]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
regulator: core: remove dead code in _regulator_get()
[linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038         const struct regulation_constraints *constraints)
1039 {
1040         int ret = 0;
1041         const struct regulator_ops *ops = rdev->desc->ops;
1042
1043         if (constraints)
1044                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045                                             GFP_KERNEL);
1046         else
1047                 rdev->constraints = kzalloc(sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         if (!rdev->constraints)
1050                 return -ENOMEM;
1051
1052         ret = machine_constraints_voltage(rdev, rdev->constraints);
1053         if (ret != 0)
1054                 return ret;
1055
1056         ret = machine_constraints_current(rdev, rdev->constraints);
1057         if (ret != 0)
1058                 return ret;
1059
1060         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061                 ret = ops->set_input_current_limit(rdev,
1062                                                    rdev->constraints->ilim_uA);
1063                 if (ret < 0) {
1064                         rdev_err(rdev, "failed to set input limit\n");
1065                         return ret;
1066                 }
1067         }
1068
1069         /* do we need to setup our suspend state */
1070         if (rdev->constraints->initial_state) {
1071                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set suspend state\n");
1074                         return ret;
1075                 }
1076         }
1077
1078         if (rdev->constraints->initial_mode) {
1079                 if (!ops->set_mode) {
1080                         rdev_err(rdev, "no set_mode operation\n");
1081                         return -EINVAL;
1082                 }
1083
1084                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087                         return ret;
1088                 }
1089         }
1090
1091         /* If the constraints say the regulator should be on at this point
1092          * and we have control then make sure it is enabled.
1093          */
1094         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095                 ret = _regulator_do_enable(rdev);
1096                 if (ret < 0 && ret != -EINVAL) {
1097                         rdev_err(rdev, "failed to enable\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103                 && ops->set_ramp_delay) {
1104                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105                 if (ret < 0) {
1106                         rdev_err(rdev, "failed to set ramp_delay\n");
1107                         return ret;
1108                 }
1109         }
1110
1111         if (rdev->constraints->pull_down && ops->set_pull_down) {
1112                 ret = ops->set_pull_down(rdev);
1113                 if (ret < 0) {
1114                         rdev_err(rdev, "failed to set pull down\n");
1115                         return ret;
1116                 }
1117         }
1118
1119         if (rdev->constraints->soft_start && ops->set_soft_start) {
1120                 ret = ops->set_soft_start(rdev);
1121                 if (ret < 0) {
1122                         rdev_err(rdev, "failed to set soft start\n");
1123                         return ret;
1124                 }
1125         }
1126
1127         if (rdev->constraints->over_current_protection
1128                 && ops->set_over_current_protection) {
1129                 ret = ops->set_over_current_protection(rdev);
1130                 if (ret < 0) {
1131                         rdev_err(rdev, "failed to set over current protection\n");
1132                         return ret;
1133                 }
1134         }
1135
1136         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137                 bool ad_state = (rdev->constraints->active_discharge ==
1138                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140                 ret = ops->set_active_discharge(rdev, ad_state);
1141                 if (ret < 0) {
1142                         rdev_err(rdev, "failed to set active discharge\n");
1143                         return ret;
1144                 }
1145         }
1146
1147         print_constraints(rdev);
1148         return 0;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260                                           char __user *user_buf,
1261                                           size_t count, loff_t *ppos)
1262 {
1263         const struct regulator *regulator = file->private_data;
1264         const struct regulation_constraints *c = regulator->rdev->constraints;
1265         char *buf;
1266         ssize_t ret;
1267
1268         if (!c)
1269                 return 0;
1270
1271         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272         if (!buf)
1273                 return -ENOMEM;
1274
1275         ret = snprintf(buf, PAGE_SIZE,
1276                         "always_on: %u\n"
1277                         "boot_on: %u\n"
1278                         "apply_uV: %u\n"
1279                         "ramp_disable: %u\n"
1280                         "soft_start: %u\n"
1281                         "pull_down: %u\n"
1282                         "over_current_protection: %u\n",
1283                         c->always_on,
1284                         c->boot_on,
1285                         c->apply_uV,
1286                         c->ramp_disable,
1287                         c->soft_start,
1288                         c->pull_down,
1289                         c->over_current_protection);
1290
1291         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292         kfree(buf);
1293
1294         return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301         .open = simple_open,
1302         .read = constraint_flags_read_file,
1303         .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE    64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310                                           struct device *dev,
1311                                           const char *supply_name)
1312 {
1313         struct regulator *regulator;
1314         char buf[REG_STR_SIZE];
1315         int err, size;
1316
1317         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318         if (regulator == NULL)
1319                 return NULL;
1320
1321         mutex_lock(&rdev->mutex);
1322         regulator->rdev = rdev;
1323         list_add(&regulator->list, &rdev->consumer_list);
1324
1325         if (dev) {
1326                 regulator->dev = dev;
1327
1328                 /* Add a link to the device sysfs entry */
1329                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330                                  dev->kobj.name, supply_name);
1331                 if (size >= REG_STR_SIZE)
1332                         goto overflow_err;
1333
1334                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335                 if (regulator->supply_name == NULL)
1336                         goto overflow_err;
1337
1338                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339                                         buf);
1340                 if (err) {
1341                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1342                                   dev->kobj.name, err);
1343                         /* non-fatal */
1344                 }
1345         } else {
1346                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347                 if (regulator->supply_name == NULL)
1348                         goto overflow_err;
1349         }
1350
1351         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352                                                 rdev->debugfs);
1353         if (!regulator->debugfs) {
1354                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355         } else {
1356                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357                                    &regulator->uA_load);
1358                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359                                    &regulator->min_uV);
1360                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361                                    &regulator->max_uV);
1362                 debugfs_create_file("constraint_flags", 0444,
1363                                     regulator->debugfs, regulator,
1364                                     &constraint_flags_fops);
1365         }
1366
1367         /*
1368          * Check now if the regulator is an always on regulator - if
1369          * it is then we don't need to do nearly so much work for
1370          * enable/disable calls.
1371          */
1372         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373             _regulator_is_enabled(rdev))
1374                 regulator->always_on = true;
1375
1376         mutex_unlock(&rdev->mutex);
1377         return regulator;
1378 overflow_err:
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381         mutex_unlock(&rdev->mutex);
1382         return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387         if (rdev->constraints && rdev->constraints->enable_time)
1388                 return rdev->constraints->enable_time;
1389         if (!rdev->desc->ops->enable_time)
1390                 return rdev->desc->enable_time;
1391         return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395                 struct device *dev, const char *supply)
1396 {
1397         struct regulator_supply_alias *map;
1398
1399         list_for_each_entry(map, &regulator_supply_alias_list, list)
1400                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401                         return map;
1402
1403         return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408         struct regulator_supply_alias *map;
1409
1410         map = regulator_find_supply_alias(*dev, *supply);
1411         if (map) {
1412                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413                                 *supply, map->alias_supply,
1414                                 dev_name(map->alias_dev));
1415                 *dev = map->alias_dev;
1416                 *supply = map->alias_supply;
1417         }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422         return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427         struct device *dev;
1428
1429         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431         return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436         struct regulator_dev *r = dev_to_rdev(dev);
1437
1438         return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443         struct device *dev;
1444
1445         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447         return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one,
1459  * or NULL on failure. The refcount must be dropped by calling put_device().
1460  */
1461 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462                                                   const char *supply,
1463                                                   int *ret)
1464 {
1465         struct regulator_dev *r;
1466         struct device_node *node;
1467         struct regulator_map *map;
1468         const char *devname = NULL;
1469
1470         regulator_supply_alias(&dev, &supply);
1471
1472         /* first do a dt based lookup */
1473         if (dev && dev->of_node) {
1474                 node = of_get_regulator(dev, supply);
1475                 if (node) {
1476                         r = of_find_regulator_by_node(node);
1477                         if (r)
1478                                 return r;
1479                         *ret = -EPROBE_DEFER;
1480                         return NULL;
1481                 } else {
1482                         /*
1483                          * If we couldn't even get the node then it's
1484                          * not just that the device didn't register
1485                          * yet, there's no node and we'll never
1486                          * succeed.
1487                          */
1488                         *ret = -ENODEV;
1489                 }
1490         }
1491
1492         /* if not found, try doing it non-dt way */
1493         if (dev)
1494                 devname = dev_name(dev);
1495
1496         r = regulator_lookup_by_name(supply);
1497         if (r)
1498                 return r;
1499
1500         mutex_lock(&regulator_list_mutex);
1501         list_for_each_entry(map, &regulator_map_list, list) {
1502                 /* If the mapping has a device set up it must match */
1503                 if (map->dev_name &&
1504                     (!devname || strcmp(map->dev_name, devname)))
1505                         continue;
1506
1507                 if (strcmp(map->supply, supply) == 0 &&
1508                     get_device(&map->regulator->dev)) {
1509                         mutex_unlock(&regulator_list_mutex);
1510                         return map->regulator;
1511                 }
1512         }
1513         mutex_unlock(&regulator_list_mutex);
1514
1515         return NULL;
1516 }
1517
1518 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 {
1520         struct regulator_dev *r;
1521         struct device *dev = rdev->dev.parent;
1522         int ret;
1523
1524         /* No supply to resovle? */
1525         if (!rdev->supply_name)
1526                 return 0;
1527
1528         /* Supply already resolved? */
1529         if (rdev->supply)
1530                 return 0;
1531
1532         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533         if (!r) {
1534                 if (ret == -ENODEV) {
1535                         /*
1536                          * No supply was specified for this regulator and
1537                          * there will never be one.
1538                          */
1539                         return 0;
1540                 }
1541
1542                 /* Did the lookup explicitly defer for us? */
1543                 if (ret == -EPROBE_DEFER)
1544                         return ret;
1545
1546                 if (have_full_constraints()) {
1547                         r = dummy_regulator_rdev;
1548                         get_device(&r->dev);
1549                 } else {
1550                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551                                 rdev->supply_name, rdev->desc->name);
1552                         return -EPROBE_DEFER;
1553                 }
1554         }
1555
1556         /* Recursively resolve the supply of the supply */
1557         ret = regulator_resolve_supply(r);
1558         if (ret < 0) {
1559                 put_device(&r->dev);
1560                 return ret;
1561         }
1562
1563         ret = set_supply(rdev, r);
1564         if (ret < 0) {
1565                 put_device(&r->dev);
1566                 return ret;
1567         }
1568
1569         /* Cascade always-on state to supply */
1570         if (_regulator_is_enabled(rdev)) {
1571                 ret = regulator_enable(rdev->supply);
1572                 if (ret < 0) {
1573                         _regulator_put(rdev->supply);
1574                         rdev->supply = NULL;
1575                         return ret;
1576                 }
1577         }
1578
1579         return 0;
1580 }
1581
1582 /* Internal regulator request function */
1583 static struct regulator *_regulator_get(struct device *dev, const char *id,
1584                                         bool exclusive, bool allow_dummy)
1585 {
1586         struct regulator_dev *rdev;
1587         struct regulator *regulator;
1588         const char *devname = NULL;
1589         int ret;
1590
1591         if (id == NULL) {
1592                 pr_err("get() with no identifier\n");
1593                 return ERR_PTR(-EINVAL);
1594         }
1595
1596         if (dev)
1597                 devname = dev_name(dev);
1598
1599         rdev = regulator_dev_lookup(dev, id, &ret);
1600         if (rdev)
1601                 goto found;
1602
1603         regulator = ERR_PTR(ret);
1604
1605         /*
1606          * If we have return value from dev_lookup fail, we do not expect to
1607          * succeed, so, quit with appropriate error value
1608          */
1609         if (ret && ret != -ENODEV)
1610                 return regulator;
1611
1612         if (!devname)
1613                 devname = "deviceless";
1614
1615         /*
1616          * Assume that a regulator is physically present and enabled
1617          * even if it isn't hooked up and just provide a dummy.
