]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/regulator/core.c
regulator: core: simplify regulator_bulk_force_disable()
[linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038         const struct regulation_constraints *constraints)
1039 {
1040         int ret = 0;
1041         const struct regulator_ops *ops = rdev->desc->ops;
1042
1043         if (constraints)
1044                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045                                             GFP_KERNEL);
1046         else
1047                 rdev->constraints = kzalloc(sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         if (!rdev->constraints)
1050                 return -ENOMEM;
1051
1052         ret = machine_constraints_voltage(rdev, rdev->constraints);
1053         if (ret != 0)
1054                 return ret;
1055
1056         ret = machine_constraints_current(rdev, rdev->constraints);
1057         if (ret != 0)
1058                 return ret;
1059
1060         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061                 ret = ops->set_input_current_limit(rdev,
1062                                                    rdev->constraints->ilim_uA);
1063                 if (ret < 0) {
1064                         rdev_err(rdev, "failed to set input limit\n");
1065                         return ret;
1066                 }
1067         }
1068
1069         /* do we need to setup our suspend state */
1070         if (rdev->constraints->initial_state) {
1071                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set suspend state\n");
1074                         return ret;
1075                 }
1076         }
1077
1078         if (rdev->constraints->initial_mode) {
1079                 if (!ops->set_mode) {
1080                         rdev_err(rdev, "no set_mode operation\n");
1081                         return -EINVAL;
1082                 }
1083
1084                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087                         return ret;
1088                 }
1089         }
1090
1091         /* If the constraints say the regulator should be on at this point
1092          * and we have control then make sure it is enabled.
1093          */
1094         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095                 ret = _regulator_do_enable(rdev);
1096                 if (ret < 0 && ret != -EINVAL) {
1097                         rdev_err(rdev, "failed to enable\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103                 && ops->set_ramp_delay) {
1104                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105                 if (ret < 0) {
1106                         rdev_err(rdev, "failed to set ramp_delay\n");
1107                         return ret;
1108                 }
1109         }
1110
1111         if (rdev->constraints->pull_down && ops->set_pull_down) {
1112                 ret = ops->set_pull_down(rdev);
1113                 if (ret < 0) {
1114                         rdev_err(rdev, "failed to set pull down\n");
1115                         return ret;
1116                 }
1117         }
1118
1119         if (rdev->constraints->soft_start && ops->set_soft_start) {
1120                 ret = ops->set_soft_start(rdev);
1121                 if (ret < 0) {
1122                         rdev_err(rdev, "failed to set soft start\n");
1123                         return ret;
1124                 }
1125         }
1126
1127         if (rdev->constraints->over_current_protection
1128                 && ops->set_over_current_protection) {
1129                 ret = ops->set_over_current_protection(rdev);
1130                 if (ret < 0) {
1131                         rdev_err(rdev, "failed to set over current protection\n");
1132                         return ret;
1133                 }
1134         }
1135
1136         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137                 bool ad_state = (rdev->constraints->active_discharge ==
1138                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140                 ret = ops->set_active_discharge(rdev, ad_state);
1141                 if (ret < 0) {
1142                         rdev_err(rdev, "failed to set active discharge\n");
1143                         return ret;
1144                 }
1145         }
1146
1147         print_constraints(rdev);
1148         return 0;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260                                           char __user *user_buf,
1261                                           size_t count, loff_t *ppos)
1262 {
1263         const struct regulator *regulator = file->private_data;
1264         const struct regulation_constraints *c = regulator->rdev->constraints;
1265         char *buf;
1266         ssize_t ret;
1267
1268         if (!c)
1269                 return 0;
1270
1271         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272         if (!buf)
1273                 return -ENOMEM;
1274
1275         ret = snprintf(buf, PAGE_SIZE,
1276                         "always_on: %u\n"
1277                         "boot_on: %u\n"
1278                         "apply_uV: %u\n"
1279                         "ramp_disable: %u\n"
1280                         "soft_start: %u\n"
1281                         "pull_down: %u\n"
1282                         "over_current_protection: %u\n",
1283                         c->always_on,
1284                         c->boot_on,
1285                         c->apply_uV,
1286                         c->ramp_disable,
1287                         c->soft_start,
1288                         c->pull_down,
1289                         c->over_current_protection);
1290
1291         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292         kfree(buf);
1293
1294         return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301         .open = simple_open,
1302         .read = constraint_flags_read_file,
1303         .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE    64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310                                           struct device *dev,
1311                                           const char *supply_name)
1312 {
1313         struct regulator *regulator;
1314         char buf[REG_STR_SIZE];
1315         int err, size;
1316
1317         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318         if (regulator == NULL)
1319                 return NULL;
1320
1321         mutex_lock(&rdev->mutex);
1322         regulator->rdev = rdev;
1323         list_add(&regulator->list, &rdev->consumer_list);
1324
1325         if (dev) {
1326                 regulator->dev = dev;
1327
1328                 /* Add a link to the device sysfs entry */
1329                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330                                  dev->kobj.name, supply_name);
1331                 if (size >= REG_STR_SIZE)
1332                         goto overflow_err;
1333
1334                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335                 if (regulator->supply_name == NULL)
1336                         goto overflow_err;
1337
1338                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339                                         buf);
1340                 if (err) {
1341                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1342                                   dev->kobj.name, err);
1343                         /* non-fatal */
1344                 }
1345         } else {
1346                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347                 if (regulator->supply_name == NULL)
1348                         goto overflow_err;
1349         }
1350
1351         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352                                                 rdev->debugfs);
1353         if (!regulator->debugfs) {
1354                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355         } else {
1356                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357                                    &regulator->uA_load);
1358                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359                                    &regulator->min_uV);
1360                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361                                    &regulator->max_uV);
1362                 debugfs_create_file("constraint_flags", 0444,
1363                                     regulator->debugfs, regulator,
1364                                     &constraint_flags_fops);
1365         }
1366
1367         /*
1368          * Check now if the regulator is an always on regulator - if
1369          * it is then we don't need to do nearly so much work for
1370          * enable/disable calls.
1371          */
1372         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373             _regulator_is_enabled(rdev))
1374                 regulator->always_on = true;
1375
1376         mutex_unlock(&rdev->mutex);
1377         return regulator;
1378 overflow_err:
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381         mutex_unlock(&rdev->mutex);
1382         return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387         if (rdev->constraints && rdev->constraints->enable_time)
1388                 return rdev->constraints->enable_time;
1389         if (!rdev->desc->ops->enable_time)
1390                 return rdev->desc->enable_time;
1391         return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395                 struct device *dev, const char *supply)
1396 {
1397         struct regulator_supply_alias *map;
1398
1399         list_for_each_entry(map, &regulator_supply_alias_list, list)
1400                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401                         return map;
1402
1403         return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408         struct regulator_supply_alias *map;
1409
1410         map = regulator_find_supply_alias(*dev, *supply);
1411         if (map) {
1412                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413                                 *supply, map->alias_supply,
1414                                 dev_name(map->alias_dev));
1415                 *dev = map->alias_dev;
1416                 *supply = map->alias_supply;
1417         }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422         return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427         struct device *dev;
1428
1429         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431         return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436         struct regulator_dev *r = dev_to_rdev(dev);
1437
1438         return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443         struct device *dev;
1444
1445         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447         return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one,
1459  * or NULL on failure. The refcount must be dropped by calling put_device().
1460  */
1461 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462                                                   const char *supply,
1463                                                   int *ret)
1464 {
1465         struct regulator_dev *r;
1466         struct device_node *node;
1467         struct regulator_map *map;
1468         const char *devname = NULL;
1469
1470         regulator_supply_alias(&dev, &supply);
1471
1472         /* first do a dt based lookup */
1473         if (dev && dev->of_node) {
1474                 node = of_get_regulator(dev, supply);
1475                 if (node) {
1476                         r = of_find_regulator_by_node(node);
1477                         if (r)
1478                                 return r;
1479                         *ret = -EPROBE_DEFER;
1480                         return NULL;
1481                 } else {
1482                         /*
1483                          * If we couldn't even get the node then it's
1484                          * not just that the device didn't register
1485                          * yet, there's no node and we'll never
1486                          * succeed.
1487                          */
1488                         *ret = -ENODEV;
1489                 }
1490         }
1491
1492         /* if not found, try doing it non-dt way */
1493         if (dev)
1494                 devname = dev_name(dev);
1495
1496         r = regulator_lookup_by_name(supply);
1497         if (r)
1498                 return r;
1499
1500         mutex_lock(&regulator_list_mutex);
1501         list_for_each_entry(map, &regulator_map_list, list) {
1502                 /* If the mapping has a device set up it must match */
1503                 if (map->dev_name &&
1504                     (!devname || strcmp(map->dev_name, devname)))
1505                         continue;
1506
1507                 if (strcmp(map->supply, supply) == 0 &&
1508                     get_device(&map->regulator->dev)) {
1509                         mutex_unlock(&regulator_list_mutex);
1510                         return map->regulator;
1511                 }
1512         }
1513         mutex_unlock(&regulator_list_mutex);
1514
1515         return NULL;
1516 }
1517
1518 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 {
1520         struct regulator_dev *r;
1521         struct device *dev = rdev->dev.parent;
1522         int ret;
1523
1524         /* No supply to resovle? */
1525         if (!rdev->supply_name)
1526                 return 0;
1527
1528         /* Supply already resolved? */
1529         if (rdev->supply)
1530                 return 0;
1531
1532         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533         if (!r) {
1534                 if (ret == -ENODEV) {
1535                         /*
1536                          * No supply was specified for this regulator and
1537                          * there will never be one.
1538                          */
1539                         return 0;
1540                 }
1541
1542                 /* Did the lookup explicitly defer for us? */
1543                 if (ret == -EPROBE_DEFER)
1544                         return ret;
1545
1546                 if (have_full_constraints()) {
1547                         r = dummy_regulator_rdev;
1548                         get_device(&r->dev);
1549                 } else {
1550                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551                                 rdev->supply_name, rdev->desc->name);
1552                         return -EPROBE_DEFER;
1553                 }
1554         }
1555
1556         /* Recursively resolve the supply of the supply */
1557         ret = regulator_resolve_supply(r);
1558         if (ret < 0) {
1559                 put_device(&r->dev);
1560                 return ret;
1561         }
1562
1563         ret = set_supply(rdev, r);
1564         if (ret < 0) {
1565                 put_device(&r->dev);
1566                 return ret;
1567         }
1568
1569         /* Cascade always-on state to supply */
1570         if (_regulator_is_enabled(rdev)) {
1571                 ret = regulator_enable(rdev->supply);
1572                 if (ret < 0) {
1573                         _regulator_put(rdev->supply);
1574                         rdev->supply = NULL;
1575                         return ret;
1576                 }
1577         }
1578
1579         return 0;
1580 }
1581
1582 /* Internal regulator request function */
1583 struct regulator *_regulator_get(struct device *dev, const char *id,
1584                                  enum regulator_get_type get_type)
1585 {
1586         struct regulator_dev *rdev;
1587         struct regulator *regulator;
1588         const char *devname = NULL;
1589         int ret;
1590
1591         if (get_type >= MAX_GET_TYPE) {
1592                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1593                 return ERR_PTR(-EINVAL);
1594         }
1595
1596         if (id == NULL) {
1597                 pr_err("get() with no identifier\n");
1598                 return ERR_PTR(-EINVAL);
1599         }
1600
1601         if (dev)
1602                 devname = dev_name(dev);
1603
1604         rdev = regulator_dev_lookup(dev, id, &ret);
1605         if (rdev)
1606                 goto found;
1607
1608         regulator = ERR_PTR(ret);
1609
1610         /*
1611          * If we have return value from dev_lookup fail, we do not expect to
1612          * succeed, so, quit with appropriate error value
1613          */
1614         if (ret && ret != -ENODEV)
1615                 return regulator;
1616
1617         if (!devname)
1618                 devname = "deviceless";
1619
1620         /*
1621          * Assume that a regulator is physically present and enabled
1622          * even if it isn't hooked up and just provide a dummy.
