]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/aacraid/commsup.c
d5a6aa9676c8f4c3ee77b0ebc438c9b2cad38cd0
[linux.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/crash_dump.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/interrupt.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52
53 #include "aacraid.h"
54
55 /**
56  *      fib_map_alloc           -       allocate the fib objects
57  *      @dev: Adapter to allocate for
58  *
59  *      Allocate and map the shared PCI space for the FIB blocks used to
60  *      talk to the Adaptec firmware.
61  */
62
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67         else
68                 dev->max_cmd_size = dev->max_fib_size;
69         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71         } else {
72                 dev->max_cmd_size = dev->max_fib_size;
73         }
74
75         dprintk((KERN_INFO
76           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82                 &dev->hw_fib_pa, GFP_KERNEL);
83         if (dev->hw_fib_va == NULL)
84                 return -ENOMEM;
85         return 0;
86 }
87
88 /**
89  *      aac_fib_map_free                -       free the fib objects
90  *      @dev: Adapter to free
91  *
92  *      Free the PCI mappings and the memory allocated for FIB blocks
93  *      on this adapter.
94  */
95
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98         size_t alloc_size;
99         size_t fib_size;
100         int num_fibs;
101
102         if(!dev->hw_fib_va || !dev->max_cmd_size)
103                 return;
104
105         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108
109         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110                           dev->hw_fib_pa);
111
112         dev->hw_fib_va = NULL;
113         dev->hw_fib_pa = 0;
114 }
115
116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118         u32 i = 0;
119         u32 vector = 1;
120         struct fib *fibptr = NULL;
121
122         for (i = 0, fibptr = &dev->fibs[i];
123                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124                 i++, fibptr++) {
125                 if ((dev->max_msix == 1) ||
126                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127                         - dev->vector_cap))) {
128                         fibptr->vector_no = 0;
129                 } else {
130                         fibptr->vector_no = vector;
131                         vector++;
132                         if (vector == dev->max_msix)
133                                 vector = 1;
134                 }
135         }
136 }
137
138 /**
139  *      aac_fib_setup   -       setup the fibs
140  *      @dev: Adapter to set up
141  *
142  *      Allocate the PCI space for the fibs, map it and then initialise the
143  *      fib area, the unmapped fib data and also the free list
144  */
145
146 int aac_fib_setup(struct aac_dev * dev)
147 {
148         struct fib *fibptr;
149         struct hw_fib *hw_fib;
150         dma_addr_t hw_fib_pa;
151         int i;
152         u32 max_cmds;
153
154         while (((i = fib_map_alloc(dev)) == -ENOMEM)
155          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160         }
161         if (i<0)
162                 return -ENOMEM;
163
164         memset(dev->hw_fib_va, 0,
165                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167
168         /* 32 byte alignment for PMC */
169         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171                                         (hw_fib_pa - dev->hw_fib_pa));
172
173         /* add Xport header */
174         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175                 sizeof(struct aac_fib_xporthdr));
176         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177
178         /*
179          *      Initialise the fibs
180          */
181         for (i = 0, fibptr = &dev->fibs[i];
182                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183                 i++, fibptr++)
184         {
185                 fibptr->flags = 0;
186                 fibptr->size = sizeof(struct fib);
187                 fibptr->dev = dev;
188                 fibptr->hw_fib_va = hw_fib;
189                 fibptr->data = (void *) fibptr->hw_fib_va->data;
190                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
191                 init_completion(&fibptr->event_wait);
192                 spin_lock_init(&fibptr->event_lock);
193                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194                 hw_fib->header.SenderSize =
195                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
196                 fibptr->hw_fib_pa = hw_fib_pa;
197                 fibptr->hw_sgl_pa = hw_fib_pa +
198                         offsetof(struct aac_hba_cmd_req, sge[2]);
199                 /*
200                  * one element is for the ptr to the separate sg list,
201                  * second element for 32 byte alignment
202                  */
203                 fibptr->hw_error_pa = hw_fib_pa +
204                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205
206                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208                 hw_fib_pa = hw_fib_pa +
209                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210         }
211
212         /*
213          *Assign vector numbers to fibs
214          */
215         aac_fib_vector_assign(dev);
216
217         /*
218          *      Add the fib chain to the free list
219          */
220         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221         /*
222         *       Set 8 fibs aside for management tools
223         */
224         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225         return 0;
226 }
227
228 /**
229  *      aac_fib_alloc_tag-allocate a fib using tags
230  *      @dev: Adapter to allocate the fib for
231  *
232  *      Allocate a fib from the adapter fib pool using tags
233  *      from the blk layer.
234  */
235
236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238         struct fib *fibptr;
239
240         fibptr = &dev->fibs[scmd->request->tag];
241         /*
242          *      Null out fields that depend on being zero at the start of
243          *      each I/O
244          */
245         fibptr->hw_fib_va->header.XferState = 0;
246         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247         fibptr->callback_data = NULL;
248         fibptr->callback = NULL;
249
250         return fibptr;
251 }
252
253 /**
254  *      aac_fib_alloc   -       allocate a fib
255  *      @dev: Adapter to allocate the fib for
256  *
257  *      Allocate a fib from the adapter fib pool. If the pool is empty we
258  *      return NULL.
259  */
260
261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263         struct fib * fibptr;
264         unsigned long flags;
265         spin_lock_irqsave(&dev->fib_lock, flags);
266         fibptr = dev->free_fib;
267         if(!fibptr){
268                 spin_unlock_irqrestore(&dev->fib_lock, flags);
269                 return fibptr;
270         }
271         dev->free_fib = fibptr->next;
272         spin_unlock_irqrestore(&dev->fib_lock, flags);
273         /*
274          *      Set the proper node type code and node byte size
275          */
276         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277         fibptr->size = sizeof(struct fib);
278         /*
279          *      Null out fields that depend on being zero at the start of
280          *      each I/O
281          */
282         fibptr->hw_fib_va->header.XferState = 0;
283         fibptr->flags = 0;
284         fibptr->callback = NULL;
285         fibptr->callback_data = NULL;
286
287         return fibptr;
288 }
289
290 /**
291  *      aac_fib_free    -       free a fib
292  *      @fibptr: fib to free up
293  *
294  *      Frees up a fib and places it on the appropriate queue
295  */
296
297 void aac_fib_free(struct fib *fibptr)
298 {
299         unsigned long flags;
300
301         if (fibptr->done == 2)
302                 return;
303
304         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306                 aac_config.fib_timeouts++;
307         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308                 fibptr->hw_fib_va->header.XferState != 0) {
309                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310                          (void*)fibptr,
311                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312         }
313         fibptr->next = fibptr->dev->free_fib;
314         fibptr->dev->free_fib = fibptr;
315         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317
318 /**
319  *      aac_fib_init    -       initialise a fib
320  *      @fibptr: The fib to initialize
321  *
322  *      Set up the generic fib fields ready for use
323  */
324
325 void aac_fib_init(struct fib *fibptr)
326 {
327         struct hw_fib *hw_fib = fibptr->hw_fib_va;
328
329         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330         hw_fib->header.StructType = FIB_MAGIC;
331         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336
337 /**
338  *      fib_deallocate          -       deallocate a fib
339  *      @fibptr: fib to deallocate
340  *
341  *      Will deallocate and return to the free pool the FIB pointed to by the
342  *      caller.
343  */
344
345 static void fib_dealloc(struct fib * fibptr)
346 {
347         struct hw_fib *hw_fib = fibptr->hw_fib_va;
348         hw_fib->header.XferState = 0;
349 }
350
351 /*
352  *      Commuication primitives define and support the queuing method we use to
353  *      support host to adapter commuication. All queue accesses happen through
354  *      these routines and are the only routines which have a knowledge of the
355  *       how these queues are implemented.
356  */
357
358 /**
359  *      aac_get_entry           -       get a queue entry
360  *      @dev: Adapter
361  *      @qid: Queue Number
362  *      @entry: Entry return
363  *      @index: Index return
364  *      @nonotify: notification control
365  *
366  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
367  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368  *      returned.
369  */
370
371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373         struct aac_queue * q;
374         unsigned long idx;
375
376         /*
377          *      All of the queues wrap when they reach the end, so we check
378          *      to see if they have reached the end and if they have we just
379          *      set the index back to zero. This is a wrap. You could or off
380          *      the high bits in all updates but this is a bit faster I think.
381          */
382
383         q = &dev->queues->queue[qid];
384
385         idx = *index = le32_to_cpu(*(q->headers.producer));
386         /* Interrupt Moderation, only interrupt for first two entries */
387         if (idx != le32_to_cpu(*(q->headers.consumer))) {
388                 if (--idx == 0) {
389                         if (qid == AdapNormCmdQueue)
390                                 idx = ADAP_NORM_CMD_ENTRIES;
391                         else
392                                 idx = ADAP_NORM_RESP_ENTRIES;
393                 }
394                 if (idx != le32_to_cpu(*(q->headers.consumer)))
395                         *nonotify = 1;
396         }
397
398         if (qid == AdapNormCmdQueue) {
399                 if (*index >= ADAP_NORM_CMD_ENTRIES)
400                         *index = 0; /* Wrap to front of the Producer Queue. */
401         } else {
402                 if (*index >= ADAP_NORM_RESP_ENTRIES)
403                         *index = 0; /* Wrap to front of the Producer Queue. */
404         }
405
406         /* Queue is full */
407         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409                                 qid, atomic_read(&q->numpending));
410                 return 0;
411         } else {
412                 *entry = q->base + *index;
413                 return 1;
414         }
415 }
416
417 /**
418  *      aac_queue_get           -       get the next free QE
419  *      @dev: Adapter
420  *      @index: Returned index
421  *      @priority: Priority of fib
422  *      @fib: Fib to associate with the queue entry
423  *      @wait: Wait if queue full
424  *      @fibptr: Driver fib object to go with fib
425  *      @nonotify: Don't notify the adapter
426  *
427  *      Gets the next free QE off the requested priorty adapter command
428  *      queue and associates the Fib with the QE. The QE represented by
429  *      index is ready to insert on the queue when this routine returns
430  *      success.
