]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
Merge branch 'next-smack' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         struct gpio_desc *gpiod;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130         if (!rdev->constraints) {
131                 rdev_err(rdev, "no constraints\n");
132                 return false;
133         }
134
135         if (rdev->constraints->valid_ops_mask & ops)
136                 return true;
137
138         return false;
139 }
140
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143         if (rdev && rdev->supply)
144                 return rdev->supply->rdev;
145
146         return NULL;
147 }
148
149 /**
150  * regulator_lock_supply - lock a regulator and its supplies
151  * @rdev:         regulator source
152  */
153 static void regulator_lock_supply(struct regulator_dev *rdev)
154 {
155         int i;
156
157         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
158                 mutex_lock_nested(&rdev->mutex, i);
159 }
160
161 /**
162  * regulator_unlock_supply - unlock a regulator and its supplies
163  * @rdev:         regulator source
164  */
165 static void regulator_unlock_supply(struct regulator_dev *rdev)
166 {
167         struct regulator *supply;
168
169         while (1) {
170                 mutex_unlock(&rdev->mutex);
171                 supply = rdev->supply;
172
173                 if (!rdev->supply)
174                         return;
175
176                 rdev = supply->rdev;
177         }
178 }
179
180 /**
181  * of_get_regulator - get a regulator device node based on supply name
182  * @dev: Device pointer for the consumer (of regulator) device
183  * @supply: regulator supply name
184  *
185  * Extract the regulator device node corresponding to the supply name.
186  * returns the device node corresponding to the regulator if found, else
187  * returns NULL.
188  */
189 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
190 {
191         struct device_node *regnode = NULL;
192         char prop_name[32]; /* 32 is max size of property name */
193
194         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
195
196         snprintf(prop_name, 32, "%s-supply", supply);
197         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
198
199         if (!regnode) {
200                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
201                                 prop_name, dev->of_node);
202                 return NULL;
203         }
204         return regnode;
205 }
206
207 /* Platform voltage constraint check */
208 static int regulator_check_voltage(struct regulator_dev *rdev,
209                                    int *min_uV, int *max_uV)
210 {
211         BUG_ON(*min_uV > *max_uV);
212
213         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
214                 rdev_err(rdev, "voltage operation not allowed\n");
215                 return -EPERM;
216         }
217
218         if (*max_uV > rdev->constraints->max_uV)
219                 *max_uV = rdev->constraints->max_uV;
220         if (*min_uV < rdev->constraints->min_uV)
221                 *min_uV = rdev->constraints->min_uV;
222
223         if (*min_uV > *max_uV) {
224                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
225                          *min_uV, *max_uV);
226                 return -EINVAL;
227         }
228
229         return 0;
230 }
231
232 /* return 0 if the state is valid */
233 static int regulator_check_states(suspend_state_t state)
234 {
235         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
236 }
237
238 /* Make sure we select a voltage that suits the needs of all
239  * regulator consumers
240  */
241 static int regulator_check_consumers(struct regulator_dev *rdev,
242                                      int *min_uV, int *max_uV,
243                                      suspend_state_t state)
244 {
245         struct regulator *regulator;
246         struct regulator_voltage *voltage;
247
248         list_for_each_entry(regulator, &rdev->consumer_list, list) {
249                 voltage = &regulator->voltage[state];
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!voltage->min_uV && !voltage->max_uV)
255                         continue;
256
257                 if (*max_uV > voltage->max_uV)
258                         *max_uV = voltage->max_uV;
259                 if (*min_uV < voltage->min_uV)
260                         *min_uV = voltage->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
279                 rdev_err(rdev, "current operation not allowed\n");
280                 return -EPERM;
281         }
282
283         if (*max_uA > rdev->constraints->max_uA)
284                 *max_uA = rdev->constraints->max_uA;
285         if (*min_uA < rdev->constraints->min_uA)
286                 *min_uA = rdev->constraints->min_uA;
287
288         if (*min_uA > *max_uA) {
289                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
290                          *min_uA, *max_uA);
291                 return -EINVAL;
292         }
293
294         return 0;
295 }
296
297 /* operating mode constraint check */
298 static int regulator_mode_constrain(struct regulator_dev *rdev,
299                                     unsigned int *mode)
300 {
301         switch (*mode) {
302         case REGULATOR_MODE_FAST:
303         case REGULATOR_MODE_NORMAL:
304         case REGULATOR_MODE_IDLE:
305         case REGULATOR_MODE_STANDBY:
306                 break;
307         default:
308                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
309                 return -EINVAL;
310         }
311
312         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
313                 rdev_err(rdev, "mode operation not allowed\n");
314                 return -EPERM;
315         }
316
317         /* The modes are bitmasks, the most power hungry modes having
318          * the lowest values. If the requested mode isn't supported
319          * try higher modes. */
320         while (*mode) {
321                 if (rdev->constraints->valid_modes_mask & *mode)
322                         return 0;
323                 *mode /= 2;
324         }
325
326         return -EINVAL;
327 }
328
329 static inline struct regulator_state *
330 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
331 {
332         if (rdev->constraints == NULL)
333                 return NULL;
334
335         switch (state) {
336         case PM_SUSPEND_STANDBY:
337                 return &rdev->constraints->state_standby;
338         case PM_SUSPEND_MEM:
339                 return &rdev->constraints->state_mem;
340         case PM_SUSPEND_MAX:
341                 return &rdev->constraints->state_disk;
342         default:
343                 return NULL;
344         }
345 }
346
347 static ssize_t regulator_uV_show(struct device *dev,
348                                 struct device_attribute *attr, char *buf)
349 {
350         struct regulator_dev *rdev = dev_get_drvdata(dev);
351         ssize_t ret;
352
353         mutex_lock(&rdev->mutex);
354         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
355         mutex_unlock(&rdev->mutex);
356
357         return ret;
358 }
359 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
360
361 static ssize_t regulator_uA_show(struct device *dev,
362                                 struct device_attribute *attr, char *buf)
363 {
364         struct regulator_dev *rdev = dev_get_drvdata(dev);
365
366         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
367 }
368 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
369
370 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
371                          char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375         return sprintf(buf, "%s\n", rdev_get_name(rdev));
376 }
377 static DEVICE_ATTR_RO(name);
378
379 static ssize_t regulator_print_opmode(char *buf, int mode)
380 {
381         switch (mode) {
382         case REGULATOR_MODE_FAST:
383                 return sprintf(buf, "fast\n");
384         case REGULATOR_MODE_NORMAL:
385                 return sprintf(buf, "normal\n");
386         case REGULATOR_MODE_IDLE:
387                 return sprintf(buf, "idle\n");
388         case REGULATOR_MODE_STANDBY:
389                 return sprintf(buf, "standby\n");
390         }
391         return sprintf(buf, "unknown\n");
392 }
393
394 static ssize_t regulator_opmode_show(struct device *dev,
395                                     struct device_attribute *attr, char *buf)
396 {
397         struct regulator_dev *rdev = dev_get_drvdata(dev);
398
399         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
400 }
401 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
402
403 static ssize_t regulator_print_state(char *buf, int state)
404 {
405         if (state > 0)
406                 return sprintf(buf, "enabled\n");
407         else if (state == 0)
408                 return sprintf(buf, "disabled\n");
409         else
410                 return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_state_show(struct device *dev,
414                                    struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417         ssize_t ret;
418
419         mutex_lock(&rdev->mutex);
420         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
421         mutex_unlock(&rdev->mutex);
422
423         return ret;
424 }
425 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
426
427 static ssize_t regulator_status_show(struct device *dev,
428                                    struct device_attribute *attr, char *buf)
429 {
430         struct regulator_dev *rdev = dev_get_drvdata(dev);
431         int status;
432         char *label;
433
434         status = rdev->desc->ops->get_status(rdev);
435         if (status < 0)
436                 return status;
437
438         switch (status) {
439         case REGULATOR_STATUS_OFF:
440                 label = "off";
441                 break;
442         case REGULATOR_STATUS_ON:
443                 label = "on";
444                 break;
445         case REGULATOR_STATUS_ERROR:
446                 label = "error";
447                 break;
448         case REGULATOR_STATUS_FAST:
449                 label = "fast";
450                 break;
451         case REGULATOR_STATUS_NORMAL:
452                 label = "normal";
453                 break;
454         case REGULATOR_STATUS_IDLE:
455                 label = "idle";
456                 break;
457         case REGULATOR_STATUS_STANDBY:
458                 label = "standby";
459                 break;
460         case REGULATOR_STATUS_BYPASS:
461                 label = "bypass";
462                 break;
463         case REGULATOR_STATUS_UNDEFINED:
464                 label = "undefined";
465                 break;
466         default:
467                 return -ERANGE;
468         }
469
470         return sprintf(buf, "%s\n", label);
471 }
472 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
473
474 static ssize_t regulator_min_uA_show(struct device *dev,
475                                     struct device_attribute *attr, char *buf)
476 {
477         struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479         if (!rdev->constraints)
480                 return sprintf(buf, "constraint not defined\n");
481
482         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
483 }
484 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
485
486 static ssize_t regulator_max_uA_show(struct device *dev,
487                                     struct device_attribute *attr, char *buf)
488 {
489         struct regulator_dev *rdev = dev_get_drvdata(dev);
490
491         if (!rdev->constraints)
492                 return sprintf(buf, "constraint not defined\n");
493
494         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
495 }
496 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
497
498 static ssize_t regulator_min_uV_show(struct device *dev,
499                                     struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         if (!rdev->constraints)
504                 return sprintf(buf, "constraint not defined\n");
505
506         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
507 }
508 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
509
510 static ssize_t regulator_max_uV_show(struct device *dev,
511                                     struct device_attribute *attr, char *buf)
512 {
513         struct regulator_dev *rdev = dev_get_drvdata(dev);
514
515         if (!rdev->constraints)
516                 return sprintf(buf, "constraint not defined\n");
517
518         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
519 }
520 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
521
522 static ssize_t regulator_total_uA_show(struct device *dev,
523                                       struct device_attribute *attr, char *buf)
524 {
525         struct regulator_dev *rdev = dev_get_drvdata(dev);
526         struct regulator *regulator;
527         int uA = 0;
528
529         mutex_lock(&rdev->mutex);
530         list_for_each_entry(regulator, &rdev->consumer_list, list)
531                 uA += regulator->uA_load;
532         mutex_unlock(&rdev->mutex);
533         return sprintf(buf, "%d\n", uA);
534 }
535 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
536
537 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
538                               char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541         return sprintf(buf, "%d\n", rdev->use_count);
542 }
543 static DEVICE_ATTR_RO(num_users);
544
545 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
546                          char *buf)
547 {
548         struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550         switch (rdev->desc->type) {
551         case REGULATOR_VOLTAGE:
552                 return sprintf(buf, "voltage\n");
553         case REGULATOR_CURRENT:
554                 return sprintf(buf, "current\n");
555         }
556         return sprintf(buf, "unknown\n");
557 }
558 static DEVICE_ATTR_RO(type);
559
560 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
566 }
567 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
568                 regulator_suspend_mem_uV_show, NULL);
569
570 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
576 }
577 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
578                 regulator_suspend_disk_uV_show, NULL);
579
580 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
581                                 struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
586 }
587 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
588                 regulator_suspend_standby_uV_show, NULL);
589
590 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
591                                 struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_opmode(buf,
596                 rdev->constraints->state_mem.mode);
597 }
598 static DEVICE_ATTR(suspend_mem_mode, 0444,
599                 regulator_suspend_mem_mode_show, NULL);
600
601 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
602                                 struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_opmode(buf,
607                 rdev->constraints->state_disk.mode);
608 }
609 static DEVICE_ATTR(suspend_disk_mode, 0444,
610                 regulator_suspend_disk_mode_show, NULL);
611
612 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
613                                 struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616
617         return regulator_print_opmode(buf,
618                 rdev->constraints->state_standby.mode);
619 }
620 static DEVICE_ATTR(suspend_standby_mode, 0444,
621                 regulator_suspend_standby_mode_show, NULL);
622
623 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
624                                    struct device_attribute *attr, char *buf)
625 {
626         struct regulator_dev *rdev = dev_get_drvdata(dev);
627
628         return regulator_print_state(buf,
629                         rdev->constraints->state_mem.enabled);
630 }
631 static DEVICE_ATTR(suspend_mem_state, 0444,
632                 regulator_suspend_mem_state_show, NULL);
633
634 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
635                                    struct device_attribute *attr, char *buf)
636 {
637         struct regulator_dev *rdev = dev_get_drvdata(dev);
638
639         return regulator_print_state(buf,
640                         rdev->constraints->state_disk.enabled);
641 }
642 static DEVICE_ATTR(suspend_disk_state, 0444,
643                 regulator_suspend_disk_state_show, NULL);
644
645 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
646                                    struct device_attribute *attr, char *buf)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649
650         return regulator_print_state(buf,
651                         rdev->constraints->state_standby.enabled);
652 }
653 static DEVICE_ATTR(suspend_standby_state, 0444,
654                 regulator_suspend_standby_state_show, NULL);
655
656 static ssize_t regulator_bypass_show(struct device *dev,
657                                      struct device_attribute *attr, char *buf)
658 {
659         struct regulator_dev *rdev = dev_get_drvdata(dev);
660         const char *report;
661         bool bypass;
662         int ret;
663
664         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
665
666         if (ret != 0)
667                 report = "unknown";
668         else if (bypass)
669                 report = "enabled";
670         else
671                 report = "disabled";
672
673         return sprintf(buf, "%s\n", report);
674 }
675 static DEVICE_ATTR(bypass, 0444,
676                    regulator_bypass_show, NULL);
677
678 /* Calculate the new optimum regulator operating mode based on the new total
679  * consumer load. All locks held by caller */
680 static int drms_uA_update(struct regulator_dev *rdev)
681 {
682         struct regulator *sibling;
683         int current_uA = 0, output_uV, input_uV, err;
684         unsigned int mode;
685
686         lockdep_assert_held_once(&rdev->mutex);
687
688         /*
689          * first check to see if we can set modes at all, otherwise just
690          * tell the consumer everything is OK.
691          */
692         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
693                 return 0;
694
695         if (!rdev->desc->ops->get_optimum_mode &&
696             !rdev->desc->ops->set_load)
697                 return 0;
698
699         if (!rdev->desc->ops->set_mode &&
700             !rdev->desc->ops->set_load)
701                 return -EINVAL;
702
703         /* calc total requested load */
704         list_for_each_entry(sibling, &rdev->consumer_list, list)
705                 current_uA += sibling->uA_load;
706
707         current_uA += rdev->constraints->system_load;
708
709         if (rdev->desc->ops->set_load) {
710                 /* set the optimum mode for our new total regulator load */
711                 err = rdev->desc->ops->set_load(rdev, current_uA);
712                 if (err < 0)
713                         rdev_err(rdev, "failed to set load %d\n", current_uA);
714         } else {
715                 /* get output voltage */
716                 output_uV = _regulator_get_voltage(rdev);
717                 if (output_uV <= 0) {
718                         rdev_err(rdev, "invalid output voltage found\n");
719                         return -EINVAL;
720                 }
721
722                 /* get input voltage */
723                 input_uV = 0;
724                 if (rdev->supply)
725                         input_uV = regulator_get_voltage(rdev->supply);
726                 if (input_uV <= 0)
727                         input_uV = rdev->constraints->input_uV;
728                 if (input_uV <= 0) {
729                         rdev_err(rdev, "invalid input voltage found\n");
730                         return -EINVAL;
731                 }
732
733                 /* now get the optimum mode for our new total regulator load */
734                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
735                                                          output_uV, current_uA);
736
737                 /* check the new mode is allowed */
738                 err = regulator_mode_constrain(rdev, &mode);
739                 if (err < 0) {
740                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
741                                  current_uA, input_uV, output_uV);
742                         return err;
743                 }
744
745                 err = rdev->desc->ops->set_mode(rdev, mode);
746                 if (err < 0)
747                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
748         }
749
750         return err;
751 }
752
753 static int suspend_set_state(struct regulator_dev *rdev,
754                                     suspend_state_t state)
755 {
756         int ret = 0;
757         struct regulator_state *rstate;
758
759         rstate = regulator_get_suspend_state(rdev, state);
760         if (rstate == NULL)
761                 return 0;
762
763         /* If we have no suspend mode configration don't set anything;
764          * only warn if the driver implements set_suspend_voltage or
765          * set_suspend_mode callback.