1623          */
1624         if (have_full_constraints() && get_type == NORMAL_GET) {
1625                 pr_warn("%s supply %s not found, using dummy regulator\n",
1626                         devname, id);
1627
1628                 rdev = dummy_regulator_rdev;
1629                 get_device(&rdev->dev);
1630                 goto found;
1631         /* Don't log an error when called from regulator_get_optional() */
1632         } else if (!have_full_constraints() || get_type == EXCLUSIVE_GET) {
1633                 dev_warn(dev, "dummy supplies not allowed\n");
1634         }
1635
1636         return regulator;
1637
1638 found:
1639         if (rdev->exclusive) {
1640                 regulator = ERR_PTR(-EPERM);
1641                 put_device(&rdev->dev);
1642                 return regulator;
1643         }
1644
1645         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1646                 regulator = ERR_PTR(-EBUSY);
1647                 put_device(&rdev->dev);
1648                 return regulator;
1649         }
1650
1651         ret = regulator_resolve_supply(rdev);
1652         if (ret < 0) {
1653                 regulator = ERR_PTR(ret);
1654                 put_device(&rdev->dev);
1655                 return regulator;
1656         }
1657
1658         if (!try_module_get(rdev->owner)) {
1659                 regulator = ERR_PTR(-EPROBE_DEFER);
1660                 put_device(&rdev->dev);
1661                 return regulator;
1662         }
1663
1664         regulator = create_regulator(rdev, dev, id);
1665         if (regulator == NULL) {
1666                 regulator = ERR_PTR(-ENOMEM);
1667                 put_device(&rdev->dev);
1668                 module_put(rdev->owner);
1669                 return regulator;
1670         }
1671
1672         rdev->open_count++;
1673         if (get_type == EXCLUSIVE_GET) {
1674                 rdev->exclusive = 1;
1675
1676                 ret = _regulator_is_enabled(rdev);
1677                 if (ret > 0)
1678                         rdev->use_count = 1;
1679                 else
1680                         rdev->use_count = 0;
1681         }
1682
1683         return regulator;
1684 }
1685
1686 /**
1687  * regulator_get - lookup and obtain a reference to a regulator.
1688  * @dev: device for regulator "consumer"
1689  * @id: Supply name or regulator ID.
1690  *
1691  * Returns a struct regulator corresponding to the regulator producer,
1692  * or IS_ERR() condition containing errno.
1693  *
1694  * Use of supply names configured via regulator_set_device_supply() is
1695  * strongly encouraged.  It is recommended that the supply name used
1696  * should match the name used for the supply and/or the relevant
1697  * device pins in the datasheet.
1698  */
1699 struct regulator *regulator_get(struct device *dev, const char *id)
1700 {
1701         return _regulator_get(dev, id, NORMAL_GET);
1702 }
1703 EXPORT_SYMBOL_GPL(regulator_get);
1704
1705 /**
1706  * regulator_get_exclusive - obtain exclusive access to a regulator.
1707  * @dev: device for regulator "consumer"
1708  * @id: Supply name or regulator ID.
1709  *
1710  * Returns a struct regulator corresponding to the regulator producer,
1711  * or IS_ERR() condition containing errno.  Other consumers will be
1712  * unable to obtain this regulator while this reference is held and the
1713  * use count for the regulator will be initialised to reflect the current
1714  * state of the regulator.
1715  *
1716  * This is intended for use by consumers which cannot tolerate shared
1717  * use of the regulator such as those which need to force the
1718  * regulator off for correct operation of the hardware they are
1719  * controlling.
1720  *
1721  * Use of supply names configured via regulator_set_device_supply() is
1722  * strongly encouraged.  It is recommended that the supply name used
1723  * should match the name used for the supply and/or the relevant
1724  * device pins in the datasheet.
1725  */
1726 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1727 {
1728         return _regulator_get(dev, id, EXCLUSIVE_GET);
1729 }
1730 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1731
1732 /**
1733  * regulator_get_optional - obtain optional access to a regulator.
1734  * @dev: device for regulator "consumer"
1735  * @id: Supply name or regulator ID.
1736  *
1737  * Returns a struct regulator corresponding to the regulator producer,
1738  * or IS_ERR() condition containing errno.
1739  *
1740  * This is intended for use by consumers for devices which can have
1741  * some supplies unconnected in normal use, such as some MMC devices.
1742  * It can allow the regulator core to provide stub supplies for other
1743  * supplies requested using normal regulator_get() calls without
1744  * disrupting the operation of drivers that can handle absent
1745  * supplies.
1746  *
1747  * Use of supply names configured via regulator_set_device_supply() is
1748  * strongly encouraged.  It is recommended that the supply name used
1749  * should match the name used for the supply and/or the relevant
1750  * device pins in the datasheet.
1751  */
1752 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1753 {
1754         return _regulator_get(dev, id, OPTIONAL_GET);
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_get_optional);
1757
1758 /* regulator_list_mutex lock held by regulator_put() */
1759 static void _regulator_put(struct regulator *regulator)
1760 {
1761         struct regulator_dev *rdev;
1762
1763         if (IS_ERR_OR_NULL(regulator))
1764                 return;
1765
1766         lockdep_assert_held_once(&regulator_list_mutex);
1767
1768         rdev = regulator->rdev;
1769
1770         debugfs_remove_recursive(regulator->debugfs);
1771
1772         /* remove any sysfs entries */
1773         if (regulator->dev)
1774                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1775         mutex_lock(&rdev->mutex);
1776         list_del(&regulator->list);
1777
1778         rdev->open_count--;
1779         rdev->exclusive = 0;
1780         put_device(&rdev->dev);
1781         mutex_unlock(&rdev->mutex);
1782
1783         kfree(regulator->supply_name);
1784         kfree(regulator);
1785
1786         module_put(rdev->owner);
1787 }
1788
1789 /**
1790  * regulator_put - "free" the regulator source
1791  * @regulator: regulator source
1792  *
1793  * Note: drivers must ensure that all regulator_enable calls made on this
1794  * regulator source are balanced by regulator_disable calls prior to calling
1795  * this function.
1796  */
1797 void regulator_put(struct regulator *regulator)
1798 {
1799         mutex_lock(&regulator_list_mutex);
1800         _regulator_put(regulator);
1801         mutex_unlock(&regulator_list_mutex);
1802 }
1803 EXPORT_SYMBOL_GPL(regulator_put);
1804
1805 /**
1806  * regulator_register_supply_alias - Provide device alias for supply lookup
1807  *
1808  * @dev: device that will be given as the regulator "consumer"
1809  * @id: Supply name or regulator ID
1810  * @alias_dev: device that should be used to lookup the supply
1811  * @alias_id: Supply name or regulator ID that should be used to lookup the
1812  * supply
1813  *
1814  * All lookups for id on dev will instead be conducted for alias_id on
1815  * alias_dev.
1816  */
1817 int regulator_register_supply_alias(struct device *dev, const char *id,
1818                                     struct device *alias_dev,
1819                                     const char *alias_id)
1820 {
1821         struct regulator_supply_alias *map;
1822
1823         map = regulator_find_supply_alias(dev, id);
1824         if (map)
1825                 return -EEXIST;
1826
1827         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1828         if (!map)
1829                 return -ENOMEM;
1830
1831         map->src_dev = dev;
1832         map->src_supply = id;
1833         map->alias_dev = alias_dev;
1834         map->alias_supply = alias_id;
1835
1836         list_add(&map->list, &regulator_supply_alias_list);
1837
1838         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1839                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1840
1841         return 0;
1842 }
1843 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1844
1845 /**
1846  * regulator_unregister_supply_alias - Remove device alias
1847  *
1848  * @dev: device that will be given as the regulator "consumer"
1849  * @id: Supply name or regulator ID
1850  *
1851  * Remove a lookup alias if one exists for id on dev.
1852  */
1853 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1854 {
1855         struct regulator_supply_alias *map;
1856
1857         map = regulator_find_supply_alias(dev, id);
1858         if (map) {
1859                 list_del(&map->list);
1860                 kfree(map);
1861         }
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1864
1865 /**
1866  * regulator_bulk_register_supply_alias - register multiple aliases
1867  *
1868  * @dev: device that will be given as the regulator "consumer"
1869  * @id: List of supply names or regulator IDs
1870  * @alias_dev: device that should be used to lookup the supply
1871  * @alias_id: List of supply names or regulator IDs that should be used to
1872  * lookup the supply
1873  * @num_id: Number of aliases to register
1874  *
1875  * @return 0 on success, an errno on failure.
1876  *
1877  * This helper function allows drivers to register several supply
1878  * aliases in one operation.  If any of the aliases cannot be
1879  * registered any aliases that were registered will be removed
1880  * before returning to the caller.
1881  */
1882 int regulator_bulk_register_supply_alias(struct device *dev,
1883                                          const char *const *id,
1884                                          struct device *alias_dev,
1885                                          const char *const *alias_id,
1886                                          int num_id)
1887 {
1888         int i;
1889         int ret;
1890
1891         for (i = 0; i < num_id; ++i) {
1892                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1893                                                       alias_id[i]);
1894                 if (ret < 0)
1895                         goto err;
1896         }
1897
1898         return 0;
1899
1900 err:
1901         dev_err(dev,
1902                 "Failed to create supply alias %s,%s -> %s,%s\n",
1903                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1904
1905         while (--i >= 0)
1906                 regulator_unregister_supply_alias(dev, id[i]);
1907
1908         return ret;
1909 }
1910 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1911
1912 /**
1913  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1914  *
1915  * @dev: device that will be given as the regulator "consumer"
1916  * @id: List of supply names or regulator IDs
1917  * @num_id: Number of aliases to unregister
1918  *
1919  * This helper function allows drivers to unregister several supply
1920  * aliases in one operation.
1921  */
1922 void regulator_bulk_unregister_supply_alias(struct device *dev,
1923                                             const char *const *id,
1924                                             int num_id)
1925 {
1926         int i;
1927
1928         for (i = 0; i < num_id; ++i)
1929                 regulator_unregister_supply_alias(dev, id[i]);
1930 }
1931 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1932
1933
1934 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1935 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1936                                 const struct regulator_config *config)
1937 {
1938         struct regulator_enable_gpio *pin;
1939         struct gpio_desc *gpiod;
1940         int ret;
1941
1942         gpiod = gpio_to_desc(config->ena_gpio);
1943
1944         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1945                 if (pin->gpiod == gpiod) {
1946                         rdev_dbg(rdev, "GPIO %d is already used\n",
1947                                 config->ena_gpio);
1948                         goto update_ena_gpio_to_rdev;
1949                 }
1950         }
1951
1952         ret = gpio_request_one(config->ena_gpio,
1953                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1954                                 rdev_get_name(rdev));
1955         if (ret)
1956                 return ret;
1957
1958         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1959         if (pin == NULL) {
1960                 gpio_free(config->ena_gpio);
1961                 return -ENOMEM;
1962         }
1963
1964         pin->gpiod = gpiod;
1965         pin->ena_gpio_invert = config->ena_gpio_invert;
1966         list_add(&pin->list, &regulator_ena_gpio_list);
1967
1968 update_ena_gpio_to_rdev:
1969         pin->request_count++;
1970         rdev->ena_pin = pin;
1971         return 0;
1972 }
1973
1974 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1975 {
1976         struct regulator_enable_gpio *pin, *n;
1977
1978         if (!rdev->ena_pin)
1979                 return;
1980
1981         /* Free the GPIO only in case of no use */
1982         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1983                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1984                         if (pin->request_count <= 1) {
1985                                 pin->request_count = 0;
1986                                 gpiod_put(pin->gpiod);
1987                                 list_del(&pin->list);
1988                                 kfree(pin);
1989                                 rdev->ena_pin = NULL;
1990                                 return;
1991                         } else {
1992                                 pin->request_count--;
1993                         }
1994                 }
1995         }
1996 }
1997
1998 /**
1999  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2000  * @rdev: regulator_dev structure
2001  * @enable: enable GPIO at initial use?
2002  *
2003  * GPIO is enabled in case of initial use. (enable_count is 0)
2004  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2005  */
2006 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2007 {
2008         struct regulator_enable_gpio *pin = rdev->ena_pin;
2009
2010         if (!pin)
2011                 return -EINVAL;
2012
2013         if (enable) {
2014                 /* Enable GPIO at initial use */
2015                 if (pin->enable_count == 0)
2016                         gpiod_set_value_cansleep(pin->gpiod,
2017                                                  !pin->ena_gpio_invert);
2018
2019                 pin->enable_count++;
2020         } else {
2021                 if (pin->enable_count > 1) {
2022                         pin->enable_count--;
2023                         return 0;
2024                 }
2025
2026                 /* Disable GPIO if not used */
2027                 if (pin->enable_count <= 1) {
2028                         gpiod_set_value_cansleep(pin->gpiod,
2029                                                  pin->ena_gpio_invert);
2030                         pin->enable_count = 0;
2031                 }
2032         }
2033
2034         return 0;
2035 }
2036
2037 /**
2038  * _regulator_enable_delay - a delay helper function
2039  * @delay: time to delay in microseconds
2040  *
2041  * Delay for the requested amount of time as per the guidelines in:
2042  *
2043  *     Documentation/timers/timers-howto.txt
2044  *
2045  * The assumption here is that regulators will never be enabled in
2046  * atomic context and therefore sleeping functions can be used.
2047  */
2048 static void _regulator_enable_delay(unsigned int delay)
2049 {
2050         unsigned int ms = delay / 1000;
2051         unsigned int us = delay % 1000;
2052
2053         if (ms > 0) {
2054                 /*
2055                  * For small enough values, handle super-millisecond
2056                  * delays in the usleep_range() call below.
