]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
regulator: core: Don't use regulators as supplies until the parent is bound
[linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038         const struct regulation_constraints *constraints)
1039 {
1040         int ret = 0;
1041         const struct regulator_ops *ops = rdev->desc->ops;
1042
1043         if (constraints)
1044                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045                                             GFP_KERNEL);
1046         else
1047                 rdev->constraints = kzalloc(sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         if (!rdev->constraints)
1050                 return -ENOMEM;
1051
1052         ret = machine_constraints_voltage(rdev, rdev->constraints);
1053         if (ret != 0)
1054                 return ret;
1055
1056         ret = machine_constraints_current(rdev, rdev->constraints);
1057         if (ret != 0)
1058                 return ret;
1059
1060         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061                 ret = ops->set_input_current_limit(rdev,
1062                                                    rdev->constraints->ilim_uA);
1063                 if (ret < 0) {
1064                         rdev_err(rdev, "failed to set input limit\n");
1065                         return ret;
1066                 }
1067         }
1068
1069         /* do we need to setup our suspend state */
1070         if (rdev->constraints->initial_state) {
1071                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set suspend state\n");
1074                         return ret;
1075                 }
1076         }
1077
1078         if (rdev->constraints->initial_mode) {
1079                 if (!ops->set_mode) {
1080                         rdev_err(rdev, "no set_mode operation\n");
1081                         return -EINVAL;
1082                 }
1083
1084                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087                         return ret;
1088                 }
1089         }
1090
1091         /* If the constraints say the regulator should be on at this point
1092          * and we have control then make sure it is enabled.
1093          */
1094         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095                 ret = _regulator_do_enable(rdev);
1096                 if (ret < 0 && ret != -EINVAL) {
1097                         rdev_err(rdev, "failed to enable\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103                 && ops->set_ramp_delay) {
1104                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105                 if (ret < 0) {
1106                         rdev_err(rdev, "failed to set ramp_delay\n");
1107                         return ret;
1108                 }
1109         }
1110
1111         if (rdev->constraints->pull_down && ops->set_pull_down) {
1112                 ret = ops->set_pull_down(rdev);
1113                 if (ret < 0) {
1114                         rdev_err(rdev, "failed to set pull down\n");
1115                         return ret;
1116                 }
1117         }
1118
1119         if (rdev->constraints->soft_start && ops->set_soft_start) {
1120                 ret = ops->set_soft_start(rdev);
1121                 if (ret < 0) {
1122                         rdev_err(rdev, "failed to set soft start\n");
1123                         return ret;
1124                 }
1125         }
1126
1127         if (rdev->constraints->over_current_protection
1128                 && ops->set_over_current_protection) {
1129                 ret = ops->set_over_current_protection(rdev);
1130                 if (ret < 0) {
1131                         rdev_err(rdev, "failed to set over current protection\n");
1132                         return ret;
1133                 }
1134         }
1135
1136         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137                 bool ad_state = (rdev->constraints->active_discharge ==
1138                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140                 ret = ops->set_active_discharge(rdev, ad_state);
1141                 if (ret < 0) {
1142                         rdev_err(rdev, "failed to set active discharge\n");
1143                         return ret;
1144                 }
1145         }
1146
1147         print_constraints(rdev);
1148         return 0;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260                                           char __user *user_buf,
1261                                           size_t count, loff_t *ppos)
1262 {
1263         const struct regulator *regulator = file->private_data;
1264         const struct regulation_constraints *c = regulator->rdev->constraints;
1265         char *buf;
1266         ssize_t ret;
1267
1268         if (!c)
1269                 return 0;
1270
1271         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272         if (!buf)
1273                 return -ENOMEM;
1274
1275         ret = snprintf(buf, PAGE_SIZE,
1276                         "always_on: %u\n"
1277                         "boot_on: %u\n"
1278                         "apply_uV: %u\n"
1279                         "ramp_disable: %u\n"
1280                         "soft_start: %u\n"
1281                         "pull_down: %u\n"
1282                         "over_current_protection: %u\n",
1283                         c->always_on,
1284                         c->boot_on,
1285                         c->apply_uV,
1286                         c->ramp_disable,
1287                         c->soft_start,
1288                         c->pull_down,
1289                         c->over_current_protection);
1290
1291         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292         kfree(buf);
1293
1294         return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301         .open = simple_open,
1302         .read = constraint_flags_read_file,
1303         .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE    64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310                                           struct device *dev,
1311                                           const char *supply_name)
1312 {
1313         struct regulator *regulator;
1314         char buf[REG_STR_SIZE];
1315         int err, size;
1316
1317         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318         if (regulator == NULL)
1319                 return NULL;
1320
1321         mutex_lock(&rdev->mutex);
1322         regulator->rdev = rdev;
1323         list_add(&regulator->list, &rdev->consumer_list);
1324
1325         if (dev) {
1326                 regulator->dev = dev;
1327
1328                 /* Add a link to the device sysfs entry */
1329                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330                                  dev->kobj.name, supply_name);
1331                 if (size >= REG_STR_SIZE)
1332                         goto overflow_err;
1333
1334                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335                 if (regulator->supply_name == NULL)
1336                         goto overflow_err;
1337
1338                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339                                         buf);
1340                 if (err) {
1341                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1342                                   dev->kobj.name, err);
1343                         /* non-fatal */
1344                 }
1345         } else {
1346                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347                 if (regulator->supply_name == NULL)
1348                         goto overflow_err;
1349         }
1350
1351         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352                                                 rdev->debugfs);
1353         if (!regulator->debugfs) {
1354                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355         } else {
1356                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357                                    &regulator->uA_load);
1358                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359                                    &regulator->min_uV);
1360                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361                                    &regulator->max_uV);
1362                 debugfs_create_file("constraint_flags", 0444,
1363                                     regulator->debugfs, regulator,
1364                                     &constraint_flags_fops);
1365         }
1366
1367         /*
1368          * Check now if the regulator is an always on regulator - if
1369          * it is then we don't need to do nearly so much work for
1370          * enable/disable calls.
1371          */
1372         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373             _regulator_is_enabled(rdev))
1374                 regulator->always_on = true;
1375
1376         mutex_unlock(&rdev->mutex);
1377         return regulator;
1378 overflow_err:
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381         mutex_unlock(&rdev->mutex);
1382         return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387         if (rdev->constraints && rdev->constraints->enable_time)
1388                 return rdev->constraints->enable_time;
1389         if (!rdev->desc->ops->enable_time)
1390                 return rdev->desc->enable_time;
1391         return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395                 struct device *dev, const char *supply)
1396 {
1397         struct regulator_supply_alias *map;
1398
1399         list_for_each_entry(map, &regulator_supply_alias_list, list)
1400                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401                         return map;
1402
1403         return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408         struct regulator_supply_alias *map;
1409
1410         map = regulator_find_supply_alias(*dev, *supply);
1411         if (map) {
1412                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413                                 *supply, map->alias_supply,
1414                                 dev_name(map->alias_dev));
1415                 *dev = map->alias_dev;
1416                 *supply = map->alias_supply;
1417         }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422         return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427         struct device *dev;
1428
1429         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431         return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436         struct regulator_dev *r = dev_to_rdev(dev);
1437
1438         return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443         struct device *dev;
1444
1445         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447         return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one,
1459  * or NULL on failure. The refcount must be dropped by calling put_device().
1460  */
1461 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462                                                   const char *supply,
1463                                                   int *ret)
1464 {
1465         struct regulator_dev *r;
1466         struct device_node *node;
1467         struct regulator_map *map;
1468         const char *devname = NULL;
1469
1470         regulator_supply_alias(&dev, &supply);
1471
1472         /* first do a dt based lookup */
1473         if (dev && dev->of_node) {
1474                 node = of_get_regulator(dev, supply);
1475                 if (node) {
1476                         r = of_find_regulator_by_node(node);
1477                         if (r)
1478                                 return r;
1479                         *ret = -EPROBE_DEFER;
1480                         return NULL;
1481                 } else {
1482                         /*
1483                          * If we couldn't even get the node then it's
1484                          * not just that the device didn't register
1485                          * yet, there's no node and we'll never
1486                          * succeed.
1487                          */
1488                         *ret = -ENODEV;
1489                 }
1490         }
1491
1492         /* if not found, try doing it non-dt way */
1493         if (dev)
1494                 devname = dev_name(dev);
1495
1496         r = regulator_lookup_by_name(supply);
1497         if (r)
1498                 return r;
1499
1500         mutex_lock(&regulator_list_mutex);
1501         list_for_each_entry(map, &regulator_map_list, list) {
1502                 /* If the mapping has a device set up it must match */
1503                 if (map->dev_name &&
1504                     (!devname || strcmp(map->dev_name, devname)))
1505                         continue;
1506
1507                 if (strcmp(map->supply, supply) == 0 &&
1508                     get_device(&map->regulator->dev)) {
1509                         mutex_unlock(&regulator_list_mutex);
1510                         return map->regulator;
1511                 }
1512         }
1513         mutex_unlock(&regulator_list_mutex);
1514
1515         return NULL;
1516 }
1517
1518 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 {
1520         struct regulator_dev *r;
1521         struct device *dev = rdev->dev.parent;
1522         int ret;
1523
1524         /* No supply to resovle? */
1525         if (!rdev->supply_name)
1526                 return 0;
1527
1528         /* Supply already resolved? */
1529         if (rdev->supply)
1530                 return 0;
1531
1532         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533         if (!r) {
1534                 if (ret == -ENODEV) {
1535                         /*
1536                          * No supply was specified for this regulator and
1537                          * there will never be one.
1538                          */
1539                         return 0;
1540                 }
1541
1542                 /* Did the lookup explicitly defer for us? */
1543                 if (ret == -EPROBE_DEFER)
1544                         return ret;
1545
1546                 if (have_full_constraints()) {
1547                         r = dummy_regulator_rdev;
1548                         get_device(&r->dev);
1549                 } else {
1550                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551                                 rdev->supply_name, rdev->desc->name);
1552                         return -EPROBE_DEFER;
1553                 }
1554         }
1555
1556         /*
1557          * If the supply's parent device is not the same as the
1558          * regulator's parent device, then ensure the parent device
1559          * is bound before we resolve the supply, in case the parent
1560          * device get probe deferred and unregisters the supply.
1561          */
1562         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1563                 if (!device_is_bound(r->dev.parent)) {
1564                         put_device(&r->dev);
1565                         return -EPROBE_DEFER;
1566                 }
1567         }
1568
1569         /* Recursively resolve the supply of the supply */
1570         ret = regulator_resolve_supply(r);
1571         if (ret < 0) {
1572                 put_device(&r->dev);
1573                 return ret;
1574         }
1575
1576         ret = set_supply(rdev, r);
1577         if (ret < 0) {
1578                 put_device(&r->dev);
1579                 return ret;
1580         }
1581
1582         /* Cascade always-on state to supply */
1583         if (_regulator_is_enabled(rdev)) {
1584                 ret = regulator_enable(rdev->supply);
1585                 if (ret < 0) {
1586                         _regulator_put(rdev->supply);
1587                         rdev->supply = NULL;
1588                         return ret;
1589                 }
1590         }
1591
1592         return 0;
1593 }
1594
1595 /* Internal regulator request function */
1596 static struct regulator *_regulator_get(struct device *dev, const char *id,
1597                                         bool exclusive, bool allow_dummy)
1598 {
1599         struct regulator_dev *rdev;
1600         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1601         const char *devname = NULL;
1602         int ret;
1603
1604         if (id == NULL) {
1605                 pr_err("get() with no identifier\n");
1606                 return ERR_PTR(-EINVAL);
1607         }
1608
1609         if (dev)
1610                 devname = dev_name(dev);
1611
1612         if (have_full_constraints())
1613                 ret = -ENODEV;
1614         else
1615                 ret = -EPROBE_DEFER;
1616
1617         rdev = regulator_dev_lookup(dev, id, &ret);
1618         if (rdev)
1619                 goto found;
1620
1621         regulator = ERR_PTR(ret);
1622
1623         /*
1624          * If we have return value from dev_lookup fail, we do not expect to
1625          * succeed, so, quit with appropriate error value
1626          */
1627         if (ret && ret != -ENODEV)
1628                 return regulator;
1629
1630         if (!devname)
1631                 devname = "deviceless";
1632
1633         /*
1634          * Assume that a regulator is physically present and enabled
1635          * even if it isn't hooked up and just provide a dummy.
