]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/hpsa.c
scsi: use host wide tags by default
[linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75         HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83                 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87         "Use 'simple mode' rather than 'performant mode'");
88
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
143                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144         {0,}
145 };
146
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154         {0x3241103C, "Smart Array P212", &SA5_access},
155         {0x3243103C, "Smart Array P410", &SA5_access},
156         {0x3245103C, "Smart Array P410i", &SA5_access},
157         {0x3247103C, "Smart Array P411", &SA5_access},
158         {0x3249103C, "Smart Array P812", &SA5_access},
159         {0x324A103C, "Smart Array P712m", &SA5_access},
160         {0x324B103C, "Smart Array P711m", &SA5_access},
161         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162         {0x3350103C, "Smart Array P222", &SA5_access},
163         {0x3351103C, "Smart Array P420", &SA5_access},
164         {0x3352103C, "Smart Array P421", &SA5_access},
165         {0x3353103C, "Smart Array P822", &SA5_access},
166         {0x3354103C, "Smart Array P420i", &SA5_access},
167         {0x3355103C, "Smart Array P220i", &SA5_access},
168         {0x3356103C, "Smart Array P721m", &SA5_access},
169         {0x1921103C, "Smart Array P830i", &SA5_access},
170         {0x1922103C, "Smart Array P430", &SA5_access},
171         {0x1923103C, "Smart Array P431", &SA5_access},
172         {0x1924103C, "Smart Array P830", &SA5_access},
173         {0x1926103C, "Smart Array P731m", &SA5_access},
174         {0x1928103C, "Smart Array P230i", &SA5_access},
175         {0x1929103C, "Smart Array P530", &SA5_access},
176         {0x21BD103C, "Smart Array P244br", &SA5_access},
177         {0x21BE103C, "Smart Array P741m", &SA5_access},
178         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179         {0x21C0103C, "Smart Array P440ar", &SA5_access},
180         {0x21C1103C, "Smart Array P840ar", &SA5_access},
181         {0x21C2103C, "Smart Array P440", &SA5_access},
182         {0x21C3103C, "Smart Array P441", &SA5_access},
183         {0x21C4103C, "Smart Array", &SA5_access},
184         {0x21C5103C, "Smart Array P841", &SA5_access},
185         {0x21C6103C, "Smart HBA H244br", &SA5_access},
186         {0x21C7103C, "Smart HBA H240", &SA5_access},
187         {0x21C8103C, "Smart HBA H241", &SA5_access},
188         {0x21C9103C, "Smart Array", &SA5_access},
189         {0x21CA103C, "Smart Array P246br", &SA5_access},
190         {0x21CB103C, "Smart Array P840", &SA5_access},
191         {0x21CC103C, "Smart Array", &SA5_access},
192         {0x21CD103C, "Smart Array", &SA5_access},
193         {0x21CE103C, "Smart HBA", &SA5_access},
194         {0x05809005, "SmartHBA-SA", &SA5_access},
195         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220         void __user *arg);
221 #endif
222
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227                                             struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230         int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233
234 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
235 static void hpsa_scan_start(struct Scsi_Host *);
236 static int hpsa_scan_finished(struct Scsi_Host *sh,
237         unsigned long elapsed_time);
238 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
239
240 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
241 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_slave_alloc(struct scsi_device *sdev);
243 static int hpsa_slave_configure(struct scsi_device *sdev);
244 static void hpsa_slave_destroy(struct scsi_device *sdev);
245
246 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
247 static int check_for_unit_attention(struct ctlr_info *h,
248         struct CommandList *c);
249 static void check_ioctl_unit_attention(struct ctlr_info *h,
250         struct CommandList *c);
251 /* performant mode helper functions */
252 static void calc_bucket_map(int *bucket, int num_buckets,
253         int nsgs, int min_blocks, u32 *bucket_map);
254 static void hpsa_free_performant_mode(struct ctlr_info *h);
255 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
256 static inline u32 next_command(struct ctlr_info *h, u8 q);
257 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
258                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
259                                u64 *cfg_offset);
260 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
261                                     unsigned long *memory_bar);
262 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
263 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
264                                      int wait_for_ready);
265 static inline void finish_cmd(struct CommandList *c);
266 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
267 #define BOARD_NOT_READY 0
268 #define BOARD_READY 1
269 static void hpsa_drain_accel_commands(struct ctlr_info *h);
270 static void hpsa_flush_cache(struct ctlr_info *h);
271 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
272         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
273         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
274 static void hpsa_command_resubmit_worker(struct work_struct *work);
275 static u32 lockup_detected(struct ctlr_info *h);
276 static int detect_controller_lockup(struct ctlr_info *h);
277 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
278
279 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
280 {
281         unsigned long *priv = shost_priv(sdev->host);
282         return (struct ctlr_info *) *priv;
283 }
284
285 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
286 {
287         unsigned long *priv = shost_priv(sh);
288         return (struct ctlr_info *) *priv;
289 }
290
291 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
292 {
293         return c->scsi_cmd == SCSI_CMD_IDLE;
294 }
295
296 static inline bool hpsa_is_pending_event(struct CommandList *c)
297 {
298         return c->abort_pending || c->reset_pending;
299 }
300
301 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
302 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
303                         u8 *sense_key, u8 *asc, u8 *ascq)
304 {
305         struct scsi_sense_hdr sshdr;
306         bool rc;
307
308         *sense_key = -1;
309         *asc = -1;
310         *ascq = -1;
311
312         if (sense_data_len < 1)
313                 return;
314
315         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
316         if (rc) {
317                 *sense_key = sshdr.sense_key;
318                 *asc = sshdr.asc;
319                 *ascq = sshdr.ascq;
320         }
321 }
322
323 static int check_for_unit_attention(struct ctlr_info *h,
324         struct CommandList *c)
325 {
326         u8 sense_key, asc, ascq;
327         int sense_len;
328
329         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
330                 sense_len = sizeof(c->err_info->SenseInfo);
331         else
332                 sense_len = c->err_info->SenseLen;
333
334         decode_sense_data(c->err_info->SenseInfo, sense_len,
335                                 &sense_key, &asc, &ascq);
336         if (sense_key != UNIT_ATTENTION || asc == 0xff)
337                 return 0;
338
339         switch (asc) {
340         case STATE_CHANGED:
341                 dev_warn(&h->pdev->dev,
342                         "%s: a state change detected, command retried\n",
343                         h->devname);
344                 break;
345         case LUN_FAILED:
346                 dev_warn(&h->pdev->dev,
347                         "%s: LUN failure detected\n", h->devname);
348                 break;
349         case REPORT_LUNS_CHANGED:
350                 dev_warn(&h->pdev->dev,
351                         "%s: report LUN data changed\n", h->devname);
352         /*
353          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
354          * target (array) devices.
355          */
356                 break;
357         case POWER_OR_RESET:
358                 dev_warn(&h->pdev->dev,
359                         "%s: a power on or device reset detected\n",
360                         h->devname);
361                 break;
362         case UNIT_ATTENTION_CLEARED:
363                 dev_warn(&h->pdev->dev,
364                         "%s: unit attention cleared by another initiator\n",
365                         h->devname);
366                 break;
367         default:
368                 dev_warn(&h->pdev->dev,
369                         "%s: unknown unit attention detected\n",
370                         h->devname);
371                 break;
372         }
373         return 1;
374 }
375
376 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
377 {
378         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
379                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
380                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
381                 return 0;
382         dev_warn(&h->pdev->dev, HPSA "device busy");
383         return 1;
384 }
385
386 static u32 lockup_detected(struct ctlr_info *h);
387 static ssize_t host_show_lockup_detected(struct device *dev,
388                 struct device_attribute *attr, char *buf)
389 {
390         int ld;
391         struct ctlr_info *h;
392         struct Scsi_Host *shost = class_to_shost(dev);
393
394         h = shost_to_hba(shost);
395         ld = lockup_detected(h);
396
397         return sprintf(buf, "ld=%d\n", ld);
398 }
399
400 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
401                                          struct device_attribute *attr,
402                                          const char *buf, size_t count)
403 {
404         int status, len;
405         struct ctlr_info *h;
406         struct Scsi_Host *shost = class_to_shost(dev);
407         char tmpbuf[10];
408
409         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
410                 return -EACCES;
411         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
412         strncpy(tmpbuf, buf, len);
413         tmpbuf[len] = '\0';
414         if (sscanf(tmpbuf, "%d", &status) != 1)
415                 return -EINVAL;
416         h = shost_to_hba(shost);
417         h->acciopath_status = !!status;
418         dev_warn(&h->pdev->dev,
419                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
420                 h->acciopath_status ? "enabled" : "disabled");
421         return count;
422 }
423
424 static ssize_t host_store_raid_offload_debug(struct device *dev,
425                                          struct device_attribute *attr,
426                                          const char *buf, size_t count)
427 {
428         int debug_level, len;
429         struct ctlr_info *h;
430         struct Scsi_Host *shost = class_to_shost(dev);
431         char tmpbuf[10];
432
433         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434                 return -EACCES;
435         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436         strncpy(tmpbuf, buf, len);
437         tmpbuf[len] = '\0';
438         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
439                 return -EINVAL;
440         if (debug_level < 0)
441                 debug_level = 0;
442         h = shost_to_hba(shost);
443         h->raid_offload_debug = debug_level;
444         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
445                 h->raid_offload_debug);
446         return count;
447 }
448
449 static ssize_t host_store_rescan(struct device *dev,
450                                  struct device_attribute *attr,
451                                  const char *buf, size_t count)
452 {
453         struct ctlr_info *h;
454         struct Scsi_Host *shost = class_to_shost(dev);
455         h = shost_to_hba(shost);
456         hpsa_scan_start(h->scsi_host);
457         return count;
458 }
459
460 static ssize_t host_show_firmware_revision(struct device *dev,
461              struct device_attribute *attr, char *buf)
462 {
463         struct ctlr_info *h;
464         struct Scsi_Host *shost = class_to_shost(dev);
465         unsigned char *fwrev;
466
467         h = shost_to_hba(shost);
468         if (!h->hba_inquiry_data)
469                 return 0;
470         fwrev = &h->hba_inquiry_data[32];
471         return snprintf(buf, 20, "%c%c%c%c\n",
472                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
473 }
474
475 static ssize_t host_show_commands_outstanding(struct device *dev,
476              struct device_attribute *attr, char *buf)
477 {
478         struct Scsi_Host *shost = class_to_shost(dev);
479         struct ctlr_info *h = shost_to_hba(shost);
480
481         return snprintf(buf, 20, "%d\n",
482                         atomic_read(&h->commands_outstanding));
483 }
484
485 static ssize_t host_show_transport_mode(struct device *dev,
486         struct device_attribute *attr, char *buf)
487 {
488         struct ctlr_info *h;
489         struct Scsi_Host *shost = class_to_shost(dev);
490
491         h = shost_to_hba(shost);
492         return snprintf(buf, 20, "%s\n",
493                 h->transMethod & CFGTBL_Trans_Performant ?
494                         "performant" : "simple");
495 }
496
497 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
498         struct device_attribute *attr, char *buf)
499 {
500         struct ctlr_info *h;
501         struct Scsi_Host *shost = class_to_shost(dev);
502
503         h = shost_to_hba(shost);
504         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
505                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
506 }
507
508 /* List of controllers which cannot be hard reset on kexec with reset_devices */
509 static u32 unresettable_controller[] = {
510         0x324a103C, /* Smart Array P712m */
511         0x324b103C, /* Smart Array P711m */
512         0x3223103C, /* Smart Array P800 */
513         0x3234103C, /* Smart Array P400 */
514         0x3235103C, /* Smart Array P400i */
515         0x3211103C, /* Smart Array E200i */
516         0x3212103C, /* Smart Array E200 */
517         0x3213103C, /* Smart Array E200i */
518         0x3214103C, /* Smart Array E200i */
519         0x3215103C, /* Smart Array E200i */
520         0x3237103C, /* Smart Array E500 */
521         0x323D103C, /* Smart Array P700m */
522         0x40800E11, /* Smart Array 5i */
523         0x409C0E11, /* Smart Array 6400 */
524         0x409D0E11, /* Smart Array 6400 EM */
525         0x40700E11, /* Smart Array 5300 */
526         0x40820E11, /* Smart Array 532 */
527         0x40830E11, /* Smart Array 5312 */
528         0x409A0E11, /* Smart Array 641 */
529         0x409B0E11, /* Smart Array 642 */
530         0x40910E11, /* Smart Array 6i */
531 };
532
533 /* List of controllers which cannot even be soft reset */
534 static u32 soft_unresettable_controller[] = {
535         0x40800E11, /* Smart Array 5i */
536         0x40700E11, /* Smart Array 5300 */
537         0x40820E11, /* Smart Array 532 */
538         0x40830E11, /* Smart Array 5312 */
539         0x409A0E11, /* Smart Array 641 */
540         0x409B0E11, /* Smart Array 642 */
541         0x40910E11, /* Smart Array 6i */
542         /* Exclude 640x boards.  These are two pci devices in one slot
543          * which share a battery backed cache module.  One controls the
544          * cache, the other accesses the cache through the one that controls
545          * it.  If we reset the one controlling the cache, the other will
546          * likely not be happy.  Just forbid resetting this conjoined mess.
547          * The 640x isn't really supported by hpsa anyway.
548          */
549         0x409C0E11, /* Smart Array 6400 */
550         0x409D0E11, /* Smart Array 6400 EM */
551 };
552
553 static u32 needs_abort_tags_swizzled[] = {
554         0x323D103C, /* Smart Array P700m */
555         0x324a103C, /* Smart Array P712m */
556         0x324b103C, /* SmartArray P711m */
557 };
558
559 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
560 {
561         int i;
562
563         for (i = 0; i < nelems; i++)
564                 if (a[i] == board_id)
565                         return 1;
566         return 0;
567 }
568
569 static int ctlr_is_hard_resettable(u32 board_id)
570 {
571         return !board_id_in_array(unresettable_controller,
572                         ARRAY_SIZE(unresettable_controller), board_id);
573 }
574
575 static int ctlr_is_soft_resettable(u32 board_id)
576 {
577         return !board_id_in_array(soft_unresettable_controller,
578                         ARRAY_SIZE(soft_unresettable_controller), board_id);
579 }
580
581 static int ctlr_is_resettable(u32 board_id)
582 {
583         return ctlr_is_hard_resettable(board_id) ||
584                 ctlr_is_soft_resettable(board_id);
585 }
586
587 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
588 {
589         return board_id_in_array(needs_abort_tags_swizzled,
590                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
591 }
592
593 static ssize_t host_show_resettable(struct device *dev,
594         struct device_attribute *attr, char *buf)
595 {
596         struct ctlr_info *h;
597         struct Scsi_Host *shost = class_to_shost(dev);
598
599         h = shost_to_hba(shost);
600         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
601 }
602
603 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
604 {
605         return (scsi3addr[3] & 0xC0) == 0x40;
606 }
607
608 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
609         "1(+0)ADM", "UNKNOWN"
610 };
611 #define HPSA_RAID_0     0
612 #define HPSA_RAID_4     1
613 #define HPSA_RAID_1     2       /* also used for RAID 10 */
614 #define HPSA_RAID_5     3       /* also used for RAID 50 */
615 #define HPSA_RAID_51    4
616 #define HPSA_RAID_6     5       /* also used for RAID 60 */
617 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
618 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
619
620 static ssize_t raid_level_show(struct device *dev,
621              struct device_attribute *attr, char *buf)
622 {
623         ssize_t l = 0;
624         unsigned char rlevel;
625         struct ctlr_info *h;
626         struct scsi_device *sdev;
627         struct hpsa_scsi_dev_t *hdev;
628         unsigned long flags;
629
630         sdev = to_scsi_device(dev);
631         h = sdev_to_hba(sdev);
632         spin_lock_irqsave(&h->lock, flags);
633         hdev = sdev->hostdata;
634         if (!hdev) {
635                 spin_unlock_irqrestore(&h->lock, flags);
636                 return -ENODEV;
637         }
638
639         /* Is this even a logical drive? */
640         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
641                 spin_unlock_irqrestore(&h->lock, flags);
642                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
643                 return l;
644         }
645
646         rlevel = hdev->raid_level;
647         spin_unlock_irqrestore(&h->lock, flags);
648         if (rlevel > RAID_UNKNOWN)
649                 rlevel = RAID_UNKNOWN;
650         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
651         return l;
652 }
653
654 static ssize_t lunid_show(struct device *dev,
655              struct device_attribute *attr, char *buf)
656 {
657         struct ctlr_info *h;
658         struct scsi_device *sdev;
659         struct hpsa_scsi_dev_t *hdev;
660         unsigned long flags;
661         unsigned char lunid[8];
662
663         sdev = to_scsi_device(dev);
664         h = sdev_to_hba(sdev);
665         spin_lock_irqsave(&h->lock, flags);
666         hdev = sdev->hostdata;
667         if (!hdev) {
668                 spin_unlock_irqrestore(&h->lock, flags);
669                 return -ENODEV;
670         }
671         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
672         spin_unlock_irqrestore(&h->lock, flags);
673         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
674                 lunid[0], lunid[1], lunid[2], lunid[3],
675                 lunid[4], lunid[5], lunid[6], lunid[7]);
676 }
677
678 static ssize_t unique_id_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char sn[16];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(sn, hdev->device_id, sizeof(sn));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 16 * 2 + 2,
698                         "%02X%02X%02X%02X%02X%02X%02X%02X"
699                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
700                         sn[0], sn[1], sn[2], sn[3],
701                         sn[4], sn[5], sn[6], sn[7],
702                         sn[8], sn[9], sn[10], sn[11],
703                         sn[12], sn[13], sn[14], sn[15]);
704 }
705
706 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
707              struct device_attribute *attr, char *buf)
708 {
709         struct ctlr_info *h;
710         struct scsi_device *sdev;
711         struct hpsa_scsi_dev_t *hdev;
712         unsigned long flags;
713         int offload_enabled;
714
715         sdev = to_scsi_device(dev);
716         h = sdev_to_hba(sdev);
717         spin_lock_irqsave(&h->lock, flags);
718         hdev = sdev->hostdata;
719         if (!hdev) {
720                 spin_unlock_irqrestore(&h->lock, flags);
721                 return -ENODEV;
722         }
723         offload_enabled = hdev->offload_enabled;
724         spin_unlock_irqrestore(&h->lock, flags);
725         return snprintf(buf, 20, "%d\n", offload_enabled);
726 }
727
728 #define MAX_PATHS 8
729 #define PATH_STRING_LEN 50
730
731 static ssize_t path_info_show(struct device *dev,
732              struct device_attribute *attr, char *buf)
733 {
734         struct ctlr_info *h;
735         struct scsi_device *sdev;
736         struct hpsa_scsi_dev_t *hdev;
737         unsigned long flags;
738         int i;
739         int output_len = 0;
740         u8 box;
741         u8 bay;
742         u8 path_map_index = 0;
743         char *active;
744         unsigned char phys_connector[2];
745         unsigned char path[MAX_PATHS][PATH_STRING_LEN];
746
747         memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
748         sdev = to_scsi_device(dev);
749         h = sdev_to_hba(sdev);
750         spin_lock_irqsave(&h->devlock, flags);
751         hdev = sdev->hostdata;
752         if (!hdev) {
753                 spin_unlock_irqrestore(&h->devlock, flags);
754                 return -ENODEV;
755         }
756
757         bay = hdev->bay;
758         for (i = 0; i < MAX_PATHS; i++) {
759                 path_map_index = 1<<i;
760                 if (i == hdev->active_path_index)
761                         active = "Active";
762                 else if (hdev->path_map & path_map_index)
763                         active = "Inactive";
764                 else
765                         continue;
766
767                 output_len = snprintf(path[i],
768                                 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
769                                 h->scsi_host->host_no,
770                                 hdev->bus, hdev->target, hdev->lun,
771                                 scsi_device_type(hdev->devtype));
772
773                 if (is_ext_target(h, hdev) ||
774                         (hdev->devtype == TYPE_RAID) ||
775                         is_logical_dev_addr_mode(hdev->scsi3addr)) {
776                         output_len += snprintf(path[i] + output_len,
777                                                 PATH_STRING_LEN, "%s\n",
778                                                 active);
779                         continue;
780                 }
781
782                 box = hdev->box[i];
783                 memcpy(&phys_connector, &hdev->phys_connector[i],
784                         sizeof(phys_connector));
785                 if (phys_connector[0] < '0')
786                         phys_connector[0] = '0';
787                 if (phys_connector[1] < '0')
788                         phys_connector[1] = '0';
789                 if (hdev->phys_connector[i] > 0)
790                         output_len += snprintf(path[i] + output_len,
791                                 PATH_STRING_LEN,
792                                 "PORT: %.2s ",
793                                 phys_connector);
794                 if (hdev->devtype == TYPE_DISK &&
795                         hdev->expose_state != HPSA_DO_NOT_EXPOSE) {
796                         if (box == 0 || box == 0xFF) {
797                                 output_len += snprintf(path[i] + output_len,
798                                         PATH_STRING_LEN,
799                                         "BAY: %hhu %s\n",
800                                         bay, active);
801                         } else {
802                                 output_len += snprintf(path[i] + output_len,
803                                         PATH_STRING_LEN,
804                                         "BOX: %hhu BAY: %hhu %s\n",
805                                         box, bay, active);
806                         }
807                 } else if (box != 0 && box != 0xFF) {
808                         output_len += snprintf(path[i] + output_len,
809                                 PATH_STRING_LEN, "BOX: %hhu %s\n",
810                                 box, active);
811                 } else
812                         output_len += snprintf(path[i] + output_len,
813                                 PATH_STRING_LEN, "%s\n", active);
814         }
815
816         spin_unlock_irqrestore(&h->devlock, flags);
817         return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
818                 path[0], path[1], path[2], path[3],
819                 path[4], path[5], path[6], path[7]);
820 }
821
822 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
823 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
824 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
825 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
826 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
827                         host_show_hp_ssd_smart_path_enabled, NULL);
828 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
829 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
830                 host_show_hp_ssd_smart_path_status,
831                 host_store_hp_ssd_smart_path_status);
832 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
833                         host_store_raid_offload_debug);
834 static DEVICE_ATTR(firmware_revision, S_IRUGO,
835         host_show_firmware_revision, NULL);
836 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
837         host_show_commands_outstanding, NULL);
838 static DEVICE_ATTR(transport_mode, S_IRUGO,
839         host_show_transport_mode, NULL);
840 static DEVICE_ATTR(resettable, S_IRUGO,
841         host_show_resettable, NULL);
842 static DEVICE_ATTR(lockup_detected, S_IRUGO,
843         host_show_lockup_detected, NULL);
844
845 static struct device_attribute *hpsa_sdev_attrs[] = {
846         &dev_attr_raid_level,
847         &dev_attr_lunid,
848         &dev_attr_unique_id,
849         &dev_attr_hp_ssd_smart_path_enabled,
850         &dev_attr_path_info,
851         &dev_attr_lockup_detected,
852         NULL,
853 };
854
855 static struct device_attribute *hpsa_shost_attrs[] = {
856         &dev_attr_rescan,
857         &dev_attr_firmware_revision,
858         &dev_attr_commands_outstanding,
859         &dev_attr_transport_mode,
860         &dev_attr_resettable,
861         &dev_attr_hp_ssd_smart_path_status,
862         &dev_attr_raid_offload_debug,
863         NULL,
864 };
865
866 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
867                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
868
869 static struct scsi_host_template hpsa_driver_template = {
870         .module                 = THIS_MODULE,
871         .name                   = HPSA,
872         .proc_name              = HPSA,
873         .queuecommand           = hpsa_scsi_queue_command,
874         .scan_start             = hpsa_scan_start,
875         .scan_finished          = hpsa_scan_finished,
876         .change_queue_depth     = hpsa_change_queue_depth,
877         .this_id                = -1,
878         .use_clustering         = ENABLE_CLUSTERING,
879         .eh_abort_handler       = hpsa_eh_abort_handler,
880         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
881         .ioctl                  = hpsa_ioctl,
882         .slave_alloc            = hpsa_slave_alloc,
883         .slave_configure        = hpsa_slave_configure,
884         .slave_destroy          = hpsa_slave_destroy,
885 #ifdef CONFIG_COMPAT
886         .compat_ioctl           = hpsa_compat_ioctl,
887 #endif
888         .sdev_attrs = hpsa_sdev_attrs,
889         .shost_attrs = hpsa_shost_attrs,
890         .max_sectors = 8192,
891         .no_write_same = 1,
892 };
893
894 static inline u32 next_command(struct ctlr_info *h, u8 q)
895 {
896         u32 a;
897         struct reply_queue_buffer *rq = &h->reply_queue[q];
898
899         if (h->transMethod & CFGTBL_Trans_io_accel1)
900                 return h->access.command_completed(h, q);
901
902         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
903                 return h->access.command_completed(h, q);
904
905         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
906                 a = rq->head[rq->current_entry];
907                 rq->current_entry++;
908                 atomic_dec(&h->commands_outstanding);
909         } else {
910                 a = FIFO_EMPTY;
911         }
912         /* Check for wraparound */
913         if (rq->current_entry == h->max_commands) {
914                 rq->current_entry = 0;
915                 rq->wraparound ^= 1;
916         }
917         return a;
918 }
919
920 /*
921  * There are some special bits in the bus address of the
922  * command that we have to set for the controller to know
923  * how to process the command:
924  *
925  * Normal performant mode:
926  * bit 0: 1 means performant mode, 0 means simple mode.
927  * bits 1-3 = block fetch table entry
928  * bits 4-6 = command type (== 0)
929  *
930  * ioaccel1 mode:
931  * bit 0 = "performant mode" bit.
932  * bits 1-3 = block fetch table entry
933  * bits 4-6 = command type (== 110)
934  * (command type is needed because ioaccel1 mode
935  * commands are submitted through the same register as normal
936  * mode commands, so this is how the controller knows whether
937  * the command is normal mode or ioaccel1 mode.)
938  *
939  * ioaccel2 mode:
940  * bit 0 = "performant mode" bit.
941  * bits 1-4 = block fetch table entry (note extra bit)
942  * bits 4-6 = not needed, because ioaccel2 mode has
943  * a separate special register for submitting commands.
944  */
945
946 /*
947  * set_performant_mode: Modify the tag for cciss performant
948  * set bit 0 for pull model, bits 3-1 for block fetch
949  * register number
950  */
951 #define DEFAULT_REPLY_QUEUE (-1)
952 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
953                                         int reply_queue)
954 {
955         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
956                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
957                 if (unlikely(!h->msix_vector))
958                         return;
959                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
960                         c->Header.ReplyQueue =
961                                 raw_smp_processor_id() % h->nreply_queues;
962                 else
963                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
964         }
965 }
966
967 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
968                                                 struct CommandList *c,
969                                                 int reply_queue)
970 {
971         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
972
973         /*
974          * Tell the controller to post the reply to the queue for this
975          * processor.  This seems to give the best I/O throughput.
976          */
977         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
978                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
979         else
980                 cp->ReplyQueue = reply_queue % h->nreply_queues;
981         /*
982          * Set the bits in the address sent down to include:
983          *  - performant mode bit (bit 0)
984          *  - pull count (bits 1-3)
985          *  - command type (bits 4-6)
986          */
987         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
988                                         IOACCEL1_BUSADDR_CMDTYPE;
989 }
990
991 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
992                                                 struct CommandList *c,
993                                                 int reply_queue)
994 {
995         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
996                 &h->ioaccel2_cmd_pool[c->cmdindex];
997
998         /* Tell the controller to post the reply to the queue for this
999          * processor.  This seems to give the best I/O throughput.
1000          */
1001         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1002                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1003         else
1004                 cp->reply_queue = reply_queue % h->nreply_queues;
1005         /* Set the bits in the address sent down to include:
1006          *  - performant mode bit not used in ioaccel mode 2
1007          *  - pull count (bits 0-3)
1008          *  - command type isn't needed for ioaccel2
1009          */
1010         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1011 }
1012
1013 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1014                                                 struct CommandList *c,
1015                                                 int reply_queue)
1016 {
1017         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1018
1019         /*
1020          * Tell the controller to post the reply to the queue for this
1021          * processor.  This seems to give the best I/O throughput.
1022          */
1023         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1024                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1025         else
1026                 cp->reply_queue = reply_queue % h->nreply_queues;
1027         /*
1028          * Set the bits in the address sent down to include:
1029          *  - performant mode bit not used in ioaccel mode 2
1030          *  - pull count (bits 0-3)
1031          *  - command type isn't needed for ioaccel2
1032          */
1033         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1034 }
1035
1036 static int is_firmware_flash_cmd(u8 *cdb)
1037 {
1038         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1039 }
1040
1041 /*
1042  * During firmware flash, the heartbeat register may not update as frequently
1043  * as it should.  So we dial down lockup detection during firmware flash. and
1044  * dial it back up when firmware flash completes.
1045  */
1046 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1047 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1048 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1049                 struct CommandList *c)
1050 {
1051         if (!is_firmware_flash_cmd(c->Request.CDB))
1052                 return;
1053         atomic_inc(&h->firmware_flash_in_progress);
1054         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1055 }
1056
1057 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1058                 struct CommandList *c)
1059 {
1060         if (is_firmware_flash_cmd(c->Request.CDB) &&
1061                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1062                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1063 }
1064
1065 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1066         struct CommandList *c, int reply_queue)
1067 {
1068         dial_down_lockup_detection_during_fw_flash(h, c);
1069         atomic_inc(&h->commands_outstanding);
1070         switch (c->cmd_type) {
1071         case CMD_IOACCEL1:
1072                 set_ioaccel1_performant_mode(h, c, reply_queue);
1073                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1074                 break;
1075         case CMD_IOACCEL2:
1076                 set_ioaccel2_performant_mode(h, c, reply_queue);
1077                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1078                 break;
1079         case IOACCEL2_TMF:
1080                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1081                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1082                 break;
1083         default:
1084                 set_performant_mode(h, c, reply_queue);
1085                 h->access.submit_command(h, c);
1086         }
1087 }
1088
1089 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1090 {
1091         if (unlikely(hpsa_is_pending_event(c)))
1092                 return finish_cmd(c);
1093
1094         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1095 }
1096
1097 static inline int is_hba_lunid(unsigned char scsi3addr[])
1098 {
1099         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1100 }
1101
1102 static inline int is_scsi_rev_5(struct ctlr_info *h)
1103 {
1104         if (!h->hba_inquiry_data)
1105                 return 0;
1106         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1107                 return 1;
1108         return 0;
1109 }
1110
1111 static int hpsa_find_target_lun(struct ctlr_info *h,
1112         unsigned char scsi3addr[], int bus, int *target, int *lun)
1113 {
1114         /* finds an unused bus, target, lun for a new physical device
1115          * assumes h->devlock is held
1116          */
1117         int i, found = 0;
1118         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1119
1120         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1121
1122         for (i = 0; i < h->ndevices; i++) {
1123                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1124                         __set_bit(h->dev[i]->target, lun_taken);
1125         }
1126
1127         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1128         if (i < HPSA_MAX_DEVICES) {
1129                 /* *bus = 1; */
1130                 *target = i;
1131                 *lun = 0;
1132                 found = 1;
1133         }
1134         return !found;
1135 }
1136
1137 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1138         struct hpsa_scsi_dev_t *dev, char *description)
1139 {
1140         dev_printk(level, &h->pdev->dev,
1141                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1142                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1143                         description,
1144                         scsi_device_type(dev->devtype),
1145                         dev->vendor,
1146                         dev->model,
1147                         dev->raid_level > RAID_UNKNOWN ?
1148                                 "RAID-?" : raid_label[dev->raid_level],
1149                         dev->offload_config ? '+' : '-',
1150                         dev->offload_enabled ? '+' : '-',
1151                         dev->expose_state);
1152 }
1153
1154 /* Add an entry into h->dev[] array. */
1155 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1156                 struct hpsa_scsi_dev_t *device,
1157                 struct hpsa_scsi_dev_t *added[], int *nadded)
1158 {
1159         /* assumes h->devlock is held */
1160         int n = h->ndevices;
1161         int i;
1162         unsigned char addr1[8], addr2[8];
1163         struct hpsa_scsi_dev_t *sd;
1164
1165         if (n >= HPSA_MAX_DEVICES) {
1166                 dev_err(&h->pdev->dev, "too many devices, some will be "
1167                         "inaccessible.\n");
1168                 return -1;
1169         }
1170
1171         /* physical devices do not have lun or target assigned until now. */
1172         if (device->lun != -1)
1173                 /* Logical device, lun is already assigned. */
1174                 goto lun_assigned;
1175
1176         /* If this device a non-zero lun of a multi-lun device
1177          * byte 4 of the 8-byte LUN addr will contain the logical
1178          * unit no, zero otherwise.
1179          */
1180         if (device->scsi3addr[4] == 0) {
1181                 /* This is not a non-zero lun of a multi-lun device */
1182                 if (hpsa_find_target_lun(h, device->scsi3addr,
1183                         device->bus, &device->target, &device->lun) != 0)
1184                         return -1;
1185                 goto lun_assigned;
1186         }
1187
1188         /* This is a non-zero lun of a multi-lun device.
1189          * Search through our list and find the device which
1190          * has the same 8 byte LUN address, excepting byte 4 and 5.
1191          * Assign the same bus and target for this new LUN.
1192          * Use the logical unit number from the firmware.