2057                  */
2058                 if (ms < 20)
2059                         us += ms * 1000;
2060                 else
2061                         msleep(ms);
2062         }
2063
2064         /*
2065          * Give the scheduler some room to coalesce with any other
2066          * wakeup sources. For delays shorter than 10 us, don't even
2067          * bother setting up high-resolution timers and just busy-
2068          * loop.
2069          */
2070         if (us >= 10)
2071                 usleep_range(us, us + 100);
2072         else
2073                 udelay(us);
2074 }
2075
2076 static int _regulator_do_enable(struct regulator_dev *rdev)
2077 {
2078         int ret, delay;
2079
2080         /* Query before enabling in case configuration dependent.  */
2081         ret = _regulator_get_enable_time(rdev);
2082         if (ret >= 0) {
2083                 delay = ret;
2084         } else {
2085                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2086                 delay = 0;
2087         }
2088
2089         trace_regulator_enable(rdev_get_name(rdev));
2090
2091         if (rdev->desc->off_on_delay) {
2092                 /* if needed, keep a distance of off_on_delay from last time
2093                  * this regulator was disabled.
2094                  */
2095                 unsigned long start_jiffy = jiffies;
2096                 unsigned long intended, max_delay, remaining;
2097
2098                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2099                 intended = rdev->last_off_jiffy + max_delay;
2100
2101                 if (time_before(start_jiffy, intended)) {
2102                         /* calc remaining jiffies to deal with one-time
2103                          * timer wrapping.
2104                          * in case of multiple timer wrapping, either it can be
2105                          * detected by out-of-range remaining, or it cannot be
2106                          * detected and we gets a panelty of
2107                          * _regulator_enable_delay().
2108                          */
2109                         remaining = intended - start_jiffy;
2110                         if (remaining <= max_delay)
2111                                 _regulator_enable_delay(
2112                                                 jiffies_to_usecs(remaining));
2113                 }
2114         }
2115
2116         if (rdev->ena_pin) {
2117                 if (!rdev->ena_gpio_state) {
2118                         ret = regulator_ena_gpio_ctrl(rdev, true);
2119                         if (ret < 0)
2120                                 return ret;
2121                         rdev->ena_gpio_state = 1;
2122                 }
2123         } else if (rdev->desc->ops->enable) {
2124                 ret = rdev->desc->ops->enable(rdev);
2125                 if (ret < 0)
2126                         return ret;
2127         } else {
2128                 return -EINVAL;
2129         }
2130
2131         /* Allow the regulator to ramp; it would be useful to extend
2132          * this for bulk operations so that the regulators can ramp
2133          * together.  */
2134         trace_regulator_enable_delay(rdev_get_name(rdev));
2135
2136         _regulator_enable_delay(delay);
2137
2138         trace_regulator_enable_complete(rdev_get_name(rdev));
2139
2140         return 0;
2141 }
2142
2143 /* locks held by regulator_enable() */
2144 static int _regulator_enable(struct regulator_dev *rdev)
2145 {
2146         int ret;
2147
2148         lockdep_assert_held_once(&rdev->mutex);
2149
2150         /* check voltage and requested load before enabling */
2151         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2152                 drms_uA_update(rdev);
2153
2154         if (rdev->use_count == 0) {
2155                 /* The regulator may on if it's not switchable or left on */
2156                 ret = _regulator_is_enabled(rdev);
2157                 if (ret == -EINVAL || ret == 0) {
2158                         if (!regulator_ops_is_valid(rdev,
2159                                         REGULATOR_CHANGE_STATUS))
2160                                 return -EPERM;
2161
2162                         ret = _regulator_do_enable(rdev);
2163                         if (ret < 0)
2164                                 return ret;
2165
2166                 } else if (ret < 0) {
2167                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2168                         return ret;
2169                 }
2170                 /* Fallthrough on positive return values - already enabled */
2171         }
2172
2173         rdev->use_count++;
2174
2175         return 0;
2176 }
2177
2178 /**
2179  * regulator_enable - enable regulator output
2180  * @regulator: regulator source
2181  *
2182  * Request that the regulator be enabled with the regulator output at
2183  * the predefined voltage or current value.  Calls to regulator_enable()
2184  * must be balanced with calls to regulator_disable().
2185  *
2186  * NOTE: the output value can be set by other drivers, boot loader or may be
2187  * hardwired in the regulator.
2188  */
2189 int regulator_enable(struct regulator *regulator)
2190 {
2191         struct regulator_dev *rdev = regulator->rdev;
2192         int ret = 0;
2193
2194         if (regulator->always_on)
2195                 return 0;
2196
2197         if (rdev->supply) {
2198                 ret = regulator_enable(rdev->supply);
2199                 if (ret != 0)
2200                         return ret;
2201         }
2202
2203         mutex_lock(&rdev->mutex);
2204         ret = _regulator_enable(rdev);
2205         mutex_unlock(&rdev->mutex);
2206
2207         if (ret != 0 && rdev->supply)
2208                 regulator_disable(rdev->supply);
2209
2210         return ret;
2211 }
2212 EXPORT_SYMBOL_GPL(regulator_enable);
2213
2214 static int _regulator_do_disable(struct regulator_dev *rdev)
2215 {
2216         int ret;
2217
2218         trace_regulator_disable(rdev_get_name(rdev));
2219
2220         if (rdev->ena_pin) {
2221                 if (rdev->ena_gpio_state) {
2222                         ret = regulator_ena_gpio_ctrl(rdev, false);
2223                         if (ret < 0)
2224                                 return ret;
2225                         rdev->ena_gpio_state = 0;
2226                 }
2227
2228         } else if (rdev->desc->ops->disable) {
2229                 ret = rdev->desc->ops->disable(rdev);
2230                 if (ret != 0)
2231                         return ret;
2232         }
2233
2234         /* cares about last_off_jiffy only if off_on_delay is required by
2235          * device.
2236          */
2237         if (rdev->desc->off_on_delay)
2238                 rdev->last_off_jiffy = jiffies;
2239
2240         trace_regulator_disable_complete(rdev_get_name(rdev));
2241
2242         return 0;
2243 }
2244
2245 /* locks held by regulator_disable() */
2246 static int _regulator_disable(struct regulator_dev *rdev)
2247 {
2248         int ret = 0;
2249
2250         lockdep_assert_held_once(&rdev->mutex);
2251
2252         if (WARN(rdev->use_count <= 0,
2253                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2254                 return -EIO;
2255
2256         /* are we the last user and permitted to disable ? */
2257         if (rdev->use_count == 1 &&
2258             (rdev->constraints && !rdev->constraints->always_on)) {
2259
2260                 /* we are last user */
2261                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2262                         ret = _notifier_call_chain(rdev,
2263                                                    REGULATOR_EVENT_PRE_DISABLE,
2264                                                    NULL);
2265                         if (ret & NOTIFY_STOP_MASK)
2266                                 return -EINVAL;
2267
2268                         ret = _regulator_do_disable(rdev);
2269                         if (ret < 0) {
2270                                 rdev_err(rdev, "failed to disable\n");
2271                                 _notifier_call_chain(rdev,
2272                                                 REGULATOR_EVENT_ABORT_DISABLE,
2273                                                 NULL);
2274                                 return ret;
2275                         }
2276                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2277                                         NULL);
2278                 }
2279
2280                 rdev->use_count = 0;
2281         } else if (rdev->use_count > 1) {
2282                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2283                         drms_uA_update(rdev);
2284
2285                 rdev->use_count--;
2286         }
2287
2288         return ret;
2289 }
2290
2291 /**
2292  * regulator_disable - disable regulator output
2293  * @regulator: regulator source
2294  *
2295  * Disable the regulator output voltage or current.  Calls to
2296  * regulator_enable() must be balanced with calls to
2297  * regulator_disable().
2298  *
2299  * NOTE: this will only disable the regulator output if no other consumer
2300  * devices have it enabled, the regulator device supports disabling and
2301  * machine constraints permit this operation.
2302  */
2303 int regulator_disable(struct regulator *regulator)
2304 {
2305         struct regulator_dev *rdev = regulator->rdev;
2306         int ret = 0;
2307
2308         if (regulator->always_on)
2309                 return 0;
2310
2311         mutex_lock(&rdev->mutex);
2312         ret = _regulator_disable(rdev);
2313         mutex_unlock(&rdev->mutex);
2314
2315         if (ret == 0 && rdev->supply)
2316                 regulator_disable(rdev->supply);
2317
2318         return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_disable);
2321
2322 /* locks held by regulator_force_disable() */
2323 static int _regulator_force_disable(struct regulator_dev *rdev)
2324 {
2325         int ret = 0;
2326
2327         lockdep_assert_held_once(&rdev->mutex);
2328
2329         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2330                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2331         if (ret & NOTIFY_STOP_MASK)
2332                 return -EINVAL;
2333
2334         ret = _regulator_do_disable(rdev);
2335         if (ret < 0) {
2336                 rdev_err(rdev, "failed to force disable\n");
2337                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2338                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2339                 return ret;
2340         }
2341
2342         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2343                         REGULATOR_EVENT_DISABLE, NULL);
2344
2345         return 0;
2346 }
2347
2348 /**
2349  * regulator_force_disable - force disable regulator output
2350  * @regulator: regulator source
2351  *
2352  * Forcibly disable the regulator output voltage or current.
2353  * NOTE: this *will* disable the regulator output even if other consumer
2354  * devices have it enabled. This should be used for situations when device
2355  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2356  */
2357 int regulator_force_disable(struct regulator *regulator)
2358 {
2359         struct regulator_dev *rdev = regulator->rdev;
2360         int ret;
2361
2362         mutex_lock(&rdev->mutex);
2363         regulator->uA_load = 0;
2364         ret = _regulator_force_disable(regulator->rdev);
2365         mutex_unlock(&rdev->mutex);
2366
2367         if (rdev->supply)
2368                 while (rdev->open_count--)
2369                         regulator_disable(rdev->supply);
2370
2371         return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(regulator_force_disable);
2374
2375 static void regulator_disable_work(struct work_struct *work)
2376 {
2377         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2378                                                   disable_work.work);
2379         int count, i, ret;
2380
2381         mutex_lock(&rdev->mutex);
2382
2383         BUG_ON(!rdev->deferred_disables);
2384
2385         count = rdev->deferred_disables;
2386         rdev->deferred_disables = 0;
2387
2388         for (i = 0; i < count; i++) {
2389                 ret = _regulator_disable(rdev);
2390                 if (ret != 0)
2391                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2392         }
2393
2394         mutex_unlock(&rdev->mutex);
2395
2396         if (rdev->supply) {
2397                 for (i = 0; i < count; i++) {
2398                         ret = regulator_disable(rdev->supply);
2399                         if (ret != 0) {
2400                                 rdev_err(rdev,
2401                                          "Supply disable failed: %d\n", ret);
2402                         }
2403                 }
2404         }
2405 }
2406
2407 /**
2408  * regulator_disable_deferred - disable regulator output with delay
2409  * @regulator: regulator source
2410  * @ms: miliseconds until the regulator is disabled
2411  *
2412  * Execute regulator_disable() on the regulator after a delay.  This
2413  * is intended for use with devices that require some time to quiesce.
2414  *
2415  * NOTE: this will only disable the regulator output if no other consumer
2416  * devices have it enabled, the regulator device supports disabling and
2417  * machine constraints permit this operation.
2418  */
2419 int regulator_disable_deferred(struct regulator *regulator, int ms)
2420 {
2421         struct regulator_dev *rdev = regulator->rdev;
2422
2423         if (regulator->always_on)
2424                 return 0;
2425
2426         if (!ms)
2427                 return regulator_disable(regulator);
2428
2429         mutex_lock(&rdev->mutex);
2430         rdev->deferred_disables++;
2431         mutex_unlock(&rdev->mutex);
2432
2433         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2434                            msecs_to_jiffies(ms));
2435         return 0;
2436 }
2437 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2438
2439 static int _regulator_is_enabled(struct regulator_dev *rdev)
2440 {
2441         /* A GPIO control always takes precedence */
2442         if (rdev->ena_pin)
2443                 return rdev->ena_gpio_state;
2444
2445         /* If we don't know then assume that the regulator is always on */
2446         if (!rdev->desc->ops->is_enabled)
2447                 return 1;
2448
2449         return rdev->desc->ops->is_enabled(rdev);
2450 }
2451
2452 static int _regulator_list_voltage(struct regulator *regulator,
2453                                     unsigned selector, int lock)
2454 {
2455         struct regulator_dev *rdev = regulator->rdev;
2456         const struct regulator_ops *ops = rdev->desc->ops;
2457         int ret;
2458
2459         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2460                 return rdev->desc->fixed_uV;
2461
2462         if (ops->list_voltage) {
2463                 if (selector >= rdev->desc->n_voltages)
2464                         return -EINVAL;
2465                 if (lock)
2466                         mutex_lock(&rdev->mutex);
2467                 ret = ops->list_voltage(rdev, selector);
2468                 if (lock)
2469                         mutex_unlock(&rdev->mutex);
2470         } else if (rdev->supply) {
2471                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2472         } else {
2473                 return -EINVAL;
2474         }
2475
2476         if (ret > 0) {
2477                 if (ret < rdev->constraints->min_uV)
2478                         ret = 0;
2479                 else if (ret > rdev->constraints->max_uV)
2480                         ret = 0;
2481         }
2482
2483         return ret;
2484 }
2485
2486 /**
2487  * regulator_is_enabled - is the regulator output enabled
2488  * @regulator: regulator source
2489  *
2490  * Returns positive if the regulator driver backing the source/client
2491  * has requested that the device be enabled, zero if it hasn't, else a
2492  * negative errno code.