1636          */
1637         if (have_full_constraints() && allow_dummy) {
1638                 pr_warn("%s supply %s not found, using dummy regulator\n",
1639                         devname, id);
1640
1641                 rdev = dummy_regulator_rdev;
1642                 get_device(&rdev->dev);
1643                 goto found;
1644         /* Don't log an error when called from regulator_get_optional() */
1645         } else if (!have_full_constraints() || exclusive) {
1646                 dev_warn(dev, "dummy supplies not allowed\n");
1647         }
1648
1649         return regulator;
1650
1651 found:
1652         if (rdev->exclusive) {
1653                 regulator = ERR_PTR(-EPERM);
1654                 put_device(&rdev->dev);
1655                 return regulator;
1656         }
1657
1658         if (exclusive && rdev->open_count) {
1659                 regulator = ERR_PTR(-EBUSY);
1660                 put_device(&rdev->dev);
1661                 return regulator;
1662         }
1663
1664         ret = regulator_resolve_supply(rdev);
1665         if (ret < 0) {
1666                 regulator = ERR_PTR(ret);
1667                 put_device(&rdev->dev);
1668                 return regulator;
1669         }
1670
1671         if (!try_module_get(rdev->owner)) {
1672                 put_device(&rdev->dev);
1673                 return regulator;
1674         }
1675
1676         regulator = create_regulator(rdev, dev, id);
1677         if (regulator == NULL) {
1678                 regulator = ERR_PTR(-ENOMEM);
1679                 put_device(&rdev->dev);
1680                 module_put(rdev->owner);
1681                 return regulator;
1682         }
1683
1684         rdev->open_count++;
1685         if (exclusive) {
1686                 rdev->exclusive = 1;
1687
1688                 ret = _regulator_is_enabled(rdev);
1689                 if (ret > 0)
1690                         rdev->use_count = 1;
1691                 else
1692                         rdev->use_count = 0;
1693         }
1694
1695         return regulator;
1696 }
1697
1698 /**
1699  * regulator_get - lookup and obtain a reference to a regulator.
1700  * @dev: device for regulator "consumer"
1701  * @id: Supply name or regulator ID.
1702  *
1703  * Returns a struct regulator corresponding to the regulator producer,
1704  * or IS_ERR() condition containing errno.
1705  *
1706  * Use of supply names configured via regulator_set_device_supply() is
1707  * strongly encouraged.  It is recommended that the supply name used
1708  * should match the name used for the supply and/or the relevant
1709  * device pins in the datasheet.
1710  */
1711 struct regulator *regulator_get(struct device *dev, const char *id)
1712 {
1713         return _regulator_get(dev, id, false, true);
1714 }
1715 EXPORT_SYMBOL_GPL(regulator_get);
1716
1717 /**
1718  * regulator_get_exclusive - obtain exclusive access to a regulator.
1719  * @dev: device for regulator "consumer"
1720  * @id: Supply name or regulator ID.
1721  *
1722  * Returns a struct regulator corresponding to the regulator producer,
1723  * or IS_ERR() condition containing errno.  Other consumers will be
1724  * unable to obtain this regulator while this reference is held and the
1725  * use count for the regulator will be initialised to reflect the current
1726  * state of the regulator.
1727  *
1728  * This is intended for use by consumers which cannot tolerate shared
1729  * use of the regulator such as those which need to force the
1730  * regulator off for correct operation of the hardware they are
1731  * controlling.
1732  *
1733  * Use of supply names configured via regulator_set_device_supply() is
1734  * strongly encouraged.  It is recommended that the supply name used
1735  * should match the name used for the supply and/or the relevant
1736  * device pins in the datasheet.
1737  */
1738 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1739 {
1740         return _regulator_get(dev, id, true, false);
1741 }
1742 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1743
1744 /**
1745  * regulator_get_optional - obtain optional access to a regulator.
1746  * @dev: device for regulator "consumer"
1747  * @id: Supply name or regulator ID.
1748  *
1749  * Returns a struct regulator corresponding to the regulator producer,
1750  * or IS_ERR() condition containing errno.
1751  *
1752  * This is intended for use by consumers for devices which can have
1753  * some supplies unconnected in normal use, such as some MMC devices.
1754  * It can allow the regulator core to provide stub supplies for other
1755  * supplies requested using normal regulator_get() calls without
1756  * disrupting the operation of drivers that can handle absent
1757  * supplies.
1758  *
1759  * Use of supply names configured via regulator_set_device_supply() is
1760  * strongly encouraged.  It is recommended that the supply name used
1761  * should match the name used for the supply and/or the relevant
1762  * device pins in the datasheet.
1763  */
1764 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1765 {
1766         return _regulator_get(dev, id, false, false);
1767 }
1768 EXPORT_SYMBOL_GPL(regulator_get_optional);
1769
1770 /* regulator_list_mutex lock held by regulator_put() */
1771 static void _regulator_put(struct regulator *regulator)
1772 {
1773         struct regulator_dev *rdev;
1774
1775         if (IS_ERR_OR_NULL(regulator))
1776                 return;
1777
1778         lockdep_assert_held_once(&regulator_list_mutex);
1779
1780         rdev = regulator->rdev;
1781
1782         debugfs_remove_recursive(regulator->debugfs);
1783
1784         /* remove any sysfs entries */
1785         if (regulator->dev)
1786                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1787         mutex_lock(&rdev->mutex);
1788         list_del(&regulator->list);
1789
1790         rdev->open_count--;
1791         rdev->exclusive = 0;
1792         put_device(&rdev->dev);
1793         mutex_unlock(&rdev->mutex);
1794
1795         kfree(regulator->supply_name);
1796         kfree(regulator);
1797
1798         module_put(rdev->owner);
1799 }
1800
1801 /**
1802  * regulator_put - "free" the regulator source
1803  * @regulator: regulator source
1804  *
1805  * Note: drivers must ensure that all regulator_enable calls made on this
1806  * regulator source are balanced by regulator_disable calls prior to calling
1807  * this function.
1808  */
1809 void regulator_put(struct regulator *regulator)
1810 {
1811         mutex_lock(&regulator_list_mutex);
1812         _regulator_put(regulator);
1813         mutex_unlock(&regulator_list_mutex);
1814 }
1815 EXPORT_SYMBOL_GPL(regulator_put);
1816
1817 /**
1818  * regulator_register_supply_alias - Provide device alias for supply lookup
1819  *
1820  * @dev: device that will be given as the regulator "consumer"
1821  * @id: Supply name or regulator ID
1822  * @alias_dev: device that should be used to lookup the supply
1823  * @alias_id: Supply name or regulator ID that should be used to lookup the
1824  * supply
1825  *
1826  * All lookups for id on dev will instead be conducted for alias_id on
1827  * alias_dev.
1828  */
1829 int regulator_register_supply_alias(struct device *dev, const char *id,
1830                                     struct device *alias_dev,
1831                                     const char *alias_id)
1832 {
1833         struct regulator_supply_alias *map;
1834
1835         map = regulator_find_supply_alias(dev, id);
1836         if (map)
1837                 return -EEXIST;
1838
1839         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1840         if (!map)
1841                 return -ENOMEM;
1842
1843         map->src_dev = dev;
1844         map->src_supply = id;
1845         map->alias_dev = alias_dev;
1846         map->alias_supply = alias_id;
1847
1848         list_add(&map->list, &regulator_supply_alias_list);
1849
1850         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1851                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1852
1853         return 0;
1854 }
1855 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1856
1857 /**
1858  * regulator_unregister_supply_alias - Remove device alias
1859  *
1860  * @dev: device that will be given as the regulator "consumer"
1861  * @id: Supply name or regulator ID
1862  *
1863  * Remove a lookup alias if one exists for id on dev.
1864  */
1865 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1866 {
1867         struct regulator_supply_alias *map;
1868
1869         map = regulator_find_supply_alias(dev, id);
1870         if (map) {
1871                 list_del(&map->list);
1872                 kfree(map);
1873         }
1874 }
1875 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1876
1877 /**
1878  * regulator_bulk_register_supply_alias - register multiple aliases
1879  *
1880  * @dev: device that will be given as the regulator "consumer"
1881  * @id: List of supply names or regulator IDs
1882  * @alias_dev: device that should be used to lookup the supply
1883  * @alias_id: List of supply names or regulator IDs that should be used to
1884  * lookup the supply
1885  * @num_id: Number of aliases to register
1886  *
1887  * @return 0 on success, an errno on failure.
1888  *
1889  * This helper function allows drivers to register several supply
1890  * aliases in one operation.  If any of the aliases cannot be
1891  * registered any aliases that were registered will be removed
1892  * before returning to the caller.
1893  */
1894 int regulator_bulk_register_supply_alias(struct device *dev,
1895                                          const char *const *id,
1896                                          struct device *alias_dev,
1897                                          const char *const *alias_id,
1898                                          int num_id)
1899 {
1900         int i;
1901         int ret;
1902
1903         for (i = 0; i < num_id; ++i) {
1904                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1905                                                       alias_id[i]);
1906                 if (ret < 0)
1907                         goto err;
1908         }
1909
1910         return 0;
1911
1912 err:
1913         dev_err(dev,
1914                 "Failed to create supply alias %s,%s -> %s,%s\n",
1915                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1916
1917         while (--i >= 0)
1918                 regulator_unregister_supply_alias(dev, id[i]);
1919
1920         return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1923
1924 /**
1925  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1926  *
1927  * @dev: device that will be given as the regulator "consumer"
1928  * @id: List of supply names or regulator IDs
1929  * @num_id: Number of aliases to unregister
1930  *
1931  * This helper function allows drivers to unregister several supply
1932  * aliases in one operation.
1933  */
1934 void regulator_bulk_unregister_supply_alias(struct device *dev,
1935                                             const char *const *id,
1936                                             int num_id)
1937 {
1938         int i;
1939
1940         for (i = 0; i < num_id; ++i)
1941                 regulator_unregister_supply_alias(dev, id[i]);
1942 }
1943 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1944
1945
1946 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1947 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1948                                 const struct regulator_config *config)
1949 {
1950         struct regulator_enable_gpio *pin;
1951         struct gpio_desc *gpiod;
1952         int ret;
1953
1954         gpiod = gpio_to_desc(config->ena_gpio);
1955
1956         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1957                 if (pin->gpiod == gpiod) {
1958                         rdev_dbg(rdev, "GPIO %d is already used\n",
1959                                 config->ena_gpio);
1960                         goto update_ena_gpio_to_rdev;
1961                 }
1962         }
1963
1964         ret = gpio_request_one(config->ena_gpio,
1965                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1966                                 rdev_get_name(rdev));
1967         if (ret)
1968                 return ret;
1969
1970         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1971         if (pin == NULL) {
1972                 gpio_free(config->ena_gpio);
1973                 return -ENOMEM;
1974         }
1975
1976         pin->gpiod = gpiod;
1977         pin->ena_gpio_invert = config->ena_gpio_invert;
1978         list_add(&pin->list, &regulator_ena_gpio_list);
1979
1980 update_ena_gpio_to_rdev:
1981         pin->request_count++;
1982         rdev->ena_pin = pin;
1983         return 0;
1984 }
1985
1986 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1987 {
1988         struct regulator_enable_gpio *pin, *n;
1989
1990         if (!rdev->ena_pin)
1991                 return;
1992
1993         /* Free the GPIO only in case of no use */
1994         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1995                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1996                         if (pin->request_count <= 1) {
1997                                 pin->request_count = 0;
1998                                 gpiod_put(pin->gpiod);
1999                                 list_del(&pin->list);
2000                                 kfree(pin);
2001                                 rdev->ena_pin = NULL;
2002                                 return;
2003                         } else {
2004                                 pin->request_count--;
2005                         }
2006                 }
2007         }
2008 }
2009
2010 /**
2011  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2012  * @rdev: regulator_dev structure
2013  * @enable: enable GPIO at initial use?
2014  *
2015  * GPIO is enabled in case of initial use. (enable_count is 0)
2016  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2017  */
2018 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2019 {
2020         struct regulator_enable_gpio *pin = rdev->ena_pin;
2021
2022         if (!pin)
2023                 return -EINVAL;
2024
2025         if (enable) {
2026                 /* Enable GPIO at initial use */
2027                 if (pin->enable_count == 0)
2028                         gpiod_set_value_cansleep(pin->gpiod,
2029                                                  !pin->ena_gpio_invert);
2030
2031                 pin->enable_count++;
2032         } else {
2033                 if (pin->enable_count > 1) {
2034                         pin->enable_count--;
2035                         return 0;
2036                 }
2037
2038                 /* Disable GPIO if not used */
2039                 if (pin->enable_count <= 1) {
2040                         gpiod_set_value_cansleep(pin->gpiod,
2041                                                  pin->ena_gpio_invert);
2042                         pin->enable_count = 0;
2043                 }
2044         }
2045
2046         return 0;
2047 }
2048
2049 /**
2050  * _regulator_enable_delay - a delay helper function
2051  * @delay: time to delay in microseconds
2052  *
2053  * Delay for the requested amount of time as per the guidelines in:
2054  *
2055  *     Documentation/timers/timers-howto.txt
2056  *
2057  * The assumption here is that regulators will never be enabled in
2058  * atomic context and therefore sleeping functions can be used.
2059  */
2060 static void _regulator_enable_delay(unsigned int delay)
2061 {
2062         unsigned int ms = delay / 1000;
2063         unsigned int us = delay % 1000;
2064
2065         if (ms > 0) {
2066                 /*
2067                  * For small enough values, handle super-millisecond
2068                  * delays in the usleep_range() call below.