1193          */
1194         memcpy(addr1, device->scsi3addr, 8);
1195         addr1[4] = 0;
1196         addr1[5] = 0;
1197         for (i = 0; i < n; i++) {
1198                 sd = h->dev[i];
1199                 memcpy(addr2, sd->scsi3addr, 8);
1200                 addr2[4] = 0;
1201                 addr2[5] = 0;
1202                 /* differ only in byte 4 and 5? */
1203                 if (memcmp(addr1, addr2, 8) == 0) {
1204                         device->bus = sd->bus;
1205                         device->target = sd->target;
1206                         device->lun = device->scsi3addr[4];
1207                         break;
1208                 }
1209         }
1210         if (device->lun == -1) {
1211                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1212                         " suspect firmware bug or unsupported hardware "
1213                         "configuration.\n");
1214                         return -1;
1215         }
1216
1217 lun_assigned:
1218
1219         h->dev[n] = device;
1220         h->ndevices++;
1221         added[*nadded] = device;
1222         (*nadded)++;
1223         hpsa_show_dev_msg(KERN_INFO, h, device,
1224                 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1225         device->offload_to_be_enabled = device->offload_enabled;
1226         device->offload_enabled = 0;
1227         return 0;
1228 }
1229
1230 /* Update an entry in h->dev[] array. */
1231 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1232         int entry, struct hpsa_scsi_dev_t *new_entry)
1233 {
1234         int offload_enabled;
1235         /* assumes h->devlock is held */
1236         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1237
1238         /* Raid level changed. */
1239         h->dev[entry]->raid_level = new_entry->raid_level;
1240
1241         /* Raid offload parameters changed.  Careful about the ordering. */
1242         if (new_entry->offload_config && new_entry->offload_enabled) {
1243                 /*
1244                  * if drive is newly offload_enabled, we want to copy the
1245                  * raid map data first.  If previously offload_enabled and
1246                  * offload_config were set, raid map data had better be
1247                  * the same as it was before.  if raid map data is changed
1248                  * then it had better be the case that
1249                  * h->dev[entry]->offload_enabled is currently 0.
1250                  */
1251                 h->dev[entry]->raid_map = new_entry->raid_map;
1252                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1253         }
1254         if (new_entry->hba_ioaccel_enabled) {
1255                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1256                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1257         }
1258         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1259         h->dev[entry]->offload_config = new_entry->offload_config;
1260         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1261         h->dev[entry]->queue_depth = new_entry->queue_depth;
1262
1263         /*
1264          * We can turn off ioaccel offload now, but need to delay turning
1265          * it on until we can update h->dev[entry]->phys_disk[], but we
1266          * can't do that until all the devices are updated.
1267          */
1268         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1269         if (!new_entry->offload_enabled)
1270                 h->dev[entry]->offload_enabled = 0;
1271
1272         offload_enabled = h->dev[entry]->offload_enabled;
1273         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1274         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1275         h->dev[entry]->offload_enabled = offload_enabled;
1276 }
1277
1278 /* Replace an entry from h->dev[] array. */
1279 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1280         int entry, struct hpsa_scsi_dev_t *new_entry,
1281         struct hpsa_scsi_dev_t *added[], int *nadded,
1282         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1283 {
1284         /* assumes h->devlock is held */
1285         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1286         removed[*nremoved] = h->dev[entry];
1287         (*nremoved)++;
1288
1289         /*
1290          * New physical devices won't have target/lun assigned yet
1291          * so we need to preserve the values in the slot we are replacing.
1292          */
1293         if (new_entry->target == -1) {
1294                 new_entry->target = h->dev[entry]->target;
1295                 new_entry->lun = h->dev[entry]->lun;
1296         }
1297
1298         h->dev[entry] = new_entry;
1299         added[*nadded] = new_entry;
1300         (*nadded)++;
1301         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1302         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1303         new_entry->offload_enabled = 0;
1304 }
1305
1306 /* Remove an entry from h->dev[] array. */
1307 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1308         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1309 {
1310         /* assumes h->devlock is held */
1311         int i;
1312         struct hpsa_scsi_dev_t *sd;
1313
1314         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1315
1316         sd = h->dev[entry];
1317         removed[*nremoved] = h->dev[entry];
1318         (*nremoved)++;
1319
1320         for (i = entry; i < h->ndevices-1; i++)
1321                 h->dev[i] = h->dev[i+1];
1322         h->ndevices--;
1323         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1324 }
1325
1326 #define SCSI3ADDR_EQ(a, b) ( \
1327         (a)[7] == (b)[7] && \
1328         (a)[6] == (b)[6] && \
1329         (a)[5] == (b)[5] && \
1330         (a)[4] == (b)[4] && \
1331         (a)[3] == (b)[3] && \
1332         (a)[2] == (b)[2] && \
1333         (a)[1] == (b)[1] && \
1334         (a)[0] == (b)[0])
1335
1336 static void fixup_botched_add(struct ctlr_info *h,
1337         struct hpsa_scsi_dev_t *added)
1338 {
1339         /* called when scsi_add_device fails in order to re-adjust
1340          * h->dev[] to match the mid layer's view.
1341          */
1342         unsigned long flags;
1343         int i, j;
1344
1345         spin_lock_irqsave(&h->lock, flags);
1346         for (i = 0; i < h->ndevices; i++) {
1347                 if (h->dev[i] == added) {
1348                         for (j = i; j < h->ndevices-1; j++)
1349                                 h->dev[j] = h->dev[j+1];
1350                         h->ndevices--;
1351                         break;
1352                 }
1353         }
1354         spin_unlock_irqrestore(&h->lock, flags);
1355         kfree(added);
1356 }
1357
1358 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1359         struct hpsa_scsi_dev_t *dev2)
1360 {
1361         /* we compare everything except lun and target as these
1362          * are not yet assigned.  Compare parts likely
1363          * to differ first
1364          */
1365         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1366                 sizeof(dev1->scsi3addr)) != 0)
1367                 return 0;
1368         if (memcmp(dev1->device_id, dev2->device_id,
1369                 sizeof(dev1->device_id)) != 0)
1370                 return 0;
1371         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1372                 return 0;
1373         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1374                 return 0;
1375         if (dev1->devtype != dev2->devtype)
1376                 return 0;
1377         if (dev1->bus != dev2->bus)
1378                 return 0;
1379         return 1;
1380 }
1381
1382 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1383         struct hpsa_scsi_dev_t *dev2)
1384 {
1385         /* Device attributes that can change, but don't mean
1386          * that the device is a different device, nor that the OS
1387          * needs to be told anything about the change.
1388          */
1389         if (dev1->raid_level != dev2->raid_level)
1390                 return 1;
1391         if (dev1->offload_config != dev2->offload_config)
1392                 return 1;
1393         if (dev1->offload_enabled != dev2->offload_enabled)
1394                 return 1;
1395         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1396                 if (dev1->queue_depth != dev2->queue_depth)
1397                         return 1;
1398         return 0;
1399 }
1400
1401 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1402  * and return needle location in *index.  If scsi3addr matches, but not
1403  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1404  * location in *index.
1405  * In the case of a minor device attribute change, such as RAID level, just
1406  * return DEVICE_UPDATED, along with the updated device's location in index.
1407  * If needle not found, return DEVICE_NOT_FOUND.
1408  */
1409 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1410         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1411         int *index)
1412 {
1413         int i;
1414 #define DEVICE_NOT_FOUND 0
1415 #define DEVICE_CHANGED 1
1416 #define DEVICE_SAME 2
1417 #define DEVICE_UPDATED 3
1418         for (i = 0; i < haystack_size; i++) {
1419                 if (haystack[i] == NULL) /* previously removed. */
1420                         continue;
1421                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1422                         *index = i;
1423                         if (device_is_the_same(needle, haystack[i])) {
1424                                 if (device_updated(needle, haystack[i]))
1425                                         return DEVICE_UPDATED;
1426                                 return DEVICE_SAME;
1427                         } else {
1428                                 /* Keep offline devices offline */
1429                                 if (needle->volume_offline)
1430                                         return DEVICE_NOT_FOUND;
1431                                 return DEVICE_CHANGED;
1432                         }
1433                 }
1434         }
1435         *index = -1;
1436         return DEVICE_NOT_FOUND;
1437 }
1438
1439 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1440                                         unsigned char scsi3addr[])
1441 {
1442         struct offline_device_entry *device;
1443         unsigned long flags;
1444
1445         /* Check to see if device is already on the list */
1446         spin_lock_irqsave(&h->offline_device_lock, flags);
1447         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1448                 if (memcmp(device->scsi3addr, scsi3addr,
1449                         sizeof(device->scsi3addr)) == 0) {
1450                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1451                         return;
1452                 }
1453         }
1454         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1455
1456         /* Device is not on the list, add it. */
1457         device = kmalloc(sizeof(*device), GFP_KERNEL);
1458         if (!device) {
1459                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1460                 return;
1461         }
1462         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1463         spin_lock_irqsave(&h->offline_device_lock, flags);
1464         list_add_tail(&device->offline_list, &h->offline_device_list);
1465         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1466 }
1467
1468 /* Print a message explaining various offline volume states */
1469 static void hpsa_show_volume_status(struct ctlr_info *h,
1470         struct hpsa_scsi_dev_t *sd)
1471 {
1472         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1473                 dev_info(&h->pdev->dev,
1474                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1475                         h->scsi_host->host_no,
1476                         sd->bus, sd->target, sd->lun);
1477         switch (sd->volume_offline) {
1478         case HPSA_LV_OK:
1479                 break;
1480         case HPSA_LV_UNDERGOING_ERASE:
1481                 dev_info(&h->pdev->dev,
1482                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1483                         h->scsi_host->host_no,
1484                         sd->bus, sd->target, sd->lun);
1485                 break;
1486         case HPSA_LV_NOT_AVAILABLE:
1487                 dev_info(&h->pdev->dev,
1488                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1489                         h->scsi_host->host_no,
1490                         sd->bus, sd->target, sd->lun);
1491                 break;
1492         case HPSA_LV_UNDERGOING_RPI:
1493                 dev_info(&h->pdev->dev,
1494                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1495                         h->scsi_host->host_no,
1496                         sd->bus, sd->target, sd->lun);
1497                 break;
1498         case HPSA_LV_PENDING_RPI:
1499                 dev_info(&h->pdev->dev,
1500                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1501                         h->scsi_host->host_no,
1502                         sd->bus, sd->target, sd->lun);
1503                 break;
1504         case HPSA_LV_ENCRYPTED_NO_KEY:
1505                 dev_info(&h->pdev->dev,
1506                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1507                         h->scsi_host->host_no,
1508                         sd->bus, sd->target, sd->lun);
1509                 break;
1510         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1511                 dev_info(&h->pdev->dev,
1512                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1513                         h->scsi_host->host_no,
1514                         sd->bus, sd->target, sd->lun);
1515                 break;
1516         case HPSA_LV_UNDERGOING_ENCRYPTION:
1517                 dev_info(&h->pdev->dev,
1518                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1519                         h->scsi_host->host_no,
1520                         sd->bus, sd->target, sd->lun);
1521                 break;
1522         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1523                 dev_info(&h->pdev->dev,
1524                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1525                         h->scsi_host->host_no,
1526                         sd->bus, sd->target, sd->lun);
1527                 break;
1528         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1529                 dev_info(&h->pdev->dev,
1530                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1531                         h->scsi_host->host_no,
1532                         sd->bus, sd->target, sd->lun);
1533                 break;
1534         case HPSA_LV_PENDING_ENCRYPTION:
1535                 dev_info(&h->pdev->dev,
1536                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1537                         h->scsi_host->host_no,
1538                         sd->bus, sd->target, sd->lun);
1539                 break;
1540         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1541                 dev_info(&h->pdev->dev,
1542                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1543                         h->scsi_host->host_no,
1544                         sd->bus, sd->target, sd->lun);
1545                 break;
1546         }
1547 }
1548
1549 /*
1550  * Figure the list of physical drive pointers for a logical drive with
1551  * raid offload configured.
1552  */
1553 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1554                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1555                                 struct hpsa_scsi_dev_t *logical_drive)
1556 {
1557         struct raid_map_data *map = &logical_drive->raid_map;
1558         struct raid_map_disk_data *dd = &map->data[0];
1559         int i, j;
1560         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1561                                 le16_to_cpu(map->metadata_disks_per_row);
1562         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1563                                 le16_to_cpu(map->layout_map_count) *
1564                                 total_disks_per_row;
1565         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1566                                 total_disks_per_row;
1567         int qdepth;
1568
1569         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1570                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1571
1572         logical_drive->nphysical_disks = nraid_map_entries;
1573
1574         qdepth = 0;
1575         for (i = 0; i < nraid_map_entries; i++) {
1576                 logical_drive->phys_disk[i] = NULL;
1577                 if (!logical_drive->offload_config)
1578                         continue;
1579                 for (j = 0; j < ndevices; j++) {
1580                         if (dev[j]->devtype != TYPE_DISK)
1581                                 continue;
1582                         if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1583                                 continue;
1584                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1585                                 continue;
1586
1587                         logical_drive->phys_disk[i] = dev[j];
1588                         if (i < nphys_disk)
1589                                 qdepth = min(h->nr_cmds, qdepth +
1590                                     logical_drive->phys_disk[i]->queue_depth);
1591                         break;
1592                 }
1593
1594                 /*
1595                  * This can happen if a physical drive is removed and
1596                  * the logical drive is degraded.  In that case, the RAID
1597                  * map data will refer to a physical disk which isn't actually
1598                  * present.  And in that case offload_enabled should already
1599                  * be 0, but we'll turn it off here just in case
1600                  */
1601                 if (!logical_drive->phys_disk[i]) {
1602                         logical_drive->offload_enabled = 0;
1603                         logical_drive->offload_to_be_enabled = 0;
1604                         logical_drive->queue_depth = 8;
1605                 }
1606         }
1607         if (nraid_map_entries)
1608                 /*
1609                  * This is correct for reads, too high for full stripe writes,
1610                  * way too high for partial stripe writes
1611                  */
1612                 logical_drive->queue_depth = qdepth;
1613         else
1614                 logical_drive->queue_depth = h->nr_cmds;
1615 }
1616
1617 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1618                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1619 {
1620         int i;
1621
1622         for (i = 0; i < ndevices; i++) {
1623                 if (dev[i]->devtype != TYPE_DISK)
1624                         continue;
1625                 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1626                         continue;
1627
1628                 /*
1629                  * If offload is currently enabled, the RAID map and
1630                  * phys_disk[] assignment *better* not be changing
1631                  * and since it isn't changing, we do not need to
1632                  * update it.
1633                  */
1634                 if (dev[i]->offload_enabled)
1635                         continue;
1636
1637                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1638         }
1639 }
1640
1641 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1642         struct hpsa_scsi_dev_t *sd[], int nsds)
1643 {
1644         /* sd contains scsi3 addresses and devtypes, and inquiry
1645          * data.  This function takes what's in sd to be the current
1646          * reality and updates h->dev[] to reflect that reality.
1647          */
1648         int i, entry, device_change, changes = 0;
1649         struct hpsa_scsi_dev_t *csd;
1650         unsigned long flags;
1651         struct hpsa_scsi_dev_t **added, **removed;
1652         int nadded, nremoved;
1653         struct Scsi_Host *sh = NULL;
1654
1655         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1656         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1657
1658         if (!added || !removed) {
1659                 dev_warn(&h->pdev->dev, "out of memory in "
1660                         "adjust_hpsa_scsi_table\n");
1661                 goto free_and_out;
1662         }
1663
1664         spin_lock_irqsave(&h->devlock, flags);
1665
1666         /* find any devices in h->dev[] that are not in
1667          * sd[] and remove them from h->dev[], and for any
1668          * devices which have changed, remove the old device
1669          * info and add the new device info.
1670          * If minor device attributes change, just update
1671          * the existing device structure.
1672          */
1673         i = 0;
1674         nremoved = 0;
1675         nadded = 0;
1676         while (i < h->ndevices) {
1677                 csd = h->dev[i];
1678                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1679                 if (device_change == DEVICE_NOT_FOUND) {
1680                         changes++;
1681                         hpsa_scsi_remove_entry(h, hostno, i,
1682                                 removed, &nremoved);
1683                         continue; /* remove ^^^, hence i not incremented */
1684                 } else if (device_change == DEVICE_CHANGED) {
1685                         changes++;
1686                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1687                                 added, &nadded, removed, &nremoved);
1688                         /* Set it to NULL to prevent it from being freed
1689                          * at the bottom of hpsa_update_scsi_devices()
1690                          */
1691                         sd[entry] = NULL;
1692                 } else if (device_change == DEVICE_UPDATED) {
1693                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1694                 }
1695                 i++;
1696         }
1697
1698         /* Now, make sure every device listed in sd[] is also
1699          * listed in h->dev[], adding them if they aren't found
1700          */
1701
1702         for (i = 0; i < nsds; i++) {
1703                 if (!sd[i]) /* if already added above. */
1704                         continue;
1705
1706                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1707                  * as the SCSI mid-layer does not handle such devices well.
1708                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1709                  * at 160Hz, and prevents the system from coming up.
1710                  */
1711                 if (sd[i]->volume_offline) {
1712                         hpsa_show_volume_status(h, sd[i]);
1713                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1714                         continue;
1715                 }
1716
1717                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1718                                         h->ndevices, &entry);
1719                 if (device_change == DEVICE_NOT_FOUND) {
1720                         changes++;
1721                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1722                                 added, &nadded) != 0)
1723                                 break;
1724                         sd[i] = NULL; /* prevent from being freed later. */
1725                 } else if (device_change == DEVICE_CHANGED) {
1726                         /* should never happen... */
1727                         changes++;
1728                         dev_warn(&h->pdev->dev,
1729                                 "device unexpectedly changed.\n");
1730                         /* but if it does happen, we just ignore that device */
1731                 }
1732         }
1733         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1734
1735         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1736          * any logical drives that need it enabled.
1737          */
1738         for (i = 0; i < h->ndevices; i++)
1739                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1740
1741         spin_unlock_irqrestore(&h->devlock, flags);
1742
1743         /* Monitor devices which are in one of several NOT READY states to be
1744          * brought online later. This must be done without holding h->devlock,
1745          * so don't touch h->dev[]
1746          */
1747         for (i = 0; i < nsds; i++) {
1748                 if (!sd[i]) /* if already added above. */
1749                         continue;
1750                 if (sd[i]->volume_offline)
1751                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1752         }
1753
1754         /* Don't notify scsi mid layer of any changes the first time through
1755          * (or if there are no changes) scsi_scan_host will do it later the
1756          * first time through.
1757          */
1758         if (hostno == -1 || !changes)
1759                 goto free_and_out;
1760
1761         sh = h->scsi_host;
1762         /* Notify scsi mid layer of any removed devices */
1763         for (i = 0; i < nremoved; i++) {
1764                 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1765                         struct scsi_device *sdev =
1766                                 scsi_device_lookup(sh, removed[i]->bus,
1767                                         removed[i]->target, removed[i]->lun);
1768                         if (sdev != NULL) {
1769                                 scsi_remove_device(sdev);
1770                                 scsi_device_put(sdev);
1771                         } else {
1772                                 /*
1773                                  * We don't expect to get here.
1774                                  * future cmds to this device will get selection
1775                                  * timeout as if the device was gone.
1776                                  */
1777                                 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1778                                         "didn't find device for removal.");
1779                         }
1780                 }
1781                 kfree(removed[i]);
1782                 removed[i] = NULL;
1783         }
1784
1785         /* Notify scsi mid layer of any added devices */
1786         for (i = 0; i < nadded; i++) {
1787                 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1788                         continue;
1789                 if (scsi_add_device(sh, added[i]->bus,
1790                         added[i]->target, added[i]->lun) == 0)
1791                         continue;
1792                 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1793                                         "addition failed, device not added.");
1794                 /* now we have to remove it from h->dev,
1795                  * since it didn't get added to scsi mid layer
1796                  */
1797                 fixup_botched_add(h, added[i]);
1798                 added[i] = NULL;
1799         }
1800
1801 free_and_out:
1802         kfree(added);
1803         kfree(removed);
1804 }
1805
1806 /*
1807  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1808  * Assume's h->devlock is held.
1809  */
1810 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1811         int bus, int target, int lun)
1812 {
1813         int i;
1814         struct hpsa_scsi_dev_t *sd;
1815
1816         for (i = 0; i < h->ndevices; i++) {
1817                 sd = h->dev[i];
1818                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1819                         return sd;
1820         }
1821         return NULL;
1822 }
1823
1824 static int hpsa_slave_alloc(struct scsi_device *sdev)
1825 {
1826         struct hpsa_scsi_dev_t *sd;
1827         unsigned long flags;
1828         struct ctlr_info *h;
1829
1830         h = sdev_to_hba(sdev);
1831         spin_lock_irqsave(&h->devlock, flags);
1832         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1833                 sdev_id(sdev), sdev->lun);
1834         if (likely(sd)) {
1835                 atomic_set(&sd->ioaccel_cmds_out, 0);
1836                 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1837         } else
1838                 sdev->hostdata = NULL;
1839         spin_unlock_irqrestore(&h->devlock, flags);
1840         return 0;
1841 }
1842
1843 /* configure scsi device based on internal per-device structure */
1844 static int hpsa_slave_configure(struct scsi_device *sdev)
1845 {
1846         struct hpsa_scsi_dev_t *sd;
1847         int queue_depth;
1848
1849         sd = sdev->hostdata;
1850         sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1851
1852         if (sd)
1853                 queue_depth = sd->queue_depth != 0 ?
1854                         sd->queue_depth : sdev->host->can_queue;
1855         else
1856                 queue_depth = sdev->host->can_queue;
1857
1858         scsi_change_queue_depth(sdev, queue_depth);
1859
1860         return 0;
1861 }
1862
1863 static void hpsa_slave_destroy(struct scsi_device *sdev)
1864 {
1865         /* nothing to do. */
1866 }
1867
1868 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1869 {
1870         int i;
1871
1872         if (!h->ioaccel2_cmd_sg_list)
1873                 return;
1874         for (i = 0; i < h->nr_cmds; i++) {
1875                 kfree(h->ioaccel2_cmd_sg_list[i]);
1876                 h->ioaccel2_cmd_sg_list[i] = NULL;
1877         }
1878         kfree(h->ioaccel2_cmd_sg_list);
1879         h->ioaccel2_cmd_sg_list = NULL;
1880 }
1881
1882 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1883 {
1884         int i;
1885
1886         if (h->chainsize <= 0)
1887                 return 0;
1888
1889         h->ioaccel2_cmd_sg_list =
1890                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1891                                         GFP_KERNEL);
1892         if (!h->ioaccel2_cmd_sg_list)
1893                 return -ENOMEM;
1894         for (i = 0; i < h->nr_cmds; i++) {
1895                 h->ioaccel2_cmd_sg_list[i] =
1896                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1897                                         h->maxsgentries, GFP_KERNEL);
1898                 if (!h->ioaccel2_cmd_sg_list[i])
1899                         goto clean;
1900         }
1901         return 0;
1902
1903 clean:
1904         hpsa_free_ioaccel2_sg_chain_blocks(h);
1905         return -ENOMEM;
1906 }
1907
1908 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1909 {
1910         int i;
1911
1912         if (!h->cmd_sg_list)
1913                 return;
1914         for (i = 0; i < h->nr_cmds; i++) {
1915                 kfree(h->cmd_sg_list[i]);
1916                 h->cmd_sg_list[i] = NULL;
1917         }
1918         kfree(h->cmd_sg_list);
1919         h->cmd_sg_list = NULL;
1920 }
1921
1922 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1923 {
1924         int i;
1925
1926         if (h->chainsize <= 0)
1927                 return 0;
1928
1929         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1930                                 GFP_KERNEL);
1931         if (!h->cmd_sg_list) {
1932                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1933                 return -ENOMEM;
1934         }
1935         for (i = 0; i < h->nr_cmds; i++) {
1936                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1937                                                 h->chainsize, GFP_KERNEL);
1938                 if (!h->cmd_sg_list[i]) {
1939                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1940                         goto clean;
1941                 }
1942         }
1943         return 0;
1944
1945 clean:
1946         hpsa_free_sg_chain_blocks(h);
1947         return -ENOMEM;
1948 }
1949
1950 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1951         struct io_accel2_cmd *cp, struct CommandList *c)
1952 {
1953         struct ioaccel2_sg_element *chain_block;
1954         u64 temp64;
1955         u32 chain_size;
1956
1957         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1958         chain_size = le32_to_cpu(cp->data_len);
1959         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1960                                 PCI_DMA_TODEVICE);
1961         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1962                 /* prevent subsequent unmapping */
1963                 cp->sg->address = 0;
1964                 return -1;
1965         }
1966         cp->sg->address = cpu_to_le64(temp64);
1967         return 0;
1968 }
1969
1970 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1971         struct io_accel2_cmd *cp)
1972 {
1973         struct ioaccel2_sg_element *chain_sg;
1974         u64 temp64;
1975         u32 chain_size;
1976
1977         chain_sg = cp->sg;
1978         temp64 = le64_to_cpu(chain_sg->address);
1979         chain_size = le32_to_cpu(cp->data_len);
1980         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1981 }
1982
1983 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1984         struct CommandList *c)
1985 {
1986         struct SGDescriptor *chain_sg, *chain_block;
1987         u64 temp64;
1988         u32 chain_len;
1989
1990         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1991         chain_block = h->cmd_sg_list[c->cmdindex];
1992         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1993         chain_len = sizeof(*chain_sg) *
1994                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1995         chain_sg->Len = cpu_to_le32(chain_len);
1996         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1997                                 PCI_DMA_TODEVICE);
1998         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1999                 /* prevent subsequent unmapping */
2000                 chain_sg->Addr = cpu_to_le64(0);
2001                 return -1;
2002         }
2003         chain_sg->Addr = cpu_to_le64(temp64);
2004         return 0;
2005 }
2006
2007 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2008         struct CommandList *c)
2009 {
2010         struct SGDescriptor *chain_sg;
2011
2012         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2013                 return;
2014
2015         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2016         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2017                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2018 }
2019
2020
2021 /* Decode the various types of errors on ioaccel2 path.
2022  * Return 1 for any error that should generate a RAID path retry.
2023  * Return 0 for errors that don't require a RAID path retry.
2024  */
2025 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2026                                         struct CommandList *c,
2027                                         struct scsi_cmnd *cmd,
2028                                         struct io_accel2_cmd *c2)
2029 {
2030         int data_len;
2031         int retry = 0;
2032         u32 ioaccel2_resid = 0;
2033
2034         switch (c2->error_data.serv_response) {
2035         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2036                 switch (c2->error_data.status) {
2037                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2038                         break;
2039                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2040                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2041                         if (c2->error_data.data_present !=
2042                                         IOACCEL2_SENSE_DATA_PRESENT) {
2043                                 memset(cmd->sense_buffer, 0,
2044                                         SCSI_SENSE_BUFFERSIZE);
2045                                 break;
2046                         }
2047                         /* copy the sense data */
2048                         data_len = c2->error_data.sense_data_len;
2049                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2050                                 data_len = SCSI_SENSE_BUFFERSIZE;
2051                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2052                                 data_len =
2053                                         sizeof(c2->error_data.sense_data_buff);
2054                         memcpy(cmd->sense_buffer,
2055                                 c2->error_data.sense_data_buff, data_len);
2056                         retry = 1;
2057                         break;
2058                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2059                         retry = 1;
2060                         break;
2061                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2062                         retry = 1;
2063                         break;
2064                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2065                         retry = 1;
2066                         break;
2067                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2068                         retry = 1;
2069                         break;
2070                 default:
2071                         retry = 1;
2072                         break;
2073                 }
2074                 break;
2075         case IOACCEL2_SERV_RESPONSE_FAILURE:
2076                 switch (c2->error_data.status) {
2077                 case IOACCEL2_STATUS_SR_IO_ERROR:
2078                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2079                 case IOACCEL2_STATUS_SR_OVERRUN:
2080                         retry = 1;
2081                         break;
2082                 case IOACCEL2_STATUS_SR_UNDERRUN:
2083                         cmd->result = (DID_OK << 16);           /* host byte */
2084                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2085                         ioaccel2_resid = get_unaligned_le32(
2086                                                 &c2->error_data.resid_cnt[0]);
2087                         scsi_set_resid(cmd, ioaccel2_resid);
2088                         break;
2089                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2090                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2091                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2092                         /* We will get an event from ctlr to trigger rescan */
2093                         retry = 1;
2094                         break;
2095                 default:
2096                         retry = 1;
2097                 }
2098                 break;
2099         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2100                 break;
2101         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2102                 break;
2103         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2104                 retry = 1;
2105                 break;
2106         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2107                 break;
2108         default:
2109                 retry = 1;
2110                 break;
2111         }
2112
2113         return retry;   /* retry on raid path? */
2114 }
2115
2116 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2117                 struct CommandList *c)
2118 {
2119         bool do_wake = false;
2120
2121         /*
2122          * Prevent the following race in the abort handler:
2123          *
2124          * 1. LLD is requested to abort a SCSI command
2125          * 2. The SCSI command completes
2126          * 3. The struct CommandList associated with step 2 is made available
2127          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2128          * 5. Abort handler follows scsi_cmnd->host_scribble and
2129          *    finds struct CommandList and tries to aborts it
2130          * Now we have aborted the wrong command.
2131          *
2132          * Reset c->scsi_cmd here so that the abort or reset handler will know
2133          * this command has completed.  Then, check to see if the handler is
2134          * waiting for this command, and, if so, wake it.
2135          */
2136         c->scsi_cmd = SCSI_CMD_IDLE;
2137         mb();   /* Declare command idle before checking for pending events. */
2138         if (c->abort_pending) {
2139                 do_wake = true;
2140                 c->abort_pending = false;
2141         }
2142         if (c->reset_pending) {
2143                 unsigned long flags;
2144                 struct hpsa_scsi_dev_t *dev;
2145
2146                 /*
2147                  * There appears to be a reset pending; lock the lock and
2148                  * reconfirm.  If so, then decrement the count of outstanding
2149                  * commands and wake the reset command if this is the last one.
2150                  */
2151                 spin_lock_irqsave(&h->lock, flags);
2152                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2153                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2154                         do_wake = true;
2155                 c->reset_pending = NULL;
2156                 spin_unlock_irqrestore(&h->lock, flags);
2157         }
2158
2159         if (do_wake)
2160                 wake_up_all(&h->event_sync_wait_queue);
2161 }
2162
2163 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2164                                       struct CommandList *c)
2165 {
2166         hpsa_cmd_resolve_events(h, c);
2167         cmd_tagged_free(h, c);
2168 }
2169
2170 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2171                 struct CommandList *c, struct scsi_cmnd *cmd)
2172 {
2173         hpsa_cmd_resolve_and_free(h, c);
2174         cmd->scsi_done(cmd);
2175 }
2176
2177 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2178 {
2179         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2180         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2181 }
2182
2183 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2184 {
2185         cmd->result = DID_ABORT << 16;
2186 }
2187
2188 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2189                                     struct scsi_cmnd *cmd)
2190 {
2191         hpsa_set_scsi_cmd_aborted(cmd);
2192         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2193                          c->Request.CDB, c->err_info->ScsiStatus);
2194         hpsa_cmd_resolve_and_free(h, c);
2195 }
2196
2197 static void process_ioaccel2_completion(struct ctlr_info *h,
2198                 struct CommandList *c, struct scsi_cmnd *cmd,
2199                 struct hpsa_scsi_dev_t *dev)
2200 {
2201         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2202
2203         /* check for good status */
2204         if (likely(c2->error_data.serv_response == 0 &&
2205                         c2->error_data.status == 0))
2206                 return hpsa_cmd_free_and_done(h, c, cmd);
2207
2208         /*
2209          * Any RAID offload error results in retry which will use
2210          * the normal I/O path so the controller can handle whatever's
2211          * wrong.
2212          */
2213         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2214                 c2->error_data.serv_response ==
2215                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2216                 if (c2->error_data.status ==
2217                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2218                         dev->offload_enabled = 0;
2219
2220                 return hpsa_retry_cmd(h, c);
2221         }
2222
2223         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2224                 return hpsa_retry_cmd(h, c);
2225
2226         return hpsa_cmd_free_and_done(h, c, cmd);
2227 }
2228
2229 /* Returns 0 on success, < 0 otherwise. */
2230 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2231                                         struct CommandList *cp)
2232 {
2233         u8 tmf_status = cp->err_info->ScsiStatus;
2234
2235         switch (tmf_status) {
2236         case CISS_TMF_COMPLETE:
2237                 /*
2238                  * CISS_TMF_COMPLETE never happens, instead,
2239                  * ei->CommandStatus == 0 for this case.
2240                  */
2241         case CISS_TMF_SUCCESS:
2242                 return 0;
2243         case CISS_TMF_INVALID_FRAME:
2244         case CISS_TMF_NOT_SUPPORTED:
2245         case CISS_TMF_FAILED:
2246         case CISS_TMF_WRONG_LUN:
2247         case CISS_TMF_OVERLAPPED_TAG:
2248                 break;
2249         default:
2250                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2251                                 tmf_status);
2252                 break;
2253         }
2254         return -tmf_status;
2255 }
2256
2257 static void complete_scsi_command(struct CommandList *cp)
2258 {
2259         struct scsi_cmnd *cmd;
2260         struct ctlr_info *h;
2261         struct ErrorInfo *ei;
2262         struct hpsa_scsi_dev_t *dev;
2263         struct io_accel2_cmd *c2;
2264
2265         u8 sense_key;
2266         u8 asc;      /* additional sense code */
2267         u8 ascq;     /* additional sense code qualifier */
2268         unsigned long sense_data_size;
2269
2270         ei = cp->err_info;
2271         cmd = cp->scsi_cmd;
2272         h = cp->h;
2273         dev = cmd->device->hostdata;
2274         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2275
2276         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2277         if ((cp->cmd_type == CMD_SCSI) &&
2278                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2279                 hpsa_unmap_sg_chain_block(h, cp);
2280
2281         if ((cp->cmd_type == CMD_IOACCEL2) &&
2282                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2283                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2284
2285         cmd->result = (DID_OK << 16);           /* host byte */
2286         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2287
2288         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2289                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2290
2291         /*
2292          * We check for lockup status here as it may be set for
2293          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2294          * fail_all_oustanding_cmds()
2295          */
2296         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2297                 /* DID_NO_CONNECT will prevent a retry */
2298                 cmd->result = DID_NO_CONNECT << 16;
2299                 return hpsa_cmd_free_and_done(h, cp, cmd);
2300         }
2301
2302         if ((unlikely(hpsa_is_pending_event(cp)))) {
2303                 if (cp->reset_pending)
2304                         return hpsa_cmd_resolve_and_free(h, cp);
2305                 if (cp->abort_pending)
2306                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2307         }
2308
2309         if (cp->cmd_type == CMD_IOACCEL2)
2310                 return process_ioaccel2_completion(h, cp, cmd, dev);
2311
2312         scsi_set_resid(cmd, ei->ResidualCnt);
2313         if (ei->CommandStatus == 0)
2314                 return hpsa_cmd_free_and_done(h, cp, cmd);
2315
2316         /* For I/O accelerator commands, copy over some fields to the normal
2317          * CISS header used below for error handling.
