]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/rtc/rtc-sh.c
Merge tag 'linux-watchdog-4.19-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux.git] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006 - 2009  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/kernel.h>
20 #include <linux/bcd.h>
21 #include <linux/rtc.h>
22 #include <linux/init.h>
23 #include <linux/platform_device.h>
24 #include <linux/seq_file.h>
25 #include <linux/interrupt.h>
26 #include <linux/spinlock.h>
27 #include <linux/io.h>
28 #include <linux/log2.h>
29 #include <linux/clk.h>
30 #include <linux/slab.h>
31 #ifdef CONFIG_SUPERH
32 #include <asm/rtc.h>
33 #else
34 /* Default values for RZ/A RTC */
35 #define rtc_reg_size            sizeof(u16)
36 #define RTC_BIT_INVERTED        0       /* no chip bugs */
37 #define RTC_CAP_4_DIGIT_YEAR    (1 << 0)
38 #define RTC_DEF_CAPABILITIES    RTC_CAP_4_DIGIT_YEAR
39 #endif
40
41 #define DRV_NAME        "sh-rtc"
42
43 #define RTC_REG(r)      ((r) * rtc_reg_size)
44
45 #define R64CNT          RTC_REG(0)
46
47 #define RSECCNT         RTC_REG(1)      /* RTC sec */
48 #define RMINCNT         RTC_REG(2)      /* RTC min */
49 #define RHRCNT          RTC_REG(3)      /* RTC hour */
50 #define RWKCNT          RTC_REG(4)      /* RTC week */
51 #define RDAYCNT         RTC_REG(5)      /* RTC day */
52 #define RMONCNT         RTC_REG(6)      /* RTC month */
53 #define RYRCNT          RTC_REG(7)      /* RTC year */
54 #define RSECAR          RTC_REG(8)      /* ALARM sec */
55 #define RMINAR          RTC_REG(9)      /* ALARM min */
56 #define RHRAR           RTC_REG(10)     /* ALARM hour */
57 #define RWKAR           RTC_REG(11)     /* ALARM week */
58 #define RDAYAR          RTC_REG(12)     /* ALARM day */
59 #define RMONAR          RTC_REG(13)     /* ALARM month */
60 #define RCR1            RTC_REG(14)     /* Control */
61 #define RCR2            RTC_REG(15)     /* Control */
62
63 /*
64  * Note on RYRAR and RCR3: Up until this point most of the register
65  * definitions are consistent across all of the available parts. However,
66  * the placement of the optional RYRAR and RCR3 (the RYRAR control
67  * register used to control RYRCNT/RYRAR compare) varies considerably
68  * across various parts, occasionally being mapped in to a completely
69  * unrelated address space. For proper RYRAR support a separate resource
70  * would have to be handed off, but as this is purely optional in
71  * practice, we simply opt not to support it, thereby keeping the code
72  * quite a bit more simplified.
