for regulator "consumer"
2012  * @id: Supply name or regulator ID.
2013  *
2014  * Returns a struct regulator corresponding to the regulator producer,
2015  * or IS_ERR() condition containing errno.
2016  *
2017  * This is intended for use by consumers for devices which can have
2018  * some supplies unconnected in normal use, such as some MMC devices.
2019  * It can allow the regulator core to provide stub supplies for other
2020  * supplies requested using normal regulator_get() calls without
2021  * disrupting the operation of drivers that can handle absent
2022  * supplies.
2023  *
2024  * Use of supply names configured via regulator_set_device_supply() is
2025  * strongly encouraged.  It is recommended that the supply name used
2026  * should match the name used for the supply and/or the relevant
2027  * device pins in the datasheet.
2028  */
2029 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2030 {
2031         return _regulator_get(dev, id, OPTIONAL_GET);
2032 }
2033 EXPORT_SYMBOL_GPL(regulator_get_optional);
2034
2035 /* regulator_list_mutex lock held by regulator_put() */
2036 static void _regulator_put(struct regulator *regulator)
2037 {
2038         struct regulator_dev *rdev;
2039
2040         if (IS_ERR_OR_NULL(regulator))
2041                 return;
2042
2043         lockdep_assert_held_once(&regulator_list_mutex);
2044
2045         /* Docs say you must disable before calling regulator_put() */
2046         WARN_ON(regulator->enable_count);
2047
2048         rdev = regulator->rdev;
2049
2050         debugfs_remove_recursive(regulator->debugfs);
2051
2052         if (regulator->dev) {
2053                 device_link_remove(regulator->dev, &rdev->dev);
2054
2055                 /* remove any sysfs entries */
2056                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2057         }
2058
2059         regulator_lock(rdev);
2060         list_del(&regulator->list);
2061
2062         rdev->open_count--;
2063         rdev->exclusive = 0;
2064         put_device(&rdev->dev);
2065         regulator_unlock(rdev);
2066
2067         kfree_const(regulator->supply_name);
2068         kfree(regulator);
2069
2070         module_put(rdev->owner);
2071 }
2072
2073 /**
2074  * regulator_put - "free" the regulator source
2075  * @regulator: regulator source
2076  *
2077  * Note: drivers must ensure that all regulator_enable calls made on this
2078  * regulator source are balanced by regulator_disable calls prior to calling
2079  * this function.
2080  */
2081 void regulator_put(struct regulator *regulator)
2082 {
2083         mutex_lock(&regulator_list_mutex);
2084         _regulator_put(regulator);
2085         mutex_unlock(&regulator_list_mutex);
2086 }
2087 EXPORT_SYMBOL_GPL(regulator_put);
2088
2089 /**
2090  * regulator_register_supply_alias - Provide device alias for supply lookup
2091  *
2092  * @dev: device that will be given as the regulator "consumer"
2093  * @id: Supply name or regulator ID
2094  * @alias_dev: device that should be used to lookup the supply
2095  * @alias_id: Supply name or regulator ID that should be used to lookup the
2096  * supply
2097  *
2098  * All lookups for id on dev will instead be conducted for alias_id on
2099  * alias_dev.
2100  */
2101 int regulator_register_supply_alias(struct device *dev, const char *id,
2102                                     struct device *alias_dev,
2103                                     const char *alias_id)
2104 {
2105         struct regulator_supply_alias *map;
2106
2107         map = regulator_find_supply_alias(dev, id);
2108         if (map)
2109                 return -EEXIST;
2110
2111         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2112         if (!map)
2113                 return -ENOMEM;
2114
2115         map->src_dev = dev;
2116         map->src_supply = id;
2117         map->alias_dev = alias_dev;
2118         map->alias_supply = alias_id;
2119
2120         list_add(&map->list, &regulator_supply_alias_list);
2121
2122         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2123                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2124
2125         return 0;
2126 }
2127 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2128
2129 /**
2130  * regulator_unregister_supply_alias - Remove device alias
2131  *
2132  * @dev: device that will be given as the regulator "consumer"
2133  * @id: Supply name or regulator ID
2134  *
2135  * Remove a lookup alias if one exists for id on dev.
2136  */
2137 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2138 {
2139         struct regulator_supply_alias *map;
2140
2141         map = regulator_find_supply_alias(dev, id);
2142         if (map) {
2143                 list_del(&map->list);
2144                 kfree(map);
2145         }
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2148
2149 /**
2150  * regulator_bulk_register_supply_alias - register multiple aliases
2151  *
2152  * @dev: device that will be given as the regulator "consumer"
2153  * @id: List of supply names or regulator IDs
2154  * @alias_dev: device that should be used to lookup the supply
2155  * @alias_id: List of supply names or regulator IDs that should be used to
2156  * lookup the supply
2157  * @num_id: Number of aliases to register
2158  *
2159  * @return 0 on success, an errno on failure.
2160  *
2161  * This helper function allows drivers to register several supply
2162  * aliases in one operation.  If any of the aliases cannot be
2163  * registered any aliases that were registered will be removed
2164  * before returning to the caller.
2165  */
2166 int regulator_bulk_register_supply_alias(struct device *dev,
2167                                          const char *const *id,
2168                                          struct device *alias_dev,
2169                                          const char *const *alias_id,
2170                                          int num_id)
2171 {
2172         int i;
2173         int ret;
2174
2175         for (i = 0; i < num_id; ++i) {
2176                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2177                                                       alias_id[i]);
2178                 if (ret < 0)
2179                         goto err;
2180         }
2181
2182         return 0;
2183
2184 err:
2185         dev_err(dev,
2186                 "Failed to create supply alias %s,%s -> %s,%s\n",
2187                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2188
2189         while (--i >= 0)
2190                 regulator_unregister_supply_alias(dev, id[i]);
2191
2192         return ret;
2193 }
2194 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2195
2196 /**
2197  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2198  *
2199  * @dev: device that will be given as the regulator "consumer"
2200  * @id: List of supply names or regulator IDs
2201  * @num_id: Number of aliases to unregister
2202  *
2203  * This helper function allows drivers to unregister several supply
2204  * aliases in one operation.
2205  */
2206 void regulator_bulk_unregister_supply_alias(struct device *dev,
2207                                             const char *const *id,
2208                                             int num_id)
2209 {
2210         int i;
2211
2212         for (i = 0; i < num_id; ++i)
2213                 regulator_unregister_supply_alias(dev, id[i]);
2214 }
2215 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2216
2217
2218 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2219 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2220                                 const struct regulator_config *config)
2221 {
2222         struct regulator_enable_gpio *pin;
2223         struct gpio_desc *gpiod;
2224
2225         gpiod = config->ena_gpiod;
2226
2227         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2228                 if (pin->gpiod == gpiod) {
2229                         rdev_dbg(rdev, "GPIO is already used\n");
2230                         goto update_ena_gpio_to_rdev;
2231                 }
2232         }
2233
2234         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2235         if (pin == NULL)
2236                 return -ENOMEM;
2237
2238         pin->gpiod = gpiod;
2239         list_add(&pin->list, &regulator_ena_gpio_list);
2240
2241 update_ena_gpio_to_rdev:
2242         pin->request_count++;
2243         rdev->ena_pin = pin;
2244         return 0;
2245 }
2246
2247 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2248 {
2249         struct regulator_enable_gpio *pin, *n;
2250
2251         if (!rdev->ena_pin)
2252                 return;
2253
2254         /* Free the GPIO only in case of no use */
2255         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2256                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2257                         if (pin->request_count <= 1) {
2258                                 pin->request_count = 0;
2259                                 list_del(&pin->list);
2260                                 kfree(pin);
2261                                 rdev->ena_pin = NULL;
2262                                 return;
2263                         } else {
2264                                 pin->request_count--;
2265                         }
2266                 }
2267         }
2268 }
2269
2270 /**
2271  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2272  * @rdev: regulator_dev structure
2273  * @enable: enable GPIO at initial use?
2274  *
2275  * GPIO is enabled in case of initial use. (enable_count is 0)
2276  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2277  */
2278 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2279 {
2280         struct regulator_enable_gpio *pin = rdev->ena_pin;
2281
2282         if (!pin)
2283                 return -EINVAL;
2284
2285         if (enable) {
2286                 /* Enable GPIO at initial use */
2287                 if (pin->enable_count == 0)
2288                         gpiod_set_value_cansleep(pin->gpiod, 1);
2289
2290                 pin->enable_count++;
2291         } else {
2292                 if (pin->enable_count > 1) {
2293                         pin->enable_count--;
2294                         return 0;
2295                 }
2296
2297                 /* Disable GPIO if not used */
2298                 if (pin->enable_count <= 1) {
2299                         gpiod_set_value_cansleep(pin->gpiod, 0);
2300                         pin->enable_count = 0;
2301                 }
2302         }
2303
2304         return 0;
2305 }
2306
2307 /**
2308  * _regulator_enable_delay - a delay helper function
2309  * @delay: time to delay in microseconds
2310  *
2311  * Delay for the requested amount of time as per the guidelines in:
2312  *
2313  *     Documentation/timers/timers-howto.txt
2314  *
2315  * The assumption here is that regulators will never be enabled in
2316  * atomic context and therefore sleeping functions can be used.
2317  */
2318 static void _regulator_enable_delay(unsigned int delay)
2319 {
2320         unsigned int ms = delay / 1000;
2321         unsigned int us = delay % 1000;
2322
2323         if (ms > 0) {
2324                 /*
2325                  * For small enough values, handle super-millisecond
2326                  * delays in the usleep_range() call below.
2327                  */
2328                 if (ms < 20)
2329                         us += ms * 1000;
2330                 else
2331                         msleep(ms);
2332         }
2333
2334         /*
2335          * Give the scheduler some room to coalesce with any other
2336          * wakeup sources. For delays shorter than 10 us, don't even
2337          * bother setting up high-resolution timers and just busy-
2338          * loop.
2339          */
2340         if (us >= 10)
2341                 usleep_range(us, us + 100);
2342         else
2343                 udelay(us);
2344 }
2345
2346 static int _regulator_do_enable(struct regulator_dev *rdev)
2347 {
2348         int ret, delay;
2349
2350         /* Query before enabling in case configuration dependent.  */
2351         ret = _regulator_get_enable_time(rdev);
2352         if (ret >= 0) {
2353                 delay = ret;
2354         } else {
2355                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2356                 delay = 0;
2357         }
2358
2359         trace_regulator_enable(rdev_get_name(rdev));
2360
2361         if (rdev->desc->off_on_delay) {
2362                 /* if needed, keep a distance of off_on_delay from last time
2363                  * this regulator was disabled.
2364                  */
2365                 unsigned long start_jiffy = jiffies;
2366                 unsigned long intended, max_delay, remaining;
2367
2368                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2369                 intended = rdev->last_off_jiffy + max_delay;
2370
2371                 if (time_before(start_jiffy, intended)) {
2372                         /* calc remaining jiffies to deal with one-time
2373                          * timer wrapping.
2374                          * in case of multiple timer wrapping, either it can be
2375                          * detected by out-of-range remaining, or it cannot be
2376                          * detected and we get a penalty of
2377                          * _regulator_enable_delay().
2378                          */
2379                         remaining = intended - start_jiffy;
2380                         if (remaining <= max_delay)
2381                                 _regulator_enable_delay(
2382                                                 jiffies_to_usecs(remaining));
2383                 }
2384         }
2385
2386         if (rdev->ena_pin) {
2387                 if (!rdev->ena_gpio_state) {
2388                         ret = regulator_ena_gpio_ctrl(rdev, true);
2389                         if (ret < 0)
2390                                 return ret;
2391                         rdev->ena_gpio_state = 1;
2392                 }
2393         } else if (rdev->desc->ops->enable) {
2394                 ret = rdev->desc->ops->enable(rdev);
2395                 if (ret < 0)
2396                         return ret;
2397         } else {
2398                 return -EINVAL;
2399         }
2400
2401         /* Allow the regulator to ramp; it would be useful to extend
2402          * this for bulk operations so that the regulators can ramp
2403          * together.  */
2404         trace_regulator_enable_delay(rdev_get_name(rdev));
2405
2406         _regulator_enable_delay(delay);
2407
2408         trace_regulator_enable_complete(rdev_get_name(rdev));
2409
2410         return 0;
2411 }
2412
2413 /**
2414  * _regulator_handle_consumer_enable - handle that a consumer enabled
2415  * @regulator: regulator source
2416  *
2417  * Some things on a regulator consumer (like the contribution towards total
2418  * load on the regulator) only have an effect when the consumer wants the
2419  * regulator enabled.  Explained in example with two consumers of the same
2420  * regulator:
2421  *   consumer A: set_load(100);       => total load = 0
2422  *   consumer A: regulator_enable();  => total load = 100
2423  *   consumer B: set_load(1000);      => total load = 100
2424  *   consumer B: regulator_enable();  => total load = 1100
2425  *   consumer A: regulator_disable(); => total_load = 1000
2426  *
2427  * This function (together with _regulator_handle_consumer_disable) is
2428  * responsible for keeping track of the refcount for a given regulator consumer
2429  * and applying / unapplying these things.
2430  *
2431  * Returns 0 upon no error; -error upon error.
2432  */
2433 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2434 {
2435         struct regulator_dev *rdev = regulator->rdev;
2436
2437         lockdep_assert_held_once(&rdev->mutex.base);
2438
2439         regulator->enable_count++;
2440         if (regulator->uA_load && regulator->enable_count == 1)
2441                 return drms_uA_update(rdev);
2442
2443         return 0;
2444 }
2445
2446 /**
2447  * _regulator_handle_consumer_disable - handle that a consumer disabled
2448  * @regulator: regulator source
2449  *
2450  * The opposite of _regulator_handle_consumer_enable().