2493  *
2494  * Note that the device backing this regulator handle can have multiple
2495  * users, so it might be enabled even if regulator_enable() was never
2496  * called for this particular source.
2497  */
2498 int regulator_is_enabled(struct regulator *regulator)
2499 {
2500         int ret;
2501
2502         if (regulator->always_on)
2503                 return 1;
2504
2505         mutex_lock(&regulator->rdev->mutex);
2506         ret = _regulator_is_enabled(regulator->rdev);
2507         mutex_unlock(&regulator->rdev->mutex);
2508
2509         return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2512
2513 /**
2514  * regulator_count_voltages - count regulator_list_voltage() selectors
2515  * @regulator: regulator source
2516  *
2517  * Returns number of selectors, or negative errno.  Selectors are
2518  * numbered starting at zero, and typically correspond to bitfields
2519  * in hardware registers.
2520  */
2521 int regulator_count_voltages(struct regulator *regulator)
2522 {
2523         struct regulator_dev    *rdev = regulator->rdev;
2524
2525         if (rdev->desc->n_voltages)
2526                 return rdev->desc->n_voltages;
2527
2528         if (!rdev->supply)
2529                 return -EINVAL;
2530
2531         return regulator_count_voltages(rdev->supply);
2532 }
2533 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2534
2535 /**
2536  * regulator_list_voltage - enumerate supported voltages
2537  * @regulator: regulator source
2538  * @selector: identify voltage to list
2539  * Context: can sleep
2540  *
2541  * Returns a voltage that can be passed to @regulator_set_voltage(),
2542  * zero if this selector code can't be used on this system, or a
2543  * negative errno.
2544  */
2545 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2546 {
2547         return _regulator_list_voltage(regulator, selector, 1);
2548 }
2549 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2550
2551 /**
2552  * regulator_get_regmap - get the regulator's register map
2553  * @regulator: regulator source
2554  *
2555  * Returns the register map for the given regulator, or an ERR_PTR value
2556  * if the regulator doesn't use regmap.
2557  */
2558 struct regmap *regulator_get_regmap(struct regulator *regulator)
2559 {
2560         struct regmap *map = regulator->rdev->regmap;
2561
2562         return map ? map : ERR_PTR(-EOPNOTSUPP);
2563 }
2564
2565 /**
2566  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2567  * @regulator: regulator source
2568  * @vsel_reg: voltage selector register, output parameter
2569  * @vsel_mask: mask for voltage selector bitfield, output parameter
2570  *
2571  * Returns the hardware register offset and bitmask used for setting the
2572  * regulator voltage. This might be useful when configuring voltage-scaling
2573  * hardware or firmware that can make I2C requests behind the kernel's back,
2574  * for example.
2575  *
2576  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2577  * and 0 is returned, otherwise a negative errno is returned.
2578  */
2579 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2580                                          unsigned *vsel_reg,
2581                                          unsigned *vsel_mask)
2582 {
2583         struct regulator_dev *rdev = regulator->rdev;
2584         const struct regulator_ops *ops = rdev->desc->ops;
2585
2586         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2587                 return -EOPNOTSUPP;
2588
2589          *vsel_reg = rdev->desc->vsel_reg;
2590          *vsel_mask = rdev->desc->vsel_mask;
2591
2592          return 0;
2593 }
2594 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2595
2596 /**
2597  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2598  * @regulator: regulator source
2599  * @selector: identify voltage to list
2600  *
2601  * Converts the selector to a hardware-specific voltage selector that can be
2602  * directly written to the regulator registers. The address of the voltage
2603  * register can be determined by calling @regulator_get_hardware_vsel_register.
2604  *
2605  * On error a negative errno is returned.
2606  */
2607 int regulator_list_hardware_vsel(struct regulator *regulator,
2608                                  unsigned selector)
2609 {
2610         struct regulator_dev *rdev = regulator->rdev;
2611         const struct regulator_ops *ops = rdev->desc->ops;
2612
2613         if (selector >= rdev->desc->n_voltages)
2614                 return -EINVAL;
2615         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2616                 return -EOPNOTSUPP;
2617
2618         return selector;
2619 }
2620 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2621
2622 /**
2623  * regulator_get_linear_step - return the voltage step size between VSEL values
2624  * @regulator: regulator source
2625  *
2626  * Returns the voltage step size between VSEL values for linear
2627  * regulators, or return 0 if the regulator isn't a linear regulator.
2628  */
2629 unsigned int regulator_get_linear_step(struct regulator *regulator)
2630 {
2631         struct regulator_dev *rdev = regulator->rdev;
2632
2633         return rdev->desc->uV_step;
2634 }
2635 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2636
2637 /**
2638  * regulator_is_supported_voltage - check if a voltage range can be supported
2639  *
2640  * @regulator: Regulator to check.
2641  * @min_uV: Minimum required voltage in uV.
2642  * @max_uV: Maximum required voltage in uV.
2643  *
2644  * Returns a boolean or a negative error code.
2645  */
2646 int regulator_is_supported_voltage(struct regulator *regulator,
2647                                    int min_uV, int max_uV)
2648 {
2649         struct regulator_dev *rdev = regulator->rdev;
2650         int i, voltages, ret;
2651
2652         /* If we can't change voltage check the current voltage */
2653         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2654                 ret = regulator_get_voltage(regulator);
2655                 if (ret >= 0)
2656                         return min_uV <= ret && ret <= max_uV;
2657                 else
2658                         return ret;
2659         }
2660
2661         /* Any voltage within constrains range is fine? */
2662         if (rdev->desc->continuous_voltage_range)
2663                 return min_uV >= rdev->constraints->min_uV &&
2664                                 max_uV <= rdev->constraints->max_uV;
2665
2666         ret = regulator_count_voltages(regulator);
2667         if (ret < 0)
2668                 return ret;
2669         voltages = ret;
2670
2671         for (i = 0; i < voltages; i++) {
2672                 ret = regulator_list_voltage(regulator, i);
2673
2674                 if (ret >= min_uV && ret <= max_uV)
2675                         return 1;
2676         }
2677
2678         return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2681
2682 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2683                                  int max_uV)
2684 {
2685         const struct regulator_desc *desc = rdev->desc;
2686
2687         if (desc->ops->map_voltage)
2688                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2689
2690         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2691                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2692
2693         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2694                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2695
2696         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2697 }
2698
2699 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2700                                        int min_uV, int max_uV,
2701                                        unsigned *selector)
2702 {
2703         struct pre_voltage_change_data data;
2704         int ret;
2705
2706         data.old_uV = _regulator_get_voltage(rdev);
2707         data.min_uV = min_uV;
2708         data.max_uV = max_uV;
2709         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2710                                    &data);
2711         if (ret & NOTIFY_STOP_MASK)
2712                 return -EINVAL;
2713
2714         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2715         if (ret >= 0)
2716                 return ret;
2717
2718         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2719                              (void *)data.old_uV);
2720
2721         return ret;
2722 }
2723
2724 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2725                                            int uV, unsigned selector)
2726 {
2727         struct pre_voltage_change_data data;
2728         int ret;
2729
2730         data.old_uV = _regulator_get_voltage(rdev);
2731         data.min_uV = uV;
2732         data.max_uV = uV;
2733         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2734                                    &data);
2735         if (ret & NOTIFY_STOP_MASK)
2736                 return -EINVAL;
2737
2738         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2739         if (ret >= 0)
2740                 return ret;
2741
2742         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2743                              (void *)data.old_uV);
2744
2745         return ret;
2746 }
2747
2748 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2749                                        int old_uV, int new_uV)
2750 {
2751         unsigned int ramp_delay = 0;
2752
2753         if (rdev->constraints->ramp_delay)
2754                 ramp_delay = rdev->constraints->ramp_delay;
2755         else if (rdev->desc->ramp_delay)
2756                 ramp_delay = rdev->desc->ramp_delay;
2757
2758         if (ramp_delay == 0) {
2759                 rdev_dbg(rdev, "ramp_delay not set\n");
2760                 return 0;
2761         }
2762
2763         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2764 }
2765
2766 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2767                                      int min_uV, int max_uV)
2768 {
2769         int ret;
2770         int delay = 0;
2771         int best_val = 0;
2772         unsigned int selector;
2773         int old_selector = -1;
2774         const struct regulator_ops *ops = rdev->desc->ops;
2775         int old_uV = _regulator_get_voltage(rdev);
2776
2777         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2778
2779         min_uV += rdev->constraints->uV_offset;
2780         max_uV += rdev->constraints->uV_offset;
2781
2782         /*
2783          * If we can't obtain the old selector there is not enough
2784          * info to call set_voltage_time_sel().
2785          */
2786         if (_regulator_is_enabled(rdev) &&
2787             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2788                 old_selector = ops->get_voltage_sel(rdev);
2789                 if (old_selector < 0)
2790                         return old_selector;
2791         }
2792
2793         if (ops->set_voltage) {
2794                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2795                                                   &selector);
2796
2797                 if (ret >= 0) {
2798                         if (ops->list_voltage)
2799                                 best_val = ops->list_voltage(rdev,
2800                                                              selector);
2801                         else
2802                                 best_val = _regulator_get_voltage(rdev);
2803                 }
2804
2805         } else if (ops->set_voltage_sel) {
2806                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2807                 if (ret >= 0) {
2808                         best_val = ops->list_voltage(rdev, ret);
2809                         if (min_uV <= best_val && max_uV >= best_val) {
2810                                 selector = ret;
2811                                 if (old_selector == selector)
2812                                         ret = 0;
2813                                 else
2814                                         ret = _regulator_call_set_voltage_sel(
2815                                                 rdev, best_val, selector);
2816                         } else {
2817                                 ret = -EINVAL;
2818                         }
2819                 }
2820         } else {
2821                 ret = -EINVAL;
2822         }
2823
2824         if (ret)
2825                 goto out;
2826
2827         if (ops->set_voltage_time_sel) {
2828                 /*
2829                  * Call set_voltage_time_sel if successfully obtained
2830                  * old_selector
2831                  */
2832                 if (old_selector >= 0 && old_selector != selector)
2833                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2834                                                           selector);
2835         } else {
2836                 if (old_uV != best_val) {
2837                         if (ops->set_voltage_time)
2838                                 delay = ops->set_voltage_time(rdev, old_uV,
2839                                                               best_val);
2840                         else
2841                                 delay = _regulator_set_voltage_time(rdev,
2842                                                                     old_uV,
2843                                                                     best_val);
2844                 }
2845         }
2846
2847         if (delay < 0) {
2848                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2849                 delay = 0;
2850         }
2851
2852         /* Insert any necessary delays */
2853         if (delay >= 1000) {
2854                 mdelay(delay / 1000);
2855                 udelay(delay % 1000);
2856         } else if (delay) {
2857                 udelay(delay);
2858         }
2859
2860         if (best_val >= 0) {
2861                 unsigned long data = best_val;
2862
2863                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2864                                      (void *)data);
2865         }
2866
2867 out:
2868         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2869
2870         return ret;
2871 }
2872
2873 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2874                                           int min_uV, int max_uV)
2875 {
2876         struct regulator_dev *rdev = regulator->rdev;
2877         int ret = 0;
2878         int old_min_uV, old_max_uV;
2879         int current_uV;
2880         int best_supply_uV = 0;
2881         int supply_change_uV = 0;
2882
2883         /* If we're setting the same range as last time the change
2884          * should be a noop (some cpufreq implementations use the same
2885          * voltage for multiple frequencies, for example).
2886          */
2887         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2888                 goto out;
2889
2890         /* If we're trying to set a range that overlaps the current voltage,
2891          * return successfully even though the regulator does not support
2892          * changing the voltage.
