]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
Merge tag 'perf-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112         if (rdev->constraints && rdev->constraints->name)
113                 return rdev->constraints->name;
114         else if (rdev->desc->name)
115                 return rdev->desc->name;
116         else
117                 return "";
118 }
119
120 static bool have_full_constraints(void)
121 {
122         return has_full_constraints || of_have_populated_dt();
123 }
124
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127         if (!rdev->constraints) {
128                 rdev_err(rdev, "no constraints\n");
129                 return false;
130         }
131
132         if (rdev->constraints->valid_ops_mask & ops)
133                 return true;
134
135         return false;
136 }
137
138 /**
139  * regulator_lock_nested - lock a single regulator
140  * @rdev:               regulator source
141  * @ww_ctx:             w/w mutex acquire context
142  *
143  * This function can be called many times by one task on
144  * a single regulator and its mutex will be locked only
145  * once. If a task, which is calling this function is other
146  * than the one, which initially locked the mutex, it will
147  * wait on mutex.
148  */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150                                         struct ww_acquire_ctx *ww_ctx)
151 {
152         bool lock = false;
153         int ret = 0;
154
155         mutex_lock(&regulator_nesting_mutex);
156
157         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158                 if (rdev->mutex_owner == current)
159                         rdev->ref_cnt++;
160                 else
161                         lock = true;
162
163                 if (lock) {
164                         mutex_unlock(&regulator_nesting_mutex);
165                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166                         mutex_lock(&regulator_nesting_mutex);
167                 }
168         } else {
169                 lock = true;
170         }
171
172         if (lock && ret != -EDEADLK) {
173                 rdev->ref_cnt++;
174                 rdev->mutex_owner = current;
175         }
176
177         mutex_unlock(&regulator_nesting_mutex);
178
179         return ret;
180 }
181
182 /**
183  * regulator_lock - lock a single regulator
184  * @rdev:               regulator source
185  *
186  * This function can be called many times by one task on
187  * a single regulator and its mutex will be locked only
188  * once. If a task, which is calling this function is other
189  * than the one, which initially locked the mutex, it will
190  * wait on mutex.
191  */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194         regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222         struct regulator_dev *c_rdev;
223         int i;
224
225         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228                 if (rdev->supply->rdev == c_rdev)
229                         return true;
230         }
231
232         return false;
233 }
234
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236                                        unsigned int n_coupled)
237 {
238         struct regulator_dev *c_rdev;
239         int i;
240
241         for (i = n_coupled; i > 0; i--) {
242                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244                 if (!c_rdev)
245                         continue;
246
247                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248                         regulator_unlock_recursive(
249                                         c_rdev->supply->rdev,
250                                         c_rdev->coupling_desc.n_coupled);
251
252                 regulator_unlock(c_rdev);
253         }
254 }
255
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257                                     struct regulator_dev **new_contended_rdev,
258                                     struct regulator_dev **old_contended_rdev,
259                                     struct ww_acquire_ctx *ww_ctx)
260 {
261         struct regulator_dev *c_rdev;
262         int i, err;
263
264         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267                 if (!c_rdev)
268                         continue;
269
270                 if (c_rdev != *old_contended_rdev) {
271                         err = regulator_lock_nested(c_rdev, ww_ctx);
272                         if (err) {
273                                 if (err == -EDEADLK) {
274                                         *new_contended_rdev = c_rdev;
275                                         goto err_unlock;
276                                 }
277
278                                 /* shouldn't happen */
279                                 WARN_ON_ONCE(err != -EALREADY);
280                         }
281                 } else {
282                         *old_contended_rdev = NULL;
283                 }
284
285                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286                         err = regulator_lock_recursive(c_rdev->supply->rdev,
287                                                        new_contended_rdev,
288                                                        old_contended_rdev,
289                                                        ww_ctx);
290                         if (err) {
291                                 regulator_unlock(c_rdev);
292                                 goto err_unlock;
293                         }
294                 }
295         }
296
297         return 0;
298
299 err_unlock:
300         regulator_unlock_recursive(rdev, i);
301
302         return err;
303 }
304
305 /**
306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307  *                              regulators
308  * @rdev:                       regulator source
309  * @ww_ctx:                     w/w mutex acquire context
310  *
311  * Unlock all regulators related with rdev by coupling or supplying.
312  */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314                                        struct ww_acquire_ctx *ww_ctx)
315 {
316         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317         ww_acquire_fini(ww_ctx);
318 }
319
320 /**
321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322  * @rdev:                       regulator source
323  * @ww_ctx:                     w/w mutex acquire context
324  *
325  * This function as a wrapper on regulator_lock_recursive(), which locks
326  * all regulators related with rdev by coupling or supplying.
327  */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329                                      struct ww_acquire_ctx *ww_ctx)
330 {
331         struct regulator_dev *new_contended_rdev = NULL;
332         struct regulator_dev *old_contended_rdev = NULL;
333         int err;
334
335         mutex_lock(&regulator_list_mutex);
336
337         ww_acquire_init(ww_ctx, &regulator_ww_class);
338
339         do {
340                 if (new_contended_rdev) {
341                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342                         old_contended_rdev = new_contended_rdev;
343                         old_contended_rdev->ref_cnt++;
344                 }
345
346                 err = regulator_lock_recursive(rdev,
347                                                &new_contended_rdev,
348                                                &old_contended_rdev,
349                                                ww_ctx);
350
351                 if (old_contended_rdev)
352                         regulator_unlock(old_contended_rdev);
353
354         } while (err == -EDEADLK);
355
356         ww_acquire_done(ww_ctx);
357
358         mutex_unlock(&regulator_list_mutex);
359 }
360
361 /**
362  * of_get_child_regulator - get a child regulator device node
363  * based on supply name
364  * @parent: Parent device node
365  * @prop_name: Combination regulator supply name and "-supply"
366  *
367  * Traverse all child nodes.
368  * Extract the child regulator device node corresponding to the supply name.
369  * returns the device node corresponding to the regulator if found, else
370  * returns NULL.
371  */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373                                                   const char *prop_name)
374 {
375         struct device_node *regnode = NULL;
376         struct device_node *child = NULL;
377
378         for_each_child_of_node(parent, child) {
379                 regnode = of_parse_phandle(child, prop_name, 0);
380
381                 if (!regnode) {
382                         regnode = of_get_child_regulator(child, prop_name);
383                         if (regnode)
384                                 goto err_node_put;
385                 } else {
386                         goto err_node_put;
387                 }
388         }
389         return NULL;
390
391 err_node_put:
392         of_node_put(child);
393         return regnode;
394 }
395
396 /**
397  * of_get_regulator - get a regulator device node based on supply name
398  * @dev: Device pointer for the consumer (of regulator) device
399  * @supply: regulator supply name
400  *
401  * Extract the regulator device node corresponding to the supply name.
402  * returns the device node corresponding to the regulator if found, else
403  * returns NULL.
404  */
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406 {
407         struct device_node *regnode = NULL;
408         char prop_name[32]; /* 32 is max size of property name */
409
410         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411
412         snprintf(prop_name, 32, "%s-supply", supply);
413         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414
415         if (!regnode) {
416                 regnode = of_get_child_regulator(dev->of_node, prop_name);
417                 if (regnode)
418                         return regnode;
419
420                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421                                 prop_name, dev->of_node);
422                 return NULL;
423         }
424         return regnode;
425 }
426
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429                             int *min_uV, int *max_uV)
430 {
431         BUG_ON(*min_uV > *max_uV);
432
433         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434                 rdev_err(rdev, "voltage operation not allowed\n");
435                 return -EPERM;
436         }
437
438         if (*max_uV > rdev->constraints->max_uV)
439                 *max_uV = rdev->constraints->max_uV;
440         if (*min_uV < rdev->constraints->min_uV)
441                 *min_uV = rdev->constraints->min_uV;
442
443         if (*min_uV > *max_uV) {
444                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445                          *min_uV, *max_uV);
446                 return -EINVAL;
447         }
448
449         return 0;
450 }
451
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
454 {
455         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456 }
457
458 /* Make sure we select a voltage that suits the needs of all
459  * regulator consumers
460  */
461 int regulator_check_consumers(struct regulator_dev *rdev,
462                               int *min_uV, int *max_uV,
463                               suspend_state_t state)
464 {
465         struct regulator *regulator;
466         struct regulator_voltage *voltage;
467
468         list_for_each_entry(regulator, &rdev->consumer_list, list) {
469                 voltage = &regulator->voltage[state];
470                 /*
471                  * Assume consumers that didn't say anything are OK
472                  * with anything in the constraint range.
473                  */
474                 if (!voltage->min_uV && !voltage->max_uV)
475                         continue;
476
477                 if (*max_uV > voltage->max_uV)
478                         *max_uV = voltage->max_uV;
479                 if (*min_uV < voltage->min_uV)
480                         *min_uV = voltage->min_uV;
481         }
482
483         if (*min_uV > *max_uV) {
484                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485                         *min_uV, *max_uV);
486                 return -EINVAL;
487         }
488
489         return 0;
490 }
491
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494                                         int *min_uA, int *max_uA)
495 {
496         BUG_ON(*min_uA > *max_uA);
497
498         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499                 rdev_err(rdev, "current operation not allowed\n");
500                 return -EPERM;
501         }
502
503         if (*max_uA > rdev->constraints->max_uA)
504                 *max_uA = rdev->constraints->max_uA;
505         if (*min_uA < rdev->constraints->min_uA)
506                 *min_uA = rdev->constraints->min_uA;
507
508         if (*min_uA > *max_uA) {
509                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510                          *min_uA, *max_uA);
511                 return -EINVAL;
512         }
513
514         return 0;
515 }
516
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519                                     unsigned int *mode)
520 {
521         switch (*mode) {
522         case REGULATOR_MODE_FAST:
523         case REGULATOR_MODE_NORMAL:
524         case REGULATOR_MODE_IDLE:
525         case REGULATOR_MODE_STANDBY:
526                 break;
527         default:
528                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529                 return -EINVAL;
530         }
531
532         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533                 rdev_err(rdev, "mode operation not allowed\n");
534                 return -EPERM;
535         }
536
537         /* The modes are bitmasks, the most power hungry modes having
538          * the lowest values. If the requested mode isn't supported
539          * try higher modes. */
540         while (*mode) {
541                 if (rdev->constraints->valid_modes_mask & *mode)
542                         return 0;
543                 *mode /= 2;
544         }
545
546         return -EINVAL;
547 }
548
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 {
552         if (rdev->constraints == NULL)
553                 return NULL;
554
555         switch (state) {
556         case PM_SUSPEND_STANDBY:
557                 return &rdev->constraints->state_standby;
558         case PM_SUSPEND_MEM:
559                 return &rdev->constraints->state_mem;
560         case PM_SUSPEND_MAX:
561                 return &rdev->constraints->state_disk;
562         default:
563                 return NULL;
564         }
565 }
566
567 static ssize_t regulator_uV_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571         int uV;
572
573         regulator_lock(rdev);
574         uV = regulator_get_voltage_rdev(rdev);
575         regulator_unlock(rdev);
576
577         if (uV < 0)
578                 return uV;
579         return sprintf(buf, "%d\n", uV);
580 }
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582
583 static ssize_t regulator_uA_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589 }
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593                          char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return sprintf(buf, "%s\n", rdev_get_name(rdev));
598 }
599 static DEVICE_ATTR_RO(name);
600
601 static const char *regulator_opmode_to_str(int mode)
602 {
603         switch (mode) {
604         case REGULATOR_MODE_FAST:
605                 return "fast";
606         case REGULATOR_MODE_NORMAL:
607                 return "normal";
608         case REGULATOR_MODE_IDLE:
609                 return "idle";
610         case REGULATOR_MODE_STANDBY:
611                 return "standby";
612         }
613         return "unknown";
614 }
615
616 static ssize_t regulator_print_opmode(char *buf, int mode)
617 {
618         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 }
620
621 static ssize_t regulator_opmode_show(struct device *dev,
622                                     struct device_attribute *attr, char *buf)
623 {
624         struct regulator_dev *rdev = dev_get_drvdata(dev);
625
626         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627 }
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629
630 static ssize_t regulator_print_state(char *buf, int state)
631 {
632         if (state > 0)
633                 return sprintf(buf, "enabled\n");
634         else if (state == 0)
635                 return sprintf(buf, "disabled\n");
636         else
637                 return sprintf(buf, "unknown\n");
638 }
639
640 static ssize_t regulator_state_show(struct device *dev,
641                                    struct device_attribute *attr, char *buf)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644         ssize_t ret;
645
646         regulator_lock(rdev);
647         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648         regulator_unlock(rdev);
649
650         return ret;
651 }
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653
654 static ssize_t regulator_status_show(struct device *dev,
655                                    struct device_attribute *attr, char *buf)
656 {
657         struct regulator_dev *rdev = dev_get_drvdata(dev);
658         int status;
659         char *label;
660
661         status = rdev->desc->ops->get_status(rdev);
662         if (status < 0)
663                 return status;
664
665         switch (status) {
666         case REGULATOR_STATUS_OFF:
667                 label = "off";
668                 break;
669         case REGULATOR_STATUS_ON:
670                 label = "on";
671                 break;
672         case REGULATOR_STATUS_ERROR:
673                 label = "error";
674                 break;
675         case REGULATOR_STATUS_FAST:
676                 label = "fast";
677                 break;
678         case REGULATOR_STATUS_NORMAL:
679                 label = "normal";
680                 break;
681         case REGULATOR_STATUS_IDLE:
682                 label = "idle";
683                 break;
684         case REGULATOR_STATUS_STANDBY:
685                 label = "standby";
686                 break;
687         case REGULATOR_STATUS_BYPASS:
688                 label = "bypass";
689                 break;
690         case REGULATOR_STATUS_UNDEFINED:
691                 label = "undefined";
692                 break;
693         default:
694                 return -ERANGE;
695         }
696
697         return sprintf(buf, "%s\n", label);
698 }
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700
701 static ssize_t regulator_min_uA_show(struct device *dev,
702                                     struct device_attribute *attr, char *buf)
703 {
704         struct regulator_dev *rdev = dev_get_drvdata(dev);
705
706         if (!rdev->constraints)
707                 return sprintf(buf, "constraint not defined\n");
708
709         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710 }
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712
713 static ssize_t regulator_max_uA_show(struct device *dev,
714                                     struct device_attribute *attr, char *buf)
715 {
716         struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718         if (!rdev->constraints)
719                 return sprintf(buf, "constraint not defined\n");
720
721         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722 }
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724
725 static ssize_t regulator_min_uV_show(struct device *dev,
726                                     struct device_attribute *attr, char *buf)
727 {
728         struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730         if (!rdev->constraints)
731                 return sprintf(buf, "constraint not defined\n");
732
733         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734 }
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736
737 static ssize_t regulator_max_uV_show(struct device *dev,
738                                     struct device_attribute *attr, char *buf)
739 {
740         struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742         if (!rdev->constraints)
743                 return sprintf(buf, "constraint not defined\n");
744
745         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746 }
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748
749 static ssize_t regulator_total_uA_show(struct device *dev,
750                                       struct device_attribute *attr, char *buf)
751 {
752         struct regulator_dev *rdev = dev_get_drvdata(dev);
753         struct regulator *regulator;
754         int uA = 0;
755
756         regulator_lock(rdev);
757         list_for_each_entry(regulator, &rdev->consumer_list, list) {
758                 if (regulator->enable_count)
759                         uA += regulator->uA_load;
760         }
761         regulator_unlock(rdev);
762         return sprintf(buf, "%d\n", uA);
763 }
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767                               char *buf)
768 {
769         struct regulator_dev *rdev = dev_get_drvdata(dev);
770         return sprintf(buf, "%d\n", rdev->use_count);
771 }
772 static DEVICE_ATTR_RO(num_users);
773
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775                          char *buf)
776 {
777         struct regulator_dev *rdev = dev_get_drvdata(dev);
778
779         switch (rdev->desc->type) {
780         case REGULATOR_VOLTAGE:
781                 return sprintf(buf, "voltage\n");
782         case REGULATOR_CURRENT:
783                 return sprintf(buf, "current\n");
784         }
785         return sprintf(buf, "unknown\n");
786 }
787 static DEVICE_ATTR_RO(type);
788
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790                                 struct device_attribute *attr, char *buf)
791 {
792         struct regulator_dev *rdev = dev_get_drvdata(dev);
793
794         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795 }
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797                 regulator_suspend_mem_uV_show, NULL);
798
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800                                 struct device_attribute *attr, char *buf)
801 {
802         struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805 }
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807                 regulator_suspend_disk_uV_show, NULL);
808
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810                                 struct device_attribute *attr, char *buf)
811 {
812         struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815 }
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817                 regulator_suspend_standby_uV_show, NULL);
818
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820                                 struct device_attribute *attr, char *buf)
821 {
822         struct regulator_dev *rdev = dev_get_drvdata(dev);
823
824         return regulator_print_opmode(buf,
825                 rdev->constraints->state_mem.mode);
826 }
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828                 regulator_suspend_mem_mode_show, NULL);
829
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831                                 struct device_attribute *attr, char *buf)
832 {
833         struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835         return regulator_print_opmode(buf,
836                 rdev->constraints->state_disk.mode);
837 }
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839                 regulator_suspend_disk_mode_show, NULL);
840
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842                                 struct device_attribute *attr, char *buf)
843 {
844         struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846         return regulator_print_opmode(buf,
847                 rdev->constraints->state_standby.mode);
848 }
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850                 regulator_suspend_standby_mode_show, NULL);
851
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853                                    struct device_attribute *attr, char *buf)
854 {
855         struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857         return regulator_print_state(buf,
858                         rdev->constraints->state_mem.enabled);
859 }
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861                 regulator_suspend_mem_state_show, NULL);
862
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864                                    struct device_attribute *attr, char *buf)
865 {
866         struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868         return regulator_print_state(buf,
869                         rdev->constraints->state_disk.enabled);
870 }
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872                 regulator_suspend_disk_state_show, NULL);
873
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875                                    struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_standby.enabled);
881 }
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883                 regulator_suspend_standby_state_show, NULL);
884
885 static ssize_t regulator_bypass_show(struct device *dev,
886                                      struct device_attribute *attr, char *buf)
887 {
888         struct regulator_dev *rdev = dev_get_drvdata(dev);
889         const char *report;
890         bool bypass;
891         int ret;
892
893         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894
895         if (ret != 0)
896                 report = "unknown";
897         else if (bypass)
898                 report = "enabled";
899         else
900                 report = "disabled";
901
902         return sprintf(buf, "%s\n", report);
903 }
904 static DEVICE_ATTR(bypass, 0444,
905                    regulator_bypass_show, NULL);
906
907 /* Calculate the new optimum regulator operating mode based on the new total
908  * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
910 {
911         struct regulator *sibling;
912         int current_uA = 0, output_uV, input_uV, err;
913         unsigned int mode;
914
915         /*
916          * first check to see if we can set modes at all, otherwise just
917          * tell the consumer everything is OK.
918          */
919         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920                 rdev_dbg(rdev, "DRMS operation not allowed\n");
921                 return 0;
922         }
923
924         if (!rdev->desc->ops->get_optimum_mode &&
925             !rdev->desc->ops->set_load)
926                 return 0;
927
928         if (!rdev->desc->ops->set_mode &&
929             !rdev->desc->ops->set_load)
930                 return -EINVAL;
931
932         /* calc total requested load */
933         list_for_each_entry(sibling, &rdev->consumer_list, list) {
934                 if (sibling->enable_count)
935                         current_uA += sibling->uA_load;
936         }
937
938         current_uA += rdev->constraints->system_load;
939
940         if (rdev->desc->ops->set_load) {
941                 /* set the optimum mode for our new total regulator load */
942                 err = rdev->desc->ops->set_load(rdev, current_uA);
943                 if (err < 0)
944                         rdev_err(rdev, "failed to set load %d\n", current_uA);
945         } else {
946                 /* get output voltage */
947                 output_uV = regulator_get_voltage_rdev(rdev);
948                 if (output_uV <= 0) {
949                         rdev_err(rdev, "invalid output voltage found\n");
950                         return -EINVAL;
951                 }
952
953                 /* get input voltage */
954                 input_uV = 0;
955                 if (rdev->supply)
956                         input_uV = regulator_get_voltage(rdev->supply);
957                 if (input_uV <= 0)
958                         input_uV = rdev->constraints->input_uV;
959                 if (input_uV <= 0) {
960                         rdev_err(rdev, "invalid input voltage found\n");
961                         return -EINVAL;
962                 }
963
964                 /* now get the optimum mode for our new total regulator load */
965                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966                                                          output_uV, current_uA);
967
968                 /* check the new mode is allowed */
969                 err = regulator_mode_constrain(rdev, &mode);
970                 if (err < 0) {
971                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972                                  current_uA, input_uV, output_uV);
973                         return err;
974                 }
975
976                 err = rdev->desc->ops->set_mode(rdev, mode);
977                 if (err < 0)
978                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979         }
980
981         return err;
982 }
983
984 static int suspend_set_state(struct regulator_dev *rdev,
985                                     suspend_state_t state)
986 {
987         int ret = 0;
988         struct regulator_state *rstate;
989
990         rstate = regulator_get_suspend_state(rdev, state);
991         if (rstate == NULL)
992                 return 0;
993
994         /* If we have no suspend mode configuration don't set anything;
995          * only warn if the driver implements set_suspend_voltage or
996          * set_suspend_mode callback.