2069                  */
2070                 if (ms < 20)
2071                         us += ms * 1000;
2072                 else
2073                         msleep(ms);
2074         }
2075
2076         /*
2077          * Give the scheduler some room to coalesce with any other
2078          * wakeup sources. For delays shorter than 10 us, don't even
2079          * bother setting up high-resolution timers and just busy-
2080          * loop.
2081          */
2082         if (us >= 10)
2083                 usleep_range(us, us + 100);
2084         else
2085                 udelay(us);
2086 }
2087
2088 static int _regulator_do_enable(struct regulator_dev *rdev)
2089 {
2090         int ret, delay;
2091
2092         /* Query before enabling in case configuration dependent.  */
2093         ret = _regulator_get_enable_time(rdev);
2094         if (ret >= 0) {
2095                 delay = ret;
2096         } else {
2097                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2098                 delay = 0;
2099         }
2100
2101         trace_regulator_enable(rdev_get_name(rdev));
2102
2103         if (rdev->desc->off_on_delay) {
2104                 /* if needed, keep a distance of off_on_delay from last time
2105                  * this regulator was disabled.
2106                  */
2107                 unsigned long start_jiffy = jiffies;
2108                 unsigned long intended, max_delay, remaining;
2109
2110                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2111                 intended = rdev->last_off_jiffy + max_delay;
2112
2113                 if (time_before(start_jiffy, intended)) {
2114                         /* calc remaining jiffies to deal with one-time
2115                          * timer wrapping.
2116                          * in case of multiple timer wrapping, either it can be
2117                          * detected by out-of-range remaining, or it cannot be
2118                          * detected and we gets a panelty of
2119                          * _regulator_enable_delay().
2120                          */
2121                         remaining = intended - start_jiffy;
2122                         if (remaining <= max_delay)
2123                                 _regulator_enable_delay(
2124                                                 jiffies_to_usecs(remaining));
2125                 }
2126         }
2127
2128         if (rdev->ena_pin) {
2129                 if (!rdev->ena_gpio_state) {
2130                         ret = regulator_ena_gpio_ctrl(rdev, true);
2131                         if (ret < 0)
2132                                 return ret;
2133                         rdev->ena_gpio_state = 1;
2134                 }
2135         } else if (rdev->desc->ops->enable) {
2136                 ret = rdev->desc->ops->enable(rdev);
2137                 if (ret < 0)
2138                         return ret;
2139         } else {
2140                 return -EINVAL;
2141         }
2142
2143         /* Allow the regulator to ramp; it would be useful to extend
2144          * this for bulk operations so that the regulators can ramp
2145          * together.  */
2146         trace_regulator_enable_delay(rdev_get_name(rdev));
2147
2148         _regulator_enable_delay(delay);
2149
2150         trace_regulator_enable_complete(rdev_get_name(rdev));
2151
2152         return 0;
2153 }
2154
2155 /* locks held by regulator_enable() */
2156 static int _regulator_enable(struct regulator_dev *rdev)
2157 {
2158         int ret;
2159
2160         lockdep_assert_held_once(&rdev->mutex);
2161
2162         /* check voltage and requested load before enabling */
2163         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2164                 drms_uA_update(rdev);
2165
2166         if (rdev->use_count == 0) {
2167                 /* The regulator may on if it's not switchable or left on */
2168                 ret = _regulator_is_enabled(rdev);
2169                 if (ret == -EINVAL || ret == 0) {
2170                         if (!regulator_ops_is_valid(rdev,
2171                                         REGULATOR_CHANGE_STATUS))
2172                                 return -EPERM;
2173
2174                         ret = _regulator_do_enable(rdev);
2175                         if (ret < 0)
2176                                 return ret;
2177
2178                 } else if (ret < 0) {
2179                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2180                         return ret;
2181                 }
2182                 /* Fallthrough on positive return values - already enabled */
2183         }
2184
2185         rdev->use_count++;
2186
2187         return 0;
2188 }
2189
2190 /**
2191  * regulator_enable - enable regulator output
2192  * @regulator: regulator source
2193  *
2194  * Request that the regulator be enabled with the regulator output at
2195  * the predefined voltage or current value.  Calls to regulator_enable()
2196  * must be balanced with calls to regulator_disable().
2197  *
2198  * NOTE: the output value can be set by other drivers, boot loader or may be
2199  * hardwired in the regulator.
2200  */
2201 int regulator_enable(struct regulator *regulator)
2202 {
2203         struct regulator_dev *rdev = regulator->rdev;
2204         int ret = 0;
2205
2206         if (regulator->always_on)
2207                 return 0;
2208
2209         if (rdev->supply) {
2210                 ret = regulator_enable(rdev->supply);
2211                 if (ret != 0)
2212                         return ret;
2213         }
2214
2215         mutex_lock(&rdev->mutex);
2216         ret = _regulator_enable(rdev);
2217         mutex_unlock(&rdev->mutex);
2218
2219         if (ret != 0 && rdev->supply)
2220                 regulator_disable(rdev->supply);
2221
2222         return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(regulator_enable);
2225
2226 static int _regulator_do_disable(struct regulator_dev *rdev)
2227 {
2228         int ret;
2229
2230         trace_regulator_disable(rdev_get_name(rdev));
2231
2232         if (rdev->ena_pin) {
2233                 if (rdev->ena_gpio_state) {
2234                         ret = regulator_ena_gpio_ctrl(rdev, false);
2235                         if (ret < 0)
2236                                 return ret;
2237                         rdev->ena_gpio_state = 0;
2238                 }
2239
2240         } else if (rdev->desc->ops->disable) {
2241                 ret = rdev->desc->ops->disable(rdev);
2242                 if (ret != 0)
2243                         return ret;
2244         }
2245
2246         /* cares about last_off_jiffy only if off_on_delay is required by
2247          * device.
2248          */
2249         if (rdev->desc->off_on_delay)
2250                 rdev->last_off_jiffy = jiffies;
2251
2252         trace_regulator_disable_complete(rdev_get_name(rdev));
2253
2254         return 0;
2255 }
2256
2257 /* locks held by regulator_disable() */
2258 static int _regulator_disable(struct regulator_dev *rdev)
2259 {
2260         int ret = 0;
2261
2262         lockdep_assert_held_once(&rdev->mutex);
2263
2264         if (WARN(rdev->use_count <= 0,
2265                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2266                 return -EIO;
2267
2268         /* are we the last user and permitted to disable ? */
2269         if (rdev->use_count == 1 &&
2270             (rdev->constraints && !rdev->constraints->always_on)) {
2271
2272                 /* we are last user */
2273                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2274                         ret = _notifier_call_chain(rdev,
2275                                                    REGULATOR_EVENT_PRE_DISABLE,
2276                                                    NULL);
2277                         if (ret & NOTIFY_STOP_MASK)
2278                                 return -EINVAL;
2279
2280                         ret = _regulator_do_disable(rdev);
2281                         if (ret < 0) {
2282                                 rdev_err(rdev, "failed to disable\n");
2283                                 _notifier_call_chain(rdev,
2284                                                 REGULATOR_EVENT_ABORT_DISABLE,
2285                                                 NULL);
2286                                 return ret;
2287                         }
2288                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2289                                         NULL);
2290                 }
2291
2292                 rdev->use_count = 0;
2293         } else if (rdev->use_count > 1) {
2294                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2295                         drms_uA_update(rdev);
2296
2297                 rdev->use_count--;
2298         }
2299
2300         return ret;
2301 }
2302
2303 /**
2304  * regulator_disable - disable regulator output
2305  * @regulator: regulator source
2306  *
2307  * Disable the regulator output voltage or current.  Calls to
2308  * regulator_enable() must be balanced with calls to
2309  * regulator_disable().
2310  *
2311  * NOTE: this will only disable the regulator output if no other consumer
2312  * devices have it enabled, the regulator device supports disabling and
2313  * machine constraints permit this operation.
2314  */
2315 int regulator_disable(struct regulator *regulator)
2316 {
2317         struct regulator_dev *rdev = regulator->rdev;
2318         int ret = 0;
2319
2320         if (regulator->always_on)
2321                 return 0;
2322
2323         mutex_lock(&rdev->mutex);
2324         ret = _regulator_disable(rdev);
2325         mutex_unlock(&rdev->mutex);
2326
2327         if (ret == 0 && rdev->supply)
2328                 regulator_disable(rdev->supply);
2329
2330         return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_disable);
2333
2334 /* locks held by regulator_force_disable() */
2335 static int _regulator_force_disable(struct regulator_dev *rdev)
2336 {
2337         int ret = 0;
2338
2339         lockdep_assert_held_once(&rdev->mutex);
2340
2341         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2342                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2343         if (ret & NOTIFY_STOP_MASK)
2344                 return -EINVAL;
2345
2346         ret = _regulator_do_disable(rdev);
2347         if (ret < 0) {
2348                 rdev_err(rdev, "failed to force disable\n");
2349                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2350                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2351                 return ret;
2352         }
2353
2354         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2355                         REGULATOR_EVENT_DISABLE, NULL);
2356
2357         return 0;
2358 }
2359
2360 /**
2361  * regulator_force_disable - force disable regulator output
2362  * @regulator: regulator source
2363  *
2364  * Forcibly disable the regulator output voltage or current.
2365  * NOTE: this *will* disable the regulator output even if other consumer
2366  * devices have it enabled. This should be used for situations when device
2367  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2368  */
2369 int regulator_force_disable(struct regulator *regulator)
2370 {
2371         struct regulator_dev *rdev = regulator->rdev;
2372         int ret;
2373
2374         mutex_lock(&rdev->mutex);
2375         regulator->uA_load = 0;
2376         ret = _regulator_force_disable(regulator->rdev);
2377         mutex_unlock(&rdev->mutex);
2378
2379         if (rdev->supply)
2380                 while (rdev->open_count--)
2381                         regulator_disable(rdev->supply);
2382
2383         return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(regulator_force_disable);
2386
2387 static void regulator_disable_work(struct work_struct *work)
2388 {
2389         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2390                                                   disable_work.work);
2391         int count, i, ret;
2392
2393         mutex_lock(&rdev->mutex);
2394
2395         BUG_ON(!rdev->deferred_disables);
2396
2397         count = rdev->deferred_disables;
2398         rdev->deferred_disables = 0;
2399
2400         for (i = 0; i < count; i++) {
2401                 ret = _regulator_disable(rdev);
2402                 if (ret != 0)
2403                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2404         }
2405
2406         mutex_unlock(&rdev->mutex);
2407
2408         if (rdev->supply) {
2409                 for (i = 0; i < count; i++) {
2410                         ret = regulator_disable(rdev->supply);
2411                         if (ret != 0) {
2412                                 rdev_err(rdev,
2413                                          "Supply disable failed: %d\n", ret);
2414                         }
2415                 }
2416         }
2417 }
2418
2419 /**
2420  * regulator_disable_deferred - disable regulator output with delay
2421  * @regulator: regulator source
2422  * @ms: miliseconds until the regulator is disabled
2423  *
2424  * Execute regulator_disable() on the regulator after a delay.  This
2425  * is intended for use with devices that require some time to quiesce.
2426  *
2427  * NOTE: this will only disable the regulator output if no other consumer
2428  * devices have it enabled, the regulator device supports disabling and
2429  * machine constraints permit this operation.
2430  */
2431 int regulator_disable_deferred(struct regulator *regulator, int ms)
2432 {
2433         struct regulator_dev *rdev = regulator->rdev;
2434
2435         if (regulator->always_on)
2436                 return 0;
2437
2438         if (!ms)
2439                 return regulator_disable(regulator);
2440
2441         mutex_lock(&rdev->mutex);
2442         rdev->deferred_disables++;
2443         mutex_unlock(&rdev->mutex);
2444
2445         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2446                            msecs_to_jiffies(ms));
2447         return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2450
2451 static int _regulator_is_enabled(struct regulator_dev *rdev)
2452 {
2453         /* A GPIO control always takes precedence */
2454         if (rdev->ena_pin)
2455                 return rdev->ena_gpio_state;
2456
2457         /* If we don't know then assume that the regulator is always on */
2458         if (!rdev->desc->ops->is_enabled)
2459                 return 1;
2460
2461         return rdev->desc->ops->is_enabled(rdev);
2462 }
2463
2464 static int _regulator_list_voltage(struct regulator *regulator,
2465                                     unsigned selector, int lock)
2466 {
2467         struct regulator_dev *rdev = regulator->rdev;
2468         const struct regulator_ops *ops = rdev->desc->ops;
2469         int ret;
2470
2471         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2472                 return rdev->desc->fixed_uV;
2473
2474         if (ops->list_voltage) {
2475                 if (selector >= rdev->desc->n_voltages)
2476                         return -EINVAL;
2477                 if (lock)
2478                         mutex_lock(&rdev->mutex);
2479                 ret = ops->list_voltage(rdev, selector);
2480                 if (lock)
2481                         mutex_unlock(&rdev->mutex);
2482         } else if (rdev->supply) {
2483                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2484         } else {
2485                 return -EINVAL;
2486         }
2487
2488         if (ret > 0) {
2489                 if (ret < rdev->constraints->min_uV)
2490                         ret = 0;
2491                 else if (ret > rdev->constraints->max_uV)
2492                         ret = 0;
2493         }
2494
2495         return ret;
2496 }
2497
2498 /**
2499  * regulator_is_enabled - is the regulator output enabled
2500  * @regulator: regulator source
2501  *
2502  * Returns positive if the regulator driver backing the source/client
2503  * has requested that the device be enabled, zero if it hasn't, else a
2504  * negative errno code.