1618          */
1619         if (have_full_constraints() && allow_dummy) {
1620                 pr_warn("%s supply %s not found, using dummy regulator\n",
1621                         devname, id);
1622
1623                 rdev = dummy_regulator_rdev;
1624                 get_device(&rdev->dev);
1625                 goto found;
1626         /* Don't log an error when called from regulator_get_optional() */
1627         } else if (!have_full_constraints() || exclusive) {
1628                 dev_warn(dev, "dummy supplies not allowed\n");
1629         }
1630
1631         return regulator;
1632
1633 found:
1634         if (rdev->exclusive) {
1635                 regulator = ERR_PTR(-EPERM);
1636                 put_device(&rdev->dev);
1637                 return regulator;
1638         }
1639
1640         if (exclusive && rdev->open_count) {
1641                 regulator = ERR_PTR(-EBUSY);
1642                 put_device(&rdev->dev);
1643                 return regulator;
1644         }
1645
1646         ret = regulator_resolve_supply(rdev);
1647         if (ret < 0) {
1648                 regulator = ERR_PTR(ret);
1649                 put_device(&rdev->dev);
1650                 return regulator;
1651         }
1652
1653         if (!try_module_get(rdev->owner)) {
1654                 regulator = ERR_PTR(-EPROBE_DEFER);
1655                 put_device(&rdev->dev);
1656                 return regulator;
1657         }
1658
1659         regulator = create_regulator(rdev, dev, id);
1660         if (regulator == NULL) {
1661                 regulator = ERR_PTR(-ENOMEM);
1662                 put_device(&rdev->dev);
1663                 module_put(rdev->owner);
1664                 return regulator;
1665         }
1666
1667         rdev->open_count++;
1668         if (exclusive) {
1669                 rdev->exclusive = 1;
1670
1671                 ret = _regulator_is_enabled(rdev);
1672                 if (ret > 0)
1673                         rdev->use_count = 1;
1674                 else
1675                         rdev->use_count = 0;
1676         }
1677
1678         return regulator;
1679 }
1680
1681 /**
1682  * regulator_get - lookup and obtain a reference to a regulator.
1683  * @dev: device for regulator "consumer"
1684  * @id: Supply name or regulator ID.
1685  *
1686  * Returns a struct regulator corresponding to the regulator producer,
1687  * or IS_ERR() condition containing errno.
1688  *
1689  * Use of supply names configured via regulator_set_device_supply() is
1690  * strongly encouraged.  It is recommended that the supply name used
1691  * should match the name used for the supply and/or the relevant
1692  * device pins in the datasheet.
1693  */
1694 struct regulator *regulator_get(struct device *dev, const char *id)
1695 {
1696         return _regulator_get(dev, id, false, true);
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_get);
1699
1700 /**
1701  * regulator_get_exclusive - obtain exclusive access to a regulator.
1702  * @dev: device for regulator "consumer"
1703  * @id: Supply name or regulator ID.
1704  *
1705  * Returns a struct regulator corresponding to the regulator producer,
1706  * or IS_ERR() condition containing errno.  Other consumers will be
1707  * unable to obtain this regulator while this reference is held and the
1708  * use count for the regulator will be initialised to reflect the current
1709  * state of the regulator.
1710  *
1711  * This is intended for use by consumers which cannot tolerate shared
1712  * use of the regulator such as those which need to force the
1713  * regulator off for correct operation of the hardware they are
1714  * controlling.
1715  *
1716  * Use of supply names configured via regulator_set_device_supply() is
1717  * strongly encouraged.  It is recommended that the supply name used
1718  * should match the name used for the supply and/or the relevant
1719  * device pins in the datasheet.
1720  */
1721 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1722 {
1723         return _regulator_get(dev, id, true, false);
1724 }
1725 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1726
1727 /**
1728  * regulator_get_optional - obtain optional access to a regulator.
1729  * @dev: device for regulator "consumer"
1730  * @id: Supply name or regulator ID.
1731  *
1732  * Returns a struct regulator corresponding to the regulator producer,
1733  * or IS_ERR() condition containing errno.
1734  *
1735  * This is intended for use by consumers for devices which can have
1736  * some supplies unconnected in normal use, such as some MMC devices.
1737  * It can allow the regulator core to provide stub supplies for other
1738  * supplies requested using normal regulator_get() calls without
1739  * disrupting the operation of drivers that can handle absent
1740  * supplies.
1741  *
1742  * Use of supply names configured via regulator_set_device_supply() is
1743  * strongly encouraged.  It is recommended that the supply name used
1744  * should match the name used for the supply and/or the relevant
1745  * device pins in the datasheet.
1746  */
1747 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1748 {
1749         return _regulator_get(dev, id, false, false);
1750 }
1751 EXPORT_SYMBOL_GPL(regulator_get_optional);
1752
1753 /* regulator_list_mutex lock held by regulator_put() */
1754 static void _regulator_put(struct regulator *regulator)
1755 {
1756         struct regulator_dev *rdev;
1757
1758         if (IS_ERR_OR_NULL(regulator))
1759                 return;
1760
1761         lockdep_assert_held_once(&regulator_list_mutex);
1762
1763         rdev = regulator->rdev;
1764
1765         debugfs_remove_recursive(regulator->debugfs);
1766
1767         /* remove any sysfs entries */
1768         if (regulator->dev)
1769                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1770         mutex_lock(&rdev->mutex);
1771         list_del(&regulator->list);
1772
1773         rdev->open_count--;
1774         rdev->exclusive = 0;
1775         put_device(&rdev->dev);
1776         mutex_unlock(&rdev->mutex);
1777
1778         kfree(regulator->supply_name);
1779         kfree(regulator);
1780
1781         module_put(rdev->owner);
1782 }
1783
1784 /**
1785  * regulator_put - "free" the regulator source
1786  * @regulator: regulator source
1787  *
1788  * Note: drivers must ensure that all regulator_enable calls made on this
1789  * regulator source are balanced by regulator_disable calls prior to calling
1790  * this function.
1791  */
1792 void regulator_put(struct regulator *regulator)
1793 {
1794         mutex_lock(&regulator_list_mutex);
1795         _regulator_put(regulator);
1796         mutex_unlock(&regulator_list_mutex);
1797 }
1798 EXPORT_SYMBOL_GPL(regulator_put);
1799
1800 /**
1801  * regulator_register_supply_alias - Provide device alias for supply lookup
1802  *
1803  * @dev: device that will be given as the regulator "consumer"
1804  * @id: Supply name or regulator ID
1805  * @alias_dev: device that should be used to lookup the supply
1806  * @alias_id: Supply name or regulator ID that should be used to lookup the
1807  * supply
1808  *
1809  * All lookups for id on dev will instead be conducted for alias_id on
1810  * alias_dev.
1811  */
1812 int regulator_register_supply_alias(struct device *dev, const char *id,
1813                                     struct device *alias_dev,
1814                                     const char *alias_id)
1815 {
1816         struct regulator_supply_alias *map;
1817
1818         map = regulator_find_supply_alias(dev, id);
1819         if (map)
1820                 return -EEXIST;
1821
1822         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1823         if (!map)
1824                 return -ENOMEM;
1825
1826         map->src_dev = dev;
1827         map->src_supply = id;
1828         map->alias_dev = alias_dev;
1829         map->alias_supply = alias_id;
1830
1831         list_add(&map->list, &regulator_supply_alias_list);
1832
1833         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1834                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1835
1836         return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1839
1840 /**
1841  * regulator_unregister_supply_alias - Remove device alias
1842  *
1843  * @dev: device that will be given as the regulator "consumer"
1844  * @id: Supply name or regulator ID
1845  *
1846  * Remove a lookup alias if one exists for id on dev.
1847  */
1848 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1849 {
1850         struct regulator_supply_alias *map;
1851
1852         map = regulator_find_supply_alias(dev, id);
1853         if (map) {
1854                 list_del(&map->list);
1855                 kfree(map);
1856         }
1857 }
1858 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1859
1860 /**
1861  * regulator_bulk_register_supply_alias - register multiple aliases
1862  *
1863  * @dev: device that will be given as the regulator "consumer"
1864  * @id: List of supply names or regulator IDs
1865  * @alias_dev: device that should be used to lookup the supply
1866  * @alias_id: List of supply names or regulator IDs that should be used to
1867  * lookup the supply
1868  * @num_id: Number of aliases to register
1869  *
1870  * @return 0 on success, an errno on failure.
1871  *
1872  * This helper function allows drivers to register several supply
1873  * aliases in one operation.  If any of the aliases cannot be
1874  * registered any aliases that were registered will be removed
1875  * before returning to the caller.
1876  */
1877 int regulator_bulk_register_supply_alias(struct device *dev,
1878                                          const char *const *id,
1879                                          struct device *alias_dev,
1880                                          const char *const *alias_id,
1881                                          int num_id)
1882 {
1883         int i;
1884         int ret;
1885
1886         for (i = 0; i < num_id; ++i) {
1887                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1888                                                       alias_id[i]);
1889                 if (ret < 0)
1890                         goto err;
1891         }
1892
1893         return 0;
1894
1895 err:
1896         dev_err(dev,
1897                 "Failed to create supply alias %s,%s -> %s,%s\n",
1898                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1899
1900         while (--i >= 0)
1901                 regulator_unregister_supply_alias(dev, id[i]);
1902
1903         return ret;
1904 }
1905 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1906
1907 /**
1908  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1909  *
1910  * @dev: device that will be given as the regulator "consumer"
1911  * @id: List of supply names or regulator IDs
1912  * @num_id: Number of aliases to unregister
1913  *
1914  * This helper function allows drivers to unregister several supply
1915  * aliases in one operation.
1916  */
1917 void regulator_bulk_unregister_supply_alias(struct device *dev,
1918                                             const char *const *id,
1919                                             int num_id)
1920 {
1921         int i;
1922
1923         for (i = 0; i < num_id; ++i)
1924                 regulator_unregister_supply_alias(dev, id[i]);
1925 }
1926 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1927
1928
1929 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1930 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1931                                 const struct regulator_config *config)
1932 {
1933         struct regulator_enable_gpio *pin;
1934         struct gpio_desc *gpiod;
1935         int ret;
1936
1937         gpiod = gpio_to_desc(config->ena_gpio);
1938
1939         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1940                 if (pin->gpiod == gpiod) {
1941                         rdev_dbg(rdev, "GPIO %d is already used\n",
1942                                 config->ena_gpio);
1943                         goto update_ena_gpio_to_rdev;
1944                 }
1945         }
1946
1947         ret = gpio_request_one(config->ena_gpio,
1948                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1949                                 rdev_get_name(rdev));
1950         if (ret)
1951                 return ret;
1952
1953         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1954         if (pin == NULL) {
1955                 gpio_free(config->ena_gpio);
1956                 return -ENOMEM;
1957         }
1958
1959         pin->gpiod = gpiod;
1960         pin->ena_gpio_invert = config->ena_gpio_invert;
1961         list_add(&pin->list, &regulator_ena_gpio_list);
1962
1963 update_ena_gpio_to_rdev:
1964         pin->request_count++;
1965         rdev->ena_pin = pin;
1966         return 0;
1967 }
1968
1969 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1970 {
1971         struct regulator_enable_gpio *pin, *n;
1972
1973         if (!rdev->ena_pin)
1974                 return;
1975
1976         /* Free the GPIO only in case of no use */
1977         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1978                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1979                         if (pin->request_count <= 1) {
1980                                 pin->request_count = 0;
1981                                 gpiod_put(pin->gpiod);
1982                                 list_del(&pin->list);
1983                                 kfree(pin);
1984                                 rdev->ena_pin = NULL;
1985                                 return;
1986                         } else {
1987                                 pin->request_count--;
1988                         }
1989                 }
1990         }
1991 }
1992
1993 /**
1994  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1995  * @rdev: regulator_dev structure
1996  * @enable: enable GPIO at initial use?
1997  *
1998  * GPIO is enabled in case of initial use. (enable_count is 0)
1999  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2000  */
2001 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2002 {
2003         struct regulator_enable_gpio *pin = rdev->ena_pin;
2004
2005         if (!pin)
2006                 return -EINVAL;
2007
2008         if (enable) {
2009                 /* Enable GPIO at initial use */
2010                 if (pin->enable_count == 0)
2011                         gpiod_set_value_cansleep(pin->gpiod,
2012                                                  !pin->ena_gpio_invert);
2013
2014                 pin->enable_count++;
2015         } else {
2016                 if (pin->enable_count > 1) {
2017                         pin->enable_count--;
2018                         return 0;
2019                 }
2020
2021                 /* Disable GPIO if not used */
2022                 if (pin->enable_count <= 1) {
2023                         gpiod_set_value_cansleep(pin->gpiod,
2024                                                  pin->ena_gpio_invert);
2025                         pin->enable_count = 0;
2026                 }
2027         }
2028
2029         return 0;
2030 }
2031
2032 /**
2033  * _regulator_enable_delay - a delay helper function
2034  * @delay: time to delay in microseconds
2035  *
2036  * Delay for the requested amount of time as per the guidelines in:
2037  *
2038  *     Documentation/timers/timers-howto.txt
2039  *
2040  * The assumption here is that regulators will never be enabled in
2041  * atomic context and therefore sleeping functions can be used.
2042  */
2043 static void _regulator_enable_delay(unsigned int delay)
2044 {
2045         unsigned int ms = delay / 1000;
2046         unsigned int us = delay % 1000;
2047
2048         if (ms > 0) {
2049                 /*
2050                  * For small enough values, handle super-millisecond
2051                  * delays in the usleep_range() call below.
2052                  */
2053                 if (ms < 20)
2054                         us += ms * 1000;
2055                 else
2056                         msleep(ms);
2057         }
2058
2059         /*
2060          * Give the scheduler some room to coalesce with any other
2061          * wakeup sources. For delays shorter than 10 us, don't even
2062          * bother setting up high-resolution timers and just busy-
2063          * loop.