2318          */
2319         if (cp->cmd_type == CMD_IOACCEL1) {
2320                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2321                 cp->Header.SGList = scsi_sg_count(cmd);
2322                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2323                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2324                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2325                 cp->Header.tag = c->tag;
2326                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2327                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2328
2329                 /* Any RAID offload error results in retry which will use
2330                  * the normal I/O path so the controller can handle whatever's
2331                  * wrong.
2332                  */
2333                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2334                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2335                                 dev->offload_enabled = 0;
2336                         return hpsa_retry_cmd(h, cp);
2337                 }
2338         }
2339
2340         /* an error has occurred */
2341         switch (ei->CommandStatus) {
2342
2343         case CMD_TARGET_STATUS:
2344                 cmd->result |= ei->ScsiStatus;
2345                 /* copy the sense data */
2346                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2347                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2348                 else
2349                         sense_data_size = sizeof(ei->SenseInfo);
2350                 if (ei->SenseLen < sense_data_size)
2351                         sense_data_size = ei->SenseLen;
2352                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2353                 if (ei->ScsiStatus)
2354                         decode_sense_data(ei->SenseInfo, sense_data_size,
2355                                 &sense_key, &asc, &ascq);
2356                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2357                         if (sense_key == ABORTED_COMMAND) {
2358                                 cmd->result |= DID_SOFT_ERROR << 16;
2359                                 break;
2360                         }
2361                         break;
2362                 }
2363                 /* Problem was not a check condition
2364                  * Pass it up to the upper layers...
2365                  */
2366                 if (ei->ScsiStatus) {
2367                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2368                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2369                                 "Returning result: 0x%x\n",
2370                                 cp, ei->ScsiStatus,
2371                                 sense_key, asc, ascq,
2372                                 cmd->result);
2373                 } else {  /* scsi status is zero??? How??? */
2374                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2375                                 "Returning no connection.\n", cp),
2376
2377                         /* Ordinarily, this case should never happen,
2378                          * but there is a bug in some released firmware
2379                          * revisions that allows it to happen if, for
2380                          * example, a 4100 backplane loses power and
2381                          * the tape drive is in it.  We assume that
2382                          * it's a fatal error of some kind because we
2383                          * can't show that it wasn't. We will make it
2384                          * look like selection timeout since that is
2385                          * the most common reason for this to occur,
2386                          * and it's severe enough.
2387                          */
2388
2389                         cmd->result = DID_NO_CONNECT << 16;
2390                 }
2391                 break;
2392
2393         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2394                 break;
2395         case CMD_DATA_OVERRUN:
2396                 dev_warn(&h->pdev->dev,
2397                         "CDB %16phN data overrun\n", cp->Request.CDB);
2398                 break;
2399         case CMD_INVALID: {
2400                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2401                 print_cmd(cp); */
2402                 /* We get CMD_INVALID if you address a non-existent device
2403                  * instead of a selection timeout (no response).  You will
2404                  * see this if you yank out a drive, then try to access it.
2405                  * This is kind of a shame because it means that any other
2406                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2407                  * missing target. */
2408                 cmd->result = DID_NO_CONNECT << 16;
2409         }
2410                 break;
2411         case CMD_PROTOCOL_ERR:
2412                 cmd->result = DID_ERROR << 16;
2413                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2414                                 cp->Request.CDB);
2415                 break;
2416         case CMD_HARDWARE_ERR:
2417                 cmd->result = DID_ERROR << 16;
2418                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2419                         cp->Request.CDB);
2420                 break;
2421         case CMD_CONNECTION_LOST:
2422                 cmd->result = DID_ERROR << 16;
2423                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2424                         cp->Request.CDB);
2425                 break;
2426         case CMD_ABORTED:
2427                 /* Return now to avoid calling scsi_done(). */
2428                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2429         case CMD_ABORT_FAILED:
2430                 cmd->result = DID_ERROR << 16;
2431                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2432                         cp->Request.CDB);
2433                 break;
2434         case CMD_UNSOLICITED_ABORT:
2435                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2436                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2437                         cp->Request.CDB);
2438                 break;
2439         case CMD_TIMEOUT:
2440                 cmd->result = DID_TIME_OUT << 16;
2441                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2442                         cp->Request.CDB);
2443                 break;
2444         case CMD_UNABORTABLE:
2445                 cmd->result = DID_ERROR << 16;
2446                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2447                 break;
2448         case CMD_TMF_STATUS:
2449                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2450                         cmd->result = DID_ERROR << 16;
2451                 break;
2452         case CMD_IOACCEL_DISABLED:
2453                 /* This only handles the direct pass-through case since RAID
2454                  * offload is handled above.  Just attempt a retry.
2455                  */
2456                 cmd->result = DID_SOFT_ERROR << 16;
2457                 dev_warn(&h->pdev->dev,
2458                                 "cp %p had HP SSD Smart Path error\n", cp);
2459                 break;
2460         default:
2461                 cmd->result = DID_ERROR << 16;
2462                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2463                                 cp, ei->CommandStatus);
2464         }
2465
2466         return hpsa_cmd_free_and_done(h, cp, cmd);
2467 }
2468
2469 static void hpsa_pci_unmap(struct pci_dev *pdev,
2470         struct CommandList *c, int sg_used, int data_direction)
2471 {
2472         int i;
2473
2474         for (i = 0; i < sg_used; i++)
2475                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2476                                 le32_to_cpu(c->SG[i].Len),
2477                                 data_direction);
2478 }
2479
2480 static int hpsa_map_one(struct pci_dev *pdev,
2481                 struct CommandList *cp,
2482                 unsigned char *buf,
2483                 size_t buflen,
2484                 int data_direction)
2485 {
2486         u64 addr64;
2487
2488         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2489                 cp->Header.SGList = 0;
2490                 cp->Header.SGTotal = cpu_to_le16(0);
2491                 return 0;
2492         }
2493
2494         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2495         if (dma_mapping_error(&pdev->dev, addr64)) {
2496                 /* Prevent subsequent unmap of something never mapped */
2497                 cp->Header.SGList = 0;
2498                 cp->Header.SGTotal = cpu_to_le16(0);
2499                 return -1;
2500         }
2501         cp->SG[0].Addr = cpu_to_le64(addr64);
2502         cp->SG[0].Len = cpu_to_le32(buflen);
2503         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2504         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2505         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2506         return 0;
2507 }
2508
2509 #define NO_TIMEOUT ((unsigned long) -1)
2510 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2511 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2512         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2513 {
2514         DECLARE_COMPLETION_ONSTACK(wait);
2515
2516         c->waiting = &wait;
2517         __enqueue_cmd_and_start_io(h, c, reply_queue);
2518         if (timeout_msecs == NO_TIMEOUT) {
2519                 /* TODO: get rid of this no-timeout thing */
2520                 wait_for_completion_io(&wait);
2521                 return IO_OK;
2522         }
2523         if (!wait_for_completion_io_timeout(&wait,
2524                                         msecs_to_jiffies(timeout_msecs))) {
2525                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2526                 return -ETIMEDOUT;
2527         }
2528         return IO_OK;
2529 }
2530
2531 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2532                                    int reply_queue, unsigned long timeout_msecs)
2533 {
2534         if (unlikely(lockup_detected(h))) {
2535                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2536                 return IO_OK;
2537         }
2538         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2539 }
2540
2541 static u32 lockup_detected(struct ctlr_info *h)
2542 {
2543         int cpu;
2544         u32 rc, *lockup_detected;
2545
2546         cpu = get_cpu();
2547         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2548         rc = *lockup_detected;
2549         put_cpu();
2550         return rc;
2551 }
2552
2553 #define MAX_DRIVER_CMD_RETRIES 25
2554 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2555         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2556 {
2557         int backoff_time = 10, retry_count = 0;
2558         int rc;
2559
2560         do {
2561                 memset(c->err_info, 0, sizeof(*c->err_info));
2562                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2563                                                   timeout_msecs);
2564                 if (rc)
2565                         break;
2566                 retry_count++;
2567                 if (retry_count > 3) {
2568                         msleep(backoff_time);
2569                         if (backoff_time < 1000)
2570                                 backoff_time *= 2;
2571                 }
2572         } while ((check_for_unit_attention(h, c) ||
2573                         check_for_busy(h, c)) &&
2574                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2575         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2576         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2577                 rc = -EIO;
2578         return rc;
2579 }
2580
2581 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2582                                 struct CommandList *c)
2583 {
2584         const u8 *cdb = c->Request.CDB;
2585         const u8 *lun = c->Header.LUN.LunAddrBytes;
2586
2587         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2588         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2589                 txt, lun[0], lun[1], lun[2], lun[3],
2590                 lun[4], lun[5], lun[6], lun[7],
2591                 cdb[0], cdb[1], cdb[2], cdb[3],
2592                 cdb[4], cdb[5], cdb[6], cdb[7],
2593                 cdb[8], cdb[9], cdb[10], cdb[11],
2594                 cdb[12], cdb[13], cdb[14], cdb[15]);
2595 }
2596
2597 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2598                         struct CommandList *cp)
2599 {
2600         const struct ErrorInfo *ei = cp->err_info;
2601         struct device *d = &cp->h->pdev->dev;
2602         u8 sense_key, asc, ascq;
2603         int sense_len;
2604
2605         switch (ei->CommandStatus) {
2606         case CMD_TARGET_STATUS:
2607                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2608                         sense_len = sizeof(ei->SenseInfo);
2609                 else
2610                         sense_len = ei->SenseLen;
2611                 decode_sense_data(ei->SenseInfo, sense_len,
2612                                         &sense_key, &asc, &ascq);
2613                 hpsa_print_cmd(h, "SCSI status", cp);
2614                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2615                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2616                                 sense_key, asc, ascq);
2617                 else
2618                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2619                 if (ei->ScsiStatus == 0)
2620                         dev_warn(d, "SCSI status is abnormally zero.  "
2621                         "(probably indicates selection timeout "
2622                         "reported incorrectly due to a known "
2623                         "firmware bug, circa July, 2001.)\n");
2624                 break;
2625         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2626                 break;
2627         case CMD_DATA_OVERRUN:
2628                 hpsa_print_cmd(h, "overrun condition", cp);
2629                 break;
2630         case CMD_INVALID: {
2631                 /* controller unfortunately reports SCSI passthru's
2632                  * to non-existent targets as invalid commands.
2633                  */
2634                 hpsa_print_cmd(h, "invalid command", cp);
2635                 dev_warn(d, "probably means device no longer present\n");
2636                 }
2637                 break;
2638         case CMD_PROTOCOL_ERR:
2639                 hpsa_print_cmd(h, "protocol error", cp);
2640                 break;
2641         case CMD_HARDWARE_ERR:
2642                 hpsa_print_cmd(h, "hardware error", cp);
2643                 break;
2644         case CMD_CONNECTION_LOST:
2645                 hpsa_print_cmd(h, "connection lost", cp);
2646                 break;
2647         case CMD_ABORTED:
2648                 hpsa_print_cmd(h, "aborted", cp);
2649                 break;
2650         case CMD_ABORT_FAILED:
2651                 hpsa_print_cmd(h, "abort failed", cp);
2652                 break;
2653         case CMD_UNSOLICITED_ABORT:
2654                 hpsa_print_cmd(h, "unsolicited abort", cp);
2655                 break;
2656         case CMD_TIMEOUT:
2657                 hpsa_print_cmd(h, "timed out", cp);
2658                 break;
2659         case CMD_UNABORTABLE:
2660                 hpsa_print_cmd(h, "unabortable", cp);
2661                 break;
2662         case CMD_CTLR_LOCKUP:
2663                 hpsa_print_cmd(h, "controller lockup detected", cp);
2664                 break;
2665         default:
2666                 hpsa_print_cmd(h, "unknown status", cp);
2667                 dev_warn(d, "Unknown command status %x\n",
2668                                 ei->CommandStatus);
2669         }
2670 }
2671
2672 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2673                         u16 page, unsigned char *buf,
2674                         unsigned char bufsize)
2675 {
2676         int rc = IO_OK;
2677         struct CommandList *c;
2678         struct ErrorInfo *ei;
2679
2680         c = cmd_alloc(h);
2681
2682         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2683                         page, scsi3addr, TYPE_CMD)) {
2684                 rc = -1;
2685                 goto out;
2686         }
2687         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2688                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2689         if (rc)
2690                 goto out;
2691         ei = c->err_info;
2692         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2693                 hpsa_scsi_interpret_error(h, c);
2694                 rc = -1;
2695         }
2696 out:
2697         cmd_free(h, c);
2698         return rc;
2699 }
2700
2701 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2702         u8 reset_type, int reply_queue)
2703 {
2704         int rc = IO_OK;
2705         struct CommandList *c;
2706         struct ErrorInfo *ei;
2707
2708         c = cmd_alloc(h);
2709
2710
2711         /* fill_cmd can't fail here, no data buffer to map. */
2712         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2713                         scsi3addr, TYPE_MSG);
2714         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2715         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2716         if (rc) {
2717                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2718                 goto out;
2719         }
2720         /* no unmap needed here because no data xfer. */
2721
2722         ei = c->err_info;
2723         if (ei->CommandStatus != 0) {
2724                 hpsa_scsi_interpret_error(h, c);
2725                 rc = -1;
2726         }
2727 out:
2728         cmd_free(h, c);
2729         return rc;
2730 }
2731
2732 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2733                                struct hpsa_scsi_dev_t *dev,
2734                                unsigned char *scsi3addr)
2735 {
2736         int i;
2737         bool match = false;
2738         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2739         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2740
2741         if (hpsa_is_cmd_idle(c))
2742                 return false;
2743
2744         switch (c->cmd_type) {
2745         case CMD_SCSI:
2746         case CMD_IOCTL_PEND:
2747                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2748                                 sizeof(c->Header.LUN.LunAddrBytes));
2749                 break;
2750
2751         case CMD_IOACCEL1:
2752         case CMD_IOACCEL2:
2753                 if (c->phys_disk == dev) {
2754                         /* HBA mode match */
2755                         match = true;
2756                 } else {
2757                         /* Possible RAID mode -- check each phys dev. */
2758                         /* FIXME:  Do we need to take out a lock here?  If
2759                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2760                          * instead. */
2761                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2762                                 /* FIXME: an alternate test might be
2763                                  *
2764                                  * match = dev->phys_disk[i]->ioaccel_handle
2765                                  *              == c2->scsi_nexus;      */
2766                                 match = dev->phys_disk[i] == c->phys_disk;
2767                         }
2768                 }
2769                 break;
2770
2771         case IOACCEL2_TMF:
2772                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2773                         match = dev->phys_disk[i]->ioaccel_handle ==
2774                                         le32_to_cpu(ac->it_nexus);
2775                 }
2776                 break;
2777
2778         case 0:         /* The command is in the middle of being initialized. */
2779                 match = false;
2780                 break;
2781
2782         default:
2783                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2784                         c->cmd_type);
2785                 BUG();
2786         }
2787
2788         return match;
2789 }
2790
2791 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2792         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2793 {
2794         int i;
2795         int rc = 0;
2796
2797         /* We can really only handle one reset at a time */
2798         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2799                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2800                 return -EINTR;
2801         }
2802
2803         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2804
2805         for (i = 0; i < h->nr_cmds; i++) {
2806                 struct CommandList *c = h->cmd_pool + i;
2807                 int refcount = atomic_inc_return(&c->refcount);
2808
2809                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2810                         unsigned long flags;
2811
2812                         /*
2813                          * Mark the target command as having a reset pending,
2814                          * then lock a lock so that the command cannot complete
2815                          * while we're considering it.  If the command is not
2816                          * idle then count it; otherwise revoke the event.
2817                          */
2818                         c->reset_pending = dev;
2819                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2820                         if (!hpsa_is_cmd_idle(c))
2821                                 atomic_inc(&dev->reset_cmds_out);
2822                         else
2823                                 c->reset_pending = NULL;
2824                         spin_unlock_irqrestore(&h->lock, flags);
2825                 }
2826
2827                 cmd_free(h, c);
2828         }
2829
2830         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2831         if (!rc)
2832                 wait_event(h->event_sync_wait_queue,
2833                         atomic_read(&dev->reset_cmds_out) == 0 ||
2834                         lockup_detected(h));
2835
2836         if (unlikely(lockup_detected(h))) {
2837                 dev_warn(&h->pdev->dev,
2838                          "Controller lockup detected during reset wait\n");
2839                 rc = -ENODEV;
2840         }
2841
2842         if (unlikely(rc))
2843                 atomic_set(&dev->reset_cmds_out, 0);
2844
2845         mutex_unlock(&h->reset_mutex);
2846         return rc;
2847 }
2848
2849 static void hpsa_get_raid_level(struct ctlr_info *h,
2850         unsigned char *scsi3addr, unsigned char *raid_level)
2851 {
2852         int rc;
2853         unsigned char *buf;
2854
2855         *raid_level = RAID_UNKNOWN;
2856         buf = kzalloc(64, GFP_KERNEL);
2857         if (!buf)
2858                 return;
2859         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2860         if (rc == 0)
2861                 *raid_level = buf[8];
2862         if (*raid_level > RAID_UNKNOWN)
2863                 *raid_level = RAID_UNKNOWN;
2864         kfree(buf);
2865         return;
2866 }
2867
2868 #define HPSA_MAP_DEBUG
2869 #ifdef HPSA_MAP_DEBUG
2870 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2871                                 struct raid_map_data *map_buff)
2872 {
2873         struct raid_map_disk_data *dd = &map_buff->data[0];
2874         int map, row, col;
2875         u16 map_cnt, row_cnt, disks_per_row;
2876
2877         if (rc != 0)
2878                 return;
2879
2880         /* Show details only if debugging has been activated. */
2881         if (h->raid_offload_debug < 2)
2882                 return;
2883
2884         dev_info(&h->pdev->dev, "structure_size = %u\n",
2885                                 le32_to_cpu(map_buff->structure_size));
2886         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2887                         le32_to_cpu(map_buff->volume_blk_size));
2888         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2889                         le64_to_cpu(map_buff->volume_blk_cnt));
2890         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2891                         map_buff->phys_blk_shift);
2892         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2893                         map_buff->parity_rotation_shift);
2894         dev_info(&h->pdev->dev, "strip_size = %u\n",
2895                         le16_to_cpu(map_buff->strip_size));
2896         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2897                         le64_to_cpu(map_buff->disk_starting_blk));
2898         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2899                         le64_to_cpu(map_buff->disk_blk_cnt));
2900         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2901                         le16_to_cpu(map_buff->data_disks_per_row));
2902         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2903                         le16_to_cpu(map_buff->metadata_disks_per_row));
2904         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2905                         le16_to_cpu(map_buff->row_cnt));
2906         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2907                         le16_to_cpu(map_buff->layout_map_count));
2908         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2909                         le16_to_cpu(map_buff->flags));
2910         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2911                         le16_to_cpu(map_buff->flags) &
2912                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2913         dev_info(&h->pdev->dev, "dekindex = %u\n",
2914                         le16_to_cpu(map_buff->dekindex));
2915         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2916         for (map = 0; map < map_cnt; map++) {
2917                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2918                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2919                 for (row = 0; row < row_cnt; row++) {
2920                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2921                         disks_per_row =
2922                                 le16_to_cpu(map_buff->data_disks_per_row);
2923                         for (col = 0; col < disks_per_row; col++, dd++)
2924                                 dev_info(&h->pdev->dev,
2925                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2926                                         col, dd->ioaccel_handle,
2927                                         dd->xor_mult[0], dd->xor_mult[1]);
2928                         disks_per_row =
2929                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2930                         for (col = 0; col < disks_per_row; col++, dd++)
2931                                 dev_info(&h->pdev->dev,
2932                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2933                                         col, dd->ioaccel_handle,
2934                                         dd->xor_mult[0], dd->xor_mult[1]);
2935                 }
2936         }
2937 }
2938 #else
2939 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2940                         __attribute__((unused)) int rc,
2941                         __attribute__((unused)) struct raid_map_data *map_buff)
2942 {
2943 }
2944 #endif
2945
2946 static int hpsa_get_raid_map(struct ctlr_info *h,
2947         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2948 {
2949         int rc = 0;
2950         struct CommandList *c;
2951         struct ErrorInfo *ei;
2952
2953         c = cmd_alloc(h);
2954
2955         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2956                         sizeof(this_device->raid_map), 0,
2957                         scsi3addr, TYPE_CMD)) {
2958                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2959                 cmd_free(h, c);
2960                 return -1;
2961         }
2962         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2963                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2964         if (rc)
2965                 goto out;
2966         ei = c->err_info;
2967         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2968                 hpsa_scsi_interpret_error(h, c);
2969                 rc = -1;
2970                 goto out;
2971         }
2972         cmd_free(h, c);
2973
2974         /* @todo in the future, dynamically allocate RAID map memory */
2975         if (le32_to_cpu(this_device->raid_map.structure_size) >
2976                                 sizeof(this_device->raid_map)) {
2977                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2978                 rc = -1;
2979         }
2980         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2981         return rc;
2982 out:
2983         cmd_free(h, c);
2984         return rc;
2985 }
2986
2987 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2988                 unsigned char scsi3addr[], u16 bmic_device_index,
2989                 struct bmic_identify_physical_device *buf, size_t bufsize)
2990 {
2991         int rc = IO_OK;
2992         struct CommandList *c;
2993         struct ErrorInfo *ei;
2994
2995         c = cmd_alloc(h);
2996         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2997                 0, RAID_CTLR_LUNID, TYPE_CMD);
2998         if (rc)
2999                 goto out;
3000
3001         c->Request.CDB[2] = bmic_device_index & 0xff;
3002         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3003
3004         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3005                                                 NO_TIMEOUT);
3006         ei = c->err_info;
3007         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3008                 hpsa_scsi_interpret_error(h, c);
3009                 rc = -1;
3010         }
3011 out:
3012         cmd_free(h, c);
3013         return rc;
3014 }
3015
3016 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3017         unsigned char scsi3addr[], u8 page)
3018 {
3019         int rc;
3020         int i;
3021         int pages;
3022         unsigned char *buf, bufsize;
3023
3024         buf = kzalloc(256, GFP_KERNEL);
3025         if (!buf)
3026                 return 0;
3027
3028         /* Get the size of the page list first */
3029         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3030                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3031                                 buf, HPSA_VPD_HEADER_SZ);
3032         if (rc != 0)
3033                 goto exit_unsupported;
3034         pages = buf[3];
3035         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3036                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3037         else
3038                 bufsize = 255;
3039
3040         /* Get the whole VPD page list */
3041         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3042                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3043                                 buf, bufsize);
3044         if (rc != 0)
3045                 goto exit_unsupported;
3046
3047         pages = buf[3];
3048         for (i = 1; i <= pages; i++)
3049                 if (buf[3 + i] == page)
3050                         goto exit_supported;
3051 exit_unsupported:
3052         kfree(buf);
3053         return 0;
3054 exit_supported:
3055         kfree(buf);
3056         return 1;
3057 }
3058
3059 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3060         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3061 {
3062         int rc;
3063         unsigned char *buf;
3064         u8 ioaccel_status;
3065
3066         this_device->offload_config = 0;
3067         this_device->offload_enabled = 0;
3068         this_device->offload_to_be_enabled = 0;
3069
3070         buf = kzalloc(64, GFP_KERNEL);
3071         if (!buf)
3072                 return;
3073         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3074                 goto out;
3075         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3076                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3077         if (rc != 0)
3078                 goto out;
3079
3080 #define IOACCEL_STATUS_BYTE 4
3081 #define OFFLOAD_CONFIGURED_BIT 0x01
3082 #define OFFLOAD_ENABLED_BIT 0x02
3083         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3084         this_device->offload_config =
3085                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3086         if (this_device->offload_config) {
3087                 this_device->offload_enabled =
3088                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3089                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3090                         this_device->offload_enabled = 0;
3091         }
3092         this_device->offload_to_be_enabled = this_device->offload_enabled;
3093 out:
3094         kfree(buf);
3095         return;
3096 }
3097
3098 /* Get the device id from inquiry page 0x83 */
3099 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3100         unsigned char *device_id, int buflen)
3101 {
3102         int rc;
3103         unsigned char *buf;
3104
3105         if (buflen > 16)
3106                 buflen = 16;
3107         buf = kzalloc(64, GFP_KERNEL);
3108         if (!buf)
3109                 return -ENOMEM;
3110         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3111         if (rc == 0)
3112                 memcpy(device_id, &buf[8], buflen);
3113         kfree(buf);
3114         return rc != 0;
3115 }
3116
3117 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3118                 void *buf, int bufsize,
3119                 int extended_response)
3120 {
3121         int rc = IO_OK;
3122         struct CommandList *c;
3123         unsigned char scsi3addr[8];
3124         struct ErrorInfo *ei;
3125
3126         c = cmd_alloc(h);
3127
3128         /* address the controller */
3129         memset(scsi3addr, 0, sizeof(scsi3addr));
3130         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3131                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3132                 rc = -1;
3133                 goto out;
3134         }
3135         if (extended_response)
3136                 c->Request.CDB[1] = extended_response;
3137         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3138                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3139         if (rc)
3140                 goto out;
3141         ei = c->err_info;
3142         if (ei->CommandStatus != 0 &&
3143             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3144                 hpsa_scsi_interpret_error(h, c);
3145                 rc = -1;
3146         } else {
3147                 struct ReportLUNdata *rld = buf;
3148
3149                 if (rld->extended_response_flag != extended_response) {
3150                         dev_err(&h->pdev->dev,
3151                                 "report luns requested format %u, got %u\n",
3152                                 extended_response,
3153                                 rld->extended_response_flag);
3154                         rc = -1;
3155                 }
3156         }
3157 out:
3158         cmd_free(h, c);
3159         return rc;
3160 }
3161
3162 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3163                 struct ReportExtendedLUNdata *buf, int bufsize)
3164 {
3165         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3166                                                 HPSA_REPORT_PHYS_EXTENDED);
3167 }
3168
3169 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3170                 struct ReportLUNdata *buf, int bufsize)
3171 {
3172         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3173 }
3174
3175 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3176         int bus, int target, int lun)
3177 {
3178         device->bus = bus;
3179         device->target = target;
3180         device->lun = lun;
3181 }
3182
3183 /* Use VPD inquiry to get details of volume status */
3184 static int hpsa_get_volume_status(struct ctlr_info *h,
3185                                         unsigned char scsi3addr[])
3186 {
3187         int rc;
3188         int status;
3189         int size;
3190         unsigned char *buf;
3191
3192         buf = kzalloc(64, GFP_KERNEL);
3193         if (!buf)
3194                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3195
3196         /* Does controller have VPD for logical volume status? */
3197         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3198                 goto exit_failed;
3199
3200         /* Get the size of the VPD return buffer */
3201         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3202                                         buf, HPSA_VPD_HEADER_SZ);
3203         if (rc != 0)
3204                 goto exit_failed;
3205         size = buf[3];
3206
3207         /* Now get the whole VPD buffer */
3208         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3209                                         buf, size + HPSA_VPD_HEADER_SZ);
3210         if (rc != 0)
3211                 goto exit_failed;
3212         status = buf[4]; /* status byte */
3213
3214         kfree(buf);
3215         return status;
3216 exit_failed:
3217         kfree(buf);
3218         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3219 }
3220
3221 /* Determine offline status of a volume.
3222  * Return either:
3223  *  0 (not offline)
3224  *  0xff (offline for unknown reasons)
3225  *  # (integer code indicating one of several NOT READY states
3226  *     describing why a volume is to be kept offline)
3227  */
3228 static int hpsa_volume_offline(struct ctlr_info *h,
3229                                         unsigned char scsi3addr[])
3230 {
3231         struct CommandList *c;
3232         unsigned char *sense;
3233         u8 sense_key, asc, ascq;
3234         int sense_len;
3235         int rc, ldstat = 0;
3236         u16 cmd_status;
3237         u8 scsi_status;
3238 #define ASC_LUN_NOT_READY 0x04
3239 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3240 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3241
3242         c = cmd_alloc(h);
3243
3244         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3245         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3246         if (rc) {
3247                 cmd_free(h, c);
3248                 return 0;
3249         }
3250         sense = c->err_info->SenseInfo;
3251         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3252                 sense_len = sizeof(c->err_info->SenseInfo);
3253         else
3254                 sense_len = c->err_info->SenseLen;
3255         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3256         cmd_status = c->err_info->CommandStatus;
3257         scsi_status = c->err_info->ScsiStatus;
3258         cmd_free(h, c);
3259         /* Is the volume 'not ready'? */
3260         if (cmd_status != CMD_TARGET_STATUS ||
3261                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3262                 sense_key != NOT_READY ||
3263                 asc != ASC_LUN_NOT_READY)  {
3264                 return 0;
3265         }
3266
3267         /* Determine the reason for not ready state */
3268         ldstat = hpsa_get_volume_status(h, scsi3addr);
3269
3270         /* Keep volume offline in certain cases: */
3271         switch (ldstat) {
3272         case HPSA_LV_UNDERGOING_ERASE:
3273         case HPSA_LV_NOT_AVAILABLE:
3274         case HPSA_LV_UNDERGOING_RPI:
3275         case HPSA_LV_PENDING_RPI:
3276         case HPSA_LV_ENCRYPTED_NO_KEY:
3277         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3278         case HPSA_LV_UNDERGOING_ENCRYPTION:
3279         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3280         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3281                 return ldstat;
3282         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3283                 /* If VPD status page isn't available,
3284                  * use ASC/ASCQ to determine state
3285                  */
3286                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3287                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3288                         return ldstat;
3289                 break;
3290         default:
3291                 break;
3292         }
3293         return 0;
3294 }
3295
3296 /*
3297  * Find out if a logical device supports aborts by simply trying one.
3298  * Smart Array may claim not to support aborts on logical drives, but
3299  * if a MSA2000 * is connected, the drives on that will be presented
3300  * by the Smart Array as logical drives, and aborts may be sent to
3301  * those devices successfully.  So the simplest way to find out is
3302  * to simply try an abort and see how the device responds.
3303  */
3304 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3305                                         unsigned char *scsi3addr)
3306 {
3307         struct CommandList *c;
3308         struct ErrorInfo *ei;
3309         int rc = 0;
3310
3311         u64 tag = (u64) -1; /* bogus tag */
3312
3313         /* Assume that physical devices support aborts */
3314         if (!is_logical_dev_addr_mode(scsi3addr))
3315                 return 1;
3316
3317         c = cmd_alloc(h);
3318
3319         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3320         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3321         /* no unmap needed here because no data xfer. */
3322         ei = c->err_info;
3323         switch (ei->CommandStatus) {
3324         case CMD_INVALID:
3325                 rc = 0;
3326                 break;
3327         case CMD_UNABORTABLE:
3328         case CMD_ABORT_FAILED:
3329                 rc = 1;
3330                 break;
3331         case CMD_TMF_STATUS:
3332                 rc = hpsa_evaluate_tmf_status(h, c);
3333                 break;
3334         default:
3335                 rc = 0;
3336                 break;
3337         }
3338         cmd_free(h, c);
3339         return rc;
3340 }
3341
3342 static int hpsa_update_device_info(struct ctlr_info *h,
3343         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3344         unsigned char *is_OBDR_device)
3345 {
3346
3347 #define OBDR_SIG_OFFSET 43
3348 #define OBDR_TAPE_SIG "$DR-10"
3349 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3350 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3351
3352         unsigned char *inq_buff;
3353         unsigned char *obdr_sig;
3354
3355         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3356         if (!inq_buff)
3357                 goto bail_out;
3358
3359         /* Do an inquiry to the device to see what it is. */
3360         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3361                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3362                 /* Inquiry failed (msg printed already) */
3363                 dev_err(&h->pdev->dev,
3364                         "hpsa_update_device_info: inquiry failed\n");
3365                 goto bail_out;
3366         }
3367
3368         this_device->devtype = (inq_buff[0] & 0x1f);
3369         memcpy(this_device->scsi3addr, scsi3addr, 8);
3370         memcpy(this_device->vendor, &inq_buff[8],
3371                 sizeof(this_device->vendor));
3372         memcpy(this_device->model, &inq_buff[16],
3373                 sizeof(this_device->model));
3374         memset(this_device->device_id, 0,
3375                 sizeof(this_device->device_id));
3376         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3377                 sizeof(this_device->device_id));
3378
3379         if (this_device->devtype == TYPE_DISK &&
3380                 is_logical_dev_addr_mode(scsi3addr)) {
3381                 int volume_offline;
3382
3383                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3384                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3385                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3386                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3387                 if (volume_offline < 0 || volume_offline > 0xff)
3388                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3389                 this_device->volume_offline = volume_offline & 0xff;
3390         } else {
3391                 this_device->raid_level = RAID_UNKNOWN;
3392                 this_device->offload_config = 0;
3393                 this_device->offload_enabled = 0;
3394                 this_device->offload_to_be_enabled = 0;
3395                 this_device->hba_ioaccel_enabled = 0;
3396                 this_device->volume_offline = 0;
3397                 this_device->queue_depth = h->nr_cmds;
3398         }
3399
3400         if (is_OBDR_device) {
3401                 /* See if this is a One-Button-Disaster-Recovery device
3402                  * by looking for "$DR-10" at offset 43 in inquiry data.
3403                  */
3404                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3405                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3406                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3407                                                 OBDR_SIG_LEN) == 0);
3408         }
3409         kfree(inq_buff);
3410         return 0;
3411
3412 bail_out:
3413         kfree(inq_buff);
3414         return 1;
3415 }
3416
3417 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3418                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3419 {
3420         unsigned long flags;
3421         int rc, entry;
3422         /*
3423          * See if this device supports aborts.  If we already know
3424          * the device, we already know if it supports aborts, otherwise
3425          * we have to find out if it supports aborts by trying one.
