]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branches 'regulator/topic/ltc3676', 'regulator/topic/max14577...
[linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038         const struct regulation_constraints *constraints)
1039 {
1040         int ret = 0;
1041         const struct regulator_ops *ops = rdev->desc->ops;
1042
1043         if (constraints)
1044                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045                                             GFP_KERNEL);
1046         else
1047                 rdev->constraints = kzalloc(sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         if (!rdev->constraints)
1050                 return -ENOMEM;
1051
1052         ret = machine_constraints_voltage(rdev, rdev->constraints);
1053         if (ret != 0)
1054                 return ret;
1055
1056         ret = machine_constraints_current(rdev, rdev->constraints);
1057         if (ret != 0)
1058                 return ret;
1059
1060         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061                 ret = ops->set_input_current_limit(rdev,
1062                                                    rdev->constraints->ilim_uA);
1063                 if (ret < 0) {
1064                         rdev_err(rdev, "failed to set input limit\n");
1065                         return ret;
1066                 }
1067         }
1068
1069         /* do we need to setup our suspend state */
1070         if (rdev->constraints->initial_state) {
1071                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set suspend state\n");
1074                         return ret;
1075                 }
1076         }
1077
1078         if (rdev->constraints->initial_mode) {
1079                 if (!ops->set_mode) {
1080                         rdev_err(rdev, "no set_mode operation\n");
1081                         return -EINVAL;
1082                 }
1083
1084                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087                         return ret;
1088                 }
1089         }
1090
1091         /* If the constraints say the regulator should be on at this point
1092          * and we have control then make sure it is enabled.
1093          */
1094         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095                 ret = _regulator_do_enable(rdev);
1096                 if (ret < 0 && ret != -EINVAL) {
1097                         rdev_err(rdev, "failed to enable\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103                 && ops->set_ramp_delay) {
1104                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105                 if (ret < 0) {
1106                         rdev_err(rdev, "failed to set ramp_delay\n");
1107                         return ret;
1108                 }
1109         }
1110
1111         if (rdev->constraints->pull_down && ops->set_pull_down) {
1112                 ret = ops->set_pull_down(rdev);
1113                 if (ret < 0) {
1114                         rdev_err(rdev, "failed to set pull down\n");
1115                         return ret;
1116                 }
1117         }
1118
1119         if (rdev->constraints->soft_start && ops->set_soft_start) {
1120                 ret = ops->set_soft_start(rdev);
1121                 if (ret < 0) {
1122                         rdev_err(rdev, "failed to set soft start\n");
1123                         return ret;
1124                 }
1125         }
1126
1127         if (rdev->constraints->over_current_protection
1128                 && ops->set_over_current_protection) {
1129                 ret = ops->set_over_current_protection(rdev);
1130                 if (ret < 0) {
1131                         rdev_err(rdev, "failed to set over current protection\n");
1132                         return ret;
1133                 }
1134         }
1135
1136         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137                 bool ad_state = (rdev->constraints->active_discharge ==
1138                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140                 ret = ops->set_active_discharge(rdev, ad_state);
1141                 if (ret < 0) {
1142                         rdev_err(rdev, "failed to set active discharge\n");
1143                         return ret;
1144                 }
1145         }
1146
1147         print_constraints(rdev);
1148         return 0;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260                                           char __user *user_buf,
1261                                           size_t count, loff_t *ppos)
1262 {
1263         const struct regulator *regulator = file->private_data;
1264         const struct regulation_constraints *c = regulator->rdev->constraints;
1265         char *buf;
1266         ssize_t ret;
1267
1268         if (!c)
1269                 return 0;
1270
1271         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272         if (!buf)
1273                 return -ENOMEM;
1274
1275         ret = snprintf(buf, PAGE_SIZE,
1276                         "always_on: %u\n"
1277                         "boot_on: %u\n"
1278                         "apply_uV: %u\n"
1279                         "ramp_disable: %u\n"
1280                         "soft_start: %u\n"
1281                         "pull_down: %u\n"
1282                         "over_current_protection: %u\n",
1283                         c->always_on,
1284                         c->boot_on,
1285                         c->apply_uV,
1286                         c->ramp_disable,
1287                         c->soft_start,
1288                         c->pull_down,
1289                         c->over_current_protection);
1290
1291         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292         kfree(buf);
1293
1294         return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301         .open = simple_open,
1302         .read = constraint_flags_read_file,
1303         .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE    64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310                                           struct device *dev,
1311                                           const char *supply_name)
1312 {
1313         struct regulator *regulator;
1314         char buf[REG_STR_SIZE];
1315         int err, size;
1316
1317         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318         if (regulator == NULL)
1319                 return NULL;
1320
1321         mutex_lock(&rdev->mutex);
1322         regulator->rdev = rdev;
1323         list_add(&regulator->list, &rdev->consumer_list);
1324
1325         if (dev) {
1326                 regulator->dev = dev;
1327
1328                 /* Add a link to the device sysfs entry */
1329                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330                                  dev->kobj.name, supply_name);
1331                 if (size >= REG_STR_SIZE)
1332                         goto overflow_err;
1333
1334                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335                 if (regulator->supply_name == NULL)
1336                         goto overflow_err;
1337
1338                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339                                         buf);
1340                 if (err) {
1341                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1342                                   dev->kobj.name, err);
1343                         /* non-fatal */
1344                 }
1345         } else {
1346                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347                 if (regulator->supply_name == NULL)
1348                         goto overflow_err;
1349         }
1350
1351         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352                                                 rdev->debugfs);
1353         if (!regulator->debugfs) {
1354                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355         } else {
1356                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357                                    &regulator->uA_load);
1358                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359                                    &regulator->min_uV);
1360                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361                                    &regulator->max_uV);
1362                 debugfs_create_file("constraint_flags", 0444,
1363                                     regulator->debugfs, regulator,
1364                                     &constraint_flags_fops);
1365         }
1366
1367         /*
1368          * Check now if the regulator is an always on regulator - if
1369          * it is then we don't need to do nearly so much work for
1370          * enable/disable calls.
1371          */
1372         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373             _regulator_is_enabled(rdev))
1374                 regulator->always_on = true;
1375
1376         mutex_unlock(&rdev->mutex);
1377         return regulator;
1378 overflow_err:
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381         mutex_unlock(&rdev->mutex);
1382         return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387         if (rdev->constraints && rdev->constraints->enable_time)
1388                 return rdev->constraints->enable_time;
1389         if (!rdev->desc->ops->enable_time)
1390                 return rdev->desc->enable_time;
1391         return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395                 struct device *dev, const char *supply)
1396 {
1397         struct regulator_supply_alias *map;
1398
1399         list_for_each_entry(map, &regulator_supply_alias_list, list)
1400                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401                         return map;
1402
1403         return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408         struct regulator_supply_alias *map;
1409
1410         map = regulator_find_supply_alias(*dev, *supply);
1411         if (map) {
1412                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413                                 *supply, map->alias_supply,
1414                                 dev_name(map->alias_dev));
1415                 *dev = map->alias_dev;
1416                 *supply = map->alias_supply;
1417         }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422         return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427         struct device *dev;
1428
1429         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431         return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436         struct regulator_dev *r = dev_to_rdev(dev);
1437
1438         return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443         struct device *dev;
1444
1445         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447         return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one.
1459  * The refcount must be dropped by calling put_device().
1460  * On failure one of the following ERR-PTR-encoded values is returned:
1461  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1462  * in the future.
1463  */
1464 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1465                                                   const char *supply)
1466 {
1467         struct regulator_dev *r;
1468         struct device_node *node;
1469         struct regulator_map *map;
1470         const char *devname = NULL;
1471
1472         regulator_supply_alias(&dev, &supply);
1473
1474         /* first do a dt based lookup */
1475         if (dev && dev->of_node) {
1476                 node = of_get_regulator(dev, supply);
1477                 if (node) {
1478                         r = of_find_regulator_by_node(node);
1479                         if (r)
1480                                 return r;
1481
1482                         /*
1483                          * We have a node, but there is no device.
1484                          * assume it has not registered yet.
1485                          */
1486                         return ERR_PTR(-EPROBE_DEFER);
1487                 }
1488         }
1489
1490         /* if not found, try doing it non-dt way */
1491         if (dev)
1492                 devname = dev_name(dev);
1493
1494         r = regulator_lookup_by_name(supply);
1495         if (r)
1496                 return r;
1497
1498         mutex_lock(&regulator_list_mutex);
1499         list_for_each_entry(map, &regulator_map_list, list) {
1500                 /* If the mapping has a device set up it must match */
1501                 if (map->dev_name &&
1502                     (!devname || strcmp(map->dev_name, devname)))
1503                         continue;
1504
1505                 if (strcmp(map->supply, supply) == 0 &&
1506                     get_device(&map->regulator->dev)) {
1507                         r = map->regulator;
1508                         break;
1509                 }
1510         }
1511         mutex_unlock(&regulator_list_mutex);
1512
1513         if (r)
1514                 return r;
1515
1516         return ERR_PTR(-ENODEV);
1517 }
1518
1519 static int regulator_resolve_supply(struct regulator_dev *rdev)
1520 {
1521         struct regulator_dev *r;
1522         struct device *dev = rdev->dev.parent;
1523         int ret;
1524
1525         /* No supply to resovle? */
1526         if (!rdev->supply_name)
1527                 return 0;
1528
1529         /* Supply already resolved? */
1530         if (rdev->supply)
1531                 return 0;
1532
1533         r = regulator_dev_lookup(dev, rdev->supply_name);
1534         if (IS_ERR(r)) {
1535                 ret = PTR_ERR(r);
1536
1537                 if (ret == -ENODEV) {
1538                         /*
1539                          * No supply was specified for this regulator and
1540                          * there will never be one.
1541                          */
1542                         return 0;
1543                 }
1544
1545                 /* Did the lookup explicitly defer for us? */
1546                 if (ret == -EPROBE_DEFER)
1547                         return ret;
1548
1549                 if (have_full_constraints()) {
1550                         r = dummy_regulator_rdev;
1551                         get_device(&r->dev);
1552                 } else {
1553                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1554                                 rdev->supply_name, rdev->desc->name);
1555                         return -EPROBE_DEFER;
1556                 }
1557         }
1558
1559         /* Recursively resolve the supply of the supply */
1560         ret = regulator_resolve_supply(r);
1561         if (ret < 0) {
1562                 put_device(&r->dev);
1563                 return ret;
1564         }
1565
1566         ret = set_supply(rdev, r);
1567         if (ret < 0) {
1568                 put_device(&r->dev);
1569                 return ret;
1570         }
1571
1572         /* Cascade always-on state to supply */
1573         if (_regulator_is_enabled(rdev)) {
1574                 ret = regulator_enable(rdev->supply);
1575                 if (ret < 0) {
1576                         _regulator_put(rdev->supply);
1577                         rdev->supply = NULL;
1578                         return ret;
1579                 }
1580         }
1581
1582         return 0;
1583 }
1584
1585 /* Internal regulator request function */
1586 struct regulator *_regulator_get(struct device *dev, const char *id,
1587                                  enum regulator_get_type get_type)
1588 {
1589         struct regulator_dev *rdev;
1590         struct regulator *regulator;
1591         const char *devname = dev ? dev_name(dev) : "deviceless";
1592         int ret;
1593
1594         if (get_type >= MAX_GET_TYPE) {
1595                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1596                 return ERR_PTR(-EINVAL);
1597         }
1598
1599         if (id == NULL) {
1600                 pr_err("get() with no identifier\n");
1601                 return ERR_PTR(-EINVAL);
1602         }
1603
1604         rdev = regulator_dev_lookup(dev, id);
1605         if (IS_ERR(rdev)) {
1606                 ret = PTR_ERR(rdev);
1607
1608                 /*
1609                  * If regulator_dev_lookup() fails with error other
1610                  * than -ENODEV our job here is done, we simply return it.
1611                  */
1612                 if (ret != -ENODEV)
1613                         return ERR_PTR(ret);
1614
1615                 if (!have_full_constraints()) {
1616                         dev_warn(dev,
1617                                  "incomplete constraints, dummy supplies not allowed\n");
1618                         return ERR_PTR(-ENODEV);
1619                 }
1620
1621                 switch (get_type) {
1622                 case NORMAL_GET:
1623                         /*
1624                          * Assume that a regulator is physically present and
1625                          * enabled, even if it isn't hooked up, and just
1626                          * provide a dummy.