2064          */
2065         if (us >= 10)
2066                 usleep_range(us, us + 100);
2067         else
2068                 udelay(us);
2069 }
2070
2071 static int _regulator_do_enable(struct regulator_dev *rdev)
2072 {
2073         int ret, delay;
2074
2075         /* Query before enabling in case configuration dependent.  */
2076         ret = _regulator_get_enable_time(rdev);
2077         if (ret >= 0) {
2078                 delay = ret;
2079         } else {
2080                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2081                 delay = 0;
2082         }
2083
2084         trace_regulator_enable(rdev_get_name(rdev));
2085
2086         if (rdev->desc->off_on_delay) {
2087                 /* if needed, keep a distance of off_on_delay from last time
2088                  * this regulator was disabled.
2089                  */
2090                 unsigned long start_jiffy = jiffies;
2091                 unsigned long intended, max_delay, remaining;
2092
2093                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2094                 intended = rdev->last_off_jiffy + max_delay;
2095
2096                 if (time_before(start_jiffy, intended)) {
2097                         /* calc remaining jiffies to deal with one-time
2098                          * timer wrapping.
2099                          * in case of multiple timer wrapping, either it can be
2100                          * detected by out-of-range remaining, or it cannot be
2101                          * detected and we gets a panelty of
2102                          * _regulator_enable_delay().
2103                          */
2104                         remaining = intended - start_jiffy;
2105                         if (remaining <= max_delay)
2106                                 _regulator_enable_delay(
2107                                                 jiffies_to_usecs(remaining));
2108                 }
2109         }
2110
2111         if (rdev->ena_pin) {
2112                 if (!rdev->ena_gpio_state) {
2113                         ret = regulator_ena_gpio_ctrl(rdev, true);
2114                         if (ret < 0)
2115                                 return ret;
2116                         rdev->ena_gpio_state = 1;
2117                 }
2118         } else if (rdev->desc->ops->enable) {
2119                 ret = rdev->desc->ops->enable(rdev);
2120                 if (ret < 0)
2121                         return ret;
2122         } else {
2123                 return -EINVAL;
2124         }
2125
2126         /* Allow the regulator to ramp; it would be useful to extend
2127          * this for bulk operations so that the regulators can ramp
2128          * together.  */
2129         trace_regulator_enable_delay(rdev_get_name(rdev));
2130
2131         _regulator_enable_delay(delay);
2132
2133         trace_regulator_enable_complete(rdev_get_name(rdev));
2134
2135         return 0;
2136 }
2137
2138 /* locks held by regulator_enable() */
2139 static int _regulator_enable(struct regulator_dev *rdev)
2140 {
2141         int ret;
2142
2143         lockdep_assert_held_once(&rdev->mutex);
2144
2145         /* check voltage and requested load before enabling */
2146         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2147                 drms_uA_update(rdev);
2148
2149         if (rdev->use_count == 0) {
2150                 /* The regulator may on if it's not switchable or left on */
2151                 ret = _regulator_is_enabled(rdev);
2152                 if (ret == -EINVAL || ret == 0) {
2153                         if (!regulator_ops_is_valid(rdev,
2154                                         REGULATOR_CHANGE_STATUS))
2155                                 return -EPERM;
2156
2157                         ret = _regulator_do_enable(rdev);
2158                         if (ret < 0)
2159                                 return ret;
2160
2161                 } else if (ret < 0) {
2162                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2163                         return ret;
2164                 }
2165                 /* Fallthrough on positive return values - already enabled */
2166         }
2167
2168         rdev->use_count++;
2169
2170         return 0;
2171 }
2172
2173 /**
2174  * regulator_enable - enable regulator output
2175  * @regulator: regulator source
2176  *
2177  * Request that the regulator be enabled with the regulator output at
2178  * the predefined voltage or current value.  Calls to regulator_enable()
2179  * must be balanced with calls to regulator_disable().
2180  *
2181  * NOTE: the output value can be set by other drivers, boot loader or may be
2182  * hardwired in the regulator.
2183  */
2184 int regulator_enable(struct regulator *regulator)
2185 {
2186         struct regulator_dev *rdev = regulator->rdev;
2187         int ret = 0;
2188
2189         if (regulator->always_on)
2190                 return 0;
2191
2192         if (rdev->supply) {
2193                 ret = regulator_enable(rdev->supply);
2194                 if (ret != 0)
2195                         return ret;
2196         }
2197
2198         mutex_lock(&rdev->mutex);
2199         ret = _regulator_enable(rdev);
2200         mutex_unlock(&rdev->mutex);
2201
2202         if (ret != 0 && rdev->supply)
2203                 regulator_disable(rdev->supply);
2204
2205         return ret;
2206 }
2207 EXPORT_SYMBOL_GPL(regulator_enable);
2208
2209 static int _regulator_do_disable(struct regulator_dev *rdev)
2210 {
2211         int ret;
2212
2213         trace_regulator_disable(rdev_get_name(rdev));
2214
2215         if (rdev->ena_pin) {
2216                 if (rdev->ena_gpio_state) {
2217                         ret = regulator_ena_gpio_ctrl(rdev, false);
2218                         if (ret < 0)
2219                                 return ret;
2220                         rdev->ena_gpio_state = 0;
2221                 }
2222
2223         } else if (rdev->desc->ops->disable) {
2224                 ret = rdev->desc->ops->disable(rdev);
2225                 if (ret != 0)
2226                         return ret;
2227         }
2228
2229         /* cares about last_off_jiffy only if off_on_delay is required by
2230          * device.
2231          */
2232         if (rdev->desc->off_on_delay)
2233                 rdev->last_off_jiffy = jiffies;
2234
2235         trace_regulator_disable_complete(rdev_get_name(rdev));
2236
2237         return 0;
2238 }
2239
2240 /* locks held by regulator_disable() */
2241 static int _regulator_disable(struct regulator_dev *rdev)
2242 {
2243         int ret = 0;
2244
2245         lockdep_assert_held_once(&rdev->mutex);
2246
2247         if (WARN(rdev->use_count <= 0,
2248                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2249                 return -EIO;
2250
2251         /* are we the last user and permitted to disable ? */
2252         if (rdev->use_count == 1 &&
2253             (rdev->constraints && !rdev->constraints->always_on)) {
2254
2255                 /* we are last user */
2256                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2257                         ret = _notifier_call_chain(rdev,
2258                                                    REGULATOR_EVENT_PRE_DISABLE,
2259                                                    NULL);
2260                         if (ret & NOTIFY_STOP_MASK)
2261                                 return -EINVAL;
2262
2263                         ret = _regulator_do_disable(rdev);
2264                         if (ret < 0) {
2265                                 rdev_err(rdev, "failed to disable\n");
2266                                 _notifier_call_chain(rdev,
2267                                                 REGULATOR_EVENT_ABORT_DISABLE,
2268                                                 NULL);
2269                                 return ret;
2270                         }
2271                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2272                                         NULL);
2273                 }
2274
2275                 rdev->use_count = 0;
2276         } else if (rdev->use_count > 1) {
2277                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2278                         drms_uA_update(rdev);
2279
2280                 rdev->use_count--;
2281         }
2282
2283         return ret;
2284 }
2285
2286 /**
2287  * regulator_disable - disable regulator output
2288  * @regulator: regulator source
2289  *
2290  * Disable the regulator output voltage or current.  Calls to
2291  * regulator_enable() must be balanced with calls to
2292  * regulator_disable().
2293  *
2294  * NOTE: this will only disable the regulator output if no other consumer
2295  * devices have it enabled, the regulator device supports disabling and
2296  * machine constraints permit this operation.
2297  */
2298 int regulator_disable(struct regulator *regulator)
2299 {
2300         struct regulator_dev *rdev = regulator->rdev;
2301         int ret = 0;
2302
2303         if (regulator->always_on)
2304                 return 0;
2305
2306         mutex_lock(&rdev->mutex);
2307         ret = _regulator_disable(rdev);
2308         mutex_unlock(&rdev->mutex);
2309
2310         if (ret == 0 && rdev->supply)
2311                 regulator_disable(rdev->supply);
2312
2313         return ret;
2314 }
2315 EXPORT_SYMBOL_GPL(regulator_disable);
2316
2317 /* locks held by regulator_force_disable() */
2318 static int _regulator_force_disable(struct regulator_dev *rdev)
2319 {
2320         int ret = 0;
2321
2322         lockdep_assert_held_once(&rdev->mutex);
2323
2324         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2325                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2326         if (ret & NOTIFY_STOP_MASK)
2327                 return -EINVAL;
2328
2329         ret = _regulator_do_disable(rdev);
2330         if (ret < 0) {
2331                 rdev_err(rdev, "failed to force disable\n");
2332                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2333                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2334                 return ret;
2335         }
2336
2337         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2338                         REGULATOR_EVENT_DISABLE, NULL);
2339
2340         return 0;
2341 }
2342
2343 /**
2344  * regulator_force_disable - force disable regulator output
2345  * @regulator: regulator source
2346  *
2347  * Forcibly disable the regulator output voltage or current.
2348  * NOTE: this *will* disable the regulator output even if other consumer
2349  * devices have it enabled. This should be used for situations when device
2350  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2351  */
2352 int regulator_force_disable(struct regulator *regulator)
2353 {
2354         struct regulator_dev *rdev = regulator->rdev;
2355         int ret;
2356
2357         mutex_lock(&rdev->mutex);
2358         regulator->uA_load = 0;
2359         ret = _regulator_force_disable(regulator->rdev);
2360         mutex_unlock(&rdev->mutex);
2361
2362         if (rdev->supply)
2363                 while (rdev->open_count--)
2364                         regulator_disable(rdev->supply);
2365
2366         return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regulator_force_disable);
2369
2370 static void regulator_disable_work(struct work_struct *work)
2371 {
2372         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2373                                                   disable_work.work);
2374         int count, i, ret;
2375
2376         mutex_lock(&rdev->mutex);
2377
2378         BUG_ON(!rdev->deferred_disables);
2379
2380         count = rdev->deferred_disables;
2381         rdev->deferred_disables = 0;
2382
2383         for (i = 0; i < count; i++) {
2384                 ret = _regulator_disable(rdev);
2385                 if (ret != 0)
2386                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2387         }
2388
2389         mutex_unlock(&rdev->mutex);
2390
2391         if (rdev->supply) {
2392                 for (i = 0; i < count; i++) {
2393                         ret = regulator_disable(rdev->supply);
2394                         if (ret != 0) {
2395                                 rdev_err(rdev,
2396                                          "Supply disable failed: %d\n", ret);
2397                         }
2398                 }
2399         }
2400 }
2401
2402 /**
2403  * regulator_disable_deferred - disable regulator output with delay
2404  * @regulator: regulator source
2405  * @ms: miliseconds until the regulator is disabled
2406  *
2407  * Execute regulator_disable() on the regulator after a delay.  This
2408  * is intended for use with devices that require some time to quiesce.
2409  *
2410  * NOTE: this will only disable the regulator output if no other consumer
2411  * devices have it enabled, the regulator device supports disabling and
2412  * machine constraints permit this operation.
2413  */
2414 int regulator_disable_deferred(struct regulator *regulator, int ms)
2415 {
2416         struct regulator_dev *rdev = regulator->rdev;
2417
2418         if (regulator->always_on)
2419                 return 0;
2420
2421         if (!ms)
2422                 return regulator_disable(regulator);
2423
2424         mutex_lock(&rdev->mutex);
2425         rdev->deferred_disables++;
2426         mutex_unlock(&rdev->mutex);
2427
2428         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2429                            msecs_to_jiffies(ms));
2430         return 0;
2431 }
2432 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2433
2434 static int _regulator_is_enabled(struct regulator_dev *rdev)
2435 {
2436         /* A GPIO control always takes precedence */
2437         if (rdev->ena_pin)
2438                 return rdev->ena_gpio_state;
2439
2440         /* If we don't know then assume that the regulator is always on */
2441         if (!rdev->desc->ops->is_enabled)
2442                 return 1;
2443
2444         return rdev->desc->ops->is_enabled(rdev);
2445 }
2446
2447 static int _regulator_list_voltage(struct regulator *regulator,
2448                                     unsigned selector, int lock)
2449 {
2450         struct regulator_dev *rdev = regulator->rdev;
2451         const struct regulator_ops *ops = rdev->desc->ops;
2452         int ret;
2453
2454         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2455                 return rdev->desc->fixed_uV;
2456
2457         if (ops->list_voltage) {
2458                 if (selector >= rdev->desc->n_voltages)
2459                         return -EINVAL;
2460                 if (lock)
2461                         mutex_lock(&rdev->mutex);
2462                 ret = ops->list_voltage(rdev, selector);
2463                 if (lock)
2464                         mutex_unlock(&rdev->mutex);
2465         } else if (rdev->supply) {
2466                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2467         } else {
2468                 return -EINVAL;
2469         }
2470
2471         if (ret > 0) {
2472                 if (ret < rdev->constraints->min_uV)
2473                         ret = 0;
2474                 else if (ret > rdev->constraints->max_uV)
2475                         ret = 0;
2476         }
2477
2478         return ret;
2479 }
2480
2481 /**
2482  * regulator_is_enabled - is the regulator output enabled
2483  * @regulator: regulator source
2484  *
2485  * Returns positive if the regulator driver backing the source/client
2486  * has requested that the device be enabled, zero if it hasn't, else a
2487  * negative errno code.