2451  *
2452  * Returns 0 upon no error; -error upon error.
2453  */
2454 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2455 {
2456         struct regulator_dev *rdev = regulator->rdev;
2457
2458         lockdep_assert_held_once(&rdev->mutex.base);
2459
2460         if (!regulator->enable_count) {
2461                 rdev_err(rdev, "Underflow of regulator enable count\n");
2462                 return -EINVAL;
2463         }
2464
2465         regulator->enable_count--;
2466         if (regulator->uA_load && regulator->enable_count == 0)
2467                 return drms_uA_update(rdev);
2468
2469         return 0;
2470 }
2471
2472 /* locks held by regulator_enable() */
2473 static int _regulator_enable(struct regulator *regulator)
2474 {
2475         struct regulator_dev *rdev = regulator->rdev;
2476         int ret;
2477
2478         lockdep_assert_held_once(&rdev->mutex.base);
2479
2480         if (rdev->use_count == 0 && rdev->supply) {
2481                 ret = _regulator_enable(rdev->supply);
2482                 if (ret < 0)
2483                         return ret;
2484         }
2485
2486         /* balance only if there are regulators coupled */
2487         if (rdev->coupling_desc.n_coupled > 1) {
2488                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2489                 if (ret < 0)
2490                         goto err_disable_supply;
2491         }
2492
2493         ret = _regulator_handle_consumer_enable(regulator);
2494         if (ret < 0)
2495                 goto err_disable_supply;
2496
2497         if (rdev->use_count == 0) {
2498                 /* The regulator may on if it's not switchable or left on */
2499                 ret = _regulator_is_enabled(rdev);
2500                 if (ret == -EINVAL || ret == 0) {
2501                         if (!regulator_ops_is_valid(rdev,
2502                                         REGULATOR_CHANGE_STATUS)) {
2503                                 ret = -EPERM;
2504                                 goto err_consumer_disable;
2505                         }
2506
2507                         ret = _regulator_do_enable(rdev);
2508                         if (ret < 0)
2509                                 goto err_consumer_disable;
2510
2511                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2512                                              NULL);
2513                 } else if (ret < 0) {
2514                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2515                         goto err_consumer_disable;
2516                 }
2517                 /* Fallthrough on positive return values - already enabled */
2518         }
2519
2520         rdev->use_count++;
2521
2522         return 0;
2523
2524 err_consumer_disable:
2525         _regulator_handle_consumer_disable(regulator);
2526
2527 err_disable_supply:
2528         if (rdev->use_count == 0 && rdev->supply)
2529                 _regulator_disable(rdev->supply);
2530
2531         return ret;
2532 }
2533
2534 /**
2535  * regulator_enable - enable regulator output
2536  * @regulator: regulator source
2537  *
2538  * Request that the regulator be enabled with the regulator output at
2539  * the predefined voltage or current value.  Calls to regulator_enable()
2540  * must be balanced with calls to regulator_disable().
2541  *
2542  * NOTE: the output value can be set by other drivers, boot loader or may be
2543  * hardwired in the regulator.
2544  */
2545 int regulator_enable(struct regulator *regulator)
2546 {
2547         struct regulator_dev *rdev = regulator->rdev;
2548         struct ww_acquire_ctx ww_ctx;
2549         int ret;
2550
2551         regulator_lock_dependent(rdev, &ww_ctx);
2552         ret = _regulator_enable(regulator);
2553         regulator_unlock_dependent(rdev, &ww_ctx);
2554
2555         return ret;
2556 }
2557 EXPORT_SYMBOL_GPL(regulator_enable);
2558
2559 static int _regulator_do_disable(struct regulator_dev *rdev)
2560 {
2561         int ret;
2562
2563         trace_regulator_disable(rdev_get_name(rdev));
2564
2565         if (rdev->ena_pin) {
2566                 if (rdev->ena_gpio_state) {
2567                         ret = regulator_ena_gpio_ctrl(rdev, false);
2568                         if (ret < 0)
2569                                 return ret;
2570                         rdev->ena_gpio_state = 0;
2571                 }
2572
2573         } else if (rdev->desc->ops->disable) {
2574                 ret = rdev->desc->ops->disable(rdev);
2575                 if (ret != 0)
2576                         return ret;
2577         }
2578
2579         /* cares about last_off_jiffy only if off_on_delay is required by
2580          * device.
2581          */
2582         if (rdev->desc->off_on_delay)
2583                 rdev->last_off_jiffy = jiffies;
2584
2585         trace_regulator_disable_complete(rdev_get_name(rdev));
2586
2587         return 0;
2588 }
2589
2590 /* locks held by regulator_disable() */
2591 static int _regulator_disable(struct regulator *regulator)
2592 {
2593         struct regulator_dev *rdev = regulator->rdev;
2594         int ret = 0;
2595
2596         lockdep_assert_held_once(&rdev->mutex.base);
2597
2598         if (WARN(rdev->use_count <= 0,
2599                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2600                 return -EIO;
2601
2602         /* are we the last user and permitted to disable ? */
2603         if (rdev->use_count == 1 &&
2604             (rdev->constraints && !rdev->constraints->always_on)) {
2605
2606                 /* we are last user */
2607                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2608                         ret = _notifier_call_chain(rdev,
2609                                                    REGULATOR_EVENT_PRE_DISABLE,
2610                                                    NULL);
2611                         if (ret & NOTIFY_STOP_MASK)
2612                                 return -EINVAL;
2613
2614                         ret = _regulator_do_disable(rdev);
2615                         if (ret < 0) {
2616                                 rdev_err(rdev, "failed to disable\n");
2617                                 _notifier_call_chain(rdev,
2618                                                 REGULATOR_EVENT_ABORT_DISABLE,
2619                                                 NULL);
2620                                 return ret;
2621                         }
2622                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2623                                         NULL);
2624                 }
2625
2626                 rdev->use_count = 0;
2627         } else if (rdev->use_count > 1) {
2628                 rdev->use_count--;
2629         }
2630
2631         if (ret == 0)
2632                 ret = _regulator_handle_consumer_disable(regulator);
2633
2634         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2635                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2636
2637         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2638                 ret = _regulator_disable(rdev->supply);
2639
2640         return ret;
2641 }
2642
2643 /**
2644  * regulator_disable - disable regulator output
2645  * @regulator: regulator source
2646  *
2647  * Disable the regulator output voltage or current.  Calls to
2648  * regulator_enable() must be balanced with calls to
2649  * regulator_disable().
2650  *
2651  * NOTE: this will only disable the regulator output if no other consumer
2652  * devices have it enabled, the regulator device supports disabling and
2653  * machine constraints permit this operation.
2654  */
2655 int regulator_disable(struct regulator *regulator)
2656 {
2657         struct regulator_dev *rdev = regulator->rdev;
2658         struct ww_acquire_ctx ww_ctx;
2659         int ret;
2660
2661         regulator_lock_dependent(rdev, &ww_ctx);
2662         ret = _regulator_disable(regulator);
2663         regulator_unlock_dependent(rdev, &ww_ctx);
2664
2665         return ret;
2666 }
2667 EXPORT_SYMBOL_GPL(regulator_disable);
2668
2669 /* locks held by regulator_force_disable() */
2670 static int _regulator_force_disable(struct regulator_dev *rdev)
2671 {
2672         int ret = 0;
2673
2674         lockdep_assert_held_once(&rdev->mutex.base);
2675
2676         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2677                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2678         if (ret & NOTIFY_STOP_MASK)
2679                 return -EINVAL;
2680
2681         ret = _regulator_do_disable(rdev);
2682         if (ret < 0) {
2683                 rdev_err(rdev, "failed to force disable\n");
2684                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2685                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2686                 return ret;
2687         }
2688
2689         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2690                         REGULATOR_EVENT_DISABLE, NULL);
2691
2692         return 0;
2693 }
2694
2695 /**
2696  * regulator_force_disable - force disable regulator output
2697  * @regulator: regulator source
2698  *
2699  * Forcibly disable the regulator output voltage or current.
2700  * NOTE: this *will* disable the regulator output even if other consumer
2701  * devices have it enabled. This should be used for situations when device
2702  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2703  */
2704 int regulator_force_disable(struct regulator *regulator)
2705 {
2706         struct regulator_dev *rdev = regulator->rdev;
2707         struct ww_acquire_ctx ww_ctx;
2708         int ret;
2709
2710         regulator_lock_dependent(rdev, &ww_ctx);
2711
2712         ret = _regulator_force_disable(regulator->rdev);
2713
2714         if (rdev->coupling_desc.n_coupled > 1)
2715                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2716
2717         if (regulator->uA_load) {
2718                 regulator->uA_load = 0;
2719                 ret = drms_uA_update(rdev);
2720         }
2721
2722         if (rdev->use_count != 0 && rdev->supply)
2723                 _regulator_disable(rdev->supply);
2724
2725         regulator_unlock_dependent(rdev, &ww_ctx);
2726
2727         return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regulator_force_disable);
2730
2731 static void regulator_disable_work(struct work_struct *work)
2732 {
2733         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2734                                                   disable_work.work);
2735         struct ww_acquire_ctx ww_ctx;
2736         int count, i, ret;
2737         struct regulator *regulator;
2738         int total_count = 0;
2739
2740         regulator_lock_dependent(rdev, &ww_ctx);
2741
2742         /*
2743          * Workqueue functions queue the new work instance while the previous
2744          * work instance is being processed. Cancel the queued work instance
2745          * as the work instance under processing does the job of the queued
2746          * work instance.
2747          */
2748         cancel_delayed_work(&rdev->disable_work);
2749
2750         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2751                 count = regulator->deferred_disables;
2752
2753                 if (!count)
2754                         continue;
2755
2756                 total_count += count;
2757                 regulator->deferred_disables = 0;
2758
2759                 for (i = 0; i < count; i++) {
2760                         ret = _regulator_disable(regulator);
2761                         if (ret != 0)
2762                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2763                 }
2764         }
2765         WARN_ON(!total_count);
2766
2767         if (rdev->coupling_desc.n_coupled > 1)
2768                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769
2770         regulator_unlock_dependent(rdev, &ww_ctx);
2771 }
2772
2773 /**
2774  * regulator_disable_deferred - disable regulator output with delay
2775  * @regulator: regulator source
2776  * @ms: milliseconds until the regulator is disabled
2777  *
2778  * Execute regulator_disable() on the regulator after a delay.  This
2779  * is intended for use with devices that require some time to quiesce.
2780  *
2781  * NOTE: this will only disable the regulator output if no other consumer
2782  * devices have it enabled, the regulator device supports disabling and
2783  * machine constraints permit this operation.
2784  */
2785 int regulator_disable_deferred(struct regulator *regulator, int ms)
2786 {
2787         struct regulator_dev *rdev = regulator->rdev;
2788
2789         if (!ms)
2790                 return regulator_disable(regulator);
2791
2792         regulator_lock(rdev);
2793         regulator->deferred_disables++;
2794         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2795                          msecs_to_jiffies(ms));
2796         regulator_unlock(rdev);
2797
2798         return 0;
2799 }
2800 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2801
2802 static int _regulator_is_enabled(struct regulator_dev *rdev)
2803 {
2804         /* A GPIO control always takes precedence */
2805         if (rdev->ena_pin)
2806                 return rdev->ena_gpio_state;
2807
2808         /* If we don't know then assume that the regulator is always on */
2809         if (!rdev->desc->ops->is_enabled)
2810                 return 1;
2811
2812         return rdev->desc->ops->is_enabled(rdev);
2813 }
2814
2815 static int _regulator_list_voltage(struct regulator_dev *rdev,
2816                                    unsigned selector, int lock)
2817 {
2818         const struct regulator_ops *ops = rdev->desc->ops;
2819         int ret;
2820
2821         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2822                 return rdev->desc->fixed_uV;
2823
2824         if (ops->list_voltage) {
2825                 if (selector >= rdev->desc->n_voltages)
2826                         return -EINVAL;
2827                 if (lock)
2828                         regulator_lock(rdev);
2829                 ret = ops->list_voltage(rdev, selector);
2830                 if (lock)
2831                         regulator_unlock(rdev);
2832         } else if (rdev->is_switch && rdev->supply) {
2833                 ret = _regulator_list_voltage(rdev->supply->rdev,
2834                                               selector, lock);
2835         } else {
2836                 return -EINVAL;
2837         }
2838
2839         if (ret > 0) {
2840                 if (ret < rdev->constraints->min_uV)
2841                         ret = 0;
2842                 else if (ret > rdev->constraints->max_uV)
2843                         ret = 0;
2844         }
2845
2846         return ret;
2847 }
2848
2849 /**
2850  * regulator_is_enabled - is the regulator output enabled
2851  * @regulator: regulator source
2852  *
2853  * Returns positive if the regulator driver backing the source/client
2854  * has requested that the device be enabled, zero if it hasn't, else a
2855  * negative errno code.
2856  *
2857  * Note that the device backing this regulator handle can have multiple
2858  * users, so it might be enabled even if regulator_enable() was never
2859  * called for this particular source.
2860  */
2861 int regulator_is_enabled(struct regulator *regulator)
2862 {
2863         int ret;
2864
2865         if (regulator->always_on)
2866                 return 1;
2867
2868         regulator_lock(regulator->rdev);
2869         ret = _regulator_is_enabled(regulator->rdev);
2870         regulator_unlock(regulator->rdev);
2871
2872         return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2875
2876 /**
2877  * regulator_count_voltages - count regulator_list_voltage() selectors
2878  * @regulator: regulator source
2879  *
2880  * Returns number of selectors, or negative errno.  Selectors are
2881  * numbered starting at zero, and typically correspond to bitfields
2882  * in hardware registers.