73  */
74
75 /* ALARM Bits - or with BCD encoded value */
76 #define AR_ENB          0x80    /* Enable for alarm cmp   */
77
78 /* Period Bits */
79 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
80 #define PF_COUNT        0x200   /* Half periodic counter */
81 #define PF_OXS          0x400   /* Periodic One x Second */
82 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
83 #define PF_MASK         0xf00
84
85 /* RCR1 Bits */
86 #define RCR1_CF         0x80    /* Carry Flag             */
87 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
88 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
89 #define RCR1_AF         0x01    /* Alarm Flag             */
90
91 /* RCR2 Bits */
92 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
93 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
94 #define RCR2_RTCEN      0x08    /* ENable RTC              */
95 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
96 #define RCR2_RESET      0x02    /* Reset bit               */
97 #define RCR2_START      0x01    /* Start bit               */
98
99 struct sh_rtc {
100         void __iomem            *regbase;
101         unsigned long           regsize;
102         struct resource         *res;
103         int                     alarm_irq;
104         int                     periodic_irq;
105         int                     carry_irq;
106         struct clk              *clk;
107         struct rtc_device       *rtc_dev;
108         spinlock_t              lock;
109         unsigned long           capabilities;   /* See asm/rtc.h for cap bits */
110         unsigned short          periodic_freq;
111 };
112
113 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
114 {
115         unsigned int tmp, pending;
116
117         tmp = readb(rtc->regbase + RCR1);
118         pending = tmp & RCR1_CF;
119         tmp &= ~RCR1_CF;
120         writeb(tmp, rtc->regbase + RCR1);
121
122         /* Users have requested One x Second IRQ */
123         if (pending && rtc->periodic_freq & PF_OXS)
124                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
125
126         return pending;
127 }
128
129 static int __sh_rtc_alarm(struct sh_rtc *rtc)
130 {
131         unsigned int tmp, pending;
132
133         tmp = readb(rtc->regbase + RCR1);
134         pending = tmp & RCR1_AF;
135         tmp &= ~(RCR1_AF | RCR1_AIE);
136         writeb(tmp, rtc->regbase + RCR1);
137
138         if (pending)
139                 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
140
141         return pending;
142 }
143
144 static int __sh_rtc_periodic(struct sh_rtc *rtc)
145 {
146         struct rtc_device *rtc_dev = rtc->rtc_dev;
147         struct rtc_task *irq_task;
148         unsigned int tmp, pending;
149
150         tmp = readb(rtc->regbase + RCR2);
151         pending = tmp & RCR2_PEF;
152         tmp &= ~RCR2_PEF;
153         writeb(tmp, rtc->regbase + RCR2);
154
155         if (!pending)
156                 return 0;
157
158         /* Half period enabled than one skipped and the next notified */
159         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
160                 rtc->periodic_freq &= ~PF_COUNT;
161         else {
162                 if (rtc->periodic_freq & PF_HP)
163                         rtc->periodic_freq |= PF_COUNT;
164                 if (rtc->periodic_freq & PF_KOU) {
165                         spin_lock(&rtc_dev->irq_task_lock);
166                         irq_task = rtc_dev->irq_task;
167                         if (irq_task)
168                                 irq_task->func(irq_task->private_data);
169                         spin_unlock(&rtc_dev->irq_task_lock);
170                 } else
171                         rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
172         }
173
174         return pending;
175 }
176
177 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
178 {
179         struct sh_rtc *rtc = dev_id;
180         int ret;
181
182         spin_lock(&rtc->lock);
183         ret = __sh_rtc_interrupt(rtc);
184         spin_unlock(&rtc->lock);
185
186         return IRQ_RETVAL(ret);
187 }
188
189 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
190 {
191         struct sh_rtc *rtc = dev_id;
192         int ret;
193
194         spin_lock(&rtc->lock);
195         ret = __sh_rtc_alarm(rtc);
196         spin_unlock(&rtc->lock);
197
198         return IRQ_RETVAL(ret);
199 }
200
201 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
202 {
203         struct sh_rtc *rtc = dev_id;
204         int ret;
205
206         spin_lock(&rtc->lock);
207         ret = __sh_rtc_periodic(rtc);
208         spin_unlock(&rtc->lock);
209
210         return IRQ_RETVAL(ret);
211 }
212