2505  *
2506  * Note that the device backing this regulator handle can have multiple
2507  * users, so it might be enabled even if regulator_enable() was never
2508  * called for this particular source.
2509  */
2510 int regulator_is_enabled(struct regulator *regulator)
2511 {
2512         int ret;
2513
2514         if (regulator->always_on)
2515                 return 1;
2516
2517         mutex_lock(&regulator->rdev->mutex);
2518         ret = _regulator_is_enabled(regulator->rdev);
2519         mutex_unlock(&regulator->rdev->mutex);
2520
2521         return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2524
2525 /**
2526  * regulator_count_voltages - count regulator_list_voltage() selectors
2527  * @regulator: regulator source
2528  *
2529  * Returns number of selectors, or negative errno.  Selectors are
2530  * numbered starting at zero, and typically correspond to bitfields
2531  * in hardware registers.
2532  */
2533 int regulator_count_voltages(struct regulator *regulator)
2534 {
2535         struct regulator_dev    *rdev = regulator->rdev;
2536
2537         if (rdev->desc->n_voltages)
2538                 return rdev->desc->n_voltages;
2539
2540         if (!rdev->supply)
2541                 return -EINVAL;
2542
2543         return regulator_count_voltages(rdev->supply);
2544 }
2545 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2546
2547 /**
2548  * regulator_list_voltage - enumerate supported voltages
2549  * @regulator: regulator source
2550  * @selector: identify voltage to list
2551  * Context: can sleep
2552  *
2553  * Returns a voltage that can be passed to @regulator_set_voltage(),
2554  * zero if this selector code can't be used on this system, or a
2555  * negative errno.
2556  */
2557 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2558 {
2559         return _regulator_list_voltage(regulator, selector, 1);
2560 }
2561 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2562
2563 /**
2564  * regulator_get_regmap - get the regulator's register map
2565  * @regulator: regulator source
2566  *
2567  * Returns the register map for the given regulator, or an ERR_PTR value
2568  * if the regulator doesn't use regmap.
2569  */
2570 struct regmap *regulator_get_regmap(struct regulator *regulator)
2571 {
2572         struct regmap *map = regulator->rdev->regmap;
2573
2574         return map ? map : ERR_PTR(-EOPNOTSUPP);
2575 }
2576
2577 /**
2578  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2579  * @regulator: regulator source
2580  * @vsel_reg: voltage selector register, output parameter
2581  * @vsel_mask: mask for voltage selector bitfield, output parameter
2582  *
2583  * Returns the hardware register offset and bitmask used for setting the
2584  * regulator voltage. This might be useful when configuring voltage-scaling
2585  * hardware or firmware that can make I2C requests behind the kernel's back,
2586  * for example.
2587  *
2588  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2589  * and 0 is returned, otherwise a negative errno is returned.
2590  */
2591 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2592                                          unsigned *vsel_reg,
2593                                          unsigned *vsel_mask)
2594 {
2595         struct regulator_dev *rdev = regulator->rdev;
2596         const struct regulator_ops *ops = rdev->desc->ops;
2597
2598         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2599                 return -EOPNOTSUPP;
2600
2601          *vsel_reg = rdev->desc->vsel_reg;
2602          *vsel_mask = rdev->desc->vsel_mask;
2603
2604          return 0;
2605 }
2606 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2607
2608 /**
2609  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2610  * @regulator: regulator source
2611  * @selector: identify voltage to list
2612  *
2613  * Converts the selector to a hardware-specific voltage selector that can be
2614  * directly written to the regulator registers. The address of the voltage
2615  * register can be determined by calling @regulator_get_hardware_vsel_register.
2616  *
2617  * On error a negative errno is returned.
2618  */
2619 int regulator_list_hardware_vsel(struct regulator *regulator,
2620                                  unsigned selector)
2621 {
2622         struct regulator_dev *rdev = regulator->rdev;
2623         const struct regulator_ops *ops = rdev->desc->ops;
2624
2625         if (selector >= rdev->desc->n_voltages)
2626                 return -EINVAL;
2627         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2628                 return -EOPNOTSUPP;
2629
2630         return selector;
2631 }
2632 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2633
2634 /**
2635  * regulator_get_linear_step - return the voltage step size between VSEL values
2636  * @regulator: regulator source
2637  *
2638  * Returns the voltage step size between VSEL values for linear
2639  * regulators, or return 0 if the regulator isn't a linear regulator.
2640  */
2641 unsigned int regulator_get_linear_step(struct regulator *regulator)
2642 {
2643         struct regulator_dev *rdev = regulator->rdev;
2644
2645         return rdev->desc->uV_step;
2646 }
2647 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2648
2649 /**
2650  * regulator_is_supported_voltage - check if a voltage range can be supported
2651  *
2652  * @regulator: Regulator to check.
2653  * @min_uV: Minimum required voltage in uV.
2654  * @max_uV: Maximum required voltage in uV.
2655  *
2656  * Returns a boolean or a negative error code.
2657  */
2658 int regulator_is_supported_voltage(struct regulator *regulator,
2659                                    int min_uV, int max_uV)
2660 {
2661         struct regulator_dev *rdev = regulator->rdev;
2662         int i, voltages, ret;
2663
2664         /* If we can't change voltage check the current voltage */
2665         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2666                 ret = regulator_get_voltage(regulator);
2667                 if (ret >= 0)
2668                         return min_uV <= ret && ret <= max_uV;
2669                 else
2670                         return ret;
2671         }
2672
2673         /* Any voltage within constrains range is fine? */
2674         if (rdev->desc->continuous_voltage_range)
2675                 return min_uV >= rdev->constraints->min_uV &&
2676                                 max_uV <= rdev->constraints->max_uV;
2677
2678         ret = regulator_count_voltages(regulator);
2679         if (ret < 0)
2680                 return ret;
2681         voltages = ret;
2682
2683         for (i = 0; i < voltages; i++) {
2684                 ret = regulator_list_voltage(regulator, i);
2685
2686                 if (ret >= min_uV && ret <= max_uV)
2687                         return 1;
2688         }
2689
2690         return 0;
2691 }
2692 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2693
2694 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2695                                  int max_uV)
2696 {
2697         const struct regulator_desc *desc = rdev->desc;
2698
2699         if (desc->ops->map_voltage)
2700                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2701
2702         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2703                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2704
2705         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2706                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2707
2708         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2709 }
2710
2711 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2712                                        int min_uV, int max_uV,
2713                                        unsigned *selector)
2714 {
2715         struct pre_voltage_change_data data;
2716         int ret;
2717
2718         data.old_uV = _regulator_get_voltage(rdev);
2719         data.min_uV = min_uV;
2720         data.max_uV = max_uV;
2721         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2722                                    &data);
2723         if (ret & NOTIFY_STOP_MASK)
2724                 return -EINVAL;
2725
2726         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2727         if (ret >= 0)
2728                 return ret;
2729
2730         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2731                              (void *)data.old_uV);
2732
2733         return ret;
2734 }
2735
2736 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2737                                            int uV, unsigned selector)
2738 {
2739         struct pre_voltage_change_data data;
2740         int ret;
2741
2742         data.old_uV = _regulator_get_voltage(rdev);
2743         data.min_uV = uV;
2744         data.max_uV = uV;
2745         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2746                                    &data);
2747         if (ret & NOTIFY_STOP_MASK)
2748                 return -EINVAL;
2749
2750         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2751         if (ret >= 0)
2752                 return ret;
2753
2754         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2755                              (void *)data.old_uV);
2756
2757         return ret;
2758 }
2759
2760 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2761                                        int old_uV, int new_uV)
2762 {
2763         unsigned int ramp_delay = 0;
2764
2765         if (rdev->constraints->ramp_delay)
2766                 ramp_delay = rdev->constraints->ramp_delay;
2767         else if (rdev->desc->ramp_delay)
2768                 ramp_delay = rdev->desc->ramp_delay;
2769
2770         if (ramp_delay == 0) {
2771                 rdev_dbg(rdev, "ramp_delay not set\n");
2772                 return 0;
2773         }
2774
2775         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2776 }
2777
2778 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2779                                      int min_uV, int max_uV)
2780 {
2781         int ret;
2782         int delay = 0;
2783         int best_val = 0;
2784         unsigned int selector;
2785         int old_selector = -1;
2786         const struct regulator_ops *ops = rdev->desc->ops;
2787         int old_uV = _regulator_get_voltage(rdev);
2788
2789         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2790
2791         min_uV += rdev->constraints->uV_offset;
2792         max_uV += rdev->constraints->uV_offset;
2793
2794         /*
2795          * If we can't obtain the old selector there is not enough
2796          * info to call set_voltage_time_sel().
2797          */
2798         if (_regulator_is_enabled(rdev) &&
2799             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2800                 old_selector = ops->get_voltage_sel(rdev);
2801                 if (old_selector < 0)
2802                         return old_selector;
2803         }
2804
2805         if (ops->set_voltage) {
2806                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2807                                                   &selector);
2808
2809                 if (ret >= 0) {
2810                         if (ops->list_voltage)
2811                                 best_val = ops->list_voltage(rdev,
2812                                                              selector);
2813                         else
2814                                 best_val = _regulator_get_voltage(rdev);
2815                 }
2816
2817         } else if (ops->set_voltage_sel) {
2818                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2819                 if (ret >= 0) {
2820                         best_val = ops->list_voltage(rdev, ret);
2821                         if (min_uV <= best_val && max_uV >= best_val) {
2822                                 selector = ret;
2823                                 if (old_selector == selector)
2824                                         ret = 0;
2825                                 else
2826                                         ret = _regulator_call_set_voltage_sel(
2827                                                 rdev, best_val, selector);
2828                         } else {
2829                                 ret = -EINVAL;
2830                         }
2831                 }
2832         } else {
2833                 ret = -EINVAL;
2834         }
2835
2836         if (ret)
2837                 goto out;
2838
2839         if (ops->set_voltage_time_sel) {
2840                 /*
2841                  * Call set_voltage_time_sel if successfully obtained
2842                  * old_selector
2843                  */
2844                 if (old_selector >= 0 && old_selector != selector)
2845                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2846                                                           selector);
2847         } else {
2848                 if (old_uV != best_val) {
2849                         if (ops->set_voltage_time)
2850                                 delay = ops->set_voltage_time(rdev, old_uV,
2851                                                               best_val);
2852                         else
2853                                 delay = _regulator_set_voltage_time(rdev,
2854                                                                     old_uV,
2855                                                                     best_val);
2856                 }
2857         }
2858
2859         if (delay < 0) {
2860                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2861                 delay = 0;
2862         }
2863
2864         /* Insert any necessary delays */
2865         if (delay >= 1000) {
2866                 mdelay(delay / 1000);
2867                 udelay(delay % 1000);
2868         } else if (delay) {
2869                 udelay(delay);
2870         }
2871
2872         if (best_val >= 0) {
2873                 unsigned long data = best_val;
2874
2875                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2876                                      (void *)data);
2877         }
2878
2879 out:
2880         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2881
2882         return ret;
2883 }
2884
2885 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2886                                           int min_uV, int max_uV)
2887 {
2888         struct regulator_dev *rdev = regulator->rdev;
2889         int ret = 0;
2890         int old_min_uV, old_max_uV;
2891         int current_uV;
2892         int best_supply_uV = 0;
2893         int supply_change_uV = 0;
2894
2895         /* If we're setting the same range as last time the change
2896          * should be a noop (some cpufreq implementations use the same
2897          * voltage for multiple frequencies, for example).
2898          */
2899         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2900                 goto out;
2901
2902         /* If we're trying to set a range that overlaps the current voltage,
2903          * return successfully even though the regulator does not support
2904          * changing the voltage.