1627                          */
1628                         dev_warn(dev,
1629                                  "%s supply %s not found, using dummy regulator\n",
1630                                  devname, id);
1631                         rdev = dummy_regulator_rdev;
1632                         get_device(&rdev->dev);
1633                         break;
1634
1635                 case EXCLUSIVE_GET:
1636                         dev_warn(dev,
1637                                  "dummy supplies not allowed for exclusive requests\n");
1638                         /* fall through */
1639
1640                 default:
1641                         return ERR_PTR(-ENODEV);
1642                 }
1643         }
1644
1645         if (rdev->exclusive) {
1646                 regulator = ERR_PTR(-EPERM);
1647                 put_device(&rdev->dev);
1648                 return regulator;
1649         }
1650
1651         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1652                 regulator = ERR_PTR(-EBUSY);
1653                 put_device(&rdev->dev);
1654                 return regulator;
1655         }
1656
1657         ret = regulator_resolve_supply(rdev);
1658         if (ret < 0) {
1659                 regulator = ERR_PTR(ret);
1660                 put_device(&rdev->dev);
1661                 return regulator;
1662         }
1663
1664         if (!try_module_get(rdev->owner)) {
1665                 regulator = ERR_PTR(-EPROBE_DEFER);
1666                 put_device(&rdev->dev);
1667                 return regulator;
1668         }
1669
1670         regulator = create_regulator(rdev, dev, id);
1671         if (regulator == NULL) {
1672                 regulator = ERR_PTR(-ENOMEM);
1673                 put_device(&rdev->dev);
1674                 module_put(rdev->owner);
1675                 return regulator;
1676         }
1677
1678         rdev->open_count++;
1679         if (get_type == EXCLUSIVE_GET) {
1680                 rdev->exclusive = 1;
1681
1682                 ret = _regulator_is_enabled(rdev);
1683                 if (ret > 0)
1684                         rdev->use_count = 1;
1685                 else
1686                         rdev->use_count = 0;
1687         }
1688
1689         return regulator;
1690 }
1691
1692 /**
1693  * regulator_get - lookup and obtain a reference to a regulator.
1694  * @dev: device for regulator "consumer"
1695  * @id: Supply name or regulator ID.
1696  *
1697  * Returns a struct regulator corresponding to the regulator producer,
1698  * or IS_ERR() condition containing errno.
1699  *
1700  * Use of supply names configured via regulator_set_device_supply() is
1701  * strongly encouraged.  It is recommended that the supply name used
1702  * should match the name used for the supply and/or the relevant
1703  * device pins in the datasheet.
1704  */
1705 struct regulator *regulator_get(struct device *dev, const char *id)
1706 {
1707         return _regulator_get(dev, id, NORMAL_GET);
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_get);
1710
1711 /**
1712  * regulator_get_exclusive - obtain exclusive access to a regulator.
1713  * @dev: device for regulator "consumer"
1714  * @id: Supply name or regulator ID.
1715  *
1716  * Returns a struct regulator corresponding to the regulator producer,
1717  * or IS_ERR() condition containing errno.  Other consumers will be
1718  * unable to obtain this regulator while this reference is held and the
1719  * use count for the regulator will be initialised to reflect the current
1720  * state of the regulator.
1721  *
1722  * This is intended for use by consumers which cannot tolerate shared
1723  * use of the regulator such as those which need to force the
1724  * regulator off for correct operation of the hardware they are
1725  * controlling.
1726  *
1727  * Use of supply names configured via regulator_set_device_supply() is
1728  * strongly encouraged.  It is recommended that the supply name used
1729  * should match the name used for the supply and/or the relevant
1730  * device pins in the datasheet.
1731  */
1732 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1733 {
1734         return _regulator_get(dev, id, EXCLUSIVE_GET);
1735 }
1736 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1737
1738 /**
1739  * regulator_get_optional - obtain optional access to a regulator.
1740  * @dev: device for regulator "consumer"
1741  * @id: Supply name or regulator ID.
1742  *
1743  * Returns a struct regulator corresponding to the regulator producer,
1744  * or IS_ERR() condition containing errno.
1745  *
1746  * This is intended for use by consumers for devices which can have
1747  * some supplies unconnected in normal use, such as some MMC devices.
1748  * It can allow the regulator core to provide stub supplies for other
1749  * supplies requested using normal regulator_get() calls without
1750  * disrupting the operation of drivers that can handle absent
1751  * supplies.
1752  *
1753  * Use of supply names configured via regulator_set_device_supply() is
1754  * strongly encouraged.  It is recommended that the supply name used
1755  * should match the name used for the supply and/or the relevant
1756  * device pins in the datasheet.
1757  */
1758 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1759 {
1760         return _regulator_get(dev, id, OPTIONAL_GET);
1761 }
1762 EXPORT_SYMBOL_GPL(regulator_get_optional);
1763
1764 /* regulator_list_mutex lock held by regulator_put() */
1765 static void _regulator_put(struct regulator *regulator)
1766 {
1767         struct regulator_dev *rdev;
1768
1769         if (IS_ERR_OR_NULL(regulator))
1770                 return;
1771
1772         lockdep_assert_held_once(&regulator_list_mutex);
1773
1774         rdev = regulator->rdev;
1775
1776         debugfs_remove_recursive(regulator->debugfs);
1777
1778         /* remove any sysfs entries */
1779         if (regulator->dev)
1780                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1781         mutex_lock(&rdev->mutex);
1782         list_del(&regulator->list);
1783
1784         rdev->open_count--;
1785         rdev->exclusive = 0;
1786         put_device(&rdev->dev);
1787         mutex_unlock(&rdev->mutex);
1788
1789         kfree(regulator->supply_name);
1790         kfree(regulator);
1791
1792         module_put(rdev->owner);
1793 }
1794
1795 /**
1796  * regulator_put - "free" the regulator source
1797  * @regulator: regulator source
1798  *
1799  * Note: drivers must ensure that all regulator_enable calls made on this
1800  * regulator source are balanced by regulator_disable calls prior to calling
1801  * this function.
1802  */
1803 void regulator_put(struct regulator *regulator)
1804 {
1805         mutex_lock(&regulator_list_mutex);
1806         _regulator_put(regulator);
1807         mutex_unlock(&regulator_list_mutex);
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_put);
1810
1811 /**
1812  * regulator_register_supply_alias - Provide device alias for supply lookup
1813  *
1814  * @dev: device that will be given as the regulator "consumer"
1815  * @id: Supply name or regulator ID
1816  * @alias_dev: device that should be used to lookup the supply
1817  * @alias_id: Supply name or regulator ID that should be used to lookup the
1818  * supply
1819  *
1820  * All lookups for id on dev will instead be conducted for alias_id on
1821  * alias_dev.
1822  */
1823 int regulator_register_supply_alias(struct device *dev, const char *id,
1824                                     struct device *alias_dev,
1825                                     const char *alias_id)
1826 {
1827         struct regulator_supply_alias *map;
1828
1829         map = regulator_find_supply_alias(dev, id);
1830         if (map)
1831                 return -EEXIST;
1832
1833         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1834         if (!map)
1835                 return -ENOMEM;
1836
1837         map->src_dev = dev;
1838         map->src_supply = id;
1839         map->alias_dev = alias_dev;
1840         map->alias_supply = alias_id;
1841
1842         list_add(&map->list, &regulator_supply_alias_list);
1843
1844         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1845                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1846
1847         return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1850
1851 /**
1852  * regulator_unregister_supply_alias - Remove device alias
1853  *
1854  * @dev: device that will be given as the regulator "consumer"
1855  * @id: Supply name or regulator ID
1856  *
1857  * Remove a lookup alias if one exists for id on dev.
1858  */
1859 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1860 {
1861         struct regulator_supply_alias *map;
1862
1863         map = regulator_find_supply_alias(dev, id);
1864         if (map) {
1865                 list_del(&map->list);
1866                 kfree(map);
1867         }
1868 }
1869 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1870
1871 /**
1872  * regulator_bulk_register_supply_alias - register multiple aliases
1873  *
1874  * @dev: device that will be given as the regulator "consumer"
1875  * @id: List of supply names or regulator IDs
1876  * @alias_dev: device that should be used to lookup the supply
1877  * @alias_id: List of supply names or regulator IDs that should be used to
1878  * lookup the supply
1879  * @num_id: Number of aliases to register
1880  *
1881  * @return 0 on success, an errno on failure.
1882  *
1883  * This helper function allows drivers to register several supply
1884  * aliases in one operation.  If any of the aliases cannot be
1885  * registered any aliases that were registered will be removed
1886  * before returning to the caller.
1887  */
1888 int regulator_bulk_register_supply_alias(struct device *dev,
1889                                          const char *const *id,
1890                                          struct device *alias_dev,
1891                                          const char *const *alias_id,
1892                                          int num_id)
1893 {
1894         int i;
1895         int ret;
1896
1897         for (i = 0; i < num_id; ++i) {
1898                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1899                                                       alias_id[i]);
1900                 if (ret < 0)
1901                         goto err;
1902         }
1903
1904         return 0;
1905
1906 err:
1907         dev_err(dev,
1908                 "Failed to create supply alias %s,%s -> %s,%s\n",
1909                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1910
1911         while (--i >= 0)
1912                 regulator_unregister_supply_alias(dev, id[i]);
1913
1914         return ret;
1915 }
1916 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1917
1918 /**
1919  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1920  *
1921  * @dev: device that will be given as the regulator "consumer"
1922  * @id: List of supply names or regulator IDs
1923  * @num_id: Number of aliases to unregister
1924  *
1925  * This helper function allows drivers to unregister several supply
1926  * aliases in one operation.
1927  */
1928 void regulator_bulk_unregister_supply_alias(struct device *dev,
1929                                             const char *const *id,
1930                                             int num_id)
1931 {
1932         int i;
1933
1934         for (i = 0; i < num_id; ++i)
1935                 regulator_unregister_supply_alias(dev, id[i]);
1936 }
1937 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1938
1939
1940 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1941 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1942                                 const struct regulator_config *config)
1943 {
1944         struct regulator_enable_gpio *pin;
1945         struct gpio_desc *gpiod;
1946         int ret;
1947
1948         gpiod = gpio_to_desc(config->ena_gpio);
1949
1950         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1951                 if (pin->gpiod == gpiod) {
1952                         rdev_dbg(rdev, "GPIO %d is already used\n",
1953                                 config->ena_gpio);
1954                         goto update_ena_gpio_to_rdev;
1955                 }
1956         }
1957
1958         ret = gpio_request_one(config->ena_gpio,
1959                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1960                                 rdev_get_name(rdev));
1961         if (ret)
1962                 return ret;
1963
1964         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1965         if (pin == NULL) {
1966                 gpio_free(config->ena_gpio);
1967                 return -ENOMEM;
1968         }
1969
1970         pin->gpiod = gpiod;
1971         pin->ena_gpio_invert = config->ena_gpio_invert;
1972         list_add(&pin->list, &regulator_ena_gpio_list);
1973
1974 update_ena_gpio_to_rdev:
1975         pin->request_count++;
1976         rdev->ena_pin = pin;
1977         return 0;
1978 }
1979
1980 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1981 {
1982         struct regulator_enable_gpio *pin, *n;
1983
1984         if (!rdev->ena_pin)
1985                 return;
1986
1987         /* Free the GPIO only in case of no use */
1988         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1989                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1990                         if (pin->request_count <= 1) {
1991                                 pin->request_count = 0;
1992                                 gpiod_put(pin->gpiod);
1993                                 list_del(&pin->list);
1994                                 kfree(pin);
1995                                 rdev->ena_pin = NULL;
1996                                 return;
1997                         } else {
1998                                 pin->request_count--;
1999                         }
2000                 }
2001         }
2002 }
2003
2004 /**
2005  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2006  * @rdev: regulator_dev structure
2007  * @enable: enable GPIO at initial use?
2008  *
2009  * GPIO is enabled in case of initial use. (enable_count is 0)
2010  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2011  */
2012 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2013 {
2014         struct regulator_enable_gpio *pin = rdev->ena_pin;
2015
2016         if (!pin)
2017                 return -EINVAL;
2018
2019         if (enable) {
2020                 /* Enable GPIO at initial use */
2021                 if (pin->enable_count == 0)
2022                         gpiod_set_value_cansleep(pin->gpiod,
2023                                                  !pin->ena_gpio_invert);
2024
2025                 pin->enable_count++;
2026         } else {
2027                 if (pin->enable_count > 1) {
2028                         pin->enable_count--;
2029                         return 0;
2030                 }
2031
2032                 /* Disable GPIO if not used */
2033                 if (pin->enable_count <= 1) {
2034                         gpiod_set_value_cansleep(pin->gpiod,
2035                                                  pin->ena_gpio_invert);
2036                         pin->enable_count = 0;
2037                 }
2038         }
2039
2040         return 0;
2041 }
2042
2043 /**
2044  * _regulator_enable_delay - a delay helper function
2045  * @delay: time to delay in microseconds
2046  *
2047  * Delay for the requested amount of time as per the guidelines in:
2048  *
2049  *     Documentation/timers/timers-howto.txt
2050  *
2051  * The assumption here is that regulators will never be enabled in
2052  * atomic context and therefore sleeping functions can be used.
2053  */
2054 static void _regulator_enable_delay(unsigned int delay)
2055 {
2056         unsigned int ms = delay / 1000;
2057         unsigned int us = delay % 1000;
2058
2059         if (ms > 0) {
2060                 /*
2061                  * For small enough values, handle super-millisecond
2062                  * delays in the usleep_range() call below.