213 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
214 {
215         struct sh_rtc *rtc = dev_id;
216         int ret;
217
218         spin_lock(&rtc->lock);
219         ret = __sh_rtc_interrupt(rtc);
220         ret |= __sh_rtc_alarm(rtc);
221         ret |= __sh_rtc_periodic(rtc);
222         spin_unlock(&rtc->lock);
223
224         return IRQ_RETVAL(ret);
225 }
226
227 static int sh_rtc_irq_set_state(struct device *dev, int enable)
228 {
229         struct sh_rtc *rtc = dev_get_drvdata(dev);
230         unsigned int tmp;
231
232         spin_lock_irq(&rtc->lock);
233
234         tmp = readb(rtc->regbase + RCR2);
235
236         if (enable) {
237                 rtc->periodic_freq |= PF_KOU;
238                 tmp &= ~RCR2_PEF;       /* Clear PES bit */
239                 tmp |= (rtc->periodic_freq & ~PF_HP);   /* Set PES2-0 */
240         } else {
241                 rtc->periodic_freq &= ~PF_KOU;
242                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
243         }
244
245         writeb(tmp, rtc->regbase + RCR2);
246
247         spin_unlock_irq(&rtc->lock);
248
249         return 0;
250 }
251
252 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
253 {
254         struct sh_rtc *rtc = dev_get_drvdata(dev);
255         int tmp, ret = 0;
256
257         spin_lock_irq(&rtc->lock);
258         tmp = rtc->periodic_freq & PF_MASK;
259
260         switch (freq) {
261         case 0:
262                 rtc->periodic_freq = 0x00;
263                 break;
264         case 1:
265                 rtc->periodic_freq = 0x60;
266                 break;
267         case 2:
268                 rtc->periodic_freq = 0x50;
269                 break;
270         case 4:
271                 rtc->periodic_freq = 0x40;
272                 break;
273         case 8:
274                 rtc->periodic_freq = 0x30 | PF_HP;
275                 break;
276         case 16:
277                 rtc->periodic_freq = 0x30;
278                 break;
279         case 32:
280                 rtc->periodic_freq = 0x20 | PF_HP;
281                 break;
282         case 64:
283                 rtc->periodic_freq = 0x20;
284                 break;
285         case 128:
286                 rtc->periodic_freq = 0x10 | PF_HP;
287                 break;
288         case 256:
289                 rtc->periodic_freq = 0x10;
290                 break;
291         default:
292                 ret = -ENOTSUPP;
293         }
294
295         if (ret == 0)
296                 rtc->periodic_freq |= tmp;
297
298         spin_unlock_irq(&rtc->lock);
299         return ret;
300 }
301
302 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
303 {
304         struct sh_rtc *rtc = dev_get_drvdata(dev);
305         unsigned int tmp;
306
307         spin_lock_irq(&rtc->lock);
308
309         tmp = readb(rtc->regbase + RCR1);
310
311         if (enable)
312                 tmp |= RCR1_AIE;
313         else
314                 tmp &= ~RCR1_AIE;
315
316         writeb(tmp, rtc->regbase + RCR1);
317
318         spin_unlock_irq(&rtc->lock);
319 }
320
321 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
322 {
323         struct sh_rtc *rtc = dev_get_drvdata(dev);
324         unsigned int tmp;
325
326         tmp = readb(rtc->regbase + RCR1);
327         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
328
329         tmp = readb(rtc->regbase + RCR2);
330         seq_printf(seq, "periodic_IRQ\t: %s\n",
331                    (tmp & RCR2_PESMASK) ? "yes" : "no");
332
333         return 0;
334 }
335
336 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
337 {
338         struct sh_rtc *rtc = dev_get_drvdata(dev);
339         unsigned int tmp;
340
341         spin_lock_irq(&rtc->lock);
342
343         tmp = readb(rtc->regbase + RCR1);
344
345         if (!enable)
346                 tmp &= ~RCR1_CIE;
347         else
348                 tmp |= RCR1_CIE;
349
350         writeb(tmp, rtc->regbase + RCR1);
351
352         spin_unlock_irq(&rtc->lock);
353 }
354
355 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
356 {
357         sh_rtc_setaie(dev, enabled);
358         return 0;
359 }
360
361 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
362 {
363         struct sh_rtc *rtc = dev_get_drvdata(dev);
364         unsigned int sec128, sec2, yr, yr100, cf_bit;
365
366         do {
367                 unsigned int tmp;
368
369                 spin_lock_irq(&rtc->lock);
370
371                 tmp = readb(rtc->regbase + RCR1);
372                 tmp &= ~RCR1_CF; /* Clear CF-bit */
373                 tmp |= RCR1_CIE;
374                 writeb(tmp, rtc->regbase + RCR1);
375
376                 sec128 = readb(rtc->regbase + R64CNT);
377
378                 tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