997          */
998         if (rstate->enabled != ENABLE_IN_SUSPEND &&
999             rstate->enabled != DISABLE_IN_SUSPEND) {
1000                 if (rdev->desc->ops->set_suspend_voltage ||
1001                     rdev->desc->ops->set_suspend_mode)
1002                         rdev_warn(rdev, "No configuration\n");
1003                 return 0;
1004         }
1005
1006         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007                 rdev->desc->ops->set_suspend_enable)
1008                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010                 rdev->desc->ops->set_suspend_disable)
1011                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013                 ret = 0;
1014
1015         if (ret < 0) {
1016                 rdev_err(rdev, "failed to enabled/disable\n");
1017                 return ret;
1018         }
1019
1020         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022                 if (ret < 0) {
1023                         rdev_err(rdev, "failed to set voltage\n");
1024                         return ret;
1025                 }
1026         }
1027
1028         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030                 if (ret < 0) {
1031                         rdev_err(rdev, "failed to set mode\n");
1032                         return ret;
1033                 }
1034         }
1035
1036         return ret;
1037 }
1038
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041         struct regulation_constraints *constraints = rdev->constraints;
1042         char buf[160] = "";
1043         size_t len = sizeof(buf) - 1;
1044         int count = 0;
1045         int ret;
1046
1047         if (constraints->min_uV && constraints->max_uV) {
1048                 if (constraints->min_uV == constraints->max_uV)
1049                         count += scnprintf(buf + count, len - count, "%d mV ",
1050                                            constraints->min_uV / 1000);
1051                 else
1052                         count += scnprintf(buf + count, len - count,
1053                                            "%d <--> %d mV ",
1054                                            constraints->min_uV / 1000,
1055                                            constraints->max_uV / 1000);
1056         }
1057
1058         if (!constraints->min_uV ||
1059             constraints->min_uV != constraints->max_uV) {
1060                 ret = regulator_get_voltage_rdev(rdev);
1061                 if (ret > 0)
1062                         count += scnprintf(buf + count, len - count,
1063                                            "at %d mV ", ret / 1000);
1064         }
1065
1066         if (constraints->uV_offset)
1067                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068                                    constraints->uV_offset / 1000);
1069
1070         if (constraints->min_uA && constraints->max_uA) {
1071                 if (constraints->min_uA == constraints->max_uA)
1072                         count += scnprintf(buf + count, len - count, "%d mA ",
1073                                            constraints->min_uA / 1000);
1074                 else
1075                         count += scnprintf(buf + count, len - count,
1076                                            "%d <--> %d mA ",
1077                                            constraints->min_uA / 1000,
1078                                            constraints->max_uA / 1000);
1079         }
1080
1081         if (!constraints->min_uA ||
1082             constraints->min_uA != constraints->max_uA) {
1083                 ret = _regulator_get_current_limit(rdev);
1084                 if (ret > 0)
1085                         count += scnprintf(buf + count, len - count,
1086                                            "at %d mA ", ret / 1000);
1087         }
1088
1089         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090                 count += scnprintf(buf + count, len - count, "fast ");
1091         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092                 count += scnprintf(buf + count, len - count, "normal ");
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094                 count += scnprintf(buf + count, len - count, "idle ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096                 count += scnprintf(buf + count, len - count, "standby");
1097
1098         if (!count)
1099                 scnprintf(buf, len, "no parameters");
1100
1101         rdev_dbg(rdev, "%s\n", buf);
1102
1103         if ((constraints->min_uV != constraints->max_uV) &&
1104             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105                 rdev_warn(rdev,
1106                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110         struct regulation_constraints *constraints)
1111 {
1112         const struct regulator_ops *ops = rdev->desc->ops;
1113         int ret;
1114
1115         /* do we need to apply the constraint voltage */
1116         if (rdev->constraints->apply_uV &&
1117             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118                 int target_min, target_max;
1119                 int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121                 if (current_uV == -ENOTRECOVERABLE) {
1122                         /* This regulator can't be read and must be initialized */
1123                         rdev_info(rdev, "Setting %d-%duV\n",
1124                                   rdev->constraints->min_uV,
1125                                   rdev->constraints->max_uV);
1126                         _regulator_do_set_voltage(rdev,
1127                                                   rdev->constraints->min_uV,
1128                                                   rdev->constraints->max_uV);
1129                         current_uV = regulator_get_voltage_rdev(rdev);
1130                 }
1131
1132                 if (current_uV < 0) {
1133                         rdev_err(rdev,
1134                                  "failed to get the current voltage(%d)\n",
1135                                  current_uV);
1136                         return current_uV;
1137                 }
1138
1139                 /*
1140                  * If we're below the minimum voltage move up to the
1141                  * minimum voltage, if we're above the maximum voltage
1142                  * then move down to the maximum.
1143                  */
1144                 target_min = current_uV;
1145                 target_max = current_uV;
1146
1147                 if (current_uV < rdev->constraints->min_uV) {
1148                         target_min = rdev->constraints->min_uV;
1149                         target_max = rdev->constraints->min_uV;
1150                 }
1151
1152                 if (current_uV > rdev->constraints->max_uV) {
1153                         target_min = rdev->constraints->max_uV;
1154                         target_max = rdev->constraints->max_uV;
1155                 }
1156
1157                 if (target_min != current_uV || target_max != current_uV) {
1158                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159                                   current_uV, target_min, target_max);
1160                         ret = _regulator_do_set_voltage(
1161                                 rdev, target_min, target_max);
1162                         if (ret < 0) {
1163                                 rdev_err(rdev,
1164                                         "failed to apply %d-%duV constraint(%d)\n",
1165                                         target_min, target_max, ret);
1166                                 return ret;
1167                         }
1168                 }
1169         }
1170
1171         /* constrain machine-level voltage specs to fit
1172          * the actual range supported by this regulator.
1173          */
1174         if (ops->list_voltage && rdev->desc->n_voltages) {
1175                 int     count = rdev->desc->n_voltages;
1176                 int     i;
1177                 int     min_uV = INT_MAX;
1178                 int     max_uV = INT_MIN;
1179                 int     cmin = constraints->min_uV;
1180                 int     cmax = constraints->max_uV;
1181
1182                 /* it's safe to autoconfigure fixed-voltage supplies
1183                    and the constraints are used by list_voltage. */
1184                 if (count == 1 && !cmin) {
1185                         cmin = 1;
1186                         cmax = INT_MAX;
1187                         constraints->min_uV = cmin;
1188                         constraints->max_uV = cmax;
1189                 }
1190
1191                 /* voltage constraints are optional */
1192                 if ((cmin == 0) && (cmax == 0))
1193                         return 0;
1194
1195                 /* else require explicit machine-level constraints */
1196                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197                         rdev_err(rdev, "invalid voltage constraints\n");
1198                         return -EINVAL;
1199                 }
1200
1201                 /* no need to loop voltages if range is continuous */
1202                 if (rdev->desc->continuous_voltage_range)
1203                         return 0;
1204
1205                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1206                 for (i = 0; i < count; i++) {
1207                         int     value;
1208
1209                         value = ops->list_voltage(rdev, i);
1210                         if (value <= 0)
1211                                 continue;
1212
1213                         /* maybe adjust [min_uV..max_uV] */
1214                         if (value >= cmin && value < min_uV)
1215                                 min_uV = value;
1216                         if (value <= cmax && value > max_uV)
1217                                 max_uV = value;
1218                 }
1219
1220                 /* final: [min_uV..max_uV] valid iff constraints valid */
1221                 if (max_uV < min_uV) {
1222                         rdev_err(rdev,
1223                                  "unsupportable voltage constraints %u-%uuV\n",
1224                                  min_uV, max_uV);
1225                         return -EINVAL;
1226                 }
1227
1228                 /* use regulator's subset of machine constraints */
1229                 if (constraints->min_uV < min_uV) {
1230                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1231                                  constraints->min_uV, min_uV);
1232                         constraints->min_uV = min_uV;
1233                 }
1234                 if (constraints->max_uV > max_uV) {
1235                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1236                                  constraints->max_uV, max_uV);
1237                         constraints->max_uV = max_uV;
1238                 }
1239         }
1240
1241         return 0;
1242 }
1243
1244 static int machine_constraints_current(struct regulator_dev *rdev,
1245         struct regulation_constraints *constraints)
1246 {
1247         const struct regulator_ops *ops = rdev->desc->ops;
1248         int ret;
1249
1250         if (!constraints->min_uA && !constraints->max_uA)
1251                 return 0;
1252
1253         if (constraints->min_uA > constraints->max_uA) {
1254                 rdev_err(rdev, "Invalid current constraints\n");
1255                 return -EINVAL;
1256         }
1257
1258         if (!ops->set_current_limit || !ops->get_current_limit) {
1259                 rdev_warn(rdev, "Operation of current configuration missing\n");
1260                 return 0;
1261         }
1262
1263         /* Set regulator current in constraints range */
1264         ret = ops->set_current_limit(rdev, constraints->min_uA,
1265                         constraints->max_uA);
1266         if (ret < 0) {
1267                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1268                 return ret;
1269         }
1270
1271         return 0;
1272 }
1273
1274 static int _regulator_do_enable(struct regulator_dev *rdev);
1275
1276 /**
1277  * set_machine_constraints - sets regulator constraints
1278  * @rdev: regulator source
1279  * @constraints: constraints to apply
1280  *
1281  * Allows platform initialisation code to define and constrain
1282  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1283  * Constraints *must* be set by platform code in order for some
1284  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1285  * set_mode.
1286  */
1287 static int set_machine_constraints(struct regulator_dev *rdev,
1288         const struct regulation_constraints *constraints)
1289 {
1290         int ret = 0;
1291         const struct regulator_ops *ops = rdev->desc->ops;
1292
1293         if (constraints)
1294                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1295                                             GFP_KERNEL);
1296         else
1297                 rdev->constraints = kzalloc(sizeof(*constraints),
1298                                             GFP_KERNEL);
1299         if (!rdev->constraints)
1300                 return -ENOMEM;
1301
1302         ret = machine_constraints_voltage(rdev, rdev->constraints);
1303         if (ret != 0)
1304                 return ret;
1305
1306         ret = machine_constraints_current(rdev, rdev->constraints);
1307         if (ret != 0)
1308                 return ret;
1309
1310         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1311                 ret = ops->set_input_current_limit(rdev,
1312                                                    rdev->constraints->ilim_uA);
1313                 if (ret < 0) {
1314                         rdev_err(rdev, "failed to set input limit\n");
1315                         return ret;
1316                 }
1317         }
1318
1319         /* do we need to setup our suspend state */
1320         if (rdev->constraints->initial_state) {
1321                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1322                 if (ret < 0) {
1323                         rdev_err(rdev, "failed to set suspend state\n");
1324                         return ret;
1325                 }
1326         }
1327
1328         if (rdev->constraints->initial_mode) {
1329                 if (!ops->set_mode) {
1330                         rdev_err(rdev, "no set_mode operation\n");
1331                         return -EINVAL;
1332                 }
1333
1334                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1335                 if (ret < 0) {
1336                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1337                         return ret;
1338                 }
1339         } else if (rdev->constraints->system_load) {
1340                 /*
1341                  * We'll only apply the initial system load if an
1342                  * initial mode wasn't specified.
1343                  */
1344                 drms_uA_update(rdev);
1345         }
1346
1347         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348                 && ops->set_ramp_delay) {
1349                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350                 if (ret < 0) {
1351                         rdev_err(rdev, "failed to set ramp_delay\n");
1352                         return ret;
1353                 }
1354         }
1355
1356         if (rdev->constraints->pull_down && ops->set_pull_down) {
1357                 ret = ops->set_pull_down(rdev);
1358                 if (ret < 0) {
1359                         rdev_err(rdev, "failed to set pull down\n");
1360                         return ret;
1361                 }
1362         }
1363
1364         if (rdev->constraints->soft_start && ops->set_soft_start) {
1365                 ret = ops->set_soft_start(rdev);
1366                 if (ret < 0) {
1367                         rdev_err(rdev, "failed to set soft start\n");
1368                         return ret;
1369                 }
1370         }
1371
1372         if (rdev->constraints->over_current_protection
1373                 && ops->set_over_current_protection) {
1374                 ret = ops->set_over_current_protection(rdev);
1375                 if (ret < 0) {
1376                         rdev_err(rdev, "failed to set over current protection\n");
1377                         return ret;
1378                 }
1379         }
1380
1381         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382                 bool ad_state = (rdev->constraints->active_discharge ==
1383                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1384
1385                 ret = ops->set_active_discharge(rdev, ad_state);
1386                 if (ret < 0) {
1387                         rdev_err(rdev, "failed to set active discharge\n");
1388                         return ret;
1389                 }
1390         }
1391
1392         /* If the constraints say the regulator should be on at this point
1393          * and we have control then make sure it is enabled.
1394          */
1395         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396                 if (rdev->supply) {
1397                         ret = regulator_enable(rdev->supply);
1398                         if (ret < 0) {
1399                                 _regulator_put(rdev->supply);
1400                                 rdev->supply = NULL;
1401                                 return ret;
1402                         }
1403                 }
1404
1405                 ret = _regulator_do_enable(rdev);
1406                 if (ret < 0 && ret != -EINVAL) {
1407                         rdev_err(rdev, "failed to enable\n");
1408                         return ret;
1409                 }
1410
1411                 if (rdev->constraints->always_on)
1412                         rdev->use_count++;
1413         }
1414
1415         print_constraints(rdev);
1416         return 0;
1417 }
1418
1419 /**
1420  * set_supply - set regulator supply regulator
1421  * @rdev: regulator name
1422  * @supply_rdev: supply regulator name
1423  *
1424  * Called by platform initialisation code to set the supply regulator for this
1425  * regulator. This ensures that a regulators supply will also be enabled by the
1426  * core if it's child is enabled.
1427  */
1428 static int set_supply(struct regulator_dev *rdev,
1429                       struct regulator_dev *supply_rdev)
1430 {
1431         int err;
1432
1433         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1434
1435         if (!try_module_get(supply_rdev->owner))
1436                 return -ENODEV;
1437
1438         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1439         if (rdev->supply == NULL) {
1440                 err = -ENOMEM;
1441                 return err;
1442         }
1443         supply_rdev->open_count++;
1444
1445         return 0;
1446 }
1447
1448 /**
1449  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1450  * @rdev:         regulator source
1451  * @consumer_dev_name: dev_name() string for device supply applies to
1452  * @supply:       symbolic name for supply
1453  *
1454  * Allows platform initialisation code to map physical regulator
1455  * sources to symbolic names for supplies for use by devices.  Devices
1456  * should use these symbolic names to request regulators, avoiding the
1457  * need to provide board-specific regulator names as platform data.
1458  */
1459 static int set_consumer_device_supply(struct regulator_dev *rdev,
1460                                       const char *consumer_dev_name,
1461                                       const char *supply)
1462 {
1463         struct regulator_map *node;
1464         int has_dev;
1465
1466         if (supply == NULL)
1467                 return -EINVAL;
1468
1469         if (consumer_dev_name != NULL)
1470                 has_dev = 1;
1471         else
1472                 has_dev = 0;
1473
1474         list_for_each_entry(node, &regulator_map_list, list) {
1475                 if (node->dev_name && consumer_dev_name) {
1476                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1477                                 continue;
1478                 } else if (node->dev_name || consumer_dev_name) {
1479                         continue;
1480                 }
1481
1482                 if (strcmp(node->supply, supply) != 0)
1483                         continue;
1484
1485                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1486                          consumer_dev_name,
1487                          dev_name(&node->regulator->dev),
1488                          node->regulator->desc->name,
1489                          supply,
1490                          dev_name(&rdev->dev), rdev_get_name(rdev));
1491                 return -EBUSY;
1492         }
1493
1494         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1495         if (node == NULL)
1496                 return -ENOMEM;
1497
1498         node->regulator = rdev;
1499         node->supply = supply;
1500
1501         if (has_dev) {
1502                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1503                 if (node->dev_name == NULL) {
1504                         kfree(node);
1505                         return -ENOMEM;
1506                 }
1507         }
1508
1509         list_add(&node->list, &regulator_map_list);
1510         return 0;
1511 }
1512
1513 static void unset_regulator_supplies(struct regulator_dev *rdev)
1514 {
1515         struct regulator_map *node, *n;
1516
1517         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1518                 if (rdev == node->regulator) {
1519                         list_del(&node->list);
1520                         kfree(node->dev_name);
1521                         kfree(node);
1522                 }
1523         }
1524 }
1525
1526 #ifdef CONFIG_DEBUG_FS
1527 static ssize_t constraint_flags_read_file(struct file *file,
1528                                           char __user *user_buf,
1529                                           size_t count, loff_t *ppos)
1530 {
1531         const struct regulator *regulator = file->private_data;
1532         const struct regulation_constraints *c = regulator->rdev->constraints;
1533         char *buf;
1534         ssize_t ret;
1535
1536         if (!c)
1537                 return 0;
1538
1539         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1540         if (!buf)
1541                 return -ENOMEM;
1542
1543         ret = snprintf(buf, PAGE_SIZE,
1544                         "always_on: %u\n"
1545                         "boot_on: %u\n"
1546                         "apply_uV: %u\n"
1547                         "ramp_disable: %u\n"
1548                         "soft_start: %u\n"
1549                         "pull_down: %u\n"
1550                         "over_current_protection: %u\n",
1551                         c->always_on,
1552                         c->boot_on,
1553                         c->apply_uV,
1554                         c->ramp_disable,
1555                         c->soft_start,
1556                         c->pull_down,
1557                         c->over_current_protection);
1558
1559         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1560         kfree(buf);
1561
1562         return ret;
1563 }
1564
1565 #endif
1566
1567 static const struct file_operations constraint_flags_fops = {
1568 #ifdef CONFIG_DEBUG_FS
1569         .open = simple_open,
1570         .read = constraint_flags_read_file,
1571         .llseek = default_llseek,
1572 #endif
1573 };
1574
1575 #define REG_STR_SIZE    64
1576
1577 static struct regulator *create_regulator(struct regulator_dev *rdev,
1578                                           struct device *dev,
1579                                           const char *supply_name)
1580 {
1581         struct regulator *regulator;
1582         char buf[REG_STR_SIZE];
1583         int err, size;
1584
1585         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1586         if (regulator == NULL)
1587                 return NULL;
1588
1589         regulator_lock(rdev);
1590         regulator->rdev = rdev;
1591         list_add(&regulator->list, &rdev->consumer_list);
1592
1593         if (dev) {
1594                 regulator->dev = dev;
1595
1596                 /* Add a link to the device sysfs entry */
1597                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1598                                 dev->kobj.name, supply_name);
1599                 if (size >= REG_STR_SIZE)
1600                         goto overflow_err;
1601
1602                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1603                 if (regulator->supply_name == NULL)
1604                         goto overflow_err;
1605
1606                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1607                                         buf);
1608                 if (err) {
1609                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1610                                   dev->kobj.name, err);
1611                         /* non-fatal */
1612                 }
1613         } else {
1614                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1615                 if (regulator->supply_name == NULL)
1616                         goto overflow_err;
1617         }
1618
1619         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1620                                                 rdev->debugfs);
1621         if (!regulator->debugfs) {
1622                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1623         } else {
1624                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1625                                    &regulator->uA_load);
1626                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1627                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1628                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1629                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1630                 debugfs_create_file("constraint_flags", 0444,
1631                                     regulator->debugfs, regulator,
1632                                     &constraint_flags_fops);
1633         }
1634
1635         /*
1636          * Check now if the regulator is an always on regulator - if
1637          * it is then we don't need to do nearly so much work for
1638          * enable/disable calls.
1639          */
1640         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1641             _regulator_is_enabled(rdev))
1642                 regulator->always_on = true;
1643
1644         regulator_unlock(rdev);
1645         return regulator;
1646 overflow_err:
1647         list_del(&regulator->list);
1648         kfree(regulator);
1649         regulator_unlock(rdev);
1650         return NULL;
1651 }
1652
1653 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1654 {
1655         if (rdev->constraints && rdev->constraints->enable_time)
1656                 return rdev->constraints->enable_time;
1657         if (rdev->desc->ops->enable_time)
1658                 return rdev->desc->ops->enable_time(rdev);
1659         return rdev->desc->enable_time;
1660 }
1661
1662 static struct regulator_supply_alias *regulator_find_supply_alias(
1663                 struct device *dev, const char *supply)
1664 {
1665         struct regulator_supply_alias *map;
1666
1667         list_for_each_entry(map, &regulator_supply_alias_list, list)
1668                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1669                         return map;
1670
1671         return NULL;
1672 }
1673
1674 static void regulator_supply_alias(struct device **dev, const char **supply)
1675 {
1676         struct regulator_supply_alias *map;
1677
1678         map = regulator_find_supply_alias(*dev, *supply);
1679         if (map) {
1680                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1681                                 *supply, map->alias_supply,
1682                                 dev_name(map->alias_dev));
1683                 *dev = map->alias_dev;
1684                 *supply = map->alias_supply;
1685         }
1686 }
1687
1688 static int regulator_match(struct device *dev, const void *data)
1689 {
1690         struct regulator_dev *r = dev_to_rdev(dev);
1691
1692         return strcmp(rdev_get_name(r), data) == 0;
1693 }
1694
1695 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1696 {
1697         struct device *dev;
1698
1699         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1700
1701         return dev ? dev_to_rdev(dev) : NULL;
1702 }
1703
1704 /**
1705  * regulator_dev_lookup - lookup a regulator device.