2893          */
2894         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2895                 current_uV = _regulator_get_voltage(rdev);
2896                 if (min_uV <= current_uV && current_uV <= max_uV) {
2897                         regulator->min_uV = min_uV;
2898                         regulator->max_uV = max_uV;
2899                         goto out;
2900                 }
2901         }
2902
2903         /* sanity check */
2904         if (!rdev->desc->ops->set_voltage &&
2905             !rdev->desc->ops->set_voltage_sel) {
2906                 ret = -EINVAL;
2907                 goto out;
2908         }
2909
2910         /* constraints check */
2911         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2912         if (ret < 0)
2913                 goto out;
2914
2915         /* restore original values in case of error */
2916         old_min_uV = regulator->min_uV;
2917         old_max_uV = regulator->max_uV;
2918         regulator->min_uV = min_uV;
2919         regulator->max_uV = max_uV;
2920
2921         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2922         if (ret < 0)
2923                 goto out2;
2924
2925         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2926                                 !rdev->desc->ops->get_voltage)) {
2927                 int current_supply_uV;
2928                 int selector;
2929
2930                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2931                 if (selector < 0) {
2932                         ret = selector;
2933                         goto out2;
2934                 }
2935
2936                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2937                 if (best_supply_uV < 0) {
2938                         ret = best_supply_uV;
2939                         goto out2;
2940                 }
2941
2942                 best_supply_uV += rdev->desc->min_dropout_uV;
2943
2944                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2945                 if (current_supply_uV < 0) {
2946                         ret = current_supply_uV;
2947                         goto out2;
2948                 }
2949
2950                 supply_change_uV = best_supply_uV - current_supply_uV;
2951         }
2952
2953         if (supply_change_uV > 0) {
2954                 ret = regulator_set_voltage_unlocked(rdev->supply,
2955                                 best_supply_uV, INT_MAX);
2956                 if (ret) {
2957                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2958                                         ret);
2959                         goto out2;
2960                 }
2961         }
2962
2963         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2964         if (ret < 0)
2965                 goto out2;
2966
2967         if (supply_change_uV < 0) {
2968                 ret = regulator_set_voltage_unlocked(rdev->supply,
2969                                 best_supply_uV, INT_MAX);
2970                 if (ret)
2971                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2972                                         ret);
2973                 /* No need to fail here */
2974                 ret = 0;
2975         }
2976
2977 out:
2978         return ret;
2979 out2:
2980         regulator->min_uV = old_min_uV;
2981         regulator->max_uV = old_max_uV;
2982
2983         return ret;
2984 }
2985
2986 /**
2987  * regulator_set_voltage - set regulator output voltage
2988  * @regulator: regulator source
2989  * @min_uV: Minimum required voltage in uV
2990  * @max_uV: Maximum acceptable voltage in uV
2991  *
2992  * Sets a voltage regulator to the desired output voltage. This can be set
2993  * during any regulator state. IOW, regulator can be disabled or enabled.
2994  *
2995  * If the regulator is enabled then the voltage will change to the new value
2996  * immediately otherwise if the regulator is disabled the regulator will
2997  * output at the new voltage when enabled.
2998  *
2999  * NOTE: If the regulator is shared between several devices then the lowest
3000  * request voltage that meets the system constraints will be used.
3001  * Regulator system constraints must be set for this regulator before
3002  * calling this function otherwise this call will fail.
3003  */
3004 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3005 {
3006         int ret = 0;
3007
3008         regulator_lock_supply(regulator->rdev);
3009
3010         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3011
3012         regulator_unlock_supply(regulator->rdev);
3013
3014         return ret;
3015 }
3016 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3017
3018 /**
3019  * regulator_set_voltage_time - get raise/fall time
3020  * @regulator: regulator source
3021  * @old_uV: starting voltage in microvolts
3022  * @new_uV: target voltage in microvolts
3023  *
3024  * Provided with the starting and ending voltage, this function attempts to
3025  * calculate the time in microseconds required to rise or fall to this new
3026  * voltage.
3027  */
3028 int regulator_set_voltage_time(struct regulator *regulator,
3029                                int old_uV, int new_uV)
3030 {
3031         struct regulator_dev *rdev = regulator->rdev;
3032         const struct regulator_ops *ops = rdev->desc->ops;
3033         int old_sel = -1;
3034         int new_sel = -1;
3035         int voltage;
3036         int i;
3037
3038         if (ops->set_voltage_time)
3039                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3040         else if (!ops->set_voltage_time_sel)
3041                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3042
3043         /* Currently requires operations to do this */
3044         if (!ops->list_voltage || !rdev->desc->n_voltages)
3045                 return -EINVAL;
3046
3047         for (i = 0; i < rdev->desc->n_voltages; i++) {
3048                 /* We only look for exact voltage matches here */
3049                 voltage = regulator_list_voltage(regulator, i);
3050                 if (voltage < 0)
3051                         return -EINVAL;
3052                 if (voltage == 0)
3053                         continue;
3054                 if (voltage == old_uV)
3055                         old_sel = i;
3056                 if (voltage == new_uV)
3057                         new_sel = i;
3058         }
3059
3060         if (old_sel < 0 || new_sel < 0)
3061                 return -EINVAL;
3062
3063         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3064 }
3065 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3066
3067 /**
3068  * regulator_set_voltage_time_sel - get raise/fall time
3069  * @rdev: regulator source device
3070  * @old_selector: selector for starting voltage
3071  * @new_selector: selector for target voltage
3072  *
3073  * Provided with the starting and target voltage selectors, this function
3074  * returns time in microseconds required to rise or fall to this new voltage
3075  *
3076  * Drivers providing ramp_delay in regulation_constraints can use this as their
3077  * set_voltage_time_sel() operation.
3078  */
3079 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3080                                    unsigned int old_selector,
3081                                    unsigned int new_selector)
3082 {
3083         int old_volt, new_volt;
3084
3085         /* sanity check */
3086         if (!rdev->desc->ops->list_voltage)
3087                 return -EINVAL;
3088
3089         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3090         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3091
3092         if (rdev->desc->ops->set_voltage_time)
3093                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3094                                                          new_volt);
3095         else
3096                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3097 }
3098 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3099
3100 /**
3101  * regulator_sync_voltage - re-apply last regulator output voltage
3102  * @regulator: regulator source
3103  *
3104  * Re-apply the last configured voltage.  This is intended to be used
3105  * where some external control source the consumer is cooperating with
3106  * has caused the configured voltage to change.
3107  */
3108 int regulator_sync_voltage(struct regulator *regulator)
3109 {
3110         struct regulator_dev *rdev = regulator->rdev;
3111         int ret, min_uV, max_uV;
3112
3113         mutex_lock(&rdev->mutex);
3114
3115         if (!rdev->desc->ops->set_voltage &&
3116             !rdev->desc->ops->set_voltage_sel) {
3117                 ret = -EINVAL;
3118                 goto out;
3119         }
3120
3121         /* This is only going to work if we've had a voltage configured. */
3122         if (!regulator->min_uV && !regulator->max_uV) {
3123                 ret = -EINVAL;
3124                 goto out;
3125         }
3126
3127         min_uV = regulator->min_uV;
3128         max_uV = regulator->max_uV;
3129
3130         /* This should be a paranoia check... */
3131         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3132         if (ret < 0)
3133                 goto out;
3134
3135         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3136         if (ret < 0)
3137                 goto out;
3138
3139         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3140
3141 out:
3142         mutex_unlock(&rdev->mutex);
3143         return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3146
3147 static int _regulator_get_voltage(struct regulator_dev *rdev)
3148 {
3149         int sel, ret;
3150         bool bypassed;
3151
3152         if (rdev->desc->ops->get_bypass) {
3153                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3154                 if (ret < 0)
3155                         return ret;
3156                 if (bypassed) {
3157                         /* if bypassed the regulator must have a supply */
3158                         if (!rdev->supply) {
3159                                 rdev_err(rdev,
3160                                          "bypassed regulator has no supply!\n");
3161                                 return -EPROBE_DEFER;
3162                         }
3163
3164                         return _regulator_get_voltage(rdev->supply->rdev);
3165                 }
3166         }
3167
3168         if (rdev->desc->ops->get_voltage_sel) {
3169                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3170                 if (sel < 0)
3171                         return sel;
3172                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3173         } else if (rdev->desc->ops->get_voltage) {
3174                 ret = rdev->desc->ops->get_voltage(rdev);
3175         } else if (rdev->desc->ops->list_voltage) {
3176                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3177         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3178                 ret = rdev->desc->fixed_uV;
3179         } else if (rdev->supply) {
3180                 ret = _regulator_get_voltage(rdev->supply->rdev);
3181         } else {
3182                 return -EINVAL;
3183         }
3184
3185         if (ret < 0)
3186                 return ret;
3187         return ret - rdev->constraints->uV_offset;
3188 }
3189
3190 /**
3191  * regulator_get_voltage - get regulator output voltage
3192  * @regulator: regulator source
3193  *
3194  * This returns the current regulator voltage in uV.
3195  *
3196  * NOTE: If the regulator is disabled it will return the voltage value. This
3197  * function should not be used to determine regulator state.
3198  */
3199 int regulator_get_voltage(struct regulator *regulator)
3200 {
3201         int ret;
3202
3203         regulator_lock_supply(regulator->rdev);
3204
3205         ret = _regulator_get_voltage(regulator->rdev);
3206
3207         regulator_unlock_supply(regulator->rdev);
3208
3209         return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3212
3213 /**
3214  * regulator_set_current_limit - set regulator output current limit
3215  * @regulator: regulator source
3216  * @min_uA: Minimum supported current in uA
3217  * @max_uA: Maximum supported current in uA
3218  *
3219  * Sets current sink to the desired output current. This can be set during
3220  * any regulator state. IOW, regulator can be disabled or enabled.
3221  *
3222  * If the regulator is enabled then the current will change to the new value
3223  * immediately otherwise if the regulator is disabled the regulator will
3224  * output at the new current when enabled.
3225  *
3226  * NOTE: Regulator system constraints must be set for this regulator before
3227  * calling this function otherwise this call will fail.
3228  */
3229 int regulator_set_current_limit(struct regulator *regulator,
3230                                int min_uA, int max_uA)
3231 {
3232         struct regulator_dev *rdev = regulator->rdev;
3233         int ret;
3234
3235         mutex_lock(&rdev->mutex);
3236
3237         /* sanity check */
3238         if (!rdev->desc->ops->set_current_limit) {
3239                 ret = -EINVAL;
3240                 goto out;
3241         }
3242
3243         /* constraints check */
3244         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3245         if (ret < 0)
3246                 goto out;
3247
3248         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3249 out:
3250         mutex_unlock(&rdev->mutex);
3251         return ret;
3252 }
3253 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3254
3255 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3256 {
3257         int ret;
3258
3259         mutex_lock(&rdev->mutex);
3260
3261         /* sanity check */
3262         if (!rdev->desc->ops->get_current_limit) {
3263                 ret = -EINVAL;
3264                 goto out;
3265         }
3266
3267         ret = rdev->desc->ops->get_current_limit(rdev);
3268 out:
3269         mutex_unlock(&rdev->mutex);
3270         return ret;
3271 }
3272
3273 /**
3274  * regulator_get_current_limit - get regulator output current
3275  * @regulator: regulator source
3276  *
3277  * This returns the current supplied by the specified current sink in uA.
3278  *
3279  * NOTE: If the regulator is disabled it will return the current value. This
3280  * function should not be used to determine regulator state.
3281  */
3282 int regulator_get_current_limit(struct regulator *regulator)
3283 {
3284         return _regulator_get_current_limit(regulator->rdev);
3285 }
3286 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3287
3288 /**
3289  * regulator_set_mode - set regulator operating mode
3290  * @regulator: regulator source
3291  * @mode: operating mode - one of the REGULATOR_MODE constants
3292  *
3293  * Set regulator operating mode to increase regulator efficiency or improve
3294  * regulation performance.
3295  *
3296  * NOTE: Regulator system constraints must be set for this regulator before
3297  * calling this function otherwise this call will fail.
3298  */
3299 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3300 {
3301         struct regulator_dev *rdev = regulator->rdev;
3302         int ret;
3303         int regulator_curr_mode;
3304
3305         mutex_lock(&rdev->mutex);
3306
3307         /* sanity check */
3308         if (!rdev->desc->ops->set_mode) {
3309                 ret = -EINVAL;
3310                 goto out;
3311         }
3312
3313         /* return if the same mode is requested */
3314         if (rdev->desc->ops->get_mode) {
3315                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3316                 if (regulator_curr_mode == mode) {
3317                         ret = 0;
3318                         goto out;
3319                 }
3320         }
3321
3322         /* constraints check */
3323         ret = regulator_mode_constrain(rdev, &mode);
3324         if (ret < 0)
3325                 goto out;
3326
3327         ret = rdev->desc->ops->set_mode(rdev, mode);
3328 out:
3329         mutex_unlock(&rdev->mutex);
3330         return ret;
3331 }
3332 EXPORT_SYMBOL_GPL(regulator_set_mode);
3333
3334 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3335 {
3336         int ret;
3337
3338         mutex_lock(&rdev->mutex);
3339
3340         /* sanity check */
3341         if (!rdev->desc->ops->get_mode) {
3342                 ret = -EINVAL;
3343                 goto out;
3344         }
3345
3346         ret = rdev->desc->ops->get_mode(rdev);
3347 out:
3348         mutex_unlock(&rdev->mutex);
3349         return ret;
3350 }
3351
3352 /**
3353  * regulator_get_mode - get regulator operating mode
3354  * @regulator: regulator source
3355  *
3356  * Get the current regulator operating mode.