766          */
767         if (rstate->enabled != ENABLE_IN_SUSPEND &&
768             rstate->enabled != DISABLE_IN_SUSPEND) {
769                 if (rdev->desc->ops->set_suspend_voltage ||
770                     rdev->desc->ops->set_suspend_mode)
771                         rdev_warn(rdev, "No configuration\n");
772                 return 0;
773         }
774
775         if (rstate->enabled == ENABLE_IN_SUSPEND &&
776                 rdev->desc->ops->set_suspend_enable)
777                 ret = rdev->desc->ops->set_suspend_enable(rdev);
778         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
779                 rdev->desc->ops->set_suspend_disable)
780                 ret = rdev->desc->ops->set_suspend_disable(rdev);
781         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
782                 ret = 0;
783
784         if (ret < 0) {
785                 rdev_err(rdev, "failed to enabled/disable\n");
786                 return ret;
787         }
788
789         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
790                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
791                 if (ret < 0) {
792                         rdev_err(rdev, "failed to set voltage\n");
793                         return ret;
794                 }
795         }
796
797         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
798                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
799                 if (ret < 0) {
800                         rdev_err(rdev, "failed to set mode\n");
801                         return ret;
802                 }
803         }
804
805         return ret;
806 }
807
808 static void print_constraints(struct regulator_dev *rdev)
809 {
810         struct regulation_constraints *constraints = rdev->constraints;
811         char buf[160] = "";
812         size_t len = sizeof(buf) - 1;
813         int count = 0;
814         int ret;
815
816         if (constraints->min_uV && constraints->max_uV) {
817                 if (constraints->min_uV == constraints->max_uV)
818                         count += scnprintf(buf + count, len - count, "%d mV ",
819                                            constraints->min_uV / 1000);
820                 else
821                         count += scnprintf(buf + count, len - count,
822                                            "%d <--> %d mV ",
823                                            constraints->min_uV / 1000,
824                                            constraints->max_uV / 1000);
825         }
826
827         if (!constraints->min_uV ||
828             constraints->min_uV != constraints->max_uV) {
829                 ret = _regulator_get_voltage(rdev);
830                 if (ret > 0)
831                         count += scnprintf(buf + count, len - count,
832                                            "at %d mV ", ret / 1000);
833         }
834
835         if (constraints->uV_offset)
836                 count += scnprintf(buf + count, len - count, "%dmV offset ",
837                                    constraints->uV_offset / 1000);
838
839         if (constraints->min_uA && constraints->max_uA) {
840                 if (constraints->min_uA == constraints->max_uA)
841                         count += scnprintf(buf + count, len - count, "%d mA ",
842                                            constraints->min_uA / 1000);
843                 else
844                         count += scnprintf(buf + count, len - count,
845                                            "%d <--> %d mA ",
846                                            constraints->min_uA / 1000,
847                                            constraints->max_uA / 1000);
848         }
849
850         if (!constraints->min_uA ||
851             constraints->min_uA != constraints->max_uA) {
852                 ret = _regulator_get_current_limit(rdev);
853                 if (ret > 0)
854                         count += scnprintf(buf + count, len - count,
855                                            "at %d mA ", ret / 1000);
856         }
857
858         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
859                 count += scnprintf(buf + count, len - count, "fast ");
860         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
861                 count += scnprintf(buf + count, len - count, "normal ");
862         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
863                 count += scnprintf(buf + count, len - count, "idle ");
864         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
865                 count += scnprintf(buf + count, len - count, "standby");
866
867         if (!count)
868                 scnprintf(buf, len, "no parameters");
869
870         rdev_dbg(rdev, "%s\n", buf);
871
872         if ((constraints->min_uV != constraints->max_uV) &&
873             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
874                 rdev_warn(rdev,
875                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
876 }
877
878 static int machine_constraints_voltage(struct regulator_dev *rdev,
879         struct regulation_constraints *constraints)
880 {
881         const struct regulator_ops *ops = rdev->desc->ops;
882         int ret;
883
884         /* do we need to apply the constraint voltage */
885         if (rdev->constraints->apply_uV &&
886             rdev->constraints->min_uV && rdev->constraints->max_uV) {
887                 int target_min, target_max;
888                 int current_uV = _regulator_get_voltage(rdev);
889                 if (current_uV < 0) {
890                         rdev_err(rdev,
891                                  "failed to get the current voltage(%d)\n",
892                                  current_uV);
893                         return current_uV;
894                 }
895
896                 /*
897                  * If we're below the minimum voltage move up to the
898                  * minimum voltage, if we're above the maximum voltage
899                  * then move down to the maximum.
900                  */
901                 target_min = current_uV;
902                 target_max = current_uV;
903
904                 if (current_uV < rdev->constraints->min_uV) {
905                         target_min = rdev->constraints->min_uV;
906                         target_max = rdev->constraints->min_uV;
907                 }
908
909                 if (current_uV > rdev->constraints->max_uV) {
910                         target_min = rdev->constraints->max_uV;
911                         target_max = rdev->constraints->max_uV;
912                 }
913
914                 if (target_min != current_uV || target_max != current_uV) {
915                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
916                                   current_uV, target_min, target_max);
917                         ret = _regulator_do_set_voltage(
918                                 rdev, target_min, target_max);
919                         if (ret < 0) {
920                                 rdev_err(rdev,
921                                         "failed to apply %d-%duV constraint(%d)\n",
922                                         target_min, target_max, ret);
923                                 return ret;
924                         }
925                 }
926         }
927
928         /* constrain machine-level voltage specs to fit
929          * the actual range supported by this regulator.
930          */
931         if (ops->list_voltage && rdev->desc->n_voltages) {
932                 int     count = rdev->desc->n_voltages;
933                 int     i;
934                 int     min_uV = INT_MAX;
935                 int     max_uV = INT_MIN;
936                 int     cmin = constraints->min_uV;
937                 int     cmax = constraints->max_uV;
938
939                 /* it's safe to autoconfigure fixed-voltage supplies
940                    and the constraints are used by list_voltage. */
941                 if (count == 1 && !cmin) {
942                         cmin = 1;
943                         cmax = INT_MAX;
944                         constraints->min_uV = cmin;
945                         constraints->max_uV = cmax;
946                 }
947
948                 /* voltage constraints are optional */
949                 if ((cmin == 0) && (cmax == 0))
950                         return 0;
951
952                 /* else require explicit machine-level constraints */
953                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
954                         rdev_err(rdev, "invalid voltage constraints\n");
955                         return -EINVAL;
956                 }
957
958                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
959                 for (i = 0; i < count; i++) {
960                         int     value;
961
962                         value = ops->list_voltage(rdev, i);
963                         if (value <= 0)
964                                 continue;
965
966                         /* maybe adjust [min_uV..max_uV] */
967                         if (value >= cmin && value < min_uV)
968                                 min_uV = value;
969                         if (value <= cmax && value > max_uV)
970                                 max_uV = value;
971                 }
972
973                 /* final: [min_uV..max_uV] valid iff constraints valid */
974                 if (max_uV < min_uV) {
975                         rdev_err(rdev,
976                                  "unsupportable voltage constraints %u-%uuV\n",
977                                  min_uV, max_uV);
978                         return -EINVAL;
979                 }
980
981                 /* use regulator's subset of machine constraints */
982                 if (constraints->min_uV < min_uV) {
983                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
984                                  constraints->min_uV, min_uV);
985                         constraints->min_uV = min_uV;
986                 }
987                 if (constraints->max_uV > max_uV) {
988                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
989                                  constraints->max_uV, max_uV);
990                         constraints->max_uV = max_uV;
991                 }
992         }
993
994         return 0;
995 }
996
997 static int machine_constraints_current(struct regulator_dev *rdev,
998         struct regulation_constraints *constraints)
999 {
1000         const struct regulator_ops *ops = rdev->desc->ops;
1001         int ret;
1002
1003         if (!constraints->min_uA && !constraints->max_uA)
1004                 return 0;
1005
1006         if (constraints->min_uA > constraints->max_uA) {
1007                 rdev_err(rdev, "Invalid current constraints\n");
1008                 return -EINVAL;
1009         }
1010
1011         if (!ops->set_current_limit || !ops->get_current_limit) {
1012                 rdev_warn(rdev, "Operation of current configuration missing\n");
1013                 return 0;
1014         }
1015
1016         /* Set regulator current in constraints range */
1017         ret = ops->set_current_limit(rdev, constraints->min_uA,
1018                         constraints->max_uA);
1019         if (ret < 0) {
1020                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1021                 return ret;
1022         }
1023
1024         return 0;
1025 }
1026
1027 static int _regulator_do_enable(struct regulator_dev *rdev);
1028
1029 /**
1030  * set_machine_constraints - sets regulator constraints
1031  * @rdev: regulator source
1032  * @constraints: constraints to apply
1033  *
1034  * Allows platform initialisation code to define and constrain
1035  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1036  * Constraints *must* be set by platform code in order for some
1037  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1038  * set_mode.
1039  */
1040 static int set_machine_constraints(struct regulator_dev *rdev,
1041         const struct regulation_constraints *constraints)
1042 {
1043         int ret = 0;
1044         const struct regulator_ops *ops = rdev->desc->ops;
1045
1046         if (constraints)
1047                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         else
1050                 rdev->constraints = kzalloc(sizeof(*constraints),
1051                                             GFP_KERNEL);
1052         if (!rdev->constraints)
1053                 return -ENOMEM;
1054
1055         ret = machine_constraints_voltage(rdev, rdev->constraints);
1056         if (ret != 0)
1057                 return ret;
1058
1059         ret = machine_constraints_current(rdev, rdev->constraints);
1060         if (ret != 0)
1061                 return ret;
1062
1063         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1064                 ret = ops->set_input_current_limit(rdev,
1065                                                    rdev->constraints->ilim_uA);
1066                 if (ret < 0) {
1067                         rdev_err(rdev, "failed to set input limit\n");
1068                         return ret;
1069                 }
1070         }
1071
1072         /* do we need to setup our suspend state */
1073         if (rdev->constraints->initial_state) {
1074                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1075                 if (ret < 0) {
1076                         rdev_err(rdev, "failed to set suspend state\n");
1077                         return ret;
1078                 }
1079         }
1080
1081         if (rdev->constraints->initial_mode) {
1082                 if (!ops->set_mode) {
1083                         rdev_err(rdev, "no set_mode operation\n");
1084                         return -EINVAL;
1085                 }
1086
1087                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1088                 if (ret < 0) {
1089                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1090                         return ret;
1091                 }
1092         }
1093
1094         /* If the constraints say the regulator should be on at this point
1095          * and we have control then make sure it is enabled.
1096          */
1097         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1098                 ret = _regulator_do_enable(rdev);
1099                 if (ret < 0 && ret != -EINVAL) {
1100                         rdev_err(rdev, "failed to enable\n");
1101                         return ret;
1102                 }
1103         }
1104
1105         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1106                 && ops->set_ramp_delay) {
1107                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1108                 if (ret < 0) {
1109                         rdev_err(rdev, "failed to set ramp_delay\n");
1110                         return ret;
1111                 }
1112         }
1113
1114         if (rdev->constraints->pull_down && ops->set_pull_down) {
1115                 ret = ops->set_pull_down(rdev);
1116                 if (ret < 0) {
1117                         rdev_err(rdev, "failed to set pull down\n");
1118                         return ret;
1119                 }
1120         }
1121
1122         if (rdev->constraints->soft_start && ops->set_soft_start) {
1123                 ret = ops->set_soft_start(rdev);
1124                 if (ret < 0) {
1125                         rdev_err(rdev, "failed to set soft start\n");
1126                         return ret;
1127                 }
1128         }
1129
1130         if (rdev->constraints->over_current_protection
1131                 && ops->set_over_current_protection) {
1132                 ret = ops->set_over_current_protection(rdev);
1133                 if (ret < 0) {
1134                         rdev_err(rdev, "failed to set over current protection\n");
1135                         return ret;
1136                 }
1137         }
1138
1139         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1140                 bool ad_state = (rdev->constraints->active_discharge ==
1141                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1142
1143                 ret = ops->set_active_discharge(rdev, ad_state);
1144                 if (ret < 0) {
1145                         rdev_err(rdev, "failed to set active discharge\n");
1146                         return ret;
1147                 }
1148         }
1149
1150         print_constraints(rdev);
1151         return 0;
1152 }
1153
1154 /**
1155  * set_supply - set regulator supply regulator
1156  * @rdev: regulator name
1157  * @supply_rdev: supply regulator name
1158  *
1159  * Called by platform initialisation code to set the supply regulator for this
1160  * regulator. This ensures that a regulators supply will also be enabled by the
1161  * core if it's child is enabled.
1162  */
1163 static int set_supply(struct regulator_dev *rdev,
1164                       struct regulator_dev *supply_rdev)
1165 {
1166         int err;
1167
1168         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1169
1170         if (!try_module_get(supply_rdev->owner))
1171                 return -ENODEV;
1172
1173         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1174         if (rdev->supply == NULL) {
1175                 err = -ENOMEM;
1176                 return err;
1177         }
1178         supply_rdev->open_count++;
1179
1180         return 0;
1181 }
1182
1183 /**
1184  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1185  * @rdev:         regulator source
1186  * @consumer_dev_name: dev_name() string for device supply applies to
1187  * @supply:       symbolic name for supply
1188  *
1189  * Allows platform initialisation code to map physical regulator
1190  * sources to symbolic names for supplies for use by devices.  Devices
1191  * should use these symbolic names to request regulators, avoiding the
1192  * need to provide board-specific regulator names as platform data.
1193  */
1194 static int set_consumer_device_supply(struct regulator_dev *rdev,
1195                                       const char *consumer_dev_name,
1196                                       const char *supply)
1197 {
1198         struct regulator_map *node;
1199         int has_dev;
1200
1201         if (supply == NULL)
1202                 return -EINVAL;
1203
1204         if (consumer_dev_name != NULL)
1205                 has_dev = 1;
1206         else
1207                 has_dev = 0;
1208
1209         list_for_each_entry(node, &regulator_map_list, list) {
1210                 if (node->dev_name && consumer_dev_name) {
1211                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1212                                 continue;
1213                 } else if (node->dev_name || consumer_dev_name) {
1214                         continue;
1215                 }
1216
1217                 if (strcmp(node->supply, supply) != 0)
1218                         continue;
1219
1220                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1221                          consumer_dev_name,
1222                          dev_name(&node->regulator->dev),
1223                          node->regulator->desc->name,
1224                          supply,
1225                          dev_name(&rdev->dev), rdev_get_name(rdev));
1226                 return -EBUSY;
1227         }
1228
1229         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1230         if (node == NULL)
1231                 return -ENOMEM;
1232
1233         node->regulator = rdev;
1234         node->supply = supply;
1235
1236         if (has_dev) {
1237                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1238                 if (node->dev_name == NULL) {
1239                         kfree(node);
1240                         return -ENOMEM;
1241                 }
1242         }
1243
1244         list_add(&node->list, &regulator_map_list);
1245         return 0;
1246 }
1247
1248 static void unset_regulator_supplies(struct regulator_dev *rdev)
1249 {
1250         struct regulator_map *node, *n;
1251
1252         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1253                 if (rdev == node->regulator) {
1254                         list_del(&node->list);
1255                         kfree(node->dev_name);
1256                         kfree(node);
1257                 }
1258         }
1259 }
1260
1261 #ifdef CONFIG_DEBUG_FS
1262 static ssize_t constraint_flags_read_file(struct file *file,
1263                                           char __user *user_buf,
1264                                           size_t count, loff_t *ppos)
1265 {
1266         const struct regulator *regulator = file->private_data;
1267         const struct regulation_constraints *c = regulator->rdev->constraints;
1268         char *buf;
1269         ssize_t ret;
1270
1271         if (!c)
1272                 return 0;
1273
1274         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1275         if (!buf)
1276                 return -ENOMEM;
1277
1278         ret = snprintf(buf, PAGE_SIZE,
1279                         "always_on: %u\n"
1280                         "boot_on: %u\n"
1281                         "apply_uV: %u\n"
1282                         "ramp_disable: %u\n"
1283                         "soft_start: %u\n"
1284                         "pull_down: %u\n"
1285                         "over_current_protection: %u\n",
1286                         c->always_on,
1287                         c->boot_on,
1288                         c->apply_uV,
1289                         c->ramp_disable,
1290                         c->soft_start,
1291                         c->pull_down,
1292                         c->over_current_protection);
1293
1294         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1295         kfree(buf);
1296
1297         return ret;
1298 }
1299
1300 #endif
1301
1302 static const struct file_operations constraint_flags_fops = {
1303 #ifdef CONFIG_DEBUG_FS
1304         .open = simple_open,
1305         .read = constraint_flags_read_file,
1306         .llseek = default_llseek,
1307 #endif
1308 };
1309
1310 #define REG_STR_SIZE    64
1311
1312 static struct regulator *create_regulator(struct regulator_dev *rdev,
1313                                           struct device *dev,
1314                                           const char *supply_name)
1315 {
1316         struct regulator *regulator;
1317         char buf[REG_STR_SIZE];
1318         int err, size;
1319
1320         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1321         if (regulator == NULL)
1322                 return NULL;
1323
1324         mutex_lock(&rdev->mutex);
1325         regulator->rdev = rdev;
1326         list_add(&regulator->list, &rdev->consumer_list);
1327
1328         if (dev) {
1329                 regulator->dev = dev;
1330
1331                 /* Add a link to the device sysfs entry */
1332                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1333                                 dev->kobj.name, supply_name);
1334                 if (size >= REG_STR_SIZE)
1335                         goto overflow_err;
1336
1337                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1338                 if (regulator->supply_name == NULL)
1339                         goto overflow_err;
1340
1341                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1342                                         buf);
1343                 if (err) {
1344                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1345                                   dev->kobj.name, err);
1346                         /* non-fatal */
1347                 }
1348         } else {
1349                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1350                 if (regulator->supply_name == NULL)
1351                         goto overflow_err;
1352         }
1353
1354         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1355                                                 rdev->debugfs);
1356         if (!regulator->debugfs) {
1357                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1358         } else {
1359                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1360                                    &regulator->uA_load);
1361                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1362                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1363                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1364                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1365                 debugfs_create_file("constraint_flags", 0444,
1366                                     regulator->debugfs, regulator,
1367                                     &constraint_flags_fops);
1368         }
1369
1370         /*
1371          * Check now if the regulator is an always on regulator - if
1372          * it is then we don't need to do nearly so much work for
1373          * enable/disable calls.