1706  * @dev: device for regulator "consumer".
1707  * @supply: Supply name or regulator ID.
1708  *
1709  * If successful, returns a struct regulator_dev that corresponds to the name
1710  * @supply and with the embedded struct device refcount incremented by one.
1711  * The refcount must be dropped by calling put_device().
1712  * On failure one of the following ERR-PTR-encoded values is returned:
1713  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1714  * in the future.
1715  */
1716 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1717                                                   const char *supply)
1718 {
1719         struct regulator_dev *r = NULL;
1720         struct device_node *node;
1721         struct regulator_map *map;
1722         const char *devname = NULL;
1723
1724         regulator_supply_alias(&dev, &supply);
1725
1726         /* first do a dt based lookup */
1727         if (dev && dev->of_node) {
1728                 node = of_get_regulator(dev, supply);
1729                 if (node) {
1730                         r = of_find_regulator_by_node(node);
1731                         if (r)
1732                                 return r;
1733
1734                         /*
1735                          * We have a node, but there is no device.
1736                          * assume it has not registered yet.
1737                          */
1738                         return ERR_PTR(-EPROBE_DEFER);
1739                 }
1740         }
1741
1742         /* if not found, try doing it non-dt way */
1743         if (dev)
1744                 devname = dev_name(dev);
1745
1746         mutex_lock(&regulator_list_mutex);
1747         list_for_each_entry(map, &regulator_map_list, list) {
1748                 /* If the mapping has a device set up it must match */
1749                 if (map->dev_name &&
1750                     (!devname || strcmp(map->dev_name, devname)))
1751                         continue;
1752
1753                 if (strcmp(map->supply, supply) == 0 &&
1754                     get_device(&map->regulator->dev)) {
1755                         r = map->regulator;
1756                         break;
1757                 }
1758         }
1759         mutex_unlock(&regulator_list_mutex);
1760
1761         if (r)
1762                 return r;
1763
1764         r = regulator_lookup_by_name(supply);
1765         if (r)
1766                 return r;
1767
1768         return ERR_PTR(-ENODEV);
1769 }
1770
1771 static int regulator_resolve_supply(struct regulator_dev *rdev)
1772 {
1773         struct regulator_dev *r;
1774         struct device *dev = rdev->dev.parent;
1775         int ret;
1776
1777         /* No supply to resolve? */
1778         if (!rdev->supply_name)
1779                 return 0;
1780
1781         /* Supply already resolved? */
1782         if (rdev->supply)
1783                 return 0;
1784
1785         r = regulator_dev_lookup(dev, rdev->supply_name);
1786         if (IS_ERR(r)) {
1787                 ret = PTR_ERR(r);
1788
1789                 /* Did the lookup explicitly defer for us? */
1790                 if (ret == -EPROBE_DEFER)
1791                         return ret;
1792
1793                 if (have_full_constraints()) {
1794                         r = dummy_regulator_rdev;
1795                         get_device(&r->dev);
1796                 } else {
1797                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1798                                 rdev->supply_name, rdev->desc->name);
1799                         return -EPROBE_DEFER;
1800                 }
1801         }
1802
1803         /*
1804          * If the supply's parent device is not the same as the
1805          * regulator's parent device, then ensure the parent device
1806          * is bound before we resolve the supply, in case the parent
1807          * device get probe deferred and unregisters the supply.
1808          */
1809         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1810                 if (!device_is_bound(r->dev.parent)) {
1811                         put_device(&r->dev);
1812                         return -EPROBE_DEFER;
1813                 }
1814         }
1815
1816         /* Recursively resolve the supply of the supply */
1817         ret = regulator_resolve_supply(r);
1818         if (ret < 0) {
1819                 put_device(&r->dev);
1820                 return ret;
1821         }
1822
1823         ret = set_supply(rdev, r);
1824         if (ret < 0) {
1825                 put_device(&r->dev);
1826                 return ret;
1827         }
1828
1829         /*
1830          * In set_machine_constraints() we may have turned this regulator on
1831          * but we couldn't propagate to the supply if it hadn't been resolved
1832          * yet.  Do it now.
1833          */
1834         if (rdev->use_count) {
1835                 ret = regulator_enable(rdev->supply);
1836                 if (ret < 0) {
1837                         _regulator_put(rdev->supply);
1838                         rdev->supply = NULL;
1839                         return ret;
1840                 }
1841         }
1842
1843         return 0;
1844 }
1845
1846 /* Internal regulator request function */
1847 struct regulator *_regulator_get(struct device *dev, const char *id,
1848                                  enum regulator_get_type get_type)
1849 {
1850         struct regulator_dev *rdev;
1851         struct regulator *regulator;
1852         const char *devname = dev ? dev_name(dev) : "deviceless";
1853         struct device_link *link;
1854         int ret;
1855
1856         if (get_type >= MAX_GET_TYPE) {
1857                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1858                 return ERR_PTR(-EINVAL);
1859         }
1860
1861         if (id == NULL) {
1862                 pr_err("get() with no identifier\n");
1863                 return ERR_PTR(-EINVAL);
1864         }
1865
1866         rdev = regulator_dev_lookup(dev, id);
1867         if (IS_ERR(rdev)) {
1868                 ret = PTR_ERR(rdev);
1869
1870                 /*
1871                  * If regulator_dev_lookup() fails with error other
1872                  * than -ENODEV our job here is done, we simply return it.
1873                  */
1874                 if (ret != -ENODEV)
1875                         return ERR_PTR(ret);
1876
1877                 if (!have_full_constraints()) {
1878                         dev_warn(dev,
1879                                  "incomplete constraints, dummy supplies not allowed\n");
1880                         return ERR_PTR(-ENODEV);
1881                 }
1882
1883                 switch (get_type) {
1884                 case NORMAL_GET:
1885                         /*
1886                          * Assume that a regulator is physically present and
1887                          * enabled, even if it isn't hooked up, and just
1888                          * provide a dummy.
1889                          */
1890                         dev_warn(dev,
1891                                  "%s supply %s not found, using dummy regulator\n",
1892                                  devname, id);
1893                         rdev = dummy_regulator_rdev;
1894                         get_device(&rdev->dev);
1895                         break;
1896
1897                 case EXCLUSIVE_GET:
1898                         dev_warn(dev,
1899                                  "dummy supplies not allowed for exclusive requests\n");
1900                         /* fall through */
1901
1902                 default:
1903                         return ERR_PTR(-ENODEV);
1904                 }
1905         }
1906
1907         if (rdev->exclusive) {
1908                 regulator = ERR_PTR(-EPERM);
1909                 put_device(&rdev->dev);
1910                 return regulator;
1911         }
1912
1913         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1914                 regulator = ERR_PTR(-EBUSY);
1915                 put_device(&rdev->dev);
1916                 return regulator;
1917         }
1918
1919         mutex_lock(&regulator_list_mutex);
1920         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1921         mutex_unlock(&regulator_list_mutex);
1922
1923         if (ret != 0) {
1924                 regulator = ERR_PTR(-EPROBE_DEFER);
1925                 put_device(&rdev->dev);
1926                 return regulator;
1927         }
1928
1929         ret = regulator_resolve_supply(rdev);
1930         if (ret < 0) {
1931                 regulator = ERR_PTR(ret);
1932                 put_device(&rdev->dev);
1933                 return regulator;
1934         }
1935
1936         if (!try_module_get(rdev->owner)) {
1937                 regulator = ERR_PTR(-EPROBE_DEFER);
1938                 put_device(&rdev->dev);
1939                 return regulator;
1940         }
1941
1942         regulator = create_regulator(rdev, dev, id);
1943         if (regulator == NULL) {
1944                 regulator = ERR_PTR(-ENOMEM);
1945                 module_put(rdev->owner);
1946                 put_device(&rdev->dev);
1947                 return regulator;
1948         }
1949
1950         rdev->open_count++;
1951         if (get_type == EXCLUSIVE_GET) {
1952                 rdev->exclusive = 1;
1953
1954                 ret = _regulator_is_enabled(rdev);
1955                 if (ret > 0)
1956                         rdev->use_count = 1;
1957                 else
1958                         rdev->use_count = 0;
1959         }
1960
1961         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1962         if (!IS_ERR_OR_NULL(link))
1963                 regulator->device_link = true;
1964
1965         return regulator;
1966 }
1967
1968 /**
1969  * regulator_get - lookup and obtain a reference to a regulator.
1970  * @dev: device for regulator "consumer"
1971  * @id: Supply name or regulator ID.
1972  *
1973  * Returns a struct regulator corresponding to the regulator producer,
1974  * or IS_ERR() condition containing errno.
1975  *
1976  * Use of supply names configured via regulator_set_device_supply() is
1977  * strongly encouraged.  It is recommended that the supply name used
1978  * should match the name used for the supply and/or the relevant
1979  * device pins in the datasheet.
1980  */
1981 struct regulator *regulator_get(struct device *dev, const char *id)
1982 {
1983         return _regulator_get(dev, id, NORMAL_GET);
1984 }
1985 EXPORT_SYMBOL_GPL(regulator_get);
1986
1987 /**
1988  * regulator_get_exclusive - obtain exclusive access to a regulator.
1989  * @dev: device for regulator "consumer"
1990  * @id: Supply name or regulator ID.
1991  *
1992  * Returns a struct regulator corresponding to the regulator producer,
1993  * or IS_ERR() condition containing errno.  Other consumers will be
1994  * unable to obtain this regulator while this reference is held and the
1995  * use count for the regulator will be initialised to reflect the current
1996  * state of the regulator.
1997  *
1998  * This is intended for use by consumers which cannot tolerate shared
1999  * use of the regulator such as those which need to force the
2000  * regulator off for correct operation of the hardware they are
2001  * controlling.
2002  *
2003  * Use of supply names configured via regulator_set_device_supply() is
2004  * strongly encouraged.  It is recommended that the supply name used
2005  * should match the name used for the supply and/or the relevant
2006  * device pins in the datasheet.
2007  */
2008 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2009 {
2010         return _regulator_get(dev, id, EXCLUSIVE_GET);
2011 }
2012 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2013
2014 /**
2015  * regulator_get_optional - obtain optional access to a regulator.
2016  * @dev: device for regulator "consumer"
2017  * @id: Supply name or regulator ID.
2018  *
2019  * Returns a struct regulator corresponding to the regulator producer,
2020  * or IS_ERR() condition containing errno.
2021  *
2022  * This is intended for use by consumers for devices which can have
2023  * some supplies unconnected in normal use, such as some MMC devices.
2024  * It can allow the regulator core to provide stub supplies for other
2025  * supplies requested using normal regulator_get() calls without
2026  * disrupting the operation of drivers that can handle absent
2027  * supplies.
2028  *
2029  * Use of supply names configured via regulator_set_device_supply() is
2030  * strongly encouraged.  It is recommended that the supply name used
2031  * should match the name used for the supply and/or the relevant
2032  * device pins in the datasheet.
2033  */
2034 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2035 {
2036         return _regulator_get(dev, id, OPTIONAL_GET);
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_get_optional);
2039
2040 /* regulator_list_mutex lock held by regulator_put() */
2041 static void _regulator_put(struct regulator *regulator)
2042 {
2043         struct regulator_dev *rdev;
2044
2045         if (IS_ERR_OR_NULL(regulator))
2046                 return;
2047
2048         lockdep_assert_held_once(&regulator_list_mutex);
2049
2050         /* Docs say you must disable before calling regulator_put() */
2051         WARN_ON(regulator->enable_count);
2052
2053         rdev = regulator->rdev;
2054
2055         debugfs_remove_recursive(regulator->debugfs);
2056
2057         if (regulator->dev) {
2058                 if (regulator->device_link)
2059                         device_link_remove(regulator->dev, &rdev->dev);
2060
2061                 /* remove any sysfs entries */
2062                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2063         }
2064
2065         regulator_lock(rdev);
2066         list_del(&regulator->list);
2067
2068         rdev->open_count--;
2069         rdev->exclusive = 0;
2070         regulator_unlock(rdev);
2071
2072         kfree_const(regulator->supply_name);
2073         kfree(regulator);
2074
2075         module_put(rdev->owner);
2076         put_device(&rdev->dev);
2077 }
2078
2079 /**
2080  * regulator_put - "free" the regulator source
2081  * @regulator: regulator source
2082  *
2083  * Note: drivers must ensure that all regulator_enable calls made on this
2084  * regulator source are balanced by regulator_disable calls prior to calling
2085  * this function.
2086  */
2087 void regulator_put(struct regulator *regulator)
2088 {
2089         mutex_lock(&regulator_list_mutex);
2090         _regulator_put(regulator);
2091         mutex_unlock(&regulator_list_mutex);
2092 }
2093 EXPORT_SYMBOL_GPL(regulator_put);
2094
2095 /**
2096  * regulator_register_supply_alias - Provide device alias for supply lookup
2097  *
2098  * @dev: device that will be given as the regulator "consumer"
2099  * @id: Supply name or regulator ID
2100  * @alias_dev: device that should be used to lookup the supply
2101  * @alias_id: Supply name or regulator ID that should be used to lookup the
2102  * supply
2103  *
2104  * All lookups for id on dev will instead be conducted for alias_id on
2105  * alias_dev.
2106  */
2107 int regulator_register_supply_alias(struct device *dev, const char *id,
2108                                     struct device *alias_dev,
2109                                     const char *alias_id)
2110 {
2111         struct regulator_supply_alias *map;
2112
2113         map = regulator_find_supply_alias(dev, id);
2114         if (map)
2115                 return -EEXIST;
2116
2117         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2118         if (!map)
2119                 return -ENOMEM;
2120
2121         map->src_dev = dev;
2122         map->src_supply = id;
2123         map->alias_dev = alias_dev;
2124         map->alias_supply = alias_id;
2125
2126         list_add(&map->list, &regulator_supply_alias_list);
2127
2128         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2129                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2130
2131         return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2134
2135 /**
2136  * regulator_unregister_supply_alias - Remove device alias
2137  *
2138  * @dev: device that will be given as the regulator "consumer"
2139  * @id: Supply name or regulator ID
2140  *
2141  * Remove a lookup alias if one exists for id on dev.
2142  */
2143 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2144 {
2145         struct regulator_supply_alias *map;
2146
2147         map = regulator_find_supply_alias(dev, id);
2148         if (map) {
2149                 list_del(&map->list);
2150                 kfree(map);
2151         }
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2154
2155 /**
2156  * regulator_bulk_register_supply_alias - register multiple aliases
2157  *
2158  * @dev: device that will be given as the regulator "consumer"
2159  * @id: List of supply names or regulator IDs
2160  * @alias_dev: device that should be used to lookup the supply
2161  * @alias_id: List of supply names or regulator IDs that should be used to
2162  * lookup the supply
2163  * @num_id: Number of aliases to register
2164  *
2165  * @return 0 on success, an errno on failure.
2166  *
2167  * This helper function allows drivers to register several supply
2168  * aliases in one operation.  If any of the aliases cannot be
2169  * registered any aliases that were registered will be removed
2170  * before returning to the caller.
2171  */
2172 int regulator_bulk_register_supply_alias(struct device *dev,
2173                                          const char *const *id,
2174                                          struct device *alias_dev,
2175                                          const char *const *alias_id,
2176                                          int num_id)
2177 {
2178         int i;
2179         int ret;
2180
2181         for (i = 0; i < num_id; ++i) {
2182                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2183                                                       alias_id[i]);
2184                 if (ret < 0)
2185                         goto err;
2186         }
2187
2188         return 0;
2189
2190 err:
2191         dev_err(dev,
2192                 "Failed to create supply alias %s,%s -> %s,%s\n",
2193                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2194
2195         while (--i >= 0)
2196                 regulator_unregister_supply_alias(dev, id[i]);
2197
2198         return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2201
2202 /**
2203  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2204  *
2205  * @dev: device that will be given as the regulator "consumer"
2206  * @id: List of supply names or regulator IDs
2207  * @num_id: Number of aliases to unregister
2208  *
2209  * This helper function allows drivers to unregister several supply
2210  * aliases in one operation.
2211  */
2212 void regulator_bulk_unregister_supply_alias(struct device *dev,
2213                                             const char *const *id,
2214                                             int num_id)
2215 {
2216         int i;
2217
2218         for (i = 0; i < num_id; ++i)
2219                 regulator_unregister_supply_alias(dev, id[i]);
2220 }
2221 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2222
2223
2224 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2225 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2226                                 const struct regulator_config *config)
2227 {
2228         struct regulator_enable_gpio *pin;
2229         struct gpio_desc *gpiod;
2230
2231         gpiod = config->ena_gpiod;
2232
2233         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2234                 if (pin->gpiod == gpiod) {
2235                         rdev_dbg(rdev, "GPIO is already used\n");
2236                         goto update_ena_gpio_to_rdev;
2237                 }
2238         }
2239
2240         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2241         if (pin == NULL)
2242                 return -ENOMEM;
2243
2244         pin->gpiod = gpiod;
2245         list_add(&pin->list, &regulator_ena_gpio_list);
2246
2247 update_ena_gpio_to_rdev:
2248         pin->request_count++;
2249         rdev->ena_pin = pin;
2250         return 0;
2251 }
2252
2253 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2254 {
2255         struct regulator_enable_gpio *pin, *n;
2256
2257         if (!rdev->ena_pin)
2258                 return;
2259
2260         /* Free the GPIO only in case of no use */
2261         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2262                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2263                         if (pin->request_count <= 1) {
2264                                 pin->request_count = 0;
2265                                 gpiod_put(pin->gpiod);
2266                                 list_del(&pin->list);
2267                                 kfree(pin);
2268                                 rdev->ena_pin = NULL;
2269                                 return;
2270                         } else {
2271                                 pin->request_count--;
2272                         }
2273                 }
2274         }
2275 }
2276
2277 /**
2278  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2279  * @rdev: regulator_dev structure
2280  * @enable: enable GPIO at initial use?
2281  *
2282  * GPIO is enabled in case of initial use. (enable_count is 0)
2283  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2284  */
2285 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2286 {
2287         struct regulator_enable_gpio *pin = rdev->ena_pin;
2288
2289         if (!pin)
2290                 return -EINVAL;
2291
2292         if (enable) {
2293                 /* Enable GPIO at initial use */
2294                 if (pin->enable_count == 0)
2295                         gpiod_set_value_cansleep(pin->gpiod, 1);
2296
2297                 pin->enable_count++;
2298         } else {
2299                 if (pin->enable_count > 1) {
2300                         pin->enable_count--;
2301                         return 0;
2302                 }
2303
2304                 /* Disable GPIO if not used */
2305                 if (pin->enable_count <= 1) {
2306                         gpiod_set_value_cansleep(pin->gpiod, 0);
2307                         pin->enable_count = 0;
2308                 }
2309         }
2310
2311         return 0;
2312 }
2313
2314 /**
2315  * _regulator_enable_delay - a delay helper function
2316  * @delay: time to delay in microseconds
2317  *
2318  * Delay for the requested amount of time as per the guidelines in:
2319  *
2320  *     Documentation/timers/timers-howto.rst
2321  *
2322  * The assumption here is that regulators will never be enabled in
2323  * atomic context and therefore sleeping functions can be used.
2324  */
2325 static void _regulator_enable_delay(unsigned int delay)
2326 {
2327         unsigned int ms = delay / 1000;
2328         unsigned int us = delay % 1000;
2329
2330         if (ms > 0) {
2331                 /*
2332                  * For small enough values, handle super-millisecond
2333                  * delays in the usleep_range() call below.
2334                  */
2335                 if (ms < 20)
2336                         us += ms * 1000;
2337                 else
2338                         msleep(ms);
2339         }
2340
2341         /*
2342          * Give the scheduler some room to coalesce with any other
2343          * wakeup sources. For delays shorter than 10 us, don't even
2344          * bother setting up high-resolution timers and just busy-
2345          * loop.
2346          */
2347         if (us >= 10)
2348                 usleep_range(us, us + 100);
2349         else
2350                 udelay(us);
2351 }
2352
2353 static int _regulator_do_enable(struct regulator_dev *rdev)
2354 {
2355         int ret, delay;
2356
2357         /* Query before enabling in case configuration dependent.  */
2358         ret = _regulator_get_enable_time(rdev);
2359         if (ret >= 0) {
2360                 delay = ret;
2361         } else {
2362                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2363                 delay = 0;
2364         }
2365
2366         trace_regulator_enable(rdev_get_name(rdev));
2367
2368         if (rdev->desc->off_on_delay) {
2369                 /* if needed, keep a distance of off_on_delay from last time
2370                  * this regulator was disabled.