3426          */
3427         spin_lock_irqsave(&h->devlock, flags);
3428         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3429         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3430                 entry >= 0 && entry < h->ndevices) {
3431                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3432                 spin_unlock_irqrestore(&h->devlock, flags);
3433         } else {
3434                 spin_unlock_irqrestore(&h->devlock, flags);
3435                 dev->supports_aborts =
3436                                 hpsa_device_supports_aborts(h, scsi3addr);
3437                 if (dev->supports_aborts < 0)
3438                         dev->supports_aborts = 0;
3439         }
3440 }
3441
3442 static unsigned char *ext_target_model[] = {
3443         "MSA2012",
3444         "MSA2024",
3445         "MSA2312",
3446         "MSA2324",
3447         "P2000 G3 SAS",
3448         "MSA 2040 SAS",
3449         NULL,
3450 };
3451
3452 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3453 {
3454         int i;
3455
3456         for (i = 0; ext_target_model[i]; i++)
3457                 if (strncmp(device->model, ext_target_model[i],
3458                         strlen(ext_target_model[i])) == 0)
3459                         return 1;
3460         return 0;
3461 }
3462
3463 /* Helper function to assign bus, target, lun mapping of devices.
3464  * Puts non-external target logical volumes on bus 0, external target logical
3465  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3466  * Logical drive target and lun are assigned at this time, but
3467  * physical device lun and target assignment are deferred (assigned
3468  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3469  */
3470 static void figure_bus_target_lun(struct ctlr_info *h,
3471         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3472 {
3473         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3474
3475         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3476                 /* physical device, target and lun filled in later */
3477                 if (is_hba_lunid(lunaddrbytes))
3478                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3479                 else
3480                         /* defer target, lun assignment for physical devices */
3481                         hpsa_set_bus_target_lun(device, 2, -1, -1);
3482                 return;
3483         }
3484         /* It's a logical device */
3485         if (is_ext_target(h, device)) {
3486                 /* external target way, put logicals on bus 1
3487                  * and match target/lun numbers box
3488                  * reports, other smart array, bus 0, target 0, match lunid
3489                  */
3490                 hpsa_set_bus_target_lun(device,
3491                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3492                 return;
3493         }
3494         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3495 }
3496
3497 /*
3498  * If there is no lun 0 on a target, linux won't find any devices.
3499  * For the external targets (arrays), we have to manually detect the enclosure
3500  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3501  * it for some reason.  *tmpdevice is the target we're adding,
3502  * this_device is a pointer into the current element of currentsd[]
3503  * that we're building up in update_scsi_devices(), below.
3504  * lunzerobits is a bitmap that tracks which targets already have a
3505  * lun 0 assigned.
3506  * Returns 1 if an enclosure was added, 0 if not.
3507  */
3508 static int add_ext_target_dev(struct ctlr_info *h,
3509         struct hpsa_scsi_dev_t *tmpdevice,
3510         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3511         unsigned long lunzerobits[], int *n_ext_target_devs)
3512 {
3513         unsigned char scsi3addr[8];
3514
3515         if (test_bit(tmpdevice->target, lunzerobits))
3516                 return 0; /* There is already a lun 0 on this target. */
3517
3518         if (!is_logical_dev_addr_mode(lunaddrbytes))
3519                 return 0; /* It's the logical targets that may lack lun 0. */
3520
3521         if (!is_ext_target(h, tmpdevice))
3522                 return 0; /* Only external target devices have this problem. */
3523
3524         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3525                 return 0;
3526
3527         memset(scsi3addr, 0, 8);
3528         scsi3addr[3] = tmpdevice->target;
3529         if (is_hba_lunid(scsi3addr))
3530                 return 0; /* Don't add the RAID controller here. */
3531
3532         if (is_scsi_rev_5(h))
3533                 return 0; /* p1210m doesn't need to do this. */
3534
3535         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3536                 dev_warn(&h->pdev->dev, "Maximum number of external "
3537                         "target devices exceeded.  Check your hardware "
3538                         "configuration.");
3539                 return 0;
3540         }
3541
3542         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3543                 return 0;
3544         (*n_ext_target_devs)++;
3545         hpsa_set_bus_target_lun(this_device,
3546                                 tmpdevice->bus, tmpdevice->target, 0);
3547         hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3548         set_bit(tmpdevice->target, lunzerobits);
3549         return 1;
3550 }
3551
3552 /*
3553  * Get address of physical disk used for an ioaccel2 mode command:
3554  *      1. Extract ioaccel2 handle from the command.
3555  *      2. Find a matching ioaccel2 handle from list of physical disks.
3556  *      3. Return:
3557  *              1 and set scsi3addr to address of matching physical
3558  *              0 if no matching physical disk was found.
3559  */
3560 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3561         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3562 {
3563         struct io_accel2_cmd *c2 =
3564                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3565         unsigned long flags;
3566         int i;
3567
3568         spin_lock_irqsave(&h->devlock, flags);
3569         for (i = 0; i < h->ndevices; i++)
3570                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3571                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3572                                 sizeof(h->dev[i]->scsi3addr));
3573                         spin_unlock_irqrestore(&h->devlock, flags);
3574                         return 1;
3575                 }
3576         spin_unlock_irqrestore(&h->devlock, flags);
3577         return 0;
3578 }
3579
3580 /*
3581  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3582  * logdev.  The number of luns in physdev and logdev are returned in
3583  * *nphysicals and *nlogicals, respectively.
3584  * Returns 0 on success, -1 otherwise.
3585  */
3586 static int hpsa_gather_lun_info(struct ctlr_info *h,
3587         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3588         struct ReportLUNdata *logdev, u32 *nlogicals)
3589 {
3590         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3591                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3592                 return -1;
3593         }
3594         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3595         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3596                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3597                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3598                 *nphysicals = HPSA_MAX_PHYS_LUN;
3599         }
3600         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3601                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3602                 return -1;
3603         }
3604         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3605         /* Reject Logicals in excess of our max capability. */
3606         if (*nlogicals > HPSA_MAX_LUN) {
3607                 dev_warn(&h->pdev->dev,
3608                         "maximum logical LUNs (%d) exceeded.  "
3609                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3610                         *nlogicals - HPSA_MAX_LUN);
3611                         *nlogicals = HPSA_MAX_LUN;
3612         }
3613         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3614                 dev_warn(&h->pdev->dev,
3615                         "maximum logical + physical LUNs (%d) exceeded. "
3616                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3617                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3618                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3619         }
3620         return 0;
3621 }
3622
3623 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3624         int i, int nphysicals, int nlogicals,
3625         struct ReportExtendedLUNdata *physdev_list,
3626         struct ReportLUNdata *logdev_list)
3627 {
3628         /* Helper function, figure out where the LUN ID info is coming from
3629          * given index i, lists of physical and logical devices, where in
3630          * the list the raid controller is supposed to appear (first or last)
3631          */
3632
3633         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3634         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3635
3636         if (i == raid_ctlr_position)
3637                 return RAID_CTLR_LUNID;
3638
3639         if (i < logicals_start)
3640                 return &physdev_list->LUN[i -
3641                                 (raid_ctlr_position == 0)].lunid[0];
3642
3643         if (i < last_device)
3644                 return &logdev_list->LUN[i - nphysicals -
3645                         (raid_ctlr_position == 0)][0];
3646         BUG();
3647         return NULL;
3648 }
3649
3650 /* get physical drive ioaccel handle and queue depth */
3651 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3652                 struct hpsa_scsi_dev_t *dev,
3653                 u8 *lunaddrbytes,
3654                 struct bmic_identify_physical_device *id_phys)
3655 {
3656         int rc;
3657         struct ext_report_lun_entry *rle =
3658                 (struct ext_report_lun_entry *) lunaddrbytes;
3659
3660         dev->ioaccel_handle = rle->ioaccel_handle;
3661         if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3662                 dev->hba_ioaccel_enabled = 1;
3663         memset(id_phys, 0, sizeof(*id_phys));
3664         rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3665                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3666                         sizeof(*id_phys));
3667         if (!rc)
3668                 /* Reserve space for FW operations */
3669 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3670 #define DRIVE_QUEUE_DEPTH 7
3671                 dev->queue_depth =
3672                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3673                                 DRIVE_CMDS_RESERVED_FOR_FW;
3674         else
3675                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3676         atomic_set(&dev->ioaccel_cmds_out, 0);
3677         atomic_set(&dev->reset_cmds_out, 0);
3678 }
3679
3680 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3681         u8 *lunaddrbytes,
3682         struct bmic_identify_physical_device *id_phys)
3683 {
3684         if (PHYS_IOACCEL(lunaddrbytes)
3685                 && this_device->ioaccel_handle)
3686                 this_device->hba_ioaccel_enabled = 1;
3687
3688         memcpy(&this_device->active_path_index,
3689                 &id_phys->active_path_number,
3690                 sizeof(this_device->active_path_index));
3691         memcpy(&this_device->path_map,
3692                 &id_phys->redundant_path_present_map,
3693                 sizeof(this_device->path_map));
3694         memcpy(&this_device->box,
3695                 &id_phys->alternate_paths_phys_box_on_port,
3696                 sizeof(this_device->box));
3697         memcpy(&this_device->phys_connector,
3698                 &id_phys->alternate_paths_phys_connector,
3699                 sizeof(this_device->phys_connector));
3700         memcpy(&this_device->bay,
3701                 &id_phys->phys_bay_in_box,
3702                 sizeof(this_device->bay));
3703 }
3704
3705 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3706 {
3707         /* the idea here is we could get notified
3708          * that some devices have changed, so we do a report
3709          * physical luns and report logical luns cmd, and adjust
3710          * our list of devices accordingly.
3711          *
3712          * The scsi3addr's of devices won't change so long as the
3713          * adapter is not reset.  That means we can rescan and
3714          * tell which devices we already know about, vs. new
3715          * devices, vs.  disappearing devices.
3716          */
3717         struct ReportExtendedLUNdata *physdev_list = NULL;
3718         struct ReportLUNdata *logdev_list = NULL;
3719         struct bmic_identify_physical_device *id_phys = NULL;
3720         u32 nphysicals = 0;
3721         u32 nlogicals = 0;
3722         u32 ndev_allocated = 0;
3723         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3724         int ncurrent = 0;
3725         int i, n_ext_target_devs, ndevs_to_allocate;
3726         int raid_ctlr_position;
3727         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3728
3729         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3730         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3731         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3732         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3733         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3734
3735         if (!currentsd || !physdev_list || !logdev_list ||
3736                 !tmpdevice || !id_phys) {
3737                 dev_err(&h->pdev->dev, "out of memory\n");
3738                 goto out;
3739         }
3740         memset(lunzerobits, 0, sizeof(lunzerobits));
3741
3742         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3743                         logdev_list, &nlogicals))
3744                 goto out;
3745
3746         /* We might see up to the maximum number of logical and physical disks
3747          * plus external target devices, and a device for the local RAID
3748          * controller.
3749          */
3750         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3751
3752         /* Allocate the per device structures */
3753         for (i = 0; i < ndevs_to_allocate; i++) {
3754                 if (i >= HPSA_MAX_DEVICES) {
3755                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3756                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3757                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3758                         break;
3759                 }
3760
3761                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3762                 if (!currentsd[i]) {
3763                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3764                                 __FILE__, __LINE__);
3765                         goto out;
3766                 }
3767                 ndev_allocated++;
3768         }
3769
3770         if (is_scsi_rev_5(h))
3771                 raid_ctlr_position = 0;
3772         else
3773                 raid_ctlr_position = nphysicals + nlogicals;
3774
3775         /* adjust our table of devices */
3776         n_ext_target_devs = 0;
3777         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3778                 u8 *lunaddrbytes, is_OBDR = 0;
3779
3780                 /* Figure out where the LUN ID info is coming from */
3781                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3782                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3783
3784                 /* skip masked non-disk devices */
3785                 if (MASKED_DEVICE(lunaddrbytes))
3786                         if (i < nphysicals + (raid_ctlr_position == 0) &&
3787                                 NON_DISK_PHYS_DEV(lunaddrbytes))
3788                                 continue;
3789
3790                 /* Get device type, vendor, model, device id */
3791                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3792                                                         &is_OBDR))
3793                         continue; /* skip it if we can't talk to it. */
3794                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3795                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3796                 this_device = currentsd[ncurrent];
3797
3798                 /*
3799                  * For external target devices, we have to insert a LUN 0 which
3800                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3801                  * is nonetheless an enclosure device there.  We have to
3802                  * present that otherwise linux won't find anything if
3803                  * there is no lun 0.
3804                  */
3805                 if (add_ext_target_dev(h, tmpdevice, this_device,
3806                                 lunaddrbytes, lunzerobits,
3807                                 &n_ext_target_devs)) {
3808                         ncurrent++;
3809                         this_device = currentsd[ncurrent];
3810                 }
3811
3812                 *this_device = *tmpdevice;
3813
3814                 /* do not expose masked devices */
3815                 if (MASKED_DEVICE(lunaddrbytes) &&
3816                         i < nphysicals + (raid_ctlr_position == 0)) {
3817                         this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3818                 } else {
3819                         this_device->expose_state =
3820                                         HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3821                 }
3822
3823                 switch (this_device->devtype) {
3824                 case TYPE_ROM:
3825                         /* We don't *really* support actual CD-ROM devices,
3826                          * just "One Button Disaster Recovery" tape drive
3827                          * which temporarily pretends to be a CD-ROM drive.
3828                          * So we check that the device is really an OBDR tape
3829                          * device by checking for "$DR-10" in bytes 43-48 of
3830                          * the inquiry data.
3831                          */
3832                         if (is_OBDR)
3833                                 ncurrent++;
3834                         break;
3835                 case TYPE_DISK:
3836                         if (i < nphysicals + (raid_ctlr_position == 0)) {
3837                                 /* The disk is in HBA mode. */
3838                                 /* Never use RAID mapper in HBA mode. */
3839                                 this_device->offload_enabled = 0;
3840                                 hpsa_get_ioaccel_drive_info(h, this_device,
3841                                         lunaddrbytes, id_phys);
3842                                 hpsa_get_path_info(this_device, lunaddrbytes,
3843                                                         id_phys);
3844                         }
3845                         ncurrent++;
3846                         break;
3847                 case TYPE_TAPE:
3848                 case TYPE_MEDIUM_CHANGER:
3849                 case TYPE_ENCLOSURE:
3850                         ncurrent++;
3851                         break;
3852                 case TYPE_RAID:
3853                         /* Only present the Smartarray HBA as a RAID controller.
3854                          * If it's a RAID controller other than the HBA itself
3855                          * (an external RAID controller, MSA500 or similar)
3856                          * don't present it.
3857                          */
3858                         if (!is_hba_lunid(lunaddrbytes))
3859                                 break;
3860                         ncurrent++;
3861                         break;
3862                 default:
3863                         break;
3864                 }
3865                 if (ncurrent >= HPSA_MAX_DEVICES)
3866                         break;
3867         }
3868         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3869 out:
3870         kfree(tmpdevice);
3871         for (i = 0; i < ndev_allocated; i++)
3872                 kfree(currentsd[i]);
3873         kfree(currentsd);
3874         kfree(physdev_list);
3875         kfree(logdev_list);
3876         kfree(id_phys);
3877 }
3878
3879 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3880                                    struct scatterlist *sg)
3881 {
3882         u64 addr64 = (u64) sg_dma_address(sg);
3883         unsigned int len = sg_dma_len(sg);
3884
3885         desc->Addr = cpu_to_le64(addr64);
3886         desc->Len = cpu_to_le32(len);
3887         desc->Ext = 0;
3888 }
3889
3890 /*
3891  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3892  * dma mapping  and fills in the scatter gather entries of the
3893  * hpsa command, cp.
3894  */
3895 static int hpsa_scatter_gather(struct ctlr_info *h,
3896                 struct CommandList *cp,
3897                 struct scsi_cmnd *cmd)
3898 {
3899         struct scatterlist *sg;
3900         int use_sg, i, sg_limit, chained, last_sg;
3901         struct SGDescriptor *curr_sg;
3902
3903         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3904
3905         use_sg = scsi_dma_map(cmd);
3906         if (use_sg < 0)
3907                 return use_sg;
3908
3909         if (!use_sg)
3910                 goto sglist_finished;
3911
3912         /*
3913          * If the number of entries is greater than the max for a single list,
3914          * then we have a chained list; we will set up all but one entry in the
3915          * first list (the last entry is saved for link information);
3916          * otherwise, we don't have a chained list and we'll set up at each of
3917          * the entries in the one list.
3918          */
3919         curr_sg = cp->SG;
3920         chained = use_sg > h->max_cmd_sg_entries;
3921         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3922         last_sg = scsi_sg_count(cmd) - 1;
3923         scsi_for_each_sg(cmd, sg, sg_limit, i) {
3924                 hpsa_set_sg_descriptor(curr_sg, sg);
3925                 curr_sg++;
3926         }
3927
3928         if (chained) {
3929                 /*
3930                  * Continue with the chained list.  Set curr_sg to the chained
3931                  * list.  Modify the limit to the total count less the entries
3932                  * we've already set up.  Resume the scan at the list entry
3933                  * where the previous loop left off.
3934                  */
3935                 curr_sg = h->cmd_sg_list[cp->cmdindex];
3936                 sg_limit = use_sg - sg_limit;
3937                 for_each_sg(sg, sg, sg_limit, i) {
3938                         hpsa_set_sg_descriptor(curr_sg, sg);
3939                         curr_sg++;
3940                 }
3941         }
3942
3943         /* Back the pointer up to the last entry and mark it as "last". */
3944         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3945
3946         if (use_sg + chained > h->maxSG)
3947                 h->maxSG = use_sg + chained;
3948
3949         if (chained) {
3950                 cp->Header.SGList = h->max_cmd_sg_entries;
3951                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3952                 if (hpsa_map_sg_chain_block(h, cp)) {
3953                         scsi_dma_unmap(cmd);
3954                         return -1;
3955                 }
3956                 return 0;
3957         }
3958
3959 sglist_finished:
3960
3961         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3962         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3963         return 0;
3964 }
3965
3966 #define IO_ACCEL_INELIGIBLE (1)
3967 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3968 {
3969         int is_write = 0;
3970         u32 block;
3971         u32 block_cnt;
3972
3973         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3974         switch (cdb[0]) {
3975         case WRITE_6:
3976         case WRITE_12:
3977                 is_write = 1;
3978         case READ_6:
3979         case READ_12:
3980                 if (*cdb_len == 6) {
3981                         block = (((u32) cdb[2]) << 8) | cdb[3];
3982                         block_cnt = cdb[4];
3983                 } else {
3984                         BUG_ON(*cdb_len != 12);
3985                         block = (((u32) cdb[2]) << 24) |
3986                                 (((u32) cdb[3]) << 16) |
3987                                 (((u32) cdb[4]) << 8) |
3988                                 cdb[5];
3989                         block_cnt =
3990                                 (((u32) cdb[6]) << 24) |
3991                                 (((u32) cdb[7]) << 16) |
3992                                 (((u32) cdb[8]) << 8) |
3993                                 cdb[9];
3994                 }
3995                 if (block_cnt > 0xffff)
3996                         return IO_ACCEL_INELIGIBLE;
3997
3998                 cdb[0] = is_write ? WRITE_10 : READ_10;
3999                 cdb[1] = 0;
4000                 cdb[2] = (u8) (block >> 24);
4001                 cdb[3] = (u8) (block >> 16);
4002                 cdb[4] = (u8) (block >> 8);
4003                 cdb[5] = (u8) (block);
4004                 cdb[6] = 0;
4005                 cdb[7] = (u8) (block_cnt >> 8);
4006                 cdb[8] = (u8) (block_cnt);
4007                 cdb[9] = 0;
4008                 *cdb_len = 10;
4009                 break;
4010         }
4011         return 0;
4012 }
4013
4014 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4015         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4016         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4017 {
4018         struct scsi_cmnd *cmd = c->scsi_cmd;
4019         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4020         unsigned int len;
4021         unsigned int total_len = 0;
4022         struct scatterlist *sg;
4023         u64 addr64;
4024         int use_sg, i;
4025         struct SGDescriptor *curr_sg;
4026         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4027
4028         /* TODO: implement chaining support */
4029         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4030                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4031                 return IO_ACCEL_INELIGIBLE;
4032         }
4033
4034         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4035
4036         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4037                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4038                 return IO_ACCEL_INELIGIBLE;
4039         }
4040
4041         c->cmd_type = CMD_IOACCEL1;
4042
4043         /* Adjust the DMA address to point to the accelerated command buffer */
4044         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4045                                 (c->cmdindex * sizeof(*cp));
4046         BUG_ON(c->busaddr & 0x0000007F);
4047
4048         use_sg = scsi_dma_map(cmd);
4049         if (use_sg < 0) {
4050                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4051                 return use_sg;
4052         }
4053
4054         if (use_sg) {
4055                 curr_sg = cp->SG;
4056                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4057                         addr64 = (u64) sg_dma_address(sg);
4058                         len  = sg_dma_len(sg);
4059                         total_len += len;
4060                         curr_sg->Addr = cpu_to_le64(addr64);
4061                         curr_sg->Len = cpu_to_le32(len);
4062                         curr_sg->Ext = cpu_to_le32(0);
4063                         curr_sg++;
4064                 }
4065                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4066
4067                 switch (cmd->sc_data_direction) {
4068                 case DMA_TO_DEVICE:
4069                         control |= IOACCEL1_CONTROL_DATA_OUT;
4070                         break;
4071                 case DMA_FROM_DEVICE:
4072                         control |= IOACCEL1_CONTROL_DATA_IN;
4073                         break;
4074                 case DMA_NONE:
4075                         control |= IOACCEL1_CONTROL_NODATAXFER;
4076                         break;
4077                 default:
4078                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4079                         cmd->sc_data_direction);
4080                         BUG();
4081                         break;
4082                 }
4083         } else {
4084                 control |= IOACCEL1_CONTROL_NODATAXFER;
4085         }
4086
4087         c->Header.SGList = use_sg;
4088         /* Fill out the command structure to submit */
4089         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4090         cp->transfer_len = cpu_to_le32(total_len);
4091         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4092                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4093         cp->control = cpu_to_le32(control);
4094         memcpy(cp->CDB, cdb, cdb_len);
4095         memcpy(cp->CISS_LUN, scsi3addr, 8);
4096         /* Tag was already set at init time. */
4097         enqueue_cmd_and_start_io(h, c);
4098         return 0;
4099 }
4100
4101 /*
4102  * Queue a command directly to a device behind the controller using the
4103  * I/O accelerator path.
4104  */
4105 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4106         struct CommandList *c)
4107 {
4108         struct scsi_cmnd *cmd = c->scsi_cmd;
4109         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4110
4111         c->phys_disk = dev;
4112
4113         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4114                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4115 }
4116
4117 /*
4118  * Set encryption parameters for the ioaccel2 request
4119  */
4120 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4121         struct CommandList *c, struct io_accel2_cmd *cp)
4122 {
4123         struct scsi_cmnd *cmd = c->scsi_cmd;
4124         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4125         struct raid_map_data *map = &dev->raid_map;
4126         u64 first_block;
4127
4128         /* Are we doing encryption on this device */
4129         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4130                 return;
4131         /* Set the data encryption key index. */
4132         cp->dekindex = map->dekindex;
4133
4134         /* Set the encryption enable flag, encoded into direction field. */
4135         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4136
4137         /* Set encryption tweak values based on logical block address
4138          * If block size is 512, tweak value is LBA.
4139          * For other block sizes, tweak is (LBA * block size)/ 512)
4140          */
4141         switch (cmd->cmnd[0]) {
4142         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4143         case WRITE_6:
4144         case READ_6:
4145                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4146                 break;
4147         case WRITE_10:
4148         case READ_10:
4149         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4150         case WRITE_12:
4151         case READ_12:
4152                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4153                 break;
4154         case WRITE_16:
4155         case READ_16:
4156                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4157                 break;
4158         default:
4159                 dev_err(&h->pdev->dev,
4160                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4161                         __func__, cmd->cmnd[0]);
4162                 BUG();
4163                 break;
4164         }
4165
4166         if (le32_to_cpu(map->volume_blk_size) != 512)
4167                 first_block = first_block *
4168                                 le32_to_cpu(map->volume_blk_size)/512;
4169
4170         cp->tweak_lower = cpu_to_le32(first_block);
4171         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4172 }
4173
4174 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4175         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4176         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4177 {
4178         struct scsi_cmnd *cmd = c->scsi_cmd;
4179         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4180         struct ioaccel2_sg_element *curr_sg;
4181         int use_sg, i;
4182         struct scatterlist *sg;
4183         u64 addr64;
4184         u32 len;
4185         u32 total_len = 0;
4186
4187         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4188
4189         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4190                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4191                 return IO_ACCEL_INELIGIBLE;
4192         }
4193
4194         c->cmd_type = CMD_IOACCEL2;
4195         /* Adjust the DMA address to point to the accelerated command buffer */
4196         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4197                                 (c->cmdindex * sizeof(*cp));
4198         BUG_ON(c->busaddr & 0x0000007F);
4199
4200         memset(cp, 0, sizeof(*cp));
4201         cp->IU_type = IOACCEL2_IU_TYPE;
4202
4203         use_sg = scsi_dma_map(cmd);
4204         if (use_sg < 0) {
4205                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4206                 return use_sg;
4207         }
4208
4209         if (use_sg) {
4210                 curr_sg = cp->sg;
4211                 if (use_sg > h->ioaccel_maxsg) {
4212                         addr64 = le64_to_cpu(
4213                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4214                         curr_sg->address = cpu_to_le64(addr64);
4215                         curr_sg->length = 0;
4216                         curr_sg->reserved[0] = 0;
4217                         curr_sg->reserved[1] = 0;
4218                         curr_sg->reserved[2] = 0;
4219                         curr_sg->chain_indicator = 0x80;
4220
4221                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4222                 }
4223                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4224                         addr64 = (u64) sg_dma_address(sg);
4225                         len  = sg_dma_len(sg);
4226                         total_len += len;
4227                         curr_sg->address = cpu_to_le64(addr64);
4228                         curr_sg->length = cpu_to_le32(len);
4229                         curr_sg->reserved[0] = 0;
4230                         curr_sg->reserved[1] = 0;
4231                         curr_sg->reserved[2] = 0;
4232                         curr_sg->chain_indicator = 0;
4233                         curr_sg++;
4234                 }
4235
4236                 switch (cmd->sc_data_direction) {
4237                 case DMA_TO_DEVICE:
4238                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4239                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4240                         break;
4241                 case DMA_FROM_DEVICE:
4242                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4243                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4244                         break;
4245                 case DMA_NONE:
4246                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4247                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4248                         break;
4249                 default:
4250                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4251                                 cmd->sc_data_direction);
4252                         BUG();
4253                         break;
4254                 }
4255         } else {
4256                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4257                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4258         }
4259
4260         /* Set encryption parameters, if necessary */
4261         set_encrypt_ioaccel2(h, c, cp);
4262
4263         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4264         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4265         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4266
4267         cp->data_len = cpu_to_le32(total_len);
4268         cp->err_ptr = cpu_to_le64(c->busaddr +
4269                         offsetof(struct io_accel2_cmd, error_data));
4270         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4271
4272         /* fill in sg elements */
4273         if (use_sg > h->ioaccel_maxsg) {
4274                 cp->sg_count = 1;
4275                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4276                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4277                         scsi_dma_unmap(cmd);
4278                         return -1;
4279                 }
4280         } else
4281                 cp->sg_count = (u8) use_sg;
4282
4283         enqueue_cmd_and_start_io(h, c);
4284         return 0;
4285 }
4286
4287 /*
4288  * Queue a command to the correct I/O accelerator path.
4289  */
4290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4291         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4292         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4293 {
4294         /* Try to honor the device's queue depth */
4295         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4296                                         phys_disk->queue_depth) {
4297                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4298                 return IO_ACCEL_INELIGIBLE;
4299         }
4300         if (h->transMethod & CFGTBL_Trans_io_accel1)
4301                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4302                                                 cdb, cdb_len, scsi3addr,
4303                                                 phys_disk);
4304         else
4305                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4306                                                 cdb, cdb_len, scsi3addr,
4307                                                 phys_disk);
4308 }
4309
4310 static void raid_map_helper(struct raid_map_data *map,
4311                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4312 {
4313         if (offload_to_mirror == 0)  {
4314                 /* use physical disk in the first mirrored group. */
4315                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4316                 return;
4317         }
4318         do {
4319                 /* determine mirror group that *map_index indicates */
4320                 *current_group = *map_index /
4321                         le16_to_cpu(map->data_disks_per_row);
4322                 if (offload_to_mirror == *current_group)
4323                         continue;
4324                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4325                         /* select map index from next group */
4326                         *map_index += le16_to_cpu(map->data_disks_per_row);
4327                         (*current_group)++;
4328                 } else {
4329                         /* select map index from first group */
4330                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4331                         *current_group = 0;
4332                 }
4333         } while (offload_to_mirror != *current_group);
4334 }
4335
4336 /*
4337  * Attempt to perform offload RAID mapping for a logical volume I/O.
4338  */
4339 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4340         struct CommandList *c)
4341 {
4342         struct scsi_cmnd *cmd = c->scsi_cmd;
4343         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4344         struct raid_map_data *map = &dev->raid_map;
4345         struct raid_map_disk_data *dd = &map->data[0];
4346         int is_write = 0;
4347         u32 map_index;
4348         u64 first_block, last_block;
4349         u32 block_cnt;
4350         u32 blocks_per_row;
4351         u64 first_row, last_row;
4352         u32 first_row_offset, last_row_offset;
4353         u32 first_column, last_column;
4354         u64 r0_first_row, r0_last_row;
4355         u32 r5or6_blocks_per_row;
4356         u64 r5or6_first_row, r5or6_last_row;
4357         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4358         u32 r5or6_first_column, r5or6_last_column;
4359         u32 total_disks_per_row;
4360         u32 stripesize;
4361         u32 first_group, last_group, current_group;
4362         u32 map_row;
4363         u32 disk_handle;
4364         u64 disk_block;
4365         u32 disk_block_cnt;
4366         u8 cdb[16];
4367         u8 cdb_len;
4368         u16 strip_size;
4369 #if BITS_PER_LONG == 32
4370         u64 tmpdiv;
4371 #endif
4372         int offload_to_mirror;
4373
4374         /* check for valid opcode, get LBA and block count */
4375         switch (cmd->cmnd[0]) {
4376         case WRITE_6:
4377                 is_write = 1;
4378         case READ_6:
4379                 first_block =
4380                         (((u64) cmd->cmnd[2]) << 8) |
4381                         cmd->cmnd[3];
4382                 block_cnt = cmd->cmnd[4];
4383                 if (block_cnt == 0)
4384                         block_cnt = 256;
4385                 break;
4386         case WRITE_10:
4387                 is_write = 1;
4388         case READ_10:
4389                 first_block =
4390                         (((u64) cmd->cmnd[2]) << 24) |
4391                         (((u64) cmd->cmnd[3]) << 16) |
4392                         (((u64) cmd->cmnd[4]) << 8) |
4393                         cmd->cmnd[5];
4394                 block_cnt =
4395                         (((u32) cmd->cmnd[7]) << 8) |
4396                         cmd->cmnd[8];
4397                 break;
4398         case WRITE_12:
4399                 is_write = 1;
4400         case READ_12:
4401                 first_block =
4402                         (((u64) cmd->cmnd[2]) << 24) |
4403                         (((u64) cmd->cmnd[3]) << 16) |
4404                         (((u64) cmd->cmnd[4]) << 8) |
4405                         cmd->cmnd[5];
4406                 block_cnt =
4407                         (((u32) cmd->cmnd[6]) << 24) |
4408                         (((u32) cmd->cmnd[7]) << 16) |
4409                         (((u32) cmd->cmnd[8]) << 8) |
4410                 cmd->cmnd[9];
4411                 break;
4412         case WRITE_16:
4413                 is_write = 1;
4414         case READ_16:
4415                 first_block =
4416                         (((u64) cmd->cmnd[2]) << 56) |
4417                         (((u64) cmd->cmnd[3]) << 48) |
4418                         (((u64) cmd->cmnd[4]) << 40) |
4419                         (((u64) cmd->cmnd[5]) << 32) |
4420                         (((u64) cmd->cmnd[6]) << 24) |
4421                         (((u64) cmd->cmnd[7]) << 16) |
4422                         (((u64) cmd->cmnd[8]) << 8) |
4423                         cmd->cmnd[9];
4424                 block_cnt =
4425                         (((u32) cmd->cmnd[10]) << 24) |
4426                         (((u32) cmd->cmnd[11]) << 16) |
4427                         (((u32) cmd->cmnd[12]) << 8) |
4428                         cmd->cmnd[13];
4429                 break;
4430         default:
4431                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4432         }
4433         last_block = first_block + block_cnt - 1;
4434
4435         /* check for write to non-RAID-0 */
4436         if (is_write && dev->raid_level != 0)
4437                 return IO_ACCEL_INELIGIBLE;
4438
4439         /* check for invalid block or wraparound */
4440         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4441                 last_block < first_block)
4442                 return IO_ACCEL_INELIGIBLE;
4443
4444         /* calculate stripe information for the request */
4445         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4446                                 le16_to_cpu(map->strip_size);
4447         strip_size = le16_to_cpu(map->strip_size);
4448 #if BITS_PER_LONG == 32
4449         tmpdiv = first_block;
4450         (void) do_div(tmpdiv, blocks_per_row);
4451         first_row = tmpdiv;
4452         tmpdiv = last_block;
4453         (void) do_div(tmpdiv, blocks_per_row);
4454         last_row = tmpdiv;
4455         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4456         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4457         tmpdiv = first_row_offset;
4458         (void) do_div(tmpdiv, strip_size);
4459         first_column = tmpdiv;
4460         tmpdiv = last_row_offset;
4461         (void) do_div(tmpdiv, strip_size);
4462         last_column = tmpdiv;
4463 #else
4464         first_row = first_block / blocks_per_row;
4465         last_row = last_block / blocks_per_row;
4466         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4467         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4468         first_column = first_row_offset / strip_size;
4469         last_column = last_row_offset / strip_size;
4470 #endif
4471
4472         /* if this isn't a single row/column then give to the controller */
4473         if ((first_row != last_row) || (first_column != last_column))
4474                 return IO_ACCEL_INELIGIBLE;
4475
4476         /* proceeding with driver mapping */
4477         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4478                                 le16_to_cpu(map->metadata_disks_per_row);
4479         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4480                                 le16_to_cpu(map->row_cnt);
4481         map_index = (map_row * total_disks_per_row) + first_column;
4482
4483         switch (dev->raid_level) {
4484         case HPSA_RAID_0:
4485                 break; /* nothing special to do */
4486         case HPSA_RAID_1:
4487                 /* Handles load balance across RAID 1 members.