2488  *
2489  * Note that the device backing this regulator handle can have multiple
2490  * users, so it might be enabled even if regulator_enable() was never
2491  * called for this particular source.
2492  */
2493 int regulator_is_enabled(struct regulator *regulator)
2494 {
2495         int ret;
2496
2497         if (regulator->always_on)
2498                 return 1;
2499
2500         mutex_lock(&regulator->rdev->mutex);
2501         ret = _regulator_is_enabled(regulator->rdev);
2502         mutex_unlock(&regulator->rdev->mutex);
2503
2504         return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2507
2508 /**
2509  * regulator_count_voltages - count regulator_list_voltage() selectors
2510  * @regulator: regulator source
2511  *
2512  * Returns number of selectors, or negative errno.  Selectors are
2513  * numbered starting at zero, and typically correspond to bitfields
2514  * in hardware registers.
2515  */
2516 int regulator_count_voltages(struct regulator *regulator)
2517 {
2518         struct regulator_dev    *rdev = regulator->rdev;
2519
2520         if (rdev->desc->n_voltages)
2521                 return rdev->desc->n_voltages;
2522
2523         if (!rdev->supply)
2524                 return -EINVAL;
2525
2526         return regulator_count_voltages(rdev->supply);
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2529
2530 /**
2531  * regulator_list_voltage - enumerate supported voltages
2532  * @regulator: regulator source
2533  * @selector: identify voltage to list
2534  * Context: can sleep
2535  *
2536  * Returns a voltage that can be passed to @regulator_set_voltage(),
2537  * zero if this selector code can't be used on this system, or a
2538  * negative errno.
2539  */
2540 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2541 {
2542         return _regulator_list_voltage(regulator, selector, 1);
2543 }
2544 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2545
2546 /**
2547  * regulator_get_regmap - get the regulator's register map
2548  * @regulator: regulator source
2549  *
2550  * Returns the register map for the given regulator, or an ERR_PTR value
2551  * if the regulator doesn't use regmap.
2552  */
2553 struct regmap *regulator_get_regmap(struct regulator *regulator)
2554 {
2555         struct regmap *map = regulator->rdev->regmap;
2556
2557         return map ? map : ERR_PTR(-EOPNOTSUPP);
2558 }
2559
2560 /**
2561  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2562  * @regulator: regulator source
2563  * @vsel_reg: voltage selector register, output parameter
2564  * @vsel_mask: mask for voltage selector bitfield, output parameter
2565  *
2566  * Returns the hardware register offset and bitmask used for setting the
2567  * regulator voltage. This might be useful when configuring voltage-scaling
2568  * hardware or firmware that can make I2C requests behind the kernel's back,
2569  * for example.
2570  *
2571  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2572  * and 0 is returned, otherwise a negative errno is returned.
2573  */
2574 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2575                                          unsigned *vsel_reg,
2576                                          unsigned *vsel_mask)
2577 {
2578         struct regulator_dev *rdev = regulator->rdev;
2579         const struct regulator_ops *ops = rdev->desc->ops;
2580
2581         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2582                 return -EOPNOTSUPP;
2583
2584          *vsel_reg = rdev->desc->vsel_reg;
2585          *vsel_mask = rdev->desc->vsel_mask;
2586
2587          return 0;
2588 }
2589 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2590
2591 /**
2592  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2593  * @regulator: regulator source
2594  * @selector: identify voltage to list
2595  *
2596  * Converts the selector to a hardware-specific voltage selector that can be
2597  * directly written to the regulator registers. The address of the voltage
2598  * register can be determined by calling @regulator_get_hardware_vsel_register.
2599  *
2600  * On error a negative errno is returned.
2601  */
2602 int regulator_list_hardware_vsel(struct regulator *regulator,
2603                                  unsigned selector)
2604 {
2605         struct regulator_dev *rdev = regulator->rdev;
2606         const struct regulator_ops *ops = rdev->desc->ops;
2607
2608         if (selector >= rdev->desc->n_voltages)
2609                 return -EINVAL;
2610         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2611                 return -EOPNOTSUPP;
2612
2613         return selector;
2614 }
2615 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2616
2617 /**
2618  * regulator_get_linear_step - return the voltage step size between VSEL values
2619  * @regulator: regulator source
2620  *
2621  * Returns the voltage step size between VSEL values for linear
2622  * regulators, or return 0 if the regulator isn't a linear regulator.
2623  */
2624 unsigned int regulator_get_linear_step(struct regulator *regulator)
2625 {
2626         struct regulator_dev *rdev = regulator->rdev;
2627
2628         return rdev->desc->uV_step;
2629 }
2630 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2631
2632 /**
2633  * regulator_is_supported_voltage - check if a voltage range can be supported
2634  *
2635  * @regulator: Regulator to check.
2636  * @min_uV: Minimum required voltage in uV.
2637  * @max_uV: Maximum required voltage in uV.
2638  *
2639  * Returns a boolean or a negative error code.
2640  */
2641 int regulator_is_supported_voltage(struct regulator *regulator,
2642                                    int min_uV, int max_uV)
2643 {
2644         struct regulator_dev *rdev = regulator->rdev;
2645         int i, voltages, ret;
2646
2647         /* If we can't change voltage check the current voltage */
2648         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2649                 ret = regulator_get_voltage(regulator);
2650                 if (ret >= 0)
2651                         return min_uV <= ret && ret <= max_uV;
2652                 else
2653                         return ret;
2654         }
2655
2656         /* Any voltage within constrains range is fine? */
2657         if (rdev->desc->continuous_voltage_range)
2658                 return min_uV >= rdev->constraints->min_uV &&
2659                                 max_uV <= rdev->constraints->max_uV;
2660
2661         ret = regulator_count_voltages(regulator);
2662         if (ret < 0)
2663                 return ret;
2664         voltages = ret;
2665
2666         for (i = 0; i < voltages; i++) {
2667                 ret = regulator_list_voltage(regulator, i);
2668
2669                 if (ret >= min_uV && ret <= max_uV)
2670                         return 1;
2671         }
2672
2673         return 0;
2674 }
2675 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2676
2677 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2678                                  int max_uV)
2679 {
2680         const struct regulator_desc *desc = rdev->desc;
2681
2682         if (desc->ops->map_voltage)
2683                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2684
2685         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2686                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2687
2688         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2689                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2690
2691         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2692 }
2693
2694 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2695                                        int min_uV, int max_uV,
2696                                        unsigned *selector)
2697 {
2698         struct pre_voltage_change_data data;
2699         int ret;
2700
2701         data.old_uV = _regulator_get_voltage(rdev);
2702         data.min_uV = min_uV;
2703         data.max_uV = max_uV;
2704         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2705                                    &data);
2706         if (ret & NOTIFY_STOP_MASK)
2707                 return -EINVAL;
2708
2709         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2710         if (ret >= 0)
2711                 return ret;
2712
2713         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2714                              (void *)data.old_uV);
2715
2716         return ret;
2717 }
2718
2719 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2720                                            int uV, unsigned selector)
2721 {
2722         struct pre_voltage_change_data data;
2723         int ret;
2724
2725         data.old_uV = _regulator_get_voltage(rdev);
2726         data.min_uV = uV;
2727         data.max_uV = uV;
2728         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2729                                    &data);
2730         if (ret & NOTIFY_STOP_MASK)
2731                 return -EINVAL;
2732
2733         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2734         if (ret >= 0)
2735                 return ret;
2736
2737         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2738                              (void *)data.old_uV);
2739
2740         return ret;
2741 }
2742
2743 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2744                                        int old_uV, int new_uV)
2745 {
2746         unsigned int ramp_delay = 0;
2747
2748         if (rdev->constraints->ramp_delay)
2749                 ramp_delay = rdev->constraints->ramp_delay;
2750         else if (rdev->desc->ramp_delay)
2751                 ramp_delay = rdev->desc->ramp_delay;
2752
2753         if (ramp_delay == 0) {
2754                 rdev_dbg(rdev, "ramp_delay not set\n");
2755                 return 0;
2756         }
2757
2758         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2759 }
2760
2761 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2762                                      int min_uV, int max_uV)
2763 {
2764         int ret;
2765         int delay = 0;
2766         int best_val = 0;
2767         unsigned int selector;
2768         int old_selector = -1;
2769         const struct regulator_ops *ops = rdev->desc->ops;
2770         int old_uV = _regulator_get_voltage(rdev);
2771
2772         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2773
2774         min_uV += rdev->constraints->uV_offset;
2775         max_uV += rdev->constraints->uV_offset;
2776
2777         /*
2778          * If we can't obtain the old selector there is not enough
2779          * info to call set_voltage_time_sel().
2780          */
2781         if (_regulator_is_enabled(rdev) &&
2782             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2783                 old_selector = ops->get_voltage_sel(rdev);
2784                 if (old_selector < 0)
2785                         return old_selector;
2786         }
2787
2788         if (ops->set_voltage) {
2789                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2790                                                   &selector);
2791
2792                 if (ret >= 0) {
2793                         if (ops->list_voltage)
2794                                 best_val = ops->list_voltage(rdev,
2795                                                              selector);
2796                         else
2797                                 best_val = _regulator_get_voltage(rdev);
2798                 }
2799
2800         } else if (ops->set_voltage_sel) {
2801                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2802                 if (ret >= 0) {
2803                         best_val = ops->list_voltage(rdev, ret);
2804                         if (min_uV <= best_val && max_uV >= best_val) {
2805                                 selector = ret;
2806                                 if (old_selector == selector)
2807                                         ret = 0;
2808                                 else
2809                                         ret = _regulator_call_set_voltage_sel(
2810                                                 rdev, best_val, selector);
2811                         } else {
2812                                 ret = -EINVAL;
2813                         }
2814                 }
2815         } else {
2816                 ret = -EINVAL;
2817         }
2818
2819         if (ret)
2820                 goto out;
2821
2822         if (ops->set_voltage_time_sel) {
2823                 /*
2824                  * Call set_voltage_time_sel if successfully obtained
2825                  * old_selector
2826                  */
2827                 if (old_selector >= 0 && old_selector != selector)
2828                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2829                                                           selector);
2830         } else {
2831                 if (old_uV != best_val) {
2832                         if (ops->set_voltage_time)
2833                                 delay = ops->set_voltage_time(rdev, old_uV,
2834                                                               best_val);
2835                         else
2836                                 delay = _regulator_set_voltage_time(rdev,
2837                                                                     old_uV,
2838                                                                     best_val);
2839                 }
2840         }
2841
2842         if (delay < 0) {
2843                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2844                 delay = 0;
2845         }
2846
2847         /* Insert any necessary delays */
2848         if (delay >= 1000) {
2849                 mdelay(delay / 1000);
2850                 udelay(delay % 1000);
2851         } else if (delay) {
2852                 udelay(delay);
2853         }
2854
2855         if (best_val >= 0) {
2856                 unsigned long data = best_val;
2857
2858                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2859                                      (void *)data);
2860         }
2861
2862 out:
2863         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2864
2865         return ret;
2866 }
2867
2868 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2869                                           int min_uV, int max_uV)
2870 {
2871         struct regulator_dev *rdev = regulator->rdev;
2872         int ret = 0;
2873         int old_min_uV, old_max_uV;
2874         int current_uV;
2875         int best_supply_uV = 0;
2876         int supply_change_uV = 0;
2877
2878         /* If we're setting the same range as last time the change
2879          * should be a noop (some cpufreq implementations use the same
2880          * voltage for multiple frequencies, for example).
2881          */
2882         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2883                 goto out;
2884
2885         /* If we're trying to set a range that overlaps the current voltage,
2886          * return successfully even though the regulator does not support
2887          * changing the voltage.