2371                  */
2372                 unsigned long start_jiffy = jiffies;
2373                 unsigned long intended, max_delay, remaining;
2374
2375                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2376                 intended = rdev->last_off_jiffy + max_delay;
2377
2378                 if (time_before(start_jiffy, intended)) {
2379                         /* calc remaining jiffies to deal with one-time
2380                          * timer wrapping.
2381                          * in case of multiple timer wrapping, either it can be
2382                          * detected by out-of-range remaining, or it cannot be
2383                          * detected and we get a penalty of
2384                          * _regulator_enable_delay().
2385                          */
2386                         remaining = intended - start_jiffy;
2387                         if (remaining <= max_delay)
2388                                 _regulator_enable_delay(
2389                                                 jiffies_to_usecs(remaining));
2390                 }
2391         }
2392
2393         if (rdev->ena_pin) {
2394                 if (!rdev->ena_gpio_state) {
2395                         ret = regulator_ena_gpio_ctrl(rdev, true);
2396                         if (ret < 0)
2397                                 return ret;
2398                         rdev->ena_gpio_state = 1;
2399                 }
2400         } else if (rdev->desc->ops->enable) {
2401                 ret = rdev->desc->ops->enable(rdev);
2402                 if (ret < 0)
2403                         return ret;
2404         } else {
2405                 return -EINVAL;
2406         }
2407
2408         /* Allow the regulator to ramp; it would be useful to extend
2409          * this for bulk operations so that the regulators can ramp
2410          * together.  */
2411         trace_regulator_enable_delay(rdev_get_name(rdev));
2412
2413         _regulator_enable_delay(delay);
2414
2415         trace_regulator_enable_complete(rdev_get_name(rdev));
2416
2417         return 0;
2418 }
2419
2420 /**
2421  * _regulator_handle_consumer_enable - handle that a consumer enabled
2422  * @regulator: regulator source
2423  *
2424  * Some things on a regulator consumer (like the contribution towards total
2425  * load on the regulator) only have an effect when the consumer wants the
2426  * regulator enabled.  Explained in example with two consumers of the same
2427  * regulator:
2428  *   consumer A: set_load(100);       => total load = 0
2429  *   consumer A: regulator_enable();  => total load = 100
2430  *   consumer B: set_load(1000);      => total load = 100
2431  *   consumer B: regulator_enable();  => total load = 1100
2432  *   consumer A: regulator_disable(); => total_load = 1000
2433  *
2434  * This function (together with _regulator_handle_consumer_disable) is
2435  * responsible for keeping track of the refcount for a given regulator consumer
2436  * and applying / unapplying these things.
2437  *
2438  * Returns 0 upon no error; -error upon error.
2439  */
2440 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2441 {
2442         struct regulator_dev *rdev = regulator->rdev;
2443
2444         lockdep_assert_held_once(&rdev->mutex.base);
2445
2446         regulator->enable_count++;
2447         if (regulator->uA_load && regulator->enable_count == 1)
2448                 return drms_uA_update(rdev);
2449
2450         return 0;
2451 }
2452
2453 /**
2454  * _regulator_handle_consumer_disable - handle that a consumer disabled
2455  * @regulator: regulator source
2456  *
2457  * The opposite of _regulator_handle_consumer_enable().
2458  *
2459  * Returns 0 upon no error; -error upon error.
2460  */
2461 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2462 {
2463         struct regulator_dev *rdev = regulator->rdev;
2464
2465         lockdep_assert_held_once(&rdev->mutex.base);
2466
2467         if (!regulator->enable_count) {
2468                 rdev_err(rdev, "Underflow of regulator enable count\n");
2469                 return -EINVAL;
2470         }
2471
2472         regulator->enable_count--;
2473         if (regulator->uA_load && regulator->enable_count == 0)
2474                 return drms_uA_update(rdev);
2475
2476         return 0;
2477 }
2478
2479 /* locks held by regulator_enable() */
2480 static int _regulator_enable(struct regulator *regulator)
2481 {
2482         struct regulator_dev *rdev = regulator->rdev;
2483         int ret;
2484
2485         lockdep_assert_held_once(&rdev->mutex.base);
2486
2487         if (rdev->use_count == 0 && rdev->supply) {
2488                 ret = _regulator_enable(rdev->supply);
2489                 if (ret < 0)
2490                         return ret;
2491         }
2492
2493         /* balance only if there are regulators coupled */
2494         if (rdev->coupling_desc.n_coupled > 1) {
2495                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2496                 if (ret < 0)
2497                         goto err_disable_supply;
2498         }
2499
2500         ret = _regulator_handle_consumer_enable(regulator);
2501         if (ret < 0)
2502                 goto err_disable_supply;
2503
2504         if (rdev->use_count == 0) {
2505                 /* The regulator may on if it's not switchable or left on */
2506                 ret = _regulator_is_enabled(rdev);
2507                 if (ret == -EINVAL || ret == 0) {
2508                         if (!regulator_ops_is_valid(rdev,
2509                                         REGULATOR_CHANGE_STATUS)) {
2510                                 ret = -EPERM;
2511                                 goto err_consumer_disable;
2512                         }
2513
2514                         ret = _regulator_do_enable(rdev);
2515                         if (ret < 0)
2516                                 goto err_consumer_disable;
2517
2518                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2519                                              NULL);
2520                 } else if (ret < 0) {
2521                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2522                         goto err_consumer_disable;
2523                 }
2524                 /* Fallthrough on positive return values - already enabled */
2525         }
2526
2527         rdev->use_count++;
2528
2529         return 0;
2530
2531 err_consumer_disable:
2532         _regulator_handle_consumer_disable(regulator);
2533
2534 err_disable_supply:
2535         if (rdev->use_count == 0 && rdev->supply)
2536                 _regulator_disable(rdev->supply);
2537
2538         return ret;
2539 }
2540
2541 /**
2542  * regulator_enable - enable regulator output
2543  * @regulator: regulator source
2544  *
2545  * Request that the regulator be enabled with the regulator output at
2546  * the predefined voltage or current value.  Calls to regulator_enable()
2547  * must be balanced with calls to regulator_disable().
2548  *
2549  * NOTE: the output value can be set by other drivers, boot loader or may be
2550  * hardwired in the regulator.
2551  */
2552 int regulator_enable(struct regulator *regulator)
2553 {
2554         struct regulator_dev *rdev = regulator->rdev;
2555         struct ww_acquire_ctx ww_ctx;
2556         int ret;
2557
2558         regulator_lock_dependent(rdev, &ww_ctx);
2559         ret = _regulator_enable(regulator);
2560         regulator_unlock_dependent(rdev, &ww_ctx);
2561
2562         return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(regulator_enable);
2565
2566 static int _regulator_do_disable(struct regulator_dev *rdev)
2567 {
2568         int ret;
2569
2570         trace_regulator_disable(rdev_get_name(rdev));
2571
2572         if (rdev->ena_pin) {
2573                 if (rdev->ena_gpio_state) {
2574                         ret = regulator_ena_gpio_ctrl(rdev, false);
2575                         if (ret < 0)
2576                                 return ret;
2577                         rdev->ena_gpio_state = 0;
2578                 }
2579
2580         } else if (rdev->desc->ops->disable) {
2581                 ret = rdev->desc->ops->disable(rdev);
2582                 if (ret != 0)
2583                         return ret;
2584         }
2585
2586         /* cares about last_off_jiffy only if off_on_delay is required by
2587          * device.
2588          */
2589         if (rdev->desc->off_on_delay)
2590                 rdev->last_off_jiffy = jiffies;
2591
2592         trace_regulator_disable_complete(rdev_get_name(rdev));
2593
2594         return 0;
2595 }
2596
2597 /* locks held by regulator_disable() */
2598 static int _regulator_disable(struct regulator *regulator)
2599 {
2600         struct regulator_dev *rdev = regulator->rdev;
2601         int ret = 0;
2602
2603         lockdep_assert_held_once(&rdev->mutex.base);
2604
2605         if (WARN(rdev->use_count <= 0,
2606                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2607                 return -EIO;
2608
2609         /* are we the last user and permitted to disable ? */
2610         if (rdev->use_count == 1 &&
2611             (rdev->constraints && !rdev->constraints->always_on)) {
2612
2613                 /* we are last user */
2614                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2615                         ret = _notifier_call_chain(rdev,
2616                                                    REGULATOR_EVENT_PRE_DISABLE,
2617                                                    NULL);
2618                         if (ret & NOTIFY_STOP_MASK)
2619                                 return -EINVAL;
2620
2621                         ret = _regulator_do_disable(rdev);
2622                         if (ret < 0) {
2623                                 rdev_err(rdev, "failed to disable\n");
2624                                 _notifier_call_chain(rdev,
2625                                                 REGULATOR_EVENT_ABORT_DISABLE,
2626                                                 NULL);
2627                                 return ret;
2628                         }
2629                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2630                                         NULL);
2631                 }
2632
2633                 rdev->use_count = 0;
2634         } else if (rdev->use_count > 1) {
2635                 rdev->use_count--;
2636         }
2637
2638         if (ret == 0)
2639                 ret = _regulator_handle_consumer_disable(regulator);
2640
2641         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2642                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2643
2644         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2645                 ret = _regulator_disable(rdev->supply);
2646
2647         return ret;
2648 }
2649
2650 /**
2651  * regulator_disable - disable regulator output
2652  * @regulator: regulator source
2653  *
2654  * Disable the regulator output voltage or current.  Calls to
2655  * regulator_enable() must be balanced with calls to
2656  * regulator_disable().
2657  *
2658  * NOTE: this will only disable the regulator output if no other consumer
2659  * devices have it enabled, the regulator device supports disabling and
2660  * machine constraints permit this operation.
2661  */
2662 int regulator_disable(struct regulator *regulator)
2663 {
2664         struct regulator_dev *rdev = regulator->rdev;
2665         struct ww_acquire_ctx ww_ctx;
2666         int ret;
2667
2668         regulator_lock_dependent(rdev, &ww_ctx);
2669         ret = _regulator_disable(regulator);
2670         regulator_unlock_dependent(rdev, &ww_ctx);
2671
2672         return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(regulator_disable);
2675
2676 /* locks held by regulator_force_disable() */
2677 static int _regulator_force_disable(struct regulator_dev *rdev)
2678 {
2679         int ret = 0;
2680
2681         lockdep_assert_held_once(&rdev->mutex.base);
2682
2683         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2684                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2685         if (ret & NOTIFY_STOP_MASK)
2686                 return -EINVAL;
2687
2688         ret = _regulator_do_disable(rdev);
2689         if (ret < 0) {
2690                 rdev_err(rdev, "failed to force disable\n");
2691                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2692                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2693                 return ret;
2694         }
2695
2696         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2697                         REGULATOR_EVENT_DISABLE, NULL);
2698
2699         return 0;
2700 }
2701
2702 /**
2703  * regulator_force_disable - force disable regulator output
2704  * @regulator: regulator source
2705  *
2706  * Forcibly disable the regulator output voltage or current.
2707  * NOTE: this *will* disable the regulator output even if other consumer
2708  * devices have it enabled. This should be used for situations when device
2709  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2710  */
2711 int regulator_force_disable(struct regulator *regulator)
2712 {
2713         struct regulator_dev *rdev = regulator->rdev;
2714         struct ww_acquire_ctx ww_ctx;
2715         int ret;
2716
2717         regulator_lock_dependent(rdev, &ww_ctx);
2718
2719         ret = _regulator_force_disable(regulator->rdev);
2720
2721         if (rdev->coupling_desc.n_coupled > 1)
2722                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2723
2724         if (regulator->uA_load) {
2725                 regulator->uA_load = 0;
2726                 ret = drms_uA_update(rdev);
2727         }
2728
2729         if (rdev->use_count != 0 && rdev->supply)
2730                 _regulator_disable(rdev->supply);
2731
2732         regulator_unlock_dependent(rdev, &ww_ctx);
2733
2734         return ret;
2735 }
2736 EXPORT_SYMBOL_GPL(regulator_force_disable);
2737
2738 static void regulator_disable_work(struct work_struct *work)
2739 {
2740         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2741                                                   disable_work.work);
2742         struct ww_acquire_ctx ww_ctx;
2743         int count, i, ret;
2744         struct regulator *regulator;
2745         int total_count = 0;
2746
2747         regulator_lock_dependent(rdev, &ww_ctx);
2748
2749         /*
2750          * Workqueue functions queue the new work instance while the previous
2751          * work instance is being processed. Cancel the queued work instance
2752          * as the work instance under processing does the job of the queued
2753          * work instance.
2754          */
2755         cancel_delayed_work(&rdev->disable_work);
2756
2757         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2758                 count = regulator->deferred_disables;
2759
2760                 if (!count)
2761                         continue;
2762
2763                 total_count += count;
2764                 regulator->deferred_disables = 0;
2765
2766                 for (i = 0; i < count; i++) {
2767                         ret = _regulator_disable(regulator);
2768                         if (ret != 0)
2769                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2770                 }
2771         }
2772         WARN_ON(!total_count);
2773
2774         if (rdev->coupling_desc.n_coupled > 1)
2775                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2776
2777         regulator_unlock_dependent(rdev, &ww_ctx);
2778 }
2779
2780 /**
2781  * regulator_disable_deferred - disable regulator output with delay
2782  * @regulator: regulator source
2783  * @ms: milliseconds until the regulator is disabled
2784  *
2785  * Execute regulator_disable() on the regulator after a delay.  This
2786  * is intended for use with devices that require some time to quiesce.
2787  *
2788  * NOTE: this will only disable the regulator output if no other consumer
2789  * devices have it enabled, the regulator device supports disabling and
2790  * machine constraints permit this operation.
2791  */
2792 int regulator_disable_deferred(struct regulator *regulator, int ms)
2793 {
2794         struct regulator_dev *rdev = regulator->rdev;
2795
2796         if (!ms)
2797                 return regulator_disable(regulator);
2798
2799         regulator_lock(rdev);
2800         regulator->deferred_disables++;
2801         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2802                          msecs_to_jiffies(ms));
2803         regulator_unlock(rdev);
2804
2805         return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2808
2809 static int _regulator_is_enabled(struct regulator_dev *rdev)
2810 {
2811         /* A GPIO control always takes precedence */
2812         if (rdev->ena_pin)
2813                 return rdev->ena_gpio_state;
2814
2815         /* If we don't know then assume that the regulator is always on */
2816         if (!rdev->desc->ops->is_enabled)
2817                 return 1;
2818
2819         return rdev->desc->ops->is_enabled(rdev);
2820 }
2821
2822 static int _regulator_list_voltage(struct regulator_dev *rdev,
2823                                    unsigned selector, int lock)
2824 {
2825         const struct regulator_ops *ops = rdev->desc->ops;
2826         int ret;
2827
2828         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2829                 return rdev->desc->fixed_uV;
2830
2831         if (ops->list_voltage) {
2832                 if (selector >= rdev->desc->n_voltages)
2833                         return -EINVAL;
2834                 if (lock)
2835                         regulator_lock(rdev);
2836                 ret = ops->list_voltage(rdev, selector);
2837                 if (lock)
2838                         regulator_unlock(rdev);
2839         } else if (rdev->is_switch && rdev->supply) {
2840                 ret = _regulator_list_voltage(rdev->supply->rdev,
2841                                               selector, lock);
2842         } else {
2843                 return -EINVAL;
2844         }
2845
2846         if (ret > 0) {
2847                 if (ret < rdev->constraints->min_uV)
2848                         ret = 0;
2849                 else if (ret > rdev->constraints->max_uV)
2850                         ret = 0;
2851         }
2852
2853         return ret;
2854 }
2855
2856 /**
2857  * regulator_is_enabled - is the regulator output enabled
2858  * @regulator: regulator source
2859  *
2860  * Returns positive if the regulator driver backing the source/client
2861  * has requested that the device be enabled, zero if it hasn't, else a
2862  * negative errno code.
2863  *
2864  * Note that the device backing this regulator handle can have multiple
2865  * users, so it might be enabled even if regulator_enable() was never
2866  * called for this particular source.
2867  */
2868 int regulator_is_enabled(struct regulator *regulator)
2869 {
2870         int ret;
2871
2872         if (regulator->always_on)
2873                 return 1;
2874
2875         regulator_lock(regulator->rdev);
2876         ret = _regulator_is_enabled(regulator->rdev);
2877         regulator_unlock(regulator->rdev);
2878
2879         return ret;
2880 }
2881 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2882
2883 /**
2884  * regulator_count_voltages - count regulator_list_voltage() selectors
2885  * @regulator: regulator source
2886  *
2887  * Returns number of selectors, or negative errno.  Selectors are
2888  * numbered starting at zero, and typically correspond to bitfields
2889  * in hardware registers.
2890  */
2891 int regulator_count_voltages(struct regulator *regulator)
2892 {
2893         struct regulator_dev    *rdev = regulator->rdev;
2894
2895         if (rdev->desc->n_voltages)
2896                 return rdev->desc->n_voltages;
2897
2898         if (!rdev->is_switch || !rdev->supply)
2899                 return -EINVAL;
2900
2901         return regulator_count_voltages(rdev->supply);
2902 }
2903 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2904
2905 /**
2906  * regulator_list_voltage - enumerate supported voltages
2907  * @regulator: regulator source
2908  * @selector: identify voltage to list
2909  * Context: can sleep
2910  *
2911  * Returns a voltage that can be passed to @regulator_set_voltage(),
2912  * zero if this selector code can't be used on this system, or a
2913  * negative errno.
2914  */
2915 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2916 {
2917         return _regulator_list_voltage(regulator->rdev, selector, 1);
2918 }
2919 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2920
2921 /**
2922  * regulator_get_regmap - get the regulator's register map
2923  * @regulator: regulator source
2924  *
2925  * Returns the register map for the given regulator, or an ERR_PTR value
2926  * if the regulator doesn't use regmap.
2927  */
2928 struct regmap *regulator_get_regmap(struct regulator *regulator)
2929 {
2930         struct regmap *map = regulator->rdev->regmap;
2931
2932         return map ? map : ERR_PTR(-EOPNOTSUPP);
2933 }
2934
2935 /**
2936  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2937  * @regulator: regulator source
2938  * @vsel_reg: voltage selector register, output parameter
2939  * @vsel_mask: mask for voltage selector bitfield, output parameter
2940  *
2941  * Returns the hardware register offset and bitmask used for setting the
2942  * regulator voltage. This might be useful when configuring voltage-scaling
2943  * hardware or firmware that can make I2C requests behind the kernel's back,
2944  * for example.
2945  *
2946  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2947  * and 0 is returned, otherwise a negative errno is returned.
2948  */
2949 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2950                                          unsigned *vsel_reg,
2951                                          unsigned *vsel_mask)
2952 {
2953         struct regulator_dev *rdev = regulator->rdev;
2954         const struct regulator_ops *ops = rdev->desc->ops;
2955
2956         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2957                 return -EOPNOTSUPP;
2958
2959         *vsel_reg = rdev->desc->vsel_reg;
2960         *vsel_mask = rdev->desc->vsel_mask;
2961
2962          return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2965
2966 /**
2967  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2968  * @regulator: regulator source
2969  * @selector: identify voltage to list
2970  *
2971  * Converts the selector to a hardware-specific voltage selector that can be
2972  * directly written to the regulator registers. The address of the voltage
2973  * register can be determined by calling @regulator_get_hardware_vsel_register.
2974  *
2975  * On error a negative errno is returned.
2976  */
2977 int regulator_list_hardware_vsel(struct regulator *regulator,
2978                                  unsigned selector)
2979 {
2980         struct regulator_dev *rdev = regulator->rdev;
2981         const struct regulator_ops *ops = rdev->desc->ops;
2982
2983         if (selector >= rdev->desc->n_voltages)
2984                 return -EINVAL;
2985         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2986                 return -EOPNOTSUPP;
2987
2988         return selector;
2989 }
2990 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2991
2992 /**
2993  * regulator_get_linear_step - return the voltage step size between VSEL values
2994  * @regulator: regulator source
2995  *
2996  * Returns the voltage step size between VSEL values for linear
2997  * regulators, or return 0 if the regulator isn't a linear regulator.
2998  */
2999 unsigned int regulator_get_linear_step(struct regulator *regulator)
3000 {
3001         struct regulator_dev *rdev = regulator->rdev;
3002
3003         return rdev->desc->uV_step;
3004 }
3005 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3006
3007 /**
3008  * regulator_is_supported_voltage - check if a voltage range can be supported
3009  *
3010  * @regulator: Regulator to check.
3011  * @min_uV: Minimum required voltage in uV.
3012  * @max_uV: Maximum required voltage in uV.
3013  *
3014  * Returns a boolean.