4488                  * (2-drive R1 and R10 with even # of drives.)
4489                  * Appropriate for SSDs, not optimal for HDDs
4490                  */
4491                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4492                 if (dev->offload_to_mirror)
4493                         map_index += le16_to_cpu(map->data_disks_per_row);
4494                 dev->offload_to_mirror = !dev->offload_to_mirror;
4495                 break;
4496         case HPSA_RAID_ADM:
4497                 /* Handles N-way mirrors  (R1-ADM)
4498                  * and R10 with # of drives divisible by 3.)
4499                  */
4500                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4501
4502                 offload_to_mirror = dev->offload_to_mirror;
4503                 raid_map_helper(map, offload_to_mirror,
4504                                 &map_index, &current_group);
4505                 /* set mirror group to use next time */
4506                 offload_to_mirror =
4507                         (offload_to_mirror >=
4508                         le16_to_cpu(map->layout_map_count) - 1)
4509                         ? 0 : offload_to_mirror + 1;
4510                 dev->offload_to_mirror = offload_to_mirror;
4511                 /* Avoid direct use of dev->offload_to_mirror within this
4512                  * function since multiple threads might simultaneously
4513                  * increment it beyond the range of dev->layout_map_count -1.
4514                  */
4515                 break;
4516         case HPSA_RAID_5:
4517         case HPSA_RAID_6:
4518                 if (le16_to_cpu(map->layout_map_count) <= 1)
4519                         break;
4520
4521                 /* Verify first and last block are in same RAID group */
4522                 r5or6_blocks_per_row =
4523                         le16_to_cpu(map->strip_size) *
4524                         le16_to_cpu(map->data_disks_per_row);
4525                 BUG_ON(r5or6_blocks_per_row == 0);
4526                 stripesize = r5or6_blocks_per_row *
4527                         le16_to_cpu(map->layout_map_count);
4528 #if BITS_PER_LONG == 32
4529                 tmpdiv = first_block;
4530                 first_group = do_div(tmpdiv, stripesize);
4531                 tmpdiv = first_group;
4532                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4533                 first_group = tmpdiv;
4534                 tmpdiv = last_block;
4535                 last_group = do_div(tmpdiv, stripesize);
4536                 tmpdiv = last_group;
4537                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4538                 last_group = tmpdiv;
4539 #else
4540                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4541                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4542 #endif
4543                 if (first_group != last_group)
4544                         return IO_ACCEL_INELIGIBLE;
4545
4546                 /* Verify request is in a single row of RAID 5/6 */
4547 #if BITS_PER_LONG == 32
4548                 tmpdiv = first_block;
4549                 (void) do_div(tmpdiv, stripesize);
4550                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4551                 tmpdiv = last_block;
4552                 (void) do_div(tmpdiv, stripesize);
4553                 r5or6_last_row = r0_last_row = tmpdiv;
4554 #else
4555                 first_row = r5or6_first_row = r0_first_row =
4556                                                 first_block / stripesize;
4557                 r5or6_last_row = r0_last_row = last_block / stripesize;
4558 #endif
4559                 if (r5or6_first_row != r5or6_last_row)
4560                         return IO_ACCEL_INELIGIBLE;
4561
4562
4563                 /* Verify request is in a single column */
4564 #if BITS_PER_LONG == 32
4565                 tmpdiv = first_block;
4566                 first_row_offset = do_div(tmpdiv, stripesize);
4567                 tmpdiv = first_row_offset;
4568                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4569                 r5or6_first_row_offset = first_row_offset;
4570                 tmpdiv = last_block;
4571                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4572                 tmpdiv = r5or6_last_row_offset;
4573                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4574                 tmpdiv = r5or6_first_row_offset;
4575                 (void) do_div(tmpdiv, map->strip_size);
4576                 first_column = r5or6_first_column = tmpdiv;
4577                 tmpdiv = r5or6_last_row_offset;
4578                 (void) do_div(tmpdiv, map->strip_size);
4579                 r5or6_last_column = tmpdiv;
4580 #else
4581                 first_row_offset = r5or6_first_row_offset =
4582                         (u32)((first_block % stripesize) %
4583                                                 r5or6_blocks_per_row);
4584
4585                 r5or6_last_row_offset =
4586                         (u32)((last_block % stripesize) %
4587                                                 r5or6_blocks_per_row);
4588
4589                 first_column = r5or6_first_column =
4590                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4591                 r5or6_last_column =
4592                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4593 #endif
4594                 if (r5or6_first_column != r5or6_last_column)
4595                         return IO_ACCEL_INELIGIBLE;
4596
4597                 /* Request is eligible */
4598                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4599                         le16_to_cpu(map->row_cnt);
4600
4601                 map_index = (first_group *
4602                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4603                         (map_row * total_disks_per_row) + first_column;
4604                 break;
4605         default:
4606                 return IO_ACCEL_INELIGIBLE;
4607         }
4608
4609         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4610                 return IO_ACCEL_INELIGIBLE;
4611
4612         c->phys_disk = dev->phys_disk[map_index];
4613
4614         disk_handle = dd[map_index].ioaccel_handle;
4615         disk_block = le64_to_cpu(map->disk_starting_blk) +
4616                         first_row * le16_to_cpu(map->strip_size) +
4617                         (first_row_offset - first_column *
4618                         le16_to_cpu(map->strip_size));
4619         disk_block_cnt = block_cnt;
4620
4621         /* handle differing logical/physical block sizes */
4622         if (map->phys_blk_shift) {
4623                 disk_block <<= map->phys_blk_shift;
4624                 disk_block_cnt <<= map->phys_blk_shift;
4625         }
4626         BUG_ON(disk_block_cnt > 0xffff);
4627
4628         /* build the new CDB for the physical disk I/O */
4629         if (disk_block > 0xffffffff) {
4630                 cdb[0] = is_write ? WRITE_16 : READ_16;
4631                 cdb[1] = 0;
4632                 cdb[2] = (u8) (disk_block >> 56);
4633                 cdb[3] = (u8) (disk_block >> 48);
4634                 cdb[4] = (u8) (disk_block >> 40);
4635                 cdb[5] = (u8) (disk_block >> 32);
4636                 cdb[6] = (u8) (disk_block >> 24);
4637                 cdb[7] = (u8) (disk_block >> 16);
4638                 cdb[8] = (u8) (disk_block >> 8);
4639                 cdb[9] = (u8) (disk_block);
4640                 cdb[10] = (u8) (disk_block_cnt >> 24);
4641                 cdb[11] = (u8) (disk_block_cnt >> 16);
4642                 cdb[12] = (u8) (disk_block_cnt >> 8);
4643                 cdb[13] = (u8) (disk_block_cnt);
4644                 cdb[14] = 0;
4645                 cdb[15] = 0;
4646                 cdb_len = 16;
4647         } else {
4648                 cdb[0] = is_write ? WRITE_10 : READ_10;
4649                 cdb[1] = 0;
4650                 cdb[2] = (u8) (disk_block >> 24);
4651                 cdb[3] = (u8) (disk_block >> 16);
4652                 cdb[4] = (u8) (disk_block >> 8);
4653                 cdb[5] = (u8) (disk_block);
4654                 cdb[6] = 0;
4655                 cdb[7] = (u8) (disk_block_cnt >> 8);
4656                 cdb[8] = (u8) (disk_block_cnt);
4657                 cdb[9] = 0;
4658                 cdb_len = 10;
4659         }
4660         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4661                                                 dev->scsi3addr,
4662                                                 dev->phys_disk[map_index]);
4663 }
4664
4665 /*
4666  * Submit commands down the "normal" RAID stack path
4667  * All callers to hpsa_ciss_submit must check lockup_detected
4668  * beforehand, before (opt.) and after calling cmd_alloc
4669  */
4670 static int hpsa_ciss_submit(struct ctlr_info *h,
4671         struct CommandList *c, struct scsi_cmnd *cmd,
4672         unsigned char scsi3addr[])
4673 {
4674         cmd->host_scribble = (unsigned char *) c;
4675         c->cmd_type = CMD_SCSI;
4676         c->scsi_cmd = cmd;
4677         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4678         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4679         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4680
4681         /* Fill in the request block... */
4682
4683         c->Request.Timeout = 0;
4684         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4685         c->Request.CDBLen = cmd->cmd_len;
4686         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4687         switch (cmd->sc_data_direction) {
4688         case DMA_TO_DEVICE:
4689                 c->Request.type_attr_dir =
4690                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4691                 break;
4692         case DMA_FROM_DEVICE:
4693                 c->Request.type_attr_dir =
4694                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4695                 break;
4696         case DMA_NONE:
4697                 c->Request.type_attr_dir =
4698                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4699                 break;
4700         case DMA_BIDIRECTIONAL:
4701                 /* This can happen if a buggy application does a scsi passthru
4702                  * and sets both inlen and outlen to non-zero. ( see
4703                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4704                  */
4705
4706                 c->Request.type_attr_dir =
4707                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4708                 /* This is technically wrong, and hpsa controllers should
4709                  * reject it with CMD_INVALID, which is the most correct
4710                  * response, but non-fibre backends appear to let it
4711                  * slide by, and give the same results as if this field
4712                  * were set correctly.  Either way is acceptable for
4713                  * our purposes here.
4714                  */
4715
4716                 break;
4717
4718         default:
4719                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4720                         cmd->sc_data_direction);
4721                 BUG();
4722                 break;
4723         }
4724
4725         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4726                 hpsa_cmd_resolve_and_free(h, c);
4727                 return SCSI_MLQUEUE_HOST_BUSY;
4728         }
4729         enqueue_cmd_and_start_io(h, c);
4730         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4731         return 0;
4732 }
4733
4734 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4735                                 struct CommandList *c)
4736 {
4737         dma_addr_t cmd_dma_handle, err_dma_handle;
4738
4739         /* Zero out all of commandlist except the last field, refcount */
4740         memset(c, 0, offsetof(struct CommandList, refcount));
4741         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4742         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4743         c->err_info = h->errinfo_pool + index;
4744         memset(c->err_info, 0, sizeof(*c->err_info));
4745         err_dma_handle = h->errinfo_pool_dhandle
4746             + index * sizeof(*c->err_info);
4747         c->cmdindex = index;
4748         c->busaddr = (u32) cmd_dma_handle;
4749         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4750         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4751         c->h = h;
4752         c->scsi_cmd = SCSI_CMD_IDLE;
4753 }
4754
4755 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4756 {
4757         int i;
4758
4759         for (i = 0; i < h->nr_cmds; i++) {
4760                 struct CommandList *c = h->cmd_pool + i;
4761
4762                 hpsa_cmd_init(h, i, c);
4763                 atomic_set(&c->refcount, 0);
4764         }
4765 }
4766
4767 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4768                                 struct CommandList *c)
4769 {
4770         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4771
4772         BUG_ON(c->cmdindex != index);
4773
4774         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4775         memset(c->err_info, 0, sizeof(*c->err_info));
4776         c->busaddr = (u32) cmd_dma_handle;
4777 }
4778
4779 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4780                 struct CommandList *c, struct scsi_cmnd *cmd,
4781                 unsigned char *scsi3addr)
4782 {
4783         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4784         int rc = IO_ACCEL_INELIGIBLE;
4785
4786         cmd->host_scribble = (unsigned char *) c;
4787
4788         if (dev->offload_enabled) {
4789                 hpsa_cmd_init(h, c->cmdindex, c);
4790                 c->cmd_type = CMD_SCSI;
4791                 c->scsi_cmd = cmd;
4792                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4793                 if (rc < 0)     /* scsi_dma_map failed. */
4794                         rc = SCSI_MLQUEUE_HOST_BUSY;
4795         } else if (dev->hba_ioaccel_enabled) {
4796                 hpsa_cmd_init(h, c->cmdindex, c);
4797                 c->cmd_type = CMD_SCSI;
4798                 c->scsi_cmd = cmd;
4799                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4800                 if (rc < 0)     /* scsi_dma_map failed. */
4801                         rc = SCSI_MLQUEUE_HOST_BUSY;
4802         }
4803         return rc;
4804 }
4805
4806 static void hpsa_command_resubmit_worker(struct work_struct *work)
4807 {
4808         struct scsi_cmnd *cmd;
4809         struct hpsa_scsi_dev_t *dev;
4810         struct CommandList *c = container_of(work, struct CommandList, work);
4811
4812         cmd = c->scsi_cmd;
4813         dev = cmd->device->hostdata;
4814         if (!dev) {
4815                 cmd->result = DID_NO_CONNECT << 16;
4816                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4817         }
4818         if (c->reset_pending)
4819                 return hpsa_cmd_resolve_and_free(c->h, c);
4820         if (c->abort_pending)
4821                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4822         if (c->cmd_type == CMD_IOACCEL2) {
4823                 struct ctlr_info *h = c->h;
4824                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4825                 int rc;
4826
4827                 if (c2->error_data.serv_response ==
4828                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4829                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4830                         if (rc == 0)
4831                                 return;
4832                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4833                                 /*
4834                                  * If we get here, it means dma mapping failed.
4835                                  * Try again via scsi mid layer, which will
4836                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4837                                  */
4838                                 cmd->result = DID_IMM_RETRY << 16;
4839                                 return hpsa_cmd_free_and_done(h, c, cmd);
4840                         }
4841                         /* else, fall thru and resubmit down CISS path */
4842                 }
4843         }
4844         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4845         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4846                 /*
4847                  * If we get here, it means dma mapping failed. Try
4848                  * again via scsi mid layer, which will then get
4849                  * SCSI_MLQUEUE_HOST_BUSY.
4850                  *
4851                  * hpsa_ciss_submit will have already freed c
4852                  * if it encountered a dma mapping failure.
4853                  */
4854                 cmd->result = DID_IMM_RETRY << 16;
4855                 cmd->scsi_done(cmd);
4856         }
4857 }
4858
4859 /* Running in struct Scsi_Host->host_lock less mode */
4860 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4861 {
4862         struct ctlr_info *h;
4863         struct hpsa_scsi_dev_t *dev;
4864         unsigned char scsi3addr[8];
4865         struct CommandList *c;
4866         int rc = 0;
4867
4868         /* Get the ptr to our adapter structure out of cmd->host. */
4869         h = sdev_to_hba(cmd->device);
4870
4871         BUG_ON(cmd->request->tag < 0);
4872
4873         dev = cmd->device->hostdata;
4874         if (!dev) {
4875                 cmd->result = DID_NO_CONNECT << 16;
4876                 cmd->scsi_done(cmd);
4877                 return 0;
4878         }
4879
4880         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4881
4882         if (unlikely(lockup_detected(h))) {
4883                 cmd->result = DID_NO_CONNECT << 16;
4884                 cmd->scsi_done(cmd);
4885                 return 0;
4886         }
4887         c = cmd_tagged_alloc(h, cmd);
4888
4889         /*
4890          * Call alternate submit routine for I/O accelerated commands.
4891          * Retries always go down the normal I/O path.
4892          */
4893         if (likely(cmd->retries == 0 &&
4894                 cmd->request->cmd_type == REQ_TYPE_FS &&
4895                 h->acciopath_status)) {
4896                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4897                 if (rc == 0)
4898                         return 0;
4899                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4900                         hpsa_cmd_resolve_and_free(h, c);
4901                         return SCSI_MLQUEUE_HOST_BUSY;
4902                 }
4903         }
4904         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4905 }
4906
4907 static void hpsa_scan_complete(struct ctlr_info *h)
4908 {
4909         unsigned long flags;
4910
4911         spin_lock_irqsave(&h->scan_lock, flags);
4912         h->scan_finished = 1;
4913         wake_up_all(&h->scan_wait_queue);
4914         spin_unlock_irqrestore(&h->scan_lock, flags);
4915 }
4916
4917 static void hpsa_scan_start(struct Scsi_Host *sh)
4918 {
4919         struct ctlr_info *h = shost_to_hba(sh);
4920         unsigned long flags;
4921
4922         /*
4923          * Don't let rescans be initiated on a controller known to be locked
4924          * up.  If the controller locks up *during* a rescan, that thread is
4925          * probably hosed, but at least we can prevent new rescan threads from
4926          * piling up on a locked up controller.
4927          */
4928         if (unlikely(lockup_detected(h)))
4929                 return hpsa_scan_complete(h);
4930
4931         /* wait until any scan already in progress is finished. */
4932         while (1) {
4933                 spin_lock_irqsave(&h->scan_lock, flags);
4934                 if (h->scan_finished)
4935                         break;
4936                 spin_unlock_irqrestore(&h->scan_lock, flags);
4937                 wait_event(h->scan_wait_queue, h->scan_finished);
4938                 /* Note: We don't need to worry about a race between this
4939                  * thread and driver unload because the midlayer will
4940                  * have incremented the reference count, so unload won't
4941                  * happen if we're in here.
4942                  */
4943         }
4944         h->scan_finished = 0; /* mark scan as in progress */
4945         spin_unlock_irqrestore(&h->scan_lock, flags);
4946
4947         if (unlikely(lockup_detected(h)))
4948                 return hpsa_scan_complete(h);
4949
4950         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4951
4952         hpsa_scan_complete(h);
4953 }
4954
4955 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4956 {
4957         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4958
4959         if (!logical_drive)
4960                 return -ENODEV;
4961
4962         if (qdepth < 1)
4963                 qdepth = 1;
4964         else if (qdepth > logical_drive->queue_depth)
4965                 qdepth = logical_drive->queue_depth;
4966
4967         return scsi_change_queue_depth(sdev, qdepth);
4968 }
4969
4970 static int hpsa_scan_finished(struct Scsi_Host *sh,
4971         unsigned long elapsed_time)
4972 {
4973         struct ctlr_info *h = shost_to_hba(sh);
4974         unsigned long flags;
4975         int finished;
4976
4977         spin_lock_irqsave(&h->scan_lock, flags);
4978         finished = h->scan_finished;
4979         spin_unlock_irqrestore(&h->scan_lock, flags);
4980         return finished;
4981 }
4982
4983 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4984 {
4985         struct Scsi_Host *sh;
4986
4987         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4988         if (sh == NULL) {
4989                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4990                 return -ENOMEM;
4991         }
4992
4993         sh->io_port = 0;
4994         sh->n_io_port = 0;
4995         sh->this_id = -1;
4996         sh->max_channel = 3;
4997         sh->max_cmd_len = MAX_COMMAND_SIZE;
4998         sh->max_lun = HPSA_MAX_LUN;
4999         sh->max_id = HPSA_MAX_LUN;
5000         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5001         sh->cmd_per_lun = sh->can_queue;
5002         sh->sg_tablesize = h->maxsgentries;
5003         sh->hostdata[0] = (unsigned long) h;
5004         sh->irq = h->intr[h->intr_mode];
5005         sh->unique_id = sh->irq;
5006
5007         h->scsi_host = sh;
5008         return 0;
5009 }
5010
5011 static int hpsa_scsi_add_host(struct ctlr_info *h)
5012 {
5013         int rv;
5014
5015         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5016         if (rv) {
5017                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5018                 return rv;
5019         }
5020         scsi_scan_host(h->scsi_host);
5021         return 0;
5022 }
5023
5024 /*
5025  * The block layer has already gone to the trouble of picking out a unique,
5026  * small-integer tag for this request.  We use an offset from that value as
5027  * an index to select our command block.  (The offset allows us to reserve the
5028  * low-numbered entries for our own uses.)
5029  */
5030 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5031 {
5032         int idx = scmd->request->tag;
5033
5034         if (idx < 0)
5035                 return idx;
5036
5037         /* Offset to leave space for internal cmds. */
5038         return idx += HPSA_NRESERVED_CMDS;
5039 }
5040
5041 /*
5042  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5043  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5044  */
5045 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5046                                 struct CommandList *c, unsigned char lunaddr[],
5047                                 int reply_queue)
5048 {
5049         int rc;
5050
5051         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5052         (void) fill_cmd(c, TEST_UNIT_READY, h,
5053                         NULL, 0, 0, lunaddr, TYPE_CMD);
5054         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5055         if (rc)
5056                 return rc;
5057         /* no unmap needed here because no data xfer. */
5058
5059         /* Check if the unit is already ready. */
5060         if (c->err_info->CommandStatus == CMD_SUCCESS)
5061                 return 0;
5062
5063         /*
5064          * The first command sent after reset will receive "unit attention" to
5065          * indicate that the LUN has been reset...this is actually what we're
5066          * looking for (but, success is good too).
5067          */
5068         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5069                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5070                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5071                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5072                 return 0;
5073
5074         return 1;
5075 }
5076
5077 /*
5078  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5079  * returns zero when the unit is ready, and non-zero when giving up.
5080  */
5081 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5082                                 struct CommandList *c,
5083                                 unsigned char lunaddr[], int reply_queue)
5084 {
5085         int rc;
5086         int count = 0;
5087         int waittime = 1; /* seconds */
5088
5089         /* Send test unit ready until device ready, or give up. */
5090         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5091
5092                 /*
5093                  * Wait for a bit.  do this first, because if we send
5094                  * the TUR right away, the reset will just abort it.
5095                  */
5096                 msleep(1000 * waittime);
5097
5098                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5099                 if (!rc)
5100                         break;
5101
5102                 /* Increase wait time with each try, up to a point. */
5103                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5104                         waittime *= 2;
5105
5106                 dev_warn(&h->pdev->dev,
5107                          "waiting %d secs for device to become ready.\n",
5108                          waittime);
5109         }
5110
5111         return rc;
5112 }
5113
5114 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5115                                            unsigned char lunaddr[],
5116                                            int reply_queue)
5117 {
5118         int first_queue;
5119         int last_queue;
5120         int rq;
5121         int rc = 0;
5122         struct CommandList *c;
5123
5124         c = cmd_alloc(h);
5125
5126         /*
5127          * If no specific reply queue was requested, then send the TUR
5128          * repeatedly, requesting a reply on each reply queue; otherwise execute
5129          * the loop exactly once using only the specified queue.
5130          */
5131         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5132                 first_queue = 0;
5133                 last_queue = h->nreply_queues - 1;
5134         } else {
5135                 first_queue = reply_queue;
5136                 last_queue = reply_queue;
5137         }
5138
5139         for (rq = first_queue; rq <= last_queue; rq++) {
5140                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5141                 if (rc)
5142                         break;
5143         }
5144
5145         if (rc)
5146                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5147         else
5148                 dev_warn(&h->pdev->dev, "device is ready.\n");
5149
5150         cmd_free(h, c);
5151         return rc;
5152 }
5153
5154 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5155  * complaining.  Doing a host- or bus-reset can't do anything good here.
5156  */
5157 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5158 {
5159         int rc;
5160         struct ctlr_info *h;
5161         struct hpsa_scsi_dev_t *dev;
5162         char msg[48];
5163
5164         /* find the controller to which the command to be aborted was sent */
5165         h = sdev_to_hba(scsicmd->device);
5166         if (h == NULL) /* paranoia */
5167                 return FAILED;
5168
5169         if (lockup_detected(h))
5170                 return FAILED;
5171
5172         dev = scsicmd->device->hostdata;
5173         if (!dev) {
5174                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5175                 return FAILED;
5176         }
5177
5178         /* if controller locked up, we can guarantee command won't complete */
5179         if (lockup_detected(h)) {
5180                 snprintf(msg, sizeof(msg),
5181                          "cmd %d RESET FAILED, lockup detected",
5182                          hpsa_get_cmd_index(scsicmd));
5183                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5184                 return FAILED;
5185         }
5186
5187         /* this reset request might be the result of a lockup; check */
5188         if (detect_controller_lockup(h)) {
5189                 snprintf(msg, sizeof(msg),
5190                          "cmd %d RESET FAILED, new lockup detected",
5191                          hpsa_get_cmd_index(scsicmd));
5192                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5193                 return FAILED;
5194         }
5195
5196         /* Do not attempt on controller */
5197         if (is_hba_lunid(dev->scsi3addr))
5198                 return SUCCESS;
5199
5200         hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5201
5202         /* send a reset to the SCSI LUN which the command was sent to */
5203         rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5204                            DEFAULT_REPLY_QUEUE);
5205         snprintf(msg, sizeof(msg), "reset %s",
5206                  rc == 0 ? "completed successfully" : "failed");
5207         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5208         return rc == 0 ? SUCCESS : FAILED;
5209 }
5210
5211 static void swizzle_abort_tag(u8 *tag)
5212 {
5213         u8 original_tag[8];
5214
5215         memcpy(original_tag, tag, 8);
5216         tag[0] = original_tag[3];
5217         tag[1] = original_tag[2];
5218         tag[2] = original_tag[1];
5219         tag[3] = original_tag[0];
5220         tag[4] = original_tag[7];
5221         tag[5] = original_tag[6];
5222         tag[6] = original_tag[5];
5223         tag[7] = original_tag[4];
5224 }
5225
5226 static void hpsa_get_tag(struct ctlr_info *h,
5227         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5228 {
5229         u64 tag;
5230         if (c->cmd_type == CMD_IOACCEL1) {
5231                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5232                         &h->ioaccel_cmd_pool[c->cmdindex];
5233                 tag = le64_to_cpu(cm1->tag);
5234                 *tagupper = cpu_to_le32(tag >> 32);
5235                 *taglower = cpu_to_le32(tag);
5236                 return;
5237         }
5238         if (c->cmd_type == CMD_IOACCEL2) {
5239                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5240                         &h->ioaccel2_cmd_pool[c->cmdindex];
5241                 /* upper tag not used in ioaccel2 mode */
5242                 memset(tagupper, 0, sizeof(*tagupper));
5243                 *taglower = cm2->Tag;
5244                 return;
5245         }
5246         tag = le64_to_cpu(c->Header.tag);
5247         *tagupper = cpu_to_le32(tag >> 32);
5248         *taglower = cpu_to_le32(tag);
5249 }
5250
5251 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5252         struct CommandList *abort, int reply_queue)
5253 {
5254         int rc = IO_OK;
5255         struct CommandList *c;
5256         struct ErrorInfo *ei;
5257         __le32 tagupper, taglower;
5258
5259         c = cmd_alloc(h);
5260
5261         /* fill_cmd can't fail here, no buffer to map */
5262         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5263                 0, 0, scsi3addr, TYPE_MSG);
5264         if (h->needs_abort_tags_swizzled)
5265                 swizzle_abort_tag(&c->Request.CDB[4]);
5266         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5267         hpsa_get_tag(h, abort, &taglower, &tagupper);
5268         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5269                 __func__, tagupper, taglower);
5270         /* no unmap needed here because no data xfer. */
5271
5272         ei = c->err_info;
5273         switch (ei->CommandStatus) {
5274         case CMD_SUCCESS:
5275                 break;
5276         case CMD_TMF_STATUS:
5277                 rc = hpsa_evaluate_tmf_status(h, c);
5278                 break;
5279         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5280                 rc = -1;
5281                 break;
5282         default:
5283                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5284                         __func__, tagupper, taglower);
5285                 hpsa_scsi_interpret_error(h, c);
5286                 rc = -1;
5287                 break;
5288         }
5289         cmd_free(h, c);
5290         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5291                 __func__, tagupper, taglower);
5292         return rc;
5293 }
5294
5295 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5296         struct CommandList *command_to_abort, int reply_queue)
5297 {
5298         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5299         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5300         struct io_accel2_cmd *c2a =
5301                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5302         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5303         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5304
5305         /*
5306          * We're overlaying struct hpsa_tmf_struct on top of something which
5307          * was allocated as a struct io_accel2_cmd, so we better be sure it
5308          * actually fits, and doesn't overrun the error info space.
5309          */
5310         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5311                         sizeof(struct io_accel2_cmd));
5312         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5313                         offsetof(struct hpsa_tmf_struct, error_len) +
5314                                 sizeof(ac->error_len));
5315
5316         c->cmd_type = IOACCEL2_TMF;
5317         c->scsi_cmd = SCSI_CMD_BUSY;
5318
5319         /* Adjust the DMA address to point to the accelerated command buffer */
5320         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5321                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5322         BUG_ON(c->busaddr & 0x0000007F);
5323
5324         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5325         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5326         ac->reply_queue = reply_queue;
5327         ac->tmf = IOACCEL2_TMF_ABORT;
5328         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5329         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5330         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5331         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5332         ac->error_ptr = cpu_to_le64(c->busaddr +
5333                         offsetof(struct io_accel2_cmd, error_data));
5334         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5335 }
5336
5337 /* ioaccel2 path firmware cannot handle abort task requests.
5338  * Change abort requests to physical target reset, and send to the
5339  * address of the physical disk used for the ioaccel 2 command.
5340  * Return 0 on success (IO_OK)
5341  *       -1 on failure
5342  */
5343
5344 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5345         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5346 {
5347         int rc = IO_OK;
5348         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5349         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5350         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5351         unsigned char *psa = &phys_scsi3addr[0];
5352
5353         /* Get a pointer to the hpsa logical device. */
5354         scmd = abort->scsi_cmd;
5355         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5356         if (dev == NULL) {
5357                 dev_warn(&h->pdev->dev,
5358                         "Cannot abort: no device pointer for command.\n");
5359                         return -1; /* not abortable */
5360         }
5361
5362         if (h->raid_offload_debug > 0)
5363                 dev_info(&h->pdev->dev,
5364                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5365                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5366                         "Reset as abort",
5367                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5368                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5369
5370         if (!dev->offload_enabled) {
5371                 dev_warn(&h->pdev->dev,
5372                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5373                 return -1; /* not abortable */
5374         }
5375
5376         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5377         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5378                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5379                 return -1; /* not abortable */
5380         }
5381
5382         /* send the reset */
5383         if (h->raid_offload_debug > 0)
5384                 dev_info(&h->pdev->dev,
5385                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5386                         psa[0], psa[1], psa[2], psa[3],
5387                         psa[4], psa[5], psa[6], psa[7]);
5388         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5389         if (rc != 0) {
5390                 dev_warn(&h->pdev->dev,
5391                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5392                         psa[0], psa[1], psa[2], psa[3],
5393                         psa[4], psa[5], psa[6], psa[7]);
5394                 return rc; /* failed to reset */
5395         }
5396
5397         /* wait for device to recover */
5398         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5399                 dev_warn(&h->pdev->dev,
5400                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5401                         psa[0], psa[1], psa[2], psa[3],
5402                         psa[4], psa[5], psa[6], psa[7]);
5403                 return -1;  /* failed to recover */
5404         }
5405
5406         /* device recovered */
5407         dev_info(&h->pdev->dev,
5408                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5409                 psa[0], psa[1], psa[2], psa[3],
5410                 psa[4], psa[5], psa[6], psa[7]);
5411
5412         return rc; /* success */
5413 }
5414
5415 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5416         struct CommandList *abort, int reply_queue)
5417 {
5418         int rc = IO_OK;
5419         struct CommandList *c;
5420         __le32 taglower, tagupper;
5421         struct hpsa_scsi_dev_t *dev;
5422         struct io_accel2_cmd *c2;
5423
5424         dev = abort->scsi_cmd->device->hostdata;
5425         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5426                 return -1;
5427
5428         c = cmd_alloc(h);
5429         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5430         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5431         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5432         hpsa_get_tag(h, abort, &taglower, &tagupper);
5433         dev_dbg(&h->pdev->dev,
5434                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5435                 __func__, tagupper, taglower);
5436         /* no unmap needed here because no data xfer. */
5437
5438         dev_dbg(&h->pdev->dev,
5439                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5440                 __func__, tagupper, taglower, c2->error_data.serv_response);
5441         switch (c2->error_data.serv_response) {
5442         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5443         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5444                 rc = 0;
5445                 break;
5446         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5447         case IOACCEL2_SERV_RESPONSE_FAILURE:
5448         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5449                 rc = -1;
5450                 break;
5451         default:
5452                 dev_warn(&h->pdev->dev,
5453                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5454                         __func__, tagupper, taglower,
5455                         c2->error_data.serv_response);
5456                 rc = -1;
5457         }
5458         cmd_free(h, c);
5459         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5460                 tagupper, taglower);
5461         return rc;
5462 }
5463
5464 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5465         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5466 {
5467         /*
5468          * ioccelerator mode 2 commands should be aborted via the
5469          * accelerated path, since RAID path is unaware of these commands,
5470          * but not all underlying firmware can handle abort TMF.
5471          * Change abort to physical device reset when abort TMF is unsupported.
5472          */
5473         if (abort->cmd_type == CMD_IOACCEL2) {
5474                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5475                         return hpsa_send_abort_ioaccel2(h, abort,
5476                                                 reply_queue);
5477                 else
5478                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5479                                                         abort, reply_queue);
5480         }
5481         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5482 }
5483
5484 /* Find out which reply queue a command was meant to return on */
5485 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5486                                         struct CommandList *c)
5487 {
5488         if (c->cmd_type == CMD_IOACCEL2)
5489                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5490         return c->Header.ReplyQueue;
5491 }
5492
5493 /*
5494  * Limit concurrency of abort commands to prevent
5495  * over-subscription of commands
5496  */
5497 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5498 {
5499 #define ABORT_CMD_WAIT_MSECS 5000
5500         return !wait_event_timeout(h->abort_cmd_wait_queue,
5501                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5502                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5503 }
5504
5505 /* Send an abort for the specified command.
5506  *      If the device and controller support it,
5507  *              send a task abort request.