2905          */
2906         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2907                 current_uV = _regulator_get_voltage(rdev);
2908                 if (min_uV <= current_uV && current_uV <= max_uV) {
2909                         regulator->min_uV = min_uV;
2910                         regulator->max_uV = max_uV;
2911                         goto out;
2912                 }
2913         }
2914
2915         /* sanity check */
2916         if (!rdev->desc->ops->set_voltage &&
2917             !rdev->desc->ops->set_voltage_sel) {
2918                 ret = -EINVAL;
2919                 goto out;
2920         }
2921
2922         /* constraints check */
2923         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2924         if (ret < 0)
2925                 goto out;
2926
2927         /* restore original values in case of error */
2928         old_min_uV = regulator->min_uV;
2929         old_max_uV = regulator->max_uV;
2930         regulator->min_uV = min_uV;
2931         regulator->max_uV = max_uV;
2932
2933         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2934         if (ret < 0)
2935                 goto out2;
2936
2937         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2938                                 !rdev->desc->ops->get_voltage)) {
2939                 int current_supply_uV;
2940                 int selector;
2941
2942                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2943                 if (selector < 0) {
2944                         ret = selector;
2945                         goto out2;
2946                 }
2947
2948                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2949                 if (best_supply_uV < 0) {
2950                         ret = best_supply_uV;
2951                         goto out2;
2952                 }
2953
2954                 best_supply_uV += rdev->desc->min_dropout_uV;
2955
2956                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2957                 if (current_supply_uV < 0) {
2958                         ret = current_supply_uV;
2959                         goto out2;
2960                 }
2961
2962                 supply_change_uV = best_supply_uV - current_supply_uV;
2963         }
2964
2965         if (supply_change_uV > 0) {
2966                 ret = regulator_set_voltage_unlocked(rdev->supply,
2967                                 best_supply_uV, INT_MAX);
2968                 if (ret) {
2969                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2970                                         ret);
2971                         goto out2;
2972                 }
2973         }
2974
2975         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2976         if (ret < 0)
2977                 goto out2;
2978
2979         if (supply_change_uV < 0) {
2980                 ret = regulator_set_voltage_unlocked(rdev->supply,
2981                                 best_supply_uV, INT_MAX);
2982                 if (ret)
2983                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2984                                         ret);
2985                 /* No need to fail here */
2986                 ret = 0;
2987         }
2988
2989 out:
2990         return ret;
2991 out2:
2992         regulator->min_uV = old_min_uV;
2993         regulator->max_uV = old_max_uV;
2994
2995         return ret;
2996 }
2997
2998 /**
2999  * regulator_set_voltage - set regulator output voltage
3000  * @regulator: regulator source
3001  * @min_uV: Minimum required voltage in uV
3002  * @max_uV: Maximum acceptable voltage in uV
3003  *
3004  * Sets a voltage regulator to the desired output voltage. This can be set
3005  * during any regulator state. IOW, regulator can be disabled or enabled.
3006  *
3007  * If the regulator is enabled then the voltage will change to the new value
3008  * immediately otherwise if the regulator is disabled the regulator will
3009  * output at the new voltage when enabled.
3010  *
3011  * NOTE: If the regulator is shared between several devices then the lowest
3012  * request voltage that meets the system constraints will be used.
3013  * Regulator system constraints must be set for this regulator before
3014  * calling this function otherwise this call will fail.
3015  */
3016 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3017 {
3018         int ret = 0;
3019
3020         regulator_lock_supply(regulator->rdev);
3021
3022         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3023
3024         regulator_unlock_supply(regulator->rdev);
3025
3026         return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3029
3030 /**
3031  * regulator_set_voltage_time - get raise/fall time
3032  * @regulator: regulator source
3033  * @old_uV: starting voltage in microvolts
3034  * @new_uV: target voltage in microvolts
3035  *
3036  * Provided with the starting and ending voltage, this function attempts to
3037  * calculate the time in microseconds required to rise or fall to this new
3038  * voltage.
3039  */
3040 int regulator_set_voltage_time(struct regulator *regulator,
3041                                int old_uV, int new_uV)
3042 {
3043         struct regulator_dev *rdev = regulator->rdev;
3044         const struct regulator_ops *ops = rdev->desc->ops;
3045         int old_sel = -1;
3046         int new_sel = -1;
3047         int voltage;
3048         int i;
3049
3050         if (ops->set_voltage_time)
3051                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3052         else if (!ops->set_voltage_time_sel)
3053                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3054
3055         /* Currently requires operations to do this */
3056         if (!ops->list_voltage || !rdev->desc->n_voltages)
3057                 return -EINVAL;
3058
3059         for (i = 0; i < rdev->desc->n_voltages; i++) {
3060                 /* We only look for exact voltage matches here */
3061                 voltage = regulator_list_voltage(regulator, i);
3062                 if (voltage < 0)
3063                         return -EINVAL;
3064                 if (voltage == 0)
3065                         continue;
3066                 if (voltage == old_uV)
3067                         old_sel = i;
3068                 if (voltage == new_uV)
3069                         new_sel = i;
3070         }
3071
3072         if (old_sel < 0 || new_sel < 0)
3073                 return -EINVAL;
3074
3075         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3076 }
3077 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3078
3079 /**
3080  * regulator_set_voltage_time_sel - get raise/fall time
3081  * @rdev: regulator source device
3082  * @old_selector: selector for starting voltage
3083  * @new_selector: selector for target voltage
3084  *
3085  * Provided with the starting and target voltage selectors, this function
3086  * returns time in microseconds required to rise or fall to this new voltage
3087  *
3088  * Drivers providing ramp_delay in regulation_constraints can use this as their
3089  * set_voltage_time_sel() operation.
3090  */
3091 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3092                                    unsigned int old_selector,
3093                                    unsigned int new_selector)
3094 {
3095         int old_volt, new_volt;
3096
3097         /* sanity check */
3098         if (!rdev->desc->ops->list_voltage)
3099                 return -EINVAL;
3100
3101         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3102         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3103
3104         if (rdev->desc->ops->set_voltage_time)
3105                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3106                                                          new_volt);
3107         else
3108                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3109 }
3110 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3111
3112 /**
3113  * regulator_sync_voltage - re-apply last regulator output voltage
3114  * @regulator: regulator source
3115  *
3116  * Re-apply the last configured voltage.  This is intended to be used
3117  * where some external control source the consumer is cooperating with
3118  * has caused the configured voltage to change.
3119  */
3120 int regulator_sync_voltage(struct regulator *regulator)
3121 {
3122         struct regulator_dev *rdev = regulator->rdev;
3123         int ret, min_uV, max_uV;
3124
3125         mutex_lock(&rdev->mutex);
3126
3127         if (!rdev->desc->ops->set_voltage &&
3128             !rdev->desc->ops->set_voltage_sel) {
3129                 ret = -EINVAL;
3130                 goto out;
3131         }
3132
3133         /* This is only going to work if we've had a voltage configured. */
3134         if (!regulator->min_uV && !regulator->max_uV) {
3135                 ret = -EINVAL;
3136                 goto out;
3137         }
3138
3139         min_uV = regulator->min_uV;
3140         max_uV = regulator->max_uV;
3141
3142         /* This should be a paranoia check... */
3143         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3144         if (ret < 0)
3145                 goto out;
3146
3147         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3148         if (ret < 0)
3149                 goto out;
3150
3151         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3152
3153 out:
3154         mutex_unlock(&rdev->mutex);
3155         return ret;
3156 }
3157 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3158
3159 static int _regulator_get_voltage(struct regulator_dev *rdev)
3160 {
3161         int sel, ret;
3162         bool bypassed;
3163
3164         if (rdev->desc->ops->get_bypass) {
3165                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3166                 if (ret < 0)
3167                         return ret;
3168                 if (bypassed) {
3169                         /* if bypassed the regulator must have a supply */
3170                         if (!rdev->supply) {
3171                                 rdev_err(rdev,
3172                                          "bypassed regulator has no supply!\n");
3173                                 return -EPROBE_DEFER;
3174                         }
3175
3176                         return _regulator_get_voltage(rdev->supply->rdev);
3177                 }
3178         }
3179
3180         if (rdev->desc->ops->get_voltage_sel) {
3181                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3182                 if (sel < 0)
3183                         return sel;
3184                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3185         } else if (rdev->desc->ops->get_voltage) {
3186                 ret = rdev->desc->ops->get_voltage(rdev);
3187         } else if (rdev->desc->ops->list_voltage) {
3188                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3189         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3190                 ret = rdev->desc->fixed_uV;
3191         } else if (rdev->supply) {
3192                 ret = _regulator_get_voltage(rdev->supply->rdev);
3193         } else {
3194                 return -EINVAL;
3195         }
3196
3197         if (ret < 0)
3198                 return ret;
3199         return ret - rdev->constraints->uV_offset;
3200 }
3201
3202 /**
3203  * regulator_get_voltage - get regulator output voltage
3204  * @regulator: regulator source
3205  *
3206  * This returns the current regulator voltage in uV.
3207  *
3208  * NOTE: If the regulator is disabled it will return the voltage value. This
3209  * function should not be used to determine regulator state.
3210  */
3211 int regulator_get_voltage(struct regulator *regulator)
3212 {
3213         int ret;
3214
3215         regulator_lock_supply(regulator->rdev);
3216
3217         ret = _regulator_get_voltage(regulator->rdev);
3218
3219         regulator_unlock_supply(regulator->rdev);
3220
3221         return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3224
3225 /**
3226  * regulator_set_current_limit - set regulator output current limit
3227  * @regulator: regulator source
3228  * @min_uA: Minimum supported current in uA
3229  * @max_uA: Maximum supported current in uA
3230  *
3231  * Sets current sink to the desired output current. This can be set during
3232  * any regulator state. IOW, regulator can be disabled or enabled.
3233  *
3234  * If the regulator is enabled then the current will change to the new value
3235  * immediately otherwise if the regulator is disabled the regulator will
3236  * output at the new current when enabled.
3237  *
3238  * NOTE: Regulator system constraints must be set for this regulator before
3239  * calling this function otherwise this call will fail.
3240  */
3241 int regulator_set_current_limit(struct regulator *regulator,
3242                                int min_uA, int max_uA)
3243 {
3244         struct regulator_dev *rdev = regulator->rdev;
3245         int ret;
3246
3247         mutex_lock(&rdev->mutex);
3248
3249         /* sanity check */
3250         if (!rdev->desc->ops->set_current_limit) {
3251                 ret = -EINVAL;
3252                 goto out;
3253         }
3254
3255         /* constraints check */
3256         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3257         if (ret < 0)
3258                 goto out;
3259
3260         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3261 out:
3262         mutex_unlock(&rdev->mutex);
3263         return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3266
3267 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3268 {
3269         int ret;
3270
3271         mutex_lock(&rdev->mutex);
3272
3273         /* sanity check */
3274         if (!rdev->desc->ops->get_current_limit) {
3275                 ret = -EINVAL;
3276                 goto out;
3277         }
3278
3279         ret = rdev->desc->ops->get_current_limit(rdev);
3280 out:
3281         mutex_unlock(&rdev->mutex);
3282         return ret;
3283 }
3284
3285 /**
3286  * regulator_get_current_limit - get regulator output current
3287  * @regulator: regulator source
3288  *
3289  * This returns the current supplied by the specified current sink in uA.
3290  *
3291  * NOTE: If the regulator is disabled it will return the current value. This
3292  * function should not be used to determine regulator state.
3293  */
3294 int regulator_get_current_limit(struct regulator *regulator)
3295 {
3296         return _regulator_get_current_limit(regulator->rdev);
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3299
3300 /**
3301  * regulator_set_mode - set regulator operating mode
3302  * @regulator: regulator source
3303  * @mode: operating mode - one of the REGULATOR_MODE constants
3304  *
3305  * Set regulator operating mode to increase regulator efficiency or improve
3306  * regulation performance.
3307  *
3308  * NOTE: Regulator system constraints must be set for this regulator before
3309  * calling this function otherwise this call will fail.
3310  */
3311 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3312 {
3313         struct regulator_dev *rdev = regulator->rdev;
3314         int ret;
3315         int regulator_curr_mode;
3316
3317         mutex_lock(&rdev->mutex);
3318
3319         /* sanity check */
3320         if (!rdev->desc->ops->set_mode) {
3321                 ret = -EINVAL;
3322                 goto out;
3323         }
3324
3325         /* return if the same mode is requested */
3326         if (rdev->desc->ops->get_mode) {
3327                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3328                 if (regulator_curr_mode == mode) {
3329                         ret = 0;
3330                         goto out;
3331                 }
3332         }
3333
3334         /* constraints check */
3335         ret = regulator_mode_constrain(rdev, &mode);
3336         if (ret < 0)
3337                 goto out;
3338
3339         ret = rdev->desc->ops->set_mode(rdev, mode);
3340 out:
3341         mutex_unlock(&rdev->mutex);
3342         return ret;
3343 }
3344 EXPORT_SYMBOL_GPL(regulator_set_mode);
3345
3346 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3347 {
3348         int ret;
3349
3350         mutex_lock(&rdev->mutex);
3351
3352         /* sanity check */
3353         if (!rdev->desc->ops->get_mode) {
3354                 ret = -EINVAL;
3355                 goto out;
3356         }
3357
3358         ret = rdev->desc->ops->get_mode(rdev);
3359 out:
3360         mutex_unlock(&rdev->mutex);
3361         return ret;
3362 }
3363
3364 /**
3365  * regulator_get_mode - get regulator operating mode
3366  * @regulator: regulator source
3367  *
3368  * Get the current regulator operating mode.