431  */
432
433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435         struct aac_entry * entry = NULL;
436         int map = 0;
437
438         if (qid == AdapNormCmdQueue) {
439                 /*  if no entries wait for some if caller wants to */
440                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441                         printk(KERN_ERR "GetEntries failed\n");
442                 }
443                 /*
444                  *      Setup queue entry with a command, status and fib mapped
445                  */
446                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447                 map = 1;
448         } else {
449                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450                         /* if no entries wait for some if caller wants to */
451                 }
452                 /*
453                  *      Setup queue entry with command, status and fib mapped
454                  */
455                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456                 entry->addr = hw_fib->header.SenderFibAddress;
457                         /* Restore adapters pointer to the FIB */
458                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
459                 map = 0;
460         }
461         /*
462          *      If MapFib is true than we need to map the Fib and put pointers
463          *      in the queue entry.
464          */
465         if (map)
466                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467         return 0;
468 }
469
470 /*
471  *      Define the highest level of host to adapter communication routines.
472  *      These routines will support host to adapter FS commuication. These
473  *      routines have no knowledge of the commuication method used. This level
474  *      sends and receives FIBs. This level has no knowledge of how these FIBs
475  *      get passed back and forth.
476  */
477
478 /**
479  *      aac_fib_send    -       send a fib to the adapter
480  *      @command: Command to send
481  *      @fibptr: The fib
482  *      @size: Size of fib data area
483  *      @priority: Priority of Fib
484  *      @wait: Async/sync select
485  *      @reply: True if a reply is wanted
486  *      @callback: Called with reply
487  *      @callback_data: Passed to callback
488  *
489  *      Sends the requested FIB to the adapter and optionally will wait for a
490  *      response FIB. If the caller does not wish to wait for a response than
491  *      an event to wait on must be supplied. This event will be set when a
492  *      response FIB is received from the adapter.
493  */
494
495 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
496                 int priority, int wait, int reply, fib_callback callback,
497                 void *callback_data)
498 {
499         struct aac_dev * dev = fibptr->dev;
500         struct hw_fib * hw_fib = fibptr->hw_fib_va;
501         unsigned long flags = 0;
502         unsigned long mflags = 0;
503         unsigned long sflags = 0;
504
505         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
506                 return -EBUSY;
507
508         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
509                 return -EINVAL;
510
511         /*
512          *      There are 5 cases with the wait and response requested flags.
513          *      The only invalid cases are if the caller requests to wait and
514          *      does not request a response and if the caller does not want a
515          *      response and the Fib is not allocated from pool. If a response
516          *      is not requested the Fib will just be deallocaed by the DPC
517          *      routine when the response comes back from the adapter. No
518          *      further processing will be done besides deleting the Fib. We
519          *      will have a debug mode where the adapter can notify the host
520          *      it had a problem and the host can log that fact.
521          */
522         fibptr->flags = 0;
523         if (wait && !reply) {
524                 return -EINVAL;
525         } else if (!wait && reply) {
526                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
527                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
528         } else if (!wait && !reply) {
529                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
530                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
531         } else if (wait && reply) {
532                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
533                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
534         }
535         /*
536          *      Map the fib into 32bits by using the fib number
537          */
538
539         hw_fib->header.SenderFibAddress =
540                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
541
542         /* use the same shifted value for handle to be compatible
543          * with the new native hba command handle
544          */
545         hw_fib->header.Handle =
546                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
547
548         /*
549          *      Set FIB state to indicate where it came from and if we want a
550          *      response from the adapter. Also load the command from the
551          *      caller.
552          *
553          *      Map the hw fib pointer as a 32bit value
554          */
555         hw_fib->header.Command = cpu_to_le16(command);
556         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
557         /*
558          *      Set the size of the Fib we want to send to the adapter
559          */
560         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
561         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
562                 return -EMSGSIZE;
563         }
564         /*
565          *      Get a queue entry connect the FIB to it and send an notify
566          *      the adapter a command is ready.
567          */
568         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
569
570         /*
571          *      Fill in the Callback and CallbackContext if we are not
572          *      going to wait.
573          */
574         if (!wait) {
575                 fibptr->callback = callback;
576                 fibptr->callback_data = callback_data;
577                 fibptr->flags = FIB_CONTEXT_FLAG;
578         }
579
580         fibptr->done = 0;
581
582         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
583
584         dprintk((KERN_DEBUG "Fib contents:.\n"));
585         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
586         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
587         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
588         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
589         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
590         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
591
592         if (!dev->queues)
593                 return -EBUSY;
594
595         if (wait) {
596
597                 spin_lock_irqsave(&dev->manage_lock, mflags);
598                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
599                         printk(KERN_INFO "No management Fibs Available:%d\n",
600                                                 dev->management_fib_count);
601                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
602                         return -EBUSY;
603                 }
604                 dev->management_fib_count++;
605                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
606                 spin_lock_irqsave(&fibptr->event_lock, flags);
607         }
608
609         if (dev->sync_mode) {
610                 if (wait)
611                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
612                 spin_lock_irqsave(&dev->sync_lock, sflags);
613                 if (dev->sync_fib) {
614                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
615                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
616                 } else {
617                         dev->sync_fib = fibptr;
618                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
619                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
620                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
621                                 NULL, NULL, NULL, NULL, NULL);
622                 }
623                 if (wait) {
624                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
625                         if (wait_for_completion_interruptible(&fibptr->event_wait)) {
626                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
627                                 return -EFAULT;
628                         }
629                         return 0;
630                 }
631                 return -EINPROGRESS;
632         }
633
634         if (aac_adapter_deliver(fibptr) != 0) {
635                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
636                 if (wait) {
637                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
638                         spin_lock_irqsave(&dev->manage_lock, mflags);
639                         dev->management_fib_count--;
640                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
641                 }
642                 return -EBUSY;
643         }
644
645
646         /*
647          *      If the caller wanted us to wait for response wait now.
648          */
649
650         if (wait) {
651                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
652                 /* Only set for first known interruptable command */
653                 if (wait < 0) {
654                         /*
655                          * *VERY* Dangerous to time out a command, the
656                          * assumption is made that we have no hope of
657                          * functioning because an interrupt routing or other
658                          * hardware failure has occurred.
659                          */
660                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
661                         while (!try_wait_for_completion(&fibptr->event_wait)) {
662                                 int blink;
663                                 if (time_is_before_eq_jiffies(timeout)) {
664                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
665                                         atomic_dec(&q->numpending);
666                                         if (wait == -1) {
667                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
668                                                   "Usually a result of a PCI interrupt routing problem;\n"
669                                                   "update mother board BIOS or consider utilizing one of\n"
670                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
671                                         }
672                                         return -ETIMEDOUT;
673                                 }
674
675                                 if (unlikely(pci_channel_offline(dev->pdev)))
676                                         return -EFAULT;
677
678                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
679                                         if (wait == -1) {
680                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
681                                                   "Usually a result of a serious unrecoverable hardware problem\n",
682                                                   blink);
683                                         }
684                                         return -EFAULT;
685                                 }
686                                 /*
687                                  * Allow other processes / CPUS to use core
688                                  */
689                                 schedule();
690                         }
691                 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
692                         /* Do nothing ... satisfy
693                          * wait_for_completion_interruptible must_check */
694                 }
695
696                 spin_lock_irqsave(&fibptr->event_lock, flags);
697                 if (fibptr->done == 0) {
698                         fibptr->done = 2; /* Tell interrupt we aborted */
699                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
700                         return -ERESTARTSYS;
701                 }
702                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
703                 BUG_ON(fibptr->done == 0);
704
705                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
706                         return -ETIMEDOUT;
707                 return 0;
708         }
709         /*
710          *      If the user does not want a response than return success otherwise
711          *      return pending
712          */
713         if (reply)
714                 return -EINPROGRESS;
715         else
716                 return 0;
717 }
718
719 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
720                 void *callback_data)
721 {
722         struct aac_dev *dev = fibptr->dev;
723         int wait;
724         unsigned long flags = 0;
725         unsigned long mflags = 0;
726         struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
727                         fibptr->hw_fib_va;
728
729         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
730         if (callback) {
731                 wait = 0;
732                 fibptr->callback = callback;
733                 fibptr->callback_data = callback_data;
734         } else
735                 wait = 1;
736
737
738         hbacmd->iu_type = command;
739
740         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
741                 /* bit1 of request_id must be 0 */
742                 hbacmd->request_id =
743                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
744                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
745         } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
746                 return -EINVAL;
747
748
749         if (wait) {
750                 spin_lock_irqsave(&dev->manage_lock, mflags);
751                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
752                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
753                         return -EBUSY;
754                 }
755                 dev->management_fib_count++;
756                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
757                 spin_lock_irqsave(&fibptr->event_lock, flags);
758         }
759
760         if (aac_adapter_deliver(fibptr) != 0) {
761                 if (wait) {
762                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
763                         spin_lock_irqsave(&dev->manage_lock, mflags);
764                         dev->management_fib_count--;
765                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
766                 }
767                 return -EBUSY;
768         }
769         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
770
771         if (wait) {
772
773                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
774
775                 if (unlikely(pci_channel_offline(dev->pdev)))
776                         return -EFAULT;
777
778                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
779                 if (wait_for_completion_interruptible(&fibptr->event_wait))
780                         fibptr->done = 2;
781                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
782
783                 spin_lock_irqsave(&fibptr->event_lock, flags);
784                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
785                         fibptr->done = 2; /* Tell interrupt we aborted */
786                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
787                         return -ERESTARTSYS;
788                 }
789                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
790                 WARN_ON(fibptr->done == 0);
791
792                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
793                         return -ETIMEDOUT;
794
795                 return 0;
796         }
797
798         return -EINPROGRESS;
799 }
800
801 /**
802  *      aac_consumer_get        -       get the top of the queue
803  *      @dev: Adapter
804  *      @q: Queue
805  *      @entry: Return entry
806  *
807  *      Will return a pointer to the entry on the top of the queue requested that
808  *      we are a consumer of, and return the address of the queue entry. It does
809  *      not change the state of the queue.