2063                  */
2064                 if (ms < 20)
2065                         us += ms * 1000;
2066                 else
2067                         msleep(ms);
2068         }
2069
2070         /*
2071          * Give the scheduler some room to coalesce with any other
2072          * wakeup sources. For delays shorter than 10 us, don't even
2073          * bother setting up high-resolution timers and just busy-
2074          * loop.
2075          */
2076         if (us >= 10)
2077                 usleep_range(us, us + 100);
2078         else
2079                 udelay(us);
2080 }
2081
2082 static int _regulator_do_enable(struct regulator_dev *rdev)
2083 {
2084         int ret, delay;
2085
2086         /* Query before enabling in case configuration dependent.  */
2087         ret = _regulator_get_enable_time(rdev);
2088         if (ret >= 0) {
2089                 delay = ret;
2090         } else {
2091                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2092                 delay = 0;
2093         }
2094
2095         trace_regulator_enable(rdev_get_name(rdev));
2096
2097         if (rdev->desc->off_on_delay) {
2098                 /* if needed, keep a distance of off_on_delay from last time
2099                  * this regulator was disabled.
2100                  */
2101                 unsigned long start_jiffy = jiffies;
2102                 unsigned long intended, max_delay, remaining;
2103
2104                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2105                 intended = rdev->last_off_jiffy + max_delay;
2106
2107                 if (time_before(start_jiffy, intended)) {
2108                         /* calc remaining jiffies to deal with one-time
2109                          * timer wrapping.
2110                          * in case of multiple timer wrapping, either it can be
2111                          * detected by out-of-range remaining, or it cannot be
2112                          * detected and we gets a panelty of
2113                          * _regulator_enable_delay().
2114                          */
2115                         remaining = intended - start_jiffy;
2116                         if (remaining <= max_delay)
2117                                 _regulator_enable_delay(
2118                                                 jiffies_to_usecs(remaining));
2119                 }
2120         }
2121
2122         if (rdev->ena_pin) {
2123                 if (!rdev->ena_gpio_state) {
2124                         ret = regulator_ena_gpio_ctrl(rdev, true);
2125                         if (ret < 0)
2126                                 return ret;
2127                         rdev->ena_gpio_state = 1;
2128                 }
2129         } else if (rdev->desc->ops->enable) {
2130                 ret = rdev->desc->ops->enable(rdev);
2131                 if (ret < 0)
2132                         return ret;
2133         } else {
2134                 return -EINVAL;
2135         }
2136
2137         /* Allow the regulator to ramp; it would be useful to extend
2138          * this for bulk operations so that the regulators can ramp
2139          * together.  */
2140         trace_regulator_enable_delay(rdev_get_name(rdev));
2141
2142         _regulator_enable_delay(delay);
2143
2144         trace_regulator_enable_complete(rdev_get_name(rdev));
2145
2146         return 0;
2147 }
2148
2149 /* locks held by regulator_enable() */
2150 static int _regulator_enable(struct regulator_dev *rdev)
2151 {
2152         int ret;
2153
2154         lockdep_assert_held_once(&rdev->mutex);
2155
2156         /* check voltage and requested load before enabling */
2157         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2158                 drms_uA_update(rdev);
2159
2160         if (rdev->use_count == 0) {
2161                 /* The regulator may on if it's not switchable or left on */
2162                 ret = _regulator_is_enabled(rdev);
2163                 if (ret == -EINVAL || ret == 0) {
2164                         if (!regulator_ops_is_valid(rdev,
2165                                         REGULATOR_CHANGE_STATUS))
2166                                 return -EPERM;
2167
2168                         ret = _regulator_do_enable(rdev);
2169                         if (ret < 0)
2170                                 return ret;
2171
2172                 } else if (ret < 0) {
2173                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2174                         return ret;
2175                 }
2176                 /* Fallthrough on positive return values - already enabled */
2177         }
2178
2179         rdev->use_count++;
2180
2181         return 0;
2182 }
2183
2184 /**
2185  * regulator_enable - enable regulator output
2186  * @regulator: regulator source
2187  *
2188  * Request that the regulator be enabled with the regulator output at
2189  * the predefined voltage or current value.  Calls to regulator_enable()
2190  * must be balanced with calls to regulator_disable().
2191  *
2192  * NOTE: the output value can be set by other drivers, boot loader or may be
2193  * hardwired in the regulator.
2194  */
2195 int regulator_enable(struct regulator *regulator)
2196 {
2197         struct regulator_dev *rdev = regulator->rdev;
2198         int ret = 0;
2199
2200         if (regulator->always_on)
2201                 return 0;
2202
2203         if (rdev->supply) {
2204                 ret = regulator_enable(rdev->supply);
2205                 if (ret != 0)
2206                         return ret;
2207         }
2208
2209         mutex_lock(&rdev->mutex);
2210         ret = _regulator_enable(rdev);
2211         mutex_unlock(&rdev->mutex);
2212
2213         if (ret != 0 && rdev->supply)
2214                 regulator_disable(rdev->supply);
2215
2216         return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_enable);
2219
2220 static int _regulator_do_disable(struct regulator_dev *rdev)
2221 {
2222         int ret;
2223
2224         trace_regulator_disable(rdev_get_name(rdev));
2225
2226         if (rdev->ena_pin) {
2227                 if (rdev->ena_gpio_state) {
2228                         ret = regulator_ena_gpio_ctrl(rdev, false);
2229                         if (ret < 0)
2230                                 return ret;
2231                         rdev->ena_gpio_state = 0;
2232                 }
2233
2234         } else if (rdev->desc->ops->disable) {
2235                 ret = rdev->desc->ops->disable(rdev);
2236                 if (ret != 0)
2237                         return ret;
2238         }
2239
2240         /* cares about last_off_jiffy only if off_on_delay is required by
2241          * device.
2242          */
2243         if (rdev->desc->off_on_delay)
2244                 rdev->last_off_jiffy = jiffies;
2245
2246         trace_regulator_disable_complete(rdev_get_name(rdev));
2247
2248         return 0;
2249 }
2250
2251 /* locks held by regulator_disable() */
2252 static int _regulator_disable(struct regulator_dev *rdev)
2253 {
2254         int ret = 0;
2255
2256         lockdep_assert_held_once(&rdev->mutex);
2257
2258         if (WARN(rdev->use_count <= 0,
2259                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2260                 return -EIO;
2261
2262         /* are we the last user and permitted to disable ? */
2263         if (rdev->use_count == 1 &&
2264             (rdev->constraints && !rdev->constraints->always_on)) {
2265
2266                 /* we are last user */
2267                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2268                         ret = _notifier_call_chain(rdev,
2269                                                    REGULATOR_EVENT_PRE_DISABLE,
2270                                                    NULL);
2271                         if (ret & NOTIFY_STOP_MASK)
2272                                 return -EINVAL;
2273
2274                         ret = _regulator_do_disable(rdev);
2275                         if (ret < 0) {
2276                                 rdev_err(rdev, "failed to disable\n");
2277                                 _notifier_call_chain(rdev,
2278                                                 REGULATOR_EVENT_ABORT_DISABLE,
2279                                                 NULL);
2280                                 return ret;
2281                         }
2282                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2283                                         NULL);
2284                 }
2285
2286                 rdev->use_count = 0;
2287         } else if (rdev->use_count > 1) {
2288                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2289                         drms_uA_update(rdev);
2290
2291                 rdev->use_count--;
2292         }
2293
2294         return ret;
2295 }
2296
2297 /**
2298  * regulator_disable - disable regulator output
2299  * @regulator: regulator source
2300  *
2301  * Disable the regulator output voltage or current.  Calls to
2302  * regulator_enable() must be balanced with calls to
2303  * regulator_disable().
2304  *
2305  * NOTE: this will only disable the regulator output if no other consumer
2306  * devices have it enabled, the regulator device supports disabling and
2307  * machine constraints permit this operation.
2308  */
2309 int regulator_disable(struct regulator *regulator)
2310 {
2311         struct regulator_dev *rdev = regulator->rdev;
2312         int ret = 0;
2313
2314         if (regulator->always_on)
2315                 return 0;
2316
2317         mutex_lock(&rdev->mutex);
2318         ret = _regulator_disable(rdev);
2319         mutex_unlock(&rdev->mutex);
2320
2321         if (ret == 0 && rdev->supply)
2322                 regulator_disable(rdev->supply);
2323
2324         return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(regulator_disable);
2327
2328 /* locks held by regulator_force_disable() */
2329 static int _regulator_force_disable(struct regulator_dev *rdev)
2330 {
2331         int ret = 0;
2332
2333         lockdep_assert_held_once(&rdev->mutex);
2334
2335         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2337         if (ret & NOTIFY_STOP_MASK)
2338                 return -EINVAL;
2339
2340         ret = _regulator_do_disable(rdev);
2341         if (ret < 0) {
2342                 rdev_err(rdev, "failed to force disable\n");
2343                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2344                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2345                 return ret;
2346         }
2347
2348         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349                         REGULATOR_EVENT_DISABLE, NULL);
2350
2351         return 0;
2352 }
2353
2354 /**
2355  * regulator_force_disable - force disable regulator output
2356  * @regulator: regulator source
2357  *
2358  * Forcibly disable the regulator output voltage or current.
2359  * NOTE: this *will* disable the regulator output even if other consumer
2360  * devices have it enabled. This should be used for situations when device
2361  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2362  */
2363 int regulator_force_disable(struct regulator *regulator)
2364 {
2365         struct regulator_dev *rdev = regulator->rdev;
2366         int ret;
2367
2368         mutex_lock(&rdev->mutex);
2369         regulator->uA_load = 0;
2370         ret = _regulator_force_disable(regulator->rdev);
2371         mutex_unlock(&rdev->mutex);
2372
2373         if (rdev->supply)
2374                 while (rdev->open_count--)
2375                         regulator_disable(rdev->supply);
2376
2377         return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(regulator_force_disable);
2380
2381 static void regulator_disable_work(struct work_struct *work)
2382 {
2383         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2384                                                   disable_work.work);
2385         int count, i, ret;
2386
2387         mutex_lock(&rdev->mutex);
2388
2389         BUG_ON(!rdev->deferred_disables);
2390
2391         count = rdev->deferred_disables;
2392         rdev->deferred_disables = 0;
2393
2394         for (i = 0; i < count; i++) {
2395                 ret = _regulator_disable(rdev);
2396                 if (ret != 0)
2397                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2398         }
2399
2400         mutex_unlock(&rdev->mutex);
2401
2402         if (rdev->supply) {
2403                 for (i = 0; i < count; i++) {
2404                         ret = regulator_disable(rdev->supply);
2405                         if (ret != 0) {
2406                                 rdev_err(rdev,
2407                                          "Supply disable failed: %d\n", ret);
2408                         }
2409                 }
2410         }
2411 }
2412
2413 /**
2414  * regulator_disable_deferred - disable regulator output with delay
2415  * @regulator: regulator source
2416  * @ms: miliseconds until the regulator is disabled
2417  *
2418  * Execute regulator_disable() on the regulator after a delay.  This
2419  * is intended for use with devices that require some time to quiesce.
2420  *
2421  * NOTE: this will only disable the regulator output if no other consumer
2422  * devices have it enabled, the regulator device supports disabling and
2423  * machine constraints permit this operation.
2424  */
2425 int regulator_disable_deferred(struct regulator *regulator, int ms)
2426 {
2427         struct regulator_dev *rdev = regulator->rdev;
2428
2429         if (regulator->always_on)
2430                 return 0;
2431
2432         if (!ms)
2433                 return regulator_disable(regulator);
2434
2435         mutex_lock(&rdev->mutex);
2436         rdev->deferred_disables++;
2437         mutex_unlock(&rdev->mutex);
2438
2439         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2440                            msecs_to_jiffies(ms));
2441         return 0;
2442 }
2443 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2444
2445 static int _regulator_is_enabled(struct regulator_dev *rdev)
2446 {
2447         /* A GPIO control always takes precedence */
2448         if (rdev->ena_pin)
2449                 return rdev->ena_gpio_state;
2450
2451         /* If we don't know then assume that the regulator is always on */
2452         if (!rdev->desc->ops->is_enabled)
2453                 return 1;
2454
2455         return rdev->desc->ops->is_enabled(rdev);
2456 }
2457
2458 static int _regulator_list_voltage(struct regulator *regulator,
2459                                     unsigned selector, int lock)
2460 {
2461         struct regulator_dev *rdev = regulator->rdev;
2462         const struct regulator_ops *ops = rdev->desc->ops;
2463         int ret;
2464
2465         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2466                 return rdev->desc->fixed_uV;
2467
2468         if (ops->list_voltage) {
2469                 if (selector >= rdev->desc->n_voltages)
2470                         return -EINVAL;
2471                 if (lock)
2472                         mutex_lock(&rdev->mutex);
2473                 ret = ops->list_voltage(rdev, selector);
2474                 if (lock)
2475                         mutex_unlock(&rdev->mutex);
2476         } else if (rdev->supply) {
2477                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2478         } else {
2479                 return -EINVAL;
2480         }
2481
2482         if (ret > 0) {
2483                 if (ret < rdev->constraints->min_uV)
2484                         ret = 0;
2485                 else if (ret > rdev->constraints->max_uV)
2486                         ret = 0;
2487         }
2488
2489         return ret;
2490 }
2491
2492 /**
2493  * regulator_is_enabled - is the regulator output enabled
2494  * @regulator: regulator source
2495  *
2496  * Returns positive if the regulator driver backing the source/client
2497  * has requested that the device be enabled, zero if it hasn't, else a
2498  * negative errno code.