2883  */
2884 int regulator_count_voltages(struct regulator *regulator)
2885 {
2886         struct regulator_dev    *rdev = regulator->rdev;
2887
2888         if (rdev->desc->n_voltages)
2889                 return rdev->desc->n_voltages;
2890
2891         if (!rdev->is_switch || !rdev->supply)
2892                 return -EINVAL;
2893
2894         return regulator_count_voltages(rdev->supply);
2895 }
2896 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2897
2898 /**
2899  * regulator_list_voltage - enumerate supported voltages
2900  * @regulator: regulator source
2901  * @selector: identify voltage to list
2902  * Context: can sleep
2903  *
2904  * Returns a voltage that can be passed to @regulator_set_voltage(),
2905  * zero if this selector code can't be used on this system, or a
2906  * negative errno.
2907  */
2908 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2909 {
2910         return _regulator_list_voltage(regulator->rdev, selector, 1);
2911 }
2912 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2913
2914 /**
2915  * regulator_get_regmap - get the regulator's register map
2916  * @regulator: regulator source
2917  *
2918  * Returns the register map for the given regulator, or an ERR_PTR value
2919  * if the regulator doesn't use regmap.
2920  */
2921 struct regmap *regulator_get_regmap(struct regulator *regulator)
2922 {
2923         struct regmap *map = regulator->rdev->regmap;
2924
2925         return map ? map : ERR_PTR(-EOPNOTSUPP);
2926 }
2927
2928 /**
2929  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2930  * @regulator: regulator source
2931  * @vsel_reg: voltage selector register, output parameter
2932  * @vsel_mask: mask for voltage selector bitfield, output parameter
2933  *
2934  * Returns the hardware register offset and bitmask used for setting the
2935  * regulator voltage. This might be useful when configuring voltage-scaling
2936  * hardware or firmware that can make I2C requests behind the kernel's back,
2937  * for example.
2938  *
2939  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2940  * and 0 is returned, otherwise a negative errno is returned.
2941  */
2942 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2943                                          unsigned *vsel_reg,
2944                                          unsigned *vsel_mask)
2945 {
2946         struct regulator_dev *rdev = regulator->rdev;
2947         const struct regulator_ops *ops = rdev->desc->ops;
2948
2949         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2950                 return -EOPNOTSUPP;
2951
2952         *vsel_reg = rdev->desc->vsel_reg;
2953         *vsel_mask = rdev->desc->vsel_mask;
2954
2955          return 0;
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2958
2959 /**
2960  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2961  * @regulator: regulator source
2962  * @selector: identify voltage to list
2963  *
2964  * Converts the selector to a hardware-specific voltage selector that can be
2965  * directly written to the regulator registers. The address of the voltage
2966  * register can be determined by calling @regulator_get_hardware_vsel_register.
2967  *
2968  * On error a negative errno is returned.
2969  */
2970 int regulator_list_hardware_vsel(struct regulator *regulator,
2971                                  unsigned selector)
2972 {
2973         struct regulator_dev *rdev = regulator->rdev;
2974         const struct regulator_ops *ops = rdev->desc->ops;
2975
2976         if (selector >= rdev->desc->n_voltages)
2977                 return -EINVAL;
2978         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2979                 return -EOPNOTSUPP;
2980
2981         return selector;
2982 }
2983 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2984
2985 /**
2986  * regulator_get_linear_step - return the voltage step size between VSEL values
2987  * @regulator: regulator source
2988  *
2989  * Returns the voltage step size between VSEL values for linear
2990  * regulators, or return 0 if the regulator isn't a linear regulator.
2991  */
2992 unsigned int regulator_get_linear_step(struct regulator *regulator)
2993 {
2994         struct regulator_dev *rdev = regulator->rdev;
2995
2996         return rdev->desc->uV_step;
2997 }
2998 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2999
3000 /**
3001  * regulator_is_supported_voltage - check if a voltage range can be supported
3002  *
3003  * @regulator: Regulator to check.
3004  * @min_uV: Minimum required voltage in uV.
3005  * @max_uV: Maximum required voltage in uV.
3006  *
3007  * Returns a boolean or a negative error code.
3008  */
3009 int regulator_is_supported_voltage(struct regulator *regulator,
3010                                    int min_uV, int max_uV)
3011 {
3012         struct regulator_dev *rdev = regulator->rdev;
3013         int i, voltages, ret;
3014
3015         /* If we can't change voltage check the current voltage */
3016         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3017                 ret = regulator_get_voltage(regulator);
3018                 if (ret >= 0)
3019                         return min_uV <= ret && ret <= max_uV;
3020                 else
3021                         return ret;
3022         }
3023
3024         /* Any voltage within constrains range is fine? */
3025         if (rdev->desc->continuous_voltage_range)
3026                 return min_uV >= rdev->constraints->min_uV &&
3027                                 max_uV <= rdev->constraints->max_uV;
3028
3029         ret = regulator_count_voltages(regulator);
3030         if (ret < 0)
3031                 return ret;
3032         voltages = ret;
3033
3034         for (i = 0; i < voltages; i++) {
3035                 ret = regulator_list_voltage(regulator, i);
3036
3037                 if (ret >= min_uV && ret <= max_uV)
3038                         return 1;
3039         }
3040
3041         return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3044
3045 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3046                                  int max_uV)
3047 {
3048         const struct regulator_desc *desc = rdev->desc;
3049
3050         if (desc->ops->map_voltage)
3051                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3052
3053         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3054                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3055
3056         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3057                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3058
3059         if (desc->ops->list_voltage ==
3060                 regulator_list_voltage_pickable_linear_range)
3061                 return regulator_map_voltage_pickable_linear_range(rdev,
3062                                                         min_uV, max_uV);
3063
3064         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3065 }
3066
3067 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3068                                        int min_uV, int max_uV,
3069                                        unsigned *selector)
3070 {
3071         struct pre_voltage_change_data data;
3072         int ret;
3073
3074         data.old_uV = _regulator_get_voltage(rdev);
3075         data.min_uV = min_uV;
3076         data.max_uV = max_uV;
3077         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3078                                    &data);
3079         if (ret & NOTIFY_STOP_MASK)
3080                 return -EINVAL;
3081
3082         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3083         if (ret >= 0)
3084                 return ret;
3085
3086         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3087                              (void *)data.old_uV);
3088
3089         return ret;
3090 }
3091
3092 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3093                                            int uV, unsigned selector)
3094 {
3095         struct pre_voltage_change_data data;
3096         int ret;
3097
3098         data.old_uV = _regulator_get_voltage(rdev);
3099         data.min_uV = uV;
3100         data.max_uV = uV;
3101         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3102                                    &data);
3103         if (ret & NOTIFY_STOP_MASK)
3104                 return -EINVAL;
3105
3106         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3107         if (ret >= 0)
3108                 return ret;
3109
3110         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3111                              (void *)data.old_uV);
3112
3113         return ret;
3114 }
3115
3116 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3117                                        int old_uV, int new_uV)
3118 {
3119         unsigned int ramp_delay = 0;
3120
3121         if (rdev->constraints->ramp_delay)
3122                 ramp_delay = rdev->constraints->ramp_delay;
3123         else if (rdev->desc->ramp_delay)
3124                 ramp_delay = rdev->desc->ramp_delay;
3125         else if (rdev->constraints->settling_time)
3126                 return rdev->constraints->settling_time;
3127         else if (rdev->constraints->settling_time_up &&
3128                  (new_uV > old_uV))
3129                 return rdev->constraints->settling_time_up;
3130         else if (rdev->constraints->settling_time_down &&
3131                  (new_uV < old_uV))
3132                 return rdev->constraints->settling_time_down;
3133
3134         if (ramp_delay == 0) {
3135                 rdev_dbg(rdev, "ramp_delay not set\n");
3136                 return 0;
3137         }
3138
3139         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3140 }
3141
3142 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3143                                      int min_uV, int max_uV)
3144 {
3145         int ret;
3146         int delay = 0;
3147         int best_val = 0;
3148         unsigned int selector;
3149         int old_selector = -1;
3150         const struct regulator_ops *ops = rdev->desc->ops;
3151         int old_uV = _regulator_get_voltage(rdev);
3152
3153         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3154
3155         min_uV += rdev->constraints->uV_offset;
3156         max_uV += rdev->constraints->uV_offset;
3157
3158         /*
3159          * If we can't obtain the old selector there is not enough
3160          * info to call set_voltage_time_sel().
3161          */
3162         if (_regulator_is_enabled(rdev) &&
3163             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3164                 old_selector = ops->get_voltage_sel(rdev);
3165                 if (old_selector < 0)
3166                         return old_selector;
3167         }
3168
3169         if (ops->set_voltage) {
3170                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3171                                                   &selector);
3172
3173                 if (ret >= 0) {
3174                         if (ops->list_voltage)
3175                                 best_val = ops->list_voltage(rdev,
3176                                                              selector);
3177                         else
3178                                 best_val = _regulator_get_voltage(rdev);
3179                 }
3180
3181         } else if (ops->set_voltage_sel) {
3182                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3183                 if (ret >= 0) {
3184                         best_val = ops->list_voltage(rdev, ret);
3185                         if (min_uV <= best_val && max_uV >= best_val) {
3186                                 selector = ret;
3187                                 if (old_selector == selector)
3188                                         ret = 0;
3189                                 else
3190                                         ret = _regulator_call_set_voltage_sel(
3191                                                 rdev, best_val, selector);
3192                         } else {
3193                                 ret = -EINVAL;
3194                         }
3195                 }
3196         } else {
3197                 ret = -EINVAL;
3198         }
3199
3200         if (ret)
3201                 goto out;
3202
3203         if (ops->set_voltage_time_sel) {
3204                 /*
3205                  * Call set_voltage_time_sel if successfully obtained
3206                  * old_selector
3207                  */
3208                 if (old_selector >= 0 && old_selector != selector)
3209                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3210                                                           selector);
3211         } else {
3212                 if (old_uV != best_val) {
3213                         if (ops->set_voltage_time)
3214                                 delay = ops->set_voltage_time(rdev, old_uV,
3215                                                               best_val);
3216                         else
3217                                 delay = _regulator_set_voltage_time(rdev,
3218                                                                     old_uV,
3219                                                                     best_val);
3220                 }
3221         }
3222
3223         if (delay < 0) {
3224                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3225                 delay = 0;
3226         }
3227
3228         /* Insert any necessary delays */
3229         if (delay >= 1000) {
3230                 mdelay(delay / 1000);
3231                 udelay(delay % 1000);
3232         } else if (delay) {
3233                 udelay(delay);
3234         }
3235
3236         if (best_val >= 0) {
3237                 unsigned long data = best_val;
3238
3239                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3240                                      (void *)data);
3241         }
3242
3243 out:
3244         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3245
3246         return ret;
3247 }
3248
3249 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3250                                   int min_uV, int max_uV, suspend_state_t state)
3251 {
3252         struct regulator_state *rstate;
3253         int uV, sel;
3254
3255         rstate = regulator_get_suspend_state(rdev, state);
3256         if (rstate == NULL)
3257                 return -EINVAL;
3258
3259         if (min_uV < rstate->min_uV)
3260                 min_uV = rstate->min_uV;
3261         if (max_uV > rstate->max_uV)
3262                 max_uV = rstate->max_uV;
3263
3264         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3265         if (sel < 0)
3266                 return sel;
3267
3268         uV = rdev->desc->ops->list_voltage(rdev, sel);
3269         if (uV >= min_uV && uV <= max_uV)
3270                 rstate->uV = uV;
3271
3272         return 0;
3273 }
3274
3275 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3276                                           int min_uV, int max_uV,
3277                                           suspend_state_t state)
3278 {
3279         struct regulator_dev *rdev = regulator->rdev;
3280         struct regulator_voltage *voltage = &regulator->voltage[state];
3281         int ret = 0;
3282         int old_min_uV, old_max_uV;
3283         int current_uV;
3284
3285         /* If we're setting the same range as last time the change
3286          * should be a noop (some cpufreq implementations use the same
3287          * voltage for multiple frequencies, for example).
3288          */
3289         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3290                 goto out;
3291
3292         /* If we're trying to set a range that overlaps the current voltage,
3293          * return successfully even though the regulator does not support
3294          * changing the voltage.