810  */
811
812 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
813 {
814         u32 index;
815         int status;
816         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
817                 status = 0;
818         } else {
819                 /*
820                  *      The consumer index must be wrapped if we have reached
821                  *      the end of the queue, else we just use the entry
822                  *      pointed to by the header index
823                  */
824                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
825                         index = 0;
826                 else
827                         index = le32_to_cpu(*q->headers.consumer);
828                 *entry = q->base + index;
829                 status = 1;
830         }
831         return(status);
832 }
833
834 /**
835  *      aac_consumer_free       -       free consumer entry
836  *      @dev: Adapter
837  *      @q: Queue
838  *      @qid: Queue ident
839  *
840  *      Frees up the current top of the queue we are a consumer of. If the
841  *      queue was full notify the producer that the queue is no longer full.
842  */
843
844 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
845 {
846         int wasfull = 0;
847         u32 notify;
848
849         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
850                 wasfull = 1;
851
852         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
853                 *q->headers.consumer = cpu_to_le32(1);
854         else
855                 le32_add_cpu(q->headers.consumer, 1);
856
857         if (wasfull) {
858                 switch (qid) {
859
860                 case HostNormCmdQueue:
861                         notify = HostNormCmdNotFull;
862                         break;
863                 case HostNormRespQueue:
864                         notify = HostNormRespNotFull;
865                         break;
866                 default:
867                         BUG();
868                         return;
869                 }
870                 aac_adapter_notify(dev, notify);
871         }
872 }
873
874 /**
875  *      aac_fib_adapter_complete        -       complete adapter issued fib
876  *      @fibptr: fib to complete
877  *      @size: size of fib
878  *
879  *      Will do all necessary work to complete a FIB that was sent from
880  *      the adapter.
881  */
882
883 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
884 {
885         struct hw_fib * hw_fib = fibptr->hw_fib_va;
886         struct aac_dev * dev = fibptr->dev;
887         struct aac_queue * q;
888         unsigned long nointr = 0;
889         unsigned long qflags;
890
891         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
892                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
893                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
894                 kfree(hw_fib);
895                 return 0;
896         }
897
898         if (hw_fib->header.XferState == 0) {
899                 if (dev->comm_interface == AAC_COMM_MESSAGE)
900                         kfree(hw_fib);
901                 return 0;
902         }
903         /*
904          *      If we plan to do anything check the structure type first.
905          */
906         if (hw_fib->header.StructType != FIB_MAGIC &&
907             hw_fib->header.StructType != FIB_MAGIC2 &&
908             hw_fib->header.StructType != FIB_MAGIC2_64) {
909                 if (dev->comm_interface == AAC_COMM_MESSAGE)
910                         kfree(hw_fib);
911                 return -EINVAL;
912         }
913         /*
914          *      This block handles the case where the adapter had sent us a
915          *      command and we have finished processing the command. We
916          *      call completeFib when we are done processing the command
917          *      and want to send a response back to the adapter. This will
918          *      send the completed cdb to the adapter.
919          */
920         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
921                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
922                         kfree (hw_fib);
923                 } else {
924                         u32 index;
925                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
926                         if (size) {
927                                 size += sizeof(struct aac_fibhdr);
928                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
929                                         return -EMSGSIZE;
930                                 hw_fib->header.Size = cpu_to_le16(size);
931                         }
932                         q = &dev->queues->queue[AdapNormRespQueue];
933                         spin_lock_irqsave(q->lock, qflags);
934                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
935                         *(q->headers.producer) = cpu_to_le32(index + 1);
936                         spin_unlock_irqrestore(q->lock, qflags);
937                         if (!(nointr & (int)aac_config.irq_mod))
938                                 aac_adapter_notify(dev, AdapNormRespQueue);
939                 }
940         } else {
941                 printk(KERN_WARNING "aac_fib_adapter_complete: "
942                         "Unknown xferstate detected.\n");
943                 BUG();
944         }
945         return 0;
946 }
947
948 /**
949  *      aac_fib_complete        -       fib completion handler
950  *      @fib: FIB to complete
951  *
952  *      Will do all necessary work to complete a FIB.
953  */
954
955 int aac_fib_complete(struct fib *fibptr)
956 {
957         struct hw_fib * hw_fib = fibptr->hw_fib_va;
958
959         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
960                 fib_dealloc(fibptr);
961                 return 0;
962         }
963
964         /*
965          *      Check for a fib which has already been completed or with a
966          *      status wait timeout
967          */
968
969         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
970                 return 0;
971         /*
972          *      If we plan to do anything check the structure type first.
973          */
974
975         if (hw_fib->header.StructType != FIB_MAGIC &&
976             hw_fib->header.StructType != FIB_MAGIC2 &&
977             hw_fib->header.StructType != FIB_MAGIC2_64)
978                 return -EINVAL;
979         /*
980          *      This block completes a cdb which orginated on the host and we
981          *      just need to deallocate the cdb or reinit it. At this point the
982          *      command is complete that we had sent to the adapter and this
983          *      cdb could be reused.
984          */
985
986         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
987                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
988         {
989                 fib_dealloc(fibptr);
990         }
991         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
992         {
993                 /*
994                  *      This handles the case when the host has aborted the I/O
995                  *      to the adapter because the adapter is not responding
996                  */
997                 fib_dealloc(fibptr);
998         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
999                 fib_dealloc(fibptr);
1000         } else {
1001                 BUG();
1002         }
1003         return 0;
1004 }
1005
1006 /**
1007  *      aac_printf      -       handle printf from firmware
1008  *      @dev: Adapter
1009  *      @val: Message info
1010  *
1011  *      Print a message passed to us by the controller firmware on the
1012  *      Adaptec board
1013  */
1014
1015 void aac_printf(struct aac_dev *dev, u32 val)
1016 {
1017         char *cp = dev->printfbuf;
1018         if (dev->printf_enabled)
1019         {
1020                 int length = val & 0xffff;
1021                 int level = (val >> 16) & 0xffff;
1022
1023                 /*
1024                  *      The size of the printfbuf is set in port.c
1025                  *      There is no variable or define for it
1026                  */
1027                 if (length > 255)
1028                         length = 255;
1029                 if (cp[length] != 0)
1030                         cp[length] = 0;
1031                 if (level == LOG_AAC_HIGH_ERROR)
1032                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1033                 else
1034                         printk(KERN_INFO "%s:%s", dev->name, cp);
1035         }
1036         memset(cp, 0, 256);
1037 }
1038
1039 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1040 {
1041         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1042 }
1043
1044
1045 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1046 {
1047         switch (aac_aif_data(aifcmd, 1)) {
1048         case AifBuCacheDataLoss:
1049                 if (aac_aif_data(aifcmd, 2))
1050                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1051                         aac_aif_data(aifcmd, 2));
1052                 else
1053                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1054                 break;
1055         case AifBuCacheDataRecover:
1056                 if (aac_aif_data(aifcmd, 2))
1057                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1058                         aac_aif_data(aifcmd, 2));
1059                 else
1060                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1061                 break;
1062         }
1063 }
1064
1065 /**
1066  *      aac_handle_aif          -       Handle a message from the firmware
1067  *      @dev: Which adapter this fib is from
1068  *      @fibptr: Pointer to fibptr from adapter
1069  *
1070  *      This routine handles a driver notify fib from the adapter and
1071  *      dispatches it to the appropriate routine for handling.