379                 tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
380                 tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
381                 tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
382                 tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
383                 tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
384
385                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
386                         yr  = readw(rtc->regbase + RYRCNT);
387                         yr100 = bcd2bin(yr >> 8);
388                         yr &= 0xff;
389                 } else {
390                         yr  = readb(rtc->regbase + RYRCNT);
391                         yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
392                 }
393
394                 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
395
396                 sec2 = readb(rtc->regbase + R64CNT);
397                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
398
399                 spin_unlock_irq(&rtc->lock);
400         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
401
402 #if RTC_BIT_INVERTED != 0
403         if ((sec128 & RTC_BIT_INVERTED))
404                 tm->tm_sec--;
405 #endif
406
407         /* only keep the carry interrupt enabled if UIE is on */
408         if (!(rtc->periodic_freq & PF_OXS))
409                 sh_rtc_setcie(dev, 0);
410
411         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
412                 "mday=%d, mon=%d, year=%d, wday=%d\n",
413                 __func__,
414                 tm->tm_sec, tm->tm_min, tm->tm_hour,
415                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
416
417         return 0;
418 }
419
420 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
421 {
422         struct sh_rtc *rtc = dev_get_drvdata(dev);
423         unsigned int tmp;
424         int year;
425
426         spin_lock_irq(&rtc->lock);
427
428         /* Reset pre-scaler & stop RTC */
429         tmp = readb(rtc->regbase + RCR2);
430         tmp |= RCR2_RESET;
431         tmp &= ~RCR2_START;
432         writeb(tmp, rtc->regbase + RCR2);
433
434         writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
435         writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
436         writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
437         writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
438         writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
439         writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
440
441         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
442                 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
443                         bin2bcd(tm->tm_year % 100);
444                 writew(year, rtc->regbase + RYRCNT);
445         } else {
446                 year = tm->tm_year % 100;
447                 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
448         }
449
450         /* Start RTC */
451         tmp = readb(rtc->regbase + RCR2);
452         tmp &= ~RCR2_RESET;
453         tmp |= RCR2_RTCEN | RCR2_START;
454         writeb(tmp, rtc->regbase + RCR2);
455
456         spin_unlock_irq(&rtc->lock);
457
458         return 0;
459 }
460
461 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
462 {
463         unsigned int byte;
464         int value = 0xff;       /* return 0xff for ignored values */
465
466         byte = readb(rtc->regbase + reg_off);
467         if (byte & AR_ENB) {
468                 byte &= ~AR_ENB;        /* strip the enable bit */
469                 value = bcd2bin(byte);
470         }
471
472         return value;
473 }
474
475 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
476 {
477         struct sh_rtc *rtc = dev_get_drvdata(dev);
478         struct rtc_time *tm = &wkalrm->time;
479
480         spin_lock_irq(&rtc->lock);
481
482         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
483         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
484         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
485         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
486         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
487         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
488         if (tm->tm_mon > 0)
489                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
490
491         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
492
493         spin_unlock_irq(&rtc->lock);
494
495         return 0;
496 }
497
498 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
499                                             int value, int reg_off)