3295          */
3296         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3297                 current_uV = _regulator_get_voltage(rdev);
3298                 if (min_uV <= current_uV && current_uV <= max_uV) {
3299                         voltage->min_uV = min_uV;
3300                         voltage->max_uV = max_uV;
3301                         goto out;
3302                 }
3303         }
3304
3305         /* sanity check */
3306         if (!rdev->desc->ops->set_voltage &&
3307             !rdev->desc->ops->set_voltage_sel) {
3308                 ret = -EINVAL;
3309                 goto out;
3310         }
3311
3312         /* constraints check */
3313         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3314         if (ret < 0)
3315                 goto out;
3316
3317         /* restore original values in case of error */
3318         old_min_uV = voltage->min_uV;
3319         old_max_uV = voltage->max_uV;
3320         voltage->min_uV = min_uV;
3321         voltage->max_uV = max_uV;
3322
3323         /* for not coupled regulators this will just set the voltage */
3324         ret = regulator_balance_voltage(rdev, state);
3325         if (ret < 0)
3326                 goto out2;
3327
3328 out:
3329         return 0;
3330 out2:
3331         voltage->min_uV = old_min_uV;
3332         voltage->max_uV = old_max_uV;
3333
3334         return ret;
3335 }
3336
3337 static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3338                                       int max_uV, suspend_state_t state)
3339 {
3340         int best_supply_uV = 0;
3341         int supply_change_uV = 0;
3342         int ret;
3343
3344         if (rdev->supply &&
3345             regulator_ops_is_valid(rdev->supply->rdev,
3346                                    REGULATOR_CHANGE_VOLTAGE) &&
3347             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3348                                            rdev->desc->ops->get_voltage_sel))) {
3349                 int current_supply_uV;
3350                 int selector;
3351
3352                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3353                 if (selector < 0) {
3354                         ret = selector;
3355                         goto out;
3356                 }
3357
3358                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3359                 if (best_supply_uV < 0) {
3360                         ret = best_supply_uV;
3361                         goto out;
3362                 }
3363
3364                 best_supply_uV += rdev->desc->min_dropout_uV;
3365
3366                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3367                 if (current_supply_uV < 0) {
3368                         ret = current_supply_uV;
3369                         goto out;
3370                 }
3371
3372                 supply_change_uV = best_supply_uV - current_supply_uV;
3373         }
3374
3375         if (supply_change_uV > 0) {
3376                 ret = regulator_set_voltage_unlocked(rdev->supply,
3377                                 best_supply_uV, INT_MAX, state);
3378                 if (ret) {
3379                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3380                                         ret);
3381                         goto out;
3382                 }
3383         }
3384
3385         if (state == PM_SUSPEND_ON)
3386                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3387         else
3388                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3389                                                         max_uV, state);
3390         if (ret < 0)
3391                 goto out;
3392
3393         if (supply_change_uV < 0) {
3394                 ret = regulator_set_voltage_unlocked(rdev->supply,
3395                                 best_supply_uV, INT_MAX, state);
3396                 if (ret)
3397                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3398                                         ret);
3399                 /* No need to fail here */
3400                 ret = 0;
3401         }
3402
3403 out:
3404         return ret;
3405 }
3406
3407 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3408                                         int *current_uV, int *min_uV)
3409 {
3410         struct regulation_constraints *constraints = rdev->constraints;
3411
3412         /* Limit voltage change only if necessary */
3413         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3414                 return 1;
3415
3416         if (*current_uV < 0) {
3417                 *current_uV = _regulator_get_voltage(rdev);
3418
3419                 if (*current_uV < 0)
3420                         return *current_uV;
3421         }
3422
3423         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3424                 return 1;
3425
3426         /* Clamp target voltage within the given step */
3427         if (*current_uV < *min_uV)
3428                 *min_uV = min(*current_uV + constraints->max_uV_step,
3429                               *min_uV);
3430         else
3431                 *min_uV = max(*current_uV - constraints->max_uV_step,
3432                               *min_uV);
3433
3434         return 0;
3435 }
3436
3437 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3438                                          int *current_uV,
3439                                          int *min_uV, int *max_uV,
3440                                          suspend_state_t state,
3441                                          int n_coupled)
3442 {
3443         struct coupling_desc *c_desc = &rdev->coupling_desc;
3444         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3445         struct regulation_constraints *constraints = rdev->constraints;
3446         int max_spread = constraints->max_spread;
3447         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3448         int max_current_uV = 0, min_current_uV = INT_MAX;
3449         int highest_min_uV = 0, target_uV, possible_uV;
3450         int i, ret;
3451         bool done;
3452
3453         *current_uV = -1;
3454
3455         /*
3456          * If there are no coupled regulators, simply set the voltage
3457          * demanded by consumers.
3458          */
3459         if (n_coupled == 1) {
3460                 /*
3461                  * If consumers don't provide any demands, set voltage
3462                  * to min_uV
3463                  */
3464                 desired_min_uV = constraints->min_uV;
3465                 desired_max_uV = constraints->max_uV;
3466
3467                 ret = regulator_check_consumers(rdev,
3468                                                 &desired_min_uV,
3469                                                 &desired_max_uV, state);
3470                 if (ret < 0)
3471                         return ret;
3472
3473                 possible_uV = desired_min_uV;
3474                 done = true;
3475
3476                 goto finish;
3477         }
3478
3479         /* Find highest min desired voltage */
3480         for (i = 0; i < n_coupled; i++) {
3481                 int tmp_min = 0;
3482                 int tmp_max = INT_MAX;
3483
3484                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3485
3486                 ret = regulator_check_consumers(c_rdevs[i],
3487                                                 &tmp_min,
3488                                                 &tmp_max, state);
3489                 if (ret < 0)
3490                         return ret;
3491
3492                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3493                 if (ret < 0)
3494                         return ret;
3495
3496                 highest_min_uV = max(highest_min_uV, tmp_min);
3497
3498                 if (i == 0) {
3499                         desired_min_uV = tmp_min;
3500                         desired_max_uV = tmp_max;
3501                 }
3502         }
3503
3504         /*
3505          * Let target_uV be equal to the desired one if possible.
3506          * If not, set it to minimum voltage, allowed by other coupled
3507          * regulators.
3508          */
3509         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3510
3511         /*
3512          * Find min and max voltages, which currently aren't violating
3513          * max_spread.
3514          */
3515         for (i = 1; i < n_coupled; i++) {
3516                 int tmp_act;
3517
3518                 if (!_regulator_is_enabled(c_rdevs[i]))
3519                         continue;
3520
3521                 tmp_act = _regulator_get_voltage(c_rdevs[i]);
3522                 if (tmp_act < 0)
3523                         return tmp_act;
3524
3525                 min_current_uV = min(tmp_act, min_current_uV);
3526                 max_current_uV = max(tmp_act, max_current_uV);
3527         }
3528
3529         /* There aren't any other regulators enabled */
3530         if (max_current_uV == 0) {
3531                 possible_uV = target_uV;
3532         } else {
3533                 /*
3534                  * Correct target voltage, so as it currently isn't
3535                  * violating max_spread
3536                  */
3537                 possible_uV = max(target_uV, max_current_uV - max_spread);
3538                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3539         }
3540
3541         if (possible_uV > desired_max_uV)
3542                 return -EINVAL;
3543
3544         done = (possible_uV == target_uV);
3545         desired_min_uV = possible_uV;
3546
3547 finish:
3548         /* Apply max_uV_step constraint if necessary */
3549         if (state == PM_SUSPEND_ON) {
3550                 ret = regulator_limit_voltage_step(rdev, current_uV,
3551                                                    &desired_min_uV);
3552                 if (ret < 0)
3553                         return ret;
3554
3555                 if (ret == 0)
3556                         done = false;
3557         }
3558
3559         /* Set current_uV if wasn't done earlier in the code and if necessary */
3560         if (n_coupled > 1 && *current_uV == -1) {
3561
3562                 if (_regulator_is_enabled(rdev)) {
3563                         ret = _regulator_get_voltage(rdev);
3564                         if (ret < 0)
3565                                 return ret;
3566
3567                         *current_uV = ret;
3568                 } else {
3569                         *current_uV = desired_min_uV;
3570                 }
3571         }
3572
3573         *min_uV = desired_min_uV;
3574         *max_uV = desired_max_uV;
3575
3576         return done;
3577 }
3578
3579 static int regulator_balance_voltage(struct regulator_dev *rdev,
3580                                      suspend_state_t state)
3581 {
3582         struct regulator_dev **c_rdevs;
3583         struct regulator_dev *best_rdev;
3584         struct coupling_desc *c_desc = &rdev->coupling_desc;
3585         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3586         bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
3587         unsigned int delta, best_delta;
3588
3589         c_rdevs = c_desc->coupled_rdevs;
3590         n_coupled = c_desc->n_coupled;
3591
3592         /*
3593          * If system is in a state other than PM_SUSPEND_ON, don't check
3594          * other coupled regulators.
3595          */
3596         if (state != PM_SUSPEND_ON)
3597                 n_coupled = 1;
3598
3599         if (c_desc->n_resolved < n_coupled) {
3600                 rdev_err(rdev, "Not all coupled regulators registered\n");
3601                 return -EPERM;
3602         }
3603
3604         for (i = 0; i < n_coupled; i++)
3605                 c_rdev_done[i] = false;
3606
3607         /*
3608          * Find the best possible voltage change on each loop. Leave the loop
3609          * if there isn't any possible change.
3610          */
3611         do {
3612                 best_c_rdev_done = false;
3613                 best_delta = 0;
3614                 best_min_uV = 0;
3615                 best_max_uV = 0;
3616                 best_c_rdev = 0;
3617                 best_rdev = NULL;
3618
3619                 /*
3620                  * Find highest difference between optimal voltage
3621                  * and current voltage.
3622                  */
3623                 for (i = 0; i < n_coupled; i++) {
3624                         /*
3625                          * optimal_uV is the best voltage that can be set for
3626                          * i-th regulator at the moment without violating
3627                          * max_spread constraint in order to balance
3628                          * the coupled voltages.
3629                          */
3630                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3631
3632                         if (c_rdev_done[i])
3633                                 continue;
3634
3635                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3636                                                             &current_uV,
3637                                                             &optimal_uV,
3638                                                             &optimal_max_uV,
3639                                                             state, n_coupled);
3640                         if (ret < 0)
3641                                 goto out;
3642
3643                         delta = abs(optimal_uV - current_uV);
3644
3645                         if (delta && best_delta <= delta) {
3646                                 best_c_rdev_done = ret;
3647                                 best_delta = delta;
3648                                 best_rdev = c_rdevs[i];
3649                                 best_min_uV = optimal_uV;
3650                                 best_max_uV = optimal_max_uV;
3651                                 best_c_rdev = i;
3652                         }
3653                 }
3654
3655                 /* Nothing to change, return successfully */
3656                 if (!best_rdev) {
3657                         ret = 0;
3658                         goto out;
3659                 }
3660
3661                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3662                                                  best_max_uV, state);
3663
3664                 if (ret < 0)
3665                         goto out;
3666
3667                 c_rdev_done[best_c_rdev] = best_c_rdev_done;
3668
3669         } while (n_coupled > 1);
3670
3671 out:
3672         return ret;
3673 }
3674
3675 /**
3676  * regulator_set_voltage - set regulator output voltage
3677  * @regulator: regulator source
3678  * @min_uV: Minimum required voltage in uV
3679  * @max_uV: Maximum acceptable voltage in uV
3680  *
3681  * Sets a voltage regulator to the desired output voltage. This can be set
3682  * during any regulator state. IOW, regulator can be disabled or enabled.
3683  *
3684  * If the regulator is enabled then the voltage will change to the new value
3685  * immediately otherwise if the regulator is disabled the regulator will
3686  * output at the new voltage when enabled.
3687  *
3688  * NOTE: If the regulator is shared between several devices then the lowest
3689  * request voltage that meets the system constraints will be used.
3690  * Regulator system constraints must be set for this regulator before
3691  * calling this function otherwise this call will fail.
3692  */
3693 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3694 {
3695         struct ww_acquire_ctx ww_ctx;
3696         int ret;
3697
3698         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3699
3700         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3701                                              PM_SUSPEND_ON);
3702
3703         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3704
3705         return ret;
3706 }
3707 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3708
3709 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3710                                            suspend_state_t state, bool en)
3711 {
3712         struct regulator_state *rstate;
3713
3714         rstate = regulator_get_suspend_state(rdev, state);
3715         if (rstate == NULL)
3716                 return -EINVAL;
3717
3718         if (!rstate->changeable)
3719                 return -EPERM;
3720
3721         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3722
3723         return 0;
3724 }
3725
3726 int regulator_suspend_enable(struct regulator_dev *rdev,
3727                                     suspend_state_t state)
3728 {
3729         return regulator_suspend_toggle(rdev, state, true);
3730 }
3731 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3732
3733 int regulator_suspend_disable(struct regulator_dev *rdev,
3734                                      suspend_state_t state)
3735 {
3736         struct regulator *regulator;
3737         struct regulator_voltage *voltage;
3738
3739         /*
3740          * if any consumer wants this regulator device keeping on in
3741          * suspend states, don't set it as disabled.
3742          */
3743         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3744                 voltage = &regulator->voltage[state];
3745                 if (voltage->min_uV || voltage->max_uV)
3746                         return 0;
3747         }
3748
3749         return regulator_suspend_toggle(rdev, state, false);
3750 }
3751 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3752
3753 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3754                                           int min_uV, int max_uV,
3755                                           suspend_state_t state)
3756 {
3757         struct regulator_dev *rdev = regulator->rdev;
3758         struct regulator_state *rstate;
3759
3760         rstate = regulator_get_suspend_state(rdev, state);
3761         if (rstate == NULL)
3762                 return -EINVAL;
3763
3764         if (rstate->min_uV == rstate->max_uV) {
3765                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3766                 return -EPERM;
3767         }
3768
3769         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3770 }
3771
3772 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3773                                   int max_uV, suspend_state_t state)
3774 {
3775         struct ww_acquire_ctx ww_ctx;
3776         int ret;
3777
3778         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3779         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3780                 return -EINVAL;
3781
3782         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3783
3784         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3785                                              max_uV, state);
3786
3787         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3788
3789         return ret;
3790 }
3791 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3792
3793 /**
3794  * regulator_set_voltage_time - get raise/fall time
3795  * @regulator: regulator source
3796  * @old_uV: starting voltage in microvolts
3797  * @new_uV: target voltage in microvolts
3798  *
3799  * Provided with the starting and ending voltage, this function attempts to
3800  * calculate the time in microseconds required to rise or fall to this new
3801  * voltage.