1374          */
1375         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1376             _regulator_is_enabled(rdev))
1377                 regulator->always_on = true;
1378
1379         mutex_unlock(&rdev->mutex);
1380         return regulator;
1381 overflow_err:
1382         list_del(&regulator->list);
1383         kfree(regulator);
1384         mutex_unlock(&rdev->mutex);
1385         return NULL;
1386 }
1387
1388 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1389 {
1390         if (rdev->constraints && rdev->constraints->enable_time)
1391                 return rdev->constraints->enable_time;
1392         if (!rdev->desc->ops->enable_time)
1393                 return rdev->desc->enable_time;
1394         return rdev->desc->ops->enable_time(rdev);
1395 }
1396
1397 static struct regulator_supply_alias *regulator_find_supply_alias(
1398                 struct device *dev, const char *supply)
1399 {
1400         struct regulator_supply_alias *map;
1401
1402         list_for_each_entry(map, &regulator_supply_alias_list, list)
1403                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1404                         return map;
1405
1406         return NULL;
1407 }
1408
1409 static void regulator_supply_alias(struct device **dev, const char **supply)
1410 {
1411         struct regulator_supply_alias *map;
1412
1413         map = regulator_find_supply_alias(*dev, *supply);
1414         if (map) {
1415                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1416                                 *supply, map->alias_supply,
1417                                 dev_name(map->alias_dev));
1418                 *dev = map->alias_dev;
1419                 *supply = map->alias_supply;
1420         }
1421 }
1422
1423 static int regulator_match(struct device *dev, const void *data)
1424 {
1425         struct regulator_dev *r = dev_to_rdev(dev);
1426
1427         return strcmp(rdev_get_name(r), data) == 0;
1428 }
1429
1430 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1431 {
1432         struct device *dev;
1433
1434         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1435
1436         return dev ? dev_to_rdev(dev) : NULL;
1437 }
1438
1439 /**
1440  * regulator_dev_lookup - lookup a regulator device.
1441  * @dev: device for regulator "consumer".
1442  * @supply: Supply name or regulator ID.
1443  *
1444  * If successful, returns a struct regulator_dev that corresponds to the name
1445  * @supply and with the embedded struct device refcount incremented by one.
1446  * The refcount must be dropped by calling put_device().
1447  * On failure one of the following ERR-PTR-encoded values is returned:
1448  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1449  * in the future.
1450  */
1451 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1452                                                   const char *supply)
1453 {
1454         struct regulator_dev *r = NULL;
1455         struct device_node *node;
1456         struct regulator_map *map;
1457         const char *devname = NULL;
1458
1459         regulator_supply_alias(&dev, &supply);
1460
1461         /* first do a dt based lookup */
1462         if (dev && dev->of_node) {
1463                 node = of_get_regulator(dev, supply);
1464                 if (node) {
1465                         r = of_find_regulator_by_node(node);
1466                         if (r)
1467                                 return r;
1468
1469                         /*
1470                          * We have a node, but there is no device.
1471                          * assume it has not registered yet.
1472                          */
1473                         return ERR_PTR(-EPROBE_DEFER);
1474                 }
1475         }
1476
1477         /* if not found, try doing it non-dt way */
1478         if (dev)
1479                 devname = dev_name(dev);
1480
1481         mutex_lock(&regulator_list_mutex);
1482         list_for_each_entry(map, &regulator_map_list, list) {
1483                 /* If the mapping has a device set up it must match */
1484                 if (map->dev_name &&
1485                     (!devname || strcmp(map->dev_name, devname)))
1486                         continue;
1487
1488                 if (strcmp(map->supply, supply) == 0 &&
1489                     get_device(&map->regulator->dev)) {
1490                         r = map->regulator;
1491                         break;
1492                 }
1493         }
1494         mutex_unlock(&regulator_list_mutex);
1495
1496         if (r)
1497                 return r;
1498
1499         r = regulator_lookup_by_name(supply);
1500         if (r)
1501                 return r;
1502
1503         return ERR_PTR(-ENODEV);
1504 }
1505
1506 static int regulator_resolve_supply(struct regulator_dev *rdev)
1507 {
1508         struct regulator_dev *r;
1509         struct device *dev = rdev->dev.parent;
1510         int ret;
1511
1512         /* No supply to resovle? */
1513         if (!rdev->supply_name)
1514                 return 0;
1515
1516         /* Supply already resolved? */
1517         if (rdev->supply)
1518                 return 0;
1519
1520         r = regulator_dev_lookup(dev, rdev->supply_name);
1521         if (IS_ERR(r)) {
1522                 ret = PTR_ERR(r);
1523
1524                 /* Did the lookup explicitly defer for us? */
1525                 if (ret == -EPROBE_DEFER)
1526                         return ret;
1527
1528                 if (have_full_constraints()) {
1529                         r = dummy_regulator_rdev;
1530                         get_device(&r->dev);
1531                 } else {
1532                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1533                                 rdev->supply_name, rdev->desc->name);
1534                         return -EPROBE_DEFER;
1535                 }
1536         }
1537
1538         /*
1539          * If the supply's parent device is not the same as the
1540          * regulator's parent device, then ensure the parent device
1541          * is bound before we resolve the supply, in case the parent
1542          * device get probe deferred and unregisters the supply.
1543          */
1544         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1545                 if (!device_is_bound(r->dev.parent)) {
1546                         put_device(&r->dev);
1547                         return -EPROBE_DEFER;
1548                 }
1549         }
1550
1551         /* Recursively resolve the supply of the supply */
1552         ret = regulator_resolve_supply(r);
1553         if (ret < 0) {
1554                 put_device(&r->dev);
1555                 return ret;
1556         }
1557
1558         ret = set_supply(rdev, r);
1559         if (ret < 0) {
1560                 put_device(&r->dev);
1561                 return ret;
1562         }
1563
1564         /* Cascade always-on state to supply */
1565         if (_regulator_is_enabled(rdev)) {
1566                 ret = regulator_enable(rdev->supply);
1567                 if (ret < 0) {
1568                         _regulator_put(rdev->supply);
1569                         rdev->supply = NULL;
1570                         return ret;
1571                 }
1572         }
1573
1574         return 0;
1575 }
1576
1577 /* Internal regulator request function */
1578 struct regulator *_regulator_get(struct device *dev, const char *id,
1579                                  enum regulator_get_type get_type)
1580 {
1581         struct regulator_dev *rdev;
1582         struct regulator *regulator;
1583         const char *devname = dev ? dev_name(dev) : "deviceless";
1584         int ret;
1585
1586         if (get_type >= MAX_GET_TYPE) {
1587                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1588                 return ERR_PTR(-EINVAL);
1589         }
1590
1591         if (id == NULL) {
1592                 pr_err("get() with no identifier\n");
1593                 return ERR_PTR(-EINVAL);
1594         }
1595
1596         rdev = regulator_dev_lookup(dev, id);
1597         if (IS_ERR(rdev)) {
1598                 ret = PTR_ERR(rdev);
1599
1600                 /*
1601                  * If regulator_dev_lookup() fails with error other
1602                  * than -ENODEV our job here is done, we simply return it.
1603                  */
1604                 if (ret != -ENODEV)
1605                         return ERR_PTR(ret);
1606
1607                 if (!have_full_constraints()) {
1608                         dev_warn(dev,
1609                                  "incomplete constraints, dummy supplies not allowed\n");
1610                         return ERR_PTR(-ENODEV);
1611                 }
1612
1613                 switch (get_type) {
1614                 case NORMAL_GET:
1615                         /*
1616                          * Assume that a regulator is physically present and
1617                          * enabled, even if it isn't hooked up, and just
1618                          * provide a dummy.
1619                          */
1620                         dev_warn(dev,
1621                                  "%s supply %s not found, using dummy regulator\n",
1622                                  devname, id);
1623                         rdev = dummy_regulator_rdev;
1624                         get_device(&rdev->dev);
1625                         break;
1626
1627                 case EXCLUSIVE_GET:
1628                         dev_warn(dev,
1629                                  "dummy supplies not allowed for exclusive requests\n");
1630                         /* fall through */
1631
1632                 default:
1633                         return ERR_PTR(-ENODEV);
1634                 }
1635         }
1636
1637         if (rdev->exclusive) {
1638                 regulator = ERR_PTR(-EPERM);
1639                 put_device(&rdev->dev);
1640                 return regulator;
1641         }
1642
1643         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1644                 regulator = ERR_PTR(-EBUSY);
1645                 put_device(&rdev->dev);
1646                 return regulator;
1647         }
1648
1649         ret = regulator_resolve_supply(rdev);
1650         if (ret < 0) {
1651                 regulator = ERR_PTR(ret);
1652                 put_device(&rdev->dev);
1653                 return regulator;
1654         }
1655
1656         if (!try_module_get(rdev->owner)) {
1657                 regulator = ERR_PTR(-EPROBE_DEFER);
1658                 put_device(&rdev->dev);
1659                 return regulator;
1660         }
1661
1662         regulator = create_regulator(rdev, dev, id);
1663         if (regulator == NULL) {
1664                 regulator = ERR_PTR(-ENOMEM);
1665                 put_device(&rdev->dev);
1666                 module_put(rdev->owner);
1667                 return regulator;
1668         }
1669
1670         rdev->open_count++;
1671         if (get_type == EXCLUSIVE_GET) {
1672                 rdev->exclusive = 1;
1673
1674                 ret = _regulator_is_enabled(rdev);
1675                 if (ret > 0)
1676                         rdev->use_count = 1;
1677                 else
1678                         rdev->use_count = 0;
1679         }
1680
1681         return regulator;
1682 }
1683
1684 /**
1685  * regulator_get - lookup and obtain a reference to a regulator.
1686  * @dev: device for regulator "consumer"
1687  * @id: Supply name or regulator ID.
1688  *
1689  * Returns a struct regulator corresponding to the regulator producer,
1690  * or IS_ERR() condition containing errno.
1691  *
1692  * Use of supply names configured via regulator_set_device_supply() is
1693  * strongly encouraged.  It is recommended that the supply name used
1694  * should match the name used for the supply and/or the relevant
1695  * device pins in the datasheet.
1696  */
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1698 {
1699         return _regulator_get(dev, id, NORMAL_GET);
1700 }
1701 EXPORT_SYMBOL_GPL(regulator_get);
1702
1703 /**
1704  * regulator_get_exclusive - obtain exclusive access to a regulator.
1705  * @dev: device for regulator "consumer"
1706  * @id: Supply name or regulator ID.
1707  *
1708  * Returns a struct regulator corresponding to the regulator producer,
1709  * or IS_ERR() condition containing errno.  Other consumers will be
1710  * unable to obtain this regulator while this reference is held and the
1711  * use count for the regulator will be initialised to reflect the current
1712  * state of the regulator.
1713  *
1714  * This is intended for use by consumers which cannot tolerate shared
1715  * use of the regulator such as those which need to force the
1716  * regulator off for correct operation of the hardware they are
1717  * controlling.
1718  *
1719  * Use of supply names configured via regulator_set_device_supply() is
1720  * strongly encouraged.  It is recommended that the supply name used
1721  * should match the name used for the supply and/or the relevant
1722  * device pins in the datasheet.
1723  */
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725 {
1726         return _regulator_get(dev, id, EXCLUSIVE_GET);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729
1730 /**
1731  * regulator_get_optional - obtain optional access to a regulator.
1732  * @dev: device for regulator "consumer"
1733  * @id: Supply name or regulator ID.
1734  *
1735  * Returns a struct regulator corresponding to the regulator producer,
1736  * or IS_ERR() condition containing errno.
1737  *
1738  * This is intended for use by consumers for devices which can have
1739  * some supplies unconnected in normal use, such as some MMC devices.
1740  * It can allow the regulator core to provide stub supplies for other
1741  * supplies requested using normal regulator_get() calls without
1742  * disrupting the operation of drivers that can handle absent
1743  * supplies.
1744  *
1745  * Use of supply names configured via regulator_set_device_supply() is
1746  * strongly encouraged.  It is recommended that the supply name used
1747  * should match the name used for the supply and/or the relevant
1748  * device pins in the datasheet.
1749  */
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751 {
1752         return _regulator_get(dev, id, OPTIONAL_GET);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1755
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1758 {
1759         struct regulator_dev *rdev;
1760
1761         if (IS_ERR_OR_NULL(regulator))
1762                 return;
1763
1764         lockdep_assert_held_once(&regulator_list_mutex);
1765
1766         rdev = regulator->rdev;
1767
1768         debugfs_remove_recursive(regulator->debugfs);
1769
1770         /* remove any sysfs entries */
1771         if (regulator->dev)
1772                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773         mutex_lock(&rdev->mutex);
1774         list_del(&regulator->list);
1775
1776         rdev->open_count--;
1777         rdev->exclusive = 0;
1778         put_device(&rdev->dev);
1779         mutex_unlock(&rdev->mutex);
1780
1781         kfree_const(regulator->supply_name);
1782         kfree(regulator);
1783
1784         module_put(rdev->owner);
1785 }
1786
1787 /**
1788  * regulator_put - "free" the regulator source
1789  * @regulator: regulator source
1790  *
1791  * Note: drivers must ensure that all regulator_enable calls made on this
1792  * regulator source are balanced by regulator_disable calls prior to calling
1793  * this function.
1794  */
1795 void regulator_put(struct regulator *regulator)
1796 {
1797         mutex_lock(&regulator_list_mutex);
1798         _regulator_put(regulator);
1799         mutex_unlock(&regulator_list_mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_put);
1802
1803 /**
1804  * regulator_register_supply_alias - Provide device alias for supply lookup
1805  *
1806  * @dev: device that will be given as the regulator "consumer"
1807  * @id: Supply name or regulator ID
1808  * @alias_dev: device that should be used to lookup the supply
1809  * @alias_id: Supply name or regulator ID that should be used to lookup the
1810  * supply
1811  *
1812  * All lookups for id on dev will instead be conducted for alias_id on
1813  * alias_dev.
1814  */
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816                                     struct device *alias_dev,
1817                                     const char *alias_id)
1818 {
1819         struct regulator_supply_alias *map;
1820
1821         map = regulator_find_supply_alias(dev, id);
1822         if (map)
1823                 return -EEXIST;
1824
1825         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826         if (!map)
1827                 return -ENOMEM;
1828
1829         map->src_dev = dev;
1830         map->src_supply = id;
1831         map->alias_dev = alias_dev;
1832         map->alias_supply = alias_id;
1833
1834         list_add(&map->list, &regulator_supply_alias_list);
1835
1836         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1838
1839         return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842
1843 /**
1844  * regulator_unregister_supply_alias - Remove device alias
1845  *
1846  * @dev: device that will be given as the regulator "consumer"
1847  * @id: Supply name or regulator ID
1848  *
1849  * Remove a lookup alias if one exists for id on dev.
1850  */
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852 {
1853         struct regulator_supply_alias *map;
1854
1855         map = regulator_find_supply_alias(dev, id);
1856         if (map) {
1857                 list_del(&map->list);
1858                 kfree(map);
1859         }
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862
1863 /**
1864  * regulator_bulk_register_supply_alias - register multiple aliases
1865  *
1866  * @dev: device that will be given as the regulator "consumer"
1867  * @id: List of supply names or regulator IDs
1868  * @alias_dev: device that should be used to lookup the supply
1869  * @alias_id: List of supply names or regulator IDs that should be used to
1870  * lookup the supply
1871  * @num_id: Number of aliases to register
1872  *
1873  * @return 0 on success, an errno on failure.
1874  *
1875  * This helper function allows drivers to register several supply
1876  * aliases in one operation.  If any of the aliases cannot be
1877  * registered any aliases that were registered will be removed
1878  * before returning to the caller.
1879  */
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881                                          const char *const *id,
1882                                          struct device *alias_dev,
1883                                          const char *const *alias_id,
1884                                          int num_id)
1885 {
1886         int i;
1887         int ret;
1888
1889         for (i = 0; i < num_id; ++i) {
1890                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891                                                       alias_id[i]);
1892                 if (ret < 0)
1893                         goto err;
1894         }
1895
1896         return 0;
1897
1898 err:
1899         dev_err(dev,
1900                 "Failed to create supply alias %s,%s -> %s,%s\n",
1901                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902
1903         while (--i >= 0)
1904                 regulator_unregister_supply_alias(dev, id[i]);
1905
1906         return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909
1910 /**
1911  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912  *
1913  * @dev: device that will be given as the regulator "consumer"
1914  * @id: List of supply names or regulator IDs
1915  * @num_id: Number of aliases to unregister
1916  *
1917  * This helper function allows drivers to unregister several supply
1918  * aliases in one operation.