1072  */
1073
1074 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1075 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1076 {
1077         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1078         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1079         u32 channel, id, lun, container;
1080         struct scsi_device *device;
1081         enum {
1082                 NOTHING,
1083                 DELETE,
1084                 ADD,
1085                 CHANGE
1086         } device_config_needed = NOTHING;
1087
1088         /* Sniff for container changes */
1089
1090         if (!dev || !dev->fsa_dev)
1091                 return;
1092         container = channel = id = lun = (u32)-1;
1093
1094         /*
1095          *      We have set this up to try and minimize the number of
1096          * re-configures that take place. As a result of this when
1097          * certain AIF's come in we will set a flag waiting for another
1098          * type of AIF before setting the re-config flag.
1099          */
1100         switch (le32_to_cpu(aifcmd->command)) {
1101         case AifCmdDriverNotify:
1102                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1103                 case AifRawDeviceRemove:
1104                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1105                         if ((container >> 28)) {
1106                                 container = (u32)-1;
1107                                 break;
1108                         }
1109                         channel = (container >> 24) & 0xF;
1110                         if (channel >= dev->maximum_num_channels) {
1111                                 container = (u32)-1;
1112                                 break;
1113                         }
1114                         id = container & 0xFFFF;
1115                         if (id >= dev->maximum_num_physicals) {
1116                                 container = (u32)-1;
1117                                 break;
1118                         }
1119                         lun = (container >> 16) & 0xFF;
1120                         container = (u32)-1;
1121                         channel = aac_phys_to_logical(channel);
1122                         device_config_needed = DELETE;
1123                         break;
1124
1125                 /*
1126                  *      Morph or Expand complete
1127                  */
1128                 case AifDenMorphComplete:
1129                 case AifDenVolumeExtendComplete:
1130                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1131                         if (container >= dev->maximum_num_containers)
1132                                 break;
1133
1134                         /*
1135                          *      Find the scsi_device associated with the SCSI
1136                          * address. Make sure we have the right array, and if
1137                          * so set the flag to initiate a new re-config once we
1138                          * see an AifEnConfigChange AIF come through.
1139                          */
1140
1141                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1142                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1143                                         CONTAINER_TO_CHANNEL(container),
1144                                         CONTAINER_TO_ID(container),
1145                                         CONTAINER_TO_LUN(container));
1146                                 if (device) {
1147                                         dev->fsa_dev[container].config_needed = CHANGE;
1148                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1149                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1150                                         scsi_device_put(device);
1151                                 }
1152                         }
1153                 }
1154
1155                 /*
1156                  *      If we are waiting on something and this happens to be
1157                  * that thing then set the re-configure flag.
1158                  */
1159                 if (container != (u32)-1) {
1160                         if (container >= dev->maximum_num_containers)
1161                                 break;
1162                         if ((dev->fsa_dev[container].config_waiting_on ==
1163                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1164                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1165                                 dev->fsa_dev[container].config_waiting_on = 0;
1166                 } else for (container = 0;
1167                     container < dev->maximum_num_containers; ++container) {
1168                         if ((dev->fsa_dev[container].config_waiting_on ==
1169                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1170                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1171                                 dev->fsa_dev[container].config_waiting_on = 0;
1172                 }
1173                 break;
1174
1175         case AifCmdEventNotify:
1176                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1177                 case AifEnBatteryEvent:
1178                         dev->cache_protected =
1179                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1180                         break;
1181                 /*
1182                  *      Add an Array.
1183                  */
1184                 case AifEnAddContainer:
1185                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186                         if (container >= dev->maximum_num_containers)
1187                                 break;
1188                         dev->fsa_dev[container].config_needed = ADD;
1189                         dev->fsa_dev[container].config_waiting_on =
1190                                 AifEnConfigChange;
1191                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192                         break;
1193
1194                 /*
1195                  *      Delete an Array.
1196                  */
1197                 case AifEnDeleteContainer:
1198                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199                         if (container >= dev->maximum_num_containers)
1200                                 break;
1201                         dev->fsa_dev[container].config_needed = DELETE;
1202                         dev->fsa_dev[container].config_waiting_on =
1203                                 AifEnConfigChange;
1204                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1205                         break;
1206
1207                 /*
1208                  *      Container change detected. If we currently are not
1209                  * waiting on something else, setup to wait on a Config Change.
1210                  */
1211                 case AifEnContainerChange:
1212                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1213                         if (container >= dev->maximum_num_containers)
1214                                 break;
1215                         if (dev->fsa_dev[container].config_waiting_on &&
1216                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1217                                 break;
1218                         dev->fsa_dev[container].config_needed = CHANGE;
1219                         dev->fsa_dev[container].config_waiting_on =
1220                                 AifEnConfigChange;
1221                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1222                         break;
1223
1224                 case AifEnConfigChange:
1225                         break;
1226
1227                 case AifEnAddJBOD:
1228                 case AifEnDeleteJBOD:
1229                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1230                         if ((container >> 28)) {
1231                                 container = (u32)-1;
1232                                 break;
1233                         }
1234                         channel = (container >> 24) & 0xF;
1235                         if (channel >= dev->maximum_num_channels) {
1236                                 container = (u32)-1;
1237                                 break;
1238                         }
1239                         id = container & 0xFFFF;
1240                         if (id >= dev->maximum_num_physicals) {
1241                                 container = (u32)-1;
1242                                 break;
1243                         }
1244                         lun = (container >> 16) & 0xFF;
1245                         container = (u32)-1;
1246                         channel = aac_phys_to_logical(channel);
1247                         device_config_needed =
1248                           (((__le32 *)aifcmd->data)[0] ==
1249                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1250                         if (device_config_needed == ADD) {
1251                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1252                                         channel,
1253                                         id,
1254                                         lun);
1255                                 if (device) {
1256                                         scsi_remove_device(device);
1257                                         scsi_device_put(device);
1258                                 }
1259                         }
1260                         break;
1261
1262                 case AifEnEnclosureManagement:
1263                         /*
1264                          * If in JBOD mode, automatic exposure of new
1265                          * physical target to be suppressed until configured.
1266                          */
1267                         if (dev->jbod)
1268                                 break;
1269                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1270                         case EM_DRIVE_INSERTION:
1271                         case EM_DRIVE_REMOVAL:
1272                         case EM_SES_DRIVE_INSERTION:
1273                         case EM_SES_DRIVE_REMOVAL:
1274                                 container = le32_to_cpu(
1275                                         ((__le32 *)aifcmd->data)[2]);
1276                                 if ((container >> 28)) {
1277                                         container = (u32)-1;
1278                                         break;
1279                                 }
1280                                 channel = (container >> 24) & 0xF;
1281                                 if (channel >= dev->maximum_num_channels) {
1282                                         container = (u32)-1;
1283                                         break;
1284                                 }
1285                                 id = container & 0xFFFF;
1286                                 lun = (container >> 16) & 0xFF;
1287                                 container = (u32)-1;
1288                                 if (id >= dev->maximum_num_physicals) {
1289                                         /* legacy dev_t ? */
1290                                         if ((0x2000 <= id) || lun || channel ||
1291                                           ((channel = (id >> 7) & 0x3F) >=
1292                                           dev->maximum_num_channels))
1293                                                 break;
1294                                         lun = (id >> 4) & 7;
1295                                         id &= 0xF;
1296                                 }
1297                                 channel = aac_phys_to_logical(channel);
1298                                 device_config_needed =
1299                                   ((((__le32 *)aifcmd->data)[3]
1300                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1301                                     (((__le32 *)aifcmd->data)[3]
1302                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1303                                   ADD : DELETE;
1304                                 break;
1305                         }
1306                         case AifBuManagerEvent:
1307                                 aac_handle_aif_bu(dev, aifcmd);
1308                         break;
1309                 }
1310
1311                 /*
1312                  *      If we are waiting on something and this happens to be
1313                  * that thing then set the re-configure flag.
1314                  */
1315                 if (container != (u32)-1) {
1316                         if (container >= dev->maximum_num_containers)
1317                                 break;
1318                         if ((dev->fsa_dev[container].config_waiting_on ==
1319                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1320                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1321                                 dev->fsa_dev[container].config_waiting_on = 0;
1322                 } else for (container = 0;
1323                     container < dev->maximum_num_containers; ++container) {
1324                         if ((dev->fsa_dev[container].config_waiting_on ==
1325                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1326                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1327                                 dev->fsa_dev[container].config_waiting_on = 0;
1328                 }
1329                 break;
1330
1331         case AifCmdJobProgress:
1332                 /*
1333                  *      These are job progress AIF's. When a Clear is being
1334                  * done on a container it is initially created then hidden from
1335                  * the OS. When the clear completes we don't get a config
1336                  * change so we monitor the job status complete on a clear then
1337                  * wait for a container change.
1338                  */
1339
1340                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1341                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1342                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1343                         for (container = 0;
1344                             container < dev->maximum_num_containers;
1345                             ++container) {
1346                                 /*
1347                                  * Stomp on all config sequencing for all
1348                                  * containers?
1349                                  */
1350                                 dev->fsa_dev[container].config_waiting_on =
1351                                         AifEnContainerChange;
1352                                 dev->fsa_dev[container].config_needed = ADD;
1353                                 dev->fsa_dev[container].config_waiting_stamp =
1354                                         jiffies;
1355                         }
1356                 }
1357                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1358                     ((__le32 *)aifcmd->data)[6] == 0 &&
1359                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1360                         for (container = 0;
1361                             container < dev->maximum_num_containers;
1362                             ++container) {
1363                                 /*
1364                                  * Stomp on all config sequencing for all
1365                                  * containers?