3802  */
3803 int regulator_set_voltage_time(struct regulator *regulator,
3804                                int old_uV, int new_uV)
3805 {
3806         struct regulator_dev *rdev = regulator->rdev;
3807         const struct regulator_ops *ops = rdev->desc->ops;
3808         int old_sel = -1;
3809         int new_sel = -1;
3810         int voltage;
3811         int i;
3812
3813         if (ops->set_voltage_time)
3814                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3815         else if (!ops->set_voltage_time_sel)
3816                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3817
3818         /* Currently requires operations to do this */
3819         if (!ops->list_voltage || !rdev->desc->n_voltages)
3820                 return -EINVAL;
3821
3822         for (i = 0; i < rdev->desc->n_voltages; i++) {
3823                 /* We only look for exact voltage matches here */
3824                 voltage = regulator_list_voltage(regulator, i);
3825                 if (voltage < 0)
3826                         return -EINVAL;
3827                 if (voltage == 0)
3828                         continue;
3829                 if (voltage == old_uV)
3830                         old_sel = i;
3831                 if (voltage == new_uV)
3832                         new_sel = i;
3833         }
3834
3835         if (old_sel < 0 || new_sel < 0)
3836                 return -EINVAL;
3837
3838         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3839 }
3840 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3841
3842 /**
3843  * regulator_set_voltage_time_sel - get raise/fall time
3844  * @rdev: regulator source device
3845  * @old_selector: selector for starting voltage
3846  * @new_selector: selector for target voltage
3847  *
3848  * Provided with the starting and target voltage selectors, this function
3849  * returns time in microseconds required to rise or fall to this new voltage
3850  *
3851  * Drivers providing ramp_delay in regulation_constraints can use this as their
3852  * set_voltage_time_sel() operation.
3853  */
3854 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3855                                    unsigned int old_selector,
3856                                    unsigned int new_selector)
3857 {
3858         int old_volt, new_volt;
3859
3860         /* sanity check */
3861         if (!rdev->desc->ops->list_voltage)
3862                 return -EINVAL;
3863
3864         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3865         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3866
3867         if (rdev->desc->ops->set_voltage_time)
3868                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3869                                                          new_volt);
3870         else
3871                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3872 }
3873 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3874
3875 /**
3876  * regulator_sync_voltage - re-apply last regulator output voltage
3877  * @regulator: regulator source
3878  *
3879  * Re-apply the last configured voltage.  This is intended to be used
3880  * where some external control source the consumer is cooperating with
3881  * has caused the configured voltage to change.
3882  */
3883 int regulator_sync_voltage(struct regulator *regulator)
3884 {
3885         struct regulator_dev *rdev = regulator->rdev;
3886         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3887         int ret, min_uV, max_uV;
3888
3889         regulator_lock(rdev);
3890
3891         if (!rdev->desc->ops->set_voltage &&
3892             !rdev->desc->ops->set_voltage_sel) {
3893                 ret = -EINVAL;
3894                 goto out;
3895         }
3896
3897         /* This is only going to work if we've had a voltage configured. */
3898         if (!voltage->min_uV && !voltage->max_uV) {
3899                 ret = -EINVAL;
3900                 goto out;
3901         }
3902
3903         min_uV = voltage->min_uV;
3904         max_uV = voltage->max_uV;
3905
3906         /* This should be a paranoia check... */
3907         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3908         if (ret < 0)
3909                 goto out;
3910
3911         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3912         if (ret < 0)
3913                 goto out;
3914
3915         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3916
3917 out:
3918         regulator_unlock(rdev);
3919         return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3922
3923 static int _regulator_get_voltage(struct regulator_dev *rdev)
3924 {
3925         int sel, ret;
3926         bool bypassed;
3927
3928         if (rdev->desc->ops->get_bypass) {
3929                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3930                 if (ret < 0)
3931                         return ret;
3932                 if (bypassed) {
3933                         /* if bypassed the regulator must have a supply */
3934                         if (!rdev->supply) {
3935                                 rdev_err(rdev,
3936                                          "bypassed regulator has no supply!\n");
3937                                 return -EPROBE_DEFER;
3938                         }
3939
3940                         return _regulator_get_voltage(rdev->supply->rdev);
3941                 }
3942         }
3943
3944         if (rdev->desc->ops->get_voltage_sel) {
3945                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3946                 if (sel < 0)
3947                         return sel;
3948                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3949         } else if (rdev->desc->ops->get_voltage) {
3950                 ret = rdev->desc->ops->get_voltage(rdev);
3951         } else if (rdev->desc->ops->list_voltage) {
3952                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3953         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3954                 ret = rdev->desc->fixed_uV;
3955         } else if (rdev->supply) {
3956                 ret = _regulator_get_voltage(rdev->supply->rdev);
3957         } else {
3958                 return -EINVAL;
3959         }
3960
3961         if (ret < 0)
3962                 return ret;
3963         return ret - rdev->constraints->uV_offset;
3964 }
3965
3966 /**
3967  * regulator_get_voltage - get regulator output voltage
3968  * @regulator: regulator source
3969  *
3970  * This returns the current regulator voltage in uV.
3971  *
3972  * NOTE: If the regulator is disabled it will return the voltage value. This
3973  * function should not be used to determine regulator state.
3974  */
3975 int regulator_get_voltage(struct regulator *regulator)
3976 {
3977         struct ww_acquire_ctx ww_ctx;
3978         int ret;
3979
3980         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3981         ret = _regulator_get_voltage(regulator->rdev);
3982         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3983
3984         return ret;
3985 }
3986 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3987
3988 /**
3989  * regulator_set_current_limit - set regulator output current limit
3990  * @regulator: regulator source
3991  * @min_uA: Minimum supported current in uA
3992  * @max_uA: Maximum supported current in uA
3993  *
3994  * Sets current sink to the desired output current. This can be set during
3995  * any regulator state. IOW, regulator can be disabled or enabled.
3996  *
3997  * If the regulator is enabled then the current will change to the new value
3998  * immediately otherwise if the regulator is disabled the regulator will
3999  * output at the new current when enabled.
4000  *
4001  * NOTE: Regulator system constraints must be set for this regulator before
4002  * calling this function otherwise this call will fail.
4003  */
4004 int regulator_set_current_limit(struct regulator *regulator,
4005                                int min_uA, int max_uA)
4006 {
4007         struct regulator_dev *rdev = regulator->rdev;
4008         int ret;
4009
4010         regulator_lock(rdev);
4011
4012         /* sanity check */
4013         if (!rdev->desc->ops->set_current_limit) {
4014                 ret = -EINVAL;
4015                 goto out;
4016         }
4017
4018         /* constraints check */
4019         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4020         if (ret < 0)
4021                 goto out;
4022
4023         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4024 out:
4025         regulator_unlock(rdev);
4026         return ret;
4027 }
4028 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4029
4030 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4031 {
4032         /* sanity check */
4033         if (!rdev->desc->ops->get_current_limit)
4034                 return -EINVAL;
4035
4036         return rdev->desc->ops->get_current_limit(rdev);
4037 }
4038
4039 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4040 {
4041         int ret;
4042
4043         regulator_lock(rdev);
4044         ret = _regulator_get_current_limit_unlocked(rdev);
4045         regulator_unlock(rdev);
4046
4047         return ret;
4048 }
4049
4050 /**
4051  * regulator_get_current_limit - get regulator output current
4052  * @regulator: regulator source
4053  *
4054  * This returns the current supplied by the specified current sink in uA.
4055  *
4056  * NOTE: If the regulator is disabled it will return the current value. This
4057  * function should not be used to determine regulator state.
4058  */
4059 int regulator_get_current_limit(struct regulator *regulator)
4060 {
4061         return _regulator_get_current_limit(regulator->rdev);
4062 }
4063 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4064
4065 /**
4066  * regulator_set_mode - set regulator operating mode
4067  * @regulator: regulator source
4068  * @mode: operating mode - one of the REGULATOR_MODE constants
4069  *
4070  * Set regulator operating mode to increase regulator efficiency or improve
4071  * regulation performance.
4072  *
4073  * NOTE: Regulator system constraints must be set for this regulator before
4074  * calling this function otherwise this call will fail.
4075  */
4076 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4077 {
4078         struct regulator_dev *rdev = regulator->rdev;
4079         int ret;
4080         int regulator_curr_mode;
4081
4082         regulator_lock(rdev);
4083
4084         /* sanity check */
4085         if (!rdev->desc->ops->set_mode) {
4086                 ret = -EINVAL;
4087                 goto out;
4088         }
4089
4090         /* return if the same mode is requested */
4091         if (rdev->desc->ops->get_mode) {
4092                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4093                 if (regulator_curr_mode == mode) {
4094                         ret = 0;
4095                         goto out;
4096                 }
4097         }
4098
4099         /* constraints check */
4100         ret = regulator_mode_constrain(rdev, &mode);
4101         if (ret < 0)
4102                 goto out;
4103
4104         ret = rdev->desc->ops->set_mode(rdev, mode);
4105 out:
4106         regulator_unlock(rdev);
4107         return ret;
4108 }
4109 EXPORT_SYMBOL_GPL(regulator_set_mode);
4110
4111 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4112 {
4113         /* sanity check */
4114         if (!rdev->desc->ops->get_mode)
4115                 return -EINVAL;
4116
4117         return rdev->desc->ops->get_mode(rdev);
4118 }
4119
4120 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4121 {
4122         int ret;
4123
4124         regulator_lock(rdev);
4125         ret = _regulator_get_mode_unlocked(rdev);
4126         regulator_unlock(rdev);
4127
4128         return ret;
4129 }
4130
4131 /**
4132  * regulator_get_mode - get regulator operating mode
4133  * @regulator: regulator source
4134  *
4135  * Get the current regulator operating mode.
4136  */
4137 unsigned int regulator_get_mode(struct regulator *regulator)
4138 {
4139         return _regulator_get_mode(regulator->rdev);
4140 }
4141 EXPORT_SYMBOL_GPL(regulator_get_mode);
4142
4143 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4144                                         unsigned int *flags)
4145 {
4146         int ret;
4147
4148         regulator_lock(rdev);
4149
4150         /* sanity check */
4151         if (!rdev->desc->ops->get_error_flags) {
4152                 ret = -EINVAL;
4153                 goto out;
4154         }
4155
4156         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4157 out:
4158         regulator_unlock(rdev);
4159         return ret;
4160 }
4161
4162 /**
4163  * regulator_get_error_flags - get regulator error information
4164  * @regulator: regulator source
4165  * @flags: pointer to store error flags
4166  *
4167  * Get the current regulator error information.
4168  */
4169 int regulator_get_error_flags(struct regulator *regulator,
4170                                 unsigned int *flags)
4171 {
4172         return _regulator_get_error_flags(regulator->rdev, flags);
4173 }
4174 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4175
4176 /**
4177  * regulator_set_load - set regulator load
4178  * @regulator: regulator source
4179  * @uA_load: load current
4180  *
4181  * Notifies the regulator core of a new device load. This is then used by
4182  * DRMS (if enabled by constraints) to set the most efficient regulator
4183  * operating mode for the new regulator loading.
4184  *
4185  * Consumer devices notify their supply regulator of the maximum power
4186  * they will require (can be taken from device datasheet in the power
4187  * consumption tables) when they change operational status and hence power
4188  * state. Examples of operational state changes that can affect power
4189  * consumption are :-
4190  *
4191  *    o Device is opened / closed.
4192  *    o Device I/O is about to begin or has just finished.
4193  *    o Device is idling in between work.
4194  *
4195  * This information is also exported via sysfs to userspace.
4196  *
4197  * DRMS will sum the total requested load on the regulator and change
4198  * to the most efficient operating mode if platform constraints allow.
4199  *
4200  * NOTE: when a regulator consumer requests to have a regulator
4201  * disabled then any load that consumer requested no longer counts
4202  * toward the total requested load.  If the regulator is re-enabled
4203  * then the previously requested load will start counting again.
4204  *
4205  * If a regulator is an always-on regulator then an individual consumer's
4206  * load will still be removed if that consumer is fully disabled.
4207  *
4208  * On error a negative errno is returned.
4209  */
4210 int regulator_set_load(struct regulator *regulator, int uA_load)
4211 {
4212         struct regulator_dev *rdev = regulator->rdev;
4213         int old_uA_load;
4214         int ret = 0;
4215
4216         regulator_lock(rdev);
4217         old_uA_load = regulator->uA_load;
4218         regulator->uA_load = uA_load;
4219         if (regulator->enable_count && old_uA_load != uA_load) {
4220                 ret = drms_uA_update(rdev);
4221                 if (ret < 0)
4222                         regulator->uA_load = old_uA_load;
4223         }
4224         regulator_unlock(rdev);
4225
4226         return ret;
4227 }
4228 EXPORT_SYMBOL_GPL(regulator_set_load);
4229
4230 /**
4231  * regulator_allow_bypass - allow the regulator to go into bypass mode
4232  *
4233  * @regulator: Regulator to configure
4234  * @enable: enable or disable bypass mode
4235  *
4236  * Allow the regulator to go into bypass mode if all other consumers
4237  * for the regulator also enable bypass mode and the machine
4238  * constraints allow this.  Bypass mode means that the regulator is
4239  * simply passing the input directly to the output with no regulation.
4240  */
4241 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4242 {
4243         struct regulator_dev *rdev = regulator->rdev;
4244         int ret = 0;
4245
4246         if (!rdev->desc->ops->set_bypass)
4247                 return 0;
4248
4249         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4250                 return 0;
4251
4252         regulator_lock(rdev);
4253
4254         if (enable && !regulator->bypass) {
4255                 rdev->bypass_count++;
4256
4257                 if (rdev->bypass_count == rdev->open_count) {
4258                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4259                         if (ret != 0)
4260                                 rdev->bypass_count--;
4261                 }
4262
4263         } else if (!enable && regulator->bypass) {
4264                 rdev->bypass_count--;
4265
4266                 if (rdev->bypass_count != rdev->open_count) {
4267                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4268                         if (ret != 0)
4269                                 rdev->bypass_count++;
4270                 }
4271         }
4272
4273         if (ret == 0)
4274                 regulator->bypass = enable;
4275
4276         regulator_unlock(rdev);
4277
4278         return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4281
4282 /**
4283  * regulator_register_notifier - register regulator event notifier
4284  * @regulator: regulator source
4285  * @nb: notifier block
4286  *
4287  * Register notifier block to receive regulator events.
4288  */
4289 int regulator_register_notifier(struct regulator *regulator,
4290                               struct notifier_block *nb)
4291 {
4292         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4293                                                 nb);
4294 }
4295 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4296
4297 /**
4298  * regulator_unregister_notifier - unregister regulator event notifier
4299  * @regulator: regulator source
4300  * @nb: notifier block
4301  *
4302  * Unregister regulator event notifier block.