3357  */
3358 unsigned int regulator_get_mode(struct regulator *regulator)
3359 {
3360         return _regulator_get_mode(regulator->rdev);
3361 }
3362 EXPORT_SYMBOL_GPL(regulator_get_mode);
3363
3364 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3365                                         unsigned int *flags)
3366 {
3367         int ret;
3368
3369         mutex_lock(&rdev->mutex);
3370
3371         /* sanity check */
3372         if (!rdev->desc->ops->get_error_flags) {
3373                 ret = -EINVAL;
3374                 goto out;
3375         }
3376
3377         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3378 out:
3379         mutex_unlock(&rdev->mutex);
3380         return ret;
3381 }
3382
3383 /**
3384  * regulator_get_error_flags - get regulator error information
3385  * @regulator: regulator source
3386  * @flags: pointer to store error flags
3387  *
3388  * Get the current regulator error information.
3389  */
3390 int regulator_get_error_flags(struct regulator *regulator,
3391                                 unsigned int *flags)
3392 {
3393         return _regulator_get_error_flags(regulator->rdev, flags);
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3396
3397 /**
3398  * regulator_set_load - set regulator load
3399  * @regulator: regulator source
3400  * @uA_load: load current
3401  *
3402  * Notifies the regulator core of a new device load. This is then used by
3403  * DRMS (if enabled by constraints) to set the most efficient regulator
3404  * operating mode for the new regulator loading.
3405  *
3406  * Consumer devices notify their supply regulator of the maximum power
3407  * they will require (can be taken from device datasheet in the power
3408  * consumption tables) when they change operational status and hence power
3409  * state. Examples of operational state changes that can affect power
3410  * consumption are :-
3411  *
3412  *    o Device is opened / closed.
3413  *    o Device I/O is about to begin or has just finished.
3414  *    o Device is idling in between work.
3415  *
3416  * This information is also exported via sysfs to userspace.
3417  *
3418  * DRMS will sum the total requested load on the regulator and change
3419  * to the most efficient operating mode if platform constraints allow.
3420  *
3421  * On error a negative errno is returned.
3422  */
3423 int regulator_set_load(struct regulator *regulator, int uA_load)
3424 {
3425         struct regulator_dev *rdev = regulator->rdev;
3426         int ret;
3427
3428         mutex_lock(&rdev->mutex);
3429         regulator->uA_load = uA_load;
3430         ret = drms_uA_update(rdev);
3431         mutex_unlock(&rdev->mutex);
3432
3433         return ret;
3434 }
3435 EXPORT_SYMBOL_GPL(regulator_set_load);
3436
3437 /**
3438  * regulator_allow_bypass - allow the regulator to go into bypass mode
3439  *
3440  * @regulator: Regulator to configure
3441  * @enable: enable or disable bypass mode
3442  *
3443  * Allow the regulator to go into bypass mode if all other consumers
3444  * for the regulator also enable bypass mode and the machine
3445  * constraints allow this.  Bypass mode means that the regulator is
3446  * simply passing the input directly to the output with no regulation.
3447  */
3448 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3449 {
3450         struct regulator_dev *rdev = regulator->rdev;
3451         int ret = 0;
3452
3453         if (!rdev->desc->ops->set_bypass)
3454                 return 0;
3455
3456         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3457                 return 0;
3458
3459         mutex_lock(&rdev->mutex);
3460
3461         if (enable && !regulator->bypass) {
3462                 rdev->bypass_count++;
3463
3464                 if (rdev->bypass_count == rdev->open_count) {
3465                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3466                         if (ret != 0)
3467                                 rdev->bypass_count--;
3468                 }
3469
3470         } else if (!enable && regulator->bypass) {
3471                 rdev->bypass_count--;
3472
3473                 if (rdev->bypass_count != rdev->open_count) {
3474                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3475                         if (ret != 0)
3476                                 rdev->bypass_count++;
3477                 }
3478         }
3479
3480         if (ret == 0)
3481                 regulator->bypass = enable;
3482
3483         mutex_unlock(&rdev->mutex);
3484
3485         return ret;
3486 }
3487 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3488
3489 /**
3490  * regulator_register_notifier - register regulator event notifier
3491  * @regulator: regulator source
3492  * @nb: notifier block
3493  *
3494  * Register notifier block to receive regulator events.
3495  */
3496 int regulator_register_notifier(struct regulator *regulator,
3497                               struct notifier_block *nb)
3498 {
3499         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3500                                                 nb);
3501 }
3502 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3503
3504 /**
3505  * regulator_unregister_notifier - unregister regulator event notifier
3506  * @regulator: regulator source
3507  * @nb: notifier block
3508  *
3509  * Unregister regulator event notifier block.
3510  */
3511 int regulator_unregister_notifier(struct regulator *regulator,
3512                                 struct notifier_block *nb)
3513 {
3514         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3515                                                   nb);
3516 }
3517 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3518
3519 /* notify regulator consumers and downstream regulator consumers.
3520  * Note mutex must be held by caller.
3521  */
3522 static int _notifier_call_chain(struct regulator_dev *rdev,
3523                                   unsigned long event, void *data)
3524 {
3525         /* call rdev chain first */
3526         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3527 }
3528
3529 /**
3530  * regulator_bulk_get - get multiple regulator consumers
3531  *
3532  * @dev:           Device to supply
3533  * @num_consumers: Number of consumers to register
3534  * @consumers:     Configuration of consumers; clients are stored here.
3535  *
3536  * @return 0 on success, an errno on failure.
3537  *
3538  * This helper function allows drivers to get several regulator
3539  * consumers in one operation.  If any of the regulators cannot be
3540  * acquired then any regulators that were allocated will be freed
3541  * before returning to the caller.
3542  */
3543 int regulator_bulk_get(struct device *dev, int num_consumers,
3544                        struct regulator_bulk_data *consumers)
3545 {
3546         int i;
3547         int ret;
3548
3549         for (i = 0; i < num_consumers; i++)
3550                 consumers[i].consumer = NULL;
3551
3552         for (i = 0; i < num_consumers; i++) {
3553                 consumers[i].consumer = regulator_get(dev,
3554                                                       consumers[i].supply);
3555                 if (IS_ERR(consumers[i].consumer)) {
3556                         ret = PTR_ERR(consumers[i].consumer);
3557                         dev_err(dev, "Failed to get supply '%s': %d\n",
3558                                 consumers[i].supply, ret);
3559                         consumers[i].consumer = NULL;
3560                         goto err;
3561                 }
3562         }
3563
3564         return 0;
3565
3566 err:
3567         while (--i >= 0)
3568                 regulator_put(consumers[i].consumer);
3569
3570         return ret;
3571 }
3572 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3573
3574 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3575 {
3576         struct regulator_bulk_data *bulk = data;
3577
3578         bulk->ret = regulator_enable(bulk->consumer);
3579 }
3580
3581 /**
3582  * regulator_bulk_enable - enable multiple regulator consumers
3583  *
3584  * @num_consumers: Number of consumers
3585  * @consumers:     Consumer data; clients are stored here.
3586  * @return         0 on success, an errno on failure
3587  *
3588  * This convenience API allows consumers to enable multiple regulator
3589  * clients in a single API call.  If any consumers cannot be enabled
3590  * then any others that were enabled will be disabled again prior to
3591  * return.
3592  */
3593 int regulator_bulk_enable(int num_consumers,
3594                           struct regulator_bulk_data *consumers)
3595 {
3596         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3597         int i;
3598         int ret = 0;
3599
3600         for (i = 0; i < num_consumers; i++) {
3601                 if (consumers[i].consumer->always_on)
3602                         consumers[i].ret = 0;
3603                 else
3604                         async_schedule_domain(regulator_bulk_enable_async,
3605                                               &consumers[i], &async_domain);
3606         }
3607
3608         async_synchronize_full_domain(&async_domain);
3609
3610         /* If any consumer failed we need to unwind any that succeeded */
3611         for (i = 0; i < num_consumers; i++) {
3612                 if (consumers[i].ret != 0) {
3613                         ret = consumers[i].ret;
3614                         goto err;
3615                 }
3616         }
3617
3618         return 0;
3619
3620 err:
3621         for (i = 0; i < num_consumers; i++) {
3622                 if (consumers[i].ret < 0)
3623                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3624                                consumers[i].ret);
3625                 else
3626                         regulator_disable(consumers[i].consumer);
3627         }
3628
3629         return ret;
3630 }
3631 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3632
3633 /**
3634  * regulator_bulk_disable - disable multiple regulator consumers
3635  *
3636  * @num_consumers: Number of consumers
3637  * @consumers:     Consumer data; clients are stored here.
3638  * @return         0 on success, an errno on failure
3639  *
3640  * This convenience API allows consumers to disable multiple regulator
3641  * clients in a single API call.  If any consumers cannot be disabled
3642  * then any others that were disabled will be enabled again prior to
3643  * return.
3644  */
3645 int regulator_bulk_disable(int num_consumers,
3646                            struct regulator_bulk_data *consumers)
3647 {
3648         int i;
3649         int ret, r;
3650
3651         for (i = num_consumers - 1; i >= 0; --i) {
3652                 ret = regulator_disable(consumers[i].consumer);
3653                 if (ret != 0)
3654                         goto err;
3655         }
3656
3657         return 0;
3658
3659 err:
3660         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3661         for (++i; i < num_consumers; ++i) {
3662                 r = regulator_enable(consumers[i].consumer);
3663                 if (r != 0)
3664                         pr_err("Failed to reename %s: %d\n",
3665                                consumers[i].supply, r);
3666         }
3667
3668         return ret;
3669 }
3670 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3671
3672 /**
3673  * regulator_bulk_force_disable - force disable multiple regulator consumers
3674  *
3675  * @num_consumers: Number of consumers
3676  * @consumers:     Consumer data; clients are stored here.
3677  * @return         0 on success, an errno on failure
3678  *
3679  * This convenience API allows consumers to forcibly disable multiple regulator
3680  * clients in a single API call.
3681  * NOTE: This should be used for situations when device damage will
3682  * likely occur if the regulators are not disabled (e.g. over temp).
3683  * Although regulator_force_disable function call for some consumers can
3684  * return error numbers, the function is called for all consumers.
3685  */
3686 int regulator_bulk_force_disable(int num_consumers,
3687                            struct regulator_bulk_data *consumers)
3688 {
3689         int i;
3690         int ret = 0;
3691
3692         for (i = 0; i < num_consumers; i++) {
3693                 consumers[i].ret =
3694                             regulator_force_disable(consumers[i].consumer);
3695
3696                 /* Store first error for reporting */
3697                 if (consumers[i].ret && !ret)
3698                         ret = consumers[i].ret;
3699         }
3700
3701         return ret;
3702 }
3703 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3704
3705 /**
3706  * regulator_bulk_free - free multiple regulator consumers
3707  *
3708  * @num_consumers: Number of consumers
3709  * @consumers:     Consumer data; clients are stored here.
3710  *
3711  * This convenience API allows consumers to free multiple regulator
3712  * clients in a single API call.
3713  */
3714 void regulator_bulk_free(int num_consumers,
3715                          struct regulator_bulk_data *consumers)
3716 {
3717         int i;
3718
3719         for (i = 0; i < num_consumers; i++) {
3720                 regulator_put(consumers[i].consumer);
3721                 consumers[i].consumer = NULL;
3722         }
3723 }
3724 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3725
3726 /**
3727  * regulator_notifier_call_chain - call regulator event notifier
3728  * @rdev: regulator source
3729  * @event: notifier block
3730  * @data: callback-specific data.
3731  *
3732  * Called by regulator drivers to notify clients a regulator event has
3733  * occurred. We also notify regulator clients downstream.
3734  * Note lock must be held by caller.
3735  */
3736 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3737                                   unsigned long event, void *data)
3738 {
3739         lockdep_assert_held_once(&rdev->mutex);
3740
3741         _notifier_call_chain(rdev, event, data);
3742         return NOTIFY_DONE;
3743
3744 }
3745 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3746
3747 /**
3748  * regulator_mode_to_status - convert a regulator mode into a status
3749  *
3750  * @mode: Mode to convert
3751  *
3752  * Convert a regulator mode into a status.