1366                                  */
1367                                 dev->fsa_dev[container].config_waiting_on =
1368                                         AifEnContainerChange;
1369                                 dev->fsa_dev[container].config_needed = DELETE;
1370                                 dev->fsa_dev[container].config_waiting_stamp =
1371                                         jiffies;
1372                         }
1373                 }
1374                 break;
1375         }
1376
1377         container = 0;
1378 retry_next:
1379         if (device_config_needed == NOTHING)
1380         for (; container < dev->maximum_num_containers; ++container) {
1381                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1382                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1383                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1384                         device_config_needed =
1385                                 dev->fsa_dev[container].config_needed;
1386                         dev->fsa_dev[container].config_needed = NOTHING;
1387                         channel = CONTAINER_TO_CHANNEL(container);
1388                         id = CONTAINER_TO_ID(container);
1389                         lun = CONTAINER_TO_LUN(container);
1390                         break;
1391                 }
1392         }
1393         if (device_config_needed == NOTHING)
1394                 return;
1395
1396         /*
1397          *      If we decided that a re-configuration needs to be done,
1398          * schedule it here on the way out the door, please close the door
1399          * behind you.
1400          */
1401
1402         /*
1403          *      Find the scsi_device associated with the SCSI address,
1404          * and mark it as changed, invalidating the cache. This deals
1405          * with changes to existing device IDs.
1406          */
1407
1408         if (!dev || !dev->scsi_host_ptr)
1409                 return;
1410         /*
1411          * force reload of disk info via aac_probe_container
1412          */
1413         if ((channel == CONTAINER_CHANNEL) &&
1414           (device_config_needed != NOTHING)) {
1415                 if (dev->fsa_dev[container].valid == 1)
1416                         dev->fsa_dev[container].valid = 2;
1417                 aac_probe_container(dev, container);
1418         }
1419         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1420         if (device) {
1421                 switch (device_config_needed) {
1422                 case DELETE:
1423 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1424                         scsi_remove_device(device);
1425 #else
1426                         if (scsi_device_online(device)) {
1427                                 scsi_device_set_state(device, SDEV_OFFLINE);
1428                                 sdev_printk(KERN_INFO, device,
1429                                         "Device offlined - %s\n",
1430                                         (channel == CONTAINER_CHANNEL) ?
1431                                                 "array deleted" :
1432                                                 "enclosure services event");
1433                         }
1434 #endif
1435                         break;
1436                 case ADD:
1437                         if (!scsi_device_online(device)) {
1438                                 sdev_printk(KERN_INFO, device,
1439                                         "Device online - %s\n",
1440                                         (channel == CONTAINER_CHANNEL) ?
1441                                                 "array created" :
1442                                                 "enclosure services event");
1443                                 scsi_device_set_state(device, SDEV_RUNNING);
1444                         }
1445                         /* FALLTHRU */
1446                 case CHANGE:
1447                         if ((channel == CONTAINER_CHANNEL)
1448                          && (!dev->fsa_dev[container].valid)) {
1449 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1450                                 scsi_remove_device(device);
1451 #else
1452                                 if (!scsi_device_online(device))
1453                                         break;
1454                                 scsi_device_set_state(device, SDEV_OFFLINE);
1455                                 sdev_printk(KERN_INFO, device,
1456                                         "Device offlined - %s\n",
1457                                         "array failed");
1458 #endif
1459                                 break;
1460                         }
1461                         scsi_rescan_device(&device->sdev_gendev);
1462
1463                 default:
1464                         break;
1465                 }
1466                 scsi_device_put(device);
1467                 device_config_needed = NOTHING;
1468         }
1469         if (device_config_needed == ADD)
1470                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1471         if (channel == CONTAINER_CHANNEL) {
1472                 container++;
1473                 device_config_needed = NOTHING;
1474                 goto retry_next;
1475         }
1476 }
1477
1478 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1479 {
1480         int index, quirks;
1481         int retval;
1482         struct Scsi_Host *host;
1483         struct scsi_device *dev;
1484         struct scsi_cmnd *command;
1485         struct scsi_cmnd *command_list;
1486         int jafo = 0;
1487         int bled;
1488         u64 dmamask;
1489         int num_of_fibs = 0;
1490
1491         /*
1492          * Assumptions:
1493          *      - host is locked, unless called by the aacraid thread.
1494          *        (a matter of convenience, due to legacy issues surrounding
1495          *        eh_host_adapter_reset).
1496          *      - in_reset is asserted, so no new i/o is getting to the
1497          *        card.
1498          *      - The card is dead, or will be very shortly ;-/ so no new
1499          *        commands are completing in the interrupt service.
1500          */
1501         host = aac->scsi_host_ptr;
1502         scsi_block_requests(host);
1503         aac_adapter_disable_int(aac);
1504         if (aac->thread && aac->thread->pid != current->pid) {
1505                 spin_unlock_irq(host->host_lock);
1506                 kthread_stop(aac->thread);
1507                 aac->thread = NULL;
1508                 jafo = 1;
1509         }
1510
1511         /*
1512          *      If a positive health, means in a known DEAD PANIC
1513          * state and the adapter could be reset to `try again'.
1514          */
1515         bled = forced ? 0 : aac_adapter_check_health(aac);
1516         retval = aac_adapter_restart(aac, bled, reset_type);
1517
1518         if (retval)
1519                 goto out;
1520
1521         /*
1522          *      Loop through the fibs, close the synchronous FIBS
1523          */
1524         retval = 1;
1525         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1526         for (index = 0; index <  num_of_fibs; index++) {
1527
1528                 struct fib *fib = &aac->fibs[index];
1529                 __le32 XferState = fib->hw_fib_va->header.XferState;
1530                 bool is_response_expected = false;
1531
1532                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1533                    (XferState & cpu_to_le32(ResponseExpected)))
1534                         is_response_expected = true;
1535
1536                 if (is_response_expected
1537                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1538                         unsigned long flagv;
1539                         spin_lock_irqsave(&fib->event_lock, flagv);
1540                         complete(&fib->event_wait);
1541                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1542                         schedule();
1543                         retval = 0;
1544                 }
1545         }
1546         /* Give some extra time for ioctls to complete. */
1547         if (retval == 0)
1548                 ssleep(2);
1549         index = aac->cardtype;
1550
1551         /*
1552          * Re-initialize the adapter, first free resources, then carefully
1553          * apply the initialization sequence to come back again. Only risk
1554          * is a change in Firmware dropping cache, it is assumed the caller
1555          * will ensure that i/o is queisced and the card is flushed in that
1556          * case.
1557          */
1558         aac_free_irq(aac);
1559         aac_fib_map_free(aac);
1560         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1561                           aac->comm_phys);
1562         aac->comm_addr = NULL;
1563         aac->comm_phys = 0;
1564         kfree(aac->queues);
1565         aac->queues = NULL;
1566         kfree(aac->fsa_dev);
1567         aac->fsa_dev = NULL;
1568
1569         dmamask = DMA_BIT_MASK(32);
1570         quirks = aac_get_driver_ident(index)->quirks;
1571         if (quirks & AAC_QUIRK_31BIT)
1572                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1573         else if (!(quirks & AAC_QUIRK_SRC))
1574                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1575         else
1576                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1577
1578         if (quirks & AAC_QUIRK_31BIT && !retval) {
1579                 dmamask = DMA_BIT_MASK(31);
1580                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1581         }
1582
1583         if (retval)
1584                 goto out;
1585
1586         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1587                 goto out;
1588
1589         if (jafo) {
1590                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1591                                           aac->name);
1592                 if (IS_ERR(aac->thread)) {
1593                         retval = PTR_ERR(aac->thread);
1594                         aac->thread = NULL;
1595                         goto out;
1596                 }
1597         }
1598         (void)aac_get_adapter_info(aac);
1599         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1600                 host->sg_tablesize = 34;
1601                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1602         }
1603         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1604                 host->sg_tablesize = 17;
1605                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1606         }
1607         aac_get_config_status(aac, 1);
1608         aac_get_containers(aac);
1609         /*
1610          * This is where the assumption that the Adapter is quiesced
1611          * is important.
1612          */
1613         command_list = NULL;
1614         __shost_for_each_device(dev, host) {
1615                 unsigned long flags;
1616                 spin_lock_irqsave(&dev->list_lock, flags);
1617                 list_for_each_entry(command, &dev->cmd_list, list)
1618                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1619                                 command->SCp.buffer = (struct scatterlist *)command_list;
1620                                 command_list = command;
1621                         }
1622                 spin_unlock_irqrestore(&dev->list_lock, flags);
1623         }
1624         while ((command = command_list)) {
1625                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1626                 command->SCp.buffer = NULL;
1627                 command->result = DID_OK << 16
1628                   | COMMAND_COMPLETE << 8
1629                   | SAM_STAT_TASK_SET_FULL;
1630                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1631                 command->scsi_done(command);
1632         }
1633         /*
1634          * Any Device that was already marked offline needs to be marked
1635          * running
1636          */
1637         __shost_for_each_device(dev, host) {
1638                 if (!scsi_device_online(dev))
1639                         scsi_device_set_state(dev, SDEV_RUNNING);
1640         }
1641         retval = 0;
1642
1643 out:
1644         aac->in_reset = 0;
1645         scsi_unblock_requests(host);
1646
1647         /*
1648          * Issue bus rescan to catch any configuration that might have
1649          * occurred
1650          */
1651         if (!retval && !is_kdump_kernel()) {
1652                 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1653                 aac_schedule_safw_scan_worker(aac);
1654         }
1655
1656         if (jafo) {
1657                 spin_lock_irq(host->host_lock);
1658         }
1659         return retval;
1660 }
1661
1662 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1663 {
1664         unsigned long flagv = 0;
1665         int retval;
1666         struct Scsi_Host * host;
1667         int bled;
1668
1669         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1670                 return -EBUSY;
1671
1672         if (aac->in_reset) {
1673                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1674                 return -EBUSY;
1675         }
1676         aac->in_reset = 1;
1677         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1678
1679         /*
1680          * Wait for all commands to complete to this specific
1681          * target (block maximum 60 seconds). Although not necessary,
1682          * it does make us a good storage citizen.