4303  */
4304 int regulator_unregister_notifier(struct regulator *regulator,
4305                                 struct notifier_block *nb)
4306 {
4307         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4308                                                   nb);
4309 }
4310 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4311
4312 /* notify regulator consumers and downstream regulator consumers.
4313  * Note mutex must be held by caller.
4314  */
4315 static int _notifier_call_chain(struct regulator_dev *rdev,
4316                                   unsigned long event, void *data)
4317 {
4318         /* call rdev chain first */
4319         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4320 }
4321
4322 /**
4323  * regulator_bulk_get - get multiple regulator consumers
4324  *
4325  * @dev:           Device to supply
4326  * @num_consumers: Number of consumers to register
4327  * @consumers:     Configuration of consumers; clients are stored here.
4328  *
4329  * @return 0 on success, an errno on failure.
4330  *
4331  * This helper function allows drivers to get several regulator
4332  * consumers in one operation.  If any of the regulators cannot be
4333  * acquired then any regulators that were allocated will be freed
4334  * before returning to the caller.
4335  */
4336 int regulator_bulk_get(struct device *dev, int num_consumers,
4337                        struct regulator_bulk_data *consumers)
4338 {
4339         int i;
4340         int ret;
4341
4342         for (i = 0; i < num_consumers; i++)
4343                 consumers[i].consumer = NULL;
4344
4345         for (i = 0; i < num_consumers; i++) {
4346                 consumers[i].consumer = regulator_get(dev,
4347                                                       consumers[i].supply);
4348                 if (IS_ERR(consumers[i].consumer)) {
4349                         ret = PTR_ERR(consumers[i].consumer);
4350                         dev_err(dev, "Failed to get supply '%s': %d\n",
4351                                 consumers[i].supply, ret);
4352                         consumers[i].consumer = NULL;
4353                         goto err;
4354                 }
4355         }
4356
4357         return 0;
4358
4359 err:
4360         while (--i >= 0)
4361                 regulator_put(consumers[i].consumer);
4362
4363         return ret;
4364 }
4365 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4366
4367 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4368 {
4369         struct regulator_bulk_data *bulk = data;
4370
4371         bulk->ret = regulator_enable(bulk->consumer);
4372 }
4373
4374 /**
4375  * regulator_bulk_enable - enable multiple regulator consumers
4376  *
4377  * @num_consumers: Number of consumers
4378  * @consumers:     Consumer data; clients are stored here.
4379  * @return         0 on success, an errno on failure
4380  *
4381  * This convenience API allows consumers to enable multiple regulator
4382  * clients in a single API call.  If any consumers cannot be enabled
4383  * then any others that were enabled will be disabled again prior to
4384  * return.
4385  */
4386 int regulator_bulk_enable(int num_consumers,
4387                           struct regulator_bulk_data *consumers)
4388 {
4389         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4390         int i;
4391         int ret = 0;
4392
4393         for (i = 0; i < num_consumers; i++) {
4394                 async_schedule_domain(regulator_bulk_enable_async,
4395                                       &consumers[i], &async_domain);
4396         }
4397
4398         async_synchronize_full_domain(&async_domain);
4399
4400         /* If any consumer failed we need to unwind any that succeeded */
4401         for (i = 0; i < num_consumers; i++) {
4402                 if (consumers[i].ret != 0) {
4403                         ret = consumers[i].ret;
4404                         goto err;
4405                 }
4406         }
4407
4408         return 0;
4409
4410 err:
4411         for (i = 0; i < num_consumers; i++) {
4412                 if (consumers[i].ret < 0)
4413                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4414                                consumers[i].ret);
4415                 else
4416                         regulator_disable(consumers[i].consumer);
4417         }
4418
4419         return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4422
4423 /**
4424  * regulator_bulk_disable - disable multiple regulator consumers
4425  *
4426  * @num_consumers: Number of consumers
4427  * @consumers:     Consumer data; clients are stored here.
4428  * @return         0 on success, an errno on failure
4429  *
4430  * This convenience API allows consumers to disable multiple regulator
4431  * clients in a single API call.  If any consumers cannot be disabled
4432  * then any others that were disabled will be enabled again prior to
4433  * return.
4434  */
4435 int regulator_bulk_disable(int num_consumers,
4436                            struct regulator_bulk_data *consumers)
4437 {
4438         int i;
4439         int ret, r;
4440
4441         for (i = num_consumers - 1; i >= 0; --i) {
4442                 ret = regulator_disable(consumers[i].consumer);
4443                 if (ret != 0)
4444                         goto err;
4445         }
4446
4447         return 0;
4448
4449 err:
4450         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4451         for (++i; i < num_consumers; ++i) {
4452                 r = regulator_enable(consumers[i].consumer);
4453                 if (r != 0)
4454                         pr_err("Failed to re-enable %s: %d\n",
4455                                consumers[i].supply, r);
4456         }
4457
4458         return ret;
4459 }
4460 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4461
4462 /**
4463  * regulator_bulk_force_disable - force disable multiple regulator consumers
4464  *
4465  * @num_consumers: Number of consumers
4466  * @consumers:     Consumer data; clients are stored here.
4467  * @return         0 on success, an errno on failure
4468  *
4469  * This convenience API allows consumers to forcibly disable multiple regulator
4470  * clients in a single API call.
4471  * NOTE: This should be used for situations when device damage will
4472  * likely occur if the regulators are not disabled (e.g. over temp).
4473  * Although regulator_force_disable function call for some consumers can
4474  * return error numbers, the function is called for all consumers.
4475  */
4476 int regulator_bulk_force_disable(int num_consumers,
4477                            struct regulator_bulk_data *consumers)
4478 {
4479         int i;
4480         int ret = 0;
4481
4482         for (i = 0; i < num_consumers; i++) {
4483                 consumers[i].ret =
4484                             regulator_force_disable(consumers[i].consumer);
4485
4486                 /* Store first error for reporting */
4487                 if (consumers[i].ret && !ret)
4488                         ret = consumers[i].ret;
4489         }
4490
4491         return ret;
4492 }
4493 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4494
4495 /**
4496  * regulator_bulk_free - free multiple regulator consumers
4497  *
4498  * @num_consumers: Number of consumers
4499  * @consumers:     Consumer data; clients are stored here.
4500  *
4501  * This convenience API allows consumers to free multiple regulator
4502  * clients in a single API call.
4503  */
4504 void regulator_bulk_free(int num_consumers,
4505                          struct regulator_bulk_data *consumers)
4506 {
4507         int i;
4508
4509         for (i = 0; i < num_consumers; i++) {
4510                 regulator_put(consumers[i].consumer);
4511                 consumers[i].consumer = NULL;
4512         }
4513 }
4514 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4515
4516 /**
4517  * regulator_notifier_call_chain - call regulator event notifier
4518  * @rdev: regulator source
4519  * @event: notifier block
4520  * @data: callback-specific data.
4521  *
4522  * Called by regulator drivers to notify clients a regulator event has
4523  * occurred. We also notify regulator clients downstream.
4524  * Note lock must be held by caller.
4525  */
4526 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4527                                   unsigned long event, void *data)
4528 {
4529         lockdep_assert_held_once(&rdev->mutex.base);
4530
4531         _notifier_call_chain(rdev, event, data);
4532         return NOTIFY_DONE;
4533
4534 }
4535 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4536
4537 /**
4538  * regulator_mode_to_status - convert a regulator mode into a status
4539  *
4540  * @mode: Mode to convert
4541  *
4542  * Convert a regulator mode into a status.
4543  */
4544 int regulator_mode_to_status(unsigned int mode)
4545 {
4546         switch (mode) {
4547         case REGULATOR_MODE_FAST:
4548                 return REGULATOR_STATUS_FAST;
4549         case REGULATOR_MODE_NORMAL:
4550                 return REGULATOR_STATUS_NORMAL;
4551         case REGULATOR_MODE_IDLE:
4552                 return REGULATOR_STATUS_IDLE;
4553         case REGULATOR_MODE_STANDBY:
4554                 return REGULATOR_STATUS_STANDBY;
4555         default:
4556                 return REGULATOR_STATUS_UNDEFINED;
4557         }
4558 }
4559 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4560
4561 static struct attribute *regulator_dev_attrs[] = {
4562         &dev_attr_name.attr,
4563         &dev_attr_num_users.attr,
4564         &dev_attr_type.attr,
4565         &dev_attr_microvolts.attr,
4566         &dev_attr_microamps.attr,
4567         &dev_attr_opmode.attr,
4568         &dev_attr_state.attr,
4569         &dev_attr_status.attr,
4570         &dev_attr_bypass.attr,
4571         &dev_attr_requested_microamps.attr,
4572         &dev_attr_min_microvolts.attr,
4573         &dev_attr_max_microvolts.attr,
4574         &dev_attr_min_microamps.attr,
4575         &dev_attr_max_microamps.attr,
4576         &dev_attr_suspend_standby_state.attr,
4577         &dev_attr_suspend_mem_state.attr,
4578         &dev_attr_suspend_disk_state.attr,
4579         &dev_attr_suspend_standby_microvolts.attr,
4580         &dev_attr_suspend_mem_microvolts.attr,
4581         &dev_attr_suspend_disk_microvolts.attr,
4582         &dev_attr_suspend_standby_mode.attr,
4583         &dev_attr_suspend_mem_mode.attr,
4584         &dev_attr_suspend_disk_mode.attr,
4585         NULL
4586 };
4587
4588 /*
4589  * To avoid cluttering sysfs (and memory) with useless state, only
4590  * create attributes that can be meaningfully displayed.
4591  */
4592 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4593                                          struct attribute *attr, int idx)
4594 {
4595         struct device *dev = kobj_to_dev(kobj);
4596         struct regulator_dev *rdev = dev_to_rdev(dev);
4597         const struct regulator_ops *ops = rdev->desc->ops;
4598         umode_t mode = attr->mode;
4599
4600         /* these three are always present */
4601         if (attr == &dev_attr_name.attr ||
4602             attr == &dev_attr_num_users.attr ||
4603             attr == &dev_attr_type.attr)
4604                 return mode;
4605
4606         /* some attributes need specific methods to be displayed */
4607         if (attr == &dev_attr_microvolts.attr) {
4608                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4609                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4610                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4611                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4612                         return mode;
4613                 return 0;
4614         }
4615
4616         if (attr == &dev_attr_microamps.attr)
4617                 return ops->get_current_limit ? mode : 0;
4618
4619         if (attr == &dev_attr_opmode.attr)
4620                 return ops->get_mode ? mode : 0;
4621
4622         if (attr == &dev_attr_state.attr)
4623                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4624
4625         if (attr == &dev_attr_status.attr)
4626                 return ops->get_status ? mode : 0;
4627
4628         if (attr == &dev_attr_bypass.attr)
4629                 return ops->get_bypass ? mode : 0;
4630
4631         /* constraints need specific supporting methods */
4632         if (attr == &dev_attr_min_microvolts.attr ||
4633             attr == &dev_attr_max_microvolts.attr)
4634                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4635
4636         if (attr == &dev_attr_min_microamps.attr ||
4637             attr == &dev_attr_max_microamps.attr)
4638                 return ops->set_current_limit ? mode : 0;
4639
4640         if (attr == &dev_attr_suspend_standby_state.attr ||
4641             attr == &dev_attr_suspend_mem_state.attr ||
4642             attr == &dev_attr_suspend_disk_state.attr)
4643                 return mode;
4644
4645         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4646             attr == &dev_attr_suspend_mem_microvolts.attr ||
4647             attr == &dev_attr_suspend_disk_microvolts.attr)
4648                 return ops->set_suspend_voltage ? mode : 0;
4649
4650         if (attr == &dev_attr_suspend_standby_mode.attr ||
4651             attr == &dev_attr_suspend_mem_mode.attr ||
4652             attr == &dev_attr_suspend_disk_mode.attr)
4653                 return ops->set_suspend_mode ? mode : 0;
4654
4655         return mode;
4656 }
4657
4658 static const struct attribute_group regulator_dev_group = {
4659         .attrs = regulator_dev_attrs,
4660         .is_visible = regulator_attr_is_visible,
4661 };
4662
4663 static const struct attribute_group *regulator_dev_groups[] = {
4664         &regulator_dev_group,
4665         NULL
4666 };
4667
4668 static void regulator_dev_release(struct device *dev)
4669 {
4670         struct regulator_dev *rdev = dev_get_drvdata(dev);
4671
4672         kfree(rdev->constraints);
4673         of_node_put(rdev->dev.of_node);
4674         kfree(rdev);
4675 }
4676
4677 static void rdev_init_debugfs(struct regulator_dev *rdev)
4678 {
4679         struct device *parent = rdev->dev.parent;
4680         const char *rname = rdev_get_name(rdev);
4681         char name[NAME_MAX];
4682
4683         /* Avoid duplicate debugfs directory names */
4684         if (parent && rname == rdev->desc->name) {
4685                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4686                          rname);
4687                 rname = name;
4688         }
4689
4690         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4691         if (!rdev->debugfs) {
4692                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4693                 return;
4694         }
4695
4696         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4697                            &rdev->use_count);
4698         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4699                            &rdev->open_count);
4700         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4701                            &rdev->bypass_count);
4702 }
4703
4704 static int regulator_register_resolve_supply(struct device *dev, void *data)
4705 {
4706         struct regulator_dev *rdev = dev_to_rdev(dev);
4707
4708         if (regulator_resolve_supply(rdev))
4709                 rdev_dbg(rdev, "unable to resolve supply\n");
4710
4711         return 0;
4712 }
4713
4714 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4715 {
4716         struct coupling_desc *c_desc = &rdev->coupling_desc;
4717         int n_coupled = c_desc->n_coupled;
4718         struct regulator_dev *c_rdev;
4719         int i;
4720
4721         for (i = 1; i < n_coupled; i++) {
4722                 /* already resolved */
4723                 if (c_desc->coupled_rdevs[i])
4724                         continue;
4725
4726                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4727
4728                 if (!c_rdev)
4729                         continue;
4730
4731                 regulator_lock(c_rdev);
4732
4733                 c_desc->coupled_rdevs[i] = c_rdev;
4734                 c_desc->n_resolved++;
4735
4736                 regulator_unlock(c_rdev);
4737
4738                 regulator_resolve_coupling(c_rdev);
4739         }
4740 }
4741
4742 static void regulator_remove_coupling(struct regulator_dev *rdev)
4743 {
4744         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4745         struct regulator_dev *__c_rdev, *c_rdev;
4746         unsigned int __n_coupled, n_coupled;
4747         int i, k;
4748
4749         n_coupled = c_desc->n_coupled;
4750
4751         for (i = 1; i < n_coupled; i++) {
4752                 c_rdev = c_desc->coupled_rdevs[i];
4753
4754                 if (!c_rdev)
4755                         continue;
4756
4757                 regulator_lock(c_rdev);
4758
4759                 __c_desc = &c_rdev->coupling_desc;
4760                 __n_coupled = __c_desc->n_coupled;
4761
4762                 for (k = 1; k < __n_coupled; k++) {
4763                         __c_rdev = __c_desc->coupled_rdevs[k];
4764
4765                         if (__c_rdev == rdev) {
4766                                 __c_desc->coupled_rdevs[k] = NULL;
4767                                 __c_desc->n_resolved--;
4768                                 break;
4769                         }
4770                 }
4771
4772                 regulator_unlock(c_rdev);
4773
4774                 c_desc->coupled_rdevs[i] = NULL;
4775                 c_desc->n_resolved--;
4776         }
4777 }
4778
4779 static int regulator_init_coupling(struct regulator_dev *rdev)
4780 {
4781         int n_phandles;
4782
4783         if (!IS_ENABLED(CONFIG_OF))
4784                 n_phandles = 0;
4785         else
4786                 n_phandles = of_get_n_coupled(rdev);
4787
4788         if (n_phandles + 1 > MAX_COUPLED) {
4789                 rdev_err(rdev, "too many regulators coupled\n");
4790                 return -EPERM;
4791         }
4792
4793         /*
4794          * Every regulator should always have coupling descriptor filled with
4795          * at least pointer to itself.