3753  */
3754 int regulator_mode_to_status(unsigned int mode)
3755 {
3756         switch (mode) {
3757         case REGULATOR_MODE_FAST:
3758                 return REGULATOR_STATUS_FAST;
3759         case REGULATOR_MODE_NORMAL:
3760                 return REGULATOR_STATUS_NORMAL;
3761         case REGULATOR_MODE_IDLE:
3762                 return REGULATOR_STATUS_IDLE;
3763         case REGULATOR_MODE_STANDBY:
3764                 return REGULATOR_STATUS_STANDBY;
3765         default:
3766                 return REGULATOR_STATUS_UNDEFINED;
3767         }
3768 }
3769 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3770
3771 static struct attribute *regulator_dev_attrs[] = {
3772         &dev_attr_name.attr,
3773         &dev_attr_num_users.attr,
3774         &dev_attr_type.attr,
3775         &dev_attr_microvolts.attr,
3776         &dev_attr_microamps.attr,
3777         &dev_attr_opmode.attr,
3778         &dev_attr_state.attr,
3779         &dev_attr_status.attr,
3780         &dev_attr_bypass.attr,
3781         &dev_attr_requested_microamps.attr,
3782         &dev_attr_min_microvolts.attr,
3783         &dev_attr_max_microvolts.attr,
3784         &dev_attr_min_microamps.attr,
3785         &dev_attr_max_microamps.attr,
3786         &dev_attr_suspend_standby_state.attr,
3787         &dev_attr_suspend_mem_state.attr,
3788         &dev_attr_suspend_disk_state.attr,
3789         &dev_attr_suspend_standby_microvolts.attr,
3790         &dev_attr_suspend_mem_microvolts.attr,
3791         &dev_attr_suspend_disk_microvolts.attr,
3792         &dev_attr_suspend_standby_mode.attr,
3793         &dev_attr_suspend_mem_mode.attr,
3794         &dev_attr_suspend_disk_mode.attr,
3795         NULL
3796 };
3797
3798 /*
3799  * To avoid cluttering sysfs (and memory) with useless state, only
3800  * create attributes that can be meaningfully displayed.
3801  */
3802 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3803                                          struct attribute *attr, int idx)
3804 {
3805         struct device *dev = kobj_to_dev(kobj);
3806         struct regulator_dev *rdev = dev_to_rdev(dev);
3807         const struct regulator_ops *ops = rdev->desc->ops;
3808         umode_t mode = attr->mode;
3809
3810         /* these three are always present */
3811         if (attr == &dev_attr_name.attr ||
3812             attr == &dev_attr_num_users.attr ||
3813             attr == &dev_attr_type.attr)
3814                 return mode;
3815
3816         /* some attributes need specific methods to be displayed */
3817         if (attr == &dev_attr_microvolts.attr) {
3818                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3819                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3820                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3821                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3822                         return mode;
3823                 return 0;
3824         }
3825
3826         if (attr == &dev_attr_microamps.attr)
3827                 return ops->get_current_limit ? mode : 0;
3828
3829         if (attr == &dev_attr_opmode.attr)
3830                 return ops->get_mode ? mode : 0;
3831
3832         if (attr == &dev_attr_state.attr)
3833                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3834
3835         if (attr == &dev_attr_status.attr)
3836                 return ops->get_status ? mode : 0;
3837
3838         if (attr == &dev_attr_bypass.attr)
3839                 return ops->get_bypass ? mode : 0;
3840
3841         /* some attributes are type-specific */
3842         if (attr == &dev_attr_requested_microamps.attr)
3843                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3844
3845         /* constraints need specific supporting methods */
3846         if (attr == &dev_attr_min_microvolts.attr ||
3847             attr == &dev_attr_max_microvolts.attr)
3848                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3849
3850         if (attr == &dev_attr_min_microamps.attr ||
3851             attr == &dev_attr_max_microamps.attr)
3852                 return ops->set_current_limit ? mode : 0;
3853
3854         if (attr == &dev_attr_suspend_standby_state.attr ||
3855             attr == &dev_attr_suspend_mem_state.attr ||
3856             attr == &dev_attr_suspend_disk_state.attr)
3857                 return mode;
3858
3859         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3860             attr == &dev_attr_suspend_mem_microvolts.attr ||
3861             attr == &dev_attr_suspend_disk_microvolts.attr)
3862                 return ops->set_suspend_voltage ? mode : 0;
3863
3864         if (attr == &dev_attr_suspend_standby_mode.attr ||
3865             attr == &dev_attr_suspend_mem_mode.attr ||
3866             attr == &dev_attr_suspend_disk_mode.attr)
3867                 return ops->set_suspend_mode ? mode : 0;
3868
3869         return mode;
3870 }
3871
3872 static const struct attribute_group regulator_dev_group = {
3873         .attrs = regulator_dev_attrs,
3874         .is_visible = regulator_attr_is_visible,
3875 };
3876
3877 static const struct attribute_group *regulator_dev_groups[] = {
3878         &regulator_dev_group,
3879         NULL
3880 };
3881
3882 static void regulator_dev_release(struct device *dev)
3883 {
3884         struct regulator_dev *rdev = dev_get_drvdata(dev);
3885
3886         kfree(rdev->constraints);
3887         of_node_put(rdev->dev.of_node);
3888         kfree(rdev);
3889 }
3890
3891 static struct class regulator_class = {
3892         .name = "regulator",
3893         .dev_release = regulator_dev_release,
3894         .dev_groups = regulator_dev_groups,
3895 };
3896
3897 static void rdev_init_debugfs(struct regulator_dev *rdev)
3898 {
3899         struct device *parent = rdev->dev.parent;
3900         const char *rname = rdev_get_name(rdev);
3901         char name[NAME_MAX];
3902
3903         /* Avoid duplicate debugfs directory names */
3904         if (parent && rname == rdev->desc->name) {
3905                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3906                          rname);
3907                 rname = name;
3908         }
3909
3910         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3911         if (!rdev->debugfs) {
3912                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3913                 return;
3914         }
3915
3916         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3917                            &rdev->use_count);
3918         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3919                            &rdev->open_count);
3920         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3921                            &rdev->bypass_count);
3922 }
3923
3924 static int regulator_register_resolve_supply(struct device *dev, void *data)
3925 {
3926         struct regulator_dev *rdev = dev_to_rdev(dev);
3927
3928         if (regulator_resolve_supply(rdev))
3929                 rdev_dbg(rdev, "unable to resolve supply\n");
3930
3931         return 0;
3932 }
3933
3934 /**
3935  * regulator_register - register regulator
3936  * @regulator_desc: regulator to register
3937  * @cfg: runtime configuration for regulator
3938  *
3939  * Called by regulator drivers to register a regulator.
3940  * Returns a valid pointer to struct regulator_dev on success
3941  * or an ERR_PTR() on error.
3942  */
3943 struct regulator_dev *
3944 regulator_register(const struct regulator_desc *regulator_desc,
3945                    const struct regulator_config *cfg)
3946 {
3947         const struct regulation_constraints *constraints = NULL;
3948         const struct regulator_init_data *init_data;
3949         struct regulator_config *config = NULL;
3950         static atomic_t regulator_no = ATOMIC_INIT(-1);
3951         struct regulator_dev *rdev;
3952         struct device *dev;
3953         int ret, i;
3954
3955         if (regulator_desc == NULL || cfg == NULL)
3956                 return ERR_PTR(-EINVAL);
3957
3958         dev = cfg->dev;
3959         WARN_ON(!dev);
3960
3961         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3962                 return ERR_PTR(-EINVAL);
3963
3964         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3965             regulator_desc->type != REGULATOR_CURRENT)
3966                 return ERR_PTR(-EINVAL);
3967
3968         /* Only one of each should be implemented */
3969         WARN_ON(regulator_desc->ops->get_voltage &&
3970                 regulator_desc->ops->get_voltage_sel);
3971         WARN_ON(regulator_desc->ops->set_voltage &&
3972                 regulator_desc->ops->set_voltage_sel);
3973
3974         /* If we're using selectors we must implement list_voltage. */
3975         if (regulator_desc->ops->get_voltage_sel &&
3976             !regulator_desc->ops->list_voltage) {
3977                 return ERR_PTR(-EINVAL);
3978         }
3979         if (regulator_desc->ops->set_voltage_sel &&
3980             !regulator_desc->ops->list_voltage) {
3981                 return ERR_PTR(-EINVAL);
3982         }
3983
3984         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3985         if (rdev == NULL)
3986                 return ERR_PTR(-ENOMEM);
3987
3988         /*
3989          * Duplicate the config so the driver could override it after
3990          * parsing init data.
3991          */
3992         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3993         if (config == NULL) {
3994                 kfree(rdev);
3995                 return ERR_PTR(-ENOMEM);
3996         }
3997
3998         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3999                                                &rdev->dev.of_node);
4000         if (!init_data) {
4001                 init_data = config->init_data;
4002                 rdev->dev.of_node = of_node_get(config->of_node);
4003         }
4004
4005         mutex_init(&rdev->mutex);
4006         rdev->reg_data = config->driver_data;
4007         rdev->owner = regulator_desc->owner;
4008         rdev->desc = regulator_desc;
4009         if (config->regmap)
4010                 rdev->regmap = config->regmap;
4011         else if (dev_get_regmap(dev, NULL))
4012                 rdev->regmap = dev_get_regmap(dev, NULL);
4013         else if (dev->parent)
4014                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4015         INIT_LIST_HEAD(&rdev->consumer_list);
4016         INIT_LIST_HEAD(&rdev->list);
4017         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4018         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4019
4020         /* preform any regulator specific init */
4021         if (init_data && init_data->regulator_init) {
4022                 ret = init_data->regulator_init(rdev->reg_data);
4023                 if (ret < 0)
4024                         goto clean;
4025         }
4026
4027         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4028             gpio_is_valid(config->ena_gpio)) {
4029                 mutex_lock(&regulator_list_mutex);
4030                 ret = regulator_ena_gpio_request(rdev, config);
4031                 mutex_unlock(&regulator_list_mutex);
4032                 if (ret != 0) {
4033                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4034                                  config->ena_gpio, ret);
4035                         goto clean;
4036                 }
4037         }
4038
4039         /* register with sysfs */
4040         rdev->dev.class = &regulator_class;
4041         rdev->dev.parent = dev;
4042         dev_set_name(&rdev->dev, "regulator.%lu",
4043                     (unsigned long) atomic_inc_return(&regulator_no));
4044
4045         /* set regulator constraints */
4046         if (init_data)
4047                 constraints = &init_data->constraints;
4048
4049         if (init_data && init_data->supply_regulator)
4050                 rdev->supply_name = init_data->supply_regulator;
4051         else if (regulator_desc->supply_name)
4052                 rdev->supply_name = regulator_desc->supply_name;
4053
4054         /*
4055          * Attempt to resolve the regulator supply, if specified,
4056          * but don't return an error if we fail because we will try
4057          * to resolve it again later as more regulators are added.
4058          */
4059         if (regulator_resolve_supply(rdev))
4060                 rdev_dbg(rdev, "unable to resolve supply\n");
4061
4062         ret = set_machine_constraints(rdev, constraints);
4063         if (ret < 0)
4064                 goto wash;
4065
4066         /* add consumers devices */
4067         if (init_data) {
4068                 mutex_lock(&regulator_list_mutex);
4069                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4070                         ret = set_consumer_device_supply(rdev,
4071                                 init_data->consumer_supplies[i].dev_name,
4072                                 init_data->consumer_supplies[i].supply);
4073                         if (ret < 0) {
4074                                 mutex_unlock(&regulator_list_mutex);
4075                                 dev_err(dev, "Failed to set supply %s\n",
4076                                         init_data->consumer_supplies[i].supply);
4077                                 goto unset_supplies;
4078                         }
4079                 }
4080                 mutex_unlock(&regulator_list_mutex);
4081         }
4082
4083         ret = device_register(&rdev->dev);
4084         if (ret != 0) {
4085                 put_device(&rdev->dev);
4086                 goto unset_supplies;
4087         }
4088
4089         dev_set_drvdata(&rdev->dev, rdev);
4090         rdev_init_debugfs(rdev);
4091
4092         /* try to resolve regulators supply since a new one was registered */
4093         class_for_each_device(&regulator_class, NULL, NULL,
4094                               regulator_register_resolve_supply);
4095         kfree(config);
4096         return rdev;
4097
4098 unset_supplies:
4099         mutex_lock(&regulator_list_mutex);
4100         unset_regulator_supplies(rdev);
4101         mutex_unlock(&regulator_list_mutex);
4102 wash:
4103         kfree(rdev->constraints);
4104         mutex_lock(&regulator_list_mutex);
4105         regulator_ena_gpio_free(rdev);
4106         mutex_unlock(&regulator_list_mutex);
4107 clean:
4108         kfree(rdev);
4109         kfree(config);
4110         return ERR_PTR(ret);
4111 }
4112 EXPORT_SYMBOL_GPL(regulator_register);
4113
4114 /**
4115  * regulator_unregister - unregister regulator
4116  * @rdev: regulator to unregister
4117  *
4118  * Called by regulator drivers to unregister a regulator.