1683          */
1684         host = aac->scsi_host_ptr;
1685         scsi_block_requests(host);
1686
1687         /* Quiesce build, flush cache, write through mode */
1688         if (forced < 2)
1689                 aac_send_shutdown(aac);
1690         spin_lock_irqsave(host->host_lock, flagv);
1691         bled = forced ? forced :
1692                         (aac_check_reset != 0 && aac_check_reset != 1);
1693         retval = _aac_reset_adapter(aac, bled, reset_type);
1694         spin_unlock_irqrestore(host->host_lock, flagv);
1695
1696         if ((forced < 2) && (retval == -ENODEV)) {
1697                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1698                 struct fib * fibctx = aac_fib_alloc(aac);
1699                 if (fibctx) {
1700                         struct aac_pause *cmd;
1701                         int status;
1702
1703                         aac_fib_init(fibctx);
1704
1705                         cmd = (struct aac_pause *) fib_data(fibctx);
1706
1707                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1708                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1709                         cmd->timeout = cpu_to_le32(1);
1710                         cmd->min = cpu_to_le32(1);
1711                         cmd->noRescan = cpu_to_le32(1);
1712                         cmd->count = cpu_to_le32(0);
1713
1714                         status = aac_fib_send(ContainerCommand,
1715                           fibctx,
1716                           sizeof(struct aac_pause),
1717                           FsaNormal,
1718                           -2 /* Timeout silently */, 1,
1719                           NULL, NULL);
1720
1721                         if (status >= 0)
1722                                 aac_fib_complete(fibctx);
1723                         /* FIB should be freed only after getting
1724                          * the response from the F/W */
1725                         if (status != -ERESTARTSYS)
1726                                 aac_fib_free(fibctx);
1727                 }
1728         }
1729
1730         return retval;
1731 }
1732
1733 int aac_check_health(struct aac_dev * aac)
1734 {
1735         int BlinkLED;
1736         unsigned long time_now, flagv = 0;
1737         struct list_head * entry;
1738
1739         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1740         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1741                 return 0;
1742
1743         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1744                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1745                 return 0; /* OK */
1746         }
1747
1748         aac->in_reset = 1;
1749
1750         /* Fake up an AIF:
1751          *      aac_aifcmd.command = AifCmdEventNotify = 1
1752          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1753          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1754          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1755          *      aac.aifcmd.data[2] = AifHighPriority = 3
1756          *      aac.aifcmd.data[3] = BlinkLED
1757          */
1758
1759         time_now = jiffies/HZ;
1760         entry = aac->fib_list.next;
1761
1762         /*
1763          * For each Context that is on the
1764          * fibctxList, make a copy of the
1765          * fib, and then set the event to wake up the
1766          * thread that is waiting for it.
1767          */
1768         while (entry != &aac->fib_list) {
1769                 /*
1770                  * Extract the fibctx
1771                  */
1772                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1773                 struct hw_fib * hw_fib;
1774                 struct fib * fib;
1775                 /*
1776                  * Check if the queue is getting
1777                  * backlogged
1778                  */
1779                 if (fibctx->count > 20) {
1780                         /*
1781                          * It's *not* jiffies folks,
1782                          * but jiffies / HZ, so do not
1783                          * panic ...
1784                          */
1785                         u32 time_last = fibctx->jiffies;
1786                         /*
1787                          * Has it been > 2 minutes
1788                          * since the last read off
1789                          * the queue?
1790                          */
1791                         if ((time_now - time_last) > aif_timeout) {
1792                                 entry = entry->next;
1793                                 aac_close_fib_context(aac, fibctx);
1794                                 continue;
1795                         }
1796                 }
1797                 /*
1798                  * Warning: no sleep allowed while
1799                  * holding spinlock
1800                  */
1801                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1802                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1803                 if (fib && hw_fib) {
1804                         struct aac_aifcmd * aif;
1805
1806                         fib->hw_fib_va = hw_fib;
1807                         fib->dev = aac;
1808                         aac_fib_init(fib);
1809                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1810                         fib->size = sizeof (struct fib);
1811                         fib->data = hw_fib->data;
1812                         aif = (struct aac_aifcmd *)hw_fib->data;
1813                         aif->command = cpu_to_le32(AifCmdEventNotify);
1814                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1815                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1816                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1817                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1818                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1819
1820                         /*
1821                          * Put the FIB onto the
1822                          * fibctx's fibs
1823                          */
1824                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1825                         fibctx->count++;
1826                         /*
1827                          * Set the event to wake up the
1828                          * thread that will waiting.
1829                          */
1830                         complete(&fibctx->completion);
1831                 } else {
1832                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1833                         kfree(fib);
1834                         kfree(hw_fib);
1835                 }
1836                 entry = entry->next;
1837         }
1838
1839         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1840
1841         if (BlinkLED < 0) {
1842                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1843                                 aac->name, BlinkLED);
1844                 goto out;
1845         }
1846
1847         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1848
1849 out:
1850         aac->in_reset = 0;
1851         return BlinkLED;
1852 }
1853
1854 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1855 {
1856         return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1857 }
1858
1859 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1860                                                                 int bus,
1861                                                                 int target)
1862 {
1863         if (bus != CONTAINER_CHANNEL)
1864                 bus = aac_phys_to_logical(bus);
1865
1866         return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1867 }
1868
1869 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1870 {
1871         if (bus != CONTAINER_CHANNEL)
1872                 bus = aac_phys_to_logical(bus);
1873
1874         return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1875 }
1876
1877 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1878 {
1879         if (sdev)
1880                 scsi_device_put(sdev);
1881 }
1882
1883 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1884 {
1885         struct scsi_device *sdev;
1886
1887         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1888         scsi_remove_device(sdev);
1889         aac_put_safw_scsi_device(sdev);
1890 }
1891
1892 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1893         int bus, int target)
1894 {
1895         return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1896 }
1897
1898 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1899 {
1900         if (is_safw_raid_volume(dev, bus, target))
1901                 return dev->fsa_dev[target].valid;
1902         else
1903                 return aac_is_safw_scan_count_equal(dev, bus, target);
1904 }
1905
1906 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1907 {
1908         int is_exposed = 0;
1909         struct scsi_device *sdev;
1910
1911         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1912         if (sdev)
1913                 is_exposed = 1;
1914         aac_put_safw_scsi_device(sdev);
1915
1916         return is_exposed;
1917 }
1918
1919 static int aac_update_safw_host_devices(struct aac_dev *dev)
1920 {
1921         int i;
1922         int bus;
1923         int target;
1924         int is_exposed = 0;
1925         int rcode = 0;
1926
1927         rcode = aac_setup_safw_adapter(dev);
1928         if (unlikely(rcode < 0)) {
1929                 goto out;
1930         }
1931
1932         for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1933
1934                 bus = get_bus_number(i);
1935                 target = get_target_number(i);
1936
1937                 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1938
1939                 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1940                         aac_add_safw_device(dev, bus, target);
1941                 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1942                                                                 is_exposed)
1943                         aac_remove_safw_device(dev, bus, target);
1944         }
1945 out:
1946         return rcode;
1947 }
1948
1949 static int aac_scan_safw_host(struct aac_dev *dev)
1950 {
1951         int rcode = 0;
1952
1953         rcode = aac_update_safw_host_devices(dev);
1954         if (rcode)
1955                 aac_schedule_safw_scan_worker(dev);
1956
1957         return rcode;
1958 }
1959
1960 int aac_scan_host(struct aac_dev *dev)
1961 {
1962         int rcode = 0;
1963
1964         mutex_lock(&dev->scan_mutex);
1965         if (dev->sa_firmware)
1966                 rcode = aac_scan_safw_host(dev);
1967         else
1968                 scsi_scan_host(dev->scsi_host_ptr);
1969         mutex_unlock(&dev->scan_mutex);
1970
1971         return rcode;
1972 }
1973
1974 /**
1975  *      aac_handle_sa_aif       Handle a message from the firmware
1976  *      @dev: Which adapter this fib is from
1977  *      @fibptr: Pointer to fibptr from adapter
1978  *
1979  *      This routine handles a driver notify fib from the adapter and
1980  *      dispatches it to the appropriate routine for handling.