2499  *
2500  * Note that the device backing this regulator handle can have multiple
2501  * users, so it might be enabled even if regulator_enable() was never
2502  * called for this particular source.
2503  */
2504 int regulator_is_enabled(struct regulator *regulator)
2505 {
2506         int ret;
2507
2508         if (regulator->always_on)
2509                 return 1;
2510
2511         mutex_lock(&regulator->rdev->mutex);
2512         ret = _regulator_is_enabled(regulator->rdev);
2513         mutex_unlock(&regulator->rdev->mutex);
2514
2515         return ret;
2516 }
2517 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2518
2519 /**
2520  * regulator_count_voltages - count regulator_list_voltage() selectors
2521  * @regulator: regulator source
2522  *
2523  * Returns number of selectors, or negative errno.  Selectors are
2524  * numbered starting at zero, and typically correspond to bitfields
2525  * in hardware registers.
2526  */
2527 int regulator_count_voltages(struct regulator *regulator)
2528 {
2529         struct regulator_dev    *rdev = regulator->rdev;
2530
2531         if (rdev->desc->n_voltages)
2532                 return rdev->desc->n_voltages;
2533
2534         if (!rdev->supply)
2535                 return -EINVAL;
2536
2537         return regulator_count_voltages(rdev->supply);
2538 }
2539 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2540
2541 /**
2542  * regulator_list_voltage - enumerate supported voltages
2543  * @regulator: regulator source
2544  * @selector: identify voltage to list
2545  * Context: can sleep
2546  *
2547  * Returns a voltage that can be passed to @regulator_set_voltage(),
2548  * zero if this selector code can't be used on this system, or a
2549  * negative errno.
2550  */
2551 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2552 {
2553         return _regulator_list_voltage(regulator, selector, 1);
2554 }
2555 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2556
2557 /**
2558  * regulator_get_regmap - get the regulator's register map
2559  * @regulator: regulator source
2560  *
2561  * Returns the register map for the given regulator, or an ERR_PTR value
2562  * if the regulator doesn't use regmap.
2563  */
2564 struct regmap *regulator_get_regmap(struct regulator *regulator)
2565 {
2566         struct regmap *map = regulator->rdev->regmap;
2567
2568         return map ? map : ERR_PTR(-EOPNOTSUPP);
2569 }
2570
2571 /**
2572  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2573  * @regulator: regulator source
2574  * @vsel_reg: voltage selector register, output parameter
2575  * @vsel_mask: mask for voltage selector bitfield, output parameter
2576  *
2577  * Returns the hardware register offset and bitmask used for setting the
2578  * regulator voltage. This might be useful when configuring voltage-scaling
2579  * hardware or firmware that can make I2C requests behind the kernel's back,
2580  * for example.
2581  *
2582  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2583  * and 0 is returned, otherwise a negative errno is returned.
2584  */
2585 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2586                                          unsigned *vsel_reg,
2587                                          unsigned *vsel_mask)
2588 {
2589         struct regulator_dev *rdev = regulator->rdev;
2590         const struct regulator_ops *ops = rdev->desc->ops;
2591
2592         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2593                 return -EOPNOTSUPP;
2594
2595          *vsel_reg = rdev->desc->vsel_reg;
2596          *vsel_mask = rdev->desc->vsel_mask;
2597
2598          return 0;
2599 }
2600 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2601
2602 /**
2603  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2604  * @regulator: regulator source
2605  * @selector: identify voltage to list
2606  *
2607  * Converts the selector to a hardware-specific voltage selector that can be
2608  * directly written to the regulator registers. The address of the voltage
2609  * register can be determined by calling @regulator_get_hardware_vsel_register.
2610  *
2611  * On error a negative errno is returned.
2612  */
2613 int regulator_list_hardware_vsel(struct regulator *regulator,
2614                                  unsigned selector)
2615 {
2616         struct regulator_dev *rdev = regulator->rdev;
2617         const struct regulator_ops *ops = rdev->desc->ops;
2618
2619         if (selector >= rdev->desc->n_voltages)
2620                 return -EINVAL;
2621         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2622                 return -EOPNOTSUPP;
2623
2624         return selector;
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2627
2628 /**
2629  * regulator_get_linear_step - return the voltage step size between VSEL values
2630  * @regulator: regulator source
2631  *
2632  * Returns the voltage step size between VSEL values for linear
2633  * regulators, or return 0 if the regulator isn't a linear regulator.
2634  */
2635 unsigned int regulator_get_linear_step(struct regulator *regulator)
2636 {
2637         struct regulator_dev *rdev = regulator->rdev;
2638
2639         return rdev->desc->uV_step;
2640 }
2641 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2642
2643 /**
2644  * regulator_is_supported_voltage - check if a voltage range can be supported
2645  *
2646  * @regulator: Regulator to check.
2647  * @min_uV: Minimum required voltage in uV.
2648  * @max_uV: Maximum required voltage in uV.
2649  *
2650  * Returns a boolean or a negative error code.
2651  */
2652 int regulator_is_supported_voltage(struct regulator *regulator,
2653                                    int min_uV, int max_uV)
2654 {
2655         struct regulator_dev *rdev = regulator->rdev;
2656         int i, voltages, ret;
2657
2658         /* If we can't change voltage check the current voltage */
2659         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2660                 ret = regulator_get_voltage(regulator);
2661                 if (ret >= 0)
2662                         return min_uV <= ret && ret <= max_uV;
2663                 else
2664                         return ret;
2665         }
2666
2667         /* Any voltage within constrains range is fine? */
2668         if (rdev->desc->continuous_voltage_range)
2669                 return min_uV >= rdev->constraints->min_uV &&
2670                                 max_uV <= rdev->constraints->max_uV;
2671
2672         ret = regulator_count_voltages(regulator);
2673         if (ret < 0)
2674                 return ret;
2675         voltages = ret;
2676
2677         for (i = 0; i < voltages; i++) {
2678                 ret = regulator_list_voltage(regulator, i);
2679
2680                 if (ret >= min_uV && ret <= max_uV)
2681                         return 1;
2682         }
2683
2684         return 0;
2685 }
2686 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2687
2688 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2689                                  int max_uV)
2690 {
2691         const struct regulator_desc *desc = rdev->desc;
2692
2693         if (desc->ops->map_voltage)
2694                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2695
2696         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2697                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2698
2699         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2700                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2701
2702         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2703 }
2704
2705 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2706                                        int min_uV, int max_uV,
2707                                        unsigned *selector)
2708 {
2709         struct pre_voltage_change_data data;
2710         int ret;
2711
2712         data.old_uV = _regulator_get_voltage(rdev);
2713         data.min_uV = min_uV;
2714         data.max_uV = max_uV;
2715         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2716                                    &data);
2717         if (ret & NOTIFY_STOP_MASK)
2718                 return -EINVAL;
2719
2720         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2721         if (ret >= 0)
2722                 return ret;
2723
2724         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2725                              (void *)data.old_uV);
2726
2727         return ret;
2728 }
2729
2730 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2731                                            int uV, unsigned selector)
2732 {
2733         struct pre_voltage_change_data data;
2734         int ret;
2735
2736         data.old_uV = _regulator_get_voltage(rdev);
2737         data.min_uV = uV;
2738         data.max_uV = uV;
2739         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2740                                    &data);
2741         if (ret & NOTIFY_STOP_MASK)
2742                 return -EINVAL;
2743
2744         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2745         if (ret >= 0)
2746                 return ret;
2747
2748         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2749                              (void *)data.old_uV);
2750
2751         return ret;
2752 }
2753
2754 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2755                                        int old_uV, int new_uV)
2756 {
2757         unsigned int ramp_delay = 0;
2758
2759         if (rdev->constraints->ramp_delay)
2760                 ramp_delay = rdev->constraints->ramp_delay;
2761         else if (rdev->desc->ramp_delay)
2762                 ramp_delay = rdev->desc->ramp_delay;
2763
2764         if (ramp_delay == 0) {
2765                 rdev_dbg(rdev, "ramp_delay not set\n");
2766                 return 0;
2767         }
2768
2769         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2770 }
2771
2772 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2773                                      int min_uV, int max_uV)
2774 {
2775         int ret;
2776         int delay = 0;
2777         int best_val = 0;
2778         unsigned int selector;
2779         int old_selector = -1;
2780         const struct regulator_ops *ops = rdev->desc->ops;
2781         int old_uV = _regulator_get_voltage(rdev);
2782
2783         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2784
2785         min_uV += rdev->constraints->uV_offset;
2786         max_uV += rdev->constraints->uV_offset;
2787
2788         /*
2789          * If we can't obtain the old selector there is not enough
2790          * info to call set_voltage_time_sel().
2791          */
2792         if (_regulator_is_enabled(rdev) &&
2793             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2794                 old_selector = ops->get_voltage_sel(rdev);
2795                 if (old_selector < 0)
2796                         return old_selector;
2797         }
2798
2799         if (ops->set_voltage) {
2800                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2801                                                   &selector);
2802
2803                 if (ret >= 0) {
2804                         if (ops->list_voltage)
2805                                 best_val = ops->list_voltage(rdev,
2806                                                              selector);
2807                         else
2808                                 best_val = _regulator_get_voltage(rdev);
2809                 }
2810
2811         } else if (ops->set_voltage_sel) {
2812                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2813                 if (ret >= 0) {
2814                         best_val = ops->list_voltage(rdev, ret);
2815                         if (min_uV <= best_val && max_uV >= best_val) {
2816                                 selector = ret;
2817                                 if (old_selector == selector)
2818                                         ret = 0;
2819                                 else
2820                                         ret = _regulator_call_set_voltage_sel(
2821                                                 rdev, best_val, selector);
2822                         } else {
2823                                 ret = -EINVAL;
2824                         }
2825                 }
2826         } else {
2827                 ret = -EINVAL;
2828         }
2829
2830         if (ret)
2831                 goto out;
2832
2833         if (ops->set_voltage_time_sel) {
2834                 /*
2835                  * Call set_voltage_time_sel if successfully obtained
2836                  * old_selector
2837                  */
2838                 if (old_selector >= 0 && old_selector != selector)
2839                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2840                                                           selector);
2841         } else {
2842                 if (old_uV != best_val) {
2843                         if (ops->set_voltage_time)
2844                                 delay = ops->set_voltage_time(rdev, old_uV,
2845                                                               best_val);
2846                         else
2847                                 delay = _regulator_set_voltage_time(rdev,
2848                                                                     old_uV,
2849                                                                     best_val);
2850                 }
2851         }
2852
2853         if (delay < 0) {
2854                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2855                 delay = 0;
2856         }
2857
2858         /* Insert any necessary delays */
2859         if (delay >= 1000) {
2860                 mdelay(delay / 1000);
2861                 udelay(delay % 1000);
2862         } else if (delay) {
2863                 udelay(delay);
2864         }
2865
2866         if (best_val >= 0) {
2867                 unsigned long data = best_val;
2868
2869                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2870                                      (void *)data);
2871         }
2872
2873 out:
2874         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2875
2876         return ret;
2877 }
2878
2879 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2880                                           int min_uV, int max_uV)
2881 {
2882         struct regulator_dev *rdev = regulator->rdev;
2883         int ret = 0;
2884         int old_min_uV, old_max_uV;
2885         int current_uV;
2886         int best_supply_uV = 0;
2887         int supply_change_uV = 0;
2888
2889         /* If we're setting the same range as last time the change
2890          * should be a noop (some cpufreq implementations use the same
2891          * voltage for multiple frequencies, for example).
2892          */
2893         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2894                 goto out;
2895
2896         /* If we're trying to set a range that overlaps the current voltage,
2897          * return successfully even though the regulator does not support
2898          * changing the voltage.