4119  */
4120 void regulator_unregister(struct regulator_dev *rdev)
4121 {
4122         if (rdev == NULL)
4123                 return;
4124
4125         if (rdev->supply) {
4126                 while (rdev->use_count--)
4127                         regulator_disable(rdev->supply);
4128                 regulator_put(rdev->supply);
4129         }
4130         mutex_lock(&regulator_list_mutex);
4131         debugfs_remove_recursive(rdev->debugfs);
4132         flush_work(&rdev->disable_work.work);
4133         WARN_ON(rdev->open_count);
4134         unset_regulator_supplies(rdev);
4135         list_del(&rdev->list);
4136         regulator_ena_gpio_free(rdev);
4137         mutex_unlock(&regulator_list_mutex);
4138         device_unregister(&rdev->dev);
4139 }
4140 EXPORT_SYMBOL_GPL(regulator_unregister);
4141
4142 static int _regulator_suspend_prepare(struct device *dev, void *data)
4143 {
4144         struct regulator_dev *rdev = dev_to_rdev(dev);
4145         const suspend_state_t *state = data;
4146         int ret;
4147
4148         mutex_lock(&rdev->mutex);
4149         ret = suspend_prepare(rdev, *state);
4150         mutex_unlock(&rdev->mutex);
4151
4152         return ret;
4153 }
4154
4155 /**
4156  * regulator_suspend_prepare - prepare regulators for system wide suspend
4157  * @state: system suspend state
4158  *
4159  * Configure each regulator with it's suspend operating parameters for state.
4160  * This will usually be called by machine suspend code prior to supending.
4161  */
4162 int regulator_suspend_prepare(suspend_state_t state)
4163 {
4164         /* ON is handled by regulator active state */
4165         if (state == PM_SUSPEND_ON)
4166                 return -EINVAL;
4167
4168         return class_for_each_device(&regulator_class, NULL, &state,
4169                                      _regulator_suspend_prepare);
4170 }
4171 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4172
4173 static int _regulator_suspend_finish(struct device *dev, void *data)
4174 {
4175         struct regulator_dev *rdev = dev_to_rdev(dev);
4176         int ret;
4177
4178         mutex_lock(&rdev->mutex);
4179         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4180                 if (!_regulator_is_enabled(rdev)) {
4181                         ret = _regulator_do_enable(rdev);
4182                         if (ret)
4183                                 dev_err(dev,
4184                                         "Failed to resume regulator %d\n",
4185                                         ret);
4186                 }
4187         } else {
4188                 if (!have_full_constraints())
4189                         goto unlock;
4190                 if (!_regulator_is_enabled(rdev))
4191                         goto unlock;
4192
4193                 ret = _regulator_do_disable(rdev);
4194                 if (ret)
4195                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4196         }
4197 unlock:
4198         mutex_unlock(&rdev->mutex);
4199
4200         /* Keep processing regulators in spite of any errors */
4201         return 0;
4202 }
4203
4204 /**
4205  * regulator_suspend_finish - resume regulators from system wide suspend
4206  *
4207  * Turn on regulators that might be turned off by regulator_suspend_prepare
4208  * and that should be turned on according to the regulators properties.
4209  */
4210 int regulator_suspend_finish(void)
4211 {
4212         return class_for_each_device(&regulator_class, NULL, NULL,
4213                                      _regulator_suspend_finish);
4214 }
4215 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4216
4217 /**
4218  * regulator_has_full_constraints - the system has fully specified constraints
4219  *
4220  * Calling this function will cause the regulator API to disable all
4221  * regulators which have a zero use count and don't have an always_on
4222  * constraint in a late_initcall.
4223  *
4224  * The intention is that this will become the default behaviour in a
4225  * future kernel release so users are encouraged to use this facility
4226  * now.
4227  */
4228 void regulator_has_full_constraints(void)
4229 {
4230         has_full_constraints = 1;
4231 }
4232 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4233
4234 /**
4235  * rdev_get_drvdata - get rdev regulator driver data
4236  * @rdev: regulator
4237  *
4238  * Get rdev regulator driver private data. This call can be used in the
4239  * regulator driver context.
4240  */
4241 void *rdev_get_drvdata(struct regulator_dev *rdev)
4242 {
4243         return rdev->reg_data;
4244 }
4245 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4246
4247 /**
4248  * regulator_get_drvdata - get regulator driver data
4249  * @regulator: regulator
4250  *
4251  * Get regulator driver private data. This call can be used in the consumer
4252  * driver context when non API regulator specific functions need to be called.
4253  */
4254 void *regulator_get_drvdata(struct regulator *regulator)
4255 {
4256         return regulator->rdev->reg_data;
4257 }
4258 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4259
4260 /**
4261  * regulator_set_drvdata - set regulator driver data
4262  * @regulator: regulator
4263  * @data: data
4264  */
4265 void regulator_set_drvdata(struct regulator *regulator, void *data)
4266 {
4267         regulator->rdev->reg_data = data;
4268 }
4269 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4270
4271 /**
4272  * regulator_get_id - get regulator ID
4273  * @rdev: regulator
4274  */
4275 int rdev_get_id(struct regulator_dev *rdev)
4276 {
4277         return rdev->desc->id;
4278 }
4279 EXPORT_SYMBOL_GPL(rdev_get_id);
4280
4281 struct device *rdev_get_dev(struct regulator_dev *rdev)
4282 {
4283         return &rdev->dev;
4284 }
4285 EXPORT_SYMBOL_GPL(rdev_get_dev);
4286
4287 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4288 {
4289         return reg_init_data->driver_data;
4290 }
4291 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4292
4293 #ifdef CONFIG_DEBUG_FS
4294 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4295                                     size_t count, loff_t *ppos)
4296 {
4297         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4298         ssize_t len, ret = 0;
4299         struct regulator_map *map;
4300
4301         if (!buf)
4302                 return -ENOMEM;
4303
4304         list_for_each_entry(map, &regulator_map_list, list) {
4305                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4306                                "%s -> %s.%s\n",
4307                                rdev_get_name(map->regulator), map->dev_name,
4308                                map->supply);
4309                 if (len >= 0)
4310                         ret += len;
4311                 if (ret > PAGE_SIZE) {
4312                         ret = PAGE_SIZE;
4313                         break;
4314                 }
4315         }
4316
4317         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4318
4319         kfree(buf);
4320
4321         return ret;
4322 }
4323 #endif
4324
4325 static const struct file_operations supply_map_fops = {
4326 #ifdef CONFIG_DEBUG_FS
4327         .read = supply_map_read_file,
4328         .llseek = default_llseek,
4329 #endif
4330 };
4331
4332 #ifdef CONFIG_DEBUG_FS
4333 struct summary_data {
4334         struct seq_file *s;
4335         struct regulator_dev *parent;
4336         int level;
4337 };
4338
4339 static void regulator_summary_show_subtree(struct seq_file *s,
4340                                            struct regulator_dev *rdev,
4341                                            int level);
4342
4343 static int regulator_summary_show_children(struct device *dev, void *data)
4344 {
4345         struct regulator_dev *rdev = dev_to_rdev(dev);
4346         struct summary_data *summary_data = data;
4347
4348         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4349                 regulator_summary_show_subtree(summary_data->s, rdev,
4350                                                summary_data->level + 1);
4351
4352         return 0;
4353 }
4354
4355 static void regulator_summary_show_subtree(struct seq_file *s,
4356                                            struct regulator_dev *rdev,
4357                                            int level)
4358 {
4359         struct regulation_constraints *c;
4360         struct regulator *consumer;
4361         struct summary_data summary_data;
4362
4363         if (!rdev)
4364                 return;
4365
4366         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4367                    level * 3 + 1, "",
4368                    30 - level * 3, rdev_get_name(rdev),
4369                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4370
4371         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4372         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4373
4374         c = rdev->constraints;
4375         if (c) {
4376                 switch (rdev->desc->type) {
4377                 case REGULATOR_VOLTAGE:
4378                         seq_printf(s, "%5dmV %5dmV ",
4379                                    c->min_uV / 1000, c->max_uV / 1000);
4380                         break;
4381                 case REGULATOR_CURRENT:
4382                         seq_printf(s, "%5dmA %5dmA ",
4383                                    c->min_uA / 1000, c->max_uA / 1000);
4384                         break;
4385                 }
4386         }
4387
4388         seq_puts(s, "\n");
4389
4390         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4391                 if (consumer->dev->class == &regulator_class)
4392                         continue;
4393
4394                 seq_printf(s, "%*s%-*s ",
4395                            (level + 1) * 3 + 1, "",
4396                            30 - (level + 1) * 3, dev_name(consumer->dev));
4397
4398                 switch (rdev->desc->type) {
4399                 case REGULATOR_VOLTAGE:
4400                         seq_printf(s, "%37dmV %5dmV",
4401                                    consumer->min_uV / 1000,
4402                                    consumer->max_uV / 1000);
4403                         break;
4404                 case REGULATOR_CURRENT:
4405                         break;
4406                 }
4407
4408                 seq_puts(s, "\n");
4409         }
4410
4411         summary_data.s = s;
4412         summary_data.level = level;
4413         summary_data.parent = rdev;
4414
4415         class_for_each_device(&regulator_class, NULL, &summary_data,
4416                               regulator_summary_show_children);
4417 }
4418
4419 static int regulator_summary_show_roots(struct device *dev, void *data)
4420 {
4421         struct regulator_dev *rdev = dev_to_rdev(dev);
4422         struct seq_file *s = data;
4423
4424         if (!rdev->supply)
4425                 regulator_summary_show_subtree(s, rdev, 0);
4426
4427         return 0;
4428 }
4429
4430 static int regulator_summary_show(struct seq_file *s, void *data)
4431 {
4432         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4433         seq_puts(s, "-------------------------------------------------------------------------------\n");
4434
4435         class_for_each_device(&regulator_class, NULL, s,
4436                               regulator_summary_show_roots);
4437
4438         return 0;
4439 }
4440
4441 static int regulator_summary_open(struct inode *inode, struct file *file)
4442 {
4443         return single_open(file, regulator_summary_show, inode->i_private);
4444 }
4445 #endif
4446
4447 static const struct file_operations regulator_summary_fops = {
4448 #ifdef CONFIG_DEBUG_FS
4449         .open           = regulator_summary_open,
4450         .read           = seq_read,
4451         .llseek         = seq_lseek,
4452         .release        = single_release,
4453 #endif
4454 };
4455
4456 static int __init regulator_init(void)
4457 {
4458         int ret;
4459
4460         ret = class_register(&regulator_class);
4461
4462         debugfs_root = debugfs_create_dir("regulator", NULL);
4463         if (!debugfs_root)
4464                 pr_warn("regulator: Failed to create debugfs directory\n");
4465
4466         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4467                             &supply_map_fops);
4468
4469         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4470                             NULL, &regulator_summary_fops);
4471
4472         regulator_dummy_init();
4473
4474         return ret;
4475 }
4476
4477 /* init early to allow our consumers to complete system booting */
4478 core_initcall(regulator_init);
4479
4480 static int __init regulator_late_cleanup(struct device *dev, void *data)
4481 {
4482         struct regulator_dev *rdev = dev_to_rdev(dev);
4483         const struct regulator_ops *ops = rdev->desc->ops;
4484         struct regulation_constraints *c = rdev->constraints;
4485         int enabled, ret;
4486
4487         if (c && c->always_on)
4488                 return 0;
4489
4490         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4491                 return 0;
4492
4493         mutex_lock(&rdev->mutex);
4494
4495         if (rdev->use_count)
4496                 goto unlock;
4497
4498         /* If we can't read the status assume it's on. */
4499         if (ops->is_enabled)
4500                 enabled = ops->is_enabled(rdev);
4501         else
4502                 enabled = 1;
4503
4504         if (!enabled)
4505                 goto unlock;
4506
4507         if (have_full_constraints()) {
4508                 /* We log since this may kill the system if it goes
4509                  * wrong. */
4510                 rdev_info(rdev, "disabling\n");
4511                 ret = _regulator_do_disable(rdev);
4512                 if (ret != 0)
4513                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4514         } else {
4515                 /* The intention is that in future we will
4516                  * assume that full constraints are provided
4517                  * so warn even if we aren't going to do
4518                  * anything here.
4519                  */
4520                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4521         }
4522
4523 unlock:
4524         mutex_unlock(&rdev->mutex);
4525
4526         return 0;
4527 }
4528
4529 static int __init regulator_init_complete(void)
4530 {
4531         /*
4532          * Since DT doesn't provide an idiomatic mechanism for
4533          * enabling full constraints and since it's much more natural
4534          * with DT to provide them just assume that a DT enabled
4535          * system has full constraints.
4536          */
4537         if (of_have_populated_dt())
4538                 has_full_constraints = true;
4539
4540         /* If we have a full configuration then disable any regulators
4541          * we have permission to change the status for and which are
4542          * not in use or always_on.  This is effectively the default
4543          * for DT and ACPI as they have full constraints.
4544          */
4545         class_for_each_device(&regulator_class, NULL, NULL,
4546                               regulator_late_cleanup);
4547
4548         return 0;
4549 }
4550 late_initcall_sync(regulator_init_complete);