1981  */
1982 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1983 {
1984         int i;
1985         u32 events = 0;
1986
1987         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1988                 events = SA_AIF_HOTPLUG;
1989         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1990                 events = SA_AIF_HARDWARE;
1991         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1992                 events = SA_AIF_PDEV_CHANGE;
1993         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1994                 events = SA_AIF_LDEV_CHANGE;
1995         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1996                 events = SA_AIF_BPSTAT_CHANGE;
1997         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1998                 events = SA_AIF_BPCFG_CHANGE;
1999
2000         switch (events) {
2001         case SA_AIF_HOTPLUG:
2002         case SA_AIF_HARDWARE:
2003         case SA_AIF_PDEV_CHANGE:
2004         case SA_AIF_LDEV_CHANGE:
2005         case SA_AIF_BPCFG_CHANGE:
2006
2007                 aac_scan_host(dev);
2008
2009                 break;
2010
2011         case SA_AIF_BPSTAT_CHANGE:
2012                 /* currently do nothing */
2013                 break;
2014         }
2015
2016         for (i = 1; i <= 10; ++i) {
2017                 events = src_readl(dev, MUnit.IDR);
2018                 if (events & (1<<23)) {
2019                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2020                                 i, 10);
2021                         ssleep(1);
2022                 }
2023         }
2024 }
2025
2026 static int get_fib_count(struct aac_dev *dev)
2027 {
2028         unsigned int num = 0;
2029         struct list_head *entry;
2030         unsigned long flagv;
2031
2032         /*
2033          * Warning: no sleep allowed while
2034          * holding spinlock. We take the estimate
2035          * and pre-allocate a set of fibs outside the
2036          * lock.
2037          */
2038         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2039                         / sizeof(struct hw_fib); /* some extra */
2040         spin_lock_irqsave(&dev->fib_lock, flagv);
2041         entry = dev->fib_list.next;
2042         while (entry != &dev->fib_list) {
2043                 entry = entry->next;
2044                 ++num;
2045         }
2046         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2047
2048         return num;
2049 }
2050
2051 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2052                                                 struct fib **fib_pool,
2053                                                 unsigned int num)
2054 {
2055         struct hw_fib **hw_fib_p;
2056         struct fib **fib_p;
2057
2058         hw_fib_p = hw_fib_pool;
2059         fib_p = fib_pool;
2060         while (hw_fib_p < &hw_fib_pool[num]) {
2061                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2062                 if (!(*(hw_fib_p++))) {
2063                         --hw_fib_p;
2064                         break;
2065                 }
2066
2067                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2068                 if (!(*(fib_p++))) {
2069                         kfree(*(--hw_fib_p));
2070                         break;
2071                 }
2072         }
2073
2074         /*
2075          * Get the actual number of allocated fibs
2076          */
2077         num = hw_fib_p - hw_fib_pool;
2078         return num;
2079 }
2080
2081 static void wakeup_fibctx_threads(struct aac_dev *dev,
2082                                                 struct hw_fib **hw_fib_pool,
2083                                                 struct fib **fib_pool,
2084                                                 struct fib *fib,
2085                                                 struct hw_fib *hw_fib,
2086                                                 unsigned int num)
2087 {
2088         unsigned long flagv;
2089         struct list_head *entry;
2090         struct hw_fib **hw_fib_p;
2091         struct fib **fib_p;
2092         u32 time_now, time_last;
2093         struct hw_fib *hw_newfib;
2094         struct fib *newfib;
2095         struct aac_fib_context *fibctx;
2096
2097         time_now = jiffies/HZ;
2098         spin_lock_irqsave(&dev->fib_lock, flagv);
2099         entry = dev->fib_list.next;
2100         /*
2101          * For each Context that is on the
2102          * fibctxList, make a copy of the
2103          * fib, and then set the event to wake up the
2104          * thread that is waiting for it.
2105          */
2106
2107         hw_fib_p = hw_fib_pool;
2108         fib_p = fib_pool;
2109         while (entry != &dev->fib_list) {
2110                 /*
2111                  * Extract the fibctx
2112                  */
2113                 fibctx = list_entry(entry, struct aac_fib_context,
2114                                 next);
2115                 /*
2116                  * Check if the queue is getting
2117                  * backlogged
2118                  */
2119                 if (fibctx->count > 20) {
2120                         /*
2121                          * It's *not* jiffies folks,
2122                          * but jiffies / HZ so do not
2123                          * panic ...
2124                          */
2125                         time_last = fibctx->jiffies;
2126                         /*
2127                          * Has it been > 2 minutes
2128                          * since the last read off
2129                          * the queue?
2130                          */
2131                         if ((time_now - time_last) > aif_timeout) {
2132                                 entry = entry->next;
2133                                 aac_close_fib_context(dev, fibctx);
2134                                 continue;
2135                         }
2136                 }
2137                 /*
2138                  * Warning: no sleep allowed while
2139                  * holding spinlock
2140                  */
2141                 if (hw_fib_p >= &hw_fib_pool[num]) {
2142                         pr_warn("aifd: didn't allocate NewFib\n");
2143                         entry = entry->next;
2144                         continue;
2145                 }
2146
2147                 hw_newfib = *hw_fib_p;
2148                 *(hw_fib_p++) = NULL;
2149                 newfib = *fib_p;
2150                 *(fib_p++) = NULL;
2151                 /*
2152                  * Make the copy of the FIB
2153                  */
2154                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2155                 memcpy(newfib, fib, sizeof(struct fib));
2156                 newfib->hw_fib_va = hw_newfib;
2157                 /*
2158                  * Put the FIB onto the
2159                  * fibctx's fibs
2160                  */
2161                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2162                 fibctx->count++;
2163                 /*
2164                  * Set the event to wake up the
2165                  * thread that is waiting.
2166                  */
2167                 complete(&fibctx->completion);
2168
2169                 entry = entry->next;
2170         }
2171         /*
2172          *      Set the status of this FIB
2173          */
2174         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2175         aac_fib_adapter_complete(fib, sizeof(u32));
2176         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2177
2178 }
2179
2180 static void aac_process_events(struct aac_dev *dev)
2181 {
2182         struct hw_fib *hw_fib;
2183         struct fib *fib;
2184         unsigned long flags;
2185         spinlock_t *t_lock;
2186
2187         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2188         spin_lock_irqsave(t_lock, flags);
2189
2190         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2191                 struct list_head *entry;
2192                 struct aac_aifcmd *aifcmd;
2193                 unsigned int  num;
2194                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2195                 struct fib **fib_pool, **fib_p;
2196
2197                 set_current_state(TASK_RUNNING);
2198
2199                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2200                 list_del(entry);
2201
2202                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2203                 spin_unlock_irqrestore(t_lock, flags);
2204
2205                 fib = list_entry(entry, struct fib, fiblink);
2206                 hw_fib = fib->hw_fib_va;
2207                 if (dev->sa_firmware) {
2208                         /* Thor AIF */
2209                         aac_handle_sa_aif(dev, fib);
2210                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2211                         goto free_fib;
2212                 }
2213                 /*
2214                  *      We will process the FIB here or pass it to a
2215                  *      worker thread that is TBD. We Really can't
2216                  *      do anything at this point since we don't have
2217                  *      anything defined for this thread to do.
2218                  */
2219                 memset(fib, 0, sizeof(struct fib));
2220                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2221                 fib->size = sizeof(struct fib);
2222                 fib->hw_fib_va = hw_fib;
2223                 fib->data = hw_fib->data;
2224                 fib->dev = dev;
2225                 /*
2226                  *      We only handle AifRequest fibs from the adapter.