2899          */
2900         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2901                 current_uV = _regulator_get_voltage(rdev);
2902                 if (min_uV <= current_uV && current_uV <= max_uV) {
2903                         regulator->min_uV = min_uV;
2904                         regulator->max_uV = max_uV;
2905                         goto out;
2906                 }
2907         }
2908
2909         /* sanity check */
2910         if (!rdev->desc->ops->set_voltage &&
2911             !rdev->desc->ops->set_voltage_sel) {
2912                 ret = -EINVAL;
2913                 goto out;
2914         }
2915
2916         /* constraints check */
2917         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2918         if (ret < 0)
2919                 goto out;
2920
2921         /* restore original values in case of error */
2922         old_min_uV = regulator->min_uV;
2923         old_max_uV = regulator->max_uV;
2924         regulator->min_uV = min_uV;
2925         regulator->max_uV = max_uV;
2926
2927         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2928         if (ret < 0)
2929                 goto out2;
2930
2931         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2932                                 !rdev->desc->ops->get_voltage)) {
2933                 int current_supply_uV;
2934                 int selector;
2935
2936                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2937                 if (selector < 0) {
2938                         ret = selector;
2939                         goto out2;
2940                 }
2941
2942                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2943                 if (best_supply_uV < 0) {
2944                         ret = best_supply_uV;
2945                         goto out2;
2946                 }
2947
2948                 best_supply_uV += rdev->desc->min_dropout_uV;
2949
2950                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2951                 if (current_supply_uV < 0) {
2952                         ret = current_supply_uV;
2953                         goto out2;
2954                 }
2955
2956                 supply_change_uV = best_supply_uV - current_supply_uV;
2957         }
2958
2959         if (supply_change_uV > 0) {
2960                 ret = regulator_set_voltage_unlocked(rdev->supply,
2961                                 best_supply_uV, INT_MAX);
2962                 if (ret) {
2963                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2964                                         ret);
2965                         goto out2;
2966                 }
2967         }
2968
2969         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2970         if (ret < 0)
2971                 goto out2;
2972
2973         if (supply_change_uV < 0) {
2974                 ret = regulator_set_voltage_unlocked(rdev->supply,
2975                                 best_supply_uV, INT_MAX);
2976                 if (ret)
2977                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2978                                         ret);
2979                 /* No need to fail here */
2980                 ret = 0;
2981         }
2982
2983 out:
2984         return ret;
2985 out2:
2986         regulator->min_uV = old_min_uV;
2987         regulator->max_uV = old_max_uV;
2988
2989         return ret;
2990 }
2991
2992 /**
2993  * regulator_set_voltage - set regulator output voltage
2994  * @regulator: regulator source
2995  * @min_uV: Minimum required voltage in uV
2996  * @max_uV: Maximum acceptable voltage in uV
2997  *
2998  * Sets a voltage regulator to the desired output voltage. This can be set
2999  * during any regulator state. IOW, regulator can be disabled or enabled.
3000  *
3001  * If the regulator is enabled then the voltage will change to the new value
3002  * immediately otherwise if the regulator is disabled the regulator will
3003  * output at the new voltage when enabled.
3004  *
3005  * NOTE: If the regulator is shared between several devices then the lowest
3006  * request voltage that meets the system constraints will be used.
3007  * Regulator system constraints must be set for this regulator before
3008  * calling this function otherwise this call will fail.
3009  */
3010 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3011 {
3012         int ret = 0;
3013
3014         regulator_lock_supply(regulator->rdev);
3015
3016         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3017
3018         regulator_unlock_supply(regulator->rdev);
3019
3020         return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3023
3024 /**
3025  * regulator_set_voltage_time - get raise/fall time
3026  * @regulator: regulator source
3027  * @old_uV: starting voltage in microvolts
3028  * @new_uV: target voltage in microvolts
3029  *
3030  * Provided with the starting and ending voltage, this function attempts to
3031  * calculate the time in microseconds required to rise or fall to this new
3032  * voltage.
3033  */
3034 int regulator_set_voltage_time(struct regulator *regulator,
3035                                int old_uV, int new_uV)
3036 {
3037         struct regulator_dev *rdev = regulator->rdev;
3038         const struct regulator_ops *ops = rdev->desc->ops;
3039         int old_sel = -1;
3040         int new_sel = -1;
3041         int voltage;
3042         int i;
3043
3044         if (ops->set_voltage_time)
3045                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3046         else if (!ops->set_voltage_time_sel)
3047                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3048
3049         /* Currently requires operations to do this */
3050         if (!ops->list_voltage || !rdev->desc->n_voltages)
3051                 return -EINVAL;
3052
3053         for (i = 0; i < rdev->desc->n_voltages; i++) {
3054                 /* We only look for exact voltage matches here */
3055                 voltage = regulator_list_voltage(regulator, i);
3056                 if (voltage < 0)
3057                         return -EINVAL;
3058                 if (voltage == 0)
3059                         continue;
3060                 if (voltage == old_uV)
3061                         old_sel = i;
3062                 if (voltage == new_uV)
3063                         new_sel = i;
3064         }
3065
3066         if (old_sel < 0 || new_sel < 0)
3067                 return -EINVAL;
3068
3069         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3070 }
3071 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3072
3073 /**
3074  * regulator_set_voltage_time_sel - get raise/fall time
3075  * @rdev: regulator source device
3076  * @old_selector: selector for starting voltage
3077  * @new_selector: selector for target voltage
3078  *
3079  * Provided with the starting and target voltage selectors, this function
3080  * returns time in microseconds required to rise or fall to this new voltage
3081  *
3082  * Drivers providing ramp_delay in regulation_constraints can use this as their
3083  * set_voltage_time_sel() operation.
3084  */
3085 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3086                                    unsigned int old_selector,
3087                                    unsigned int new_selector)
3088 {
3089         int old_volt, new_volt;
3090
3091         /* sanity check */
3092         if (!rdev->desc->ops->list_voltage)
3093                 return -EINVAL;
3094
3095         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3096         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3097
3098         if (rdev->desc->ops->set_voltage_time)
3099                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3100                                                          new_volt);
3101         else
3102                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3103 }
3104 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3105
3106 /**
3107  * regulator_sync_voltage - re-apply last regulator output voltage
3108  * @regulator: regulator source
3109  *
3110  * Re-apply the last configured voltage.  This is intended to be used
3111  * where some external control source the consumer is cooperating with
3112  * has caused the configured voltage to change.
3113  */
3114 int regulator_sync_voltage(struct regulator *regulator)
3115 {
3116         struct regulator_dev *rdev = regulator->rdev;
3117         int ret, min_uV, max_uV;
3118
3119         mutex_lock(&rdev->mutex);
3120
3121         if (!rdev->desc->ops->set_voltage &&
3122             !rdev->desc->ops->set_voltage_sel) {
3123                 ret = -EINVAL;
3124                 goto out;
3125         }
3126
3127         /* This is only going to work if we've had a voltage configured. */
3128         if (!regulator->min_uV && !regulator->max_uV) {
3129                 ret = -EINVAL;
3130                 goto out;
3131         }
3132
3133         min_uV = regulator->min_uV;
3134         max_uV = regulator->max_uV;
3135
3136         /* This should be a paranoia check... */
3137         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3138         if (ret < 0)
3139                 goto out;
3140
3141         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3142         if (ret < 0)
3143                 goto out;
3144
3145         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3146
3147 out:
3148         mutex_unlock(&rdev->mutex);
3149         return ret;
3150 }
3151 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3152
3153 static int _regulator_get_voltage(struct regulator_dev *rdev)
3154 {
3155         int sel, ret;
3156         bool bypassed;
3157
3158         if (rdev->desc->ops->get_bypass) {
3159                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3160                 if (ret < 0)
3161                         return ret;
3162                 if (bypassed) {
3163                         /* if bypassed the regulator must have a supply */
3164                         if (!rdev->supply) {
3165                                 rdev_err(rdev,
3166                                          "bypassed regulator has no supply!\n");
3167                                 return -EPROBE_DEFER;
3168                         }
3169
3170                         return _regulator_get_voltage(rdev->supply->rdev);
3171                 }
3172         }
3173
3174         if (rdev->desc->ops->get_voltage_sel) {
3175                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3176                 if (sel < 0)
3177                         return sel;
3178                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3179         } else if (rdev->desc->ops->get_voltage) {
3180                 ret = rdev->desc->ops->get_voltage(rdev);
3181         } else if (rdev->desc->ops->list_voltage) {
3182                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3183         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3184                 ret = rdev->desc->fixed_uV;
3185         } else if (rdev->supply) {
3186                 ret = _regulator_get_voltage(rdev->supply->rdev);
3187         } else {
3188                 return -EINVAL;
3189         }
3190
3191         if (ret < 0)
3192                 return ret;
3193         return ret - rdev->constraints->uV_offset;
3194 }
3195
3196 /**
3197  * regulator_get_voltage - get regulator output voltage
3198  * @regulator: regulator source
3199  *
3200  * This returns the current regulator voltage in uV.
3201  *
3202  * NOTE: If the regulator is disabled it will return the voltage value. This
3203  * function should not be used to determine regulator state.
3204  */
3205 int regulator_get_voltage(struct regulator *regulator)
3206 {
3207         int ret;
3208
3209         regulator_lock_supply(regulator->rdev);
3210
3211         ret = _regulator_get_voltage(regulator->rdev);
3212
3213         regulator_unlock_supply(regulator->rdev);
3214
3215         return ret;
3216 }
3217 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3218
3219 /**
3220  * regulator_set_current_limit - set regulator output current limit
3221  * @regulator: regulator source
3222  * @min_uA: Minimum supported current in uA
3223  * @max_uA: Maximum supported current in uA
3224  *
3225  * Sets current sink to the desired output current. This can be set during
3226  * any regulator state. IOW, regulator can be disabled or enabled.
3227  *
3228  * If the regulator is enabled then the current will change to the new value
3229  * immediately otherwise if the regulator is disabled the regulator will
3230  * output at the new current when enabled.
3231  *
3232  * NOTE: Regulator system constraints must be set for this regulator before
3233  * calling this function otherwise this call will fail.
3234  */
3235 int regulator_set_current_limit(struct regulator *regulator,
3236                                int min_uA, int max_uA)
3237 {
3238         struct regulator_dev *rdev = regulator->rdev;
3239         int ret;
3240
3241         mutex_lock(&rdev->mutex);
3242
3243         /* sanity check */
3244         if (!rdev->desc->ops->set_current_limit) {
3245                 ret = -EINVAL;
3246                 goto out;
3247         }
3248
3249         /* constraints check */
3250         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3251         if (ret < 0)
3252                 goto out;
3253
3254         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3255 out:
3256         mutex_unlock(&rdev->mutex);
3257         return ret;
3258 }
3259 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3260
3261 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3262 {
3263         int ret;
3264
3265         mutex_lock(&rdev->mutex);
3266
3267         /* sanity check */
3268         if (!rdev->desc->ops->get_current_limit) {
3269                 ret = -EINVAL;
3270                 goto out;
3271         }
3272
3273         ret = rdev->desc->ops->get_current_limit(rdev);
3274 out:
3275         mutex_unlock(&rdev->mutex);
3276         return ret;
3277 }
3278
3279 /**
3280  * regulator_get_current_limit - get regulator output current
3281  * @regulator: regulator source
3282  *
3283  * This returns the current supplied by the specified current sink in uA.
3284  *
3285  * NOTE: If the regulator is disabled it will return the current value. This
3286  * function should not be used to determine regulator state.
3287  */
3288 int regulator_get_current_limit(struct regulator *regulator)
3289 {
3290         return _regulator_get_current_limit(regulator->rdev);
3291 }
3292 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3293
3294 /**
3295  * regulator_set_mode - set regulator operating mode
3296  * @regulator: regulator source
3297  * @mode: operating mode - one of the REGULATOR_MODE constants
3298  *
3299  * Set regulator operating mode to increase regulator efficiency or improve
3300  * regulation performance.
3301  *
3302  * NOTE: Regulator system constraints must be set for this regulator before
3303  * calling this function otherwise this call will fail.
3304  */
3305 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3306 {
3307         struct regulator_dev *rdev = regulator->rdev;
3308         int ret;
3309         int regulator_curr_mode;
3310
3311         mutex_lock(&rdev->mutex);
3312
3313         /* sanity check */
3314         if (!rdev->desc->ops->set_mode) {
3315                 ret = -EINVAL;
3316                 goto out;
3317         }
3318
3319         /* return if the same mode is requested */
3320         if (rdev->desc->ops->get_mode) {
3321                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3322                 if (regulator_curr_mode == mode) {
3323                         ret = 0;
3324                         goto out;
3325                 }
3326         }
3327
3328         /* constraints check */
3329         ret = regulator_mode_constrain(rdev, &mode);
3330         if (ret < 0)
3331                 goto out;
3332
3333         ret = rdev->desc->ops->set_mode(rdev, mode);
3334 out:
3335         mutex_unlock(&rdev->mutex);
3336         return ret;
3337 }
3338 EXPORT_SYMBOL_GPL(regulator_set_mode);
3339
3340 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3341 {
3342         int ret;
3343
3344         mutex_lock(&rdev->mutex);
3345
3346         /* sanity check */
3347         if (!rdev->desc->ops->get_mode) {
3348                 ret = -EINVAL;
3349                 goto out;
3350         }
3351
3352         ret = rdev->desc->ops->get_mode(rdev);
3353 out:
3354         mutex_unlock(&rdev->mutex);
3355         return ret;
3356 }
3357
3358 /**
3359  * regulator_get_mode - get regulator operating mode
3360  * @regulator: regulator source
3361  *
3362  * Get the current regulator operating mode.