3015  */
3016 int regulator_is_supported_voltage(struct regulator *regulator,
3017                                    int min_uV, int max_uV)
3018 {
3019         struct regulator_dev *rdev = regulator->rdev;
3020         int i, voltages, ret;
3021
3022         /* If we can't change voltage check the current voltage */
3023         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3024                 ret = regulator_get_voltage(regulator);
3025                 if (ret >= 0)
3026                         return min_uV <= ret && ret <= max_uV;
3027                 else
3028                         return ret;
3029         }
3030
3031         /* Any voltage within constrains range is fine? */
3032         if (rdev->desc->continuous_voltage_range)
3033                 return min_uV >= rdev->constraints->min_uV &&
3034                                 max_uV <= rdev->constraints->max_uV;
3035
3036         ret = regulator_count_voltages(regulator);
3037         if (ret < 0)
3038                 return 0;
3039         voltages = ret;
3040
3041         for (i = 0; i < voltages; i++) {
3042                 ret = regulator_list_voltage(regulator, i);
3043
3044                 if (ret >= min_uV && ret <= max_uV)
3045                         return 1;
3046         }
3047
3048         return 0;
3049 }
3050 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3051
3052 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3053                                  int max_uV)
3054 {
3055         const struct regulator_desc *desc = rdev->desc;
3056
3057         if (desc->ops->map_voltage)
3058                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3059
3060         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3061                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3062
3063         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3064                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3065
3066         if (desc->ops->list_voltage ==
3067                 regulator_list_voltage_pickable_linear_range)
3068                 return regulator_map_voltage_pickable_linear_range(rdev,
3069                                                         min_uV, max_uV);
3070
3071         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3072 }
3073
3074 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3075                                        int min_uV, int max_uV,
3076                                        unsigned *selector)
3077 {
3078         struct pre_voltage_change_data data;
3079         int ret;
3080
3081         data.old_uV = regulator_get_voltage_rdev(rdev);
3082         data.min_uV = min_uV;
3083         data.max_uV = max_uV;
3084         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3085                                    &data);
3086         if (ret & NOTIFY_STOP_MASK)
3087                 return -EINVAL;
3088
3089         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3090         if (ret >= 0)
3091                 return ret;
3092
3093         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3094                              (void *)data.old_uV);
3095
3096         return ret;
3097 }
3098
3099 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3100                                            int uV, unsigned selector)
3101 {
3102         struct pre_voltage_change_data data;
3103         int ret;
3104
3105         data.old_uV = regulator_get_voltage_rdev(rdev);
3106         data.min_uV = uV;
3107         data.max_uV = uV;
3108         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3109                                    &data);
3110         if (ret & NOTIFY_STOP_MASK)
3111                 return -EINVAL;
3112
3113         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3114         if (ret >= 0)
3115                 return ret;
3116
3117         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3118                              (void *)data.old_uV);
3119
3120         return ret;
3121 }
3122
3123 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3124                                            int uV, int new_selector)
3125 {
3126         const struct regulator_ops *ops = rdev->desc->ops;
3127         int diff, old_sel, curr_sel, ret;
3128
3129         /* Stepping is only needed if the regulator is enabled. */
3130         if (!_regulator_is_enabled(rdev))
3131                 goto final_set;
3132
3133         if (!ops->get_voltage_sel)
3134                 return -EINVAL;
3135
3136         old_sel = ops->get_voltage_sel(rdev);
3137         if (old_sel < 0)
3138                 return old_sel;
3139
3140         diff = new_selector - old_sel;
3141         if (diff == 0)
3142                 return 0; /* No change needed. */
3143
3144         if (diff > 0) {
3145                 /* Stepping up. */
3146                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3147                      curr_sel < new_selector;
3148                      curr_sel += rdev->desc->vsel_step) {
3149                         /*
3150                          * Call the callback directly instead of using
3151                          * _regulator_call_set_voltage_sel() as we don't
3152                          * want to notify anyone yet. Same in the branch
3153                          * below.
3154                          */
3155                         ret = ops->set_voltage_sel(rdev, curr_sel);
3156                         if (ret)
3157                                 goto try_revert;
3158                 }
3159         } else {
3160                 /* Stepping down. */
3161                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3162                      curr_sel > new_selector;
3163                      curr_sel -= rdev->desc->vsel_step) {
3164                         ret = ops->set_voltage_sel(rdev, curr_sel);
3165                         if (ret)
3166                                 goto try_revert;
3167                 }
3168         }
3169
3170 final_set:
3171         /* The final selector will trigger the notifiers. */
3172         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3173
3174 try_revert:
3175         /*
3176          * At least try to return to the previous voltage if setting a new
3177          * one failed.
3178          */
3179         (void)ops->set_voltage_sel(rdev, old_sel);
3180         return ret;
3181 }
3182
3183 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3184                                        int old_uV, int new_uV)
3185 {
3186         unsigned int ramp_delay = 0;
3187
3188         if (rdev->constraints->ramp_delay)
3189                 ramp_delay = rdev->constraints->ramp_delay;
3190         else if (rdev->desc->ramp_delay)
3191                 ramp_delay = rdev->desc->ramp_delay;
3192         else if (rdev->constraints->settling_time)
3193                 return rdev->constraints->settling_time;
3194         else if (rdev->constraints->settling_time_up &&
3195                  (new_uV > old_uV))
3196                 return rdev->constraints->settling_time_up;
3197         else if (rdev->constraints->settling_time_down &&
3198                  (new_uV < old_uV))
3199                 return rdev->constraints->settling_time_down;
3200
3201         if (ramp_delay == 0) {
3202                 rdev_dbg(rdev, "ramp_delay not set\n");
3203                 return 0;
3204         }
3205
3206         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3207 }
3208
3209 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3210                                      int min_uV, int max_uV)
3211 {
3212         int ret;
3213         int delay = 0;
3214         int best_val = 0;
3215         unsigned int selector;
3216         int old_selector = -1;
3217         const struct regulator_ops *ops = rdev->desc->ops;
3218         int old_uV = regulator_get_voltage_rdev(rdev);
3219
3220         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3221
3222         min_uV += rdev->constraints->uV_offset;
3223         max_uV += rdev->constraints->uV_offset;
3224
3225         /*
3226          * If we can't obtain the old selector there is not enough
3227          * info to call set_voltage_time_sel().
3228          */
3229         if (_regulator_is_enabled(rdev) &&
3230             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3231                 old_selector = ops->get_voltage_sel(rdev);
3232                 if (old_selector < 0)
3233                         return old_selector;
3234         }
3235
3236         if (ops->set_voltage) {
3237                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3238                                                   &selector);
3239
3240                 if (ret >= 0) {
3241                         if (ops->list_voltage)
3242                                 best_val = ops->list_voltage(rdev,
3243                                                              selector);
3244                         else
3245                                 best_val = regulator_get_voltage_rdev(rdev);
3246                 }
3247
3248         } else if (ops->set_voltage_sel) {
3249                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3250                 if (ret >= 0) {
3251                         best_val = ops->list_voltage(rdev, ret);
3252                         if (min_uV <= best_val && max_uV >= best_val) {
3253                                 selector = ret;
3254                                 if (old_selector == selector)
3255                                         ret = 0;
3256                                 else if (rdev->desc->vsel_step)
3257                                         ret = _regulator_set_voltage_sel_step(
3258                                                 rdev, best_val, selector);
3259                                 else
3260                                         ret = _regulator_call_set_voltage_sel(
3261                                                 rdev, best_val, selector);
3262                         } else {
3263                                 ret = -EINVAL;
3264                         }
3265                 }
3266         } else {
3267                 ret = -EINVAL;
3268         }
3269
3270         if (ret)
3271                 goto out;
3272
3273         if (ops->set_voltage_time_sel) {
3274                 /*
3275                  * Call set_voltage_time_sel if successfully obtained
3276                  * old_selector
3277                  */
3278                 if (old_selector >= 0 && old_selector != selector)
3279                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3280                                                           selector);
3281         } else {
3282                 if (old_uV != best_val) {
3283                         if (ops->set_voltage_time)
3284                                 delay = ops->set_voltage_time(rdev, old_uV,
3285                                                               best_val);
3286                         else
3287                                 delay = _regulator_set_voltage_time(rdev,
3288                                                                     old_uV,
3289                                                                     best_val);
3290                 }
3291         }
3292
3293         if (delay < 0) {
3294                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3295                 delay = 0;
3296         }
3297
3298         /* Insert any necessary delays */
3299         if (delay >= 1000) {
3300                 mdelay(delay / 1000);
3301                 udelay(delay % 1000);
3302         } else if (delay) {
3303                 udelay(delay);
3304         }
3305
3306         if (best_val >= 0) {
3307                 unsigned long data = best_val;
3308
3309                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3310                                      (void *)data);
3311         }
3312
3313 out:
3314         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3315
3316         return ret;
3317 }
3318
3319 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3320                                   int min_uV, int max_uV, suspend_state_t state)
3321 {
3322         struct regulator_state *rstate;
3323         int uV, sel;
3324
3325         rstate = regulator_get_suspend_state(rdev, state);
3326         if (rstate == NULL)
3327                 return -EINVAL;
3328
3329         if (min_uV < rstate->min_uV)
3330                 min_uV = rstate->min_uV;
3331         if (max_uV > rstate->max_uV)
3332                 max_uV = rstate->max_uV;
3333
3334         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3335         if (sel < 0)
3336                 return sel;
3337
3338         uV = rdev->desc->ops->list_voltage(rdev, sel);
3339         if (uV >= min_uV && uV <= max_uV)
3340                 rstate->uV = uV;
3341
3342         return 0;
3343 }
3344
3345 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3346                                           int min_uV, int max_uV,
3347                                           suspend_state_t state)
3348 {
3349         struct regulator_dev *rdev = regulator->rdev;
3350         struct regulator_voltage *voltage = &regulator->voltage[state];
3351         int ret = 0;
3352         int old_min_uV, old_max_uV;
3353         int current_uV;
3354
3355         /* If we're setting the same range as last time the change
3356          * should be a noop (some cpufreq implementations use the same
3357          * voltage for multiple frequencies, for example).
3358          */
3359         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3360                 goto out;
3361
3362         /* If we're trying to set a range that overlaps the current voltage,
3363          * return successfully even though the regulator does not support
3364          * changing the voltage.
3365          */
3366         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3367                 current_uV = regulator_get_voltage_rdev(rdev);
3368                 if (min_uV <= current_uV && current_uV <= max_uV) {
3369                         voltage->min_uV = min_uV;
3370                         voltage->max_uV = max_uV;
3371                         goto out;
3372                 }
3373         }
3374
3375         /* sanity check */
3376         if (!rdev->desc->ops->set_voltage &&
3377             !rdev->desc->ops->set_voltage_sel) {
3378                 ret = -EINVAL;
3379                 goto out;
3380         }
3381
3382         /* constraints check */
3383         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3384         if (ret < 0)
3385                 goto out;
3386
3387         /* restore original values in case of error */
3388         old_min_uV = voltage->min_uV;
3389         old_max_uV = voltage->max_uV;
3390         voltage->min_uV = min_uV;
3391         voltage->max_uV = max_uV;
3392
3393         /* for not coupled regulators this will just set the voltage */
3394         ret = regulator_balance_voltage(rdev, state);
3395         if (ret < 0) {
3396                 voltage->min_uV = old_min_uV;
3397                 voltage->max_uV = old_max_uV;
3398         }
3399
3400 out:
3401         return ret;
3402 }
3403
3404 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3405                                int max_uV, suspend_state_t state)
3406 {
3407         int best_supply_uV = 0;
3408         int supply_change_uV = 0;
3409         int ret;
3410
3411         if (rdev->supply &&
3412             regulator_ops_is_valid(rdev->supply->rdev,
3413                                    REGULATOR_CHANGE_VOLTAGE) &&
3414             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3415                                            rdev->desc->ops->get_voltage_sel))) {
3416                 int current_supply_uV;
3417                 int selector;
3418
3419                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3420                 if (selector < 0) {
3421                         ret = selector;
3422                         goto out;
3423                 }
3424
3425                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3426                 if (best_supply_uV < 0) {
3427                         ret = best_supply_uV;
3428                         goto out;
3429                 }
3430
3431                 best_supply_uV += rdev->desc->min_dropout_uV;
3432
3433                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3434                 if (current_supply_uV < 0) {
3435                         ret = current_supply_uV;
3436                         goto out;
3437                 }
3438
3439                 supply_change_uV = best_supply_uV - current_supply_uV;
3440         }
3441
3442         if (supply_change_uV > 0) {
3443                 ret = regulator_set_voltage_unlocked(rdev->supply,
3444                                 best_supply_uV, INT_MAX, state);
3445                 if (ret) {
3446                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3447                                         ret);
3448                         goto out;
3449                 }
3450         }
3451
3452         if (state == PM_SUSPEND_ON)
3453                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3454         else
3455                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3456                                                         max_uV, state);
3457         if (ret < 0)
3458                 goto out;
3459
3460         if (supply_change_uV < 0) {
3461                 ret = regulator_set_voltage_unlocked(rdev->supply,
3462                                 best_supply_uV, INT_MAX, state);
3463                 if (ret)
3464                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3465                                         ret);
3466                 /* No need to fail here */
3467                 ret = 0;
3468         }
3469
3470 out:
3471         return ret;
3472 }
3473 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3474
3475 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3476                                         int *current_uV, int *min_uV)
3477 {
3478         struct regulation_constraints *constraints = rdev->constraints;
3479
3480         /* Limit voltage change only if necessary */
3481         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3482                 return 1;
3483
3484         if (*current_uV < 0) {
3485                 *current_uV = regulator_get_voltage_rdev(rdev);
3486
3487                 if (*current_uV < 0)
3488                         return *current_uV;
3489         }
3490
3491         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3492                 return 1;
3493
3494         /* Clamp target voltage within the given step */
3495         if (*current_uV < *min_uV)
3496                 *min_uV = min(*current_uV + constraints->max_uV_step,
3497                               *min_uV);
3498         else
3499                 *min_uV = max(*current_uV - constraints->max_uV_step,
3500                               *min_uV);
3501
3502         return 0;
3503 }
3504
3505 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3506                                          int *current_uV,
3507                                          int *min_uV, int *max_uV,
3508                                          suspend_state_t state,
3509                                          int n_coupled)
3510 {
3511         struct coupling_desc *c_desc = &rdev->coupling_desc;
3512         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3513         struct regulation_constraints *constraints = rdev->constraints;
3514         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3515         int max_current_uV = 0, min_current_uV = INT_MAX;
3516         int highest_min_uV = 0, target_uV, possible_uV;
3517         int i, ret, max_spread;
3518         bool done;
3519
3520         *current_uV = -1;
3521
3522         /*
3523          * If there are no coupled regulators, simply set the voltage
3524          * demanded by consumers.
3525          */
3526         if (n_coupled == 1) {
3527                 /*
3528                  * If consumers don't provide any demands, set voltage
3529                  * to min_uV
3530                  */
3531                 desired_min_uV = constraints->min_uV;
3532                 desired_max_uV = constraints->max_uV;
3533
3534                 ret = regulator_check_consumers(rdev,
3535                                                 &desired_min_uV,
3536                                                 &desired_max_uV, state);
3537                 if (ret < 0)
3538                         return ret;
3539
3540                 possible_uV = desired_min_uV;
3541                 done = true;
3542
3543                 goto finish;
3544         }
3545
3546         /* Find highest min desired voltage */
3547         for (i = 0; i < n_coupled; i++) {
3548                 int tmp_min = 0;
3549                 int tmp_max = INT_MAX;
3550
3551                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3552
3553                 ret = regulator_check_consumers(c_rdevs[i],
3554                                                 &tmp_min,
3555                                                 &tmp_max, state);
3556                 if (ret < 0)
3557                         return ret;
3558
3559                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3560                 if (ret < 0)
3561                         return ret;
3562
3563                 highest_min_uV = max(highest_min_uV, tmp_min);
3564
3565                 if (i == 0) {
3566                         desired_min_uV = tmp_min;
3567                         desired_max_uV = tmp_max;
3568                 }
3569         }
3570
3571         max_spread = constraints->max_spread[0];
3572
3573         /*
3574          * Let target_uV be equal to the desired one if possible.
3575          * If not, set it to minimum voltage, allowed by other coupled
3576          * regulators.
3577          */
3578         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3579
3580         /*
3581          * Find min and max voltages, which currently aren't violating
3582          * max_spread.
3583          */
3584         for (i = 1; i < n_coupled; i++) {
3585                 int tmp_act;
3586
3587                 if (!_regulator_is_enabled(c_rdevs[i]))
3588                         continue;
3589
3590                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3591                 if (tmp_act < 0)
3592                         return tmp_act;
3593
3594                 min_current_uV = min(tmp_act, min_current_uV);
3595                 max_current_uV = max(tmp_act, max_current_uV);
3596         }
3597
3598         /* There aren't any other regulators enabled */
3599         if (max_current_uV == 0) {
3600                 possible_uV = target_uV;
3601         } else {
3602                 /*
3603                  * Correct target voltage, so as it currently isn't
3604                  * violating max_spread
3605                  */
3606                 possible_uV = max(target_uV, max_current_uV - max_spread);
3607                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3608         }
3609
3610         if (possible_uV > desired_max_uV)
3611                 return -EINVAL;
3612
3613         done = (possible_uV == target_uV);
3614         desired_min_uV = possible_uV;
3615
3616 finish:
3617         /* Apply max_uV_step constraint if necessary */
3618         if (state == PM_SUSPEND_ON) {
3619                 ret = regulator_limit_voltage_step(rdev, current_uV,
3620                                                    &desired_min_uV);
3621                 if (ret < 0)
3622                         return ret;
3623
3624                 if (ret == 0)
3625                         done = false;
3626         }
3627
3628         /* Set current_uV if wasn't done earlier in the code and if necessary */
3629         if (n_coupled > 1 && *current_uV == -1) {
3630
3631                 if (_regulator_is_enabled(rdev)) {
3632                         ret = regulator_get_voltage_rdev(rdev);
3633                         if (ret < 0)
3634                                 return ret;
3635
3636                         *current_uV = ret;
3637                 } else {
3638                         *current_uV = desired_min_uV;
3639                 }
3640         }
3641
3642         *min_uV = desired_min_uV;
3643         *max_uV = desired_max_uV;
3644
3645         return done;
3646 }
3647
3648 static int regulator_balance_voltage(struct regulator_dev *rdev,
3649                                      suspend_state_t state)
3650 {
3651         struct regulator_dev **c_rdevs;
3652         struct regulator_dev *best_rdev;
3653         struct coupling_desc *c_desc = &rdev->coupling_desc;
3654         struct regulator_coupler *coupler = c_desc->coupler;
3655         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3656         unsigned int delta, best_delta;
3657         unsigned long c_rdev_done = 0;
3658         bool best_c_rdev_done;
3659
3660         c_rdevs = c_desc->coupled_rdevs;
3661         n_coupled = c_desc->n_coupled;
3662
3663         /*
3664          * If system is in a state other than PM_SUSPEND_ON, don't check
3665          * other coupled regulators.
3666          */
3667         if (state != PM_SUSPEND_ON)
3668                 n_coupled = 1;
3669
3670         if (c_desc->n_resolved < n_coupled) {
3671                 rdev_err(rdev, "Not all coupled regulators registered\n");
3672                 return -EPERM;
3673         }
3674
3675         /* Invoke custom balancer for customized couplers */
3676         if (coupler && coupler->balance_voltage)
3677                 return coupler->balance_voltage(coupler, rdev, state);
3678
3679         /*
3680          * Find the best possible voltage change on each loop. Leave the loop
3681          * if there isn't any possible change.
3682          */
3683         do {
3684                 best_c_rdev_done = false;
3685                 best_delta = 0;
3686                 best_min_uV = 0;
3687                 best_max_uV = 0;
3688                 best_c_rdev = 0;
3689                 best_rdev = NULL;
3690
3691                 /*
3692                  * Find highest difference between optimal voltage
3693                  * and current voltage.
3694                  */
3695                 for (i = 0; i < n_coupled; i++) {
3696                         /*
3697                          * optimal_uV is the best voltage that can be set for
3698                          * i-th regulator at the moment without violating
3699                          * max_spread constraint in order to balance
3700                          * the coupled voltages.
3701                          */
3702                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3703
3704                         if (test_bit(i, &c_rdev_done))
3705                                 continue;
3706
3707                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3708                                                             &current_uV,
3709                                                             &optimal_uV,
3710                                                             &optimal_max_uV,
3711                                                             state, n_coupled);
3712                         if (ret < 0)
3713                                 goto out;
3714
3715                         delta = abs(optimal_uV - current_uV);
3716
3717                         if (delta && best_delta <= delta) {
3718                                 best_c_rdev_done = ret;
3719                                 best_delta = delta;
3720                                 best_rdev = c_rdevs[i];
3721                                 best_min_uV = optimal_uV;
3722                                 best_max_uV = optimal_max_uV;
3723                                 best_c_rdev = i;
3724                         }
3725                 }
3726
3727                 /* Nothing to change, return successfully */
3728                 if (!best_rdev) {
3729                         ret = 0;
3730                         goto out;
3731                 }
3732
3733                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3734                                                  best_max_uV, state);
3735
3736                 if (ret < 0)
3737                         goto out;
3738
3739                 if (best_c_rdev_done)
3740                         set_bit(best_c_rdev, &c_rdev_done);
3741
3742         } while (n_coupled > 1);
3743
3744 out:
3745         return ret;
3746 }
3747
3748 /**
3749  * regulator_set_voltage - set regulator output voltage
3750  * @regulator: regulator source
3751  * @min_uV: Minimum required voltage in uV
3752  * @max_uV: Maximum acceptable voltage in uV
3753  *
3754  * Sets a voltage regulator to the desired output voltage. This can be set
3755  * during any regulator state. IOW, regulator can be disabled or enabled.