5508  */
5509 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5510 {
5511
5512         int rc;
5513         struct ctlr_info *h;
5514         struct hpsa_scsi_dev_t *dev;
5515         struct CommandList *abort; /* pointer to command to be aborted */
5516         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5517         char msg[256];          /* For debug messaging. */
5518         int ml = 0;
5519         __le32 tagupper, taglower;
5520         int refcount, reply_queue;
5521
5522         if (sc == NULL)
5523                 return FAILED;
5524
5525         if (sc->device == NULL)
5526                 return FAILED;
5527
5528         /* Find the controller of the command to be aborted */
5529         h = sdev_to_hba(sc->device);
5530         if (h == NULL)
5531                 return FAILED;
5532
5533         /* Find the device of the command to be aborted */
5534         dev = sc->device->hostdata;
5535         if (!dev) {
5536                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5537                                 msg);
5538                 return FAILED;
5539         }
5540
5541         /* If controller locked up, we can guarantee command won't complete */
5542         if (lockup_detected(h)) {
5543                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5544                                         "ABORT FAILED, lockup detected");
5545                 return FAILED;
5546         }
5547
5548         /* This is a good time to check if controller lockup has occurred */
5549         if (detect_controller_lockup(h)) {
5550                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5551                                         "ABORT FAILED, new lockup detected");
5552                 return FAILED;
5553         }
5554
5555         /* Check that controller supports some kind of task abort */
5556         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5557                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5558                 return FAILED;
5559
5560         memset(msg, 0, sizeof(msg));
5561         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5562                 h->scsi_host->host_no, sc->device->channel,
5563                 sc->device->id, sc->device->lun,
5564                 "Aborting command", sc);
5565
5566         /* Get SCSI command to be aborted */
5567         abort = (struct CommandList *) sc->host_scribble;
5568         if (abort == NULL) {
5569                 /* This can happen if the command already completed. */
5570                 return SUCCESS;
5571         }
5572         refcount = atomic_inc_return(&abort->refcount);
5573         if (refcount == 1) { /* Command is done already. */
5574                 cmd_free(h, abort);
5575                 return SUCCESS;
5576         }
5577
5578         /* Don't bother trying the abort if we know it won't work. */
5579         if (abort->cmd_type != CMD_IOACCEL2 &&
5580                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5581                 cmd_free(h, abort);
5582                 return FAILED;
5583         }
5584
5585         /*
5586          * Check that we're aborting the right command.
5587          * It's possible the CommandList already completed and got re-used.
5588          */
5589         if (abort->scsi_cmd != sc) {
5590                 cmd_free(h, abort);
5591                 return SUCCESS;
5592         }
5593
5594         abort->abort_pending = true;
5595         hpsa_get_tag(h, abort, &taglower, &tagupper);
5596         reply_queue = hpsa_extract_reply_queue(h, abort);
5597         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5598         as  = abort->scsi_cmd;
5599         if (as != NULL)
5600                 ml += sprintf(msg+ml,
5601                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5602                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5603                         as->serial_number);
5604         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5605         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5606
5607         /*
5608          * Command is in flight, or possibly already completed
5609          * by the firmware (but not to the scsi mid layer) but we can't
5610          * distinguish which.  Send the abort down.
5611          */
5612         if (wait_for_available_abort_cmd(h)) {
5613                 dev_warn(&h->pdev->dev,
5614                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5615                         msg);
5616                 cmd_free(h, abort);
5617                 return FAILED;
5618         }
5619         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5620         atomic_inc(&h->abort_cmds_available);
5621         wake_up_all(&h->abort_cmd_wait_queue);
5622         if (rc != 0) {
5623                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5624                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5625                                 "FAILED to abort command");
5626                 cmd_free(h, abort);
5627                 return FAILED;
5628         }
5629         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5630         wait_event(h->event_sync_wait_queue,
5631                    abort->scsi_cmd != sc || lockup_detected(h));
5632         cmd_free(h, abort);
5633         return !lockup_detected(h) ? SUCCESS : FAILED;
5634 }
5635
5636 /*
5637  * For operations with an associated SCSI command, a command block is allocated
5638  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5639  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5640  * the complement, although cmd_free() may be called instead.
5641  */
5642 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5643                                             struct scsi_cmnd *scmd)
5644 {
5645         int idx = hpsa_get_cmd_index(scmd);
5646         struct CommandList *c = h->cmd_pool + idx;
5647
5648         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5649                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5650                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5651                 /* The index value comes from the block layer, so if it's out of
5652                  * bounds, it's probably not our bug.
5653                  */
5654                 BUG();
5655         }
5656
5657         atomic_inc(&c->refcount);
5658         if (unlikely(!hpsa_is_cmd_idle(c))) {
5659                 /*
5660                  * We expect that the SCSI layer will hand us a unique tag
5661                  * value.  Thus, there should never be a collision here between
5662                  * two requests...because if the selected command isn't idle
5663                  * then someone is going to be very disappointed.
5664                  */
5665                 dev_err(&h->pdev->dev,
5666                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5667                         idx);
5668                 if (c->scsi_cmd != NULL)
5669                         scsi_print_command(c->scsi_cmd);
5670                 scsi_print_command(scmd);
5671         }
5672
5673         hpsa_cmd_partial_init(h, idx, c);
5674         return c;
5675 }
5676
5677 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5678 {
5679         /*
5680          * Release our reference to the block.  We don't need to do anything
5681          * else to free it, because it is accessed by index.  (There's no point
5682          * in checking the result of the decrement, since we cannot guarantee
5683          * that there isn't a concurrent abort which is also accessing it.)
5684          */
5685         (void)atomic_dec(&c->refcount);
5686 }
5687
5688 /*
5689  * For operations that cannot sleep, a command block is allocated at init,
5690  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5691  * which ones are free or in use.  Lock must be held when calling this.
5692  * cmd_free() is the complement.
5693  * This function never gives up and returns NULL.  If it hangs,
5694  * another thread must call cmd_free() to free some tags.
5695  */
5696
5697 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5698 {
5699         struct CommandList *c;
5700         int refcount, i;
5701         int offset = 0;
5702
5703         /*
5704          * There is some *extremely* small but non-zero chance that that
5705          * multiple threads could get in here, and one thread could
5706          * be scanning through the list of bits looking for a free
5707          * one, but the free ones are always behind him, and other
5708          * threads sneak in behind him and eat them before he can
5709          * get to them, so that while there is always a free one, a
5710          * very unlucky thread might be starved anyway, never able to
5711          * beat the other threads.  In reality, this happens so
5712          * infrequently as to be indistinguishable from never.
5713          *
5714          * Note that we start allocating commands before the SCSI host structure
5715          * is initialized.  Since the search starts at bit zero, this
5716          * all works, since we have at least one command structure available;
5717          * however, it means that the structures with the low indexes have to be
5718          * reserved for driver-initiated requests, while requests from the block
5719          * layer will use the higher indexes.
5720          */
5721
5722         for (;;) {
5723                 i = find_next_zero_bit(h->cmd_pool_bits,
5724                                         HPSA_NRESERVED_CMDS,
5725                                         offset);
5726                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5727                         offset = 0;
5728                         continue;
5729                 }
5730                 c = h->cmd_pool + i;
5731                 refcount = atomic_inc_return(&c->refcount);
5732                 if (unlikely(refcount > 1)) {
5733                         cmd_free(h, c); /* already in use */
5734                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5735                         continue;
5736                 }
5737                 set_bit(i & (BITS_PER_LONG - 1),
5738                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5739                 break; /* it's ours now. */
5740         }
5741         hpsa_cmd_partial_init(h, i, c);
5742         return c;
5743 }
5744
5745 /*
5746  * This is the complementary operation to cmd_alloc().  Note, however, in some
5747  * corner cases it may also be used to free blocks allocated by
5748  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5749  * the clear-bit is harmless.
5750  */
5751 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5752 {
5753         if (atomic_dec_and_test(&c->refcount)) {
5754                 int i;
5755
5756                 i = c - h->cmd_pool;
5757                 clear_bit(i & (BITS_PER_LONG - 1),
5758                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5759         }
5760 }
5761
5762 #ifdef CONFIG_COMPAT
5763
5764 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5765         void __user *arg)
5766 {
5767         IOCTL32_Command_struct __user *arg32 =
5768             (IOCTL32_Command_struct __user *) arg;
5769         IOCTL_Command_struct arg64;
5770         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5771         int err;
5772         u32 cp;
5773
5774         memset(&arg64, 0, sizeof(arg64));
5775         err = 0;
5776         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5777                            sizeof(arg64.LUN_info));
5778         err |= copy_from_user(&arg64.Request, &arg32->Request,
5779                            sizeof(arg64.Request));
5780         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5781                            sizeof(arg64.error_info));
5782         err |= get_user(arg64.buf_size, &arg32->buf_size);
5783         err |= get_user(cp, &arg32->buf);
5784         arg64.buf = compat_ptr(cp);
5785         err |= copy_to_user(p, &arg64, sizeof(arg64));
5786
5787         if (err)
5788                 return -EFAULT;
5789
5790         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5791         if (err)
5792                 return err;
5793         err |= copy_in_user(&arg32->error_info, &p->error_info,
5794                          sizeof(arg32->error_info));
5795         if (err)
5796                 return -EFAULT;
5797         return err;
5798 }
5799
5800 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5801         int cmd, void __user *arg)
5802 {
5803         BIG_IOCTL32_Command_struct __user *arg32 =
5804             (BIG_IOCTL32_Command_struct __user *) arg;
5805         BIG_IOCTL_Command_struct arg64;
5806         BIG_IOCTL_Command_struct __user *p =
5807             compat_alloc_user_space(sizeof(arg64));
5808         int err;
5809         u32 cp;
5810
5811         memset(&arg64, 0, sizeof(arg64));
5812         err = 0;
5813         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5814                            sizeof(arg64.LUN_info));
5815         err |= copy_from_user(&arg64.Request, &arg32->Request,
5816                            sizeof(arg64.Request));
5817         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5818                            sizeof(arg64.error_info));
5819         err |= get_user(arg64.buf_size, &arg32->buf_size);
5820         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5821         err |= get_user(cp, &arg32->buf);
5822         arg64.buf = compat_ptr(cp);
5823         err |= copy_to_user(p, &arg64, sizeof(arg64));
5824
5825         if (err)
5826                 return -EFAULT;
5827
5828         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5829         if (err)
5830                 return err;
5831         err |= copy_in_user(&arg32->error_info, &p->error_info,
5832                          sizeof(arg32->error_info));
5833         if (err)
5834                 return -EFAULT;
5835         return err;
5836 }
5837
5838 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5839 {
5840         switch (cmd) {
5841         case CCISS_GETPCIINFO:
5842         case CCISS_GETINTINFO:
5843         case CCISS_SETINTINFO:
5844         case CCISS_GETNODENAME:
5845         case CCISS_SETNODENAME:
5846         case CCISS_GETHEARTBEAT:
5847         case CCISS_GETBUSTYPES:
5848         case CCISS_GETFIRMVER:
5849         case CCISS_GETDRIVVER:
5850         case CCISS_REVALIDVOLS:
5851         case CCISS_DEREGDISK:
5852         case CCISS_REGNEWDISK:
5853         case CCISS_REGNEWD:
5854         case CCISS_RESCANDISK:
5855         case CCISS_GETLUNINFO:
5856                 return hpsa_ioctl(dev, cmd, arg);
5857
5858         case CCISS_PASSTHRU32:
5859                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5860         case CCISS_BIG_PASSTHRU32:
5861                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5862
5863         default:
5864                 return -ENOIOCTLCMD;
5865         }
5866 }
5867 #endif
5868
5869 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5870 {
5871         struct hpsa_pci_info pciinfo;
5872
5873         if (!argp)
5874                 return -EINVAL;
5875         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5876         pciinfo.bus = h->pdev->bus->number;
5877         pciinfo.dev_fn = h->pdev->devfn;
5878         pciinfo.board_id = h->board_id;
5879         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5880                 return -EFAULT;
5881         return 0;
5882 }
5883
5884 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5885 {
5886         DriverVer_type DriverVer;
5887         unsigned char vmaj, vmin, vsubmin;
5888         int rc;
5889
5890         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5891                 &vmaj, &vmin, &vsubmin);
5892         if (rc != 3) {
5893                 dev_info(&h->pdev->dev, "driver version string '%s' "
5894                         "unrecognized.", HPSA_DRIVER_VERSION);
5895                 vmaj = 0;
5896                 vmin = 0;
5897                 vsubmin = 0;
5898         }
5899         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5900         if (!argp)
5901                 return -EINVAL;
5902         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5903                 return -EFAULT;
5904         return 0;
5905 }
5906
5907 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5908 {
5909         IOCTL_Command_struct iocommand;
5910         struct CommandList *c;
5911         char *buff = NULL;
5912         u64 temp64;
5913         int rc = 0;
5914
5915         if (!argp)
5916                 return -EINVAL;
5917         if (!capable(CAP_SYS_RAWIO))
5918                 return -EPERM;
5919         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5920                 return -EFAULT;
5921         if ((iocommand.buf_size < 1) &&
5922             (iocommand.Request.Type.Direction != XFER_NONE)) {
5923                 return -EINVAL;
5924         }
5925         if (iocommand.buf_size > 0) {
5926                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5927                 if (buff == NULL)
5928                         return -ENOMEM;
5929                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5930                         /* Copy the data into the buffer we created */
5931                         if (copy_from_user(buff, iocommand.buf,
5932                                 iocommand.buf_size)) {
5933                                 rc = -EFAULT;
5934                                 goto out_kfree;
5935                         }
5936                 } else {
5937                         memset(buff, 0, iocommand.buf_size);
5938                 }
5939         }
5940         c = cmd_alloc(h);
5941
5942         /* Fill in the command type */
5943         c->cmd_type = CMD_IOCTL_PEND;
5944         c->scsi_cmd = SCSI_CMD_BUSY;
5945         /* Fill in Command Header */
5946         c->Header.ReplyQueue = 0; /* unused in simple mode */
5947         if (iocommand.buf_size > 0) {   /* buffer to fill */
5948                 c->Header.SGList = 1;
5949                 c->Header.SGTotal = cpu_to_le16(1);
5950         } else  { /* no buffers to fill */
5951                 c->Header.SGList = 0;
5952                 c->Header.SGTotal = cpu_to_le16(0);
5953         }
5954         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5955
5956         /* Fill in Request block */
5957         memcpy(&c->Request, &iocommand.Request,
5958                 sizeof(c->Request));
5959
5960         /* Fill in the scatter gather information */
5961         if (iocommand.buf_size > 0) {
5962                 temp64 = pci_map_single(h->pdev, buff,
5963                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5964                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5965                         c->SG[0].Addr = cpu_to_le64(0);
5966                         c->SG[0].Len = cpu_to_le32(0);
5967                         rc = -ENOMEM;
5968                         goto out;
5969                 }
5970                 c->SG[0].Addr = cpu_to_le64(temp64);
5971                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5972                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5973         }
5974         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5975         if (iocommand.buf_size > 0)
5976                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5977         check_ioctl_unit_attention(h, c);
5978         if (rc) {
5979                 rc = -EIO;
5980                 goto out;
5981         }
5982
5983         /* Copy the error information out */
5984         memcpy(&iocommand.error_info, c->err_info,
5985                 sizeof(iocommand.error_info));
5986         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5987                 rc = -EFAULT;
5988                 goto out;
5989         }
5990         if ((iocommand.Request.Type.Direction & XFER_READ) &&
5991                 iocommand.buf_size > 0) {
5992                 /* Copy the data out of the buffer we created */
5993                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5994                         rc = -EFAULT;
5995                         goto out;
5996                 }
5997         }
5998 out:
5999         cmd_free(h, c);
6000 out_kfree:
6001         kfree(buff);
6002         return rc;
6003 }
6004
6005 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6006 {
6007         BIG_IOCTL_Command_struct *ioc;
6008         struct CommandList *c;
6009         unsigned char **buff = NULL;
6010         int *buff_size = NULL;
6011         u64 temp64;
6012         BYTE sg_used = 0;
6013         int status = 0;
6014         u32 left;
6015         u32 sz;
6016         BYTE __user *data_ptr;
6017
6018         if (!argp)
6019                 return -EINVAL;
6020         if (!capable(CAP_SYS_RAWIO))
6021                 return -EPERM;
6022         ioc = (BIG_IOCTL_Command_struct *)
6023             kmalloc(sizeof(*ioc), GFP_KERNEL);
6024         if (!ioc) {
6025                 status = -ENOMEM;
6026                 goto cleanup1;
6027         }
6028         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6029                 status = -EFAULT;
6030                 goto cleanup1;
6031         }
6032         if ((ioc->buf_size < 1) &&
6033             (ioc->Request.Type.Direction != XFER_NONE)) {
6034                 status = -EINVAL;
6035                 goto cleanup1;
6036         }
6037         /* Check kmalloc limits  using all SGs */
6038         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6039                 status = -EINVAL;
6040                 goto cleanup1;
6041         }
6042         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6043                 status = -EINVAL;
6044                 goto cleanup1;
6045         }
6046         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6047         if (!buff) {
6048                 status = -ENOMEM;
6049                 goto cleanup1;
6050         }
6051         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6052         if (!buff_size) {
6053                 status = -ENOMEM;
6054                 goto cleanup1;
6055         }
6056         left = ioc->buf_size;
6057         data_ptr = ioc->buf;
6058         while (left) {
6059                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6060                 buff_size[sg_used] = sz;
6061                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6062                 if (buff[sg_used] == NULL) {
6063                         status = -ENOMEM;
6064                         goto cleanup1;
6065                 }
6066                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6067                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6068                                 status = -EFAULT;
6069                                 goto cleanup1;
6070                         }
6071                 } else
6072                         memset(buff[sg_used], 0, sz);
6073                 left -= sz;
6074                 data_ptr += sz;
6075                 sg_used++;
6076         }
6077         c = cmd_alloc(h);
6078
6079         c->cmd_type = CMD_IOCTL_PEND;
6080         c->scsi_cmd = SCSI_CMD_BUSY;
6081         c->Header.ReplyQueue = 0;
6082         c->Header.SGList = (u8) sg_used;
6083         c->Header.SGTotal = cpu_to_le16(sg_used);
6084         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6085         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6086         if (ioc->buf_size > 0) {
6087                 int i;
6088                 for (i = 0; i < sg_used; i++) {
6089                         temp64 = pci_map_single(h->pdev, buff[i],
6090                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6091                         if (dma_mapping_error(&h->pdev->dev,
6092                                                         (dma_addr_t) temp64)) {
6093                                 c->SG[i].Addr = cpu_to_le64(0);
6094                                 c->SG[i].Len = cpu_to_le32(0);
6095                                 hpsa_pci_unmap(h->pdev, c, i,
6096                                         PCI_DMA_BIDIRECTIONAL);
6097                                 status = -ENOMEM;
6098                                 goto cleanup0;
6099                         }
6100                         c->SG[i].Addr = cpu_to_le64(temp64);
6101                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6102                         c->SG[i].Ext = cpu_to_le32(0);
6103                 }
6104                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6105         }
6106         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6107         if (sg_used)
6108                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6109         check_ioctl_unit_attention(h, c);
6110         if (status) {
6111                 status = -EIO;
6112                 goto cleanup0;
6113         }
6114
6115         /* Copy the error information out */
6116         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6117         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6118                 status = -EFAULT;
6119                 goto cleanup0;
6120         }
6121         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6122                 int i;
6123
6124                 /* Copy the data out of the buffer we created */
6125                 BYTE __user *ptr = ioc->buf;
6126                 for (i = 0; i < sg_used; i++) {
6127                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6128                                 status = -EFAULT;
6129                                 goto cleanup0;
6130                         }
6131                         ptr += buff_size[i];
6132                 }
6133         }
6134         status = 0;
6135 cleanup0:
6136         cmd_free(h, c);
6137 cleanup1:
6138         if (buff) {
6139                 int i;
6140
6141                 for (i = 0; i < sg_used; i++)
6142                         kfree(buff[i]);
6143                 kfree(buff);
6144         }
6145         kfree(buff_size);
6146         kfree(ioc);
6147         return status;
6148 }
6149
6150 static void check_ioctl_unit_attention(struct ctlr_info *h,
6151         struct CommandList *c)
6152 {
6153         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6154                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6155                 (void) check_for_unit_attention(h, c);
6156 }
6157
6158 /*
6159  * ioctl
6160  */
6161 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6162 {
6163         struct ctlr_info *h;
6164         void __user *argp = (void __user *)arg;
6165         int rc;
6166
6167         h = sdev_to_hba(dev);
6168
6169         switch (cmd) {
6170         case CCISS_DEREGDISK:
6171         case CCISS_REGNEWDISK:
6172         case CCISS_REGNEWD:
6173                 hpsa_scan_start(h->scsi_host);
6174                 return 0;
6175         case CCISS_GETPCIINFO:
6176                 return hpsa_getpciinfo_ioctl(h, argp);
6177         case CCISS_GETDRIVVER:
6178                 return hpsa_getdrivver_ioctl(h, argp);
6179         case CCISS_PASSTHRU:
6180                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6181                         return -EAGAIN;
6182                 rc = hpsa_passthru_ioctl(h, argp);
6183                 atomic_inc(&h->passthru_cmds_avail);
6184                 return rc;
6185         case CCISS_BIG_PASSTHRU:
6186                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6187                         return -EAGAIN;
6188                 rc = hpsa_big_passthru_ioctl(h, argp);
6189                 atomic_inc(&h->passthru_cmds_avail);
6190                 return rc;
6191         default:
6192                 return -ENOTTY;
6193         }
6194 }
6195
6196 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6197                                 u8 reset_type)
6198 {
6199         struct CommandList *c;
6200
6201         c = cmd_alloc(h);
6202
6203         /* fill_cmd can't fail here, no data buffer to map */
6204         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6205                 RAID_CTLR_LUNID, TYPE_MSG);
6206         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6207         c->waiting = NULL;
6208         enqueue_cmd_and_start_io(h, c);
6209         /* Don't wait for completion, the reset won't complete.  Don't free
6210          * the command either.  This is the last command we will send before
6211          * re-initializing everything, so it doesn't matter and won't leak.
6212          */
6213         return;
6214 }
6215
6216 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6217         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6218         int cmd_type)
6219 {
6220         int pci_dir = XFER_NONE;
6221         u64 tag; /* for commands to be aborted */
6222
6223         c->cmd_type = CMD_IOCTL_PEND;
6224         c->scsi_cmd = SCSI_CMD_BUSY;
6225         c->Header.ReplyQueue = 0;
6226         if (buff != NULL && size > 0) {
6227                 c->Header.SGList = 1;
6228                 c->Header.SGTotal = cpu_to_le16(1);
6229         } else {
6230                 c->Header.SGList = 0;
6231                 c->Header.SGTotal = cpu_to_le16(0);
6232         }
6233         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6234
6235         if (cmd_type == TYPE_CMD) {
6236                 switch (cmd) {
6237                 case HPSA_INQUIRY:
6238                         /* are we trying to read a vital product page */
6239                         if (page_code & VPD_PAGE) {
6240                                 c->Request.CDB[1] = 0x01;
6241                                 c->Request.CDB[2] = (page_code & 0xff);
6242                         }
6243                         c->Request.CDBLen = 6;
6244                         c->Request.type_attr_dir =
6245                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6246                         c->Request.Timeout = 0;
6247                         c->Request.CDB[0] = HPSA_INQUIRY;
6248                         c->Request.CDB[4] = size & 0xFF;
6249                         break;
6250                 case HPSA_REPORT_LOG:
6251                 case HPSA_REPORT_PHYS:
6252                         /* Talking to controller so It's a physical command
6253                            mode = 00 target = 0.  Nothing to write.
6254                          */
6255                         c->Request.CDBLen = 12;
6256                         c->Request.type_attr_dir =
6257                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6258                         c->Request.Timeout = 0;
6259                         c->Request.CDB[0] = cmd;
6260                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6261                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6262                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6263                         c->Request.CDB[9] = size & 0xFF;
6264                         break;
6265                 case HPSA_CACHE_FLUSH:
6266                         c->Request.CDBLen = 12;
6267                         c->Request.type_attr_dir =
6268                                         TYPE_ATTR_DIR(cmd_type,
6269                                                 ATTR_SIMPLE, XFER_WRITE);
6270                         c->Request.Timeout = 0;
6271                         c->Request.CDB[0] = BMIC_WRITE;
6272                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6273                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6274                         c->Request.CDB[8] = size & 0xFF;
6275                         break;
6276                 case TEST_UNIT_READY:
6277                         c->Request.CDBLen = 6;
6278                         c->Request.type_attr_dir =
6279                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6280                         c->Request.Timeout = 0;
6281                         break;
6282                 case HPSA_GET_RAID_MAP:
6283                         c->Request.CDBLen = 12;
6284                         c->Request.type_attr_dir =
6285                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6286                         c->Request.Timeout = 0;
6287                         c->Request.CDB[0] = HPSA_CISS_READ;
6288                         c->Request.CDB[1] = cmd;
6289                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6290                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6291                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6292                         c->Request.CDB[9] = size & 0xFF;
6293                         break;
6294                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6295                         c->Request.CDBLen = 10;
6296                         c->Request.type_attr_dir =
6297                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6298                         c->Request.Timeout = 0;
6299                         c->Request.CDB[0] = BMIC_READ;
6300                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6301                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6302                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6303                         break;
6304                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6305                         c->Request.CDBLen = 10;
6306                         c->Request.type_attr_dir =
6307                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6308                         c->Request.Timeout = 0;
6309                         c->Request.CDB[0] = BMIC_READ;
6310                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6311                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6312                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6313                         break;
6314                 default:
6315                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6316                         BUG();
6317                         return -1;
6318                 }
6319         } else if (cmd_type == TYPE_MSG) {
6320                 switch (cmd) {
6321
6322                 case  HPSA_DEVICE_RESET_MSG:
6323                         c->Request.CDBLen = 16;
6324                         c->Request.type_attr_dir =
6325                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6326                         c->Request.Timeout = 0; /* Don't time out */
6327                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6328                         c->Request.CDB[0] =  cmd;
6329                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6330                         /* If bytes 4-7 are zero, it means reset the */
6331                         /* LunID device */
6332                         c->Request.CDB[4] = 0x00;
6333                         c->Request.CDB[5] = 0x00;
6334                         c->Request.CDB[6] = 0x00;
6335                         c->Request.CDB[7] = 0x00;
6336                         break;
6337                 case  HPSA_ABORT_MSG:
6338                         memcpy(&tag, buff, sizeof(tag));
6339                         dev_dbg(&h->pdev->dev,
6340                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6341                                 tag, c->Header.tag);
6342                         c->Request.CDBLen = 16;
6343                         c->Request.type_attr_dir =
6344                                         TYPE_ATTR_DIR(cmd_type,
6345                                                 ATTR_SIMPLE, XFER_WRITE);
6346                         c->Request.Timeout = 0; /* Don't time out */
6347                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6348                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6349                         c->Request.CDB[2] = 0x00; /* reserved */
6350                         c->Request.CDB[3] = 0x00; /* reserved */
6351                         /* Tag to abort goes in CDB[4]-CDB[11] */
6352                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6353                         c->Request.CDB[12] = 0x00; /* reserved */
6354                         c->Request.CDB[13] = 0x00; /* reserved */
6355                         c->Request.CDB[14] = 0x00; /* reserved */
6356                         c->Request.CDB[15] = 0x00; /* reserved */
6357                 break;
6358                 default:
6359                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6360                                 cmd);
6361                         BUG();
6362                 }
6363         } else {
6364                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6365                 BUG();
6366         }
6367
6368         switch (GET_DIR(c->Request.type_attr_dir)) {
6369         case XFER_READ:
6370                 pci_dir = PCI_DMA_FROMDEVICE;
6371                 break;
6372         case XFER_WRITE:
6373                 pci_dir = PCI_DMA_TODEVICE;
6374                 break;
6375         case XFER_NONE:
6376                 pci_dir = PCI_DMA_NONE;
6377                 break;
6378         default:
6379                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6380         }
6381         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6382                 return -1;
6383         return 0;
6384 }
6385
6386 /*
6387  * Map (physical) PCI mem into (virtual) kernel space
6388  */
6389 static void __iomem *remap_pci_mem(ulong base, ulong size)
6390 {
6391         ulong page_base = ((ulong) base) & PAGE_MASK;
6392         ulong page_offs = ((ulong) base) - page_base;
6393         void __iomem *page_remapped = ioremap_nocache(page_base,
6394                 page_offs + size);
6395
6396         return page_remapped ? (page_remapped + page_offs) : NULL;
6397 }
6398
6399 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6400 {
6401         return h->access.command_completed(h, q);
6402 }
6403
6404 static inline bool interrupt_pending(struct ctlr_info *h)
6405 {
6406         return h->access.intr_pending(h);
6407 }
6408
6409 static inline long interrupt_not_for_us(struct ctlr_info *h)
6410 {
6411         return (h->access.intr_pending(h) == 0) ||
6412                 (h->interrupts_enabled == 0);
6413 }
6414
6415 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6416         u32 raw_tag)
6417 {
6418         if (unlikely(tag_index >= h->nr_cmds)) {
6419                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6420                 return 1;
6421         }
6422         return 0;
6423 }
6424
6425 static inline void finish_cmd(struct CommandList *c)
6426 {
6427         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6428         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6429                         || c->cmd_type == CMD_IOACCEL2))
6430                 complete_scsi_command(c);
6431         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6432                 complete(c->waiting);
6433 }
6434
6435
6436 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6437 {
6438 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6439 #define HPSA_SIMPLE_ERROR_BITS 0x03
6440         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6441                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
6442         return tag & ~HPSA_PERF_ERROR_BITS;
6443 }
6444
6445 /* process completion of an indexed ("direct lookup") command */
6446 static inline void process_indexed_cmd(struct ctlr_info *h,
6447         u32 raw_tag)
6448 {
6449         u32 tag_index;
6450         struct CommandList *c;
6451
6452         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6453         if (!bad_tag(h, tag_index, raw_tag)) {
6454                 c = h->cmd_pool + tag_index;
6455                 finish_cmd(c);
6456         }
6457 }
6458
6459 /* Some controllers, like p400, will give us one interrupt
6460  * after a soft reset, even if we turned interrupts off.
6461  * Only need to check for this in the hpsa_xxx_discard_completions
6462  * functions.
6463  */
6464 static int ignore_bogus_interrupt(struct ctlr_info *h)
6465 {
6466         if (likely(!reset_devices))
6467                 return 0;
6468
6469         if (likely(h->interrupts_enabled))
6470                 return 0;
6471
6472         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6473                 "(known firmware bug.)  Ignoring.\n");
6474
6475         return 1;
6476 }
6477
6478 /*
6479  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6480  * Relies on (h-q[x] == x) being true for x such that
6481  * 0 <= x < MAX_REPLY_QUEUES.
6482  */
6483 static struct ctlr_info *queue_to_hba(u8 *queue)
6484 {
6485         return container_of((queue - *queue), struct ctlr_info, q[0]);
6486 }
6487
6488 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6489 {
6490         struct ctlr_info *h = queue_to_hba(queue);
6491         u8 q = *(u8 *) queue;
6492         u32 raw_tag;
6493
6494         if (ignore_bogus_interrupt(h))
6495                 return IRQ_NONE;
6496
6497         if (interrupt_not_for_us(h))
6498                 return IRQ_NONE;
6499         h->last_intr_timestamp = get_jiffies_64();
6500         while (interrupt_pending(h)) {
6501                 raw_tag = get_next_completion(h, q);
6502                 while (raw_tag != FIFO_EMPTY)
6503                         raw_tag = next_command(h, q);
6504         }
6505         return IRQ_HANDLED;
6506 }
6507
6508 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6509 {
6510         struct ctlr_info *h = queue_to_hba(queue);
6511         u32 raw_tag;
6512         u8 q = *(u8 *) queue;
6513
6514         if (ignore_bogus_interrupt(h))
6515                 return IRQ_NONE;
6516
6517         h->last_intr_timestamp = get_jiffies_64();
6518         raw_tag = get_next_completion(h, q);
6519         while (raw_tag != FIFO_EMPTY)
6520                 raw_tag = next_command(h, q);
6521         return IRQ_HANDLED;
6522 }
6523
6524 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6525 {
6526         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6527         u32 raw_tag;
6528         u8 q = *(u8 *) queue;
6529
6530         if (interrupt_not_for_us(h))
6531                 return IRQ_NONE;
6532         h->last_intr_timestamp = get_jiffies_64();
6533         while (interrupt_pending(h)) {
6534                 raw_tag = get_next_completion(h, q);
6535                 while (raw_tag != FIFO_EMPTY) {
6536                         process_indexed_cmd(h, raw_tag);
6537                         raw_tag = next_command(h, q);
6538                 }
6539         }
6540         return IRQ_HANDLED;
6541 }
6542
6543 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6544 {
6545         struct ctlr_info *h = queue_to_hba(queue);
6546         u32 raw_tag;
6547         u8 q = *(u8 *) queue;
6548
6549         h->last_intr_timestamp = get_jiffies_64();
6550         raw_tag = get_next_completion(h, q);
6551         while (raw_tag != FIFO_EMPTY) {
6552                 process_indexed_cmd(h, raw_tag);
6553                 raw_tag = next_command(h, q);
6554         }
6555         return IRQ_HANDLED;
6556 }
6557
6558 /* Send a message CDB to the firmware. Careful, this only works
6559  * in simple mode, not performant mode due to the tag lookup.
6560  * We only ever use this immediately after a controller reset.
6561  */
6562 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6563                         unsigned char type)
6564 {
6565         struct Command {
6566                 struct CommandListHeader CommandHeader;
6567                 struct RequestBlock Request;
6568                 struct ErrDescriptor ErrorDescriptor;
6569         };
6570         struct Command *cmd;
6571         static const size_t cmd_sz = sizeof(*cmd) +
6572                                         sizeof(cmd->ErrorDescriptor);
6573         dma_addr_t paddr64;
6574         __le32 paddr32;
6575         u32 tag;
6576         void __iomem *vaddr;
6577         int i, err;
6578
6579         vaddr = pci_ioremap_bar(pdev, 0);
6580         if (vaddr == NULL)
6581                 return -ENOMEM;
6582
6583         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6584          * CCISS commands, so they must be allocated from the lower 4GiB of
6585          * memory.