3363  */
3364 unsigned int regulator_get_mode(struct regulator *regulator)
3365 {
3366         return _regulator_get_mode(regulator->rdev);
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_get_mode);
3369
3370 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3371                                         unsigned int *flags)
3372 {
3373         int ret;
3374
3375         mutex_lock(&rdev->mutex);
3376
3377         /* sanity check */
3378         if (!rdev->desc->ops->get_error_flags) {
3379                 ret = -EINVAL;
3380                 goto out;
3381         }
3382
3383         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3384 out:
3385         mutex_unlock(&rdev->mutex);
3386         return ret;
3387 }
3388
3389 /**
3390  * regulator_get_error_flags - get regulator error information
3391  * @regulator: regulator source
3392  * @flags: pointer to store error flags
3393  *
3394  * Get the current regulator error information.
3395  */
3396 int regulator_get_error_flags(struct regulator *regulator,
3397                                 unsigned int *flags)
3398 {
3399         return _regulator_get_error_flags(regulator->rdev, flags);
3400 }
3401 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3402
3403 /**
3404  * regulator_set_load - set regulator load
3405  * @regulator: regulator source
3406  * @uA_load: load current
3407  *
3408  * Notifies the regulator core of a new device load. This is then used by
3409  * DRMS (if enabled by constraints) to set the most efficient regulator
3410  * operating mode for the new regulator loading.
3411  *
3412  * Consumer devices notify their supply regulator of the maximum power
3413  * they will require (can be taken from device datasheet in the power
3414  * consumption tables) when they change operational status and hence power
3415  * state. Examples of operational state changes that can affect power
3416  * consumption are :-
3417  *
3418  *    o Device is opened / closed.
3419  *    o Device I/O is about to begin or has just finished.
3420  *    o Device is idling in between work.
3421  *
3422  * This information is also exported via sysfs to userspace.
3423  *
3424  * DRMS will sum the total requested load on the regulator and change
3425  * to the most efficient operating mode if platform constraints allow.
3426  *
3427  * On error a negative errno is returned.
3428  */
3429 int regulator_set_load(struct regulator *regulator, int uA_load)
3430 {
3431         struct regulator_dev *rdev = regulator->rdev;
3432         int ret;
3433
3434         mutex_lock(&rdev->mutex);
3435         regulator->uA_load = uA_load;
3436         ret = drms_uA_update(rdev);
3437         mutex_unlock(&rdev->mutex);
3438
3439         return ret;
3440 }
3441 EXPORT_SYMBOL_GPL(regulator_set_load);
3442
3443 /**
3444  * regulator_allow_bypass - allow the regulator to go into bypass mode
3445  *
3446  * @regulator: Regulator to configure
3447  * @enable: enable or disable bypass mode
3448  *
3449  * Allow the regulator to go into bypass mode if all other consumers
3450  * for the regulator also enable bypass mode and the machine
3451  * constraints allow this.  Bypass mode means that the regulator is
3452  * simply passing the input directly to the output with no regulation.
3453  */
3454 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3455 {
3456         struct regulator_dev *rdev = regulator->rdev;
3457         int ret = 0;
3458
3459         if (!rdev->desc->ops->set_bypass)
3460                 return 0;
3461
3462         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3463                 return 0;
3464
3465         mutex_lock(&rdev->mutex);
3466
3467         if (enable && !regulator->bypass) {
3468                 rdev->bypass_count++;
3469
3470                 if (rdev->bypass_count == rdev->open_count) {
3471                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3472                         if (ret != 0)
3473                                 rdev->bypass_count--;
3474                 }
3475
3476         } else if (!enable && regulator->bypass) {
3477                 rdev->bypass_count--;
3478
3479                 if (rdev->bypass_count != rdev->open_count) {
3480                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3481                         if (ret != 0)
3482                                 rdev->bypass_count++;
3483                 }
3484         }
3485
3486         if (ret == 0)
3487                 regulator->bypass = enable;
3488
3489         mutex_unlock(&rdev->mutex);
3490
3491         return ret;
3492 }
3493 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3494
3495 /**
3496  * regulator_register_notifier - register regulator event notifier
3497  * @regulator: regulator source
3498  * @nb: notifier block
3499  *
3500  * Register notifier block to receive regulator events.
3501  */
3502 int regulator_register_notifier(struct regulator *regulator,
3503                               struct notifier_block *nb)
3504 {
3505         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3506                                                 nb);
3507 }
3508 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3509
3510 /**
3511  * regulator_unregister_notifier - unregister regulator event notifier
3512  * @regulator: regulator source
3513  * @nb: notifier block
3514  *
3515  * Unregister regulator event notifier block.
3516  */
3517 int regulator_unregister_notifier(struct regulator *regulator,
3518                                 struct notifier_block *nb)
3519 {
3520         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3521                                                   nb);
3522 }
3523 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3524
3525 /* notify regulator consumers and downstream regulator consumers.
3526  * Note mutex must be held by caller.
3527  */
3528 static int _notifier_call_chain(struct regulator_dev *rdev,
3529                                   unsigned long event, void *data)
3530 {
3531         /* call rdev chain first */
3532         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3533 }
3534
3535 /**
3536  * regulator_bulk_get - get multiple regulator consumers
3537  *
3538  * @dev:           Device to supply
3539  * @num_consumers: Number of consumers to register
3540  * @consumers:     Configuration of consumers; clients are stored here.
3541  *
3542  * @return 0 on success, an errno on failure.
3543  *
3544  * This helper function allows drivers to get several regulator
3545  * consumers in one operation.  If any of the regulators cannot be
3546  * acquired then any regulators that were allocated will be freed
3547  * before returning to the caller.
3548  */
3549 int regulator_bulk_get(struct device *dev, int num_consumers,
3550                        struct regulator_bulk_data *consumers)
3551 {
3552         int i;
3553         int ret;
3554
3555         for (i = 0; i < num_consumers; i++)
3556                 consumers[i].consumer = NULL;
3557
3558         for (i = 0; i < num_consumers; i++) {
3559                 consumers[i].consumer = regulator_get(dev,
3560                                                       consumers[i].supply);
3561                 if (IS_ERR(consumers[i].consumer)) {
3562                         ret = PTR_ERR(consumers[i].consumer);
3563                         dev_err(dev, "Failed to get supply '%s': %d\n",
3564                                 consumers[i].supply, ret);
3565                         consumers[i].consumer = NULL;
3566                         goto err;
3567                 }
3568         }
3569
3570         return 0;
3571
3572 err:
3573         while (--i >= 0)
3574                 regulator_put(consumers[i].consumer);
3575
3576         return ret;
3577 }
3578 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3579
3580 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3581 {
3582         struct regulator_bulk_data *bulk = data;
3583
3584         bulk->ret = regulator_enable(bulk->consumer);
3585 }
3586
3587 /**
3588  * regulator_bulk_enable - enable multiple regulator consumers
3589  *
3590  * @num_consumers: Number of consumers
3591  * @consumers:     Consumer data; clients are stored here.
3592  * @return         0 on success, an errno on failure
3593  *
3594  * This convenience API allows consumers to enable multiple regulator
3595  * clients in a single API call.  If any consumers cannot be enabled
3596  * then any others that were enabled will be disabled again prior to
3597  * return.
3598  */
3599 int regulator_bulk_enable(int num_consumers,
3600                           struct regulator_bulk_data *consumers)
3601 {
3602         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3603         int i;
3604         int ret = 0;
3605
3606         for (i = 0; i < num_consumers; i++) {
3607                 if (consumers[i].consumer->always_on)
3608                         consumers[i].ret = 0;
3609                 else
3610                         async_schedule_domain(regulator_bulk_enable_async,
3611                                               &consumers[i], &async_domain);
3612         }
3613
3614         async_synchronize_full_domain(&async_domain);
3615
3616         /* If any consumer failed we need to unwind any that succeeded */
3617         for (i = 0; i < num_consumers; i++) {
3618                 if (consumers[i].ret != 0) {
3619                         ret = consumers[i].ret;
3620                         goto err;
3621                 }
3622         }
3623
3624         return 0;
3625
3626 err:
3627         for (i = 0; i < num_consumers; i++) {
3628                 if (consumers[i].ret < 0)
3629                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3630                                consumers[i].ret);
3631                 else
3632                         regulator_disable(consumers[i].consumer);
3633         }
3634
3635         return ret;
3636 }
3637 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3638
3639 /**
3640  * regulator_bulk_disable - disable multiple regulator consumers
3641  *
3642  * @num_consumers: Number of consumers
3643  * @consumers:     Consumer data; clients are stored here.
3644  * @return         0 on success, an errno on failure
3645  *
3646  * This convenience API allows consumers to disable multiple regulator
3647  * clients in a single API call.  If any consumers cannot be disabled
3648  * then any others that were disabled will be enabled again prior to
3649  * return.
3650  */
3651 int regulator_bulk_disable(int num_consumers,
3652                            struct regulator_bulk_data *consumers)
3653 {
3654         int i;
3655         int ret, r;
3656
3657         for (i = num_consumers - 1; i >= 0; --i) {
3658                 ret = regulator_disable(consumers[i].consumer);
3659                 if (ret != 0)
3660                         goto err;
3661         }
3662
3663         return 0;
3664
3665 err:
3666         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3667         for (++i; i < num_consumers; ++i) {
3668                 r = regulator_enable(consumers[i].consumer);
3669                 if (r != 0)
3670                         pr_err("Failed to re-enable %s: %d\n",
3671                                consumers[i].supply, r);
3672         }
3673
3674         return ret;
3675 }
3676 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3677
3678 /**
3679  * regulator_bulk_force_disable - force disable multiple regulator consumers
3680  *
3681  * @num_consumers: Number of consumers
3682  * @consumers:     Consumer data; clients are stored here.
3683  * @return         0 on success, an errno on failure
3684  *
3685  * This convenience API allows consumers to forcibly disable multiple regulator
3686  * clients in a single API call.
3687  * NOTE: This should be used for situations when device damage will
3688  * likely occur if the regulators are not disabled (e.g. over temp).
3689  * Although regulator_force_disable function call for some consumers can
3690  * return error numbers, the function is called for all consumers.
3691  */
3692 int regulator_bulk_force_disable(int num_consumers,
3693                            struct regulator_bulk_data *consumers)
3694 {
3695         int i;
3696         int ret = 0;
3697
3698         for (i = 0; i < num_consumers; i++) {
3699                 consumers[i].ret =
3700                             regulator_force_disable(consumers[i].consumer);
3701
3702                 /* Store first error for reporting */
3703                 if (consumers[i].ret && !ret)
3704                         ret = consumers[i].ret;
3705         }
3706
3707         return ret;
3708 }
3709 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3710
3711 /**
3712  * regulator_bulk_free - free multiple regulator consumers
3713  *
3714  * @num_consumers: Number of consumers
3715  * @consumers:     Consumer data; clients are stored here.
3716  *
3717  * This convenience API allows consumers to free multiple regulator
3718  * clients in a single API call.
3719  */
3720 void regulator_bulk_free(int num_consumers,
3721                          struct regulator_bulk_data *consumers)
3722 {
3723         int i;
3724
3725         for (i = 0; i < num_consumers; i++) {
3726                 regulator_put(consumers[i].consumer);
3727                 consumers[i].consumer = NULL;
3728         }
3729 }
3730 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3731
3732 /**
3733  * regulator_notifier_call_chain - call regulator event notifier
3734  * @rdev: regulator source
3735  * @event: notifier block
3736  * @data: callback-specific data.
3737  *
3738  * Called by regulator drivers to notify clients a regulator event has
3739  * occurred. We also notify regulator clients downstream.
3740  * Note lock must be held by caller.
3741  */
3742 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3743                                   unsigned long event, void *data)
3744 {
3745         lockdep_assert_held_once(&rdev->mutex);
3746
3747         _notifier_call_chain(rdev, event, data);
3748         return NOTIFY_DONE;
3749
3750 }
3751 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3752
3753 /**
3754  * regulator_mode_to_status - convert a regulator mode into a status
3755  *
3756  * @mode: Mode to convert
3757  *
3758  * Convert a regulator mode into a status.