4796          */
4797         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4798         rdev->coupling_desc.n_coupled = n_phandles + 1;
4799         rdev->coupling_desc.n_resolved++;
4800
4801         /* regulator isn't coupled */
4802         if (n_phandles == 0)
4803                 return 0;
4804
4805         /* regulator, which can't change its voltage, can't be coupled */
4806         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4807                 rdev_err(rdev, "voltage operation not allowed\n");
4808                 return -EPERM;
4809         }
4810
4811         if (rdev->constraints->max_spread <= 0) {
4812                 rdev_err(rdev, "wrong max_spread value\n");
4813                 return -EPERM;
4814         }
4815
4816         if (!of_check_coupling_data(rdev))
4817                 return -EPERM;
4818
4819         return 0;
4820 }
4821
4822 /**
4823  * regulator_register - register regulator
4824  * @regulator_desc: regulator to register
4825  * @cfg: runtime configuration for regulator
4826  *
4827  * Called by regulator drivers to register a regulator.
4828  * Returns a valid pointer to struct regulator_dev on success
4829  * or an ERR_PTR() on error.
4830  */
4831 struct regulator_dev *
4832 regulator_register(const struct regulator_desc *regulator_desc,
4833                    const struct regulator_config *cfg)
4834 {
4835         const struct regulation_constraints *constraints = NULL;
4836         const struct regulator_init_data *init_data;
4837         struct regulator_config *config = NULL;
4838         static atomic_t regulator_no = ATOMIC_INIT(-1);
4839         struct regulator_dev *rdev;
4840         bool dangling_cfg_gpiod = false;
4841         bool dangling_of_gpiod = false;
4842         struct device *dev;
4843         int ret, i;
4844
4845         if (cfg == NULL)
4846                 return ERR_PTR(-EINVAL);
4847         if (cfg->ena_gpiod)
4848                 dangling_cfg_gpiod = true;
4849         if (regulator_desc == NULL) {
4850                 ret = -EINVAL;
4851                 goto rinse;
4852         }
4853
4854         dev = cfg->dev;
4855         WARN_ON(!dev);
4856
4857         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
4858                 ret = -EINVAL;
4859                 goto rinse;
4860         }
4861
4862         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4863             regulator_desc->type != REGULATOR_CURRENT) {
4864                 ret = -EINVAL;
4865                 goto rinse;
4866         }
4867
4868         /* Only one of each should be implemented */
4869         WARN_ON(regulator_desc->ops->get_voltage &&
4870                 regulator_desc->ops->get_voltage_sel);
4871         WARN_ON(regulator_desc->ops->set_voltage &&
4872                 regulator_desc->ops->set_voltage_sel);
4873
4874         /* If we're using selectors we must implement list_voltage. */
4875         if (regulator_desc->ops->get_voltage_sel &&
4876             !regulator_desc->ops->list_voltage) {
4877                 ret = -EINVAL;
4878                 goto rinse;
4879         }
4880         if (regulator_desc->ops->set_voltage_sel &&
4881             !regulator_desc->ops->list_voltage) {
4882                 ret = -EINVAL;
4883                 goto rinse;
4884         }
4885
4886         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4887         if (rdev == NULL) {
4888                 ret = -ENOMEM;
4889                 goto rinse;
4890         }
4891
4892         /*
4893          * Duplicate the config so the driver could override it after
4894          * parsing init data.
4895          */
4896         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4897         if (config == NULL) {
4898                 kfree(rdev);
4899                 ret = -ENOMEM;
4900                 goto rinse;
4901         }
4902
4903         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4904                                                &rdev->dev.of_node);
4905         /*
4906          * We need to keep track of any GPIO descriptor coming from the
4907          * device tree until we have handled it over to the core. If the
4908          * config that was passed in to this function DOES NOT contain
4909          * a descriptor, and the config after this call DOES contain
4910          * a descriptor, we definitely got one from parsing the device
4911          * tree.
4912          */
4913         if (!cfg->ena_gpiod && config->ena_gpiod)
4914                 dangling_of_gpiod = true;
4915         if (!init_data) {
4916                 init_data = config->init_data;
4917                 rdev->dev.of_node = of_node_get(config->of_node);
4918         }
4919
4920         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4921         rdev->reg_data = config->driver_data;
4922         rdev->owner = regulator_desc->owner;
4923         rdev->desc = regulator_desc;
4924         if (config->regmap)
4925                 rdev->regmap = config->regmap;
4926         else if (dev_get_regmap(dev, NULL))
4927                 rdev->regmap = dev_get_regmap(dev, NULL);
4928         else if (dev->parent)
4929                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4930         INIT_LIST_HEAD(&rdev->consumer_list);
4931         INIT_LIST_HEAD(&rdev->list);
4932         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4933         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4934
4935         /* preform any regulator specific init */
4936         if (init_data && init_data->regulator_init) {
4937                 ret = init_data->regulator_init(rdev->reg_data);
4938                 if (ret < 0)
4939                         goto clean;
4940         }
4941
4942         if (config->ena_gpiod) {
4943                 mutex_lock(&regulator_list_mutex);
4944                 ret = regulator_ena_gpio_request(rdev, config);
4945                 mutex_unlock(&regulator_list_mutex);
4946                 if (ret != 0) {
4947                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
4948                                  ret);
4949                         goto clean;
4950                 }
4951                 /* The regulator core took over the GPIO descriptor */
4952                 dangling_cfg_gpiod = false;
4953                 dangling_of_gpiod = false;
4954         }
4955
4956         /* register with sysfs */
4957         rdev->dev.class = &regulator_class;
4958         rdev->dev.parent = dev;
4959         dev_set_name(&rdev->dev, "regulator.%lu",
4960                     (unsigned long) atomic_inc_return(&regulator_no));
4961
4962         /* set regulator constraints */
4963         if (init_data)
4964                 constraints = &init_data->constraints;
4965
4966         if (init_data && init_data->supply_regulator)
4967                 rdev->supply_name = init_data->supply_regulator;
4968         else if (regulator_desc->supply_name)
4969                 rdev->supply_name = regulator_desc->supply_name;
4970
4971         /*
4972          * Attempt to resolve the regulator supply, if specified,
4973          * but don't return an error if we fail because we will try
4974          * to resolve it again later as more regulators are added.
4975          */
4976         if (regulator_resolve_supply(rdev))
4977                 rdev_dbg(rdev, "unable to resolve supply\n");
4978
4979         ret = set_machine_constraints(rdev, constraints);
4980         if (ret < 0)
4981                 goto wash;
4982
4983         ret = regulator_init_coupling(rdev);
4984         if (ret < 0)
4985                 goto wash;
4986
4987         /* add consumers devices */
4988         if (init_data) {
4989                 mutex_lock(&regulator_list_mutex);
4990                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4991                         ret = set_consumer_device_supply(rdev,
4992                                 init_data->consumer_supplies[i].dev_name,
4993                                 init_data->consumer_supplies[i].supply);
4994                         if (ret < 0) {
4995                                 mutex_unlock(&regulator_list_mutex);
4996                                 dev_err(dev, "Failed to set supply %s\n",
4997                                         init_data->consumer_supplies[i].supply);
4998                                 goto unset_supplies;
4999                         }
5000                 }
5001                 mutex_unlock(&regulator_list_mutex);
5002         }
5003
5004         if (!rdev->desc->ops->get_voltage &&
5005             !rdev->desc->ops->list_voltage &&
5006             !rdev->desc->fixed_uV)
5007                 rdev->is_switch = true;
5008
5009         dev_set_drvdata(&rdev->dev, rdev);
5010         ret = device_register(&rdev->dev);
5011         if (ret != 0) {
5012                 put_device(&rdev->dev);
5013                 goto unset_supplies;
5014         }
5015
5016         rdev_init_debugfs(rdev);
5017
5018         /* try to resolve regulators coupling since a new one was registered */
5019         mutex_lock(&regulator_list_mutex);
5020         regulator_resolve_coupling(rdev);
5021         mutex_unlock(&regulator_list_mutex);
5022
5023         /* try to resolve regulators supply since a new one was registered */
5024         class_for_each_device(&regulator_class, NULL, NULL,
5025                               regulator_register_resolve_supply);
5026         kfree(config);
5027         return rdev;
5028
5029 unset_supplies:
5030         mutex_lock(&regulator_list_mutex);
5031         unset_regulator_supplies(rdev);
5032         mutex_unlock(&regulator_list_mutex);
5033 wash:
5034         kfree(rdev->constraints);
5035         mutex_lock(&regulator_list_mutex);
5036         regulator_ena_gpio_free(rdev);
5037         mutex_unlock(&regulator_list_mutex);
5038 clean:
5039         if (dangling_of_gpiod)
5040                 gpiod_put(config->ena_gpiod);
5041         kfree(rdev);
5042         kfree(config);
5043 rinse:
5044         if (dangling_cfg_gpiod)
5045                 gpiod_put(cfg->ena_gpiod);
5046         return ERR_PTR(ret);
5047 }
5048 EXPORT_SYMBOL_GPL(regulator_register);
5049
5050 /**
5051  * regulator_unregister - unregister regulator
5052  * @rdev: regulator to unregister
5053  *
5054  * Called by regulator drivers to unregister a regulator.
5055  */
5056 void regulator_unregister(struct regulator_dev *rdev)
5057 {
5058         if (rdev == NULL)
5059                 return;
5060
5061         if (rdev->supply) {
5062                 while (rdev->use_count--)
5063                         regulator_disable(rdev->supply);
5064                 regulator_put(rdev->supply);
5065         }
5066
5067         mutex_lock(&regulator_list_mutex);
5068
5069         debugfs_remove_recursive(rdev->debugfs);
5070         flush_work(&rdev->disable_work.work);
5071         WARN_ON(rdev->open_count);
5072         regulator_remove_coupling(rdev);
5073         unset_regulator_supplies(rdev);
5074         list_del(&rdev->list);
5075         regulator_ena_gpio_free(rdev);
5076         device_unregister(&rdev->dev);
5077
5078         mutex_unlock(&regulator_list_mutex);
5079 }
5080 EXPORT_SYMBOL_GPL(regulator_unregister);
5081
5082 #ifdef CONFIG_SUSPEND
5083 /**
5084  * regulator_suspend - prepare regulators for system wide suspend
5085  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5086  *
5087  * Configure each regulator with it's suspend operating parameters for state.