1919  */
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921                                             const char *const *id,
1922                                             int num_id)
1923 {
1924         int i;
1925
1926         for (i = 0; i < num_id; ++i)
1927                 regulator_unregister_supply_alias(dev, id[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930
1931
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934                                 const struct regulator_config *config)
1935 {
1936         struct regulator_enable_gpio *pin;
1937         struct gpio_desc *gpiod;
1938         int ret;
1939
1940         if (config->ena_gpiod)
1941                 gpiod = config->ena_gpiod;
1942         else
1943                 gpiod = gpio_to_desc(config->ena_gpio);
1944
1945         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1946                 if (pin->gpiod == gpiod) {
1947                         rdev_dbg(rdev, "GPIO %d is already used\n",
1948                                 config->ena_gpio);
1949                         goto update_ena_gpio_to_rdev;
1950                 }
1951         }
1952
1953         if (!config->ena_gpiod) {
1954                 ret = gpio_request_one(config->ena_gpio,
1955                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
1956                                        rdev_get_name(rdev));
1957                 if (ret)
1958                         return ret;
1959         }
1960
1961         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1962         if (pin == NULL) {
1963                 if (!config->ena_gpiod)
1964                         gpio_free(config->ena_gpio);
1965                 return -ENOMEM;
1966         }
1967
1968         pin->gpiod = gpiod;
1969         pin->ena_gpio_invert = config->ena_gpio_invert;
1970         list_add(&pin->list, &regulator_ena_gpio_list);
1971
1972 update_ena_gpio_to_rdev:
1973         pin->request_count++;
1974         rdev->ena_pin = pin;
1975         return 0;
1976 }
1977
1978 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1979 {
1980         struct regulator_enable_gpio *pin, *n;
1981
1982         if (!rdev->ena_pin)
1983                 return;
1984
1985         /* Free the GPIO only in case of no use */
1986         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1987                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1988                         if (pin->request_count <= 1) {
1989                                 pin->request_count = 0;
1990                                 gpiod_put(pin->gpiod);
1991                                 list_del(&pin->list);
1992                                 kfree(pin);
1993                                 rdev->ena_pin = NULL;
1994                                 return;
1995                         } else {
1996                                 pin->request_count--;
1997                         }
1998                 }
1999         }
2000 }
2001
2002 /**
2003  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2004  * @rdev: regulator_dev structure
2005  * @enable: enable GPIO at initial use?
2006  *
2007  * GPIO is enabled in case of initial use. (enable_count is 0)
2008  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2009  */
2010 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2011 {
2012         struct regulator_enable_gpio *pin = rdev->ena_pin;
2013
2014         if (!pin)
2015                 return -EINVAL;
2016
2017         if (enable) {
2018                 /* Enable GPIO at initial use */
2019                 if (pin->enable_count == 0)
2020                         gpiod_set_value_cansleep(pin->gpiod,
2021                                                  !pin->ena_gpio_invert);
2022
2023                 pin->enable_count++;
2024         } else {
2025                 if (pin->enable_count > 1) {
2026                         pin->enable_count--;
2027                         return 0;
2028                 }
2029
2030                 /* Disable GPIO if not used */
2031                 if (pin->enable_count <= 1) {
2032                         gpiod_set_value_cansleep(pin->gpiod,
2033                                                  pin->ena_gpio_invert);
2034                         pin->enable_count = 0;
2035                 }
2036         }
2037
2038         return 0;
2039 }
2040
2041 /**
2042  * _regulator_enable_delay - a delay helper function
2043  * @delay: time to delay in microseconds
2044  *
2045  * Delay for the requested amount of time as per the guidelines in:
2046  *
2047  *     Documentation/timers/timers-howto.txt
2048  *
2049  * The assumption here is that regulators will never be enabled in
2050  * atomic context and therefore sleeping functions can be used.
2051  */
2052 static void _regulator_enable_delay(unsigned int delay)
2053 {
2054         unsigned int ms = delay / 1000;
2055         unsigned int us = delay % 1000;
2056
2057         if (ms > 0) {
2058                 /*
2059                  * For small enough values, handle super-millisecond
2060                  * delays in the usleep_range() call below.
2061                  */
2062                 if (ms < 20)
2063                         us += ms * 1000;
2064                 else
2065                         msleep(ms);
2066         }
2067
2068         /*
2069          * Give the scheduler some room to coalesce with any other
2070          * wakeup sources. For delays shorter than 10 us, don't even
2071          * bother setting up high-resolution timers and just busy-
2072          * loop.
2073          */
2074         if (us >= 10)
2075                 usleep_range(us, us + 100);
2076         else
2077                 udelay(us);
2078 }
2079
2080 static int _regulator_do_enable(struct regulator_dev *rdev)
2081 {
2082         int ret, delay;
2083
2084         /* Query before enabling in case configuration dependent.  */
2085         ret = _regulator_get_enable_time(rdev);
2086         if (ret >= 0) {
2087                 delay = ret;
2088         } else {
2089                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2090                 delay = 0;
2091         }
2092
2093         trace_regulator_enable(rdev_get_name(rdev));
2094
2095         if (rdev->desc->off_on_delay) {
2096                 /* if needed, keep a distance of off_on_delay from last time
2097                  * this regulator was disabled.
2098                  */
2099                 unsigned long start_jiffy = jiffies;
2100                 unsigned long intended, max_delay, remaining;
2101
2102                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2103                 intended = rdev->last_off_jiffy + max_delay;
2104
2105                 if (time_before(start_jiffy, intended)) {
2106                         /* calc remaining jiffies to deal with one-time
2107                          * timer wrapping.
2108                          * in case of multiple timer wrapping, either it can be
2109                          * detected by out-of-range remaining, or it cannot be
2110                          * detected and we gets a panelty of
2111                          * _regulator_enable_delay().
2112                          */
2113                         remaining = intended - start_jiffy;
2114                         if (remaining <= max_delay)
2115                                 _regulator_enable_delay(
2116                                                 jiffies_to_usecs(remaining));
2117                 }
2118         }
2119
2120         if (rdev->ena_pin) {
2121                 if (!rdev->ena_gpio_state) {
2122                         ret = regulator_ena_gpio_ctrl(rdev, true);
2123                         if (ret < 0)
2124                                 return ret;
2125                         rdev->ena_gpio_state = 1;
2126                 }
2127         } else if (rdev->desc->ops->enable) {
2128                 ret = rdev->desc->ops->enable(rdev);
2129                 if (ret < 0)
2130                         return ret;
2131         } else {
2132                 return -EINVAL;
2133         }
2134
2135         /* Allow the regulator to ramp; it would be useful to extend
2136          * this for bulk operations so that the regulators can ramp
2137          * together.  */
2138         trace_regulator_enable_delay(rdev_get_name(rdev));
2139
2140         _regulator_enable_delay(delay);
2141
2142         trace_regulator_enable_complete(rdev_get_name(rdev));
2143
2144         return 0;
2145 }
2146
2147 /* locks held by regulator_enable() */
2148 static int _regulator_enable(struct regulator_dev *rdev)
2149 {
2150         int ret;
2151
2152         lockdep_assert_held_once(&rdev->mutex);
2153
2154         /* check voltage and requested load before enabling */
2155         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2156                 drms_uA_update(rdev);
2157
2158         if (rdev->use_count == 0) {
2159                 /* The regulator may on if it's not switchable or left on */
2160                 ret = _regulator_is_enabled(rdev);
2161                 if (ret == -EINVAL || ret == 0) {
2162                         if (!regulator_ops_is_valid(rdev,
2163                                         REGULATOR_CHANGE_STATUS))
2164                                 return -EPERM;
2165
2166                         ret = _regulator_do_enable(rdev);
2167                         if (ret < 0)
2168                                 return ret;
2169
2170                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2171                                              NULL);
2172                 } else if (ret < 0) {
2173                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2174                         return ret;
2175                 }
2176                 /* Fallthrough on positive return values - already enabled */
2177         }
2178
2179         rdev->use_count++;
2180
2181         return 0;
2182 }
2183
2184 /**
2185  * regulator_enable - enable regulator output
2186  * @regulator: regulator source
2187  *
2188  * Request that the regulator be enabled with the regulator output at
2189  * the predefined voltage or current value.  Calls to regulator_enable()
2190  * must be balanced with calls to regulator_disable().
2191  *
2192  * NOTE: the output value can be set by other drivers, boot loader or may be
2193  * hardwired in the regulator.
2194  */
2195 int regulator_enable(struct regulator *regulator)
2196 {
2197         struct regulator_dev *rdev = regulator->rdev;
2198         int ret = 0;
2199
2200         if (regulator->always_on)
2201                 return 0;
2202
2203         if (rdev->supply) {
2204                 ret = regulator_enable(rdev->supply);
2205                 if (ret != 0)
2206                         return ret;
2207         }
2208
2209         mutex_lock(&rdev->mutex);
2210         ret = _regulator_enable(rdev);
2211         mutex_unlock(&rdev->mutex);
2212
2213         if (ret != 0 && rdev->supply)
2214                 regulator_disable(rdev->supply);
2215
2216         return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_enable);
2219
2220 static int _regulator_do_disable(struct regulator_dev *rdev)
2221 {
2222         int ret;
2223
2224         trace_regulator_disable(rdev_get_name(rdev));
2225
2226         if (rdev->ena_pin) {
2227                 if (rdev->ena_gpio_state) {
2228                         ret = regulator_ena_gpio_ctrl(rdev, false);
2229                         if (ret < 0)
2230                                 return ret;
2231                         rdev->ena_gpio_state = 0;
2232                 }
2233
2234         } else if (rdev->desc->ops->disable) {
2235                 ret = rdev->desc->ops->disable(rdev);
2236                 if (ret != 0)
2237                         return ret;
2238         }
2239
2240         /* cares about last_off_jiffy only if off_on_delay is required by
2241          * device.
2242          */
2243         if (rdev->desc->off_on_delay)
2244                 rdev->last_off_jiffy = jiffies;
2245
2246         trace_regulator_disable_complete(rdev_get_name(rdev));
2247
2248         return 0;
2249 }
2250
2251 /* locks held by regulator_disable() */
2252 static int _regulator_disable(struct regulator_dev *rdev)
2253 {
2254         int ret = 0;
2255
2256         lockdep_assert_held_once(&rdev->mutex);
2257
2258         if (WARN(rdev->use_count <= 0,
2259                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2260                 return -EIO;
2261
2262         /* are we the last user and permitted to disable ? */
2263         if (rdev->use_count == 1 &&
2264             (rdev->constraints && !rdev->constraints->always_on)) {
2265
2266                 /* we are last user */
2267                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2268                         ret = _notifier_call_chain(rdev,
2269                                                    REGULATOR_EVENT_PRE_DISABLE,
2270                                                    NULL);
2271                         if (ret & NOTIFY_STOP_MASK)
2272                                 return -EINVAL;
2273
2274                         ret = _regulator_do_disable(rdev);
2275                         if (ret < 0) {
2276                                 rdev_err(rdev, "failed to disable\n");
2277                                 _notifier_call_chain(rdev,
2278                                                 REGULATOR_EVENT_ABORT_DISABLE,
2279                                                 NULL);
2280                                 return ret;
2281                         }
2282                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2283                                         NULL);
2284                 }
2285
2286                 rdev->use_count = 0;
2287         } else if (rdev->use_count > 1) {
2288                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2289                         drms_uA_update(rdev);
2290
2291                 rdev->use_count--;
2292         }
2293
2294         return ret;
2295 }
2296
2297 /**
2298  * regulator_disable - disable regulator output
2299  * @regulator: regulator source
2300  *
2301  * Disable the regulator output voltage or current.  Calls to
2302  * regulator_enable() must be balanced with calls to
2303  * regulator_disable().
2304  *
2305  * NOTE: this will only disable the regulator output if no other consumer
2306  * devices have it enabled, the regulator device supports disabling and
2307  * machine constraints permit this operation.
2308  */
2309 int regulator_disable(struct regulator *regulator)
2310 {
2311         struct regulator_dev *rdev = regulator->rdev;
2312         int ret = 0;
2313
2314         if (regulator->always_on)
2315                 return 0;
2316
2317         mutex_lock(&rdev->mutex);
2318         ret = _regulator_disable(rdev);
2319         mutex_unlock(&rdev->mutex);
2320
2321         if (ret == 0 && rdev->supply)
2322                 regulator_disable(rdev->supply);
2323
2324         return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(regulator_disable);
2327
2328 /* locks held by regulator_force_disable() */
2329 static int _regulator_force_disable(struct regulator_dev *rdev)
2330 {
2331         int ret = 0;
2332
2333         lockdep_assert_held_once(&rdev->mutex);
2334
2335         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2337         if (ret & NOTIFY_STOP_MASK)
2338                 return -EINVAL;
2339
2340         ret = _regulator_do_disable(rdev);
2341         if (ret < 0) {
2342                 rdev_err(rdev, "failed to force disable\n");
2343                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2344                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2345                 return ret;
2346         }
2347
2348         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349                         REGULATOR_EVENT_DISABLE, NULL);
2350
2351         return 0;
2352 }
2353
2354 /**
2355  * regulator_force_disable - force disable regulator output
2356  * @regulator: regulator source
2357  *
2358  * Forcibly disable the regulator output voltage or current.
2359  * NOTE: this *will* disable the regulator output even if other consumer
2360  * devices have it enabled. This should be used for situations when device
2361  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2362  */
2363 int regulator_force_disable(struct regulator *regulator)
2364 {
2365         struct regulator_dev *rdev = regulator->rdev;
2366         int ret;
2367
2368         mutex_lock(&rdev->mutex);
2369         regulator->uA_load = 0;
2370         ret = _regulator_force_disable(regulator->rdev);
2371         mutex_unlock(&rdev->mutex);
2372
2373         if (rdev->supply)
2374                 while (rdev->open_count--)
2375                         regulator_disable(rdev->supply);
2376
2377         return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(regulator_force_disable);
2380
2381 static void regulator_disable_work(struct work_struct *work)
2382 {
2383         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2384                                                   disable_work.work);
2385         int count, i, ret;
2386
2387         mutex_lock(&rdev->mutex);
2388
2389         BUG_ON(!rdev->deferred_disables);
2390
2391         count = rdev->deferred_disables;
2392         rdev->deferred_disables = 0;
2393
2394         /*
2395          * Workqueue functions queue the new work instance while the previous
2396          * work instance is being processed. Cancel the queued work instance
2397          * as the work instance under processing does the job of the queued
2398          * work instance.
2399          */
2400         cancel_delayed_work(&rdev->disable_work);
2401
2402         for (i = 0; i < count; i++) {
2403                 ret = _regulator_disable(rdev);
2404                 if (ret != 0)
2405                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2406         }
2407
2408         mutex_unlock(&rdev->mutex);
2409
2410         if (rdev->supply) {
2411                 for (i = 0; i < count; i++) {
2412                         ret = regulator_disable(rdev->supply);
2413                         if (ret != 0) {
2414                                 rdev_err(rdev,
2415                                          "Supply disable failed: %d\n", ret);
2416                         }
2417                 }
2418         }
2419 }
2420
2421 /**
2422  * regulator_disable_deferred - disable regulator output with delay
2423  * @regulator: regulator source
2424  * @ms: miliseconds until the regulator is disabled
2425  *
2426  * Execute regulator_disable() on the regulator after a delay.  This
2427  * is intended for use with devices that require some time to quiesce.
2428  *
2429  * NOTE: this will only disable the regulator output if no other consumer
2430  * devices have it enabled, the regulator device supports disabling and
2431  * machine constraints permit this operation.
2432  */
2433 int regulator_disable_deferred(struct regulator *regulator, int ms)
2434 {
2435         struct regulator_dev *rdev = regulator->rdev;
2436
2437         if (regulator->always_on)
2438                 return 0;
2439
2440         if (!ms)
2441                 return regulator_disable(regulator);
2442
2443         mutex_lock(&rdev->mutex);
2444         rdev->deferred_disables++;
2445         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2446                          msecs_to_jiffies(ms));
2447         mutex_unlock(&rdev->mutex);
2448
2449         return 0;
2450 }
2451 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2452
2453 static int _regulator_is_enabled(struct regulator_dev *rdev)
2454 {
2455         /* A GPIO control always takes precedence */
2456         if (rdev->ena_pin)
2457                 return rdev->ena_gpio_state;
2458
2459         /* If we don't know then assume that the regulator is always on */
2460         if (!rdev->desc->ops->is_enabled)
2461                 return 1;
2462
2463         return rdev->desc->ops->is_enabled(rdev);
2464 }
2465
2466 static int _regulator_list_voltage(struct regulator_dev *rdev,
2467                                    unsigned selector, int lock)
2468 {
2469         const struct regulator_ops *ops = rdev->desc->ops;
2470         int ret;
2471
2472         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2473                 return rdev->desc->fixed_uV;
2474
2475         if (ops->list_voltage) {
2476                 if (selector >= rdev->desc->n_voltages)
2477                         return -EINVAL;
2478                 if (lock)
2479                         mutex_lock(&rdev->mutex);
2480                 ret = ops->list_voltage(rdev, selector);
2481                 if (lock)
2482                         mutex_unlock(&rdev->mutex);
2483         } else if (rdev->is_switch && rdev->supply) {
2484                 ret = _regulator_list_voltage(rdev->supply->rdev,
2485                                               selector, lock);
2486         } else {
2487                 return -EINVAL;
2488         }
2489
2490         if (ret > 0) {
2491                 if (ret < rdev->constraints->min_uV)
2492                         ret = 0;
2493                 else if (ret > rdev->constraints->max_uV)
2494                         ret = 0;
2495         }
2496
2497         return ret;
2498 }
2499
2500 /**
2501  * regulator_is_enabled - is the regulator output enabled
2502  * @regulator: regulator source
2503  *
2504  * Returns positive if the regulator driver backing the source/client
2505  * has requested that the device be enabled, zero if it hasn't, else a
2506  * negative errno code.