6586          */
6587         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6588         if (err) {
6589                 iounmap(vaddr);
6590                 return err;
6591         }
6592
6593         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6594         if (cmd == NULL) {
6595                 iounmap(vaddr);
6596                 return -ENOMEM;
6597         }
6598
6599         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6600          * although there's no guarantee, we assume that the address is at
6601          * least 4-byte aligned (most likely, it's page-aligned).
6602          */
6603         paddr32 = cpu_to_le32(paddr64);
6604
6605         cmd->CommandHeader.ReplyQueue = 0;
6606         cmd->CommandHeader.SGList = 0;
6607         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6608         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6609         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6610
6611         cmd->Request.CDBLen = 16;
6612         cmd->Request.type_attr_dir =
6613                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6614         cmd->Request.Timeout = 0; /* Don't time out */
6615         cmd->Request.CDB[0] = opcode;
6616         cmd->Request.CDB[1] = type;
6617         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6618         cmd->ErrorDescriptor.Addr =
6619                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6620         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6621
6622         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6623
6624         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6625                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6626                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6627                         break;
6628                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6629         }
6630
6631         iounmap(vaddr);
6632
6633         /* we leak the DMA buffer here ... no choice since the controller could
6634          *  still complete the command.
6635          */
6636         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6637                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6638                         opcode, type);
6639                 return -ETIMEDOUT;
6640         }
6641
6642         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6643
6644         if (tag & HPSA_ERROR_BIT) {
6645                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6646                         opcode, type);
6647                 return -EIO;
6648         }
6649
6650         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6651                 opcode, type);
6652         return 0;
6653 }
6654
6655 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6656
6657 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6658         void __iomem *vaddr, u32 use_doorbell)
6659 {
6660
6661         if (use_doorbell) {
6662                 /* For everything after the P600, the PCI power state method
6663                  * of resetting the controller doesn't work, so we have this
6664                  * other way using the doorbell register.
6665                  */
6666                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6667                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6668
6669                 /* PMC hardware guys tell us we need a 10 second delay after
6670                  * doorbell reset and before any attempt to talk to the board
6671                  * at all to ensure that this actually works and doesn't fall
6672                  * over in some weird corner cases.
6673                  */
6674                 msleep(10000);
6675         } else { /* Try to do it the PCI power state way */
6676
6677                 /* Quoting from the Open CISS Specification: "The Power
6678                  * Management Control/Status Register (CSR) controls the power
6679                  * state of the device.  The normal operating state is D0,
6680                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6681                  * the controller, place the interface device in D3 then to D0,
6682                  * this causes a secondary PCI reset which will reset the
6683                  * controller." */
6684
6685                 int rc = 0;
6686
6687                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6688
6689                 /* enter the D3hot power management state */
6690                 rc = pci_set_power_state(pdev, PCI_D3hot);
6691                 if (rc)
6692                         return rc;
6693
6694                 msleep(500);
6695
6696                 /* enter the D0 power management state */
6697                 rc = pci_set_power_state(pdev, PCI_D0);
6698                 if (rc)
6699                         return rc;
6700
6701                 /*
6702                  * The P600 requires a small delay when changing states.
6703                  * Otherwise we may think the board did not reset and we bail.
6704                  * This for kdump only and is particular to the P600.
6705                  */
6706                 msleep(500);
6707         }
6708         return 0;
6709 }
6710
6711 static void init_driver_version(char *driver_version, int len)
6712 {
6713         memset(driver_version, 0, len);
6714         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6715 }
6716
6717 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6718 {
6719         char *driver_version;
6720         int i, size = sizeof(cfgtable->driver_version);
6721
6722         driver_version = kmalloc(size, GFP_KERNEL);
6723         if (!driver_version)
6724                 return -ENOMEM;
6725
6726         init_driver_version(driver_version, size);
6727         for (i = 0; i < size; i++)
6728                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6729         kfree(driver_version);
6730         return 0;
6731 }
6732
6733 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6734                                           unsigned char *driver_ver)
6735 {
6736         int i;
6737
6738         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6739                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6740 }
6741
6742 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6743 {
6744
6745         char *driver_ver, *old_driver_ver;
6746         int rc, size = sizeof(cfgtable->driver_version);
6747
6748         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6749         if (!old_driver_ver)
6750                 return -ENOMEM;
6751         driver_ver = old_driver_ver + size;
6752
6753         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6754          * should have been changed, otherwise we know the reset failed.
6755          */
6756         init_driver_version(old_driver_ver, size);
6757         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6758         rc = !memcmp(driver_ver, old_driver_ver, size);
6759         kfree(old_driver_ver);
6760         return rc;
6761 }
6762 /* This does a hard reset of the controller using PCI power management
6763  * states or the using the doorbell register.
6764  */
6765 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6766 {
6767         u64 cfg_offset;
6768         u32 cfg_base_addr;
6769         u64 cfg_base_addr_index;
6770         void __iomem *vaddr;
6771         unsigned long paddr;
6772         u32 misc_fw_support;
6773         int rc;
6774         struct CfgTable __iomem *cfgtable;
6775         u32 use_doorbell;
6776         u16 command_register;
6777
6778         /* For controllers as old as the P600, this is very nearly
6779          * the same thing as
6780          *
6781          * pci_save_state(pci_dev);
6782          * pci_set_power_state(pci_dev, PCI_D3hot);
6783          * pci_set_power_state(pci_dev, PCI_D0);
6784          * pci_restore_state(pci_dev);
6785          *
6786          * For controllers newer than the P600, the pci power state
6787          * method of resetting doesn't work so we have another way
6788          * using the doorbell register.
6789          */
6790
6791         if (!ctlr_is_resettable(board_id)) {
6792                 dev_warn(&pdev->dev, "Controller not resettable\n");
6793                 return -ENODEV;
6794         }
6795
6796         /* if controller is soft- but not hard resettable... */
6797         if (!ctlr_is_hard_resettable(board_id))
6798                 return -ENOTSUPP; /* try soft reset later. */
6799
6800         /* Save the PCI command register */
6801         pci_read_config_word(pdev, 4, &command_register);
6802         pci_save_state(pdev);
6803
6804         /* find the first memory BAR, so we can find the cfg table */
6805         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6806         if (rc)
6807                 return rc;
6808         vaddr = remap_pci_mem(paddr, 0x250);
6809         if (!vaddr)
6810                 return -ENOMEM;
6811
6812         /* find cfgtable in order to check if reset via doorbell is supported */
6813         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6814                                         &cfg_base_addr_index, &cfg_offset);
6815         if (rc)
6816                 goto unmap_vaddr;
6817         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6818                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6819         if (!cfgtable) {
6820                 rc = -ENOMEM;
6821                 goto unmap_vaddr;
6822         }
6823         rc = write_driver_ver_to_cfgtable(cfgtable);
6824         if (rc)
6825                 goto unmap_cfgtable;
6826
6827         /* If reset via doorbell register is supported, use that.
6828          * There are two such methods.  Favor the newest method.
6829          */
6830         misc_fw_support = readl(&cfgtable->misc_fw_support);
6831         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6832         if (use_doorbell) {
6833                 use_doorbell = DOORBELL_CTLR_RESET2;
6834         } else {
6835                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6836                 if (use_doorbell) {
6837                         dev_warn(&pdev->dev,
6838                                 "Soft reset not supported. Firmware update is required.\n");
6839                         rc = -ENOTSUPP; /* try soft reset */
6840                         goto unmap_cfgtable;
6841                 }
6842         }
6843
6844         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6845         if (rc)
6846                 goto unmap_cfgtable;
6847
6848         pci_restore_state(pdev);
6849         pci_write_config_word(pdev, 4, command_register);
6850
6851         /* Some devices (notably the HP Smart Array 5i Controller)
6852            need a little pause here */
6853         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6854
6855         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6856         if (rc) {
6857                 dev_warn(&pdev->dev,
6858                         "Failed waiting for board to become ready after hard reset\n");
6859                 goto unmap_cfgtable;
6860         }
6861
6862         rc = controller_reset_failed(vaddr);
6863         if (rc < 0)
6864                 goto unmap_cfgtable;
6865         if (rc) {
6866                 dev_warn(&pdev->dev, "Unable to successfully reset "
6867                         "controller. Will try soft reset.\n");
6868                 rc = -ENOTSUPP;
6869         } else {
6870                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6871         }
6872
6873 unmap_cfgtable:
6874         iounmap(cfgtable);
6875
6876 unmap_vaddr:
6877         iounmap(vaddr);
6878         return rc;
6879 }
6880
6881 /*
6882  *  We cannot read the structure directly, for portability we must use
6883  *   the io functions.
6884  *   This is for debug only.
6885  */
6886 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6887 {
6888 #ifdef HPSA_DEBUG
6889         int i;
6890         char temp_name[17];
6891
6892         dev_info(dev, "Controller Configuration information\n");
6893         dev_info(dev, "------------------------------------\n");
6894         for (i = 0; i < 4; i++)
6895                 temp_name[i] = readb(&(tb->Signature[i]));
6896         temp_name[4] = '\0';
6897         dev_info(dev, "   Signature = %s\n", temp_name);
6898         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6899         dev_info(dev, "   Transport methods supported = 0x%x\n",
6900                readl(&(tb->TransportSupport)));
6901         dev_info(dev, "   Transport methods active = 0x%x\n",
6902                readl(&(tb->TransportActive)));
6903         dev_info(dev, "   Requested transport Method = 0x%x\n",
6904                readl(&(tb->HostWrite.TransportRequest)));
6905         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6906                readl(&(tb->HostWrite.CoalIntDelay)));
6907         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6908                readl(&(tb->HostWrite.CoalIntCount)));
6909         dev_info(dev, "   Max outstanding commands = %d\n",
6910                readl(&(tb->CmdsOutMax)));
6911         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6912         for (i = 0; i < 16; i++)
6913                 temp_name[i] = readb(&(tb->ServerName[i]));
6914         temp_name[16] = '\0';
6915         dev_info(dev, "   Server Name = %s\n", temp_name);
6916         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6917                 readl(&(tb->HeartBeat)));
6918 #endif                          /* HPSA_DEBUG */
6919 }
6920
6921 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6922 {
6923         int i, offset, mem_type, bar_type;
6924
6925         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6926                 return 0;
6927         offset = 0;
6928         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6929                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6930                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6931                         offset += 4;
6932                 else {
6933                         mem_type = pci_resource_flags(pdev, i) &
6934                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6935                         switch (mem_type) {
6936                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6937                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6938                                 offset += 4;    /* 32 bit */
6939                                 break;
6940                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6941                                 offset += 8;
6942                                 break;
6943                         default:        /* reserved in PCI 2.2 */
6944                                 dev_warn(&pdev->dev,
6945                                        "base address is invalid\n");
6946                                 return -1;
6947                                 break;
6948                         }
6949                 }
6950                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6951                         return i + 1;
6952         }
6953         return -1;
6954 }
6955
6956 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6957 {
6958         if (h->msix_vector) {
6959                 if (h->pdev->msix_enabled)
6960                         pci_disable_msix(h->pdev);
6961                 h->msix_vector = 0;
6962         } else if (h->msi_vector) {
6963                 if (h->pdev->msi_enabled)
6964                         pci_disable_msi(h->pdev);
6965                 h->msi_vector = 0;
6966         }
6967 }
6968
6969 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6970  * controllers that are capable. If not, we use legacy INTx mode.
6971  */
6972 static void hpsa_interrupt_mode(struct ctlr_info *h)
6973 {
6974 #ifdef CONFIG_PCI_MSI
6975         int err, i;
6976         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6977
6978         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6979                 hpsa_msix_entries[i].vector = 0;
6980                 hpsa_msix_entries[i].entry = i;
6981         }
6982
6983         /* Some boards advertise MSI but don't really support it */
6984         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6985             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6986                 goto default_int_mode;
6987         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6988                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6989                 h->msix_vector = MAX_REPLY_QUEUES;
6990                 if (h->msix_vector > num_online_cpus())
6991                         h->msix_vector = num_online_cpus();
6992                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6993                                             1, h->msix_vector);
6994                 if (err < 0) {
6995                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6996                         h->msix_vector = 0;
6997                         goto single_msi_mode;
6998                 } else if (err < h->msix_vector) {
6999                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7000                                "available\n", err);
7001                 }
7002                 h->msix_vector = err;
7003                 for (i = 0; i < h->msix_vector; i++)
7004                         h->intr[i] = hpsa_msix_entries[i].vector;
7005                 return;
7006         }
7007 single_msi_mode:
7008         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7009                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7010                 if (!pci_enable_msi(h->pdev))
7011                         h->msi_vector = 1;
7012                 else
7013                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7014         }
7015 default_int_mode:
7016 #endif                          /* CONFIG_PCI_MSI */
7017         /* if we get here we're going to use the default interrupt mode */
7018         h->intr[h->intr_mode] = h->pdev->irq;
7019 }
7020
7021 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7022 {
7023         int i;
7024         u32 subsystem_vendor_id, subsystem_device_id;
7025
7026         subsystem_vendor_id = pdev->subsystem_vendor;
7027         subsystem_device_id = pdev->subsystem_device;
7028         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7029                     subsystem_vendor_id;
7030
7031         for (i = 0; i < ARRAY_SIZE(products); i++)
7032                 if (*board_id == products[i].board_id)
7033                         return i;
7034
7035         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7036                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7037                 !hpsa_allow_any) {
7038                 dev_warn(&pdev->dev, "unrecognized board ID: "
7039                         "0x%08x, ignoring.\n", *board_id);
7040                         return -ENODEV;
7041         }
7042         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7043 }
7044
7045 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7046                                     unsigned long *memory_bar)
7047 {
7048         int i;
7049
7050         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7051                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7052                         /* addressing mode bits already removed */
7053                         *memory_bar = pci_resource_start(pdev, i);
7054                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7055                                 *memory_bar);
7056                         return 0;
7057                 }
7058         dev_warn(&pdev->dev, "no memory BAR found\n");
7059         return -ENODEV;
7060 }
7061
7062 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7063                                      int wait_for_ready)
7064 {
7065         int i, iterations;
7066         u32 scratchpad;
7067         if (wait_for_ready)
7068                 iterations = HPSA_BOARD_READY_ITERATIONS;
7069         else
7070                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7071
7072         for (i = 0; i < iterations; i++) {
7073                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7074                 if (wait_for_ready) {
7075                         if (scratchpad == HPSA_FIRMWARE_READY)
7076                                 return 0;
7077                 } else {
7078                         if (scratchpad != HPSA_FIRMWARE_READY)
7079                                 return 0;
7080                 }
7081                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7082         }
7083         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7084         return -ENODEV;
7085 }
7086
7087 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7088                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7089                                u64 *cfg_offset)
7090 {
7091         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7092         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7093         *cfg_base_addr &= (u32) 0x0000ffff;
7094         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7095         if (*cfg_base_addr_index == -1) {
7096                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7097                 return -ENODEV;
7098         }
7099         return 0;
7100 }
7101
7102 static void hpsa_free_cfgtables(struct ctlr_info *h)
7103 {
7104         if (h->transtable) {
7105                 iounmap(h->transtable);
7106                 h->transtable = NULL;
7107         }
7108         if (h->cfgtable) {
7109                 iounmap(h->cfgtable);
7110                 h->cfgtable = NULL;
7111         }
7112 }
7113
7114 /* Find and map CISS config table and transfer table
7115 + * several items must be unmapped (freed) later
7116 + * */
7117 static int hpsa_find_cfgtables(struct ctlr_info *h)
7118 {
7119         u64 cfg_offset;
7120         u32 cfg_base_addr;
7121         u64 cfg_base_addr_index;
7122         u32 trans_offset;
7123         int rc;
7124
7125         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7126                 &cfg_base_addr_index, &cfg_offset);
7127         if (rc)
7128                 return rc;
7129         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7130                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7131         if (!h->cfgtable) {
7132                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7133                 return -ENOMEM;
7134         }
7135         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7136         if (rc)
7137                 return rc;
7138         /* Find performant mode table. */
7139         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7140         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7141                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7142                                 sizeof(*h->transtable));
7143         if (!h->transtable) {
7144                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7145                 hpsa_free_cfgtables(h);
7146                 return -ENOMEM;
7147         }
7148         return 0;
7149 }
7150
7151 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7152 {
7153 #define MIN_MAX_COMMANDS 16
7154         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7155
7156         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7157
7158         /* Limit commands in memory limited kdump scenario. */
7159         if (reset_devices && h->max_commands > 32)
7160                 h->max_commands = 32;
7161
7162         if (h->max_commands < MIN_MAX_COMMANDS) {
7163                 dev_warn(&h->pdev->dev,
7164                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7165                         h->max_commands,
7166                         MIN_MAX_COMMANDS);
7167                 h->max_commands = MIN_MAX_COMMANDS;
7168         }
7169 }
7170
7171 /* If the controller reports that the total max sg entries is greater than 512,
7172  * then we know that chained SG blocks work.  (Original smart arrays did not
7173  * support chained SG blocks and would return zero for max sg entries.)
7174  */
7175 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7176 {
7177         return h->maxsgentries > 512;
7178 }
7179
7180 /* Interrogate the hardware for some limits:
7181  * max commands, max SG elements without chaining, and with chaining,
7182  * SG chain block size, etc.
7183  */
7184 static void hpsa_find_board_params(struct ctlr_info *h)
7185 {
7186         hpsa_get_max_perf_mode_cmds(h);
7187         h->nr_cmds = h->max_commands;
7188         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7189         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7190         if (hpsa_supports_chained_sg_blocks(h)) {
7191                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7192                 h->max_cmd_sg_entries = 32;
7193                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7194                 h->maxsgentries--; /* save one for chain pointer */
7195         } else {
7196                 /*
7197                  * Original smart arrays supported at most 31 s/g entries
7198                  * embedded inline in the command (trying to use more
7199                  * would lock up the controller)
7200                  */
7201                 h->max_cmd_sg_entries = 31;
7202                 h->maxsgentries = 31; /* default to traditional values */
7203                 h->chainsize = 0;
7204         }
7205
7206         /* Find out what task management functions are supported and cache */
7207         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7208         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7209                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7210         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7211                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7212         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7213                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7214 }
7215
7216 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7217 {
7218         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7219                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7220                 return false;
7221         }
7222         return true;
7223 }
7224
7225 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7226 {
7227         u32 driver_support;
7228
7229         driver_support = readl(&(h->cfgtable->driver_support));
7230         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7231 #ifdef CONFIG_X86
7232         driver_support |= ENABLE_SCSI_PREFETCH;
7233 #endif
7234         driver_support |= ENABLE_UNIT_ATTN;
7235         writel(driver_support, &(h->cfgtable->driver_support));
7236 }
7237
7238 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7239  * in a prefetch beyond physical memory.
7240  */
7241 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7242 {
7243         u32 dma_prefetch;
7244
7245         if (h->board_id != 0x3225103C)
7246                 return;
7247         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7248         dma_prefetch |= 0x8000;
7249         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7250 }
7251
7252 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7253 {
7254         int i;
7255         u32 doorbell_value;
7256         unsigned long flags;
7257         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7258         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7259                 spin_lock_irqsave(&h->lock, flags);
7260                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7261                 spin_unlock_irqrestore(&h->lock, flags);
7262                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7263                         goto done;
7264                 /* delay and try again */
7265                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7266         }
7267         return -ENODEV;
7268 done:
7269         return 0;
7270 }
7271
7272 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7273 {
7274         int i;
7275         u32 doorbell_value;
7276         unsigned long flags;
7277
7278         /* under certain very rare conditions, this can take awhile.
7279          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7280          * as we enter this code.)
7281          */
7282         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7283                 if (h->remove_in_progress)
7284                         goto done;
7285                 spin_lock_irqsave(&h->lock, flags);
7286                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7287                 spin_unlock_irqrestore(&h->lock, flags);
7288                 if (!(doorbell_value & CFGTBL_ChangeReq))
7289                         goto done;
7290                 /* delay and try again */
7291                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7292         }
7293         return -ENODEV;
7294 done:
7295         return 0;
7296 }
7297
7298 /* return -ENODEV or other reason on error, 0 on success */
7299 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7300 {
7301         u32 trans_support;
7302
7303         trans_support = readl(&(h->cfgtable->TransportSupport));
7304         if (!(trans_support & SIMPLE_MODE))
7305                 return -ENOTSUPP;
7306
7307         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7308
7309         /* Update the field, and then ring the doorbell */
7310         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7311         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7312         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7313         if (hpsa_wait_for_mode_change_ack(h))
7314                 goto error;
7315         print_cfg_table(&h->pdev->dev, h->cfgtable);
7316         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7317                 goto error;
7318         h->transMethod = CFGTBL_Trans_Simple;
7319         return 0;
7320 error:
7321         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7322         return -ENODEV;
7323 }
7324
7325 /* free items allocated or mapped by hpsa_pci_init */
7326 static void hpsa_free_pci_init(struct ctlr_info *h)
7327 {
7328         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7329         iounmap(h->vaddr);                      /* pci_init 3 */
7330         h->vaddr = NULL;
7331         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7332         /*
7333          * call pci_disable_device before pci_release_regions per
7334          * Documentation/PCI/pci.txt
7335          */
7336         pci_disable_device(h->pdev);            /* pci_init 1 */
7337         pci_release_regions(h->pdev);           /* pci_init 2 */
7338 }
7339
7340 /* several items must be freed later */
7341 static int hpsa_pci_init(struct ctlr_info *h)
7342 {
7343         int prod_index, err;
7344
7345         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7346         if (prod_index < 0)
7347                 return prod_index;
7348         h->product_name = products[prod_index].product_name;
7349         h->access = *(products[prod_index].access);
7350
7351         h->needs_abort_tags_swizzled =
7352                 ctlr_needs_abort_tags_swizzled(h->board_id);
7353
7354         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7355                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7356
7357         err = pci_enable_device(h->pdev);
7358         if (err) {
7359                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7360                 pci_disable_device(h->pdev);
7361                 return err;
7362         }
7363
7364         err = pci_request_regions(h->pdev, HPSA);
7365         if (err) {
7366                 dev_err(&h->pdev->dev,
7367                         "failed to obtain PCI resources\n");
7368                 pci_disable_device(h->pdev);
7369                 return err;
7370         }
7371
7372         pci_set_master(h->pdev);
7373
7374         hpsa_interrupt_mode(h);
7375         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7376         if (err)
7377                 goto clean2;    /* intmode+region, pci */
7378         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7379         if (!h->vaddr) {
7380                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7381                 err = -ENOMEM;
7382                 goto clean2;    /* intmode+region, pci */
7383         }
7384         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7385         if (err)
7386                 goto clean3;    /* vaddr, intmode+region, pci */
7387         err = hpsa_find_cfgtables(h);
7388         if (err)
7389                 goto clean3;    /* vaddr, intmode+region, pci */
7390         hpsa_find_board_params(h);
7391
7392         if (!hpsa_CISS_signature_present(h)) {
7393                 err = -ENODEV;
7394                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7395         }
7396         hpsa_set_driver_support_bits(h);
7397         hpsa_p600_dma_prefetch_quirk(h);
7398         err = hpsa_enter_simple_mode(h);
7399         if (err)
7400                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7401         return 0;
7402
7403 clean4: /* cfgtables, vaddr, intmode+region, pci */
7404         hpsa_free_cfgtables(h);
7405 clean3: /* vaddr, intmode+region, pci */
7406         iounmap(h->vaddr);
7407         h->vaddr = NULL;
7408 clean2: /* intmode+region, pci */
7409         hpsa_disable_interrupt_mode(h);
7410         /*
7411          * call pci_disable_device before pci_release_regions per
7412          * Documentation/PCI/pci.txt
7413          */
7414         pci_disable_device(h->pdev);
7415         pci_release_regions(h->pdev);
7416         return err;
7417 }
7418
7419 static void hpsa_hba_inquiry(struct ctlr_info *h)
7420 {
7421         int rc;
7422
7423 #define HBA_INQUIRY_BYTE_COUNT 64
7424         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7425         if (!h->hba_inquiry_data)
7426                 return;
7427         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7428                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7429         if (rc != 0) {
7430                 kfree(h->hba_inquiry_data);
7431                 h->hba_inquiry_data = NULL;
7432         }
7433 }
7434
7435 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7436 {
7437         int rc, i;
7438         void __iomem *vaddr;
7439
7440         if (!reset_devices)
7441                 return 0;
7442
7443         /* kdump kernel is loading, we don't know in which state is
7444          * the pci interface. The dev->enable_cnt is equal zero
7445          * so we call enable+disable, wait a while and switch it on.
7446          */
7447         rc = pci_enable_device(pdev);
7448         if (rc) {
7449                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7450                 return -ENODEV;
7451         }
7452         pci_disable_device(pdev);
7453         msleep(260);                    /* a randomly chosen number */
7454         rc = pci_enable_device(pdev);
7455         if (rc) {
7456                 dev_warn(&pdev->dev, "failed to enable device.\n");
7457                 return -ENODEV;
7458         }
7459
7460         pci_set_master(pdev);
7461
7462         vaddr = pci_ioremap_bar(pdev, 0);
7463         if (vaddr == NULL) {
7464                 rc = -ENOMEM;
7465                 goto out_disable;
7466         }
7467         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7468         iounmap(vaddr);
7469
7470         /* Reset the controller with a PCI power-cycle or via doorbell */
7471         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7472
7473         /* -ENOTSUPP here means we cannot reset the controller
7474          * but it's already (and still) up and running in
7475          * "performant mode".  Or, it might be 640x, which can't reset
7476          * due to concerns about shared bbwc between 6402/6404 pair.
7477          */
7478         if (rc)
7479                 goto out_disable;
7480
7481         /* Now try to get the controller to respond to a no-op */
7482         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7483         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7484                 if (hpsa_noop(pdev) == 0)
7485                         break;
7486                 else
7487                         dev_warn(&pdev->dev, "no-op failed%s\n",
7488                                         (i < 11 ? "; re-trying" : ""));
7489         }
7490
7491 out_disable:
7492
7493         pci_disable_device(pdev);
7494         return rc;
7495 }
7496
7497 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7498 {
7499         kfree(h->cmd_pool_bits);
7500         h->cmd_pool_bits = NULL;
7501         if (h->cmd_pool) {
7502                 pci_free_consistent(h->pdev,
7503                                 h->nr_cmds * sizeof(struct CommandList),
7504                                 h->cmd_pool,
7505                                 h->cmd_pool_dhandle);
7506                 h->cmd_pool = NULL;
7507                 h->cmd_pool_dhandle = 0;
7508         }
7509         if (h->errinfo_pool) {
7510                 pci_free_consistent(h->pdev,
7511                                 h->nr_cmds * sizeof(struct ErrorInfo),
7512                                 h->errinfo_pool,
7513                                 h->errinfo_pool_dhandle);
7514                 h->errinfo_pool = NULL;
7515                 h->errinfo_pool_dhandle = 0;
7516         }
7517 }
7518
7519 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7520 {
7521         h->cmd_pool_bits = kzalloc(
7522                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7523                 sizeof(unsigned long), GFP_KERNEL);
7524         h->cmd_pool = pci_alloc_consistent(h->pdev,
7525                     h->nr_cmds * sizeof(*h->cmd_pool),
7526                     &(h->cmd_pool_dhandle));
7527         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7528                     h->nr_cmds * sizeof(*h->errinfo_pool),
7529                     &(h->errinfo_pool_dhandle));
7530         if ((h->cmd_pool_bits == NULL)
7531             || (h->cmd_pool == NULL)
7532             || (h->errinfo_pool == NULL)) {
7533                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7534                 goto clean_up;
7535         }
7536         hpsa_preinitialize_commands(h);
7537         return 0;
7538 clean_up:
7539         hpsa_free_cmd_pool(h);
7540         return -ENOMEM;
7541 }
7542
7543 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7544 {
7545         int i, cpu;
7546
7547         cpu = cpumask_first(cpu_online_mask);
7548         for (i = 0; i < h->msix_vector; i++) {
7549                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7550                 cpu = cpumask_next(cpu, cpu_online_mask);
7551         }
7552 }
7553
7554 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7555 static void hpsa_free_irqs(struct ctlr_info *h)
7556 {
7557         int i;
7558
7559         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7560                 /* Single reply queue, only one irq to free */
7561                 i = h->intr_mode;
7562                 irq_set_affinity_hint(h->intr[i], NULL);
7563                 free_irq(h->intr[i], &h->q[i]);
7564                 h->q[i] = 0;
7565                 return;
7566         }
7567
7568         for (i = 0; i < h->msix_vector; i++) {
7569                 irq_set_affinity_hint(h->intr[i], NULL);
7570                 free_irq(h->intr[i], &h->q[i]);
7571                 h->q[i] = 0;
7572         }
7573         for (; i < MAX_REPLY_QUEUES; i++)
7574                 h->q[i] = 0;
7575 }
7576
7577 /* returns 0 on success; cleans up and returns -Enn on error */
7578 static int hpsa_request_irqs(struct ctlr_info *h,
7579         irqreturn_t (*msixhandler)(int, void *),
7580         irqreturn_t (*intxhandler)(int, void *))
7581 {
7582         int rc, i;
7583
7584         /*
7585          * initialize h->q[x] = x so that interrupt handlers know which
7586          * queue to process.
7587          */
7588         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7589                 h->q[i] = (u8) i;
7590
7591         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7592                 /* If performant mode and MSI-X, use multiple reply queues */
7593                 for (i = 0; i < h->msix_vector; i++) {
7594                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7595                         rc = request_irq(h->intr[i], msixhandler,
7596                                         0, h->intrname[i],
7597                                         &h->q[i]);
7598                         if (rc) {
7599                                 int j;
7600
7601                                 dev_err(&h->pdev->dev,
7602                                         "failed to get irq %d for %s\n",
7603                                        h->intr[i], h->devname);
7604                                 for (j = 0; j < i; j++) {
7605                                         free_irq(h->intr[j], &h->q[j]);
7606                                         h->q[j] = 0;
7607                                 }
7608                                 for (; j < MAX_REPLY_QUEUES; j++)
7609                                         h->q[j] = 0;
7610                                 return rc;
7611                         }
7612                 }
7613                 hpsa_irq_affinity_hints(h);
7614         } else {
7615                 /* Use single reply pool */
7616                 if (h->msix_vector > 0 || h->msi_vector) {
7617                         if (h->msix_vector)
7618                                 sprintf(h->intrname[h->intr_mode],
7619                                         "%s-msix", h->devname);
7620                         else
7621                                 sprintf(h->intrname[h->intr_mode],
7622                                         "%s-msi", h->devname);
7623                         rc = request_irq(h->intr[h->intr_mode],
7624                                 msixhandler, 0,
7625                                 h->intrname[h->intr_mode],
7626                                 &h->q[h->intr_mode]);
7627                 } else {
7628                         sprintf(h->intrname[h->intr_mode],
7629                                 "%s-intx", h->devname);
7630                         rc = request_irq(h->intr[h->intr_mode],
7631                                 intxhandler, IRQF_SHARED,
7632                                 h->intrname[h->intr_mode],
7633                                 &h->q[h->intr_mode]);
7634                 }
7635                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7636         }
7637         if (rc) {
7638                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7639                        h->intr[h->intr_mode], h->devname);
7640                 hpsa_free_irqs(h);
7641                 return -ENODEV;
7642         }
7643         return 0;
7644 }
7645
7646 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7647 {
7648         int rc;
7649         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7650
7651         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7652         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7653         if (rc) {
7654                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7655                 return rc;
7656         }
7657
7658         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7659         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7660         if (rc) {
7661                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7662                         "after soft reset.\n");
7663                 return rc;
7664         }
7665
7666         return 0;
7667 }
7668
7669 static void hpsa_free_reply_queues(struct ctlr_info *h)
7670 {
7671         int i;
7672
7673         for (i = 0; i < h->nreply_queues; i++) {
7674                 if (!h->reply_queue[i].head)
7675                         continue;
7676                 pci_free_consistent(h->pdev,
7677                                         h->reply_queue_size,
7678                                         h->reply_queue[i].head,
7679                                         h->reply_queue[i].busaddr);
7680                 h->reply_queue[i].head = NULL;
7681                 h->reply_queue[i].busaddr = 0;
7682         }
7683         h->reply_queue_size = 0;
7684 }
7685
7686 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7687 {
7688         hpsa_free_performant_mode(h);           /* init_one 7 */
7689         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7690         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7691         hpsa_free_irqs(h);                      /* init_one 4 */
7692         scsi_host_put(h->scsi_host);            /* init_one 3 */
7693         h->scsi_host = NULL;                    /* init_one 3 */
7694         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7695         free_percpu(h->lockup_detected);        /* init_one 2 */
7696         h->lockup_detected = NULL;              /* init_one 2 */
7697         if (h->resubmit_wq) {
7698                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7699                 h->resubmit_wq = NULL;
7700         }
7701         if (h->rescan_ctlr_wq) {
7702                 destroy_workqueue(h->rescan_ctlr_wq);
7703                 h->rescan_ctlr_wq = NULL;
7704         }
7705         kfree(h);                               /* init_one 1 */
7706 }
7707
7708 /* Called when controller lockup detected. */
7709 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7710 {
7711         int i, refcount;
7712         struct CommandList *c;
7713         int failcount = 0;
7714
7715         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7716         for (i = 0; i < h->nr_cmds; i++) {
7717                 c = h->cmd_pool + i;
7718                 refcount = atomic_inc_return(&c->refcount);
7719                 if (refcount > 1) {
7720                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7721                         finish_cmd(c);
7722                         atomic_dec(&h->commands_outstanding);
7723                         failcount++;
7724                 }
7725                 cmd_free(h, c);
7726         }
7727         dev_warn(&h->pdev->dev,
7728                 "failed %d commands in fail_all\n", failcount);
7729 }
7730
7731 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7732 {
7733         int cpu;
7734
7735         for_each_online_cpu(cpu) {
7736                 u32 *lockup_detected;
7737                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7738                 *lockup_detected = value;
7739         }
7740         wmb(); /* be sure the per-cpu variables are out to memory */
7741 }
7742
7743 static void controller_lockup_detected(struct ctlr_info *h)
7744 {
7745         unsigned long flags;
7746         u32 lockup_detected;
7747
7748         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7749         spin_lock_irqsave(&h->lock, flags);
7750         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7751         if (!lockup_detected) {
7752                 /* no heartbeat, but controller gave us a zero. */
7753                 dev_warn(&h->pdev->dev,
7754                         "lockup detected after %d but scratchpad register is zero\n",
7755                         h->heartbeat_sample_interval / HZ);
7756                 lockup_detected = 0xffffffff;
7757         }
7758         set_lockup_detected_for_all_cpus(h, lockup_detected);
7759         spin_unlock_irqrestore(&h->lock, flags);
7760         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7761                         lockup_detected, h->heartbeat_sample_interval / HZ);
7762         pci_disable_device(h->pdev);
7763         fail_all_outstanding_cmds(h);
7764 }
7765
7766 static int detect_controller_lockup(struct ctlr_info *h)
7767 {
7768         u64 now;
7769         u32 heartbeat;
7770         unsigned long flags;
7771
7772         now = get_jiffies_64();
7773         /* If we've received an interrupt recently, we're ok. */
7774         if (time_after64(h->last_intr_timestamp +
7775                                 (h->heartbeat_sample_interval), now))
7776                 return false;
7777
7778         /*
7779          * If we've already checked the heartbeat recently, we're ok.