2888          */
2889         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2890                 current_uV = _regulator_get_voltage(rdev);
2891                 if (min_uV <= current_uV && current_uV <= max_uV) {
2892                         regulator->min_uV = min_uV;
2893                         regulator->max_uV = max_uV;
2894                         goto out;
2895                 }
2896         }
2897
2898         /* sanity check */
2899         if (!rdev->desc->ops->set_voltage &&
2900             !rdev->desc->ops->set_voltage_sel) {
2901                 ret = -EINVAL;
2902                 goto out;
2903         }
2904
2905         /* constraints check */
2906         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2907         if (ret < 0)
2908                 goto out;
2909
2910         /* restore original values in case of error */
2911         old_min_uV = regulator->min_uV;
2912         old_max_uV = regulator->max_uV;
2913         regulator->min_uV = min_uV;
2914         regulator->max_uV = max_uV;
2915
2916         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2917         if (ret < 0)
2918                 goto out2;
2919
2920         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2921                                 !rdev->desc->ops->get_voltage)) {
2922                 int current_supply_uV;
2923                 int selector;
2924
2925                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2926                 if (selector < 0) {
2927                         ret = selector;
2928                         goto out2;
2929                 }
2930
2931                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2932                 if (best_supply_uV < 0) {
2933                         ret = best_supply_uV;
2934                         goto out2;
2935                 }
2936
2937                 best_supply_uV += rdev->desc->min_dropout_uV;
2938
2939                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2940                 if (current_supply_uV < 0) {
2941                         ret = current_supply_uV;
2942                         goto out2;
2943                 }
2944
2945                 supply_change_uV = best_supply_uV - current_supply_uV;
2946         }
2947
2948         if (supply_change_uV > 0) {
2949                 ret = regulator_set_voltage_unlocked(rdev->supply,
2950                                 best_supply_uV, INT_MAX);
2951                 if (ret) {
2952                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2953                                         ret);
2954                         goto out2;
2955                 }
2956         }
2957
2958         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2959         if (ret < 0)
2960                 goto out2;
2961
2962         if (supply_change_uV < 0) {
2963                 ret = regulator_set_voltage_unlocked(rdev->supply,
2964                                 best_supply_uV, INT_MAX);
2965                 if (ret)
2966                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2967                                         ret);
2968                 /* No need to fail here */
2969                 ret = 0;
2970         }
2971
2972 out:
2973         return ret;
2974 out2:
2975         regulator->min_uV = old_min_uV;
2976         regulator->max_uV = old_max_uV;
2977
2978         return ret;
2979 }
2980
2981 /**
2982  * regulator_set_voltage - set regulator output voltage
2983  * @regulator: regulator source
2984  * @min_uV: Minimum required voltage in uV
2985  * @max_uV: Maximum acceptable voltage in uV
2986  *
2987  * Sets a voltage regulator to the desired output voltage. This can be set
2988  * during any regulator state. IOW, regulator can be disabled or enabled.
2989  *
2990  * If the regulator is enabled then the voltage will change to the new value
2991  * immediately otherwise if the regulator is disabled the regulator will
2992  * output at the new voltage when enabled.
2993  *
2994  * NOTE: If the regulator is shared between several devices then the lowest
2995  * request voltage that meets the system constraints will be used.
2996  * Regulator system constraints must be set for this regulator before
2997  * calling this function otherwise this call will fail.
2998  */
2999 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3000 {
3001         int ret = 0;
3002
3003         regulator_lock_supply(regulator->rdev);
3004
3005         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3006
3007         regulator_unlock_supply(regulator->rdev);
3008
3009         return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3012
3013 /**
3014  * regulator_set_voltage_time - get raise/fall time
3015  * @regulator: regulator source
3016  * @old_uV: starting voltage in microvolts
3017  * @new_uV: target voltage in microvolts
3018  *
3019  * Provided with the starting and ending voltage, this function attempts to
3020  * calculate the time in microseconds required to rise or fall to this new
3021  * voltage.
3022  */
3023 int regulator_set_voltage_time(struct regulator *regulator,
3024                                int old_uV, int new_uV)
3025 {
3026         struct regulator_dev *rdev = regulator->rdev;
3027         const struct regulator_ops *ops = rdev->desc->ops;
3028         int old_sel = -1;
3029         int new_sel = -1;
3030         int voltage;
3031         int i;
3032
3033         if (ops->set_voltage_time)
3034                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3035         else if (!ops->set_voltage_time_sel)
3036                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3037
3038         /* Currently requires operations to do this */
3039         if (!ops->list_voltage || !rdev->desc->n_voltages)
3040                 return -EINVAL;
3041
3042         for (i = 0; i < rdev->desc->n_voltages; i++) {
3043                 /* We only look for exact voltage matches here */
3044                 voltage = regulator_list_voltage(regulator, i);
3045                 if (voltage < 0)
3046                         return -EINVAL;
3047                 if (voltage == 0)
3048                         continue;
3049                 if (voltage == old_uV)
3050                         old_sel = i;
3051                 if (voltage == new_uV)
3052                         new_sel = i;
3053         }
3054
3055         if (old_sel < 0 || new_sel < 0)
3056                 return -EINVAL;
3057
3058         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3059 }
3060 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3061
3062 /**
3063  * regulator_set_voltage_time_sel - get raise/fall time
3064  * @rdev: regulator source device
3065  * @old_selector: selector for starting voltage
3066  * @new_selector: selector for target voltage
3067  *
3068  * Provided with the starting and target voltage selectors, this function
3069  * returns time in microseconds required to rise or fall to this new voltage
3070  *
3071  * Drivers providing ramp_delay in regulation_constraints can use this as their
3072  * set_voltage_time_sel() operation.
3073  */
3074 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3075                                    unsigned int old_selector,
3076                                    unsigned int new_selector)
3077 {
3078         int old_volt, new_volt;
3079
3080         /* sanity check */
3081         if (!rdev->desc->ops->list_voltage)
3082                 return -EINVAL;
3083
3084         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3085         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3086
3087         if (rdev->desc->ops->set_voltage_time)
3088                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3089                                                          new_volt);
3090         else
3091                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3094
3095 /**
3096  * regulator_sync_voltage - re-apply last regulator output voltage
3097  * @regulator: regulator source
3098  *
3099  * Re-apply the last configured voltage.  This is intended to be used
3100  * where some external control source the consumer is cooperating with
3101  * has caused the configured voltage to change.
3102  */
3103 int regulator_sync_voltage(struct regulator *regulator)
3104 {
3105         struct regulator_dev *rdev = regulator->rdev;
3106         int ret, min_uV, max_uV;
3107
3108         mutex_lock(&rdev->mutex);
3109
3110         if (!rdev->desc->ops->set_voltage &&
3111             !rdev->desc->ops->set_voltage_sel) {
3112                 ret = -EINVAL;
3113                 goto out;
3114         }
3115
3116         /* This is only going to work if we've had a voltage configured. */
3117         if (!regulator->min_uV && !regulator->max_uV) {
3118                 ret = -EINVAL;
3119                 goto out;
3120         }
3121
3122         min_uV = regulator->min_uV;
3123         max_uV = regulator->max_uV;
3124
3125         /* This should be a paranoia check... */
3126         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3127         if (ret < 0)
3128                 goto out;
3129
3130         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3131         if (ret < 0)
3132                 goto out;
3133
3134         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3135
3136 out:
3137         mutex_unlock(&rdev->mutex);
3138         return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3141
3142 static int _regulator_get_voltage(struct regulator_dev *rdev)
3143 {
3144         int sel, ret;
3145         bool bypassed;
3146
3147         if (rdev->desc->ops->get_bypass) {
3148                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3149                 if (ret < 0)
3150                         return ret;
3151                 if (bypassed) {
3152                         /* if bypassed the regulator must have a supply */
3153                         if (!rdev->supply) {
3154                                 rdev_err(rdev,
3155                                          "bypassed regulator has no supply!\n");
3156                                 return -EPROBE_DEFER;
3157                         }
3158
3159                         return _regulator_get_voltage(rdev->supply->rdev);
3160                 }
3161         }
3162
3163         if (rdev->desc->ops->get_voltage_sel) {
3164                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3165                 if (sel < 0)
3166                         return sel;
3167                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3168         } else if (rdev->desc->ops->get_voltage) {
3169                 ret = rdev->desc->ops->get_voltage(rdev);
3170         } else if (rdev->desc->ops->list_voltage) {
3171                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3172         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3173                 ret = rdev->desc->fixed_uV;
3174         } else if (rdev->supply) {
3175                 ret = _regulator_get_voltage(rdev->supply->rdev);
3176         } else {
3177                 return -EINVAL;
3178         }
3179
3180         if (ret < 0)
3181                 return ret;
3182         return ret - rdev->constraints->uV_offset;
3183 }
3184
3185 /**
3186  * regulator_get_voltage - get regulator output voltage
3187  * @regulator: regulator source
3188  *
3189  * This returns the current regulator voltage in uV.
3190  *
3191  * NOTE: If the regulator is disabled it will return the voltage value. This
3192  * function should not be used to determine regulator state.
3193  */
3194 int regulator_get_voltage(struct regulator *regulator)
3195 {
3196         int ret;
3197
3198         regulator_lock_supply(regulator->rdev);
3199
3200         ret = _regulator_get_voltage(regulator->rdev);
3201
3202         regulator_unlock_supply(regulator->rdev);
3203
3204         return ret;
3205 }
3206 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3207
3208 /**
3209  * regulator_set_current_limit - set regulator output current limit
3210  * @regulator: regulator source
3211  * @min_uA: Minimum supported current in uA
3212  * @max_uA: Maximum supported current in uA
3213  *
3214  * Sets current sink to the desired output current. This can be set during
3215  * any regulator state. IOW, regulator can be disabled or enabled.
3216  *
3217  * If the regulator is enabled then the current will change to the new value
3218  * immediately otherwise if the regulator is disabled the regulator will
3219  * output at the new current when enabled.
3220  *
3221  * NOTE: Regulator system constraints must be set for this regulator before
3222  * calling this function otherwise this call will fail.
3223  */
3224 int regulator_set_current_limit(struct regulator *regulator,
3225                                int min_uA, int max_uA)
3226 {
3227         struct regulator_dev *rdev = regulator->rdev;
3228         int ret;
3229
3230         mutex_lock(&rdev->mutex);
3231
3232         /* sanity check */
3233         if (!rdev->desc->ops->set_current_limit) {
3234                 ret = -EINVAL;
3235                 goto out;
3236         }
3237
3238         /* constraints check */
3239         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3240         if (ret < 0)
3241                 goto out;
3242
3243         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3244 out:
3245         mutex_unlock(&rdev->mutex);
3246         return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3249
3250 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3251 {
3252         int ret;
3253
3254         mutex_lock(&rdev->mutex);
3255
3256         /* sanity check */
3257         if (!rdev->desc->ops->get_current_limit) {
3258                 ret = -EINVAL;
3259                 goto out;
3260         }
3261
3262         ret = rdev->desc->ops->get_current_limit(rdev);
3263 out:
3264         mutex_unlock(&rdev->mutex);
3265         return ret;
3266 }
3267
3268 /**
3269  * regulator_get_current_limit - get regulator output current
3270  * @regulator: regulator source
3271  *
3272  * This returns the current supplied by the specified current sink in uA.
3273  *
3274  * NOTE: If the regulator is disabled it will return the current value. This
3275  * function should not be used to determine regulator state.
3276  */
3277 int regulator_get_current_limit(struct regulator *regulator)
3278 {
3279         return _regulator_get_current_limit(regulator->rdev);
3280 }
3281 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3282
3283 /**
3284  * regulator_set_mode - set regulator operating mode
3285  * @regulator: regulator source
3286  * @mode: operating mode - one of the REGULATOR_MODE constants
3287  *
3288  * Set regulator operating mode to increase regulator efficiency or improve
3289  * regulation performance.
3290  *
3291  * NOTE: Regulator system constraints must be set for this regulator before
3292  * calling this function otherwise this call will fail.
3293  */
3294 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3295 {
3296         struct regulator_dev *rdev = regulator->rdev;
3297         int ret;
3298         int regulator_curr_mode;
3299
3300         mutex_lock(&rdev->mutex);
3301
3302         /* sanity check */
3303         if (!rdev->desc->ops->set_mode) {
3304                 ret = -EINVAL;
3305                 goto out;
3306         }
3307
3308         /* return if the same mode is requested */
3309         if (rdev->desc->ops->get_mode) {
3310                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3311                 if (regulator_curr_mode == mode) {
3312                         ret = 0;
3313                         goto out;
3314                 }
3315         }
3316
3317         /* constraints check */
3318         ret = regulator_mode_constrain(rdev, &mode);
3319         if (ret < 0)
3320                 goto out;
3321
3322         ret = rdev->desc->ops->set_mode(rdev, mode);
3323 out:
3324         mutex_unlock(&rdev->mutex);
3325         return ret;
3326 }
3327 EXPORT_SYMBOL_GPL(regulator_set_mode);
3328
3329 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3330 {
3331         int ret;
3332
3333         mutex_lock(&rdev->mutex);
3334
3335         /* sanity check */
3336         if (!rdev->desc->ops->get_mode) {
3337                 ret = -EINVAL;
3338                 goto out;
3339         }
3340
3341         ret = rdev->desc->ops->get_mode(rdev);
3342 out:
3343         mutex_unlock(&rdev->mutex);
3344         return ret;
3345 }
3346
3347 /**
3348  * regulator_get_mode - get regulator operating mode
3349  * @regulator: regulator source
3350  *
3351  * Get the current regulator operating mode.