3369  */
3370 unsigned int regulator_get_mode(struct regulator *regulator)
3371 {
3372         return _regulator_get_mode(regulator->rdev);
3373 }
3374 EXPORT_SYMBOL_GPL(regulator_get_mode);
3375
3376 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3377                                         unsigned int *flags)
3378 {
3379         int ret;
3380
3381         mutex_lock(&rdev->mutex);
3382
3383         /* sanity check */
3384         if (!rdev->desc->ops->get_error_flags) {
3385                 ret = -EINVAL;
3386                 goto out;
3387         }
3388
3389         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3390 out:
3391         mutex_unlock(&rdev->mutex);
3392         return ret;
3393 }
3394
3395 /**
3396  * regulator_get_error_flags - get regulator error information
3397  * @regulator: regulator source
3398  * @flags: pointer to store error flags
3399  *
3400  * Get the current regulator error information.
3401  */
3402 int regulator_get_error_flags(struct regulator *regulator,
3403                                 unsigned int *flags)
3404 {
3405         return _regulator_get_error_flags(regulator->rdev, flags);
3406 }
3407 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3408
3409 /**
3410  * regulator_set_load - set regulator load
3411  * @regulator: regulator source
3412  * @uA_load: load current
3413  *
3414  * Notifies the regulator core of a new device load. This is then used by
3415  * DRMS (if enabled by constraints) to set the most efficient regulator
3416  * operating mode for the new regulator loading.
3417  *
3418  * Consumer devices notify their supply regulator of the maximum power
3419  * they will require (can be taken from device datasheet in the power
3420  * consumption tables) when they change operational status and hence power
3421  * state. Examples of operational state changes that can affect power
3422  * consumption are :-
3423  *
3424  *    o Device is opened / closed.
3425  *    o Device I/O is about to begin or has just finished.
3426  *    o Device is idling in between work.
3427  *
3428  * This information is also exported via sysfs to userspace.
3429  *
3430  * DRMS will sum the total requested load on the regulator and change
3431  * to the most efficient operating mode if platform constraints allow.
3432  *
3433  * On error a negative errno is returned.
3434  */
3435 int regulator_set_load(struct regulator *regulator, int uA_load)
3436 {
3437         struct regulator_dev *rdev = regulator->rdev;
3438         int ret;
3439
3440         mutex_lock(&rdev->mutex);
3441         regulator->uA_load = uA_load;
3442         ret = drms_uA_update(rdev);
3443         mutex_unlock(&rdev->mutex);
3444
3445         return ret;
3446 }
3447 EXPORT_SYMBOL_GPL(regulator_set_load);
3448
3449 /**
3450  * regulator_allow_bypass - allow the regulator to go into bypass mode
3451  *
3452  * @regulator: Regulator to configure
3453  * @enable: enable or disable bypass mode
3454  *
3455  * Allow the regulator to go into bypass mode if all other consumers
3456  * for the regulator also enable bypass mode and the machine
3457  * constraints allow this.  Bypass mode means that the regulator is
3458  * simply passing the input directly to the output with no regulation.
3459  */
3460 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3461 {
3462         struct regulator_dev *rdev = regulator->rdev;
3463         int ret = 0;
3464
3465         if (!rdev->desc->ops->set_bypass)
3466                 return 0;
3467
3468         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3469                 return 0;
3470
3471         mutex_lock(&rdev->mutex);
3472
3473         if (enable && !regulator->bypass) {
3474                 rdev->bypass_count++;
3475
3476                 if (rdev->bypass_count == rdev->open_count) {
3477                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3478                         if (ret != 0)
3479                                 rdev->bypass_count--;
3480                 }
3481
3482         } else if (!enable && regulator->bypass) {
3483                 rdev->bypass_count--;
3484
3485                 if (rdev->bypass_count != rdev->open_count) {
3486                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3487                         if (ret != 0)
3488                                 rdev->bypass_count++;
3489                 }
3490         }
3491
3492         if (ret == 0)
3493                 regulator->bypass = enable;
3494
3495         mutex_unlock(&rdev->mutex);
3496
3497         return ret;
3498 }
3499 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3500
3501 /**
3502  * regulator_register_notifier - register regulator event notifier
3503  * @regulator: regulator source
3504  * @nb: notifier block
3505  *
3506  * Register notifier block to receive regulator events.
3507  */
3508 int regulator_register_notifier(struct regulator *regulator,
3509                               struct notifier_block *nb)
3510 {
3511         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3512                                                 nb);
3513 }
3514 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3515
3516 /**
3517  * regulator_unregister_notifier - unregister regulator event notifier
3518  * @regulator: regulator source
3519  * @nb: notifier block
3520  *
3521  * Unregister regulator event notifier block.
3522  */
3523 int regulator_unregister_notifier(struct regulator *regulator,
3524                                 struct notifier_block *nb)
3525 {
3526         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3527                                                   nb);
3528 }
3529 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3530
3531 /* notify regulator consumers and downstream regulator consumers.
3532  * Note mutex must be held by caller.
3533  */
3534 static int _notifier_call_chain(struct regulator_dev *rdev,
3535                                   unsigned long event, void *data)
3536 {
3537         /* call rdev chain first */
3538         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3539 }
3540
3541 /**
3542  * regulator_bulk_get - get multiple regulator consumers
3543  *
3544  * @dev:           Device to supply
3545  * @num_consumers: Number of consumers to register
3546  * @consumers:     Configuration of consumers; clients are stored here.
3547  *
3548  * @return 0 on success, an errno on failure.
3549  *
3550  * This helper function allows drivers to get several regulator
3551  * consumers in one operation.  If any of the regulators cannot be
3552  * acquired then any regulators that were allocated will be freed
3553  * before returning to the caller.
3554  */
3555 int regulator_bulk_get(struct device *dev, int num_consumers,
3556                        struct regulator_bulk_data *consumers)
3557 {
3558         int i;
3559         int ret;
3560
3561         for (i = 0; i < num_consumers; i++)
3562                 consumers[i].consumer = NULL;
3563
3564         for (i = 0; i < num_consumers; i++) {
3565                 consumers[i].consumer = regulator_get(dev,
3566                                                       consumers[i].supply);
3567                 if (IS_ERR(consumers[i].consumer)) {
3568                         ret = PTR_ERR(consumers[i].consumer);
3569                         dev_err(dev, "Failed to get supply '%s': %d\n",
3570                                 consumers[i].supply, ret);
3571                         consumers[i].consumer = NULL;
3572                         goto err;
3573                 }
3574         }
3575
3576         return 0;
3577
3578 err:
3579         while (--i >= 0)
3580                 regulator_put(consumers[i].consumer);
3581
3582         return ret;
3583 }
3584 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3585
3586 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3587 {
3588         struct regulator_bulk_data *bulk = data;
3589
3590         bulk->ret = regulator_enable(bulk->consumer);
3591 }
3592
3593 /**
3594  * regulator_bulk_enable - enable multiple regulator consumers
3595  *
3596  * @num_consumers: Number of consumers
3597  * @consumers:     Consumer data; clients are stored here.
3598  * @return         0 on success, an errno on failure
3599  *
3600  * This convenience API allows consumers to enable multiple regulator
3601  * clients in a single API call.  If any consumers cannot be enabled
3602  * then any others that were enabled will be disabled again prior to
3603  * return.
3604  */
3605 int regulator_bulk_enable(int num_consumers,
3606                           struct regulator_bulk_data *consumers)
3607 {
3608         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3609         int i;
3610         int ret = 0;
3611
3612         for (i = 0; i < num_consumers; i++) {
3613                 if (consumers[i].consumer->always_on)
3614                         consumers[i].ret = 0;
3615                 else
3616                         async_schedule_domain(regulator_bulk_enable_async,
3617                                               &consumers[i], &async_domain);
3618         }
3619
3620         async_synchronize_full_domain(&async_domain);
3621
3622         /* If any consumer failed we need to unwind any that succeeded */
3623         for (i = 0; i < num_consumers; i++) {
3624                 if (consumers[i].ret != 0) {
3625                         ret = consumers[i].ret;
3626                         goto err;
3627                 }
3628         }
3629
3630         return 0;
3631
3632 err:
3633         for (i = 0; i < num_consumers; i++) {
3634                 if (consumers[i].ret < 0)
3635                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3636                                consumers[i].ret);
3637                 else
3638                         regulator_disable(consumers[i].consumer);
3639         }
3640
3641         return ret;
3642 }
3643 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3644
3645 /**
3646  * regulator_bulk_disable - disable multiple regulator consumers
3647  *
3648  * @num_consumers: Number of consumers
3649  * @consumers:     Consumer data; clients are stored here.
3650  * @return         0 on success, an errno on failure
3651  *
3652  * This convenience API allows consumers to disable multiple regulator
3653  * clients in a single API call.  If any consumers cannot be disabled
3654  * then any others that were disabled will be enabled again prior to
3655  * return.
3656  */
3657 int regulator_bulk_disable(int num_consumers,
3658                            struct regulator_bulk_data *consumers)
3659 {
3660         int i;
3661         int ret, r;
3662
3663         for (i = num_consumers - 1; i >= 0; --i) {
3664                 ret = regulator_disable(consumers[i].consumer);
3665                 if (ret != 0)
3666                         goto err;
3667         }
3668
3669         return 0;
3670
3671 err:
3672         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3673         for (++i; i < num_consumers; ++i) {
3674                 r = regulator_enable(consumers[i].consumer);
3675                 if (r != 0)
3676                         pr_err("Failed to reename %s: %d\n",
3677                                consumers[i].supply, r);
3678         }
3679
3680         return ret;
3681 }
3682 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3683
3684 /**
3685  * regulator_bulk_force_disable - force disable multiple regulator consumers
3686  *
3687  * @num_consumers: Number of consumers
3688  * @consumers:     Consumer data; clients are stored here.
3689  * @return         0 on success, an errno on failure
3690  *
3691  * This convenience API allows consumers to forcibly disable multiple regulator
3692  * clients in a single API call.
3693  * NOTE: This should be used for situations when device damage will
3694  * likely occur if the regulators are not disabled (e.g. over temp).
3695  * Although regulator_force_disable function call for some consumers can
3696  * return error numbers, the function is called for all consumers.
3697  */
3698 int regulator_bulk_force_disable(int num_consumers,
3699                            struct regulator_bulk_data *consumers)
3700 {
3701         int i;
3702         int ret;
3703
3704         for (i = 0; i < num_consumers; i++)
3705                 consumers[i].ret =
3706                             regulator_force_disable(consumers[i].consumer);
3707
3708         for (i = 0; i < num_consumers; i++) {
3709                 if (consumers[i].ret != 0) {
3710                         ret = consumers[i].ret;
3711                         goto out;
3712                 }
3713         }
3714
3715         return 0;
3716 out:
3717         return ret;
3718 }
3719 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3720
3721 /**
3722  * regulator_bulk_free - free multiple regulator consumers
3723  *
3724  * @num_consumers: Number of consumers
3725  * @consumers:     Consumer data; clients are stored here.
3726  *
3727  * This convenience API allows consumers to free multiple regulator
3728  * clients in a single API call.
3729  */
3730 void regulator_bulk_free(int num_consumers,
3731                          struct regulator_bulk_data *consumers)
3732 {
3733         int i;
3734
3735         for (i = 0; i < num_consumers; i++) {
3736                 regulator_put(consumers[i].consumer);
3737                 consumers[i].consumer = NULL;
3738         }
3739 }
3740 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3741
3742 /**
3743  * regulator_notifier_call_chain - call regulator event notifier
3744  * @rdev: regulator source
3745  * @event: notifier block
3746  * @data: callback-specific data.
3747  *
3748  * Called by regulator drivers to notify clients a regulator event has
3749  * occurred. We also notify regulator clients downstream.
3750  * Note lock must be held by caller.
3751  */
3752 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3753                                   unsigned long event, void *data)
3754 {
3755         lockdep_assert_held_once(&rdev->mutex);
3756
3757         _notifier_call_chain(rdev, event, data);
3758         return NOTIFY_DONE;
3759
3760 }
3761 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3762
3763 /**
3764  * regulator_mode_to_status - convert a regulator mode into a status
3765  *
3766  * @mode: Mode to convert
3767  *
3768  * Convert a regulator mode into a status.