500 {
501         /* < 0 for a value that is ignored */
502         if (value < 0)
503                 writeb(0, rtc->regbase + reg_off);
504         else
505                 writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
506 }
507
508 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
509 {
510         struct sh_rtc *rtc = dev_get_drvdata(dev);
511         unsigned int rcr1;
512         struct rtc_time *tm = &wkalrm->time;
513         int mon;
514
515         spin_lock_irq(&rtc->lock);
516
517         /* disable alarm interrupt and clear the alarm flag */
518         rcr1 = readb(rtc->regbase + RCR1);
519         rcr1 &= ~(RCR1_AF | RCR1_AIE);
520         writeb(rcr1, rtc->regbase + RCR1);
521
522         /* set alarm time */
523         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
524         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
525         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
526         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
527         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
528         mon = tm->tm_mon;
529         if (mon >= 0)
530                 mon += 1;
531         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
532
533         if (wkalrm->enabled) {
534                 rcr1 |= RCR1_AIE;
535                 writeb(rcr1, rtc->regbase + RCR1);
536         }
537
538         spin_unlock_irq(&rtc->lock);
539
540         return 0;
541 }
542
543 static const struct rtc_class_ops sh_rtc_ops = {
544         .read_time      = sh_rtc_read_time,
545         .set_time       = sh_rtc_set_time,
546         .read_alarm     = sh_rtc_read_alarm,
547         .set_alarm      = sh_rtc_set_alarm,
548         .proc           = sh_rtc_proc,
549         .alarm_irq_enable = sh_rtc_alarm_irq_enable,
550 };
551
552 static int __init sh_rtc_probe(struct platform_device *pdev)
553 {
554         struct sh_rtc *rtc;
555         struct resource *res;
556         struct rtc_time r;
557         char clk_name[6];
558         int clk_id, ret;
559
560         rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
561         if (unlikely(!rtc))
562                 return -ENOMEM;
563
564         spin_lock_init(&rtc->lock);
565
566         /* get periodic/carry/alarm irqs */
567         ret = platform_get_irq(pdev, 0);
568         if (unlikely(ret <= 0)) {
569                 dev_err(&pdev->dev, "No IRQ resource\n");
570                 return -ENOENT;
571         }
572
573         rtc->periodic_irq = ret;
574         rtc->carry_irq = platform_get_irq(pdev, 1);
575         rtc->alarm_irq = platform_get_irq(pdev, 2);
576
577         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
578         if (!res)
579                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
580         if (unlikely(res == NULL)) {
581                 dev_err(&pdev->dev, "No IO resource\n");
582                 return -ENOENT;
583         }
584
585         rtc->regsize = resource_size(res);
586
587         rtc->res = devm_request_mem_region(&pdev->dev, res->start,
588                                         rtc->regsize, pdev->name);
589         if (unlikely(!rtc->res))
590                 return -EBUSY;
591
592         rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
593                                         rtc->regsize);
594         if (unlikely(!rtc->regbase))
595                 return -EINVAL;
596
597         if (!pdev->dev.of_node) {
598                 clk_id = pdev->id;
599                 /* With a single device, the clock id is still "rtc0" */
600                 if (clk_id < 0)
601                         clk_id = 0;
602
603                 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
604         } else
605                 snprintf(clk_name, sizeof(clk_name), "fck");
606
607         rtc->clk = devm_clk_get(&pdev->dev, clk_name);
608         if (IS_ERR(rtc->clk)) {
609                 /*
610                  * No error handling for rtc->clk intentionally, not all
611                  * platforms will have a unique clock for the RTC, and
612                  * the clk API can handle the struct clk pointer being
613                  * NULL.
614                  */
615                 rtc->clk = NULL;
616         }
617
618         clk_enable(rtc->clk);
619
620         rtc->capabilities = RTC_DEF_CAPABILITIES;
621
622 #ifdef CONFIG_SUPERH
623         if (dev_get_platdata(&pdev->dev)) {
624                 struct sh_rtc_platform_info *pinfo =
625                         dev_get_platdata(&pdev->dev);
626
627                 /*
628                  * Some CPUs have special capabilities in addition to the
629                  * default set. Add those in here.