3352  */
3353 unsigned int regulator_get_mode(struct regulator *regulator)
3354 {
3355         return _regulator_get_mode(regulator->rdev);
3356 }
3357 EXPORT_SYMBOL_GPL(regulator_get_mode);
3358
3359 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3360                                         unsigned int *flags)
3361 {
3362         int ret;
3363
3364         mutex_lock(&rdev->mutex);
3365
3366         /* sanity check */
3367         if (!rdev->desc->ops->get_error_flags) {
3368                 ret = -EINVAL;
3369                 goto out;
3370         }
3371
3372         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3373 out:
3374         mutex_unlock(&rdev->mutex);
3375         return ret;
3376 }
3377
3378 /**
3379  * regulator_get_error_flags - get regulator error information
3380  * @regulator: regulator source
3381  * @flags: pointer to store error flags
3382  *
3383  * Get the current regulator error information.
3384  */
3385 int regulator_get_error_flags(struct regulator *regulator,
3386                                 unsigned int *flags)
3387 {
3388         return _regulator_get_error_flags(regulator->rdev, flags);
3389 }
3390 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3391
3392 /**
3393  * regulator_set_load - set regulator load
3394  * @regulator: regulator source
3395  * @uA_load: load current
3396  *
3397  * Notifies the regulator core of a new device load. This is then used by
3398  * DRMS (if enabled by constraints) to set the most efficient regulator
3399  * operating mode for the new regulator loading.
3400  *
3401  * Consumer devices notify their supply regulator of the maximum power
3402  * they will require (can be taken from device datasheet in the power
3403  * consumption tables) when they change operational status and hence power
3404  * state. Examples of operational state changes that can affect power
3405  * consumption are :-
3406  *
3407  *    o Device is opened / closed.
3408  *    o Device I/O is about to begin or has just finished.
3409  *    o Device is idling in between work.
3410  *
3411  * This information is also exported via sysfs to userspace.
3412  *
3413  * DRMS will sum the total requested load on the regulator and change
3414  * to the most efficient operating mode if platform constraints allow.
3415  *
3416  * On error a negative errno is returned.
3417  */
3418 int regulator_set_load(struct regulator *regulator, int uA_load)
3419 {
3420         struct regulator_dev *rdev = regulator->rdev;
3421         int ret;
3422
3423         mutex_lock(&rdev->mutex);
3424         regulator->uA_load = uA_load;
3425         ret = drms_uA_update(rdev);
3426         mutex_unlock(&rdev->mutex);
3427
3428         return ret;
3429 }
3430 EXPORT_SYMBOL_GPL(regulator_set_load);
3431
3432 /**
3433  * regulator_allow_bypass - allow the regulator to go into bypass mode
3434  *
3435  * @regulator: Regulator to configure
3436  * @enable: enable or disable bypass mode
3437  *
3438  * Allow the regulator to go into bypass mode if all other consumers
3439  * for the regulator also enable bypass mode and the machine
3440  * constraints allow this.  Bypass mode means that the regulator is
3441  * simply passing the input directly to the output with no regulation.
3442  */
3443 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3444 {
3445         struct regulator_dev *rdev = regulator->rdev;
3446         int ret = 0;
3447
3448         if (!rdev->desc->ops->set_bypass)
3449                 return 0;
3450
3451         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3452                 return 0;
3453
3454         mutex_lock(&rdev->mutex);
3455
3456         if (enable && !regulator->bypass) {
3457                 rdev->bypass_count++;
3458
3459                 if (rdev->bypass_count == rdev->open_count) {
3460                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3461                         if (ret != 0)
3462                                 rdev->bypass_count--;
3463                 }
3464
3465         } else if (!enable && regulator->bypass) {
3466                 rdev->bypass_count--;
3467
3468                 if (rdev->bypass_count != rdev->open_count) {
3469                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3470                         if (ret != 0)
3471                                 rdev->bypass_count++;
3472                 }
3473         }
3474
3475         if (ret == 0)
3476                 regulator->bypass = enable;
3477
3478         mutex_unlock(&rdev->mutex);
3479
3480         return ret;
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3483
3484 /**
3485  * regulator_register_notifier - register regulator event notifier
3486  * @regulator: regulator source
3487  * @nb: notifier block
3488  *
3489  * Register notifier block to receive regulator events.
3490  */
3491 int regulator_register_notifier(struct regulator *regulator,
3492                               struct notifier_block *nb)
3493 {
3494         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3495                                                 nb);
3496 }
3497 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3498
3499 /**
3500  * regulator_unregister_notifier - unregister regulator event notifier
3501  * @regulator: regulator source
3502  * @nb: notifier block
3503  *
3504  * Unregister regulator event notifier block.
3505  */
3506 int regulator_unregister_notifier(struct regulator *regulator,
3507                                 struct notifier_block *nb)
3508 {
3509         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3510                                                   nb);
3511 }
3512 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3513
3514 /* notify regulator consumers and downstream regulator consumers.
3515  * Note mutex must be held by caller.
3516  */
3517 static int _notifier_call_chain(struct regulator_dev *rdev,
3518                                   unsigned long event, void *data)
3519 {
3520         /* call rdev chain first */
3521         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3522 }
3523
3524 /**
3525  * regulator_bulk_get - get multiple regulator consumers
3526  *
3527  * @dev:           Device to supply
3528  * @num_consumers: Number of consumers to register
3529  * @consumers:     Configuration of consumers; clients are stored here.
3530  *
3531  * @return 0 on success, an errno on failure.
3532  *
3533  * This helper function allows drivers to get several regulator
3534  * consumers in one operation.  If any of the regulators cannot be
3535  * acquired then any regulators that were allocated will be freed
3536  * before returning to the caller.
3537  */
3538 int regulator_bulk_get(struct device *dev, int num_consumers,
3539                        struct regulator_bulk_data *consumers)
3540 {
3541         int i;
3542         int ret;
3543
3544         for (i = 0; i < num_consumers; i++)
3545                 consumers[i].consumer = NULL;
3546
3547         for (i = 0; i < num_consumers; i++) {
3548                 consumers[i].consumer = regulator_get(dev,
3549                                                       consumers[i].supply);
3550                 if (IS_ERR(consumers[i].consumer)) {
3551                         ret = PTR_ERR(consumers[i].consumer);
3552                         dev_err(dev, "Failed to get supply '%s': %d\n",
3553                                 consumers[i].supply, ret);
3554                         consumers[i].consumer = NULL;
3555                         goto err;
3556                 }
3557         }
3558
3559         return 0;
3560
3561 err:
3562         while (--i >= 0)
3563                 regulator_put(consumers[i].consumer);
3564
3565         return ret;
3566 }
3567 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3568
3569 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3570 {
3571         struct regulator_bulk_data *bulk = data;
3572
3573         bulk->ret = regulator_enable(bulk->consumer);
3574 }
3575
3576 /**
3577  * regulator_bulk_enable - enable multiple regulator consumers
3578  *
3579  * @num_consumers: Number of consumers
3580  * @consumers:     Consumer data; clients are stored here.
3581  * @return         0 on success, an errno on failure
3582  *
3583  * This convenience API allows consumers to enable multiple regulator
3584  * clients in a single API call.  If any consumers cannot be enabled
3585  * then any others that were enabled will be disabled again prior to
3586  * return.
3587  */
3588 int regulator_bulk_enable(int num_consumers,
3589                           struct regulator_bulk_data *consumers)
3590 {
3591         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3592         int i;
3593         int ret = 0;
3594
3595         for (i = 0; i < num_consumers; i++) {
3596                 if (consumers[i].consumer->always_on)
3597                         consumers[i].ret = 0;
3598                 else
3599                         async_schedule_domain(regulator_bulk_enable_async,
3600                                               &consumers[i], &async_domain);
3601         }
3602
3603         async_synchronize_full_domain(&async_domain);
3604
3605         /* If any consumer failed we need to unwind any that succeeded */
3606         for (i = 0; i < num_consumers; i++) {
3607                 if (consumers[i].ret != 0) {
3608                         ret = consumers[i].ret;
3609                         goto err;
3610                 }
3611         }
3612
3613         return 0;
3614
3615 err:
3616         for (i = 0; i < num_consumers; i++) {
3617                 if (consumers[i].ret < 0)
3618                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3619                                consumers[i].ret);
3620                 else
3621                         regulator_disable(consumers[i].consumer);
3622         }
3623
3624         return ret;
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3627
3628 /**
3629  * regulator_bulk_disable - disable multiple regulator consumers
3630  *
3631  * @num_consumers: Number of consumers
3632  * @consumers:     Consumer data; clients are stored here.
3633  * @return         0 on success, an errno on failure
3634  *
3635  * This convenience API allows consumers to disable multiple regulator
3636  * clients in a single API call.  If any consumers cannot be disabled
3637  * then any others that were disabled will be enabled again prior to
3638  * return.
3639  */
3640 int regulator_bulk_disable(int num_consumers,
3641                            struct regulator_bulk_data *consumers)
3642 {
3643         int i;
3644         int ret, r;
3645
3646         for (i = num_consumers - 1; i >= 0; --i) {
3647                 ret = regulator_disable(consumers[i].consumer);
3648                 if (ret != 0)
3649                         goto err;
3650         }
3651
3652         return 0;
3653
3654 err:
3655         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3656         for (++i; i < num_consumers; ++i) {
3657                 r = regulator_enable(consumers[i].consumer);
3658                 if (r != 0)
3659                         pr_err("Failed to reename %s: %d\n",
3660                                consumers[i].supply, r);
3661         }
3662
3663         return ret;
3664 }
3665 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3666
3667 /**
3668  * regulator_bulk_force_disable - force disable multiple regulator consumers
3669  *
3670  * @num_consumers: Number of consumers
3671  * @consumers:     Consumer data; clients are stored here.
3672  * @return         0 on success, an errno on failure
3673  *
3674  * This convenience API allows consumers to forcibly disable multiple regulator
3675  * clients in a single API call.
3676  * NOTE: This should be used for situations when device damage will
3677  * likely occur if the regulators are not disabled (e.g. over temp).
3678  * Although regulator_force_disable function call for some consumers can
3679  * return error numbers, the function is called for all consumers.
3680  */
3681 int regulator_bulk_force_disable(int num_consumers,
3682                            struct regulator_bulk_data *consumers)
3683 {
3684         int i;
3685         int ret;
3686
3687         for (i = 0; i < num_consumers; i++)
3688                 consumers[i].ret =
3689                             regulator_force_disable(consumers[i].consumer);
3690
3691         for (i = 0; i < num_consumers; i++) {
3692                 if (consumers[i].ret != 0) {
3693                         ret = consumers[i].ret;
3694                         goto out;
3695                 }
3696         }
3697
3698         return 0;
3699 out:
3700         return ret;
3701 }
3702 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3703
3704 /**
3705  * regulator_bulk_free - free multiple regulator consumers
3706  *
3707  * @num_consumers: Number of consumers
3708  * @consumers:     Consumer data; clients are stored here.
3709  *
3710  * This convenience API allows consumers to free multiple regulator
3711  * clients in a single API call.
3712  */
3713 void regulator_bulk_free(int num_consumers,
3714                          struct regulator_bulk_data *consumers)
3715 {
3716         int i;
3717
3718         for (i = 0; i < num_consumers; i++) {
3719                 regulator_put(consumers[i].consumer);
3720                 consumers[i].consumer = NULL;
3721         }
3722 }
3723 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3724
3725 /**
3726  * regulator_notifier_call_chain - call regulator event notifier
3727  * @rdev: regulator source
3728  * @event: notifier block
3729  * @data: callback-specific data.
3730  *
3731  * Called by regulator drivers to notify clients a regulator event has
3732  * occurred. We also notify regulator clients downstream.
3733  * Note lock must be held by caller.
3734  */
3735 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3736                                   unsigned long event, void *data)
3737 {
3738         lockdep_assert_held_once(&rdev->mutex);
3739
3740         _notifier_call_chain(rdev, event, data);
3741         return NOTIFY_DONE;
3742
3743 }
3744 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3745
3746 /**
3747  * regulator_mode_to_status - convert a regulator mode into a status
3748  *
3749  * @mode: Mode to convert
3750  *
3751  * Convert a regulator mode into a status.