2507  *
2508  * Note that the device backing this regulator handle can have multiple
2509  * users, so it might be enabled even if regulator_enable() was never
2510  * called for this particular source.
2511  */
2512 int regulator_is_enabled(struct regulator *regulator)
2513 {
2514         int ret;
2515
2516         if (regulator->always_on)
2517                 return 1;
2518
2519         mutex_lock(&regulator->rdev->mutex);
2520         ret = _regulator_is_enabled(regulator->rdev);
2521         mutex_unlock(&regulator->rdev->mutex);
2522
2523         return ret;
2524 }
2525 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2526
2527 /**
2528  * regulator_count_voltages - count regulator_list_voltage() selectors
2529  * @regulator: regulator source
2530  *
2531  * Returns number of selectors, or negative errno.  Selectors are
2532  * numbered starting at zero, and typically correspond to bitfields
2533  * in hardware registers.
2534  */
2535 int regulator_count_voltages(struct regulator *regulator)
2536 {
2537         struct regulator_dev    *rdev = regulator->rdev;
2538
2539         if (rdev->desc->n_voltages)
2540                 return rdev->desc->n_voltages;
2541
2542         if (!rdev->is_switch || !rdev->supply)
2543                 return -EINVAL;
2544
2545         return regulator_count_voltages(rdev->supply);
2546 }
2547 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2548
2549 /**
2550  * regulator_list_voltage - enumerate supported voltages
2551  * @regulator: regulator source
2552  * @selector: identify voltage to list
2553  * Context: can sleep
2554  *
2555  * Returns a voltage that can be passed to @regulator_set_voltage(),
2556  * zero if this selector code can't be used on this system, or a
2557  * negative errno.
2558  */
2559 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2560 {
2561         return _regulator_list_voltage(regulator->rdev, selector, 1);
2562 }
2563 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2564
2565 /**
2566  * regulator_get_regmap - get the regulator's register map
2567  * @regulator: regulator source
2568  *
2569  * Returns the register map for the given regulator, or an ERR_PTR value
2570  * if the regulator doesn't use regmap.
2571  */
2572 struct regmap *regulator_get_regmap(struct regulator *regulator)
2573 {
2574         struct regmap *map = regulator->rdev->regmap;
2575
2576         return map ? map : ERR_PTR(-EOPNOTSUPP);
2577 }
2578
2579 /**
2580  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2581  * @regulator: regulator source
2582  * @vsel_reg: voltage selector register, output parameter
2583  * @vsel_mask: mask for voltage selector bitfield, output parameter
2584  *
2585  * Returns the hardware register offset and bitmask used for setting the
2586  * regulator voltage. This might be useful when configuring voltage-scaling
2587  * hardware or firmware that can make I2C requests behind the kernel's back,
2588  * for example.
2589  *
2590  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2591  * and 0 is returned, otherwise a negative errno is returned.
2592  */
2593 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2594                                          unsigned *vsel_reg,
2595                                          unsigned *vsel_mask)
2596 {
2597         struct regulator_dev *rdev = regulator->rdev;
2598         const struct regulator_ops *ops = rdev->desc->ops;
2599
2600         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2601                 return -EOPNOTSUPP;
2602
2603         *vsel_reg = rdev->desc->vsel_reg;
2604         *vsel_mask = rdev->desc->vsel_mask;
2605
2606          return 0;
2607 }
2608 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2609
2610 /**
2611  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2612  * @regulator: regulator source
2613  * @selector: identify voltage to list
2614  *
2615  * Converts the selector to a hardware-specific voltage selector that can be
2616  * directly written to the regulator registers. The address of the voltage
2617  * register can be determined by calling @regulator_get_hardware_vsel_register.
2618  *
2619  * On error a negative errno is returned.
2620  */
2621 int regulator_list_hardware_vsel(struct regulator *regulator,
2622                                  unsigned selector)
2623 {
2624         struct regulator_dev *rdev = regulator->rdev;
2625         const struct regulator_ops *ops = rdev->desc->ops;
2626
2627         if (selector >= rdev->desc->n_voltages)
2628                 return -EINVAL;
2629         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2630                 return -EOPNOTSUPP;
2631
2632         return selector;
2633 }
2634 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2635
2636 /**
2637  * regulator_get_linear_step - return the voltage step size between VSEL values
2638  * @regulator: regulator source
2639  *
2640  * Returns the voltage step size between VSEL values for linear
2641  * regulators, or return 0 if the regulator isn't a linear regulator.
2642  */
2643 unsigned int regulator_get_linear_step(struct regulator *regulator)
2644 {
2645         struct regulator_dev *rdev = regulator->rdev;
2646
2647         return rdev->desc->uV_step;
2648 }
2649 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2650
2651 /**
2652  * regulator_is_supported_voltage - check if a voltage range can be supported
2653  *
2654  * @regulator: Regulator to check.
2655  * @min_uV: Minimum required voltage in uV.
2656  * @max_uV: Maximum required voltage in uV.
2657  *
2658  * Returns a boolean or a negative error code.
2659  */
2660 int regulator_is_supported_voltage(struct regulator *regulator,
2661                                    int min_uV, int max_uV)
2662 {
2663         struct regulator_dev *rdev = regulator->rdev;
2664         int i, voltages, ret;
2665
2666         /* If we can't change voltage check the current voltage */
2667         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2668                 ret = regulator_get_voltage(regulator);
2669                 if (ret >= 0)
2670                         return min_uV <= ret && ret <= max_uV;
2671                 else
2672                         return ret;
2673         }
2674
2675         /* Any voltage within constrains range is fine? */
2676         if (rdev->desc->continuous_voltage_range)
2677                 return min_uV >= rdev->constraints->min_uV &&
2678                                 max_uV <= rdev->constraints->max_uV;
2679
2680         ret = regulator_count_voltages(regulator);
2681         if (ret < 0)
2682                 return ret;
2683         voltages = ret;
2684
2685         for (i = 0; i < voltages; i++) {
2686                 ret = regulator_list_voltage(regulator, i);
2687
2688                 if (ret >= min_uV && ret <= max_uV)
2689                         return 1;
2690         }
2691
2692         return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2695
2696 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2697                                  int max_uV)
2698 {
2699         const struct regulator_desc *desc = rdev->desc;
2700
2701         if (desc->ops->map_voltage)
2702                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2703
2704         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2705                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2706
2707         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2708                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2709
2710         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2711 }
2712
2713 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2714                                        int min_uV, int max_uV,
2715                                        unsigned *selector)
2716 {
2717         struct pre_voltage_change_data data;
2718         int ret;
2719
2720         data.old_uV = _regulator_get_voltage(rdev);
2721         data.min_uV = min_uV;
2722         data.max_uV = max_uV;
2723         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2724                                    &data);
2725         if (ret & NOTIFY_STOP_MASK)
2726                 return -EINVAL;
2727
2728         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2729         if (ret >= 0)
2730                 return ret;
2731
2732         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2733                              (void *)data.old_uV);
2734
2735         return ret;
2736 }
2737
2738 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2739                                            int uV, unsigned selector)
2740 {
2741         struct pre_voltage_change_data data;
2742         int ret;
2743
2744         data.old_uV = _regulator_get_voltage(rdev);
2745         data.min_uV = uV;
2746         data.max_uV = uV;
2747         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2748                                    &data);
2749         if (ret & NOTIFY_STOP_MASK)
2750                 return -EINVAL;
2751
2752         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2753         if (ret >= 0)
2754                 return ret;
2755
2756         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2757                              (void *)data.old_uV);
2758
2759         return ret;
2760 }
2761
2762 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2763                                        int old_uV, int new_uV)
2764 {
2765         unsigned int ramp_delay = 0;
2766
2767         if (rdev->constraints->ramp_delay)
2768                 ramp_delay = rdev->constraints->ramp_delay;
2769         else if (rdev->desc->ramp_delay)
2770                 ramp_delay = rdev->desc->ramp_delay;
2771         else if (rdev->constraints->settling_time)
2772                 return rdev->constraints->settling_time;
2773         else if (rdev->constraints->settling_time_up &&
2774                  (new_uV > old_uV))
2775                 return rdev->constraints->settling_time_up;
2776         else if (rdev->constraints->settling_time_down &&
2777                  (new_uV < old_uV))
2778                 return rdev->constraints->settling_time_down;
2779
2780         if (ramp_delay == 0) {
2781                 rdev_dbg(rdev, "ramp_delay not set\n");
2782                 return 0;
2783         }
2784
2785         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2786 }
2787
2788 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2789                                      int min_uV, int max_uV)
2790 {
2791         int ret;
2792         int delay = 0;
2793         int best_val = 0;
2794         unsigned int selector;
2795         int old_selector = -1;
2796         const struct regulator_ops *ops = rdev->desc->ops;
2797         int old_uV = _regulator_get_voltage(rdev);
2798
2799         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2800
2801         min_uV += rdev->constraints->uV_offset;
2802         max_uV += rdev->constraints->uV_offset;
2803
2804         /*
2805          * If we can't obtain the old selector there is not enough
2806          * info to call set_voltage_time_sel().
2807          */
2808         if (_regulator_is_enabled(rdev) &&
2809             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2810                 old_selector = ops->get_voltage_sel(rdev);
2811                 if (old_selector < 0)
2812                         return old_selector;
2813         }
2814
2815         if (ops->set_voltage) {
2816                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2817                                                   &selector);
2818
2819                 if (ret >= 0) {
2820                         if (ops->list_voltage)
2821                                 best_val = ops->list_voltage(rdev,
2822                                                              selector);
2823                         else
2824                                 best_val = _regulator_get_voltage(rdev);
2825                 }
2826
2827         } else if (ops->set_voltage_sel) {
2828                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2829                 if (ret >= 0) {
2830                         best_val = ops->list_voltage(rdev, ret);
2831                         if (min_uV <= best_val && max_uV >= best_val) {
2832                                 selector = ret;
2833                                 if (old_selector == selector)
2834                                         ret = 0;
2835                                 else
2836                                         ret = _regulator_call_set_voltage_sel(
2837                                                 rdev, best_val, selector);
2838                         } else {
2839                                 ret = -EINVAL;
2840                         }
2841                 }
2842         } else {
2843                 ret = -EINVAL;
2844         }
2845
2846         if (ret)
2847                 goto out;
2848
2849         if (ops->set_voltage_time_sel) {
2850                 /*
2851                  * Call set_voltage_time_sel if successfully obtained
2852                  * old_selector
2853                  */
2854                 if (old_selector >= 0 && old_selector != selector)
2855                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2856                                                           selector);
2857         } else {
2858                 if (old_uV != best_val) {
2859                         if (ops->set_voltage_time)
2860                                 delay = ops->set_voltage_time(rdev, old_uV,
2861                                                               best_val);
2862                         else
2863                                 delay = _regulator_set_voltage_time(rdev,
2864                                                                     old_uV,
2865                                                                     best_val);
2866                 }
2867         }
2868
2869         if (delay < 0) {
2870                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2871                 delay = 0;
2872         }
2873
2874         /* Insert any necessary delays */
2875         if (delay >= 1000) {
2876                 mdelay(delay / 1000);
2877                 udelay(delay % 1000);
2878         } else if (delay) {
2879                 udelay(delay);
2880         }
2881
2882         if (best_val >= 0) {
2883                 unsigned long data = best_val;
2884
2885                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2886                                      (void *)data);
2887         }
2888
2889 out:
2890         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2891
2892         return ret;
2893 }
2894
2895 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2896                                   int min_uV, int max_uV, suspend_state_t state)
2897 {
2898         struct regulator_state *rstate;
2899         int uV, sel;
2900
2901         rstate = regulator_get_suspend_state(rdev, state);
2902         if (rstate == NULL)
2903                 return -EINVAL;
2904
2905         if (min_uV < rstate->min_uV)
2906                 min_uV = rstate->min_uV;
2907         if (max_uV > rstate->max_uV)
2908                 max_uV = rstate->max_uV;
2909
2910         sel = regulator_map_voltage(rdev, min_uV, max_uV);
2911         if (sel < 0)
2912                 return sel;
2913
2914         uV = rdev->desc->ops->list_voltage(rdev, sel);
2915         if (uV >= min_uV && uV <= max_uV)
2916                 rstate->uV = uV;
2917
2918         return 0;
2919 }
2920
2921 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2922                                           int min_uV, int max_uV,
2923                                           suspend_state_t state)
2924 {
2925         struct regulator_dev *rdev = regulator->rdev;
2926         struct regulator_voltage *voltage = &regulator->voltage[state];
2927         int ret = 0;
2928         int old_min_uV, old_max_uV;
2929         int current_uV;
2930         int best_supply_uV = 0;
2931         int supply_change_uV = 0;
2932
2933         /* If we're setting the same range as last time the change
2934          * should be a noop (some cpufreq implementations use the same
2935          * voltage for multiple frequencies, for example).
2936          */
2937         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
2938                 goto out;
2939
2940         /* If we're trying to set a range that overlaps the current voltage,
2941          * return successfully even though the regulator does not support
2942          * changing the voltage.
2943          */
2944         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2945                 current_uV = _regulator_get_voltage(rdev);
2946                 if (min_uV <= current_uV && current_uV <= max_uV) {
2947                         voltage->min_uV = min_uV;
2948                         voltage->max_uV = max_uV;
2949                         goto out;
2950                 }
2951         }
2952
2953         /* sanity check */
2954         if (!rdev->desc->ops->set_voltage &&
2955             !rdev->desc->ops->set_voltage_sel) {
2956                 ret = -EINVAL;
2957                 goto out;
2958         }
2959
2960         /* constraints check */
2961         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2962         if (ret < 0)
2963                 goto out;
2964
2965         /* restore original values in case of error */
2966         old_min_uV = voltage->min_uV;
2967         old_max_uV = voltage->max_uV;
2968         voltage->min_uV = min_uV;
2969         voltage->max_uV = max_uV;
2970
2971         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
2972         if (ret < 0)
2973                 goto out2;
2974
2975         if (rdev->supply &&
2976             regulator_ops_is_valid(rdev->supply->rdev,
2977                                    REGULATOR_CHANGE_VOLTAGE) &&
2978             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2979                                            rdev->desc->ops->get_voltage_sel))) {
2980                 int current_supply_uV;
2981                 int selector;
2982
2983                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2984                 if (selector < 0) {
2985                         ret = selector;
2986                         goto out2;
2987                 }
2988
2989                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
2990                 if (best_supply_uV < 0) {
2991                         ret = best_supply_uV;
2992                         goto out2;
2993                 }
2994
2995                 best_supply_uV += rdev->desc->min_dropout_uV;
2996
2997                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2998                 if (current_supply_uV < 0) {
2999                         ret = current_supply_uV;
3000                         goto out2;
3001                 }
3002
3003                 supply_change_uV = best_supply_uV - current_supply_uV;
3004         }
3005
3006         if (supply_change_uV > 0) {
3007                 ret = regulator_set_voltage_unlocked(rdev->supply,
3008                                 best_supply_uV, INT_MAX, state);
3009                 if (ret) {
3010                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3011                                         ret);
3012                         goto out2;
3013                 }
3014         }
3015
3016         if (state == PM_SUSPEND_ON)
3017                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3018         else
3019                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3020                                                         max_uV, state);
3021         if (ret < 0)
3022                 goto out2;
3023
3024         if (supply_change_uV < 0) {
3025                 ret = regulator_set_voltage_unlocked(rdev->supply,
3026                                 best_supply_uV, INT_MAX, state);
3027                 if (ret)
3028                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3029                                         ret);
3030                 /* No need to fail here */
3031                 ret = 0;
3032         }
3033
3034 out:
3035         return ret;
3036 out2:
3037         voltage->min_uV = old_min_uV;
3038         voltage->max_uV = old_max_uV;
3039
3040         return ret;
3041 }
3042
3043 /**
3044  * regulator_set_voltage - set regulator output voltage
3045  * @regulator: regulator source
3046  * @min_uV: Minimum required voltage in uV
3047  * @max_uV: Maximum acceptable voltage in uV
3048  *
3049  * Sets a voltage regulator to the desired output voltage. This can be set
3050  * during any regulator state. IOW, regulator can be disabled or enabled.
3051  *
3052  * If the regulator is enabled then the voltage will change to the new value
3053  * immediately otherwise if the regulator is disabled the regulator will
3054  * output at the new voltage when enabled.
3055  *
3056  * NOTE: If the regulator is shared between several devices then the lowest
3057  * request voltage that meets the system constraints will be used.