3759  */
3760 int regulator_mode_to_status(unsigned int mode)
3761 {
3762         switch (mode) {
3763         case REGULATOR_MODE_FAST:
3764                 return REGULATOR_STATUS_FAST;
3765         case REGULATOR_MODE_NORMAL:
3766                 return REGULATOR_STATUS_NORMAL;
3767         case REGULATOR_MODE_IDLE:
3768                 return REGULATOR_STATUS_IDLE;
3769         case REGULATOR_MODE_STANDBY:
3770                 return REGULATOR_STATUS_STANDBY;
3771         default:
3772                 return REGULATOR_STATUS_UNDEFINED;
3773         }
3774 }
3775 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3776
3777 static struct attribute *regulator_dev_attrs[] = {
3778         &dev_attr_name.attr,
3779         &dev_attr_num_users.attr,
3780         &dev_attr_type.attr,
3781         &dev_attr_microvolts.attr,
3782         &dev_attr_microamps.attr,
3783         &dev_attr_opmode.attr,
3784         &dev_attr_state.attr,
3785         &dev_attr_status.attr,
3786         &dev_attr_bypass.attr,
3787         &dev_attr_requested_microamps.attr,
3788         &dev_attr_min_microvolts.attr,
3789         &dev_attr_max_microvolts.attr,
3790         &dev_attr_min_microamps.attr,
3791         &dev_attr_max_microamps.attr,
3792         &dev_attr_suspend_standby_state.attr,
3793         &dev_attr_suspend_mem_state.attr,
3794         &dev_attr_suspend_disk_state.attr,
3795         &dev_attr_suspend_standby_microvolts.attr,
3796         &dev_attr_suspend_mem_microvolts.attr,
3797         &dev_attr_suspend_disk_microvolts.attr,
3798         &dev_attr_suspend_standby_mode.attr,
3799         &dev_attr_suspend_mem_mode.attr,
3800         &dev_attr_suspend_disk_mode.attr,
3801         NULL
3802 };
3803
3804 /*
3805  * To avoid cluttering sysfs (and memory) with useless state, only
3806  * create attributes that can be meaningfully displayed.
3807  */
3808 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3809                                          struct attribute *attr, int idx)
3810 {
3811         struct device *dev = kobj_to_dev(kobj);
3812         struct regulator_dev *rdev = dev_to_rdev(dev);
3813         const struct regulator_ops *ops = rdev->desc->ops;
3814         umode_t mode = attr->mode;
3815
3816         /* these three are always present */
3817         if (attr == &dev_attr_name.attr ||
3818             attr == &dev_attr_num_users.attr ||
3819             attr == &dev_attr_type.attr)
3820                 return mode;
3821
3822         /* some attributes need specific methods to be displayed */
3823         if (attr == &dev_attr_microvolts.attr) {
3824                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3825                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3826                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3827                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3828                         return mode;
3829                 return 0;
3830         }
3831
3832         if (attr == &dev_attr_microamps.attr)
3833                 return ops->get_current_limit ? mode : 0;
3834
3835         if (attr == &dev_attr_opmode.attr)
3836                 return ops->get_mode ? mode : 0;
3837
3838         if (attr == &dev_attr_state.attr)
3839                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3840
3841         if (attr == &dev_attr_status.attr)
3842                 return ops->get_status ? mode : 0;
3843
3844         if (attr == &dev_attr_bypass.attr)
3845                 return ops->get_bypass ? mode : 0;
3846
3847         /* some attributes are type-specific */
3848         if (attr == &dev_attr_requested_microamps.attr)
3849                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3850
3851         /* constraints need specific supporting methods */
3852         if (attr == &dev_attr_min_microvolts.attr ||
3853             attr == &dev_attr_max_microvolts.attr)
3854                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3855
3856         if (attr == &dev_attr_min_microamps.attr ||
3857             attr == &dev_attr_max_microamps.attr)
3858                 return ops->set_current_limit ? mode : 0;
3859
3860         if (attr == &dev_attr_suspend_standby_state.attr ||
3861             attr == &dev_attr_suspend_mem_state.attr ||
3862             attr == &dev_attr_suspend_disk_state.attr)
3863                 return mode;
3864
3865         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3866             attr == &dev_attr_suspend_mem_microvolts.attr ||
3867             attr == &dev_attr_suspend_disk_microvolts.attr)
3868                 return ops->set_suspend_voltage ? mode : 0;
3869
3870         if (attr == &dev_attr_suspend_standby_mode.attr ||
3871             attr == &dev_attr_suspend_mem_mode.attr ||
3872             attr == &dev_attr_suspend_disk_mode.attr)
3873                 return ops->set_suspend_mode ? mode : 0;
3874
3875         return mode;
3876 }
3877
3878 static const struct attribute_group regulator_dev_group = {
3879         .attrs = regulator_dev_attrs,
3880         .is_visible = regulator_attr_is_visible,
3881 };
3882
3883 static const struct attribute_group *regulator_dev_groups[] = {
3884         &regulator_dev_group,
3885         NULL
3886 };
3887
3888 static void regulator_dev_release(struct device *dev)
3889 {
3890         struct regulator_dev *rdev = dev_get_drvdata(dev);
3891
3892         kfree(rdev->constraints);
3893         of_node_put(rdev->dev.of_node);
3894         kfree(rdev);
3895 }
3896
3897 static struct class regulator_class = {
3898         .name = "regulator",
3899         .dev_release = regulator_dev_release,
3900         .dev_groups = regulator_dev_groups,
3901 };
3902
3903 static void rdev_init_debugfs(struct regulator_dev *rdev)
3904 {
3905         struct device *parent = rdev->dev.parent;
3906         const char *rname = rdev_get_name(rdev);
3907         char name[NAME_MAX];
3908
3909         /* Avoid duplicate debugfs directory names */
3910         if (parent && rname == rdev->desc->name) {
3911                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3912                          rname);
3913                 rname = name;
3914         }
3915
3916         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3917         if (!rdev->debugfs) {
3918                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3919                 return;
3920         }
3921
3922         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3923                            &rdev->use_count);
3924         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3925                            &rdev->open_count);
3926         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3927                            &rdev->bypass_count);
3928 }
3929
3930 static int regulator_register_resolve_supply(struct device *dev, void *data)
3931 {
3932         struct regulator_dev *rdev = dev_to_rdev(dev);
3933
3934         if (regulator_resolve_supply(rdev))
3935                 rdev_dbg(rdev, "unable to resolve supply\n");
3936
3937         return 0;
3938 }
3939
3940 /**
3941  * regulator_register - register regulator
3942  * @regulator_desc: regulator to register
3943  * @cfg: runtime configuration for regulator
3944  *
3945  * Called by regulator drivers to register a regulator.
3946  * Returns a valid pointer to struct regulator_dev on success
3947  * or an ERR_PTR() on error.
3948  */
3949 struct regulator_dev *
3950 regulator_register(const struct regulator_desc *regulator_desc,
3951                    const struct regulator_config *cfg)
3952 {
3953         const struct regulation_constraints *constraints = NULL;
3954         const struct regulator_init_data *init_data;
3955         struct regulator_config *config = NULL;
3956         static atomic_t regulator_no = ATOMIC_INIT(-1);
3957         struct regulator_dev *rdev;
3958         struct device *dev;
3959         int ret, i;
3960
3961         if (regulator_desc == NULL || cfg == NULL)
3962                 return ERR_PTR(-EINVAL);
3963
3964         dev = cfg->dev;
3965         WARN_ON(!dev);
3966
3967         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3968                 return ERR_PTR(-EINVAL);
3969
3970         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3971             regulator_desc->type != REGULATOR_CURRENT)
3972                 return ERR_PTR(-EINVAL);
3973
3974         /* Only one of each should be implemented */
3975         WARN_ON(regulator_desc->ops->get_voltage &&
3976                 regulator_desc->ops->get_voltage_sel);
3977         WARN_ON(regulator_desc->ops->set_voltage &&
3978                 regulator_desc->ops->set_voltage_sel);
3979
3980         /* If we're using selectors we must implement list_voltage. */
3981         if (regulator_desc->ops->get_voltage_sel &&
3982             !regulator_desc->ops->list_voltage) {
3983                 return ERR_PTR(-EINVAL);
3984         }
3985         if (regulator_desc->ops->set_voltage_sel &&
3986             !regulator_desc->ops->list_voltage) {
3987                 return ERR_PTR(-EINVAL);
3988         }
3989
3990         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3991         if (rdev == NULL)
3992                 return ERR_PTR(-ENOMEM);
3993
3994         /*
3995          * Duplicate the config so the driver could override it after
3996          * parsing init data.
3997          */
3998         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3999         if (config == NULL) {
4000                 kfree(rdev);
4001                 return ERR_PTR(-ENOMEM);
4002         }
4003
4004         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4005                                                &rdev->dev.of_node);
4006         if (!init_data) {
4007                 init_data = config->init_data;
4008                 rdev->dev.of_node = of_node_get(config->of_node);
4009         }
4010
4011         mutex_init(&rdev->mutex);
4012         rdev->reg_data = config->driver_data;
4013         rdev->owner = regulator_desc->owner;
4014         rdev->desc = regulator_desc;
4015         if (config->regmap)
4016                 rdev->regmap = config->regmap;
4017         else if (dev_get_regmap(dev, NULL))
4018                 rdev->regmap = dev_get_regmap(dev, NULL);
4019         else if (dev->parent)
4020                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4021         INIT_LIST_HEAD(&rdev->consumer_list);
4022         INIT_LIST_HEAD(&rdev->list);
4023         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4024         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4025
4026         /* preform any regulator specific init */
4027         if (init_data && init_data->regulator_init) {
4028                 ret = init_data->regulator_init(rdev->reg_data);
4029                 if (ret < 0)
4030                         goto clean;
4031         }
4032
4033         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4034             gpio_is_valid(config->ena_gpio)) {
4035                 mutex_lock(&regulator_list_mutex);
4036                 ret = regulator_ena_gpio_request(rdev, config);
4037                 mutex_unlock(&regulator_list_mutex);
4038                 if (ret != 0) {
4039                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4040                                  config->ena_gpio, ret);
4041                         goto clean;
4042                 }
4043         }
4044
4045         /* register with sysfs */
4046         rdev->dev.class = &regulator_class;
4047         rdev->dev.parent = dev;
4048         dev_set_name(&rdev->dev, "regulator.%lu",
4049                     (unsigned long) atomic_inc_return(&regulator_no));
4050
4051         /* set regulator constraints */
4052         if (init_data)
4053                 constraints = &init_data->constraints;
4054
4055         if (init_data && init_data->supply_regulator)
4056                 rdev->supply_name = init_data->supply_regulator;
4057         else if (regulator_desc->supply_name)
4058                 rdev->supply_name = regulator_desc->supply_name;
4059
4060         /*
4061          * Attempt to resolve the regulator supply, if specified,
4062          * but don't return an error if we fail because we will try
4063          * to resolve it again later as more regulators are added.
4064          */
4065         if (regulator_resolve_supply(rdev))
4066                 rdev_dbg(rdev, "unable to resolve supply\n");
4067
4068         ret = set_machine_constraints(rdev, constraints);
4069         if (ret < 0)
4070                 goto wash;
4071
4072         /* add consumers devices */
4073         if (init_data) {
4074                 mutex_lock(&regulator_list_mutex);
4075                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4076                         ret = set_consumer_device_supply(rdev,
4077                                 init_data->consumer_supplies[i].dev_name,
4078                                 init_data->consumer_supplies[i].supply);
4079                         if (ret < 0) {
4080                                 mutex_unlock(&regulator_list_mutex);
4081                                 dev_err(dev, "Failed to set supply %s\n",
4082                                         init_data->consumer_supplies[i].supply);
4083                                 goto unset_supplies;
4084                         }
4085                 }
4086                 mutex_unlock(&regulator_list_mutex);
4087         }
4088
4089         ret = device_register(&rdev->dev);
4090         if (ret != 0) {
4091                 put_device(&rdev->dev);
4092                 goto unset_supplies;
4093         }
4094
4095         dev_set_drvdata(&rdev->dev, rdev);
4096         rdev_init_debugfs(rdev);
4097
4098         /* try to resolve regulators supply since a new one was registered */
4099         class_for_each_device(&regulator_class, NULL, NULL,
4100                               regulator_register_resolve_supply);
4101         kfree(config);
4102         return rdev;
4103
4104 unset_supplies:
4105         mutex_lock(&regulator_list_mutex);
4106         unset_regulator_supplies(rdev);
4107         mutex_unlock(&regulator_list_mutex);
4108 wash:
4109         kfree(rdev->constraints);
4110         mutex_lock(&regulator_list_mutex);
4111         regulator_ena_gpio_free(rdev);
4112         mutex_unlock(&regulator_list_mutex);
4113 clean:
4114         kfree(rdev);
4115         kfree(config);
4116         return ERR_PTR(ret);
4117 }
4118 EXPORT_SYMBOL_GPL(regulator_register);
4119
4120 /**
4121  * regulator_unregister - unregister regulator
4122  * @rdev: regulator to unregister
4123  *
4124  * Called by regulator drivers to unregister a regulator.