3756  *
3757  * If the regulator is enabled then the voltage will change to the new value
3758  * immediately otherwise if the regulator is disabled the regulator will
3759  * output at the new voltage when enabled.
3760  *
3761  * NOTE: If the regulator is shared between several devices then the lowest
3762  * request voltage that meets the system constraints will be used.
3763  * Regulator system constraints must be set for this regulator before
3764  * calling this function otherwise this call will fail.
3765  */
3766 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3767 {
3768         struct ww_acquire_ctx ww_ctx;
3769         int ret;
3770
3771         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3772
3773         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3774                                              PM_SUSPEND_ON);
3775
3776         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3777
3778         return ret;
3779 }
3780 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3781
3782 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3783                                            suspend_state_t state, bool en)
3784 {
3785         struct regulator_state *rstate;
3786
3787         rstate = regulator_get_suspend_state(rdev, state);
3788         if (rstate == NULL)
3789                 return -EINVAL;
3790
3791         if (!rstate->changeable)
3792                 return -EPERM;
3793
3794         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3795
3796         return 0;
3797 }
3798
3799 int regulator_suspend_enable(struct regulator_dev *rdev,
3800                                     suspend_state_t state)
3801 {
3802         return regulator_suspend_toggle(rdev, state, true);
3803 }
3804 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3805
3806 int regulator_suspend_disable(struct regulator_dev *rdev,
3807                                      suspend_state_t state)
3808 {
3809         struct regulator *regulator;
3810         struct regulator_voltage *voltage;
3811
3812         /*
3813          * if any consumer wants this regulator device keeping on in
3814          * suspend states, don't set it as disabled.
3815          */
3816         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3817                 voltage = &regulator->voltage[state];
3818                 if (voltage->min_uV || voltage->max_uV)
3819                         return 0;
3820         }
3821
3822         return regulator_suspend_toggle(rdev, state, false);
3823 }
3824 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3825
3826 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3827                                           int min_uV, int max_uV,
3828                                           suspend_state_t state)
3829 {
3830         struct regulator_dev *rdev = regulator->rdev;
3831         struct regulator_state *rstate;
3832
3833         rstate = regulator_get_suspend_state(rdev, state);
3834         if (rstate == NULL)
3835                 return -EINVAL;
3836
3837         if (rstate->min_uV == rstate->max_uV) {
3838                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3839                 return -EPERM;
3840         }
3841
3842         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3843 }
3844
3845 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3846                                   int max_uV, suspend_state_t state)
3847 {
3848         struct ww_acquire_ctx ww_ctx;
3849         int ret;
3850
3851         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3852         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3853                 return -EINVAL;
3854
3855         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3856
3857         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3858                                              max_uV, state);
3859
3860         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3861
3862         return ret;
3863 }
3864 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3865
3866 /**
3867  * regulator_set_voltage_time - get raise/fall time
3868  * @regulator: regulator source
3869  * @old_uV: starting voltage in microvolts
3870  * @new_uV: target voltage in microvolts
3871  *
3872  * Provided with the starting and ending voltage, this function attempts to
3873  * calculate the time in microseconds required to rise or fall to this new
3874  * voltage.
3875  */
3876 int regulator_set_voltage_time(struct regulator *regulator,
3877                                int old_uV, int new_uV)
3878 {
3879         struct regulator_dev *rdev = regulator->rdev;
3880         const struct regulator_ops *ops = rdev->desc->ops;
3881         int old_sel = -1;
3882         int new_sel = -1;
3883         int voltage;
3884         int i;
3885
3886         if (ops->set_voltage_time)
3887                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3888         else if (!ops->set_voltage_time_sel)
3889                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3890
3891         /* Currently requires operations to do this */
3892         if (!ops->list_voltage || !rdev->desc->n_voltages)
3893                 return -EINVAL;
3894
3895         for (i = 0; i < rdev->desc->n_voltages; i++) {
3896                 /* We only look for exact voltage matches here */
3897                 voltage = regulator_list_voltage(regulator, i);
3898                 if (voltage < 0)
3899                         return -EINVAL;
3900                 if (voltage == 0)
3901                         continue;
3902                 if (voltage == old_uV)
3903                         old_sel = i;
3904                 if (voltage == new_uV)
3905                         new_sel = i;
3906         }
3907
3908         if (old_sel < 0 || new_sel < 0)
3909                 return -EINVAL;
3910
3911         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3912 }
3913 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3914
3915 /**
3916  * regulator_set_voltage_time_sel - get raise/fall time
3917  * @rdev: regulator source device
3918  * @old_selector: selector for starting voltage
3919  * @new_selector: selector for target voltage
3920  *
3921  * Provided with the starting and target voltage selectors, this function
3922  * returns time in microseconds required to rise or fall to this new voltage
3923  *
3924  * Drivers providing ramp_delay in regulation_constraints can use this as their
3925  * set_voltage_time_sel() operation.
3926  */
3927 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3928                                    unsigned int old_selector,
3929                                    unsigned int new_selector)
3930 {
3931         int old_volt, new_volt;
3932
3933         /* sanity check */
3934         if (!rdev->desc->ops->list_voltage)
3935                 return -EINVAL;
3936
3937         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3938         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3939
3940         if (rdev->desc->ops->set_voltage_time)
3941                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3942                                                          new_volt);
3943         else
3944                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3945 }
3946 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3947
3948 /**
3949  * regulator_sync_voltage - re-apply last regulator output voltage
3950  * @regulator: regulator source
3951  *
3952  * Re-apply the last configured voltage.  This is intended to be used
3953  * where some external control source the consumer is cooperating with
3954  * has caused the configured voltage to change.
3955  */
3956 int regulator_sync_voltage(struct regulator *regulator)
3957 {
3958         struct regulator_dev *rdev = regulator->rdev;
3959         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3960         int ret, min_uV, max_uV;
3961
3962         regulator_lock(rdev);
3963
3964         if (!rdev->desc->ops->set_voltage &&
3965             !rdev->desc->ops->set_voltage_sel) {
3966                 ret = -EINVAL;
3967                 goto out;
3968         }
3969
3970         /* This is only going to work if we've had a voltage configured. */
3971         if (!voltage->min_uV && !voltage->max_uV) {
3972                 ret = -EINVAL;
3973                 goto out;
3974         }
3975
3976         min_uV = voltage->min_uV;
3977         max_uV = voltage->max_uV;
3978
3979         /* This should be a paranoia check... */
3980         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3981         if (ret < 0)
3982                 goto out;
3983
3984         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3985         if (ret < 0)
3986                 goto out;
3987
3988         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3989
3990 out:
3991         regulator_unlock(rdev);
3992         return ret;
3993 }
3994 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3995
3996 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3997 {
3998         int sel, ret;
3999         bool bypassed;
4000
4001         if (rdev->desc->ops->get_bypass) {
4002                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4003                 if (ret < 0)
4004                         return ret;
4005                 if (bypassed) {
4006                         /* if bypassed the regulator must have a supply */
4007                         if (!rdev->supply) {
4008                                 rdev_err(rdev,
4009                                          "bypassed regulator has no supply!\n");
4010                                 return -EPROBE_DEFER;
4011                         }
4012
4013                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4014                 }
4015         }
4016
4017         if (rdev->desc->ops->get_voltage_sel) {
4018                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4019                 if (sel < 0)
4020                         return sel;
4021                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4022         } else if (rdev->desc->ops->get_voltage) {
4023                 ret = rdev->desc->ops->get_voltage(rdev);
4024         } else if (rdev->desc->ops->list_voltage) {
4025                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4026         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4027                 ret = rdev->desc->fixed_uV;
4028         } else if (rdev->supply) {
4029                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4030         } else {
4031                 return -EINVAL;
4032         }
4033
4034         if (ret < 0)
4035                 return ret;
4036         return ret - rdev->constraints->uV_offset;
4037 }
4038 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4039
4040 /**
4041  * regulator_get_voltage - get regulator output voltage
4042  * @regulator: regulator source
4043  *
4044  * This returns the current regulator voltage in uV.
4045  *
4046  * NOTE: If the regulator is disabled it will return the voltage value. This
4047  * function should not be used to determine regulator state.
4048  */
4049 int regulator_get_voltage(struct regulator *regulator)
4050 {
4051         struct ww_acquire_ctx ww_ctx;
4052         int ret;
4053
4054         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4055         ret = regulator_get_voltage_rdev(regulator->rdev);
4056         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4057
4058         return ret;
4059 }
4060 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4061
4062 /**
4063  * regulator_set_current_limit - set regulator output current limit
4064  * @regulator: regulator source
4065  * @min_uA: Minimum supported current in uA
4066  * @max_uA: Maximum supported current in uA
4067  *
4068  * Sets current sink to the desired output current. This can be set during
4069  * any regulator state. IOW, regulator can be disabled or enabled.
4070  *
4071  * If the regulator is enabled then the current will change to the new value
4072  * immediately otherwise if the regulator is disabled the regulator will
4073  * output at the new current when enabled.
4074  *
4075  * NOTE: Regulator system constraints must be set for this regulator before
4076  * calling this function otherwise this call will fail.
4077  */
4078 int regulator_set_current_limit(struct regulator *regulator,
4079                                int min_uA, int max_uA)
4080 {
4081         struct regulator_dev *rdev = regulator->rdev;
4082         int ret;
4083
4084         regulator_lock(rdev);
4085
4086         /* sanity check */
4087         if (!rdev->desc->ops->set_current_limit) {
4088                 ret = -EINVAL;
4089                 goto out;
4090         }
4091
4092         /* constraints check */
4093         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4094         if (ret < 0)
4095                 goto out;
4096
4097         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4098 out:
4099         regulator_unlock(rdev);
4100         return ret;
4101 }
4102 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4103
4104 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4105 {
4106         /* sanity check */
4107         if (!rdev->desc->ops->get_current_limit)
4108                 return -EINVAL;
4109
4110         return rdev->desc->ops->get_current_limit(rdev);
4111 }
4112
4113 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4114 {
4115         int ret;
4116
4117         regulator_lock(rdev);
4118         ret = _regulator_get_current_limit_unlocked(rdev);
4119         regulator_unlock(rdev);
4120
4121         return ret;
4122 }
4123
4124 /**
4125  * regulator_get_current_limit - get regulator output current
4126  * @regulator: regulator source
4127  *
4128  * This returns the current supplied by the specified current sink in uA.
4129  *
4130  * NOTE: If the regulator is disabled it will return the current value. This
4131  * function should not be used to determine regulator state.
4132  */
4133 int regulator_get_current_limit(struct regulator *regulator)
4134 {
4135         return _regulator_get_current_limit(regulator->rdev);
4136 }
4137 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4138
4139 /**
4140  * regulator_set_mode - set regulator operating mode
4141  * @regulator: regulator source
4142  * @mode: operating mode - one of the REGULATOR_MODE constants
4143  *
4144  * Set regulator operating mode to increase regulator efficiency or improve
4145  * regulation performance.
4146  *
4147  * NOTE: Regulator system constraints must be set for this regulator before
4148  * calling this function otherwise this call will fail.
4149  */
4150 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4151 {
4152         struct regulator_dev *rdev = regulator->rdev;
4153         int ret;
4154         int regulator_curr_mode;
4155
4156         regulator_lock(rdev);
4157
4158         /* sanity check */
4159         if (!rdev->desc->ops->set_mode) {
4160                 ret = -EINVAL;
4161                 goto out;
4162         }
4163
4164         /* return if the same mode is requested */
4165         if (rdev->desc->ops->get_mode) {
4166                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4167                 if (regulator_curr_mode == mode) {
4168                         ret = 0;
4169                         goto out;
4170                 }
4171         }
4172
4173         /* constraints check */
4174         ret = regulator_mode_constrain(rdev, &mode);
4175         if (ret < 0)
4176                 goto out;
4177
4178         ret = rdev->desc->ops->set_mode(rdev, mode);
4179 out:
4180         regulator_unlock(rdev);
4181         return ret;
4182 }
4183 EXPORT_SYMBOL_GPL(regulator_set_mode);
4184
4185 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4186 {
4187         /* sanity check */
4188         if (!rdev->desc->ops->get_mode)
4189                 return -EINVAL;
4190
4191         return rdev->desc->ops->get_mode(rdev);
4192 }
4193
4194 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4195 {
4196         int ret;
4197
4198         regulator_lock(rdev);
4199         ret = _regulator_get_mode_unlocked(rdev);
4200         regulator_unlock(rdev);
4201
4202         return ret;
4203 }
4204
4205 /**
4206  * regulator_get_mode - get regulator operating mode
4207  * @regulator: regulator source
4208  *
4209  * Get the current regulator operating mode.
4210  */
4211 unsigned int regulator_get_mode(struct regulator *regulator)
4212 {
4213         return _regulator_get_mode(regulator->rdev);
4214 }
4215 EXPORT_SYMBOL_GPL(regulator_get_mode);
4216
4217 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4218                                         unsigned int *flags)
4219 {
4220         int ret;
4221
4222         regulator_lock(rdev);
4223
4224         /* sanity check */
4225         if (!rdev->desc->ops->get_error_flags) {
4226                 ret = -EINVAL;
4227                 goto out;
4228         }
4229
4230         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4231 out:
4232         regulator_unlock(rdev);
4233         return ret;
4234 }
4235
4236 /**
4237  * regulator_get_error_flags - get regulator error information
4238  * @regulator: regulator source
4239  * @flags: pointer to store error flags
4240  *
4241  * Get the current regulator error information.
4242  */
4243 int regulator_get_error_flags(struct regulator *regulator,
4244                                 unsigned int *flags)
4245 {
4246         return _regulator_get_error_flags(regulator->rdev, flags);
4247 }
4248 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4249
4250 /**
4251  * regulator_set_load - set regulator load
4252  * @regulator: regulator source
4253  * @uA_load: load current
4254  *
4255  * Notifies the regulator core of a new device load. This is then used by
4256  * DRMS (if enabled by constraints) to set the most efficient regulator
4257  * operating mode for the new regulator loading.
4258  *
4259  * Consumer devices notify their supply regulator of the maximum power
4260  * they will require (can be taken from device datasheet in the power
4261  * consumption tables) when they change operational status and hence power
4262  * state. Examples of operational state changes that can affect power
4263  * consumption are :-
4264  *
4265  *    o Device is opened / closed.
4266  *    o Device I/O is about to begin or has just finished.
4267  *    o Device is idling in between work.
4268  *
4269  * This information is also exported via sysfs to userspace.
4270  *
4271  * DRMS will sum the total requested load on the regulator and change
4272  * to the most efficient operating mode if platform constraints allow.
4273  *
4274  * NOTE: when a regulator consumer requests to have a regulator
4275  * disabled then any load that consumer requested no longer counts
4276  * toward the total requested load.  If the regulator is re-enabled
4277  * then the previously requested load will start counting again.
4278  *
4279  * If a regulator is an always-on regulator then an individual consumer's
4280  * load will still be removed if that consumer is fully disabled.
4281  *
4282  * On error a negative errno is returned.
4283  */
4284 int regulator_set_load(struct regulator *regulator, int uA_load)
4285 {
4286         struct regulator_dev *rdev = regulator->rdev;
4287         int old_uA_load;
4288         int ret = 0;
4289
4290         regulator_lock(rdev);
4291         old_uA_load = regulator->uA_load;
4292         regulator->uA_load = uA_load;
4293         if (regulator->enable_count && old_uA_load != uA_load) {
4294                 ret = drms_uA_update(rdev);
4295                 if (ret < 0)
4296                         regulator->uA_load = old_uA_load;
4297         }
4298         regulator_unlock(rdev);
4299
4300         return ret;
4301 }
4302 EXPORT_SYMBOL_GPL(regulator_set_load);
4303
4304 /**
4305  * regulator_allow_bypass - allow the regulator to go into bypass mode
4306  *
4307  * @regulator: Regulator to configure
4308  * @enable: enable or disable bypass mode
4309  *
4310  * Allow the regulator to go into bypass mode if all other consumers
4311  * for the regulator also enable bypass mode and the machine
4312  * constraints allow this.  Bypass mode means that the regulator is
4313  * simply passing the input directly to the output with no regulation.
4314  */
4315 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4316 {
4317         struct regulator_dev *rdev = regulator->rdev;
4318         int ret = 0;
4319
4320         if (!rdev->desc->ops->set_bypass)
4321                 return 0;
4322
4323         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4324                 return 0;
4325
4326         regulator_lock(rdev);
4327
4328         if (enable && !regulator->bypass) {
4329                 rdev->bypass_count++;
4330
4331                 if (rdev->bypass_count == rdev->open_count) {
4332                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4333                         if (ret != 0)
4334                                 rdev->bypass_count--;
4335                 }
4336
4337         } else if (!enable && regulator->bypass) {
4338                 rdev->bypass_count--;
4339
4340                 if (rdev->bypass_count != rdev->open_count) {
4341                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4342                         if (ret != 0)
4343                                 rdev->bypass_count++;
4344                 }
4345         }
4346
4347         if (ret == 0)
4348                 regulator->bypass = enable;
4349
4350         regulator_unlock(rdev);
4351
4352         return ret;
4353 }
4354 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4355
4356 /**
4357  * regulator_register_notifier - register regulator event notifier
4358  * @regulator: regulator source
4359  * @nb: notifier block
4360  *
4361  * Register notifier block to receive regulator events.
4362  */
4363 int regulator_register_notifier(struct regulator *regulator,
4364                               struct notifier_block *nb)
4365 {
4366         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4367                                                 nb);
4368 }
4369 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4370
4371 /**
4372  * regulator_unregister_notifier - unregister regulator event notifier
4373  * @regulator: regulator source
4374  * @nb: notifier block
4375  *
4376  * Unregister regulator event notifier block.
4377  */
4378 int regulator_unregister_notifier(struct regulator *regulator,
4379                                 struct notifier_block *nb)
4380 {
4381         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4382                                                   nb);
4383 }
4384 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4385
4386 /* notify regulator consumers and downstream regulator consumers.
4387  * Note mutex must be held by caller.
4388  */
4389 static int _notifier_call_chain(struct regulator_dev *rdev,
4390                                   unsigned long event, void *data)
4391 {
4392         /* call rdev chain first */
4393         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4394 }
4395
4396 /**
4397  * regulator_bulk_get - get multiple regulator consumers
4398  *
4399  * @dev:           Device to supply
4400  * @num_consumers: Number of consumers to register
4401  * @consumers:     Configuration of consumers; clients are stored here.
4402  *
4403  * @return 0 on success, an errno on failure.
4404  *
4405  * This helper function allows drivers to get several regulator
4406  * consumers in one operation.  If any of the regulators cannot be
4407  * acquired then any regulators that were allocated will be freed
4408  * before returning to the caller.
4409  */
4410 int regulator_bulk_get(struct device *dev, int num_consumers,
4411                        struct regulator_bulk_data *consumers)
4412 {
4413         int i;
4414         int ret;
4415
4416         for (i = 0; i < num_consumers; i++)
4417                 consumers[i].consumer = NULL;
4418
4419         for (i = 0; i < num_consumers; i++) {
4420                 consumers[i].consumer = regulator_get(dev,
4421                                                       consumers[i].supply);
4422                 if (IS_ERR(consumers[i].consumer)) {
4423                         ret = PTR_ERR(consumers[i].consumer);
4424                         consumers[i].consumer = NULL;
4425                         goto err;
4426                 }
4427         }
4428
4429         return 0;
4430
4431 err:
4432         if (ret != -EPROBE_DEFER)
4433                 dev_err(dev, "Failed to get supply '%s': %d\n",
4434                         consumers[i].supply, ret);
4435         else
4436                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4437                         consumers[i].supply);
4438
4439         while (--i >= 0)
4440                 regulator_put(consumers[i].consumer);
4441
4442         return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4445
4446 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4447 {
4448         struct regulator_bulk_data *bulk = data;
4449
4450         bulk->ret = regulator_enable(bulk->consumer);
4451 }
4452
4453 /**
4454  * regulator_bulk_enable - enable multiple regulator consumers
4455  *
4456  * @num_consumers: Number of consumers
4457  * @consumers:     Consumer data; clients are stored here.
4458  * @return         0 on success, an errno on failure
4459  *
4460  * This convenience API allows consumers to enable multiple regulator
4461  * clients in a single API call.  If any consumers cannot be enabled
4462  * then any others that were enabled will be disabled again prior to
4463  * return.