3058  * Regulator system constraints must be set for this regulator before
3059  * calling this function otherwise this call will fail.
3060  */
3061 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3062 {
3063         int ret = 0;
3064
3065         regulator_lock_supply(regulator->rdev);
3066
3067         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3068                                              PM_SUSPEND_ON);
3069
3070         regulator_unlock_supply(regulator->rdev);
3071
3072         return ret;
3073 }
3074 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3075
3076 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3077                                            suspend_state_t state, bool en)
3078 {
3079         struct regulator_state *rstate;
3080
3081         rstate = regulator_get_suspend_state(rdev, state);
3082         if (rstate == NULL)
3083                 return -EINVAL;
3084
3085         if (!rstate->changeable)
3086                 return -EPERM;
3087
3088         rstate->enabled = en;
3089
3090         return 0;
3091 }
3092
3093 int regulator_suspend_enable(struct regulator_dev *rdev,
3094                                     suspend_state_t state)
3095 {
3096         return regulator_suspend_toggle(rdev, state, true);
3097 }
3098 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3099
3100 int regulator_suspend_disable(struct regulator_dev *rdev,
3101                                      suspend_state_t state)
3102 {
3103         struct regulator *regulator;
3104         struct regulator_voltage *voltage;
3105
3106         /*
3107          * if any consumer wants this regulator device keeping on in
3108          * suspend states, don't set it as disabled.
3109          */
3110         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3111                 voltage = &regulator->voltage[state];
3112                 if (voltage->min_uV || voltage->max_uV)
3113                         return 0;
3114         }
3115
3116         return regulator_suspend_toggle(rdev, state, false);
3117 }
3118 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3119
3120 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3121                                           int min_uV, int max_uV,
3122                                           suspend_state_t state)
3123 {
3124         struct regulator_dev *rdev = regulator->rdev;
3125         struct regulator_state *rstate;
3126
3127         rstate = regulator_get_suspend_state(rdev, state);
3128         if (rstate == NULL)
3129                 return -EINVAL;
3130
3131         if (rstate->min_uV == rstate->max_uV) {
3132                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3133                 return -EPERM;
3134         }
3135
3136         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3137 }
3138
3139 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3140                                   int max_uV, suspend_state_t state)
3141 {
3142         int ret = 0;
3143
3144         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3145         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3146                 return -EINVAL;
3147
3148         regulator_lock_supply(regulator->rdev);
3149
3150         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3151                                              max_uV, state);
3152
3153         regulator_unlock_supply(regulator->rdev);
3154
3155         return ret;
3156 }
3157 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3158
3159 /**
3160  * regulator_set_voltage_time - get raise/fall time
3161  * @regulator: regulator source
3162  * @old_uV: starting voltage in microvolts
3163  * @new_uV: target voltage in microvolts
3164  *
3165  * Provided with the starting and ending voltage, this function attempts to
3166  * calculate the time in microseconds required to rise or fall to this new
3167  * voltage.
3168  */
3169 int regulator_set_voltage_time(struct regulator *regulator,
3170                                int old_uV, int new_uV)
3171 {
3172         struct regulator_dev *rdev = regulator->rdev;
3173         const struct regulator_ops *ops = rdev->desc->ops;
3174         int old_sel = -1;
3175         int new_sel = -1;
3176         int voltage;
3177         int i;
3178
3179         if (ops->set_voltage_time)
3180                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3181         else if (!ops->set_voltage_time_sel)
3182                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3183
3184         /* Currently requires operations to do this */
3185         if (!ops->list_voltage || !rdev->desc->n_voltages)
3186                 return -EINVAL;
3187
3188         for (i = 0; i < rdev->desc->n_voltages; i++) {
3189                 /* We only look for exact voltage matches here */
3190                 voltage = regulator_list_voltage(regulator, i);
3191                 if (voltage < 0)
3192                         return -EINVAL;
3193                 if (voltage == 0)
3194                         continue;
3195                 if (voltage == old_uV)
3196                         old_sel = i;
3197                 if (voltage == new_uV)
3198                         new_sel = i;
3199         }
3200
3201         if (old_sel < 0 || new_sel < 0)
3202                 return -EINVAL;
3203
3204         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3205 }
3206 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3207
3208 /**
3209  * regulator_set_voltage_time_sel - get raise/fall time
3210  * @rdev: regulator source device
3211  * @old_selector: selector for starting voltage
3212  * @new_selector: selector for target voltage
3213  *
3214  * Provided with the starting and target voltage selectors, this function
3215  * returns time in microseconds required to rise or fall to this new voltage
3216  *
3217  * Drivers providing ramp_delay in regulation_constraints can use this as their
3218  * set_voltage_time_sel() operation.
3219  */
3220 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3221                                    unsigned int old_selector,
3222                                    unsigned int new_selector)
3223 {
3224         int old_volt, new_volt;
3225
3226         /* sanity check */
3227         if (!rdev->desc->ops->list_voltage)
3228                 return -EINVAL;
3229
3230         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3231         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3232
3233         if (rdev->desc->ops->set_voltage_time)
3234                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3235                                                          new_volt);
3236         else
3237                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3240
3241 /**
3242  * regulator_sync_voltage - re-apply last regulator output voltage
3243  * @regulator: regulator source
3244  *
3245  * Re-apply the last configured voltage.  This is intended to be used
3246  * where some external control source the consumer is cooperating with
3247  * has caused the configured voltage to change.
3248  */
3249 int regulator_sync_voltage(struct regulator *regulator)
3250 {
3251         struct regulator_dev *rdev = regulator->rdev;
3252         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3253         int ret, min_uV, max_uV;
3254
3255         mutex_lock(&rdev->mutex);
3256
3257         if (!rdev->desc->ops->set_voltage &&
3258             !rdev->desc->ops->set_voltage_sel) {
3259                 ret = -EINVAL;
3260                 goto out;
3261         }
3262
3263         /* This is only going to work if we've had a voltage configured. */
3264         if (!voltage->min_uV && !voltage->max_uV) {
3265                 ret = -EINVAL;
3266                 goto out;
3267         }
3268
3269         min_uV = voltage->min_uV;
3270         max_uV = voltage->max_uV;
3271
3272         /* This should be a paranoia check... */
3273         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3274         if (ret < 0)
3275                 goto out;
3276
3277         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3278         if (ret < 0)
3279                 goto out;
3280
3281         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3282
3283 out:
3284         mutex_unlock(&rdev->mutex);
3285         return ret;
3286 }
3287 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3288
3289 static int _regulator_get_voltage(struct regulator_dev *rdev)
3290 {
3291         int sel, ret;
3292         bool bypassed;
3293
3294         if (rdev->desc->ops->get_bypass) {
3295                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3296                 if (ret < 0)
3297                         return ret;
3298                 if (bypassed) {
3299                         /* if bypassed the regulator must have a supply */
3300                         if (!rdev->supply) {
3301                                 rdev_err(rdev,
3302                                          "bypassed regulator has no supply!\n");
3303                                 return -EPROBE_DEFER;
3304                         }
3305
3306                         return _regulator_get_voltage(rdev->supply->rdev);
3307                 }
3308         }
3309
3310         if (rdev->desc->ops->get_voltage_sel) {
3311                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3312                 if (sel < 0)
3313                         return sel;
3314                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3315         } else if (rdev->desc->ops->get_voltage) {
3316                 ret = rdev->desc->ops->get_voltage(rdev);
3317         } else if (rdev->desc->ops->list_voltage) {
3318                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3319         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3320                 ret = rdev->desc->fixed_uV;
3321         } else if (rdev->supply) {
3322                 ret = _regulator_get_voltage(rdev->supply->rdev);
3323         } else {
3324                 return -EINVAL;
3325         }
3326
3327         if (ret < 0)
3328                 return ret;
3329         return ret - rdev->constraints->uV_offset;
3330 }
3331
3332 /**
3333  * regulator_get_voltage - get regulator output voltage
3334  * @regulator: regulator source
3335  *
3336  * This returns the current regulator voltage in uV.
3337  *
3338  * NOTE: If the regulator is disabled it will return the voltage value. This
3339  * function should not be used to determine regulator state.
3340  */
3341 int regulator_get_voltage(struct regulator *regulator)
3342 {
3343         int ret;
3344
3345         regulator_lock_supply(regulator->rdev);
3346
3347         ret = _regulator_get_voltage(regulator->rdev);
3348
3349         regulator_unlock_supply(regulator->rdev);
3350
3351         return ret;
3352 }
3353 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3354
3355 /**
3356  * regulator_set_current_limit - set regulator output current limit
3357  * @regulator: regulator source
3358  * @min_uA: Minimum supported current in uA
3359  * @max_uA: Maximum supported current in uA
3360  *
3361  * Sets current sink to the desired output current. This can be set during
3362  * any regulator state. IOW, regulator can be disabled or enabled.
3363  *
3364  * If the regulator is enabled then the current will change to the new value
3365  * immediately otherwise if the regulator is disabled the regulator will
3366  * output at the new current when enabled.
3367  *
3368  * NOTE: Regulator system constraints must be set for this regulator before
3369  * calling this function otherwise this call will fail.
3370  */
3371 int regulator_set_current_limit(struct regulator *regulator,
3372                                int min_uA, int max_uA)
3373 {
3374         struct regulator_dev *rdev = regulator->rdev;
3375         int ret;
3376
3377         mutex_lock(&rdev->mutex);
3378
3379         /* sanity check */
3380         if (!rdev->desc->ops->set_current_limit) {
3381                 ret = -EINVAL;
3382                 goto out;
3383         }
3384
3385         /* constraints check */
3386         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3387         if (ret < 0)
3388                 goto out;
3389
3390         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3391 out:
3392         mutex_unlock(&rdev->mutex);
3393         return ret;
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3396
3397 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3398 {
3399         int ret;
3400
3401         mutex_lock(&rdev->mutex);
3402
3403         /* sanity check */
3404         if (!rdev->desc->ops->get_current_limit) {
3405                 ret = -EINVAL;
3406                 goto out;
3407         }
3408
3409         ret = rdev->desc->ops->get_current_limit(rdev);
3410 out:
3411         mutex_unlock(&rdev->mutex);
3412         return ret;
3413 }
3414
3415 /**
3416  * regulator_get_current_limit - get regulator output current
3417  * @regulator: regulator source
3418  *
3419  * This returns the current supplied by the specified current sink in uA.
3420  *
3421  * NOTE: If the regulator is disabled it will return the current value. This
3422  * function should not be used to determine regulator state.
3423  */
3424 int regulator_get_current_limit(struct regulator *regulator)
3425 {
3426         return _regulator_get_current_limit(regulator->rdev);
3427 }
3428 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3429
3430 /**
3431  * regulator_set_mode - set regulator operating mode
3432  * @regulator: regulator source
3433  * @mode: operating mode - one of the REGULATOR_MODE constants
3434  *
3435  * Set regulator operating mode to increase regulator efficiency or improve
3436  * regulation performance.
3437  *
3438  * NOTE: Regulator system constraints must be set for this regulator before
3439  * calling this function otherwise this call will fail.
3440  */
3441 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3442 {
3443         struct regulator_dev *rdev = regulator->rdev;
3444         int ret;
3445         int regulator_curr_mode;
3446
3447         mutex_lock(&rdev->mutex);
3448
3449         /* sanity check */
3450         if (!rdev->desc->ops->set_mode) {
3451                 ret = -EINVAL;
3452                 goto out;
3453         }
3454
3455         /* return if the same mode is requested */
3456         if (rdev->desc->ops->get_mode) {
3457                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3458                 if (regulator_curr_mode == mode) {
3459                         ret = 0;
3460                         goto out;
3461                 }
3462         }
3463
3464         /* constraints check */
3465         ret = regulator_mode_constrain(rdev, &mode);
3466         if (ret < 0)
3467                 goto out;
3468
3469         ret = rdev->desc->ops->set_mode(rdev, mode);
3470 out:
3471         mutex_unlock(&rdev->mutex);
3472         return ret;
3473 }
3474 EXPORT_SYMBOL_GPL(regulator_set_mode);
3475
3476 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3477 {
3478         int ret;
3479
3480         mutex_lock(&rdev->mutex);
3481
3482         /* sanity check */
3483         if (!rdev->desc->ops->get_mode) {
3484                 ret = -EINVAL;
3485                 goto out;
3486         }
3487
3488         ret = rdev->desc->ops->get_mode(rdev);
3489 out:
3490         mutex_unlock(&rdev->mutex);
3491         return ret;
3492 }
3493
3494 /**
3495  * regulator_get_mode - get regulator operating mode
3496  * @regulator: regulator source
3497  *
3498  * Get the current regulator operating mode.
3499  */
3500 unsigned int regulator_get_mode(struct regulator *regulator)
3501 {
3502         return _regulator_get_mode(regulator->rdev);
3503 }
3504 EXPORT_SYMBOL_GPL(regulator_get_mode);
3505
3506 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3507                                         unsigned int *flags)
3508 {
3509         int ret;
3510
3511         mutex_lock(&rdev->mutex);
3512
3513         /* sanity check */
3514         if (!rdev->desc->ops->get_error_flags) {
3515                 ret = -EINVAL;
3516                 goto out;
3517         }
3518
3519         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3520 out:
3521         mutex_unlock(&rdev->mutex);
3522         return ret;
3523 }
3524
3525 /**
3526  * regulator_get_error_flags - get regulator error information
3527  * @regulator: regulator source
3528  * @flags: pointer to store error flags
3529  *
3530  * Get the current regulator error information.
3531  */
3532 int regulator_get_error_flags(struct regulator *regulator,
3533                                 unsigned int *flags)
3534 {
3535         return _regulator_get_error_flags(regulator->rdev, flags);
3536 }
3537 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3538
3539 /**
3540  * regulator_set_load - set regulator load
3541  * @regulator: regulator source
3542  * @uA_load: load current
3543  *
3544  * Notifies the regulator core of a new device load. This is then used by
3545  * DRMS (if enabled by constraints) to set the most efficient regulator
3546  * operating mode for the new regulator loading.
3547  *
3548  * Consumer devices notify their supply regulator of the maximum power
3549  * they will require (can be taken from device datasheet in the power
3550  * consumption tables) when they change operational status and hence power
3551  * state. Examples of operational state changes that can affect power
3552  * consumption are :-
3553  *
3554  *    o Device is opened / closed.
3555  *    o Device I/O is about to begin or has just finished.
3556  *    o Device is idling in between work.
3557  *
3558  * This information is also exported via sysfs to userspace.
3559  *
3560  * DRMS will sum the total requested load on the regulator and change
3561  * to the most efficient operating mode if platform constraints allow.
3562  *
3563  * On error a negative errno is returned.
3564  */
3565 int regulator_set_load(struct regulator *regulator, int uA_load)
3566 {
3567         struct regulator_dev *rdev = regulator->rdev;
3568         int ret;
3569
3570         mutex_lock(&rdev->mutex);
3571         regulator->uA_load = uA_load;
3572         ret = drms_uA_update(rdev);
3573         mutex_unlock(&rdev->mutex);
3574
3575         return ret;
3576 }
3577 EXPORT_SYMBOL_GPL(regulator_set_load);
3578
3579 /**
3580  * regulator_allow_bypass - allow the regulator to go into bypass mode
3581  *
3582  * @regulator: Regulator to configure
3583  * @enable: enable or disable bypass mode
3584  *
3585  * Allow the regulator to go into bypass mode if all other consumers
3586  * for the regulator also enable bypass mode and the machine
3587  * constraints allow this.  Bypass mode means that the regulator is
3588  * simply passing the input directly to the output with no regulation.
3589  */
3590 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3591 {
3592         struct regulator_dev *rdev = regulator->rdev;
3593         int ret = 0;
3594
3595         if (!rdev->desc->ops->set_bypass)
3596                 return 0;
3597
3598         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3599                 return 0;
3600
3601         mutex_lock(&rdev->mutex);
3602
3603         if (enable && !regulator->bypass) {
3604                 rdev->bypass_count++;
3605
3606                 if (rdev->bypass_count == rdev->open_count) {
3607                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3608                         if (ret != 0)
3609                                 rdev->bypass_count--;
3610                 }
3611
3612         } else if (!enable && regulator->bypass) {
3613                 rdev->bypass_count--;
3614
3615                 if (rdev->bypass_count != rdev->open_count) {
3616                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3617                         if (ret != 0)
3618                                 rdev->bypass_count++;
3619                 }
3620         }
3621
3622         if (ret == 0)
3623                 regulator->bypass = enable;
3624
3625         mutex_unlock(&rdev->mutex);
3626
3627         return ret;
3628 }
3629 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3630
3631 /**
3632  * regulator_register_notifier - register regulator event notifier
3633  * @regulator: regulator source
3634  * @nb: notifier block
3635  *
3636  * Register notifier block to receive regulator events.
3637  */
3638 int regulator_register_notifier(struct regulator *regulator,
3639                               struct notifier_block *nb)
3640 {
3641         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3642                                                 nb);
3643 }
3644 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3645
3646 /**
3647  * regulator_unregister_notifier - unregister regulator event notifier
3648  * @regulator: regulator source
3649  * @nb: notifier block
3650  *
3651  * Unregister regulator event notifier block.