4125  */
4126 void regulator_unregister(struct regulator_dev *rdev)
4127 {
4128         if (rdev == NULL)
4129                 return;
4130
4131         if (rdev->supply) {
4132                 while (rdev->use_count--)
4133                         regulator_disable(rdev->supply);
4134                 regulator_put(rdev->supply);
4135         }
4136         mutex_lock(&regulator_list_mutex);
4137         debugfs_remove_recursive(rdev->debugfs);
4138         flush_work(&rdev->disable_work.work);
4139         WARN_ON(rdev->open_count);
4140         unset_regulator_supplies(rdev);
4141         list_del(&rdev->list);
4142         regulator_ena_gpio_free(rdev);
4143         mutex_unlock(&regulator_list_mutex);
4144         device_unregister(&rdev->dev);
4145 }
4146 EXPORT_SYMBOL_GPL(regulator_unregister);
4147
4148 static int _regulator_suspend_prepare(struct device *dev, void *data)
4149 {
4150         struct regulator_dev *rdev = dev_to_rdev(dev);
4151         const suspend_state_t *state = data;
4152         int ret;
4153
4154         mutex_lock(&rdev->mutex);
4155         ret = suspend_prepare(rdev, *state);
4156         mutex_unlock(&rdev->mutex);
4157
4158         return ret;
4159 }
4160
4161 /**
4162  * regulator_suspend_prepare - prepare regulators for system wide suspend
4163  * @state: system suspend state
4164  *
4165  * Configure each regulator with it's suspend operating parameters for state.
4166  * This will usually be called by machine suspend code prior to supending.
4167  */
4168 int regulator_suspend_prepare(suspend_state_t state)
4169 {
4170         /* ON is handled by regulator active state */
4171         if (state == PM_SUSPEND_ON)
4172                 return -EINVAL;
4173
4174         return class_for_each_device(&regulator_class, NULL, &state,
4175                                      _regulator_suspend_prepare);
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4178
4179 static int _regulator_suspend_finish(struct device *dev, void *data)
4180 {
4181         struct regulator_dev *rdev = dev_to_rdev(dev);
4182         int ret;
4183
4184         mutex_lock(&rdev->mutex);
4185         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4186                 if (!_regulator_is_enabled(rdev)) {
4187                         ret = _regulator_do_enable(rdev);
4188                         if (ret)
4189                                 dev_err(dev,
4190                                         "Failed to resume regulator %d\n",
4191                                         ret);
4192                 }
4193         } else {
4194                 if (!have_full_constraints())
4195                         goto unlock;
4196                 if (!_regulator_is_enabled(rdev))
4197                         goto unlock;
4198
4199                 ret = _regulator_do_disable(rdev);
4200                 if (ret)
4201                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4202         }
4203 unlock:
4204         mutex_unlock(&rdev->mutex);
4205
4206         /* Keep processing regulators in spite of any errors */
4207         return 0;
4208 }
4209
4210 /**
4211  * regulator_suspend_finish - resume regulators from system wide suspend
4212  *
4213  * Turn on regulators that might be turned off by regulator_suspend_prepare
4214  * and that should be turned on according to the regulators properties.
4215  */
4216 int regulator_suspend_finish(void)
4217 {
4218         return class_for_each_device(&regulator_class, NULL, NULL,
4219                                      _regulator_suspend_finish);
4220 }
4221 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4222
4223 /**
4224  * regulator_has_full_constraints - the system has fully specified constraints
4225  *
4226  * Calling this function will cause the regulator API to disable all
4227  * regulators which have a zero use count and don't have an always_on
4228  * constraint in a late_initcall.
4229  *
4230  * The intention is that this will become the default behaviour in a
4231  * future kernel release so users are encouraged to use this facility
4232  * now.
4233  */
4234 void regulator_has_full_constraints(void)
4235 {
4236         has_full_constraints = 1;
4237 }
4238 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4239
4240 /**
4241  * rdev_get_drvdata - get rdev regulator driver data
4242  * @rdev: regulator
4243  *
4244  * Get rdev regulator driver private data. This call can be used in the
4245  * regulator driver context.
4246  */
4247 void *rdev_get_drvdata(struct regulator_dev *rdev)
4248 {
4249         return rdev->reg_data;
4250 }
4251 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4252
4253 /**
4254  * regulator_get_drvdata - get regulator driver data
4255  * @regulator: regulator
4256  *
4257  * Get regulator driver private data. This call can be used in the consumer
4258  * driver context when non API regulator specific functions need to be called.
4259  */
4260 void *regulator_get_drvdata(struct regulator *regulator)
4261 {
4262         return regulator->rdev->reg_data;
4263 }
4264 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4265
4266 /**
4267  * regulator_set_drvdata - set regulator driver data
4268  * @regulator: regulator
4269  * @data: data
4270  */
4271 void regulator_set_drvdata(struct regulator *regulator, void *data)
4272 {
4273         regulator->rdev->reg_data = data;
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4276
4277 /**
4278  * regulator_get_id - get regulator ID
4279  * @rdev: regulator
4280  */
4281 int rdev_get_id(struct regulator_dev *rdev)
4282 {
4283         return rdev->desc->id;
4284 }
4285 EXPORT_SYMBOL_GPL(rdev_get_id);
4286
4287 struct device *rdev_get_dev(struct regulator_dev *rdev)
4288 {
4289         return &rdev->dev;
4290 }
4291 EXPORT_SYMBOL_GPL(rdev_get_dev);
4292
4293 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4294 {
4295         return reg_init_data->driver_data;
4296 }
4297 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4298
4299 #ifdef CONFIG_DEBUG_FS
4300 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4301                                     size_t count, loff_t *ppos)
4302 {
4303         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4304         ssize_t len, ret = 0;
4305         struct regulator_map *map;
4306
4307         if (!buf)
4308                 return -ENOMEM;
4309
4310         list_for_each_entry(map, &regulator_map_list, list) {
4311                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4312                                "%s -> %s.%s\n",
4313                                rdev_get_name(map->regulator), map->dev_name,
4314                                map->supply);
4315                 if (len >= 0)
4316                         ret += len;
4317                 if (ret > PAGE_SIZE) {
4318                         ret = PAGE_SIZE;
4319                         break;
4320                 }
4321         }
4322
4323         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4324
4325         kfree(buf);
4326
4327         return ret;
4328 }
4329 #endif
4330
4331 static const struct file_operations supply_map_fops = {
4332 #ifdef CONFIG_DEBUG_FS
4333         .read = supply_map_read_file,
4334         .llseek = default_llseek,
4335 #endif
4336 };
4337
4338 #ifdef CONFIG_DEBUG_FS
4339 struct summary_data {
4340         struct seq_file *s;
4341         struct regulator_dev *parent;
4342         int level;
4343 };
4344
4345 static void regulator_summary_show_subtree(struct seq_file *s,
4346                                            struct regulator_dev *rdev,
4347                                            int level);
4348
4349 static int regulator_summary_show_children(struct device *dev, void *data)
4350 {
4351         struct regulator_dev *rdev = dev_to_rdev(dev);
4352         struct summary_data *summary_data = data;
4353
4354         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4355                 regulator_summary_show_subtree(summary_data->s, rdev,
4356                                                summary_data->level + 1);
4357
4358         return 0;
4359 }
4360
4361 static void regulator_summary_show_subtree(struct seq_file *s,
4362                                            struct regulator_dev *rdev,
4363                                            int level)
4364 {
4365         struct regulation_constraints *c;
4366         struct regulator *consumer;
4367         struct summary_data summary_data;
4368
4369         if (!rdev)
4370                 return;
4371
4372         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4373                    level * 3 + 1, "",
4374                    30 - level * 3, rdev_get_name(rdev),
4375                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4376
4377         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4378         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4379
4380         c = rdev->constraints;
4381         if (c) {
4382                 switch (rdev->desc->type) {
4383                 case REGULATOR_VOLTAGE:
4384                         seq_printf(s, "%5dmV %5dmV ",
4385                                    c->min_uV / 1000, c->max_uV / 1000);
4386                         break;
4387                 case REGULATOR_CURRENT:
4388                         seq_printf(s, "%5dmA %5dmA ",
4389                                    c->min_uA / 1000, c->max_uA / 1000);
4390                         break;
4391                 }
4392         }
4393
4394         seq_puts(s, "\n");
4395
4396         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4397                 if (consumer->dev && consumer->dev->class == &regulator_class)
4398                         continue;
4399
4400                 seq_printf(s, "%*s%-*s ",
4401                            (level + 1) * 3 + 1, "",
4402                            30 - (level + 1) * 3,
4403                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4404
4405                 switch (rdev->desc->type) {
4406                 case REGULATOR_VOLTAGE:
4407                         seq_printf(s, "%37dmV %5dmV",
4408                                    consumer->min_uV / 1000,
4409                                    consumer->max_uV / 1000);
4410                         break;
4411                 case REGULATOR_CURRENT:
4412                         break;
4413                 }
4414
4415                 seq_puts(s, "\n");
4416         }
4417
4418         summary_data.s = s;
4419         summary_data.level = level;
4420         summary_data.parent = rdev;
4421
4422         class_for_each_device(&regulator_class, NULL, &summary_data,
4423                               regulator_summary_show_children);
4424 }
4425
4426 static int regulator_summary_show_roots(struct device *dev, void *data)
4427 {
4428         struct regulator_dev *rdev = dev_to_rdev(dev);
4429         struct seq_file *s = data;
4430
4431         if (!rdev->supply)
4432                 regulator_summary_show_subtree(s, rdev, 0);
4433
4434         return 0;
4435 }
4436
4437 static int regulator_summary_show(struct seq_file *s, void *data)
4438 {
4439         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4440         seq_puts(s, "-------------------------------------------------------------------------------\n");
4441
4442         class_for_each_device(&regulator_class, NULL, s,
4443                               regulator_summary_show_roots);
4444
4445         return 0;
4446 }
4447
4448 static int regulator_summary_open(struct inode *inode, struct file *file)
4449 {
4450         return single_open(file, regulator_summary_show, inode->i_private);
4451 }
4452 #endif
4453
4454 static const struct file_operations regulator_summary_fops = {
4455 #ifdef CONFIG_DEBUG_FS
4456         .open           = regulator_summary_open,
4457         .read           = seq_read,
4458         .llseek         = seq_lseek,
4459         .release        = single_release,
4460 #endif
4461 };
4462
4463 static int __init regulator_init(void)
4464 {
4465         int ret;
4466
4467         ret = class_register(&regulator_class);
4468
4469         debugfs_root = debugfs_create_dir("regulator", NULL);
4470         if (!debugfs_root)
4471                 pr_warn("regulator: Failed to create debugfs directory\n");
4472
4473         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4474                             &supply_map_fops);
4475
4476         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4477                             NULL, &regulator_summary_fops);
4478
4479         regulator_dummy_init();
4480
4481         return ret;
4482 }
4483
4484 /* init early to allow our consumers to complete system booting */
4485 core_initcall(regulator_init);
4486
4487 static int __init regulator_late_cleanup(struct device *dev, void *data)
4488 {
4489         struct regulator_dev *rdev = dev_to_rdev(dev);
4490         const struct regulator_ops *ops = rdev->desc->ops;
4491         struct regulation_constraints *c = rdev->constraints;
4492         int enabled, ret;
4493
4494         if (c && c->always_on)
4495                 return 0;
4496
4497         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4498                 return 0;
4499
4500         mutex_lock(&rdev->mutex);
4501
4502         if (rdev->use_count)
4503                 goto unlock;
4504
4505         /* If we can't read the status assume it's on. */
4506         if (ops->is_enabled)
4507                 enabled = ops->is_enabled(rdev);
4508         else
4509                 enabled = 1;
4510
4511         if (!enabled)
4512                 goto unlock;
4513
4514         if (have_full_constraints()) {
4515                 /* We log since this may kill the system if it goes
4516                  * wrong. */
4517                 rdev_info(rdev, "disabling\n");
4518                 ret = _regulator_do_disable(rdev);
4519                 if (ret != 0)
4520                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4521         } else {
4522                 /* The intention is that in future we will
4523                  * assume that full constraints are provided
4524                  * so warn even if we aren't going to do
4525                  * anything here.
4526                  */
4527                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4528         }
4529
4530 unlock:
4531         mutex_unlock(&rdev->mutex);
4532
4533         return 0;
4534 }
4535
4536 static int __init regulator_init_complete(void)
4537 {
4538         /*
4539          * Since DT doesn't provide an idiomatic mechanism for
4540          * enabling full constraints and since it's much more natural
4541          * with DT to provide them just assume that a DT enabled
4542          * system has full constraints.
4543          */
4544         if (of_have_populated_dt())
4545                 has_full_constraints = true;
4546
4547         /*
4548          * Regulators may had failed to resolve their input supplies
4549          * when were registered, either because the input supply was
4550          * not registered yet or because its parent device was not
4551          * bound yet. So attempt to resolve the input supplies for
4552          * pending regulators before trying to disable unused ones.
4553          */
4554         class_for_each_device(&regulator_class, NULL, NULL,
4555                               regulator_register_resolve_supply);
4556
4557         /* If we have a full configuration then disable any regulators
4558          * we have permission to change the status for and which are
4559          * not in use or always_on.  This is effectively the default
4560          * for DT and ACPI as they have full constraints.
4561          */
4562         class_for_each_device(&regulator_class, NULL, NULL,
4563                               regulator_late_cleanup);
4564
4565         return 0;
4566 }
4567 late_initcall_sync(regulator_init_complete);