5088  */
5089 static int regulator_suspend(struct device *dev)
5090 {
5091         struct regulator_dev *rdev = dev_to_rdev(dev);
5092         suspend_state_t state = pm_suspend_target_state;
5093         int ret;
5094
5095         regulator_lock(rdev);
5096         ret = suspend_set_state(rdev, state);
5097         regulator_unlock(rdev);
5098
5099         return ret;
5100 }
5101
5102 static int regulator_resume(struct device *dev)
5103 {
5104         suspend_state_t state = pm_suspend_target_state;
5105         struct regulator_dev *rdev = dev_to_rdev(dev);
5106         struct regulator_state *rstate;
5107         int ret = 0;
5108
5109         rstate = regulator_get_suspend_state(rdev, state);
5110         if (rstate == NULL)
5111                 return 0;
5112
5113         regulator_lock(rdev);
5114
5115         if (rdev->desc->ops->resume &&
5116             (rstate->enabled == ENABLE_IN_SUSPEND ||
5117              rstate->enabled == DISABLE_IN_SUSPEND))
5118                 ret = rdev->desc->ops->resume(rdev);
5119
5120         regulator_unlock(rdev);
5121
5122         return ret;
5123 }
5124 #else /* !CONFIG_SUSPEND */
5125
5126 #define regulator_suspend       NULL
5127 #define regulator_resume        NULL
5128
5129 #endif /* !CONFIG_SUSPEND */
5130
5131 #ifdef CONFIG_PM
5132 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5133         .suspend        = regulator_suspend,
5134         .resume         = regulator_resume,
5135 };
5136 #endif
5137
5138 struct class regulator_class = {
5139         .name = "regulator",
5140         .dev_release = regulator_dev_release,
5141         .dev_groups = regulator_dev_groups,
5142 #ifdef CONFIG_PM
5143         .pm = &regulator_pm_ops,
5144 #endif
5145 };
5146 /**
5147  * regulator_has_full_constraints - the system has fully specified constraints
5148  *
5149  * Calling this function will cause the regulator API to disable all
5150  * regulators which have a zero use count and don't have an always_on
5151  * constraint in a late_initcall.
5152  *
5153  * The intention is that this will become the default behaviour in a
5154  * future kernel release so users are encouraged to use this facility
5155  * now.
5156  */
5157 void regulator_has_full_constraints(void)
5158 {
5159         has_full_constraints = 1;
5160 }
5161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5162
5163 /**
5164  * rdev_get_drvdata - get rdev regulator driver data
5165  * @rdev: regulator
5166  *
5167  * Get rdev regulator driver private data. This call can be used in the
5168  * regulator driver context.
5169  */
5170 void *rdev_get_drvdata(struct regulator_dev *rdev)
5171 {
5172         return rdev->reg_data;
5173 }
5174 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5175
5176 /**
5177  * regulator_get_drvdata - get regulator driver data
5178  * @regulator: regulator
5179  *
5180  * Get regulator driver private data. This call can be used in the consumer
5181  * driver context when non API regulator specific functions need to be called.
5182  */
5183 void *regulator_get_drvdata(struct regulator *regulator)
5184 {
5185         return regulator->rdev->reg_data;
5186 }
5187 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5188
5189 /**
5190  * regulator_set_drvdata - set regulator driver data
5191  * @regulator: regulator
5192  * @data: data
5193  */
5194 void regulator_set_drvdata(struct regulator *regulator, void *data)
5195 {
5196         regulator->rdev->reg_data = data;
5197 }
5198 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5199
5200 /**
5201  * regulator_get_id - get regulator ID
5202  * @rdev: regulator
5203  */
5204 int rdev_get_id(struct regulator_dev *rdev)
5205 {
5206         return rdev->desc->id;
5207 }
5208 EXPORT_SYMBOL_GPL(rdev_get_id);
5209
5210 struct device *rdev_get_dev(struct regulator_dev *rdev)
5211 {
5212         return &rdev->dev;
5213 }
5214 EXPORT_SYMBOL_GPL(rdev_get_dev);
5215
5216 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5217 {
5218         return rdev->regmap;
5219 }
5220 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5221
5222 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5223 {
5224         return reg_init_data->driver_data;
5225 }
5226 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5227
5228 #ifdef CONFIG_DEBUG_FS
5229 static int supply_map_show(struct seq_file *sf, void *data)
5230 {
5231         struct regulator_map *map;
5232
5233         list_for_each_entry(map, &regulator_map_list, list) {
5234                 seq_printf(sf, "%s -> %s.%s\n",
5235                                 rdev_get_name(map->regulator), map->dev_name,
5236                                 map->supply);
5237         }
5238
5239         return 0;
5240 }
5241 DEFINE_SHOW_ATTRIBUTE(supply_map);
5242
5243 struct summary_data {
5244         struct seq_file *s;
5245         struct regulator_dev *parent;
5246         int level;
5247 };
5248
5249 static void regulator_summary_show_subtree(struct seq_file *s,
5250                                            struct regulator_dev *rdev,
5251                                            int level);
5252
5253 static int regulator_summary_show_children(struct device *dev, void *data)
5254 {
5255         struct regulator_dev *rdev = dev_to_rdev(dev);
5256         struct summary_data *summary_data = data;
5257
5258         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5259                 regulator_summary_show_subtree(summary_data->s, rdev,
5260                                                summary_data->level + 1);
5261
5262         return 0;
5263 }
5264
5265 static void regulator_summary_show_subtree(struct seq_file *s,
5266                                            struct regulator_dev *rdev,
5267                                            int level)
5268 {
5269         struct regulation_constraints *c;
5270         struct regulator *consumer;
5271         struct summary_data summary_data;
5272         unsigned int opmode;
5273
5274         if (!rdev)
5275                 return;
5276
5277         opmode = _regulator_get_mode_unlocked(rdev);
5278         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5279                    level * 3 + 1, "",
5280                    30 - level * 3, rdev_get_name(rdev),
5281                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5282                    regulator_opmode_to_str(opmode));
5283
5284         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5285         seq_printf(s, "%5dmA ",
5286                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5287
5288         c = rdev->constraints;
5289         if (c) {
5290                 switch (rdev->desc->type) {
5291                 case REGULATOR_VOLTAGE:
5292                         seq_printf(s, "%5dmV %5dmV ",
5293                                    c->min_uV / 1000, c->max_uV / 1000);
5294                         break;
5295                 case REGULATOR_CURRENT:
5296                         seq_printf(s, "%5dmA %5dmA ",
5297                                    c->min_uA / 1000, c->max_uA / 1000);
5298                         break;
5299                 }
5300         }
5301
5302         seq_puts(s, "\n");
5303
5304         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5305                 if (consumer->dev && consumer->dev->class == &regulator_class)
5306                         continue;
5307
5308                 seq_printf(s, "%*s%-*s ",
5309                            (level + 1) * 3 + 1, "",
5310                            30 - (level + 1) * 3,
5311                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5312
5313                 switch (rdev->desc->type) {
5314                 case REGULATOR_VOLTAGE:
5315                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5316                                    consumer->enable_count,
5317                                    consumer->uA_load / 1000,
5318                                    consumer->uA_load && !consumer->enable_count ?
5319                                    '*' : ' ',
5320                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5321                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5322                         break;
5323                 case REGULATOR_CURRENT:
5324                         break;
5325                 }
5326
5327                 seq_puts(s, "\n");
5328         }
5329
5330         summary_data.s = s;
5331         summary_data.level = level;
5332         summary_data.parent = rdev;
5333
5334         class_for_each_device(&regulator_class, NULL, &summary_data,
5335                               regulator_summary_show_children);
5336 }
5337
5338 struct summary_lock_data {
5339         struct ww_acquire_ctx *ww_ctx;
5340         struct regulator_dev **new_contended_rdev;
5341         struct regulator_dev **old_contended_rdev;
5342 };
5343
5344 static int regulator_summary_lock_one(struct device *dev, void *data)
5345 {
5346         struct regulator_dev *rdev = dev_to_rdev(dev);
5347         struct summary_lock_data *lock_data = data;
5348         int ret = 0;
5349
5350         if (rdev != *lock_data->old_contended_rdev) {
5351                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5352
5353                 if (ret == -EDEADLK)
5354                         *lock_data->new_contended_rdev = rdev;
5355                 else
5356                         WARN_ON_ONCE(ret);
5357         } else {
5358                 *lock_data->old_contended_rdev = NULL;
5359         }
5360
5361         return ret;
5362 }
5363
5364 static int regulator_summary_unlock_one(struct device *dev, void *data)
5365 {
5366         struct regulator_dev *rdev = dev_to_rdev(dev);
5367         struct summary_lock_data *lock_data = data;
5368
5369         if (lock_data) {
5370                 if (rdev == *lock_data->new_contended_rdev)
5371                         return -EDEADLK;
5372         }
5373
5374         regulator_unlock(rdev);
5375
5376         return 0;
5377 }
5378
5379 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5380                                       struct regulator_dev **new_contended_rdev,
5381                                       struct regulator_dev **old_contended_rdev)
5382 {
5383         struct summary_lock_data lock_data;
5384         int ret;
5385
5386         lock_data.ww_ctx = ww_ctx;
5387         lock_data.new_contended_rdev = new_contended_rdev;
5388         lock_data.old_contended_rdev = old_contended_rdev;
5389
5390         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5391                                     regulator_summary_lock_one);
5392         if (ret)
5393                 class_for_each_device(&regulator_class, NULL, &lock_data,
5394                                       regulator_summary_unlock_one);
5395
5396         return ret;
5397 }
5398
5399 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5400 {
5401         struct regulator_dev *new_contended_rdev = NULL;
5402         struct regulator_dev *old_contended_rdev = NULL;
5403         int err;
5404
5405         mutex_lock(&regulator_list_mutex);
5406
5407         ww_acquire_init(ww_ctx, &regulator_ww_class);
5408
5409         do {
5410                 if (new_contended_rdev) {
5411                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5412                         old_contended_rdev = new_contended_rdev;
5413                         old_contended_rdev->ref_cnt++;
5414                 }
5415
5416                 err = regulator_summary_lock_all(ww_ctx,
5417                                                  &new_contended_rdev,
5418                                                  &old_contended_rdev);
5419
5420                 if (old_contended_rdev)
5421                         regulator_unlock(old_contended_rdev);
5422
5423         } while (err == -EDEADLK);
5424
5425         ww_acquire_done(ww_ctx);
5426 }
5427
5428 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5429 {
5430         class_for_each_device(&regulator_class, NULL, NULL,
5431                               regulator_summary_unlock_one);
5432         ww_acquire_fini(ww_ctx);
5433
5434         mutex_unlock(&regulator_list_mutex);
5435 }
5436
5437 static int regulator_summary_show_roots(struct device *dev, void *data)
5438 {
5439         struct regulator_dev *rdev = dev_to_rdev(dev);
5440         struct seq_file *s = data;
5441
5442         if (!rdev->supply)
5443                 regulator_summary_show_subtree(s, rdev, 0);
5444
5445         return 0;
5446 }
5447
5448 static int regulator_summary_show(struct seq_file *s, void *data)
5449 {
5450         struct ww_acquire_ctx ww_ctx;
5451
5452         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5453         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5454
5455         regulator_summary_lock(&ww_ctx);
5456
5457         class_for_each_device(&regulator_class, NULL, s,
5458                               regulator_summary_show_roots);
5459
5460         regulator_summary_unlock(&ww_ctx);
5461
5462         return 0;
5463 }
5464 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5465 #endif /* CONFIG_DEBUG_FS */
5466
5467 static int __init regulator_init(void)
5468 {
5469         int ret;
5470
5471         ret = class_register(&regulator_class);
5472
5473         debugfs_root = debugfs_create_dir("regulator", NULL);
5474         if (!debugfs_root)
5475                 pr_warn("regulator: Failed to create debugfs directory\n");
5476
5477 #ifdef CONFIG_DEBUG_FS
5478         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5479                             &supply_map_fops);
5480
5481         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5482                             NULL, &regulator_summary_fops);
5483 #endif
5484         regulator_dummy_init();
5485
5486         return ret;
5487 }
5488
5489 /* init early to allow our consumers to complete system booting */
5490 core_initcall(regulator_init);
5491
5492 static int __init regulator_late_cleanup(struct device *dev, void *data)
5493 {
5494         struct regulator_dev *rdev = dev_to_rdev(dev);
5495         const struct regulator_ops *ops = rdev->desc->ops;
5496         struct regulation_constraints *c = rdev->constraints;
5497         int enabled, ret;
5498
5499         if (c && c->always_on)
5500                 return 0;
5501
5502         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5503                 return 0;
5504
5505         regulator_lock(rdev);
5506
5507         if (rdev->use_count)
5508                 goto unlock;
5509
5510         /* If we can't read the status assume it's on. */
5511         if (ops->is_enabled)
5512                 enabled = ops->is_enabled(rdev);
5513         else
5514                 enabled = 1;
5515
5516         if (!enabled)
5517                 goto unlock;
5518
5519         if (have_full_constraints()) {
5520                 /* We log since this may kill the system if it goes
5521                  * wrong. */
5522                 rdev_info(rdev, "disabling\n");
5523                 ret = _regulator_do_disable(rdev);
5524                 if (ret != 0)
5525                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5526         } else {
5527                 /* The intention is that in future we will
5528                  * assume that full constraints are provided
5529                  * so warn even if we aren't going to do
5530                  * anything here.
5531                  */
5532                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5533         }
5534
5535 unlock:
5536         regulator_unlock(rdev);
5537
5538         return 0;
5539 }
5540
5541 static int __init regulator_init_complete(void)
5542 {
5543         /*
5544          * Since DT doesn't provide an idiomatic mechanism for
5545          * enabling full constraints and since it's much more natural
5546          * with DT to provide them just assume that a DT enabled
5547          * system has full constraints.
5548          */
5549         if (of_have_populated_dt())
5550                 has_full_constraints = true;
5551
5552         /*
5553          * Regulators may had failed to resolve their input supplies
5554          * when were registered, either because the input supply was
5555          * not registered yet or because its parent device was not
5556          * bound yet. So attempt to resolve the input supplies for
5557          * pending regulators before trying to disable unused ones.
5558          */
5559         class_for_each_device(&regulator_class, NULL, NULL,
5560                               regulator_register_resolve_supply);
5561
5562         /* If we have a full configuration then disable any regulators
5563          * we have permission to change the status for and which are
5564          * not in use or always_on.  This is effectively the default
5565          * for DT and ACPI as they have full constraints.
5566          */
5567         class_for_each_device(&regulator_class, NULL, NULL,
5568                               regulator_late_cleanup);
5569
5570         return 0;
5571 }
5572 late_initcall_sync(regulator_init_complete);