3652  */
3653 int regulator_unregister_notifier(struct regulator *regulator,
3654                                 struct notifier_block *nb)
3655 {
3656         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3657                                                   nb);
3658 }
3659 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3660
3661 /* notify regulator consumers and downstream regulator consumers.
3662  * Note mutex must be held by caller.
3663  */
3664 static int _notifier_call_chain(struct regulator_dev *rdev,
3665                                   unsigned long event, void *data)
3666 {
3667         /* call rdev chain first */
3668         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3669 }
3670
3671 /**
3672  * regulator_bulk_get - get multiple regulator consumers
3673  *
3674  * @dev:           Device to supply
3675  * @num_consumers: Number of consumers to register
3676  * @consumers:     Configuration of consumers; clients are stored here.
3677  *
3678  * @return 0 on success, an errno on failure.
3679  *
3680  * This helper function allows drivers to get several regulator
3681  * consumers in one operation.  If any of the regulators cannot be
3682  * acquired then any regulators that were allocated will be freed
3683  * before returning to the caller.
3684  */
3685 int regulator_bulk_get(struct device *dev, int num_consumers,
3686                        struct regulator_bulk_data *consumers)
3687 {
3688         int i;
3689         int ret;
3690
3691         for (i = 0; i < num_consumers; i++)
3692                 consumers[i].consumer = NULL;
3693
3694         for (i = 0; i < num_consumers; i++) {
3695                 consumers[i].consumer = regulator_get(dev,
3696                                                       consumers[i].supply);
3697                 if (IS_ERR(consumers[i].consumer)) {
3698                         ret = PTR_ERR(consumers[i].consumer);
3699                         dev_err(dev, "Failed to get supply '%s': %d\n",
3700                                 consumers[i].supply, ret);
3701                         consumers[i].consumer = NULL;
3702                         goto err;
3703                 }
3704         }
3705
3706         return 0;
3707
3708 err:
3709         while (--i >= 0)
3710                 regulator_put(consumers[i].consumer);
3711
3712         return ret;
3713 }
3714 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3715
3716 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3717 {
3718         struct regulator_bulk_data *bulk = data;
3719
3720         bulk->ret = regulator_enable(bulk->consumer);
3721 }
3722
3723 /**
3724  * regulator_bulk_enable - enable multiple regulator consumers
3725  *
3726  * @num_consumers: Number of consumers
3727  * @consumers:     Consumer data; clients are stored here.
3728  * @return         0 on success, an errno on failure
3729  *
3730  * This convenience API allows consumers to enable multiple regulator
3731  * clients in a single API call.  If any consumers cannot be enabled
3732  * then any others that were enabled will be disabled again prior to
3733  * return.
3734  */
3735 int regulator_bulk_enable(int num_consumers,
3736                           struct regulator_bulk_data *consumers)
3737 {
3738         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3739         int i;
3740         int ret = 0;
3741
3742         for (i = 0; i < num_consumers; i++) {
3743                 if (consumers[i].consumer->always_on)
3744                         consumers[i].ret = 0;
3745                 else
3746                         async_schedule_domain(regulator_bulk_enable_async,
3747                                               &consumers[i], &async_domain);
3748         }
3749
3750         async_synchronize_full_domain(&async_domain);
3751
3752         /* If any consumer failed we need to unwind any that succeeded */
3753         for (i = 0; i < num_consumers; i++) {
3754                 if (consumers[i].ret != 0) {
3755                         ret = consumers[i].ret;
3756                         goto err;
3757                 }
3758         }
3759
3760         return 0;
3761
3762 err:
3763         for (i = 0; i < num_consumers; i++) {
3764                 if (consumers[i].ret < 0)
3765                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3766                                consumers[i].ret);
3767                 else
3768                         regulator_disable(consumers[i].consumer);
3769         }
3770
3771         return ret;
3772 }
3773 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3774
3775 /**
3776  * regulator_bulk_disable - disable multiple regulator consumers
3777  *
3778  * @num_consumers: Number of consumers
3779  * @consumers:     Consumer data; clients are stored here.
3780  * @return         0 on success, an errno on failure
3781  *
3782  * This convenience API allows consumers to disable multiple regulator
3783  * clients in a single API call.  If any consumers cannot be disabled
3784  * then any others that were disabled will be enabled again prior to
3785  * return.
3786  */
3787 int regulator_bulk_disable(int num_consumers,
3788                            struct regulator_bulk_data *consumers)
3789 {
3790         int i;
3791         int ret, r;
3792
3793         for (i = num_consumers - 1; i >= 0; --i) {
3794                 ret = regulator_disable(consumers[i].consumer);
3795                 if (ret != 0)
3796                         goto err;
3797         }
3798
3799         return 0;
3800
3801 err:
3802         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3803         for (++i; i < num_consumers; ++i) {
3804                 r = regulator_enable(consumers[i].consumer);
3805                 if (r != 0)
3806                         pr_err("Failed to re-enable %s: %d\n",
3807                                consumers[i].supply, r);
3808         }
3809
3810         return ret;
3811 }
3812 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3813
3814 /**
3815  * regulator_bulk_force_disable - force disable multiple regulator consumers
3816  *
3817  * @num_consumers: Number of consumers
3818  * @consumers:     Consumer data; clients are stored here.
3819  * @return         0 on success, an errno on failure
3820  *
3821  * This convenience API allows consumers to forcibly disable multiple regulator
3822  * clients in a single API call.
3823  * NOTE: This should be used for situations when device damage will
3824  * likely occur if the regulators are not disabled (e.g. over temp).
3825  * Although regulator_force_disable function call for some consumers can
3826  * return error numbers, the function is called for all consumers.
3827  */
3828 int regulator_bulk_force_disable(int num_consumers,
3829                            struct regulator_bulk_data *consumers)
3830 {
3831         int i;
3832         int ret = 0;
3833
3834         for (i = 0; i < num_consumers; i++) {
3835                 consumers[i].ret =
3836                             regulator_force_disable(consumers[i].consumer);
3837
3838                 /* Store first error for reporting */
3839                 if (consumers[i].ret && !ret)
3840                         ret = consumers[i].ret;
3841         }
3842
3843         return ret;
3844 }
3845 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3846
3847 /**
3848  * regulator_bulk_free - free multiple regulator consumers
3849  *
3850  * @num_consumers: Number of consumers
3851  * @consumers:     Consumer data; clients are stored here.
3852  *
3853  * This convenience API allows consumers to free multiple regulator
3854  * clients in a single API call.
3855  */
3856 void regulator_bulk_free(int num_consumers,
3857                          struct regulator_bulk_data *consumers)
3858 {
3859         int i;
3860
3861         for (i = 0; i < num_consumers; i++) {
3862                 regulator_put(consumers[i].consumer);
3863                 consumers[i].consumer = NULL;
3864         }
3865 }
3866 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3867
3868 /**
3869  * regulator_notifier_call_chain - call regulator event notifier
3870  * @rdev: regulator source
3871  * @event: notifier block
3872  * @data: callback-specific data.
3873  *
3874  * Called by regulator drivers to notify clients a regulator event has
3875  * occurred. We also notify regulator clients downstream.
3876  * Note lock must be held by caller.
3877  */
3878 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3879                                   unsigned long event, void *data)
3880 {
3881         lockdep_assert_held_once(&rdev->mutex);
3882
3883         _notifier_call_chain(rdev, event, data);
3884         return NOTIFY_DONE;
3885
3886 }
3887 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3888
3889 /**
3890  * regulator_mode_to_status - convert a regulator mode into a status
3891  *
3892  * @mode: Mode to convert
3893  *
3894  * Convert a regulator mode into a status.
3895  */
3896 int regulator_mode_to_status(unsigned int mode)
3897 {
3898         switch (mode) {
3899         case REGULATOR_MODE_FAST:
3900                 return REGULATOR_STATUS_FAST;
3901         case REGULATOR_MODE_NORMAL:
3902                 return REGULATOR_STATUS_NORMAL;
3903         case REGULATOR_MODE_IDLE:
3904                 return REGULATOR_STATUS_IDLE;
3905         case REGULATOR_MODE_STANDBY:
3906                 return REGULATOR_STATUS_STANDBY;
3907         default:
3908                 return REGULATOR_STATUS_UNDEFINED;
3909         }
3910 }
3911 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3912
3913 static struct attribute *regulator_dev_attrs[] = {
3914         &dev_attr_name.attr,
3915         &dev_attr_num_users.attr,
3916         &dev_attr_type.attr,
3917         &dev_attr_microvolts.attr,
3918         &dev_attr_microamps.attr,
3919         &dev_attr_opmode.attr,
3920         &dev_attr_state.attr,
3921         &dev_attr_status.attr,
3922         &dev_attr_bypass.attr,
3923         &dev_attr_requested_microamps.attr,
3924         &dev_attr_min_microvolts.attr,
3925         &dev_attr_max_microvolts.attr,
3926         &dev_attr_min_microamps.attr,
3927         &dev_attr_max_microamps.attr,
3928         &dev_attr_suspend_standby_state.attr,
3929         &dev_attr_suspend_mem_state.attr,
3930         &dev_attr_suspend_disk_state.attr,
3931         &dev_attr_suspend_standby_microvolts.attr,
3932         &dev_attr_suspend_mem_microvolts.attr,
3933         &dev_attr_suspend_disk_microvolts.attr,
3934         &dev_attr_suspend_standby_mode.attr,
3935         &dev_attr_suspend_mem_mode.attr,
3936         &dev_attr_suspend_disk_mode.attr,
3937         NULL
3938 };
3939
3940 /*
3941  * To avoid cluttering sysfs (and memory) with useless state, only
3942  * create attributes that can be meaningfully displayed.
3943  */
3944 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3945                                          struct attribute *attr, int idx)
3946 {
3947         struct device *dev = kobj_to_dev(kobj);
3948         struct regulator_dev *rdev = dev_to_rdev(dev);
3949         const struct regulator_ops *ops = rdev->desc->ops;
3950         umode_t mode = attr->mode;
3951
3952         /* these three are always present */
3953         if (attr == &dev_attr_name.attr ||
3954             attr == &dev_attr_num_users.attr ||
3955             attr == &dev_attr_type.attr)
3956                 return mode;
3957
3958         /* some attributes need specific methods to be displayed */
3959         if (attr == &dev_attr_microvolts.attr) {
3960                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3961                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3962                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3963                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3964                         return mode;
3965                 return 0;
3966         }
3967
3968         if (attr == &dev_attr_microamps.attr)
3969                 return ops->get_current_limit ? mode : 0;
3970
3971         if (attr == &dev_attr_opmode.attr)
3972                 return ops->get_mode ? mode : 0;
3973
3974         if (attr == &dev_attr_state.attr)
3975                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3976
3977         if (attr == &dev_attr_status.attr)
3978                 return ops->get_status ? mode : 0;
3979
3980         if (attr == &dev_attr_bypass.attr)
3981                 return ops->get_bypass ? mode : 0;
3982
3983         /* some attributes are type-specific */
3984         if (attr == &dev_attr_requested_microamps.attr)
3985                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3986
3987         /* constraints need specific supporting methods */
3988         if (attr == &dev_attr_min_microvolts.attr ||
3989             attr == &dev_attr_max_microvolts.attr)
3990                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3991
3992         if (attr == &dev_attr_min_microamps.attr ||
3993             attr == &dev_attr_max_microamps.attr)
3994                 return ops->set_current_limit ? mode : 0;
3995
3996         if (attr == &dev_attr_suspend_standby_state.attr ||
3997             attr == &dev_attr_suspend_mem_state.attr ||
3998             attr == &dev_attr_suspend_disk_state.attr)
3999                 return mode;
4000
4001         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4002             attr == &dev_attr_suspend_mem_microvolts.attr ||
4003             attr == &dev_attr_suspend_disk_microvolts.attr)
4004                 return ops->set_suspend_voltage ? mode : 0;
4005
4006         if (attr == &dev_attr_suspend_standby_mode.attr ||
4007             attr == &dev_attr_suspend_mem_mode.attr ||
4008             attr == &dev_attr_suspend_disk_mode.attr)
4009                 return ops->set_suspend_mode ? mode : 0;
4010
4011         return mode;
4012 }
4013
4014 static const struct attribute_group regulator_dev_group = {
4015         .attrs = regulator_dev_attrs,
4016         .is_visible = regulator_attr_is_visible,
4017 };
4018
4019 static const struct attribute_group *regulator_dev_groups[] = {
4020         &regulator_dev_group,
4021         NULL
4022 };
4023
4024 static void regulator_dev_release(struct device *dev)
4025 {
4026         struct regulator_dev *rdev = dev_get_drvdata(dev);
4027
4028         kfree(rdev->constraints);
4029         of_node_put(rdev->dev.of_node);
4030         kfree(rdev);
4031 }
4032
4033 static void rdev_init_debugfs(struct regulator_dev *rdev)
4034 {
4035         struct device *parent = rdev->dev.parent;
4036         const char *rname = rdev_get_name(rdev);
4037         char name[NAME_MAX];
4038
4039         /* Avoid duplicate debugfs directory names */
4040         if (parent && rname == rdev->desc->name) {
4041                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4042                          rname);
4043                 rname = name;
4044         }
4045
4046         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4047         if (!rdev->debugfs) {
4048                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4049                 return;
4050         }
4051
4052         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4053                            &rdev->use_count);
4054         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4055                            &rdev->open_count);
4056         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4057                            &rdev->bypass_count);
4058 }
4059
4060 static int regulator_register_resolve_supply(struct device *dev, void *data)
4061 {
4062         struct regulator_dev *rdev = dev_to_rdev(dev);
4063
4064         if (regulator_resolve_supply(rdev))
4065                 rdev_dbg(rdev, "unable to resolve supply\n");
4066
4067         return 0;
4068 }
4069
4070 /**
4071  * regulator_register - register regulator
4072  * @regulator_desc: regulator to register
4073  * @cfg: runtime configuration for regulator
4074  *
4075  * Called by regulator drivers to register a regulator.
4076  * Returns a valid pointer to struct regulator_dev on success
4077  * or an ERR_PTR() on error.
4078  */
4079 struct regulator_dev *
4080 regulator_register(const struct regulator_desc *regulator_desc,
4081                    const struct regulator_config *cfg)
4082 {
4083         const struct regulation_constraints *constraints = NULL;
4084         const struct regulator_init_data *init_data;
4085         struct regulator_config *config = NULL;
4086         static atomic_t regulator_no = ATOMIC_INIT(-1);
4087         struct regulator_dev *rdev;
4088         struct device *dev;
4089         int ret, i;
4090
4091         if (regulator_desc == NULL || cfg == NULL)
4092                 return ERR_PTR(-EINVAL);
4093
4094         dev = cfg->dev;
4095         WARN_ON(!dev);
4096
4097         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4098                 return ERR_PTR(-EINVAL);
4099
4100         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4101             regulator_desc->type != REGULATOR_CURRENT)
4102                 return ERR_PTR(-EINVAL);
4103
4104         /* Only one of each should be implemented */
4105         WARN_ON(regulator_desc->ops->get_voltage &&
4106                 regulator_desc->ops->get_voltage_sel);
4107         WARN_ON(regulator_desc->ops->set_voltage &&
4108                 regulator_desc->ops->set_voltage_sel);
4109
4110         /* If we're using selectors we must implement list_voltage. */
4111         if (regulator_desc->ops->get_voltage_sel &&
4112             !regulator_desc->ops->list_voltage) {
4113                 return ERR_PTR(-EINVAL);
4114         }
4115         if (regulator_desc->ops->set_voltage_sel &&
4116             !regulator_desc->ops->list_voltage) {
4117                 return ERR_PTR(-EINVAL);
4118         }
4119
4120         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4121         if (rdev == NULL)
4122                 return ERR_PTR(-ENOMEM);
4123
4124         /*
4125          * Duplicate the config so the driver could override it after
4126          * parsing init data.
4127          */
4128         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4129         if (config == NULL) {
4130                 kfree(rdev);
4131                 return ERR_PTR(-ENOMEM);
4132         }
4133
4134         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4135                                                &rdev->dev.of_node);
4136         if (!init_data) {
4137                 init_data = config->init_data;
4138                 rdev->dev.of_node = of_node_get(config->of_node);
4139         }
4140
4141         mutex_init(&rdev->mutex);
4142         rdev->reg_data = config->driver_data;
4143         rdev->owner = regulator_desc->owner;
4144         rdev->desc = regulator_desc;
4145         if (config->regmap)
4146                 rdev->regmap = config->regmap;
4147         else if (dev_get_regmap(dev, NULL))
4148                 rdev->regmap = dev_get_regmap(dev, NULL);
4149         else if (dev->parent)
4150                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4151         INIT_LIST_HEAD(&rdev->consumer_list);
4152         INIT_LIST_HEAD(&rdev->list);
4153         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4154         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4155
4156         /* preform any regulator specific init */
4157         if (init_data && init_data->regulator_init) {
4158                 ret = init_data->regulator_init(rdev->reg_data);
4159                 if (ret < 0)
4160                         goto clean;
4161         }
4162
4163         if (config->ena_gpiod ||
4164             ((config->ena_gpio || config->ena_gpio_initialized) &&
4165              gpio_is_valid(config->ena_gpio))) {
4166                 mutex_lock(&regulator_list_mutex);
4167                 ret = regulator_ena_gpio_request(rdev, config);
4168                 mutex_unlock(&regulator_list_mutex);
4169                 if (ret != 0) {
4170                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4171                                  config->ena_gpio, ret);
4172                         goto clean;
4173                 }
4174         }
4175
4176         /* register with sysfs */
4177         rdev->dev.class = &regulator_class;
4178         rdev->dev.parent = dev;
4179         dev_set_name(&rdev->dev, "regulator.%lu",
4180                     (unsigned long) atomic_inc_return(&regulator_no));
4181
4182         /* set regulator constraints */
4183         if (init_data)
4184                 constraints = &init_data->constraints;
4185
4186         if (init_data && init_data->supply_regulator)
4187                 rdev->supply_name = init_data->supply_regulator;
4188         else if (regulator_desc->supply_name)
4189                 rdev->supply_name = regulator_desc->supply_name;
4190
4191         /*
4192          * Attempt to resolve the regulator supply, if specified,
4193          * but don't return an error if we fail because we will try
4194          * to resolve it again later as more regulators are added.