3752  */
3753 int regulator_mode_to_status(unsigned int mode)
3754 {
3755         switch (mode) {
3756         case REGULATOR_MODE_FAST:
3757                 return REGULATOR_STATUS_FAST;
3758         case REGULATOR_MODE_NORMAL:
3759                 return REGULATOR_STATUS_NORMAL;
3760         case REGULATOR_MODE_IDLE:
3761                 return REGULATOR_STATUS_IDLE;
3762         case REGULATOR_MODE_STANDBY:
3763                 return REGULATOR_STATUS_STANDBY;
3764         default:
3765                 return REGULATOR_STATUS_UNDEFINED;
3766         }
3767 }
3768 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3769
3770 static struct attribute *regulator_dev_attrs[] = {
3771         &dev_attr_name.attr,
3772         &dev_attr_num_users.attr,
3773         &dev_attr_type.attr,
3774         &dev_attr_microvolts.attr,
3775         &dev_attr_microamps.attr,
3776         &dev_attr_opmode.attr,
3777         &dev_attr_state.attr,
3778         &dev_attr_status.attr,
3779         &dev_attr_bypass.attr,
3780         &dev_attr_requested_microamps.attr,
3781         &dev_attr_min_microvolts.attr,
3782         &dev_attr_max_microvolts.attr,
3783         &dev_attr_min_microamps.attr,
3784         &dev_attr_max_microamps.attr,
3785         &dev_attr_suspend_standby_state.attr,
3786         &dev_attr_suspend_mem_state.attr,
3787         &dev_attr_suspend_disk_state.attr,
3788         &dev_attr_suspend_standby_microvolts.attr,
3789         &dev_attr_suspend_mem_microvolts.attr,
3790         &dev_attr_suspend_disk_microvolts.attr,
3791         &dev_attr_suspend_standby_mode.attr,
3792         &dev_attr_suspend_mem_mode.attr,
3793         &dev_attr_suspend_disk_mode.attr,
3794         NULL
3795 };
3796
3797 /*
3798  * To avoid cluttering sysfs (and memory) with useless state, only
3799  * create attributes that can be meaningfully displayed.
3800  */
3801 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3802                                          struct attribute *attr, int idx)
3803 {
3804         struct device *dev = kobj_to_dev(kobj);
3805         struct regulator_dev *rdev = dev_to_rdev(dev);
3806         const struct regulator_ops *ops = rdev->desc->ops;
3807         umode_t mode = attr->mode;
3808
3809         /* these three are always present */
3810         if (attr == &dev_attr_name.attr ||
3811             attr == &dev_attr_num_users.attr ||
3812             attr == &dev_attr_type.attr)
3813                 return mode;
3814
3815         /* some attributes need specific methods to be displayed */
3816         if (attr == &dev_attr_microvolts.attr) {
3817                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3818                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3819                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3820                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3821                         return mode;
3822                 return 0;
3823         }
3824
3825         if (attr == &dev_attr_microamps.attr)
3826                 return ops->get_current_limit ? mode : 0;
3827
3828         if (attr == &dev_attr_opmode.attr)
3829                 return ops->get_mode ? mode : 0;
3830
3831         if (attr == &dev_attr_state.attr)
3832                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3833
3834         if (attr == &dev_attr_status.attr)
3835                 return ops->get_status ? mode : 0;
3836
3837         if (attr == &dev_attr_bypass.attr)
3838                 return ops->get_bypass ? mode : 0;
3839
3840         /* some attributes are type-specific */
3841         if (attr == &dev_attr_requested_microamps.attr)
3842                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3843
3844         /* constraints need specific supporting methods */
3845         if (attr == &dev_attr_min_microvolts.attr ||
3846             attr == &dev_attr_max_microvolts.attr)
3847                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3848
3849         if (attr == &dev_attr_min_microamps.attr ||
3850             attr == &dev_attr_max_microamps.attr)
3851                 return ops->set_current_limit ? mode : 0;
3852
3853         if (attr == &dev_attr_suspend_standby_state.attr ||
3854             attr == &dev_attr_suspend_mem_state.attr ||
3855             attr == &dev_attr_suspend_disk_state.attr)
3856                 return mode;
3857
3858         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3859             attr == &dev_attr_suspend_mem_microvolts.attr ||
3860             attr == &dev_attr_suspend_disk_microvolts.attr)
3861                 return ops->set_suspend_voltage ? mode : 0;
3862
3863         if (attr == &dev_attr_suspend_standby_mode.attr ||
3864             attr == &dev_attr_suspend_mem_mode.attr ||
3865             attr == &dev_attr_suspend_disk_mode.attr)
3866                 return ops->set_suspend_mode ? mode : 0;
3867
3868         return mode;
3869 }
3870
3871 static const struct attribute_group regulator_dev_group = {
3872         .attrs = regulator_dev_attrs,
3873         .is_visible = regulator_attr_is_visible,
3874 };
3875
3876 static const struct attribute_group *regulator_dev_groups[] = {
3877         &regulator_dev_group,
3878         NULL
3879 };
3880
3881 static void regulator_dev_release(struct device *dev)
3882 {
3883         struct regulator_dev *rdev = dev_get_drvdata(dev);
3884
3885         kfree(rdev->constraints);
3886         of_node_put(rdev->dev.of_node);
3887         kfree(rdev);
3888 }
3889
3890 static struct class regulator_class = {
3891         .name = "regulator",
3892         .dev_release = regulator_dev_release,
3893         .dev_groups = regulator_dev_groups,
3894 };
3895
3896 static void rdev_init_debugfs(struct regulator_dev *rdev)
3897 {
3898         struct device *parent = rdev->dev.parent;
3899         const char *rname = rdev_get_name(rdev);
3900         char name[NAME_MAX];
3901
3902         /* Avoid duplicate debugfs directory names */
3903         if (parent && rname == rdev->desc->name) {
3904                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3905                          rname);
3906                 rname = name;
3907         }
3908
3909         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3910         if (!rdev->debugfs) {
3911                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3912                 return;
3913         }
3914
3915         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3916                            &rdev->use_count);
3917         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3918                            &rdev->open_count);
3919         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3920                            &rdev->bypass_count);
3921 }
3922
3923 static int regulator_register_resolve_supply(struct device *dev, void *data)
3924 {
3925         struct regulator_dev *rdev = dev_to_rdev(dev);
3926
3927         if (regulator_resolve_supply(rdev))
3928                 rdev_dbg(rdev, "unable to resolve supply\n");
3929
3930         return 0;
3931 }
3932
3933 /**
3934  * regulator_register - register regulator
3935  * @regulator_desc: regulator to register
3936  * @cfg: runtime configuration for regulator
3937  *
3938  * Called by regulator drivers to register a regulator.
3939  * Returns a valid pointer to struct regulator_dev on success
3940  * or an ERR_PTR() on error.
3941  */
3942 struct regulator_dev *
3943 regulator_register(const struct regulator_desc *regulator_desc,
3944                    const struct regulator_config *cfg)
3945 {
3946         const struct regulation_constraints *constraints = NULL;
3947         const struct regulator_init_data *init_data;
3948         struct regulator_config *config = NULL;
3949         static atomic_t regulator_no = ATOMIC_INIT(-1);
3950         struct regulator_dev *rdev;
3951         struct device *dev;
3952         int ret, i;
3953
3954         if (regulator_desc == NULL || cfg == NULL)
3955                 return ERR_PTR(-EINVAL);
3956
3957         dev = cfg->dev;
3958         WARN_ON(!dev);
3959
3960         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3961                 return ERR_PTR(-EINVAL);
3962
3963         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3964             regulator_desc->type != REGULATOR_CURRENT)
3965                 return ERR_PTR(-EINVAL);
3966
3967         /* Only one of each should be implemented */
3968         WARN_ON(regulator_desc->ops->get_voltage &&
3969                 regulator_desc->ops->get_voltage_sel);
3970         WARN_ON(regulator_desc->ops->set_voltage &&
3971                 regulator_desc->ops->set_voltage_sel);
3972
3973         /* If we're using selectors we must implement list_voltage. */
3974         if (regulator_desc->ops->get_voltage_sel &&
3975             !regulator_desc->ops->list_voltage) {
3976                 return ERR_PTR(-EINVAL);
3977         }
3978         if (regulator_desc->ops->set_voltage_sel &&
3979             !regulator_desc->ops->list_voltage) {
3980                 return ERR_PTR(-EINVAL);
3981         }
3982
3983         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3984         if (rdev == NULL)
3985                 return ERR_PTR(-ENOMEM);
3986
3987         /*
3988          * Duplicate the config so the driver could override it after
3989          * parsing init data.
3990          */
3991         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3992         if (config == NULL) {
3993                 kfree(rdev);
3994                 return ERR_PTR(-ENOMEM);
3995         }
3996
3997         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3998                                                &rdev->dev.of_node);
3999         if (!init_data) {
4000                 init_data = config->init_data;
4001                 rdev->dev.of_node = of_node_get(config->of_node);
4002         }
4003
4004         mutex_init(&rdev->mutex);
4005         rdev->reg_data = config->driver_data;
4006         rdev->owner = regulator_desc->owner;
4007         rdev->desc = regulator_desc;
4008         if (config->regmap)
4009                 rdev->regmap = config->regmap;
4010         else if (dev_get_regmap(dev, NULL))
4011                 rdev->regmap = dev_get_regmap(dev, NULL);
4012         else if (dev->parent)
4013                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4014         INIT_LIST_HEAD(&rdev->consumer_list);
4015         INIT_LIST_HEAD(&rdev->list);
4016         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4017         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4018
4019         /* preform any regulator specific init */
4020         if (init_data && init_data->regulator_init) {
4021                 ret = init_data->regulator_init(rdev->reg_data);
4022                 if (ret < 0)
4023                         goto clean;
4024         }
4025
4026         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4027             gpio_is_valid(config->ena_gpio)) {
4028                 mutex_lock(&regulator_list_mutex);
4029                 ret = regulator_ena_gpio_request(rdev, config);
4030                 mutex_unlock(&regulator_list_mutex);
4031                 if (ret != 0) {
4032                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4033                                  config->ena_gpio, ret);
4034                         goto clean;
4035                 }
4036         }
4037
4038         /* register with sysfs */
4039         rdev->dev.class = &regulator_class;
4040         rdev->dev.parent = dev;
4041         dev_set_name(&rdev->dev, "regulator.%lu",
4042                     (unsigned long) atomic_inc_return(&regulator_no));
4043
4044         /* set regulator constraints */
4045         if (init_data)
4046                 constraints = &init_data->constraints;
4047
4048         if (init_data && init_data->supply_regulator)
4049                 rdev->supply_name = init_data->supply_regulator;
4050         else if (regulator_desc->supply_name)
4051                 rdev->supply_name = regulator_desc->supply_name;
4052
4053         /*
4054          * Attempt to resolve the regulator supply, if specified,
4055          * but don't return an error if we fail because we will try
4056          * to resolve it again later as more regulators are added.
4057          */
4058         if (regulator_resolve_supply(rdev))
4059                 rdev_dbg(rdev, "unable to resolve supply\n");
4060
4061         ret = set_machine_constraints(rdev, constraints);
4062         if (ret < 0)
4063                 goto wash;
4064
4065         /* add consumers devices */
4066         if (init_data) {
4067                 mutex_lock(&regulator_list_mutex);
4068                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4069                         ret = set_consumer_device_supply(rdev,
4070                                 init_data->consumer_supplies[i].dev_name,
4071                                 init_data->consumer_supplies[i].supply);
4072                         if (ret < 0) {
4073                                 mutex_unlock(&regulator_list_mutex);
4074                                 dev_err(dev, "Failed to set supply %s\n",
4075                                         init_data->consumer_supplies[i].supply);
4076                                 goto unset_supplies;
4077                         }
4078                 }
4079                 mutex_unlock(&regulator_list_mutex);
4080         }
4081
4082         ret = device_register(&rdev->dev);
4083         if (ret != 0) {
4084                 put_device(&rdev->dev);
4085                 goto unset_supplies;
4086         }
4087
4088         dev_set_drvdata(&rdev->dev, rdev);
4089         rdev_init_debugfs(rdev);
4090
4091         /* try to resolve regulators supply since a new one was registered */
4092         class_for_each_device(&regulator_class, NULL, NULL,
4093                               regulator_register_resolve_supply);
4094         kfree(config);
4095         return rdev;
4096
4097 unset_supplies:
4098         mutex_lock(&regulator_list_mutex);
4099         unset_regulator_supplies(rdev);
4100         mutex_unlock(&regulator_list_mutex);
4101 wash:
4102         kfree(rdev->constraints);
4103         mutex_lock(&regulator_list_mutex);
4104         regulator_ena_gpio_free(rdev);
4105         mutex_unlock(&regulator_list_mutex);
4106 clean:
4107         kfree(rdev);
4108         kfree(config);
4109         return ERR_PTR(ret);
4110 }
4111 EXPORT_SYMBOL_GPL(regulator_register);
4112
4113 /**
4114  * regulator_unregister - unregister regulator
4115  * @rdev: regulator to unregister
4116  *
4117  * Called by regulator drivers to unregister a regulator.