4464  */
4465 int regulator_bulk_enable(int num_consumers,
4466                           struct regulator_bulk_data *consumers)
4467 {
4468         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4469         int i;
4470         int ret = 0;
4471
4472         for (i = 0; i < num_consumers; i++) {
4473                 async_schedule_domain(regulator_bulk_enable_async,
4474                                       &consumers[i], &async_domain);
4475         }
4476
4477         async_synchronize_full_domain(&async_domain);
4478
4479         /* If any consumer failed we need to unwind any that succeeded */
4480         for (i = 0; i < num_consumers; i++) {
4481                 if (consumers[i].ret != 0) {
4482                         ret = consumers[i].ret;
4483                         goto err;
4484                 }
4485         }
4486
4487         return 0;
4488
4489 err:
4490         for (i = 0; i < num_consumers; i++) {
4491                 if (consumers[i].ret < 0)
4492                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4493                                consumers[i].ret);
4494                 else
4495                         regulator_disable(consumers[i].consumer);
4496         }
4497
4498         return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4501
4502 /**
4503  * regulator_bulk_disable - disable multiple regulator consumers
4504  *
4505  * @num_consumers: Number of consumers
4506  * @consumers:     Consumer data; clients are stored here.
4507  * @return         0 on success, an errno on failure
4508  *
4509  * This convenience API allows consumers to disable multiple regulator
4510  * clients in a single API call.  If any consumers cannot be disabled
4511  * then any others that were disabled will be enabled again prior to
4512  * return.
4513  */
4514 int regulator_bulk_disable(int num_consumers,
4515                            struct regulator_bulk_data *consumers)
4516 {
4517         int i;
4518         int ret, r;
4519
4520         for (i = num_consumers - 1; i >= 0; --i) {
4521                 ret = regulator_disable(consumers[i].consumer);
4522                 if (ret != 0)
4523                         goto err;
4524         }
4525
4526         return 0;
4527
4528 err:
4529         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4530         for (++i; i < num_consumers; ++i) {
4531                 r = regulator_enable(consumers[i].consumer);
4532                 if (r != 0)
4533                         pr_err("Failed to re-enable %s: %d\n",
4534                                consumers[i].supply, r);
4535         }
4536
4537         return ret;
4538 }
4539 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4540
4541 /**
4542  * regulator_bulk_force_disable - force disable multiple regulator consumers
4543  *
4544  * @num_consumers: Number of consumers
4545  * @consumers:     Consumer data; clients are stored here.
4546  * @return         0 on success, an errno on failure
4547  *
4548  * This convenience API allows consumers to forcibly disable multiple regulator
4549  * clients in a single API call.
4550  * NOTE: This should be used for situations when device damage will
4551  * likely occur if the regulators are not disabled (e.g. over temp).
4552  * Although regulator_force_disable function call for some consumers can
4553  * return error numbers, the function is called for all consumers.
4554  */
4555 int regulator_bulk_force_disable(int num_consumers,
4556                            struct regulator_bulk_data *consumers)
4557 {
4558         int i;
4559         int ret = 0;
4560
4561         for (i = 0; i < num_consumers; i++) {
4562                 consumers[i].ret =
4563                             regulator_force_disable(consumers[i].consumer);
4564
4565                 /* Store first error for reporting */
4566                 if (consumers[i].ret && !ret)
4567                         ret = consumers[i].ret;
4568         }
4569
4570         return ret;
4571 }
4572 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4573
4574 /**
4575  * regulator_bulk_free - free multiple regulator consumers
4576  *
4577  * @num_consumers: Number of consumers
4578  * @consumers:     Consumer data; clients are stored here.
4579  *
4580  * This convenience API allows consumers to free multiple regulator
4581  * clients in a single API call.
4582  */
4583 void regulator_bulk_free(int num_consumers,
4584                          struct regulator_bulk_data *consumers)
4585 {
4586         int i;
4587
4588         for (i = 0; i < num_consumers; i++) {
4589                 regulator_put(consumers[i].consumer);
4590                 consumers[i].consumer = NULL;
4591         }
4592 }
4593 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4594
4595 /**
4596  * regulator_notifier_call_chain - call regulator event notifier
4597  * @rdev: regulator source
4598  * @event: notifier block
4599  * @data: callback-specific data.
4600  *
4601  * Called by regulator drivers to notify clients a regulator event has
4602  * occurred. We also notify regulator clients downstream.
4603  * Note lock must be held by caller.
4604  */
4605 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4606                                   unsigned long event, void *data)
4607 {
4608         lockdep_assert_held_once(&rdev->mutex.base);
4609
4610         _notifier_call_chain(rdev, event, data);
4611         return NOTIFY_DONE;
4612
4613 }
4614 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4615
4616 /**
4617  * regulator_mode_to_status - convert a regulator mode into a status
4618  *
4619  * @mode: Mode to convert
4620  *
4621  * Convert a regulator mode into a status.
4622  */
4623 int regulator_mode_to_status(unsigned int mode)
4624 {
4625         switch (mode) {
4626         case REGULATOR_MODE_FAST:
4627                 return REGULATOR_STATUS_FAST;
4628         case REGULATOR_MODE_NORMAL:
4629                 return REGULATOR_STATUS_NORMAL;
4630         case REGULATOR_MODE_IDLE:
4631                 return REGULATOR_STATUS_IDLE;
4632         case REGULATOR_MODE_STANDBY:
4633                 return REGULATOR_STATUS_STANDBY;
4634         default:
4635                 return REGULATOR_STATUS_UNDEFINED;
4636         }
4637 }
4638 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4639
4640 static struct attribute *regulator_dev_attrs[] = {
4641         &dev_attr_name.attr,
4642         &dev_attr_num_users.attr,
4643         &dev_attr_type.attr,
4644         &dev_attr_microvolts.attr,
4645         &dev_attr_microamps.attr,
4646         &dev_attr_opmode.attr,
4647         &dev_attr_state.attr,
4648         &dev_attr_status.attr,
4649         &dev_attr_bypass.attr,
4650         &dev_attr_requested_microamps.attr,
4651         &dev_attr_min_microvolts.attr,
4652         &dev_attr_max_microvolts.attr,
4653         &dev_attr_min_microamps.attr,
4654         &dev_attr_max_microamps.attr,
4655         &dev_attr_suspend_standby_state.attr,
4656         &dev_attr_suspend_mem_state.attr,
4657         &dev_attr_suspend_disk_state.attr,
4658         &dev_attr_suspend_standby_microvolts.attr,
4659         &dev_attr_suspend_mem_microvolts.attr,
4660         &dev_attr_suspend_disk_microvolts.attr,
4661         &dev_attr_suspend_standby_mode.attr,
4662         &dev_attr_suspend_mem_mode.attr,
4663         &dev_attr_suspend_disk_mode.attr,
4664         NULL
4665 };
4666
4667 /*
4668  * To avoid cluttering sysfs (and memory) with useless state, only
4669  * create attributes that can be meaningfully displayed.
4670  */
4671 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4672                                          struct attribute *attr, int idx)
4673 {
4674         struct device *dev = kobj_to_dev(kobj);
4675         struct regulator_dev *rdev = dev_to_rdev(dev);
4676         const struct regulator_ops *ops = rdev->desc->ops;
4677         umode_t mode = attr->mode;
4678
4679         /* these three are always present */
4680         if (attr == &dev_attr_name.attr ||
4681             attr == &dev_attr_num_users.attr ||
4682             attr == &dev_attr_type.attr)
4683                 return mode;
4684
4685         /* some attributes need specific methods to be displayed */
4686         if (attr == &dev_attr_microvolts.attr) {
4687                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4688                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4689                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4690                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4691                         return mode;
4692                 return 0;
4693         }
4694
4695         if (attr == &dev_attr_microamps.attr)
4696                 return ops->get_current_limit ? mode : 0;
4697
4698         if (attr == &dev_attr_opmode.attr)
4699                 return ops->get_mode ? mode : 0;
4700
4701         if (attr == &dev_attr_state.attr)
4702                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4703
4704         if (attr == &dev_attr_status.attr)
4705                 return ops->get_status ? mode : 0;
4706
4707         if (attr == &dev_attr_bypass.attr)
4708                 return ops->get_bypass ? mode : 0;
4709
4710         /* constraints need specific supporting methods */
4711         if (attr == &dev_attr_min_microvolts.attr ||
4712             attr == &dev_attr_max_microvolts.attr)
4713                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4714
4715         if (attr == &dev_attr_min_microamps.attr ||
4716             attr == &dev_attr_max_microamps.attr)
4717                 return ops->set_current_limit ? mode : 0;
4718
4719         if (attr == &dev_attr_suspend_standby_state.attr ||
4720             attr == &dev_attr_suspend_mem_state.attr ||
4721             attr == &dev_attr_suspend_disk_state.attr)
4722                 return mode;
4723
4724         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4725             attr == &dev_attr_suspend_mem_microvolts.attr ||
4726             attr == &dev_attr_suspend_disk_microvolts.attr)
4727                 return ops->set_suspend_voltage ? mode : 0;
4728
4729         if (attr == &dev_attr_suspend_standby_mode.attr ||
4730             attr == &dev_attr_suspend_mem_mode.attr ||
4731             attr == &dev_attr_suspend_disk_mode.attr)
4732                 return ops->set_suspend_mode ? mode : 0;
4733
4734         return mode;
4735 }
4736
4737 static const struct attribute_group regulator_dev_group = {
4738         .attrs = regulator_dev_attrs,
4739         .is_visible = regulator_attr_is_visible,
4740 };
4741
4742 static const struct attribute_group *regulator_dev_groups[] = {
4743         &regulator_dev_group,
4744         NULL
4745 };
4746
4747 static void regulator_dev_release(struct device *dev)
4748 {
4749         struct regulator_dev *rdev = dev_get_drvdata(dev);
4750
4751         kfree(rdev->constraints);
4752         of_node_put(rdev->dev.of_node);
4753         kfree(rdev);
4754 }
4755
4756 static void rdev_init_debugfs(struct regulator_dev *rdev)
4757 {
4758         struct device *parent = rdev->dev.parent;
4759         const char *rname = rdev_get_name(rdev);
4760         char name[NAME_MAX];
4761
4762         /* Avoid duplicate debugfs directory names */
4763         if (parent && rname == rdev->desc->name) {
4764                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4765                          rname);
4766                 rname = name;
4767         }
4768
4769         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4770         if (!rdev->debugfs) {
4771                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4772                 return;
4773         }
4774
4775         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4776                            &rdev->use_count);
4777         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4778                            &rdev->open_count);
4779         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4780                            &rdev->bypass_count);
4781 }
4782
4783 static int regulator_register_resolve_supply(struct device *dev, void *data)
4784 {
4785         struct regulator_dev *rdev = dev_to_rdev(dev);
4786
4787         if (regulator_resolve_supply(rdev))
4788                 rdev_dbg(rdev, "unable to resolve supply\n");
4789
4790         return 0;
4791 }
4792
4793 int regulator_coupler_register(struct regulator_coupler *coupler)
4794 {
4795         mutex_lock(&regulator_list_mutex);
4796         list_add_tail(&coupler->list, &regulator_coupler_list);
4797         mutex_unlock(&regulator_list_mutex);
4798
4799         return 0;
4800 }
4801
4802 static struct regulator_coupler *
4803 regulator_find_coupler(struct regulator_dev *rdev)
4804 {
4805         struct regulator_coupler *coupler;
4806         int err;
4807
4808         /*
4809          * Note that regulators are appended to the list and the generic
4810          * coupler is registered first, hence it will be attached at last
4811          * if nobody cared.
4812          */
4813         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4814                 err = coupler->attach_regulator(coupler, rdev);
4815                 if (!err) {
4816                         if (!coupler->balance_voltage &&
4817                             rdev->coupling_desc.n_coupled > 2)
4818                                 goto err_unsupported;
4819
4820                         return coupler;
4821                 }
4822
4823                 if (err < 0)
4824                         return ERR_PTR(err);
4825
4826                 if (err == 1)
4827                         continue;
4828
4829                 break;
4830         }
4831
4832         return ERR_PTR(-EINVAL);
4833
4834 err_unsupported:
4835         if (coupler->detach_regulator)
4836                 coupler->detach_regulator(coupler, rdev);
4837
4838         rdev_err(rdev,
4839                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4840
4841         return ERR_PTR(-EPERM);
4842 }
4843
4844 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4845 {
4846         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4847         struct coupling_desc *c_desc = &rdev->coupling_desc;
4848         int n_coupled = c_desc->n_coupled;
4849         struct regulator_dev *c_rdev;
4850         int i;
4851
4852         for (i = 1; i < n_coupled; i++) {
4853                 /* already resolved */
4854                 if (c_desc->coupled_rdevs[i])
4855                         continue;
4856
4857                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4858
4859                 if (!c_rdev)
4860                         continue;
4861
4862                 if (c_rdev->coupling_desc.coupler != coupler) {
4863                         rdev_err(rdev, "coupler mismatch with %s\n",
4864                                  rdev_get_name(c_rdev));
4865                         return;
4866                 }
4867
4868                 regulator_lock(c_rdev);
4869
4870                 c_desc->coupled_rdevs[i] = c_rdev;
4871                 c_desc->n_resolved++;
4872
4873                 regulator_unlock(c_rdev);
4874
4875                 regulator_resolve_coupling(c_rdev);
4876         }
4877 }
4878
4879 static void regulator_remove_coupling(struct regulator_dev *rdev)
4880 {
4881         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4882         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4883         struct regulator_dev *__c_rdev, *c_rdev;
4884         unsigned int __n_coupled, n_coupled;
4885         int i, k;
4886         int err;
4887
4888         n_coupled = c_desc->n_coupled;
4889
4890         for (i = 1; i < n_coupled; i++) {
4891                 c_rdev = c_desc->coupled_rdevs[i];
4892
4893                 if (!c_rdev)
4894                         continue;
4895
4896                 regulator_lock(c_rdev);
4897
4898                 __c_desc = &c_rdev->coupling_desc;
4899                 __n_coupled = __c_desc->n_coupled;
4900
4901                 for (k = 1; k < __n_coupled; k++) {
4902                         __c_rdev = __c_desc->coupled_rdevs[k];
4903
4904                         if (__c_rdev == rdev) {
4905                                 __c_desc->coupled_rdevs[k] = NULL;
4906                                 __c_desc->n_resolved--;
4907                                 break;
4908                         }
4909                 }
4910
4911                 regulator_unlock(c_rdev);
4912
4913                 c_desc->coupled_rdevs[i] = NULL;
4914                 c_desc->n_resolved--;
4915         }
4916
4917         if (coupler && coupler->detach_regulator) {
4918                 err = coupler->detach_regulator(coupler, rdev);
4919                 if (err)
4920                         rdev_err(rdev, "failed to detach from coupler: %d\n",
4921                                  err);
4922         }
4923
4924         kfree(rdev->coupling_desc.coupled_rdevs);
4925         rdev->coupling_desc.coupled_rdevs = NULL;
4926 }
4927
4928 static int regulator_init_coupling(struct regulator_dev *rdev)
4929 {
4930         int err, n_phandles;
4931         size_t alloc_size;
4932
4933         if (!IS_ENABLED(CONFIG_OF))
4934                 n_phandles = 0;
4935         else
4936                 n_phandles = of_get_n_coupled(rdev);
4937
4938         alloc_size = sizeof(*rdev) * (n_phandles + 1);
4939
4940         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4941         if (!rdev->coupling_desc.coupled_rdevs)
4942                 return -ENOMEM;
4943
4944         /*
4945          * Every regulator should always have coupling descriptor filled with
4946          * at least pointer to itself.
4947          */
4948         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4949         rdev->coupling_desc.n_coupled = n_phandles + 1;
4950         rdev->coupling_desc.n_resolved++;
4951
4952         /* regulator isn't coupled */
4953         if (n_phandles == 0)
4954                 return 0;
4955
4956         if (!of_check_coupling_data(rdev))
4957                 return -EPERM;
4958
4959         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4960         if (IS_ERR(rdev->coupling_desc.coupler)) {
4961                 err = PTR_ERR(rdev->coupling_desc.coupler);
4962                 rdev_err(rdev, "failed to get coupler: %d\n", err);
4963                 return err;
4964         }
4965
4966         return 0;
4967 }
4968
4969 static int generic_coupler_attach(struct regulator_coupler *coupler,
4970                                   struct regulator_dev *rdev)
4971 {
4972         if (rdev->coupling_desc.n_coupled > 2) {
4973                 rdev_err(rdev,
4974                          "Voltage balancing for multiple regulator couples is unimplemented\n");
4975                 return -EPERM;
4976         }
4977
4978         if (!rdev->constraints->always_on) {
4979                 rdev_err(rdev,
4980                          "Coupling of a non always-on regulator is unimplemented\n");
4981                 return -ENOTSUPP;
4982         }
4983
4984         return 0;
4985 }
4986
4987 static struct regulator_coupler generic_regulator_coupler = {
4988         .attach_regulator = generic_coupler_attach,
4989 };
4990
4991 /**
4992  * regulator_register - register regulator
4993  * @regulator_desc: regulator to register
4994  * @cfg: runtime configuration for regulator
4995  *
4996  * Called by regulator drivers to register a regulator.
4997  * Returns a valid pointer to struct regulator_dev on success
4998  * or an ERR_PTR() on error.
4999  */
5000 struct regulator_dev *
5001 regulator_register(const struct regulator_desc *regulator_desc,
5002                    const struct regulator_config *cfg)
5003 {
5004         const struct regulation_constraints *constraints = NULL;
5005         const struct regulator_init_data *init_data;
5006         struct regulator_config *config = NULL;
5007         static atomic_t regulator_no = ATOMIC_INIT(-1);
5008         struct regulator_dev *rdev;
5009         bool dangling_cfg_gpiod = false;
5010         bool dangling_of_gpiod = false;
5011         bool reg_device_fail = false;
5012         struct device *dev;
5013         int ret, i;
5014
5015         if (cfg == NULL)
5016                 return ERR_PTR(-EINVAL);
5017         if (cfg->ena_gpiod)
5018                 dangling_cfg_gpiod = true;
5019         if (regulator_desc == NULL) {
5020                 ret = -EINVAL;
5021                 goto rinse;
5022         }
5023
5024         dev = cfg->dev;
5025         WARN_ON(!dev);
5026
5027         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5028                 ret = -EINVAL;
5029                 goto rinse;
5030         }
5031
5032         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5033             regulator_desc->type != REGULATOR_CURRENT) {
5034                 ret = -EINVAL;
5035                 goto rinse;
5036         }
5037
5038         /* Only one of each should be implemented */
5039         WARN_ON(regulator_desc->ops->get_voltage &&
5040                 regulator_desc->ops->get_voltage_sel);
5041         WARN_ON(regulator_desc->ops->set_voltage &&
5042                 regulator_desc->ops->set_voltage_sel);
5043
5044         /* If we're using selectors we must implement list_voltage. */
5045         if (regulator_desc->ops->get_voltage_sel &&
5046             !regulator_desc->ops->list_voltage) {
5047                 ret = -EINVAL;
5048                 goto rinse;
5049         }
5050         if (regulator_desc->ops->set_voltage_sel &&
5051             !regulator_desc->ops->list_voltage) {
5052                 ret = -EINVAL;
5053                 goto rinse;
5054         }
5055
5056         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5057         if (rdev == NULL) {
5058                 ret = -ENOMEM;
5059                 goto rinse;
5060         }
5061
5062         /*
5063          * Duplicate the config so the driver could override it after
5064          * parsing init data.
5065          */
5066         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5067         if (config == NULL) {
5068                 kfree(rdev);
5069                 ret = -ENOMEM;
5070                 goto rinse;
5071         }
5072
5073         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5074                                                &rdev->dev.of_node);
5075
5076         /*
5077          * Sometimes not all resources are probed already so we need to take
5078          * that into account. This happens most the time if the ena_gpiod comes
5079          * from a gpio extender or something else.
5080          */
5081         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5082                 kfree(config);
5083                 kfree(rdev);
5084                 ret = -EPROBE_DEFER;
5085                 goto rinse;
5086         }
5087
5088         /*
5089          * We need to keep track of any GPIO descriptor coming from the
5090          * device tree until we have handled it over to the core. If the
5091          * config that was passed in to this function DOES NOT contain
5092          * a descriptor, and the config after this call DOES contain
5093          * a descriptor, we definitely got one from parsing the device
5094          * tree.