3769  */
3770 int regulator_mode_to_status(unsigned int mode)
3771 {
3772         switch (mode) {
3773         case REGULATOR_MODE_FAST:
3774                 return REGULATOR_STATUS_FAST;
3775         case REGULATOR_MODE_NORMAL:
3776                 return REGULATOR_STATUS_NORMAL;
3777         case REGULATOR_MODE_IDLE:
3778                 return REGULATOR_STATUS_IDLE;
3779         case REGULATOR_MODE_STANDBY:
3780                 return REGULATOR_STATUS_STANDBY;
3781         default:
3782                 return REGULATOR_STATUS_UNDEFINED;
3783         }
3784 }
3785 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3786
3787 static struct attribute *regulator_dev_attrs[] = {
3788         &dev_attr_name.attr,
3789         &dev_attr_num_users.attr,
3790         &dev_attr_type.attr,
3791         &dev_attr_microvolts.attr,
3792         &dev_attr_microamps.attr,
3793         &dev_attr_opmode.attr,
3794         &dev_attr_state.attr,
3795         &dev_attr_status.attr,
3796         &dev_attr_bypass.attr,
3797         &dev_attr_requested_microamps.attr,
3798         &dev_attr_min_microvolts.attr,
3799         &dev_attr_max_microvolts.attr,
3800         &dev_attr_min_microamps.attr,
3801         &dev_attr_max_microamps.attr,
3802         &dev_attr_suspend_standby_state.attr,
3803         &dev_attr_suspend_mem_state.attr,
3804         &dev_attr_suspend_disk_state.attr,
3805         &dev_attr_suspend_standby_microvolts.attr,
3806         &dev_attr_suspend_mem_microvolts.attr,
3807         &dev_attr_suspend_disk_microvolts.attr,
3808         &dev_attr_suspend_standby_mode.attr,
3809         &dev_attr_suspend_mem_mode.attr,
3810         &dev_attr_suspend_disk_mode.attr,
3811         NULL
3812 };
3813
3814 /*
3815  * To avoid cluttering sysfs (and memory) with useless state, only
3816  * create attributes that can be meaningfully displayed.
3817  */
3818 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3819                                          struct attribute *attr, int idx)
3820 {
3821         struct device *dev = kobj_to_dev(kobj);
3822         struct regulator_dev *rdev = dev_to_rdev(dev);
3823         const struct regulator_ops *ops = rdev->desc->ops;
3824         umode_t mode = attr->mode;
3825
3826         /* these three are always present */
3827         if (attr == &dev_attr_name.attr ||
3828             attr == &dev_attr_num_users.attr ||
3829             attr == &dev_attr_type.attr)
3830                 return mode;
3831
3832         /* some attributes need specific methods to be displayed */
3833         if (attr == &dev_attr_microvolts.attr) {
3834                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3835                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3836                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3837                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3838                         return mode;
3839                 return 0;
3840         }
3841
3842         if (attr == &dev_attr_microamps.attr)
3843                 return ops->get_current_limit ? mode : 0;
3844
3845         if (attr == &dev_attr_opmode.attr)
3846                 return ops->get_mode ? mode : 0;
3847
3848         if (attr == &dev_attr_state.attr)
3849                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3850
3851         if (attr == &dev_attr_status.attr)
3852                 return ops->get_status ? mode : 0;
3853
3854         if (attr == &dev_attr_bypass.attr)
3855                 return ops->get_bypass ? mode : 0;
3856
3857         /* some attributes are type-specific */
3858         if (attr == &dev_attr_requested_microamps.attr)
3859                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3860
3861         /* constraints need specific supporting methods */
3862         if (attr == &dev_attr_min_microvolts.attr ||
3863             attr == &dev_attr_max_microvolts.attr)
3864                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3865
3866         if (attr == &dev_attr_min_microamps.attr ||
3867             attr == &dev_attr_max_microamps.attr)
3868                 return ops->set_current_limit ? mode : 0;
3869
3870         if (attr == &dev_attr_suspend_standby_state.attr ||
3871             attr == &dev_attr_suspend_mem_state.attr ||
3872             attr == &dev_attr_suspend_disk_state.attr)
3873                 return mode;
3874
3875         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3876             attr == &dev_attr_suspend_mem_microvolts.attr ||
3877             attr == &dev_attr_suspend_disk_microvolts.attr)
3878                 return ops->set_suspend_voltage ? mode : 0;
3879
3880         if (attr == &dev_attr_suspend_standby_mode.attr ||
3881             attr == &dev_attr_suspend_mem_mode.attr ||
3882             attr == &dev_attr_suspend_disk_mode.attr)
3883                 return ops->set_suspend_mode ? mode : 0;
3884
3885         return mode;
3886 }
3887
3888 static const struct attribute_group regulator_dev_group = {
3889         .attrs = regulator_dev_attrs,
3890         .is_visible = regulator_attr_is_visible,
3891 };
3892
3893 static const struct attribute_group *regulator_dev_groups[] = {
3894         &regulator_dev_group,
3895         NULL
3896 };
3897
3898 static void regulator_dev_release(struct device *dev)
3899 {
3900         struct regulator_dev *rdev = dev_get_drvdata(dev);
3901
3902         kfree(rdev->constraints);
3903         of_node_put(rdev->dev.of_node);
3904         kfree(rdev);
3905 }
3906
3907 static struct class regulator_class = {
3908         .name = "regulator",
3909         .dev_release = regulator_dev_release,
3910         .dev_groups = regulator_dev_groups,
3911 };
3912
3913 static void rdev_init_debugfs(struct regulator_dev *rdev)
3914 {
3915         struct device *parent = rdev->dev.parent;
3916         const char *rname = rdev_get_name(rdev);
3917         char name[NAME_MAX];
3918
3919         /* Avoid duplicate debugfs directory names */
3920         if (parent && rname == rdev->desc->name) {
3921                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3922                          rname);
3923                 rname = name;
3924         }
3925
3926         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3927         if (!rdev->debugfs) {
3928                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3929                 return;
3930         }
3931
3932         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3933                            &rdev->use_count);
3934         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3935                            &rdev->open_count);
3936         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3937                            &rdev->bypass_count);
3938 }
3939
3940 static int regulator_register_resolve_supply(struct device *dev, void *data)
3941 {
3942         struct regulator_dev *rdev = dev_to_rdev(dev);
3943
3944         if (regulator_resolve_supply(rdev))
3945                 rdev_dbg(rdev, "unable to resolve supply\n");
3946
3947         return 0;
3948 }
3949
3950 /**
3951  * regulator_register - register regulator
3952  * @regulator_desc: regulator to register
3953  * @cfg: runtime configuration for regulator
3954  *
3955  * Called by regulator drivers to register a regulator.
3956  * Returns a valid pointer to struct regulator_dev on success
3957  * or an ERR_PTR() on error.
3958  */
3959 struct regulator_dev *
3960 regulator_register(const struct regulator_desc *regulator_desc,
3961                    const struct regulator_config *cfg)
3962 {
3963         const struct regulation_constraints *constraints = NULL;
3964         const struct regulator_init_data *init_data;
3965         struct regulator_config *config = NULL;
3966         static atomic_t regulator_no = ATOMIC_INIT(-1);
3967         struct regulator_dev *rdev;
3968         struct device *dev;
3969         int ret, i;
3970
3971         if (regulator_desc == NULL || cfg == NULL)
3972                 return ERR_PTR(-EINVAL);
3973
3974         dev = cfg->dev;
3975         WARN_ON(!dev);
3976
3977         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3978                 return ERR_PTR(-EINVAL);
3979
3980         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3981             regulator_desc->type != REGULATOR_CURRENT)
3982                 return ERR_PTR(-EINVAL);
3983
3984         /* Only one of each should be implemented */
3985         WARN_ON(regulator_desc->ops->get_voltage &&
3986                 regulator_desc->ops->get_voltage_sel);
3987         WARN_ON(regulator_desc->ops->set_voltage &&
3988                 regulator_desc->ops->set_voltage_sel);
3989
3990         /* If we're using selectors we must implement list_voltage. */
3991         if (regulator_desc->ops->get_voltage_sel &&
3992             !regulator_desc->ops->list_voltage) {
3993                 return ERR_PTR(-EINVAL);
3994         }
3995         if (regulator_desc->ops->set_voltage_sel &&
3996             !regulator_desc->ops->list_voltage) {
3997                 return ERR_PTR(-EINVAL);
3998         }
3999
4000         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4001         if (rdev == NULL)
4002                 return ERR_PTR(-ENOMEM);
4003
4004         /*
4005          * Duplicate the config so the driver could override it after
4006          * parsing init data.
4007          */
4008         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4009         if (config == NULL) {
4010                 kfree(rdev);
4011                 return ERR_PTR(-ENOMEM);
4012         }
4013
4014         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4015                                                &rdev->dev.of_node);
4016         if (!init_data) {
4017                 init_data = config->init_data;
4018                 rdev->dev.of_node = of_node_get(config->of_node);
4019         }
4020
4021         mutex_init(&rdev->mutex);
4022         rdev->reg_data = config->driver_data;
4023         rdev->owner = regulator_desc->owner;
4024         rdev->desc = regulator_desc;
4025         if (config->regmap)
4026                 rdev->regmap = config->regmap;
4027         else if (dev_get_regmap(dev, NULL))
4028                 rdev->regmap = dev_get_regmap(dev, NULL);
4029         else if (dev->parent)
4030                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4031         INIT_LIST_HEAD(&rdev->consumer_list);
4032         INIT_LIST_HEAD(&rdev->list);
4033         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4034         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4035
4036         /* preform any regulator specific init */
4037         if (init_data && init_data->regulator_init) {
4038                 ret = init_data->regulator_init(rdev->reg_data);
4039                 if (ret < 0)
4040                         goto clean;
4041         }
4042
4043         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4044             gpio_is_valid(config->ena_gpio)) {
4045                 mutex_lock(&regulator_list_mutex);
4046                 ret = regulator_ena_gpio_request(rdev, config);
4047                 mutex_unlock(&regulator_list_mutex);
4048                 if (ret != 0) {
4049                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4050                                  config->ena_gpio, ret);
4051                         goto clean;
4052                 }
4053         }
4054
4055         /* register with sysfs */
4056         rdev->dev.class = &regulator_class;
4057         rdev->dev.parent = dev;
4058         dev_set_name(&rdev->dev, "regulator.%lu",
4059                     (unsigned long) atomic_inc_return(&regulator_no));
4060
4061         /* set regulator constraints */
4062         if (init_data)
4063                 constraints = &init_data->constraints;
4064
4065         if (init_data && init_data->supply_regulator)
4066                 rdev->supply_name = init_data->supply_regulator;
4067         else if (regulator_desc->supply_name)
4068                 rdev->supply_name = regulator_desc->supply_name;
4069
4070         /*
4071          * Attempt to resolve the regulator supply, if specified,
4072          * but don't return an error if we fail because we will try
4073          * to resolve it again later as more regulators are added.
4074          */
4075         if (regulator_resolve_supply(rdev))
4076                 rdev_dbg(rdev, "unable to resolve supply\n");
4077
4078         ret = set_machine_constraints(rdev, constraints);
4079         if (ret < 0)
4080                 goto wash;
4081
4082         /* add consumers devices */
4083         if (init_data) {
4084                 mutex_lock(&regulator_list_mutex);
4085                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4086                         ret = set_consumer_device_supply(rdev,
4087                                 init_data->consumer_supplies[i].dev_name,
4088                                 init_data->consumer_supplies[i].supply);
4089                         if (ret < 0) {
4090                                 mutex_unlock(&regulator_list_mutex);
4091                                 dev_err(dev, "Failed to set supply %s\n",
4092                                         init_data->consumer_supplies[i].supply);
4093                                 goto unset_supplies;
4094                         }
4095                 }
4096                 mutex_unlock(&regulator_list_mutex);
4097         }
4098
4099         ret = device_register(&rdev->dev);
4100         if (ret != 0) {
4101                 put_device(&rdev->dev);
4102                 goto unset_supplies;
4103         }
4104
4105         dev_set_drvdata(&rdev->dev, rdev);
4106         rdev_init_debugfs(rdev);
4107
4108         /* try to resolve regulators supply since a new one was registered */
4109         class_for_each_device(&regulator_class, NULL, NULL,
4110                               regulator_register_resolve_supply);
4111         kfree(config);
4112         return rdev;
4113
4114 unset_supplies:
4115         mutex_lock(&regulator_list_mutex);
4116         unset_regulator_supplies(rdev);
4117         mutex_unlock(&regulator_list_mutex);
4118 wash:
4119         kfree(rdev->constraints);
4120         mutex_lock(&regulator_list_mutex);
4121         regulator_ena_gpio_free(rdev);
4122         mutex_unlock(&regulator_list_mutex);
4123 clean:
4124         kfree(rdev);
4125         kfree(config);
4126         return ERR_PTR(ret);
4127 }
4128 EXPORT_SYMBOL_GPL(regulator_register);
4129
4130 /**
4131  * regulator_unregister - unregister regulator
4132  * @rdev: regulator to unregister
4133  *
4134  * Called by regulator drivers to unregister a regulator.