630                  */
631                 rtc->capabilities |= pinfo->capabilities;
632         }
633 #endif
634
635         if (rtc->carry_irq <= 0) {
636                 /* register shared periodic/carry/alarm irq */
637                 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
638                                 sh_rtc_shared, 0, "sh-rtc", rtc);
639                 if (unlikely(ret)) {
640                         dev_err(&pdev->dev,
641                                 "request IRQ failed with %d, IRQ %d\n", ret,
642                                 rtc->periodic_irq);
643                         goto err_unmap;
644                 }
645         } else {
646                 /* register periodic/carry/alarm irqs */
647                 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
648                                 sh_rtc_periodic, 0, "sh-rtc period", rtc);
649                 if (unlikely(ret)) {
650                         dev_err(&pdev->dev,
651                                 "request period IRQ failed with %d, IRQ %d\n",
652                                 ret, rtc->periodic_irq);
653                         goto err_unmap;
654                 }
655
656                 ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
657                                 sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
658                 if (unlikely(ret)) {
659                         dev_err(&pdev->dev,
660                                 "request carry IRQ failed with %d, IRQ %d\n",
661                                 ret, rtc->carry_irq);
662                         goto err_unmap;
663                 }
664
665                 ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
666                                 sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
667                 if (unlikely(ret)) {
668                         dev_err(&pdev->dev,
669                                 "request alarm IRQ failed with %d, IRQ %d\n",
670                                 ret, rtc->alarm_irq);
671                         goto err_unmap;
672                 }
673         }
674
675         platform_set_drvdata(pdev, rtc);
676
677         /* everything disabled by default */
678         sh_rtc_irq_set_freq(&pdev->dev, 0);
679         sh_rtc_irq_set_state(&pdev->dev, 0);
680         sh_rtc_setaie(&pdev->dev, 0);
681         sh_rtc_setcie(&pdev->dev, 0);
682
683         rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
684                                            &sh_rtc_ops, THIS_MODULE);
685         if (IS_ERR(rtc->rtc_dev)) {
686                 ret = PTR_ERR(rtc->rtc_dev);
687                 goto err_unmap;
688         }
689
690         rtc->rtc_dev->max_user_freq = 256;
691
692         /* reset rtc to epoch 0 if time is invalid */
693         if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
694                 rtc_time_to_tm(0, &r);
695                 rtc_set_time(rtc->rtc_dev, &r);
696         }
697
698         device_init_wakeup(&pdev->dev, 1);
699         return 0;
700
701 err_unmap:
702         clk_disable(rtc->clk);
703
704         return ret;
705 }
706
707 static int __exit sh_rtc_remove(struct platform_device *pdev)
708 {
709         struct sh_rtc *rtc = platform_get_drvdata(pdev);
710
711         sh_rtc_irq_set_state(&pdev->dev, 0);
712
713         sh_rtc_setaie(&pdev->dev, 0);
714         sh_rtc_setcie(&pdev->dev, 0);
715
716         clk_disable(rtc->clk);
717
718         return 0;
719 }
720
721 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
722 {
723         struct sh_rtc *rtc = dev_get_drvdata(dev);
724
725         irq_set_irq_wake(rtc->periodic_irq, enabled);
726
727         if (rtc->carry_irq > 0) {
728                 irq_set_irq_wake(rtc->carry_irq, enabled);
729                 irq_set_irq_wake(rtc->alarm_irq, enabled);
730         }
731 }
732
733 static int __maybe_unused sh_rtc_suspend(struct device *dev)
734 {
735         if (device_may_wakeup(dev))
736                 sh_rtc_set_irq_wake(dev, 1);
737
738         return 0;
739 }
740
741 static int __maybe_unused sh_rtc_resume(struct device *dev)
742 {
743         if (device_may_wakeup(dev))
744                 sh_rtc_set_irq_wake(dev, 0);
745
746         return 0;
747 }
748
749 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
750
751 static const struct of_device_id sh_rtc_of_match[] = {
752         { .compatible = "renesas,sh-rtc", },
753         { /* sentinel */ }
754 };
755 MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
756
757 static struct platform_driver sh_rtc_platform_driver = {
758         .driver         = {
759                 .name   = DRV_NAME,
760                 .pm     = &sh_rtc_pm_ops,
761                 .of_match_table = sh_rtc_of_match,
762         },
763         .remove         = __exit_p(sh_rtc_remove),
764 };
765
766 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
767
768 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
769 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
770               "Jamie Lenehan <lenehan@twibble.org>, "
771               "Angelo Castello <angelo.castello@st.com>");
772 MODULE_LICENSE("GPL");
773 MODULE_ALIAS("platform:" DRV_NAME);