4195          */
4196         if (regulator_resolve_supply(rdev))
4197                 rdev_dbg(rdev, "unable to resolve supply\n");
4198
4199         ret = set_machine_constraints(rdev, constraints);
4200         if (ret < 0)
4201                 goto wash;
4202
4203         /* add consumers devices */
4204         if (init_data) {
4205                 mutex_lock(&regulator_list_mutex);
4206                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4207                         ret = set_consumer_device_supply(rdev,
4208                                 init_data->consumer_supplies[i].dev_name,
4209                                 init_data->consumer_supplies[i].supply);
4210                         if (ret < 0) {
4211                                 mutex_unlock(&regulator_list_mutex);
4212                                 dev_err(dev, "Failed to set supply %s\n",
4213                                         init_data->consumer_supplies[i].supply);
4214                                 goto unset_supplies;
4215                         }
4216                 }
4217                 mutex_unlock(&regulator_list_mutex);
4218         }
4219
4220         if (!rdev->desc->ops->get_voltage &&
4221             !rdev->desc->ops->list_voltage &&
4222             !rdev->desc->fixed_uV)
4223                 rdev->is_switch = true;
4224
4225         ret = device_register(&rdev->dev);
4226         if (ret != 0) {
4227                 put_device(&rdev->dev);
4228                 goto unset_supplies;
4229         }
4230
4231         dev_set_drvdata(&rdev->dev, rdev);
4232         rdev_init_debugfs(rdev);
4233
4234         /* try to resolve regulators supply since a new one was registered */
4235         class_for_each_device(&regulator_class, NULL, NULL,
4236                               regulator_register_resolve_supply);
4237         kfree(config);
4238         return rdev;
4239
4240 unset_supplies:
4241         mutex_lock(&regulator_list_mutex);
4242         unset_regulator_supplies(rdev);
4243         mutex_unlock(&regulator_list_mutex);
4244 wash:
4245         kfree(rdev->constraints);
4246         mutex_lock(&regulator_list_mutex);
4247         regulator_ena_gpio_free(rdev);
4248         mutex_unlock(&regulator_list_mutex);
4249 clean:
4250         kfree(rdev);
4251         kfree(config);
4252         return ERR_PTR(ret);
4253 }
4254 EXPORT_SYMBOL_GPL(regulator_register);
4255
4256 /**
4257  * regulator_unregister - unregister regulator
4258  * @rdev: regulator to unregister
4259  *
4260  * Called by regulator drivers to unregister a regulator.
4261  */
4262 void regulator_unregister(struct regulator_dev *rdev)
4263 {
4264         if (rdev == NULL)
4265                 return;
4266
4267         if (rdev->supply) {
4268                 while (rdev->use_count--)
4269                         regulator_disable(rdev->supply);
4270                 regulator_put(rdev->supply);
4271         }
4272         mutex_lock(&regulator_list_mutex);
4273         debugfs_remove_recursive(rdev->debugfs);
4274         flush_work(&rdev->disable_work.work);
4275         WARN_ON(rdev->open_count);
4276         unset_regulator_supplies(rdev);
4277         list_del(&rdev->list);
4278         regulator_ena_gpio_free(rdev);
4279         mutex_unlock(&regulator_list_mutex);
4280         device_unregister(&rdev->dev);
4281 }
4282 EXPORT_SYMBOL_GPL(regulator_unregister);
4283
4284 #ifdef CONFIG_SUSPEND
4285 static int _regulator_suspend_late(struct device *dev, void *data)
4286 {
4287         struct regulator_dev *rdev = dev_to_rdev(dev);
4288         suspend_state_t *state = data;
4289         int ret;
4290
4291         mutex_lock(&rdev->mutex);
4292         ret = suspend_set_state(rdev, *state);
4293         mutex_unlock(&rdev->mutex);
4294
4295         return ret;
4296 }
4297
4298 /**
4299  * regulator_suspend_late - prepare regulators for system wide suspend
4300  * @state: system suspend state
4301  *
4302  * Configure each regulator with it's suspend operating parameters for state.
4303  */
4304 static int regulator_suspend_late(struct device *dev)
4305 {
4306         suspend_state_t state = pm_suspend_target_state;
4307
4308         return class_for_each_device(&regulator_class, NULL, &state,
4309                                      _regulator_suspend_late);
4310 }
4311
4312 static int _regulator_resume_early(struct device *dev, void *data)
4313 {
4314         int ret = 0;
4315         struct regulator_dev *rdev = dev_to_rdev(dev);
4316         suspend_state_t *state = data;
4317         struct regulator_state *rstate;
4318
4319         rstate = regulator_get_suspend_state(rdev, *state);
4320         if (rstate == NULL)
4321                 return 0;
4322
4323         mutex_lock(&rdev->mutex);
4324
4325         if (rdev->desc->ops->resume_early &&
4326             (rstate->enabled == ENABLE_IN_SUSPEND ||
4327              rstate->enabled == DISABLE_IN_SUSPEND))
4328                 ret = rdev->desc->ops->resume_early(rdev);
4329
4330         mutex_unlock(&rdev->mutex);
4331
4332         return ret;
4333 }
4334
4335 static int regulator_resume_early(struct device *dev)
4336 {
4337         suspend_state_t state = pm_suspend_target_state;
4338
4339         return class_for_each_device(&regulator_class, NULL, &state,
4340                                      _regulator_resume_early);
4341 }
4342
4343 #else /* !CONFIG_SUSPEND */
4344
4345 #define regulator_suspend_late  NULL
4346 #define regulator_resume_early  NULL
4347
4348 #endif /* !CONFIG_SUSPEND */
4349
4350 #ifdef CONFIG_PM
4351 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4352         .suspend_late   = regulator_suspend_late,
4353         .resume_early   = regulator_resume_early,
4354 };
4355 #endif
4356
4357 struct class regulator_class = {
4358         .name = "regulator",
4359         .dev_release = regulator_dev_release,
4360         .dev_groups = regulator_dev_groups,
4361 #ifdef CONFIG_PM
4362         .pm = &regulator_pm_ops,
4363 #endif
4364 };
4365 /**
4366  * regulator_has_full_constraints - the system has fully specified constraints
4367  *
4368  * Calling this function will cause the regulator API to disable all
4369  * regulators which have a zero use count and don't have an always_on
4370  * constraint in a late_initcall.
4371  *
4372  * The intention is that this will become the default behaviour in a
4373  * future kernel release so users are encouraged to use this facility
4374  * now.
4375  */
4376 void regulator_has_full_constraints(void)
4377 {
4378         has_full_constraints = 1;
4379 }
4380 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4381
4382 /**
4383  * rdev_get_drvdata - get rdev regulator driver data
4384  * @rdev: regulator
4385  *
4386  * Get rdev regulator driver private data. This call can be used in the
4387  * regulator driver context.
4388  */
4389 void *rdev_get_drvdata(struct regulator_dev *rdev)
4390 {
4391         return rdev->reg_data;
4392 }
4393 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4394
4395 /**
4396  * regulator_get_drvdata - get regulator driver data
4397  * @regulator: regulator
4398  *
4399  * Get regulator driver private data. This call can be used in the consumer
4400  * driver context when non API regulator specific functions need to be called.
4401  */
4402 void *regulator_get_drvdata(struct regulator *regulator)
4403 {
4404         return regulator->rdev->reg_data;
4405 }
4406 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4407
4408 /**
4409  * regulator_set_drvdata - set regulator driver data
4410  * @regulator: regulator
4411  * @data: data
4412  */
4413 void regulator_set_drvdata(struct regulator *regulator, void *data)
4414 {
4415         regulator->rdev->reg_data = data;
4416 }
4417 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4418
4419 /**
4420  * regulator_get_id - get regulator ID
4421  * @rdev: regulator
4422  */
4423 int rdev_get_id(struct regulator_dev *rdev)
4424 {
4425         return rdev->desc->id;
4426 }
4427 EXPORT_SYMBOL_GPL(rdev_get_id);
4428
4429 struct device *rdev_get_dev(struct regulator_dev *rdev)
4430 {
4431         return &rdev->dev;
4432 }
4433 EXPORT_SYMBOL_GPL(rdev_get_dev);
4434
4435 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4436 {
4437         return reg_init_data->driver_data;
4438 }
4439 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4440
4441 #ifdef CONFIG_DEBUG_FS
4442 static int supply_map_show(struct seq_file *sf, void *data)
4443 {
4444         struct regulator_map *map;
4445
4446         list_for_each_entry(map, &regulator_map_list, list) {
4447                 seq_printf(sf, "%s -> %s.%s\n",
4448                                 rdev_get_name(map->regulator), map->dev_name,
4449                                 map->supply);
4450         }
4451
4452         return 0;
4453 }
4454
4455 static int supply_map_open(struct inode *inode, struct file *file)
4456 {
4457         return single_open(file, supply_map_show, inode->i_private);
4458 }
4459 #endif
4460
4461 static const struct file_operations supply_map_fops = {
4462 #ifdef CONFIG_DEBUG_FS
4463         .open = supply_map_open,
4464         .read = seq_read,
4465         .llseek = seq_lseek,
4466         .release = single_release,
4467 #endif
4468 };
4469
4470 #ifdef CONFIG_DEBUG_FS
4471 struct summary_data {
4472         struct seq_file *s;
4473         struct regulator_dev *parent;
4474         int level;
4475 };
4476
4477 static void regulator_summary_show_subtree(struct seq_file *s,
4478                                            struct regulator_dev *rdev,
4479                                            int level);
4480
4481 static int regulator_summary_show_children(struct device *dev, void *data)
4482 {
4483         struct regulator_dev *rdev = dev_to_rdev(dev);
4484         struct summary_data *summary_data = data;
4485
4486         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4487                 regulator_summary_show_subtree(summary_data->s, rdev,
4488                                                summary_data->level + 1);
4489
4490         return 0;
4491 }
4492
4493 static void regulator_summary_show_subtree(struct seq_file *s,
4494                                            struct regulator_dev *rdev,
4495                                            int level)
4496 {
4497         struct regulation_constraints *c;
4498         struct regulator *consumer;
4499         struct summary_data summary_data;
4500
4501         if (!rdev)
4502                 return;
4503
4504         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4505                    level * 3 + 1, "",
4506                    30 - level * 3, rdev_get_name(rdev),
4507                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4508
4509         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4510         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4511
4512         c = rdev->constraints;
4513         if (c) {
4514                 switch (rdev->desc->type) {
4515                 case REGULATOR_VOLTAGE:
4516                         seq_printf(s, "%5dmV %5dmV ",
4517                                    c->min_uV / 1000, c->max_uV / 1000);
4518                         break;
4519                 case REGULATOR_CURRENT:
4520                         seq_printf(s, "%5dmA %5dmA ",
4521                                    c->min_uA / 1000, c->max_uA / 1000);
4522                         break;
4523                 }
4524         }
4525
4526         seq_puts(s, "\n");
4527
4528         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4529                 if (consumer->dev && consumer->dev->class == &regulator_class)
4530                         continue;
4531
4532                 seq_printf(s, "%*s%-*s ",
4533                            (level + 1) * 3 + 1, "",
4534                            30 - (level + 1) * 3,
4535                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4536
4537                 switch (rdev->desc->type) {
4538                 case REGULATOR_VOLTAGE:
4539                         seq_printf(s, "%37dmV %5dmV",
4540                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4541                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4542                         break;
4543                 case REGULATOR_CURRENT:
4544                         break;
4545                 }
4546
4547                 seq_puts(s, "\n");
4548         }
4549
4550         summary_data.s = s;
4551         summary_data.level = level;
4552         summary_data.parent = rdev;
4553
4554         class_for_each_device(&regulator_class, NULL, &summary_data,
4555                               regulator_summary_show_children);
4556 }
4557
4558 static int regulator_summary_show_roots(struct device *dev, void *data)
4559 {
4560         struct regulator_dev *rdev = dev_to_rdev(dev);
4561         struct seq_file *s = data;
4562
4563         if (!rdev->supply)
4564                 regulator_summary_show_subtree(s, rdev, 0);
4565
4566         return 0;
4567 }
4568
4569 static int regulator_summary_show(struct seq_file *s, void *data)
4570 {
4571         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4572         seq_puts(s, "-------------------------------------------------------------------------------\n");
4573
4574         class_for_each_device(&regulator_class, NULL, s,
4575                               regulator_summary_show_roots);
4576
4577         return 0;
4578 }
4579
4580 static int regulator_summary_open(struct inode *inode, struct file *file)
4581 {
4582         return single_open(file, regulator_summary_show, inode->i_private);
4583 }
4584 #endif
4585
4586 static const struct file_operations regulator_summary_fops = {
4587 #ifdef CONFIG_DEBUG_FS
4588         .open           = regulator_summary_open,
4589         .read           = seq_read,
4590         .llseek         = seq_lseek,
4591         .release        = single_release,
4592 #endif
4593 };
4594
4595 static int __init regulator_init(void)
4596 {
4597         int ret;
4598
4599         ret = class_register(&regulator_class);
4600
4601         debugfs_root = debugfs_create_dir("regulator", NULL);
4602         if (!debugfs_root)
4603                 pr_warn("regulator: Failed to create debugfs directory\n");
4604
4605         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4606                             &supply_map_fops);
4607
4608         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4609                             NULL, &regulator_summary_fops);
4610
4611         regulator_dummy_init();
4612
4613         return ret;
4614 }
4615
4616 /* init early to allow our consumers to complete system booting */
4617 core_initcall(regulator_init);
4618
4619 static int __init regulator_late_cleanup(struct device *dev, void *data)
4620 {
4621         struct regulator_dev *rdev = dev_to_rdev(dev);
4622         const struct regulator_ops *ops = rdev->desc->ops;
4623         struct regulation_constraints *c = rdev->constraints;
4624         int enabled, ret;
4625
4626         if (c && c->always_on)
4627                 return 0;
4628
4629         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4630                 return 0;
4631
4632         mutex_lock(&rdev->mutex);
4633
4634         if (rdev->use_count)
4635                 goto unlock;
4636
4637         /* If we can't read the status assume it's on. */
4638         if (ops->is_enabled)
4639                 enabled = ops->is_enabled(rdev);
4640         else
4641                 enabled = 1;
4642
4643         if (!enabled)
4644                 goto unlock;
4645
4646         if (have_full_constraints()) {
4647                 /* We log since this may kill the system if it goes
4648                  * wrong. */
4649                 rdev_info(rdev, "disabling\n");
4650                 ret = _regulator_do_disable(rdev);
4651                 if (ret != 0)
4652                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4653         } else {
4654                 /* The intention is that in future we will
4655                  * assume that full constraints are provided
4656                  * so warn even if we aren't going to do
4657                  * anything here.
4658                  */
4659                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4660         }
4661
4662 unlock:
4663         mutex_unlock(&rdev->mutex);
4664
4665         return 0;
4666 }
4667
4668 static int __init regulator_init_complete(void)
4669 {
4670         /*
4671          * Since DT doesn't provide an idiomatic mechanism for
4672          * enabling full constraints and since it's much more natural
4673          * with DT to provide them just assume that a DT enabled
4674          * system has full constraints.
4675          */
4676         if (of_have_populated_dt())
4677                 has_full_constraints = true;
4678
4679         /*
4680          * Regulators may had failed to resolve their input supplies
4681          * when were registered, either because the input supply was
4682          * not registered yet or because its parent device was not
4683          * bound yet. So attempt to resolve the input supplies for
4684          * pending regulators before trying to disable unused ones.
4685          */
4686         class_for_each_device(&regulator_class, NULL, NULL,
4687                               regulator_register_resolve_supply);
4688
4689         /* If we have a full configuration then disable any regulators
4690          * we have permission to change the status for and which are
4691          * not in use or always_on.  This is effectively the default
4692          * for DT and ACPI as they have full constraints.
4693          */
4694         class_for_each_device(&regulator_class, NULL, NULL,
4695                               regulator_late_cleanup);
4696
4697         return 0;
4698 }
4699 late_initcall_sync(regulator_init_complete);