4135  */
4136 void regulator_unregister(struct regulator_dev *rdev)
4137 {
4138         if (rdev == NULL)
4139                 return;
4140
4141         if (rdev->supply) {
4142                 while (rdev->use_count--)
4143                         regulator_disable(rdev->supply);
4144                 regulator_put(rdev->supply);
4145         }
4146         mutex_lock(&regulator_list_mutex);
4147         debugfs_remove_recursive(rdev->debugfs);
4148         flush_work(&rdev->disable_work.work);
4149         WARN_ON(rdev->open_count);
4150         unset_regulator_supplies(rdev);
4151         list_del(&rdev->list);
4152         regulator_ena_gpio_free(rdev);
4153         mutex_unlock(&regulator_list_mutex);
4154         device_unregister(&rdev->dev);
4155 }
4156 EXPORT_SYMBOL_GPL(regulator_unregister);
4157
4158 static int _regulator_suspend_prepare(struct device *dev, void *data)
4159 {
4160         struct regulator_dev *rdev = dev_to_rdev(dev);
4161         const suspend_state_t *state = data;
4162         int ret;
4163
4164         mutex_lock(&rdev->mutex);
4165         ret = suspend_prepare(rdev, *state);
4166         mutex_unlock(&rdev->mutex);
4167
4168         return ret;
4169 }
4170
4171 /**
4172  * regulator_suspend_prepare - prepare regulators for system wide suspend
4173  * @state: system suspend state
4174  *
4175  * Configure each regulator with it's suspend operating parameters for state.
4176  * This will usually be called by machine suspend code prior to supending.
4177  */
4178 int regulator_suspend_prepare(suspend_state_t state)
4179 {
4180         /* ON is handled by regulator active state */
4181         if (state == PM_SUSPEND_ON)
4182                 return -EINVAL;
4183
4184         return class_for_each_device(&regulator_class, NULL, &state,
4185                                      _regulator_suspend_prepare);
4186 }
4187 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4188
4189 static int _regulator_suspend_finish(struct device *dev, void *data)
4190 {
4191         struct regulator_dev *rdev = dev_to_rdev(dev);
4192         int ret;
4193
4194         mutex_lock(&rdev->mutex);
4195         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4196                 if (!_regulator_is_enabled(rdev)) {
4197                         ret = _regulator_do_enable(rdev);
4198                         if (ret)
4199                                 dev_err(dev,
4200                                         "Failed to resume regulator %d\n",
4201                                         ret);
4202                 }
4203         } else {
4204                 if (!have_full_constraints())
4205                         goto unlock;
4206                 if (!_regulator_is_enabled(rdev))
4207                         goto unlock;
4208
4209                 ret = _regulator_do_disable(rdev);
4210                 if (ret)
4211                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4212         }
4213 unlock:
4214         mutex_unlock(&rdev->mutex);
4215
4216         /* Keep processing regulators in spite of any errors */
4217         return 0;
4218 }
4219
4220 /**
4221  * regulator_suspend_finish - resume regulators from system wide suspend
4222  *
4223  * Turn on regulators that might be turned off by regulator_suspend_prepare
4224  * and that should be turned on according to the regulators properties.
4225  */
4226 int regulator_suspend_finish(void)
4227 {
4228         return class_for_each_device(&regulator_class, NULL, NULL,
4229                                      _regulator_suspend_finish);
4230 }
4231 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4232
4233 /**
4234  * regulator_has_full_constraints - the system has fully specified constraints
4235  *
4236  * Calling this function will cause the regulator API to disable all
4237  * regulators which have a zero use count and don't have an always_on
4238  * constraint in a late_initcall.
4239  *
4240  * The intention is that this will become the default behaviour in a
4241  * future kernel release so users are encouraged to use this facility
4242  * now.
4243  */
4244 void regulator_has_full_constraints(void)
4245 {
4246         has_full_constraints = 1;
4247 }
4248 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4249
4250 /**
4251  * rdev_get_drvdata - get rdev regulator driver data
4252  * @rdev: regulator
4253  *
4254  * Get rdev regulator driver private data. This call can be used in the
4255  * regulator driver context.
4256  */
4257 void *rdev_get_drvdata(struct regulator_dev *rdev)
4258 {
4259         return rdev->reg_data;
4260 }
4261 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4262
4263 /**
4264  * regulator_get_drvdata - get regulator driver data
4265  * @regulator: regulator
4266  *
4267  * Get regulator driver private data. This call can be used in the consumer
4268  * driver context when non API regulator specific functions need to be called.
4269  */
4270 void *regulator_get_drvdata(struct regulator *regulator)
4271 {
4272         return regulator->rdev->reg_data;
4273 }
4274 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4275
4276 /**
4277  * regulator_set_drvdata - set regulator driver data
4278  * @regulator: regulator
4279  * @data: data
4280  */
4281 void regulator_set_drvdata(struct regulator *regulator, void *data)
4282 {
4283         regulator->rdev->reg_data = data;
4284 }
4285 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4286
4287 /**
4288  * regulator_get_id - get regulator ID
4289  * @rdev: regulator
4290  */
4291 int rdev_get_id(struct regulator_dev *rdev)
4292 {
4293         return rdev->desc->id;
4294 }
4295 EXPORT_SYMBOL_GPL(rdev_get_id);
4296
4297 struct device *rdev_get_dev(struct regulator_dev *rdev)
4298 {
4299         return &rdev->dev;
4300 }
4301 EXPORT_SYMBOL_GPL(rdev_get_dev);
4302
4303 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4304 {
4305         return reg_init_data->driver_data;
4306 }
4307 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4308
4309 #ifdef CONFIG_DEBUG_FS
4310 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4311                                     size_t count, loff_t *ppos)
4312 {
4313         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4314         ssize_t len, ret = 0;
4315         struct regulator_map *map;
4316
4317         if (!buf)
4318                 return -ENOMEM;
4319
4320         list_for_each_entry(map, &regulator_map_list, list) {
4321                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4322                                "%s -> %s.%s\n",
4323                                rdev_get_name(map->regulator), map->dev_name,
4324                                map->supply);
4325                 if (len >= 0)
4326                         ret += len;
4327                 if (ret > PAGE_SIZE) {
4328                         ret = PAGE_SIZE;
4329                         break;
4330                 }
4331         }
4332
4333         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4334
4335         kfree(buf);
4336
4337         return ret;
4338 }
4339 #endif
4340
4341 static const struct file_operations supply_map_fops = {
4342 #ifdef CONFIG_DEBUG_FS
4343         .read = supply_map_read_file,
4344         .llseek = default_llseek,
4345 #endif
4346 };
4347
4348 #ifdef CONFIG_DEBUG_FS
4349 struct summary_data {
4350         struct seq_file *s;
4351         struct regulator_dev *parent;
4352         int level;
4353 };
4354
4355 static void regulator_summary_show_subtree(struct seq_file *s,
4356                                            struct regulator_dev *rdev,
4357                                            int level);
4358
4359 static int regulator_summary_show_children(struct device *dev, void *data)
4360 {
4361         struct regulator_dev *rdev = dev_to_rdev(dev);
4362         struct summary_data *summary_data = data;
4363
4364         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4365                 regulator_summary_show_subtree(summary_data->s, rdev,
4366                                                summary_data->level + 1);
4367
4368         return 0;
4369 }
4370
4371 static void regulator_summary_show_subtree(struct seq_file *s,
4372                                            struct regulator_dev *rdev,
4373                                            int level)
4374 {
4375         struct regulation_constraints *c;
4376         struct regulator *consumer;
4377         struct summary_data summary_data;
4378
4379         if (!rdev)
4380                 return;
4381
4382         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4383                    level * 3 + 1, "",
4384                    30 - level * 3, rdev_get_name(rdev),
4385                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4386
4387         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4388         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4389
4390         c = rdev->constraints;
4391         if (c) {
4392                 switch (rdev->desc->type) {
4393                 case REGULATOR_VOLTAGE:
4394                         seq_printf(s, "%5dmV %5dmV ",
4395                                    c->min_uV / 1000, c->max_uV / 1000);
4396                         break;
4397                 case REGULATOR_CURRENT:
4398                         seq_printf(s, "%5dmA %5dmA ",
4399                                    c->min_uA / 1000, c->max_uA / 1000);
4400                         break;
4401                 }
4402         }
4403
4404         seq_puts(s, "\n");
4405
4406         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4407                 if (consumer->dev->class == &regulator_class)
4408                         continue;
4409
4410                 seq_printf(s, "%*s%-*s ",
4411                            (level + 1) * 3 + 1, "",
4412                            30 - (level + 1) * 3, dev_name(consumer->dev));
4413
4414                 switch (rdev->desc->type) {
4415                 case REGULATOR_VOLTAGE:
4416                         seq_printf(s, "%37dmV %5dmV",
4417                                    consumer->min_uV / 1000,
4418                                    consumer->max_uV / 1000);
4419                         break;
4420                 case REGULATOR_CURRENT:
4421                         break;
4422                 }
4423
4424                 seq_puts(s, "\n");
4425         }
4426
4427         summary_data.s = s;
4428         summary_data.level = level;
4429         summary_data.parent = rdev;
4430
4431         class_for_each_device(&regulator_class, NULL, &summary_data,
4432                               regulator_summary_show_children);
4433 }
4434
4435 static int regulator_summary_show_roots(struct device *dev, void *data)
4436 {
4437         struct regulator_dev *rdev = dev_to_rdev(dev);
4438         struct seq_file *s = data;
4439
4440         if (!rdev->supply)
4441                 regulator_summary_show_subtree(s, rdev, 0);
4442
4443         return 0;
4444 }
4445
4446 static int regulator_summary_show(struct seq_file *s, void *data)
4447 {
4448         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4449         seq_puts(s, "-------------------------------------------------------------------------------\n");
4450
4451         class_for_each_device(&regulator_class, NULL, s,
4452                               regulator_summary_show_roots);
4453
4454         return 0;
4455 }
4456
4457 static int regulator_summary_open(struct inode *inode, struct file *file)
4458 {
4459         return single_open(file, regulator_summary_show, inode->i_private);
4460 }
4461 #endif
4462
4463 static const struct file_operations regulator_summary_fops = {
4464 #ifdef CONFIG_DEBUG_FS
4465         .open           = regulator_summary_open,
4466         .read           = seq_read,
4467         .llseek         = seq_lseek,
4468         .release        = single_release,
4469 #endif
4470 };
4471
4472 static int __init regulator_init(void)
4473 {
4474         int ret;
4475
4476         ret = class_register(&regulator_class);
4477
4478         debugfs_root = debugfs_create_dir("regulator", NULL);
4479         if (!debugfs_root)
4480                 pr_warn("regulator: Failed to create debugfs directory\n");
4481
4482         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4483                             &supply_map_fops);
4484
4485         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4486                             NULL, &regulator_summary_fops);
4487
4488         regulator_dummy_init();
4489
4490         return ret;
4491 }
4492
4493 /* init early to allow our consumers to complete system booting */
4494 core_initcall(regulator_init);
4495
4496 static int __init regulator_late_cleanup(struct device *dev, void *data)
4497 {
4498         struct regulator_dev *rdev = dev_to_rdev(dev);
4499         const struct regulator_ops *ops = rdev->desc->ops;
4500         struct regulation_constraints *c = rdev->constraints;
4501         int enabled, ret;
4502
4503         if (c && c->always_on)
4504                 return 0;
4505
4506         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4507                 return 0;
4508
4509         mutex_lock(&rdev->mutex);
4510
4511         if (rdev->use_count)
4512                 goto unlock;
4513
4514         /* If we can't read the status assume it's on. */
4515         if (ops->is_enabled)
4516                 enabled = ops->is_enabled(rdev);
4517         else
4518                 enabled = 1;
4519
4520         if (!enabled)
4521                 goto unlock;
4522
4523         if (have_full_constraints()) {
4524                 /* We log since this may kill the system if it goes
4525                  * wrong. */
4526                 rdev_info(rdev, "disabling\n");
4527                 ret = _regulator_do_disable(rdev);
4528                 if (ret != 0)
4529                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4530         } else {
4531                 /* The intention is that in future we will
4532                  * assume that full constraints are provided
4533                  * so warn even if we aren't going to do
4534                  * anything here.
4535                  */
4536                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4537         }
4538
4539 unlock:
4540         mutex_unlock(&rdev->mutex);
4541
4542         return 0;
4543 }
4544
4545 static int __init regulator_init_complete(void)
4546 {
4547         /*
4548          * Since DT doesn't provide an idiomatic mechanism for
4549          * enabling full constraints and since it's much more natural
4550          * with DT to provide them just assume that a DT enabled
4551          * system has full constraints.
4552          */
4553         if (of_have_populated_dt())
4554                 has_full_constraints = true;
4555
4556         /* If we have a full configuration then disable any regulators
4557          * we have permission to change the status for and which are
4558          * not in use or always_on.  This is effectively the default
4559          * for DT and ACPI as they have full constraints.
4560          */
4561         class_for_each_device(&regulator_class, NULL, NULL,
4562                               regulator_late_cleanup);
4563
4564         return 0;
4565 }
4566 late_initcall_sync(regulator_init_complete);