5095          */
5096         if (!cfg->ena_gpiod && config->ena_gpiod)
5097                 dangling_of_gpiod = true;
5098         if (!init_data) {
5099                 init_data = config->init_data;
5100                 rdev->dev.of_node = of_node_get(config->of_node);
5101         }
5102
5103         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5104         rdev->reg_data = config->driver_data;
5105         rdev->owner = regulator_desc->owner;
5106         rdev->desc = regulator_desc;
5107         if (config->regmap)
5108                 rdev->regmap = config->regmap;
5109         else if (dev_get_regmap(dev, NULL))
5110                 rdev->regmap = dev_get_regmap(dev, NULL);
5111         else if (dev->parent)
5112                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5113         INIT_LIST_HEAD(&rdev->consumer_list);
5114         INIT_LIST_HEAD(&rdev->list);
5115         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5116         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5117
5118         /* preform any regulator specific init */
5119         if (init_data && init_data->regulator_init) {
5120                 ret = init_data->regulator_init(rdev->reg_data);
5121                 if (ret < 0)
5122                         goto clean;
5123         }
5124
5125         if (config->ena_gpiod) {
5126                 mutex_lock(&regulator_list_mutex);
5127                 ret = regulator_ena_gpio_request(rdev, config);
5128                 mutex_unlock(&regulator_list_mutex);
5129                 if (ret != 0) {
5130                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5131                                  ret);
5132                         goto clean;
5133                 }
5134                 /* The regulator core took over the GPIO descriptor */
5135                 dangling_cfg_gpiod = false;
5136                 dangling_of_gpiod = false;
5137         }
5138
5139         /* register with sysfs */
5140         rdev->dev.class = &regulator_class;
5141         rdev->dev.parent = dev;
5142         dev_set_name(&rdev->dev, "regulator.%lu",
5143                     (unsigned long) atomic_inc_return(&regulator_no));
5144
5145         /* set regulator constraints */
5146         if (init_data)
5147                 constraints = &init_data->constraints;
5148
5149         if (init_data && init_data->supply_regulator)
5150                 rdev->supply_name = init_data->supply_regulator;
5151         else if (regulator_desc->supply_name)
5152                 rdev->supply_name = regulator_desc->supply_name;
5153
5154         /*
5155          * Attempt to resolve the regulator supply, if specified,
5156          * but don't return an error if we fail because we will try
5157          * to resolve it again later as more regulators are added.
5158          */
5159         if (regulator_resolve_supply(rdev))
5160                 rdev_dbg(rdev, "unable to resolve supply\n");
5161
5162         ret = set_machine_constraints(rdev, constraints);
5163         if (ret < 0)
5164                 goto wash;
5165
5166         mutex_lock(&regulator_list_mutex);
5167         ret = regulator_init_coupling(rdev);
5168         mutex_unlock(&regulator_list_mutex);
5169         if (ret < 0)
5170                 goto wash;
5171
5172         /* add consumers devices */
5173         if (init_data) {
5174                 mutex_lock(&regulator_list_mutex);
5175                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5176                         ret = set_consumer_device_supply(rdev,
5177                                 init_data->consumer_supplies[i].dev_name,
5178                                 init_data->consumer_supplies[i].supply);
5179                         if (ret < 0) {
5180                                 mutex_unlock(&regulator_list_mutex);
5181                                 dev_err(dev, "Failed to set supply %s\n",
5182                                         init_data->consumer_supplies[i].supply);
5183                                 goto unset_supplies;
5184                         }
5185                 }
5186                 mutex_unlock(&regulator_list_mutex);
5187         }
5188
5189         if (!rdev->desc->ops->get_voltage &&
5190             !rdev->desc->ops->list_voltage &&
5191             !rdev->desc->fixed_uV)
5192                 rdev->is_switch = true;
5193
5194         dev_set_drvdata(&rdev->dev, rdev);
5195         ret = device_register(&rdev->dev);
5196         if (ret != 0) {
5197                 reg_device_fail = true;
5198                 goto unset_supplies;
5199         }
5200
5201         rdev_init_debugfs(rdev);
5202
5203         /* try to resolve regulators coupling since a new one was registered */
5204         mutex_lock(&regulator_list_mutex);
5205         regulator_resolve_coupling(rdev);
5206         mutex_unlock(&regulator_list_mutex);
5207
5208         /* try to resolve regulators supply since a new one was registered */
5209         class_for_each_device(&regulator_class, NULL, NULL,
5210                               regulator_register_resolve_supply);
5211         kfree(config);
5212         return rdev;
5213
5214 unset_supplies:
5215         mutex_lock(&regulator_list_mutex);
5216         unset_regulator_supplies(rdev);
5217         regulator_remove_coupling(rdev);
5218         mutex_unlock(&regulator_list_mutex);
5219 wash:
5220         kfree(rdev->coupling_desc.coupled_rdevs);
5221         kfree(rdev->constraints);
5222         mutex_lock(&regulator_list_mutex);
5223         regulator_ena_gpio_free(rdev);
5224         mutex_unlock(&regulator_list_mutex);
5225 clean:
5226         if (dangling_of_gpiod)
5227                 gpiod_put(config->ena_gpiod);
5228         if (reg_device_fail)
5229                 put_device(&rdev->dev);
5230         else
5231                 kfree(rdev);
5232         kfree(config);
5233 rinse:
5234         if (dangling_cfg_gpiod)
5235                 gpiod_put(cfg->ena_gpiod);
5236         return ERR_PTR(ret);
5237 }
5238 EXPORT_SYMBOL_GPL(regulator_register);
5239
5240 /**
5241  * regulator_unregister - unregister regulator
5242  * @rdev: regulator to unregister
5243  *
5244  * Called by regulator drivers to unregister a regulator.
5245  */
5246 void regulator_unregister(struct regulator_dev *rdev)
5247 {
5248         if (rdev == NULL)
5249                 return;
5250
5251         if (rdev->supply) {
5252                 while (rdev->use_count--)
5253                         regulator_disable(rdev->supply);
5254                 regulator_put(rdev->supply);
5255         }
5256
5257         flush_work(&rdev->disable_work.work);
5258
5259         mutex_lock(&regulator_list_mutex);
5260
5261         debugfs_remove_recursive(rdev->debugfs);
5262         WARN_ON(rdev->open_count);
5263         regulator_remove_coupling(rdev);
5264         unset_regulator_supplies(rdev);
5265         list_del(&rdev->list);
5266         regulator_ena_gpio_free(rdev);
5267         device_unregister(&rdev->dev);
5268
5269         mutex_unlock(&regulator_list_mutex);
5270 }
5271 EXPORT_SYMBOL_GPL(regulator_unregister);
5272
5273 #ifdef CONFIG_SUSPEND
5274 /**
5275  * regulator_suspend - prepare regulators for system wide suspend
5276  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5277  *
5278  * Configure each regulator with it's suspend operating parameters for state.
5279  */
5280 static int regulator_suspend(struct device *dev)
5281 {
5282         struct regulator_dev *rdev = dev_to_rdev(dev);
5283         suspend_state_t state = pm_suspend_target_state;
5284         int ret;
5285
5286         regulator_lock(rdev);
5287         ret = suspend_set_state(rdev, state);
5288         regulator_unlock(rdev);
5289
5290         return ret;
5291 }
5292
5293 static int regulator_resume(struct device *dev)
5294 {
5295         suspend_state_t state = pm_suspend_target_state;
5296         struct regulator_dev *rdev = dev_to_rdev(dev);
5297         struct regulator_state *rstate;
5298         int ret = 0;
5299
5300         rstate = regulator_get_suspend_state(rdev, state);
5301         if (rstate == NULL)
5302                 return 0;
5303
5304         regulator_lock(rdev);
5305
5306         if (rdev->desc->ops->resume &&
5307             (rstate->enabled == ENABLE_IN_SUSPEND ||
5308              rstate->enabled == DISABLE_IN_SUSPEND))
5309                 ret = rdev->desc->ops->resume(rdev);
5310
5311         regulator_unlock(rdev);
5312
5313         return ret;
5314 }
5315 #else /* !CONFIG_SUSPEND */
5316
5317 #define regulator_suspend       NULL
5318 #define regulator_resume        NULL
5319
5320 #endif /* !CONFIG_SUSPEND */
5321
5322 #ifdef CONFIG_PM
5323 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5324         .suspend        = regulator_suspend,
5325         .resume         = regulator_resume,
5326 };
5327 #endif
5328
5329 struct class regulator_class = {
5330         .name = "regulator",
5331         .dev_release = regulator_dev_release,
5332         .dev_groups = regulator_dev_groups,
5333 #ifdef CONFIG_PM
5334         .pm = &regulator_pm_ops,
5335 #endif
5336 };
5337 /**
5338  * regulator_has_full_constraints - the system has fully specified constraints
5339  *
5340  * Calling this function will cause the regulator API to disable all
5341  * regulators which have a zero use count and don't have an always_on
5342  * constraint in a late_initcall.
5343  *
5344  * The intention is that this will become the default behaviour in a
5345  * future kernel release so users are encouraged to use this facility
5346  * now.
5347  */
5348 void regulator_has_full_constraints(void)
5349 {
5350         has_full_constraints = 1;
5351 }
5352 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5353
5354 /**
5355  * rdev_get_drvdata - get rdev regulator driver data
5356  * @rdev: regulator
5357  *
5358  * Get rdev regulator driver private data. This call can be used in the
5359  * regulator driver context.
5360  */
5361 void *rdev_get_drvdata(struct regulator_dev *rdev)
5362 {
5363         return rdev->reg_data;
5364 }
5365 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5366
5367 /**
5368  * regulator_get_drvdata - get regulator driver data
5369  * @regulator: regulator
5370  *
5371  * Get regulator driver private data. This call can be used in the consumer
5372  * driver context when non API regulator specific functions need to be called.
5373  */
5374 void *regulator_get_drvdata(struct regulator *regulator)
5375 {
5376         return regulator->rdev->reg_data;
5377 }
5378 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5379
5380 /**
5381  * regulator_set_drvdata - set regulator driver data
5382  * @regulator: regulator
5383  * @data: data
5384  */
5385 void regulator_set_drvdata(struct regulator *regulator, void *data)
5386 {
5387         regulator->rdev->reg_data = data;
5388 }
5389 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5390
5391 /**
5392  * regulator_get_id - get regulator ID
5393  * @rdev: regulator
5394  */
5395 int rdev_get_id(struct regulator_dev *rdev)
5396 {
5397         return rdev->desc->id;
5398 }
5399 EXPORT_SYMBOL_GPL(rdev_get_id);
5400
5401 struct device *rdev_get_dev(struct regulator_dev *rdev)
5402 {
5403         return &rdev->dev;
5404 }
5405 EXPORT_SYMBOL_GPL(rdev_get_dev);
5406
5407 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5408 {
5409         return rdev->regmap;
5410 }
5411 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5412
5413 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5414 {
5415         return reg_init_data->driver_data;
5416 }
5417 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5418
5419 #ifdef CONFIG_DEBUG_FS
5420 static int supply_map_show(struct seq_file *sf, void *data)
5421 {
5422         struct regulator_map *map;
5423
5424         list_for_each_entry(map, &regulator_map_list, list) {
5425                 seq_printf(sf, "%s -> %s.%s\n",
5426                                 rdev_get_name(map->regulator), map->dev_name,
5427                                 map->supply);
5428         }
5429
5430         return 0;
5431 }
5432 DEFINE_SHOW_ATTRIBUTE(supply_map);
5433
5434 struct summary_data {
5435         struct seq_file *s;
5436         struct regulator_dev *parent;
5437         int level;
5438 };
5439
5440 static void regulator_summary_show_subtree(struct seq_file *s,
5441                                            struct regulator_dev *rdev,
5442                                            int level);
5443
5444 static int regulator_summary_show_children(struct device *dev, void *data)
5445 {
5446         struct regulator_dev *rdev = dev_to_rdev(dev);
5447         struct summary_data *summary_data = data;
5448
5449         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5450                 regulator_summary_show_subtree(summary_data->s, rdev,
5451                                                summary_data->level + 1);
5452
5453         return 0;
5454 }
5455
5456 static void regulator_summary_show_subtree(struct seq_file *s,
5457                                            struct regulator_dev *rdev,
5458                                            int level)
5459 {
5460         struct regulation_constraints *c;
5461         struct regulator *consumer;
5462         struct summary_data summary_data;
5463         unsigned int opmode;
5464
5465         if (!rdev)
5466                 return;
5467
5468         opmode = _regulator_get_mode_unlocked(rdev);
5469         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5470                    level * 3 + 1, "",
5471                    30 - level * 3, rdev_get_name(rdev),
5472                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5473                    regulator_opmode_to_str(opmode));
5474
5475         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5476         seq_printf(s, "%5dmA ",
5477                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5478
5479         c = rdev->constraints;
5480         if (c) {
5481                 switch (rdev->desc->type) {
5482                 case REGULATOR_VOLTAGE:
5483                         seq_printf(s, "%5dmV %5dmV ",
5484                                    c->min_uV / 1000, c->max_uV / 1000);
5485                         break;
5486                 case REGULATOR_CURRENT:
5487                         seq_printf(s, "%5dmA %5dmA ",
5488                                    c->min_uA / 1000, c->max_uA / 1000);
5489                         break;
5490                 }
5491         }
5492
5493         seq_puts(s, "\n");
5494
5495         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5496                 if (consumer->dev && consumer->dev->class == &regulator_class)
5497                         continue;
5498
5499                 seq_printf(s, "%*s%-*s ",
5500                            (level + 1) * 3 + 1, "",
5501                            30 - (level + 1) * 3,
5502                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5503
5504                 switch (rdev->desc->type) {
5505                 case REGULATOR_VOLTAGE:
5506                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5507                                    consumer->enable_count,
5508                                    consumer->uA_load / 1000,
5509                                    consumer->uA_load && !consumer->enable_count ?
5510                                    '*' : ' ',
5511                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5512                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5513                         break;
5514                 case REGULATOR_CURRENT:
5515                         break;
5516                 }
5517
5518                 seq_puts(s, "\n");
5519         }
5520
5521         summary_data.s = s;
5522         summary_data.level = level;
5523         summary_data.parent = rdev;
5524
5525         class_for_each_device(&regulator_class, NULL, &summary_data,
5526                               regulator_summary_show_children);
5527 }
5528
5529 struct summary_lock_data {
5530         struct ww_acquire_ctx *ww_ctx;
5531         struct regulator_dev **new_contended_rdev;
5532         struct regulator_dev **old_contended_rdev;
5533 };
5534
5535 static int regulator_summary_lock_one(struct device *dev, void *data)
5536 {
5537         struct regulator_dev *rdev = dev_to_rdev(dev);
5538         struct summary_lock_data *lock_data = data;
5539         int ret = 0;
5540
5541         if (rdev != *lock_data->old_contended_rdev) {
5542                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5543
5544                 if (ret == -EDEADLK)
5545                         *lock_data->new_contended_rdev = rdev;
5546                 else
5547                         WARN_ON_ONCE(ret);
5548         } else {
5549                 *lock_data->old_contended_rdev = NULL;
5550         }
5551
5552         return ret;
5553 }
5554
5555 static int regulator_summary_unlock_one(struct device *dev, void *data)
5556 {
5557         struct regulator_dev *rdev = dev_to_rdev(dev);
5558         struct summary_lock_data *lock_data = data;
5559
5560         if (lock_data) {
5561                 if (rdev == *lock_data->new_contended_rdev)
5562                         return -EDEADLK;
5563         }
5564
5565         regulator_unlock(rdev);
5566
5567         return 0;
5568 }
5569
5570 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5571                                       struct regulator_dev **new_contended_rdev,
5572                                       struct regulator_dev **old_contended_rdev)
5573 {
5574         struct summary_lock_data lock_data;
5575         int ret;
5576
5577         lock_data.ww_ctx = ww_ctx;
5578         lock_data.new_contended_rdev = new_contended_rdev;
5579         lock_data.old_contended_rdev = old_contended_rdev;
5580
5581         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5582                                     regulator_summary_lock_one);
5583         if (ret)
5584                 class_for_each_device(&regulator_class, NULL, &lock_data,
5585                                       regulator_summary_unlock_one);
5586
5587         return ret;
5588 }
5589
5590 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5591 {
5592         struct regulator_dev *new_contended_rdev = NULL;
5593         struct regulator_dev *old_contended_rdev = NULL;
5594         int err;
5595
5596         mutex_lock(&regulator_list_mutex);
5597
5598         ww_acquire_init(ww_ctx, &regulator_ww_class);
5599
5600         do {
5601                 if (new_contended_rdev) {
5602                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5603                         old_contended_rdev = new_contended_rdev;
5604                         old_contended_rdev->ref_cnt++;
5605                 }
5606
5607                 err = regulator_summary_lock_all(ww_ctx,
5608                                                  &new_contended_rdev,
5609                                                  &old_contended_rdev);
5610
5611                 if (old_contended_rdev)
5612                         regulator_unlock(old_contended_rdev);
5613
5614         } while (err == -EDEADLK);
5615
5616         ww_acquire_done(ww_ctx);
5617 }
5618
5619 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5620 {
5621         class_for_each_device(&regulator_class, NULL, NULL,
5622                               regulator_summary_unlock_one);
5623         ww_acquire_fini(ww_ctx);
5624
5625         mutex_unlock(&regulator_list_mutex);
5626 }
5627
5628 static int regulator_summary_show_roots(struct device *dev, void *data)
5629 {
5630         struct regulator_dev *rdev = dev_to_rdev(dev);
5631         struct seq_file *s = data;
5632
5633         if (!rdev->supply)
5634                 regulator_summary_show_subtree(s, rdev, 0);
5635
5636         return 0;
5637 }
5638
5639 static int regulator_summary_show(struct seq_file *s, void *data)
5640 {
5641         struct ww_acquire_ctx ww_ctx;
5642
5643         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5644         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5645
5646         regulator_summary_lock(&ww_ctx);
5647
5648         class_for_each_device(&regulator_class, NULL, s,
5649                               regulator_summary_show_roots);
5650
5651         regulator_summary_unlock(&ww_ctx);
5652
5653         return 0;
5654 }
5655 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5656 #endif /* CONFIG_DEBUG_FS */
5657
5658 static int __init regulator_init(void)
5659 {
5660         int ret;
5661
5662         ret = class_register(&regulator_class);
5663
5664         debugfs_root = debugfs_create_dir("regulator", NULL);
5665         if (!debugfs_root)
5666                 pr_warn("regulator: Failed to create debugfs directory\n");
5667
5668 #ifdef CONFIG_DEBUG_FS
5669         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5670                             &supply_map_fops);
5671
5672         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5673                             NULL, &regulator_summary_fops);
5674 #endif
5675         regulator_dummy_init();
5676
5677         regulator_coupler_register(&generic_regulator_coupler);
5678
5679         return ret;
5680 }
5681
5682 /* init early to allow our consumers to complete system booting */
5683 core_initcall(regulator_init);
5684
5685 static int regulator_late_cleanup(struct device *dev, void *data)
5686 {
5687         struct regulator_dev *rdev = dev_to_rdev(dev);
5688         const struct regulator_ops *ops = rdev->desc->ops;
5689         struct regulation_constraints *c = rdev->constraints;
5690         int enabled, ret;
5691
5692         if (c && c->always_on)
5693                 return 0;
5694
5695         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5696                 return 0;
5697
5698         regulator_lock(rdev);
5699
5700         if (rdev->use_count)
5701                 goto unlock;
5702
5703         /* If we can't read the status assume it's on. */
5704         if (ops->is_enabled)
5705                 enabled = ops->is_enabled(rdev);
5706         else
5707                 enabled = 1;
5708
5709         if (!enabled)
5710                 goto unlock;
5711
5712         if (have_full_constraints()) {
5713                 /* We log since this may kill the system if it goes
5714                  * wrong. */
5715                 rdev_info(rdev, "disabling\n");
5716                 ret = _regulator_do_disable(rdev);
5717                 if (ret != 0)
5718                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5719         } else {
5720                 /* The intention is that in future we will
5721                  * assume that full constraints are provided
5722                  * so warn even if we aren't going to do
5723                  * anything here.
5724                  */
5725                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5726         }
5727
5728 unlock:
5729         regulator_unlock(rdev);
5730
5731         return 0;
5732 }
5733
5734 static void regulator_init_complete_work_function(struct work_struct *work)
5735 {
5736         /*
5737          * Regulators may had failed to resolve their input supplies
5738          * when were registered, either because the input supply was
5739          * not registered yet or because its parent device was not
5740          * bound yet. So attempt to resolve the input supplies for
5741          * pending regulators before trying to disable unused ones.
5742          */
5743         class_for_each_device(&regulator_class, NULL, NULL,
5744                               regulator_register_resolve_supply);
5745
5746         /* If we have a full configuration then disable any regulators
5747          * we have permission to change the status for and which are
5748          * not in use or always_on.  This is effectively the default
5749          * for DT and ACPI as they have full constraints.
5750          */
5751         class_for_each_device(&regulator_class, NULL, NULL,
5752                               regulator_late_cleanup);
5753 }
5754
5755 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5756                             regulator_init_complete_work_function);
5757
5758 static int __init regulator_init_complete(void)
5759 {
5760         /*
5761          * Since DT doesn't provide an idiomatic mechanism for
5762          * enabling full constraints and since it's much more natural
5763          * with DT to provide them just assume that a DT enabled
5764          * system has full constraints.
5765          */
5766         if (of_have_populated_dt())
5767                 has_full_constraints = true;
5768
5769         /*
5770          * We punt completion for an arbitrary amount of time since
5771          * systems like distros will load many drivers from userspace
5772          * so consumers might not always be ready yet, this is
5773          * particularly an issue with laptops where this might bounce
5774          * the display off then on.  Ideally we'd get a notification
5775          * from userspace when this happens but we don't so just wait
5776          * a bit and hope we waited long enough.  It'd be better if
5777          * we'd only do this on systems that need it, and a kernel
5778          * command line option might be useful.
5779          */
5780         schedule_delayed_work(&regulator_init_complete_work,
5781                               msecs_to_jiffies(30000));
5782
5783         return 0;
5784 }
5785 late_initcall_sync(regulator_init_complete);