4118  */
4119 void regulator_unregister(struct regulator_dev *rdev)
4120 {
4121         if (rdev == NULL)
4122                 return;
4123
4124         if (rdev->supply) {
4125                 while (rdev->use_count--)
4126                         regulator_disable(rdev->supply);
4127                 regulator_put(rdev->supply);
4128         }
4129         mutex_lock(&regulator_list_mutex);
4130         debugfs_remove_recursive(rdev->debugfs);
4131         flush_work(&rdev->disable_work.work);
4132         WARN_ON(rdev->open_count);
4133         unset_regulator_supplies(rdev);
4134         list_del(&rdev->list);
4135         regulator_ena_gpio_free(rdev);
4136         mutex_unlock(&regulator_list_mutex);
4137         device_unregister(&rdev->dev);
4138 }
4139 EXPORT_SYMBOL_GPL(regulator_unregister);
4140
4141 static int _regulator_suspend_prepare(struct device *dev, void *data)
4142 {
4143         struct regulator_dev *rdev = dev_to_rdev(dev);
4144         const suspend_state_t *state = data;
4145         int ret;
4146
4147         mutex_lock(&rdev->mutex);
4148         ret = suspend_prepare(rdev, *state);
4149         mutex_unlock(&rdev->mutex);
4150
4151         return ret;
4152 }
4153
4154 /**
4155  * regulator_suspend_prepare - prepare regulators for system wide suspend
4156  * @state: system suspend state
4157  *
4158  * Configure each regulator with it's suspend operating parameters for state.
4159  * This will usually be called by machine suspend code prior to supending.
4160  */
4161 int regulator_suspend_prepare(suspend_state_t state)
4162 {
4163         /* ON is handled by regulator active state */
4164         if (state == PM_SUSPEND_ON)
4165                 return -EINVAL;
4166
4167         return class_for_each_device(&regulator_class, NULL, &state,
4168                                      _regulator_suspend_prepare);
4169 }
4170 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4171
4172 static int _regulator_suspend_finish(struct device *dev, void *data)
4173 {
4174         struct regulator_dev *rdev = dev_to_rdev(dev);
4175         int ret;
4176
4177         mutex_lock(&rdev->mutex);
4178         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4179                 if (!_regulator_is_enabled(rdev)) {
4180                         ret = _regulator_do_enable(rdev);
4181                         if (ret)
4182                                 dev_err(dev,
4183                                         "Failed to resume regulator %d\n",
4184                                         ret);
4185                 }
4186         } else {
4187                 if (!have_full_constraints())
4188                         goto unlock;
4189                 if (!_regulator_is_enabled(rdev))
4190                         goto unlock;
4191
4192                 ret = _regulator_do_disable(rdev);
4193                 if (ret)
4194                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4195         }
4196 unlock:
4197         mutex_unlock(&rdev->mutex);
4198
4199         /* Keep processing regulators in spite of any errors */
4200         return 0;
4201 }
4202
4203 /**
4204  * regulator_suspend_finish - resume regulators from system wide suspend
4205  *
4206  * Turn on regulators that might be turned off by regulator_suspend_prepare
4207  * and that should be turned on according to the regulators properties.
4208  */
4209 int regulator_suspend_finish(void)
4210 {
4211         return class_for_each_device(&regulator_class, NULL, NULL,
4212                                      _regulator_suspend_finish);
4213 }
4214 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4215
4216 /**
4217  * regulator_has_full_constraints - the system has fully specified constraints
4218  *
4219  * Calling this function will cause the regulator API to disable all
4220  * regulators which have a zero use count and don't have an always_on
4221  * constraint in a late_initcall.
4222  *
4223  * The intention is that this will become the default behaviour in a
4224  * future kernel release so users are encouraged to use this facility
4225  * now.
4226  */
4227 void regulator_has_full_constraints(void)
4228 {
4229         has_full_constraints = 1;
4230 }
4231 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4232
4233 /**
4234  * rdev_get_drvdata - get rdev regulator driver data
4235  * @rdev: regulator
4236  *
4237  * Get rdev regulator driver private data. This call can be used in the
4238  * regulator driver context.
4239  */
4240 void *rdev_get_drvdata(struct regulator_dev *rdev)
4241 {
4242         return rdev->reg_data;
4243 }
4244 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4245
4246 /**
4247  * regulator_get_drvdata - get regulator driver data
4248  * @regulator: regulator
4249  *
4250  * Get regulator driver private data. This call can be used in the consumer
4251  * driver context when non API regulator specific functions need to be called.
4252  */
4253 void *regulator_get_drvdata(struct regulator *regulator)
4254 {
4255         return regulator->rdev->reg_data;
4256 }
4257 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4258
4259 /**
4260  * regulator_set_drvdata - set regulator driver data
4261  * @regulator: regulator
4262  * @data: data
4263  */
4264 void regulator_set_drvdata(struct regulator *regulator, void *data)
4265 {
4266         regulator->rdev->reg_data = data;
4267 }
4268 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4269
4270 /**
4271  * regulator_get_id - get regulator ID
4272  * @rdev: regulator
4273  */
4274 int rdev_get_id(struct regulator_dev *rdev)
4275 {
4276         return rdev->desc->id;
4277 }
4278 EXPORT_SYMBOL_GPL(rdev_get_id);
4279
4280 struct device *rdev_get_dev(struct regulator_dev *rdev)
4281 {
4282         return &rdev->dev;
4283 }
4284 EXPORT_SYMBOL_GPL(rdev_get_dev);
4285
4286 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4287 {
4288         return reg_init_data->driver_data;
4289 }
4290 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4291
4292 #ifdef CONFIG_DEBUG_FS
4293 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4294                                     size_t count, loff_t *ppos)
4295 {
4296         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4297         ssize_t len, ret = 0;
4298         struct regulator_map *map;
4299
4300         if (!buf)
4301                 return -ENOMEM;
4302
4303         list_for_each_entry(map, &regulator_map_list, list) {
4304                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4305                                "%s -> %s.%s\n",
4306                                rdev_get_name(map->regulator), map->dev_name,
4307                                map->supply);
4308                 if (len >= 0)
4309                         ret += len;
4310                 if (ret > PAGE_SIZE) {
4311                         ret = PAGE_SIZE;
4312                         break;
4313                 }
4314         }
4315
4316         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4317
4318         kfree(buf);
4319
4320         return ret;
4321 }
4322 #endif
4323
4324 static const struct file_operations supply_map_fops = {
4325 #ifdef CONFIG_DEBUG_FS
4326         .read = supply_map_read_file,
4327         .llseek = default_llseek,
4328 #endif
4329 };
4330
4331 #ifdef CONFIG_DEBUG_FS
4332 struct summary_data {
4333         struct seq_file *s;
4334         struct regulator_dev *parent;
4335         int level;
4336 };
4337
4338 static void regulator_summary_show_subtree(struct seq_file *s,
4339                                            struct regulator_dev *rdev,
4340                                            int level);
4341
4342 static int regulator_summary_show_children(struct device *dev, void *data)
4343 {
4344         struct regulator_dev *rdev = dev_to_rdev(dev);
4345         struct summary_data *summary_data = data;
4346
4347         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4348                 regulator_summary_show_subtree(summary_data->s, rdev,
4349                                                summary_data->level + 1);
4350
4351         return 0;
4352 }
4353
4354 static void regulator_summary_show_subtree(struct seq_file *s,
4355                                            struct regulator_dev *rdev,
4356                                            int level)
4357 {
4358         struct regulation_constraints *c;
4359         struct regulator *consumer;
4360         struct summary_data summary_data;
4361
4362         if (!rdev)
4363                 return;
4364
4365         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4366                    level * 3 + 1, "",
4367                    30 - level * 3, rdev_get_name(rdev),
4368                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4369
4370         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4371         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4372
4373         c = rdev->constraints;
4374         if (c) {
4375                 switch (rdev->desc->type) {
4376                 case REGULATOR_VOLTAGE:
4377                         seq_printf(s, "%5dmV %5dmV ",
4378                                    c->min_uV / 1000, c->max_uV / 1000);
4379                         break;
4380                 case REGULATOR_CURRENT:
4381                         seq_printf(s, "%5dmA %5dmA ",
4382                                    c->min_uA / 1000, c->max_uA / 1000);
4383                         break;
4384                 }
4385         }
4386
4387         seq_puts(s, "\n");
4388
4389         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4390                 if (consumer->dev->class == &regulator_class)
4391                         continue;
4392
4393                 seq_printf(s, "%*s%-*s ",
4394                            (level + 1) * 3 + 1, "",
4395                            30 - (level + 1) * 3, dev_name(consumer->dev));
4396
4397                 switch (rdev->desc->type) {
4398                 case REGULATOR_VOLTAGE:
4399                         seq_printf(s, "%37dmV %5dmV",
4400                                    consumer->min_uV / 1000,
4401                                    consumer->max_uV / 1000);
4402                         break;
4403                 case REGULATOR_CURRENT:
4404                         break;
4405                 }
4406
4407                 seq_puts(s, "\n");
4408         }
4409
4410         summary_data.s = s;
4411         summary_data.level = level;
4412         summary_data.parent = rdev;
4413
4414         class_for_each_device(&regulator_class, NULL, &summary_data,
4415                               regulator_summary_show_children);
4416 }
4417
4418 static int regulator_summary_show_roots(struct device *dev, void *data)
4419 {
4420         struct regulator_dev *rdev = dev_to_rdev(dev);
4421         struct seq_file *s = data;
4422
4423         if (!rdev->supply)
4424                 regulator_summary_show_subtree(s, rdev, 0);
4425
4426         return 0;
4427 }
4428
4429 static int regulator_summary_show(struct seq_file *s, void *data)
4430 {
4431         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4432         seq_puts(s, "-------------------------------------------------------------------------------\n");
4433
4434         class_for_each_device(&regulator_class, NULL, s,
4435                               regulator_summary_show_roots);
4436
4437         return 0;
4438 }
4439
4440 static int regulator_summary_open(struct inode *inode, struct file *file)
4441 {
4442         return single_open(file, regulator_summary_show, inode->i_private);
4443 }
4444 #endif
4445
4446 static const struct file_operations regulator_summary_fops = {
4447 #ifdef CONFIG_DEBUG_FS
4448         .open           = regulator_summary_open,
4449         .read           = seq_read,
4450         .llseek         = seq_lseek,
4451         .release        = single_release,
4452 #endif
4453 };
4454
4455 static int __init regulator_init(void)
4456 {
4457         int ret;
4458
4459         ret = class_register(&regulator_class);
4460
4461         debugfs_root = debugfs_create_dir("regulator", NULL);
4462         if (!debugfs_root)
4463                 pr_warn("regulator: Failed to create debugfs directory\n");
4464
4465         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4466                             &supply_map_fops);
4467
4468         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4469                             NULL, &regulator_summary_fops);
4470
4471         regulator_dummy_init();
4472
4473         return ret;
4474 }
4475
4476 /* init early to allow our consumers to complete system booting */
4477 core_initcall(regulator_init);
4478
4479 static int __init regulator_late_cleanup(struct device *dev, void *data)
4480 {
4481         struct regulator_dev *rdev = dev_to_rdev(dev);
4482         const struct regulator_ops *ops = rdev->desc->ops;
4483         struct regulation_constraints *c = rdev->constraints;
4484         int enabled, ret;
4485
4486         if (c && c->always_on)
4487                 return 0;
4488
4489         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4490                 return 0;
4491
4492         mutex_lock(&rdev->mutex);
4493
4494         if (rdev->use_count)
4495                 goto unlock;
4496
4497         /* If we can't read the status assume it's on. */
4498         if (ops->is_enabled)
4499                 enabled = ops->is_enabled(rdev);
4500         else
4501                 enabled = 1;
4502
4503         if (!enabled)
4504                 goto unlock;
4505
4506         if (have_full_constraints()) {
4507                 /* We log since this may kill the system if it goes
4508                  * wrong. */
4509                 rdev_info(rdev, "disabling\n");
4510                 ret = _regulator_do_disable(rdev);
4511                 if (ret != 0)
4512                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4513         } else {
4514                 /* The intention is that in future we will
4515                  * assume that full constraints are provided
4516                  * so warn even if we aren't going to do
4517                  * anything here.
4518                  */
4519                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4520         }
4521
4522 unlock:
4523         mutex_unlock(&rdev->mutex);
4524
4525         return 0;
4526 }
4527
4528 static int __init regulator_init_complete(void)
4529 {
4530         /*
4531          * Since DT doesn't provide an idiomatic mechanism for
4532          * enabling full constraints and since it's much more natural
4533          * with DT to provide them just assume that a DT enabled
4534          * system has full constraints.
4535          */
4536         if (of_have_populated_dt())
4537                 has_full_constraints = true;
4538
4539         /* If we have a full configuration then disable any regulators
4540          * we have permission to change the status for and which are
4541          * not in use or always_on.  This is effectively the default
4542          * for DT and ACPI as they have full constraints.
4543          */
4544         class_for_each_device(&regulator_class, NULL, NULL,
4545                               regulator_late_cleanup);
4546
4547         return 0;
4548 }
4549 late_initcall_sync(regulator_init_complete);