2227                  */
2228
2229                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2230                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2231                         /* Handle Driver Notify Events */
2232                         aac_handle_aif(dev, fib);
2233                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2234                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2235                         goto free_fib;
2236                 }
2237                 /*
2238                  * The u32 here is important and intended. We are using
2239                  * 32bit wrapping time to fit the adapter field
2240                  */
2241
2242                 /* Sniff events */
2243                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2244                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2245                         aac_handle_aif(dev, fib);
2246                 }
2247
2248                 /*
2249                  * get number of fibs to process
2250                  */
2251                 num = get_fib_count(dev);
2252                 if (!num)
2253                         goto free_fib;
2254
2255                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2256                                                 GFP_KERNEL);
2257                 if (!hw_fib_pool)
2258                         goto free_fib;
2259
2260                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2261                 if (!fib_pool)
2262                         goto free_hw_fib_pool;
2263
2264                 /*
2265                  * Fill up fib pointer pools with actual fibs
2266                  * and hw_fibs
2267                  */
2268                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2269                 if (!num)
2270                         goto free_mem;
2271
2272                 /*
2273                  * wakeup the thread that is waiting for
2274                  * the response from fw (ioctl)
2275                  */
2276                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2277                                                             fib, hw_fib, num);
2278
2279 free_mem:
2280                 /* Free up the remaining resources */
2281                 hw_fib_p = hw_fib_pool;
2282                 fib_p = fib_pool;
2283                 while (hw_fib_p < &hw_fib_pool[num]) {
2284                         kfree(*hw_fib_p);
2285                         kfree(*fib_p);
2286                         ++fib_p;
2287                         ++hw_fib_p;
2288                 }
2289                 kfree(fib_pool);
2290 free_hw_fib_pool:
2291                 kfree(hw_fib_pool);
2292 free_fib:
2293                 kfree(fib);
2294                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2295                 spin_lock_irqsave(t_lock, flags);
2296         }
2297         /*
2298          *      There are no more AIF's
2299          */
2300         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2301         spin_unlock_irqrestore(t_lock, flags);
2302 }
2303
2304 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2305                                                         u32 datasize)
2306 {
2307         struct aac_srb *srbcmd;
2308         struct sgmap64 *sg64;
2309         dma_addr_t addr;
2310         char *dma_buf;
2311         struct fib *fibptr;
2312         int ret = -ENOMEM;
2313         u32 vbus, vid;
2314
2315         fibptr = aac_fib_alloc(dev);
2316         if (!fibptr)
2317                 goto out;
2318
2319         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2320                                      GFP_KERNEL);
2321         if (!dma_buf)
2322                 goto fib_free_out;
2323
2324         aac_fib_init(fibptr);
2325
2326         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2327         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2328
2329         srbcmd = (struct aac_srb *)fib_data(fibptr);
2330
2331         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2332         srbcmd->channel = cpu_to_le32(vbus);
2333         srbcmd->id = cpu_to_le32(vid);
2334         srbcmd->lun = 0;
2335         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2336         srbcmd->timeout = cpu_to_le32(10);
2337         srbcmd->retry_limit = 0;
2338         srbcmd->cdb_size = cpu_to_le32(12);
2339         srbcmd->count = cpu_to_le32(datasize);
2340
2341         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2342         srbcmd->cdb[0] = BMIC_OUT;
2343         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2344         memcpy(dma_buf, (char *)wellness_str, datasize);
2345
2346         sg64 = (struct sgmap64 *)&srbcmd->sg;
2347         sg64->count = cpu_to_le32(1);
2348         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2349         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2350         sg64->sg[0].count = cpu_to_le32(datasize);
2351
2352         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2353                                 FsaNormal, 1, 1, NULL, NULL);
2354
2355         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2356
2357         /*
2358          * Do not set XferState to zero unless
2359          * receives a response from F/W
2360          */
2361         if (ret >= 0)
2362                 aac_fib_complete(fibptr);
2363
2364         /*
2365          * FIB should be freed only after
2366          * getting the response from the F/W
2367          */
2368         if (ret != -ERESTARTSYS)
2369                 goto fib_free_out;
2370
2371 out:
2372         return ret;
2373 fib_free_out:
2374         aac_fib_free(fibptr);
2375         goto out;
2376 }
2377
2378 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2379 {
2380         struct tm cur_tm;
2381         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2382         u32 datasize = sizeof(wellness_str);
2383         time64_t local_time;
2384         int ret = -ENODEV;
2385
2386         if (!dev->sa_firmware)
2387                 goto out;
2388
2389         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2390         time64_to_tm(local_time, 0, &cur_tm);
2391         cur_tm.tm_mon += 1;
2392         cur_tm.tm_year += 1900;
2393         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2394         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2395         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2396         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2397         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2398         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2399         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2400
2401         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2402
2403 out:
2404         return ret;
2405 }
2406
2407 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2408 {
2409         int ret = -ENOMEM;
2410         struct fib *fibptr;
2411         __le32 *info;
2412
2413         fibptr = aac_fib_alloc(dev);
2414         if (!fibptr)
2415                 goto out;
2416
2417         aac_fib_init(fibptr);
2418         info = (__le32 *)fib_data(fibptr);
2419         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2420         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2421                                         1, 1, NULL, NULL);
2422
2423         /*
2424          * Do not set XferState to zero unless
2425          * receives a response from F/W
2426          */
2427         if (ret >= 0)
2428                 aac_fib_complete(fibptr);
2429
2430         /*
2431          * FIB should be freed only after
2432          * getting the response from the F/W
2433          */
2434         if (ret != -ERESTARTSYS)
2435                 aac_fib_free(fibptr);
2436
2437 out:
2438         return ret;
2439 }
2440
2441 /**
2442  *      aac_command_thread      -       command processing thread
2443  *      @dev: Adapter to monitor
2444  *
2445  *      Waits on the commandready event in it's queue. When the event gets set
2446  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2447  *      until the queue is empty. When the queue is empty it will wait for
2448  *      more FIBs.
2449  */
2450
2451 int aac_command_thread(void *data)
2452 {
2453         struct aac_dev *dev = data;
2454         DECLARE_WAITQUEUE(wait, current);
2455         unsigned long next_jiffies = jiffies + HZ;
2456         unsigned long next_check_jiffies = next_jiffies;
2457         long difference = HZ;
2458
2459         /*
2460          *      We can only have one thread per adapter for AIF's.
2461          */
2462         if (dev->aif_thread)
2463                 return -EINVAL;
2464
2465         /*
2466          *      Let the DPC know it has a place to send the AIF's to.
2467          */
2468         dev->aif_thread = 1;
2469         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2470         set_current_state(TASK_INTERRUPTIBLE);
2471         dprintk ((KERN_INFO "aac_command_thread start\n"));
2472         while (1) {
2473
2474                 aac_process_events(dev);
2475
2476                 /*
2477                  *      Background activity
2478                  */
2479                 if ((time_before(next_check_jiffies,next_jiffies))
2480                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2481                         next_check_jiffies = next_jiffies;
2482                         if (aac_adapter_check_health(dev) == 0) {
2483                                 difference = ((long)(unsigned)check_interval)
2484                                            * HZ;
2485                                 next_check_jiffies = jiffies + difference;
2486                         } else if (!dev->queues)
2487                                 break;
2488                 }
2489                 if (!time_before(next_check_jiffies,next_jiffies)
2490                  && ((difference = next_jiffies - jiffies) <= 0)) {
2491                         struct timespec64 now;
2492                         int ret;
2493
2494                         /* Don't even try to talk to adapter if its sick */
2495                         ret = aac_adapter_check_health(dev);
2496                         if (ret || !dev->queues)
2497                                 break;
2498                         next_check_jiffies = jiffies
2499                                            + ((long)(unsigned)check_interval)
2500                                            * HZ;
2501                         ktime_get_real_ts64(&now);
2502
2503                         /* Synchronize our watches */
2504                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2505                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2506                                 difference = HZ + HZ / 2 -
2507                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2508                         else {
2509                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2510                                         ++now.tv_sec;
2511
2512                                 if (dev->sa_firmware)
2513                                         ret =
2514                                         aac_send_safw_hostttime(dev, &now);
2515                                 else
2516                                         ret = aac_send_hosttime(dev, &now);
2517
2518                                 difference = (long)(unsigned)update_interval*HZ;
2519                         }
2520                         next_jiffies = jiffies + difference;
2521                         if (time_before(next_check_jiffies,next_jiffies))
2522                                 difference = next_check_jiffies - jiffies;
2523                 }
2524                 if (difference <= 0)
2525                         difference = 1;
2526                 set_current_state(TASK_INTERRUPTIBLE);
2527
2528                 if (kthread_should_stop())
2529                         break;
2530
2531                 /*
2532                  * we probably want usleep_range() here instead of the
2533                  * jiffies computation
2534                  */
2535                 schedule_timeout(difference);
2536
2537                 if (kthread_should_stop())
2538                         break;
2539         }
2540         if (dev->queues)
2541                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2542         dev->aif_thread = 0;
2543         return 0;
2544 }
2545
2546 int aac_acquire_irq(struct aac_dev *dev)
2547 {
2548         int i;
2549         int j;
2550         int ret = 0;
2551
2552         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2553                 for (i = 0; i < dev->max_msix; i++) {
2554                         dev->aac_msix[i].vector_no = i;
2555                         dev->aac_msix[i].dev = dev;
2556                         if (request_irq(pci_irq_vector(dev->pdev, i),
2557                                         dev->a_ops.adapter_intr,
2558                                         0, "aacraid", &(dev->aac_msix[i]))) {
2559                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2560                                                 dev->name, dev->id, i);
2561                                 for (j = 0 ; j < i ; j++)
2562                                         free_irq(pci_irq_vector(dev->pdev, j),
2563                                                  &(dev->aac_msix[j]));
2564                                 pci_disable_msix(dev->pdev);
2565                                 ret = -1;
2566                         }
2567                 }
2568         } else {
2569                 dev->aac_msix[0].vector_no = 0;
2570                 dev->aac_msix[0].dev = dev;
2571
2572                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2573                         IRQF_SHARED, "aacraid",
2574                         &(dev->aac_msix[0])) < 0) {
2575                         if (dev->msi)
2576                                 pci_disable_msi(dev->pdev);
2577                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2578                                         dev->name, dev->id);
2579                         ret = -1;
2580                 }
2581         }
2582         return ret;
2583 }
2584
2585 void aac_free_irq(struct aac_dev *dev)
2586 {
2587         int i;
2588
2589         if (aac_is_src(dev)) {
2590                 if (dev->max_msix > 1) {
2591                         for (i = 0; i < dev->max_msix; i++)
2592                                 free_irq(pci_irq_vector(dev->pdev, i),
2593                                          &(dev->aac_msix[i]));
2594                 } else {
2595                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2596                 }
2597         } else {
2598                 free_irq(dev->pdev->irq, dev);
2599         }
2600         if (dev->msi)
2601                 pci_disable_msi(dev->pdev);
2602         else if (dev->max_msix > 1)
2603                 pci_disable_msix(dev->pdev);
2604 }