7780          * This could happen if someone sends us a signal. We
7781          * otherwise don't care about signals in this thread.
7782          */
7783         if (time_after64(h->last_heartbeat_timestamp +
7784                                 (h->heartbeat_sample_interval), now))
7785                 return false;
7786
7787         /* If heartbeat has not changed since we last looked, we're not ok. */
7788         spin_lock_irqsave(&h->lock, flags);
7789         heartbeat = readl(&h->cfgtable->HeartBeat);
7790         spin_unlock_irqrestore(&h->lock, flags);
7791         if (h->last_heartbeat == heartbeat) {
7792                 controller_lockup_detected(h);
7793                 return true;
7794         }
7795
7796         /* We're ok. */
7797         h->last_heartbeat = heartbeat;
7798         h->last_heartbeat_timestamp = now;
7799         return false;
7800 }
7801
7802 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7803 {
7804         int i;
7805         char *event_type;
7806
7807         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7808                 return;
7809
7810         /* Ask the controller to clear the events we're handling. */
7811         if ((h->transMethod & (CFGTBL_Trans_io_accel1
7812                         | CFGTBL_Trans_io_accel2)) &&
7813                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7814                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7815
7816                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7817                         event_type = "state change";
7818                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7819                         event_type = "configuration change";
7820                 /* Stop sending new RAID offload reqs via the IO accelerator */
7821                 scsi_block_requests(h->scsi_host);
7822                 for (i = 0; i < h->ndevices; i++)
7823                         h->dev[i]->offload_enabled = 0;
7824                 hpsa_drain_accel_commands(h);
7825                 /* Set 'accelerator path config change' bit */
7826                 dev_warn(&h->pdev->dev,
7827                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7828                         h->events, event_type);
7829                 writel(h->events, &(h->cfgtable->clear_event_notify));
7830                 /* Set the "clear event notify field update" bit 6 */
7831                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7832                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7833                 hpsa_wait_for_clear_event_notify_ack(h);
7834                 scsi_unblock_requests(h->scsi_host);
7835         } else {
7836                 /* Acknowledge controller notification events. */
7837                 writel(h->events, &(h->cfgtable->clear_event_notify));
7838                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7839                 hpsa_wait_for_clear_event_notify_ack(h);
7840 #if 0
7841                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7842                 hpsa_wait_for_mode_change_ack(h);
7843 #endif
7844         }
7845         return;
7846 }
7847
7848 /* Check a register on the controller to see if there are configuration
7849  * changes (added/changed/removed logical drives, etc.) which mean that
7850  * we should rescan the controller for devices.
7851  * Also check flag for driver-initiated rescan.
7852  */
7853 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7854 {
7855         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7856                 return 0;
7857
7858         h->events = readl(&(h->cfgtable->event_notify));
7859         return h->events & RESCAN_REQUIRED_EVENT_BITS;
7860 }
7861
7862 /*
7863  * Check if any of the offline devices have become ready
7864  */
7865 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7866 {
7867         unsigned long flags;
7868         struct offline_device_entry *d;
7869         struct list_head *this, *tmp;
7870
7871         spin_lock_irqsave(&h->offline_device_lock, flags);
7872         list_for_each_safe(this, tmp, &h->offline_device_list) {
7873                 d = list_entry(this, struct offline_device_entry,
7874                                 offline_list);
7875                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7876                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7877                         spin_lock_irqsave(&h->offline_device_lock, flags);
7878                         list_del(&d->offline_list);
7879                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7880                         return 1;
7881                 }
7882                 spin_lock_irqsave(&h->offline_device_lock, flags);
7883         }
7884         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7885         return 0;
7886 }
7887
7888 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7889 {
7890         unsigned long flags;
7891         struct ctlr_info *h = container_of(to_delayed_work(work),
7892                                         struct ctlr_info, rescan_ctlr_work);
7893
7894
7895         if (h->remove_in_progress)
7896                 return;
7897
7898         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7899                 scsi_host_get(h->scsi_host);
7900                 hpsa_ack_ctlr_events(h);
7901                 hpsa_scan_start(h->scsi_host);
7902                 scsi_host_put(h->scsi_host);
7903         }
7904         spin_lock_irqsave(&h->lock, flags);
7905         if (!h->remove_in_progress)
7906                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7907                                 h->heartbeat_sample_interval);
7908         spin_unlock_irqrestore(&h->lock, flags);
7909 }
7910
7911 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7912 {
7913         unsigned long flags;
7914         struct ctlr_info *h = container_of(to_delayed_work(work),
7915                                         struct ctlr_info, monitor_ctlr_work);
7916
7917         detect_controller_lockup(h);
7918         if (lockup_detected(h))
7919                 return;
7920
7921         spin_lock_irqsave(&h->lock, flags);
7922         if (!h->remove_in_progress)
7923                 schedule_delayed_work(&h->monitor_ctlr_work,
7924                                 h->heartbeat_sample_interval);
7925         spin_unlock_irqrestore(&h->lock, flags);
7926 }
7927
7928 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7929                                                 char *name)
7930 {
7931         struct workqueue_struct *wq = NULL;
7932
7933         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7934         if (!wq)
7935                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7936
7937         return wq;
7938 }
7939
7940 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7941 {
7942         int dac, rc;
7943         struct ctlr_info *h;
7944         int try_soft_reset = 0;
7945         unsigned long flags;
7946         u32 board_id;
7947
7948         if (number_of_controllers == 0)
7949                 printk(KERN_INFO DRIVER_NAME "\n");
7950
7951         rc = hpsa_lookup_board_id(pdev, &board_id);
7952         if (rc < 0) {
7953                 dev_warn(&pdev->dev, "Board ID not found\n");
7954                 return rc;
7955         }
7956
7957         rc = hpsa_init_reset_devices(pdev, board_id);
7958         if (rc) {
7959                 if (rc != -ENOTSUPP)
7960                         return rc;
7961                 /* If the reset fails in a particular way (it has no way to do
7962                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
7963                  * a soft reset once we get the controller configured up to the
7964                  * point that it can accept a command.
7965                  */
7966                 try_soft_reset = 1;
7967                 rc = 0;
7968         }
7969
7970 reinit_after_soft_reset:
7971
7972         /* Command structures must be aligned on a 32-byte boundary because
7973          * the 5 lower bits of the address are used by the hardware. and by
7974          * the driver.  See comments in hpsa.h for more info.
7975          */
7976         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7977         h = kzalloc(sizeof(*h), GFP_KERNEL);
7978         if (!h) {
7979                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
7980                 return -ENOMEM;
7981         }
7982
7983         h->pdev = pdev;
7984
7985         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7986         INIT_LIST_HEAD(&h->offline_device_list);
7987         spin_lock_init(&h->lock);
7988         spin_lock_init(&h->offline_device_lock);
7989         spin_lock_init(&h->scan_lock);
7990         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7991         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7992
7993         /* Allocate and clear per-cpu variable lockup_detected */
7994         h->lockup_detected = alloc_percpu(u32);
7995         if (!h->lockup_detected) {
7996                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7997                 rc = -ENOMEM;
7998                 goto clean1;    /* aer/h */
7999         }
8000         set_lockup_detected_for_all_cpus(h, 0);
8001
8002         rc = hpsa_pci_init(h);
8003         if (rc)
8004                 goto clean2;    /* lu, aer/h */
8005
8006         /* relies on h-> settings made by hpsa_pci_init, including
8007          * interrupt_mode h->intr */
8008         rc = hpsa_scsi_host_alloc(h);
8009         if (rc)
8010                 goto clean2_5;  /* pci, lu, aer/h */
8011
8012         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8013         h->ctlr = number_of_controllers;
8014         number_of_controllers++;
8015
8016         /* configure PCI DMA stuff */
8017         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8018         if (rc == 0) {
8019                 dac = 1;
8020         } else {
8021                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8022                 if (rc == 0) {
8023                         dac = 0;
8024                 } else {
8025                         dev_err(&pdev->dev, "no suitable DMA available\n");
8026                         goto clean3;    /* shost, pci, lu, aer/h */
8027                 }
8028         }
8029
8030         /* make sure the board interrupts are off */
8031         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8032
8033         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8034         if (rc)
8035                 goto clean3;    /* shost, pci, lu, aer/h */
8036         rc = hpsa_alloc_cmd_pool(h);
8037         if (rc)
8038                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8039         rc = hpsa_alloc_sg_chain_blocks(h);
8040         if (rc)
8041                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8042         init_waitqueue_head(&h->scan_wait_queue);
8043         init_waitqueue_head(&h->abort_cmd_wait_queue);
8044         init_waitqueue_head(&h->event_sync_wait_queue);
8045         mutex_init(&h->reset_mutex);
8046         h->scan_finished = 1; /* no scan currently in progress */
8047
8048         pci_set_drvdata(pdev, h);
8049         h->ndevices = 0;
8050
8051         spin_lock_init(&h->devlock);
8052         rc = hpsa_put_ctlr_into_performant_mode(h);
8053         if (rc)
8054                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8055
8056         /* hook into SCSI subsystem */
8057         rc = hpsa_scsi_add_host(h);
8058         if (rc)
8059                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8060
8061         /* create the resubmit workqueue */
8062         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8063         if (!h->rescan_ctlr_wq) {
8064                 rc = -ENOMEM;
8065                 goto clean7;
8066         }
8067
8068         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8069         if (!h->resubmit_wq) {
8070                 rc = -ENOMEM;
8071                 goto clean7;    /* aer/h */
8072         }
8073
8074         /*
8075          * At this point, the controller is ready to take commands.
8076          * Now, if reset_devices and the hard reset didn't work, try
8077          * the soft reset and see if that works.
8078          */
8079         if (try_soft_reset) {
8080
8081                 /* This is kind of gross.  We may or may not get a completion
8082                  * from the soft reset command, and if we do, then the value
8083                  * from the fifo may or may not be valid.  So, we wait 10 secs
8084                  * after the reset throwing away any completions we get during
8085                  * that time.  Unregister the interrupt handler and register
8086                  * fake ones to scoop up any residual completions.
8087                  */
8088                 spin_lock_irqsave(&h->lock, flags);
8089                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8090                 spin_unlock_irqrestore(&h->lock, flags);
8091                 hpsa_free_irqs(h);
8092                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8093                                         hpsa_intx_discard_completions);
8094                 if (rc) {
8095                         dev_warn(&h->pdev->dev,
8096                                 "Failed to request_irq after soft reset.\n");
8097                         /*
8098                          * cannot goto clean7 or free_irqs will be called
8099                          * again. Instead, do its work
8100                          */
8101                         hpsa_free_performant_mode(h);   /* clean7 */
8102                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8103                         hpsa_free_cmd_pool(h);          /* clean5 */
8104                         /*
8105                          * skip hpsa_free_irqs(h) clean4 since that
8106                          * was just called before request_irqs failed
8107                          */
8108                         goto clean3;
8109                 }
8110
8111                 rc = hpsa_kdump_soft_reset(h);
8112                 if (rc)
8113                         /* Neither hard nor soft reset worked, we're hosed. */
8114                         goto clean7;
8115
8116                 dev_info(&h->pdev->dev, "Board READY.\n");
8117                 dev_info(&h->pdev->dev,
8118                         "Waiting for stale completions to drain.\n");
8119                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8120                 msleep(10000);
8121                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8122
8123                 rc = controller_reset_failed(h->cfgtable);
8124                 if (rc)
8125                         dev_info(&h->pdev->dev,
8126                                 "Soft reset appears to have failed.\n");
8127
8128                 /* since the controller's reset, we have to go back and re-init
8129                  * everything.  Easiest to just forget what we've done and do it
8130                  * all over again.
8131                  */
8132                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8133                 try_soft_reset = 0;
8134                 if (rc)
8135                         /* don't goto clean, we already unallocated */
8136                         return -ENODEV;
8137
8138                 goto reinit_after_soft_reset;
8139         }
8140
8141         /* Enable Accelerated IO path at driver layer */
8142         h->acciopath_status = 1;
8143
8144
8145         /* Turn the interrupts on so we can service requests */
8146         h->access.set_intr_mask(h, HPSA_INTR_ON);
8147
8148         hpsa_hba_inquiry(h);
8149
8150         /* Monitor the controller for firmware lockups */
8151         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8152         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8153         schedule_delayed_work(&h->monitor_ctlr_work,
8154                                 h->heartbeat_sample_interval);
8155         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8156         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8157                                 h->heartbeat_sample_interval);
8158         return 0;
8159
8160 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8161         hpsa_free_performant_mode(h);
8162         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8163 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8164         hpsa_free_sg_chain_blocks(h);
8165 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8166         hpsa_free_cmd_pool(h);
8167 clean4: /* irq, shost, pci, lu, aer/h */
8168         hpsa_free_irqs(h);
8169 clean3: /* shost, pci, lu, aer/h */
8170         scsi_host_put(h->scsi_host);
8171         h->scsi_host = NULL;
8172 clean2_5: /* pci, lu, aer/h */
8173         hpsa_free_pci_init(h);
8174 clean2: /* lu, aer/h */
8175         if (h->lockup_detected) {
8176                 free_percpu(h->lockup_detected);
8177                 h->lockup_detected = NULL;
8178         }
8179 clean1: /* wq/aer/h */
8180         if (h->resubmit_wq) {
8181                 destroy_workqueue(h->resubmit_wq);
8182                 h->resubmit_wq = NULL;
8183         }
8184         if (h->rescan_ctlr_wq) {
8185                 destroy_workqueue(h->rescan_ctlr_wq);
8186                 h->rescan_ctlr_wq = NULL;
8187         }
8188         kfree(h);
8189         return rc;
8190 }
8191
8192 static void hpsa_flush_cache(struct ctlr_info *h)
8193 {
8194         char *flush_buf;
8195         struct CommandList *c;
8196         int rc;
8197
8198         if (unlikely(lockup_detected(h)))
8199                 return;
8200         flush_buf = kzalloc(4, GFP_KERNEL);
8201         if (!flush_buf)
8202                 return;
8203
8204         c = cmd_alloc(h);
8205
8206         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8207                 RAID_CTLR_LUNID, TYPE_CMD)) {
8208                 goto out;
8209         }
8210         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8211                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8212         if (rc)
8213                 goto out;
8214         if (c->err_info->CommandStatus != 0)
8215 out:
8216                 dev_warn(&h->pdev->dev,
8217                         "error flushing cache on controller\n");
8218         cmd_free(h, c);
8219         kfree(flush_buf);
8220 }
8221
8222 static void hpsa_shutdown(struct pci_dev *pdev)
8223 {
8224         struct ctlr_info *h;
8225
8226         h = pci_get_drvdata(pdev);
8227         /* Turn board interrupts off  and send the flush cache command
8228          * sendcmd will turn off interrupt, and send the flush...
8229          * To write all data in the battery backed cache to disks
8230          */
8231         hpsa_flush_cache(h);
8232         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8233         hpsa_free_irqs(h);                      /* init_one 4 */
8234         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8235 }
8236
8237 static void hpsa_free_device_info(struct ctlr_info *h)
8238 {
8239         int i;
8240
8241         for (i = 0; i < h->ndevices; i++) {
8242                 kfree(h->dev[i]);
8243                 h->dev[i] = NULL;
8244         }
8245 }
8246
8247 static void hpsa_remove_one(struct pci_dev *pdev)
8248 {
8249         struct ctlr_info *h;
8250         unsigned long flags;
8251
8252         if (pci_get_drvdata(pdev) == NULL) {
8253                 dev_err(&pdev->dev, "unable to remove device\n");
8254                 return;
8255         }
8256         h = pci_get_drvdata(pdev);
8257
8258         /* Get rid of any controller monitoring work items */
8259         spin_lock_irqsave(&h->lock, flags);
8260         h->remove_in_progress = 1;
8261         spin_unlock_irqrestore(&h->lock, flags);
8262         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8263         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8264         destroy_workqueue(h->rescan_ctlr_wq);
8265         destroy_workqueue(h->resubmit_wq);
8266
8267         /*
8268          * Call before disabling interrupts.
8269          * scsi_remove_host can trigger I/O operations especially
8270          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8271          * operations which cannot complete and will hang the system.
8272          */
8273         if (h->scsi_host)
8274                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8275         /* includes hpsa_free_irqs - init_one 4 */
8276         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8277         hpsa_shutdown(pdev);
8278
8279         hpsa_free_device_info(h);               /* scan */
8280
8281         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8282         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8283         hpsa_free_ioaccel2_sg_chain_blocks(h);
8284         hpsa_free_performant_mode(h);                   /* init_one 7 */
8285         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8286         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8287
8288         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8289
8290         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8291         h->scsi_host = NULL;                            /* init_one 3 */
8292
8293         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8294         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8295
8296         free_percpu(h->lockup_detected);                /* init_one 2 */
8297         h->lockup_detected = NULL;                      /* init_one 2 */
8298         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8299         kfree(h);                                       /* init_one 1 */
8300 }
8301
8302 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8303         __attribute__((unused)) pm_message_t state)
8304 {
8305         return -ENOSYS;
8306 }
8307
8308 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8309 {
8310         return -ENOSYS;
8311 }
8312
8313 static struct pci_driver hpsa_pci_driver = {
8314         .name = HPSA,
8315         .probe = hpsa_init_one,
8316         .remove = hpsa_remove_one,
8317         .id_table = hpsa_pci_device_id, /* id_table */
8318         .shutdown = hpsa_shutdown,
8319         .suspend = hpsa_suspend,
8320         .resume = hpsa_resume,
8321 };
8322
8323 /* Fill in bucket_map[], given nsgs (the max number of
8324  * scatter gather elements supported) and bucket[],
8325  * which is an array of 8 integers.  The bucket[] array
8326  * contains 8 different DMA transfer sizes (in 16
8327  * byte increments) which the controller uses to fetch
8328  * commands.  This function fills in bucket_map[], which
8329  * maps a given number of scatter gather elements to one of
8330  * the 8 DMA transfer sizes.  The point of it is to allow the
8331  * controller to only do as much DMA as needed to fetch the
8332  * command, with the DMA transfer size encoded in the lower
8333  * bits of the command address.
8334  */
8335 static void  calc_bucket_map(int bucket[], int num_buckets,
8336         int nsgs, int min_blocks, u32 *bucket_map)
8337 {
8338         int i, j, b, size;
8339
8340         /* Note, bucket_map must have nsgs+1 entries. */
8341         for (i = 0; i <= nsgs; i++) {
8342                 /* Compute size of a command with i SG entries */
8343                 size = i + min_blocks;
8344                 b = num_buckets; /* Assume the biggest bucket */
8345                 /* Find the bucket that is just big enough */
8346                 for (j = 0; j < num_buckets; j++) {
8347                         if (bucket[j] >= size) {
8348                                 b = j;
8349                                 break;
8350                         }
8351                 }
8352                 /* for a command with i SG entries, use bucket b. */
8353                 bucket_map[i] = b;
8354         }
8355 }
8356
8357 /*
8358  * return -ENODEV on err, 0 on success (or no action)
8359  * allocates numerous items that must be freed later
8360  */
8361 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8362 {
8363         int i;
8364         unsigned long register_value;
8365         unsigned long transMethod = CFGTBL_Trans_Performant |
8366                         (trans_support & CFGTBL_Trans_use_short_tags) |
8367                                 CFGTBL_Trans_enable_directed_msix |
8368                         (trans_support & (CFGTBL_Trans_io_accel1 |
8369                                 CFGTBL_Trans_io_accel2));
8370         struct access_method access = SA5_performant_access;
8371
8372         /* This is a bit complicated.  There are 8 registers on
8373          * the controller which we write to to tell it 8 different
8374          * sizes of commands which there may be.  It's a way of
8375          * reducing the DMA done to fetch each command.  Encoded into
8376          * each command's tag are 3 bits which communicate to the controller
8377          * which of the eight sizes that command fits within.  The size of
8378          * each command depends on how many scatter gather entries there are.
8379          * Each SG entry requires 16 bytes.  The eight registers are programmed
8380          * with the number of 16-byte blocks a command of that size requires.
8381          * The smallest command possible requires 5 such 16 byte blocks.
8382          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8383          * blocks.  Note, this only extends to the SG entries contained
8384          * within the command block, and does not extend to chained blocks
8385          * of SG elements.   bft[] contains the eight values we write to
8386          * the registers.  They are not evenly distributed, but have more
8387          * sizes for small commands, and fewer sizes for larger commands.
8388          */
8389         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8390 #define MIN_IOACCEL2_BFT_ENTRY 5
8391 #define HPSA_IOACCEL2_HEADER_SZ 4
8392         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8393                         13, 14, 15, 16, 17, 18, 19,
8394                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8395         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8396         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8397         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8398                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8399         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8400         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8401         /*  5 = 1 s/g entry or 4k
8402          *  6 = 2 s/g entry or 8k
8403          *  8 = 4 s/g entry or 16k
8404          * 10 = 6 s/g entry or 24k
8405          */
8406
8407         /* If the controller supports either ioaccel method then
8408          * we can also use the RAID stack submit path that does not
8409          * perform the superfluous readl() after each command submission.
8410          */
8411         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8412                 access = SA5_performant_access_no_read;
8413
8414         /* Controller spec: zero out this buffer. */
8415         for (i = 0; i < h->nreply_queues; i++)
8416                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8417
8418         bft[7] = SG_ENTRIES_IN_CMD + 4;
8419         calc_bucket_map(bft, ARRAY_SIZE(bft),
8420                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8421         for (i = 0; i < 8; i++)
8422                 writel(bft[i], &h->transtable->BlockFetch[i]);
8423
8424         /* size of controller ring buffer */
8425         writel(h->max_commands, &h->transtable->RepQSize);
8426         writel(h->nreply_queues, &h->transtable->RepQCount);
8427         writel(0, &h->transtable->RepQCtrAddrLow32);
8428         writel(0, &h->transtable->RepQCtrAddrHigh32);
8429
8430         for (i = 0; i < h->nreply_queues; i++) {
8431                 writel(0, &h->transtable->RepQAddr[i].upper);
8432                 writel(h->reply_queue[i].busaddr,
8433                         &h->transtable->RepQAddr[i].lower);
8434         }
8435
8436         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8437         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8438         /*
8439          * enable outbound interrupt coalescing in accelerator mode;
8440          */
8441         if (trans_support & CFGTBL_Trans_io_accel1) {
8442                 access = SA5_ioaccel_mode1_access;
8443                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8444                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8445         } else {
8446                 if (trans_support & CFGTBL_Trans_io_accel2) {
8447                         access = SA5_ioaccel_mode2_access;
8448                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8449                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8450                 }
8451         }
8452         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8453         if (hpsa_wait_for_mode_change_ack(h)) {
8454                 dev_err(&h->pdev->dev,
8455                         "performant mode problem - doorbell timeout\n");
8456                 return -ENODEV;
8457         }
8458         register_value = readl(&(h->cfgtable->TransportActive));
8459         if (!(register_value & CFGTBL_Trans_Performant)) {
8460                 dev_err(&h->pdev->dev,
8461                         "performant mode problem - transport not active\n");
8462                 return -ENODEV;
8463         }
8464         /* Change the access methods to the performant access methods */
8465         h->access = access;
8466         h->transMethod = transMethod;
8467
8468         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8469                 (trans_support & CFGTBL_Trans_io_accel2)))
8470                 return 0;
8471
8472         if (trans_support & CFGTBL_Trans_io_accel1) {
8473                 /* Set up I/O accelerator mode */
8474                 for (i = 0; i < h->nreply_queues; i++) {
8475                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8476                         h->reply_queue[i].current_entry =
8477                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8478                 }
8479                 bft[7] = h->ioaccel_maxsg + 8;
8480                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8481                                 h->ioaccel1_blockFetchTable);
8482
8483                 /* initialize all reply queue entries to unused */
8484                 for (i = 0; i < h->nreply_queues; i++)
8485                         memset(h->reply_queue[i].head,
8486                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8487                                 h->reply_queue_size);
8488
8489                 /* set all the constant fields in the accelerator command
8490                  * frames once at init time to save CPU cycles later.
8491                  */
8492                 for (i = 0; i < h->nr_cmds; i++) {
8493                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8494
8495                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8496                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8497                                         (i * sizeof(struct ErrorInfo)));
8498                         cp->err_info_len = sizeof(struct ErrorInfo);
8499                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8500                         cp->host_context_flags =
8501                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8502                         cp->timeout_sec = 0;
8503                         cp->ReplyQueue = 0;
8504                         cp->tag =
8505                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8506                         cp->host_addr =
8507                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8508                                         (i * sizeof(struct io_accel1_cmd)));
8509                 }
8510         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8511                 u64 cfg_offset, cfg_base_addr_index;
8512                 u32 bft2_offset, cfg_base_addr;
8513                 int rc;
8514
8515                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8516                         &cfg_base_addr_index, &cfg_offset);
8517                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8518                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8519                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8520                                 4, h->ioaccel2_blockFetchTable);
8521                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8522                 BUILD_BUG_ON(offsetof(struct CfgTable,
8523                                 io_accel_request_size_offset) != 0xb8);
8524                 h->ioaccel2_bft2_regs =
8525                         remap_pci_mem(pci_resource_start(h->pdev,
8526                                         cfg_base_addr_index) +
8527                                         cfg_offset + bft2_offset,
8528                                         ARRAY_SIZE(bft2) *
8529                                         sizeof(*h->ioaccel2_bft2_regs));
8530                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8531                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8532         }
8533         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8534         if (hpsa_wait_for_mode_change_ack(h)) {
8535                 dev_err(&h->pdev->dev,
8536                         "performant mode problem - enabling ioaccel mode\n");
8537                 return -ENODEV;
8538         }
8539         return 0;
8540 }
8541
8542 /* Free ioaccel1 mode command blocks and block fetch table */
8543 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8544 {
8545         if (h->ioaccel_cmd_pool) {
8546                 pci_free_consistent(h->pdev,
8547                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8548                         h->ioaccel_cmd_pool,
8549                         h->ioaccel_cmd_pool_dhandle);
8550                 h->ioaccel_cmd_pool = NULL;
8551                 h->ioaccel_cmd_pool_dhandle = 0;
8552         }
8553         kfree(h->ioaccel1_blockFetchTable);
8554         h->ioaccel1_blockFetchTable = NULL;
8555 }
8556
8557 /* Allocate ioaccel1 mode command blocks and block fetch table */
8558 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8559 {
8560         h->ioaccel_maxsg =
8561                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8562         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8563                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8564
8565         /* Command structures must be aligned on a 128-byte boundary
8566          * because the 7 lower bits of the address are used by the
8567          * hardware.
8568          */
8569         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8570                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8571         h->ioaccel_cmd_pool =
8572                 pci_alloc_consistent(h->pdev,
8573                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8574                         &(h->ioaccel_cmd_pool_dhandle));
8575
8576         h->ioaccel1_blockFetchTable =
8577                 kmalloc(((h->ioaccel_maxsg + 1) *
8578                                 sizeof(u32)), GFP_KERNEL);
8579
8580         if ((h->ioaccel_cmd_pool == NULL) ||
8581                 (h->ioaccel1_blockFetchTable == NULL))
8582                 goto clean_up;
8583
8584         memset(h->ioaccel_cmd_pool, 0,
8585                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8586         return 0;
8587
8588 clean_up:
8589         hpsa_free_ioaccel1_cmd_and_bft(h);
8590         return -ENOMEM;
8591 }
8592
8593 /* Free ioaccel2 mode command blocks and block fetch table */
8594 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8595 {
8596         hpsa_free_ioaccel2_sg_chain_blocks(h);
8597
8598         if (h->ioaccel2_cmd_pool) {
8599                 pci_free_consistent(h->pdev,
8600                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8601                         h->ioaccel2_cmd_pool,
8602                         h->ioaccel2_cmd_pool_dhandle);
8603                 h->ioaccel2_cmd_pool = NULL;
8604                 h->ioaccel2_cmd_pool_dhandle = 0;
8605         }
8606         kfree(h->ioaccel2_blockFetchTable);
8607         h->ioaccel2_blockFetchTable = NULL;
8608 }
8609
8610 /* Allocate ioaccel2 mode command blocks and block fetch table */
8611 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8612 {
8613         int rc;
8614
8615         /* Allocate ioaccel2 mode command blocks and block fetch table */
8616
8617         h->ioaccel_maxsg =
8618                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8619         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8620                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8621
8622         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8623                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8624         h->ioaccel2_cmd_pool =
8625                 pci_alloc_consistent(h->pdev,
8626                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8627                         &(h->ioaccel2_cmd_pool_dhandle));
8628
8629         h->ioaccel2_blockFetchTable =
8630                 kmalloc(((h->ioaccel_maxsg + 1) *
8631                                 sizeof(u32)), GFP_KERNEL);
8632
8633         if ((h->ioaccel2_cmd_pool == NULL) ||
8634                 (h->ioaccel2_blockFetchTable == NULL)) {
8635                 rc = -ENOMEM;
8636                 goto clean_up;
8637         }
8638
8639         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8640         if (rc)
8641                 goto clean_up;
8642
8643         memset(h->ioaccel2_cmd_pool, 0,
8644                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8645         return 0;
8646
8647 clean_up:
8648         hpsa_free_ioaccel2_cmd_and_bft(h);
8649         return rc;
8650 }
8651
8652 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8653 static void hpsa_free_performant_mode(struct ctlr_info *h)
8654 {
8655         kfree(h->blockFetchTable);
8656         h->blockFetchTable = NULL;
8657         hpsa_free_reply_queues(h);
8658         hpsa_free_ioaccel1_cmd_and_bft(h);
8659         hpsa_free_ioaccel2_cmd_and_bft(h);
8660 }
8661
8662 /* return -ENODEV on error, 0 on success (or no action)
8663  * allocates numerous items that must be freed later
8664  */
8665 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8666 {
8667         u32 trans_support;
8668         unsigned long transMethod = CFGTBL_Trans_Performant |
8669                                         CFGTBL_Trans_use_short_tags;
8670         int i, rc;
8671
8672         if (hpsa_simple_mode)
8673                 return 0;
8674
8675         trans_support = readl(&(h->cfgtable->TransportSupport));
8676         if (!(trans_support & PERFORMANT_MODE))
8677                 return 0;
8678
8679         /* Check for I/O accelerator mode support */
8680         if (trans_support & CFGTBL_Trans_io_accel1) {
8681                 transMethod |= CFGTBL_Trans_io_accel1 |
8682                                 CFGTBL_Trans_enable_directed_msix;
8683                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8684                 if (rc)
8685                         return rc;
8686         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8687                 transMethod |= CFGTBL_Trans_io_accel2 |
8688                                 CFGTBL_Trans_enable_directed_msix;
8689                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8690                 if (rc)
8691                         return rc;
8692         }
8693
8694         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8695         hpsa_get_max_perf_mode_cmds(h);
8696         /* Performant mode ring buffer and supporting data structures */
8697         h->reply_queue_size = h->max_commands * sizeof(u64);
8698
8699         for (i = 0; i < h->nreply_queues; i++) {
8700                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8701                                                 h->reply_queue_size,
8702                                                 &(h->reply_queue[i].busaddr));
8703                 if (!h->reply_queue[i].head) {
8704                         rc = -ENOMEM;
8705                         goto clean1;    /* rq, ioaccel */
8706                 }
8707                 h->reply_queue[i].size = h->max_commands;
8708                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8709                 h->reply_queue[i].current_entry = 0;
8710         }
8711
8712         /* Need a block fetch table for performant mode */
8713         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8714                                 sizeof(u32)), GFP_KERNEL);
8715         if (!h->blockFetchTable) {
8716                 rc = -ENOMEM;
8717                 goto clean1;    /* rq, ioaccel */
8718         }
8719
8720         rc = hpsa_enter_performant_mode(h, trans_support);
8721         if (rc)
8722                 goto clean2;    /* bft, rq, ioaccel */
8723         return 0;
8724
8725 clean2: /* bft, rq, ioaccel */
8726         kfree(h->blockFetchTable);
8727         h->blockFetchTable = NULL;
8728 clean1: /* rq, ioaccel */
8729         hpsa_free_reply_queues(h);
8730         hpsa_free_ioaccel1_cmd_and_bft(h);
8731         hpsa_free_ioaccel2_cmd_and_bft(h);
8732         return rc;
8733 }
8734
8735 static int is_accelerated_cmd(struct CommandList *c)
8736 {
8737         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8738 }
8739
8740 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8741 {
8742         struct CommandList *c = NULL;
8743         int i, accel_cmds_out;
8744         int refcount;
8745
8746         do { /* wait for all outstanding ioaccel commands to drain out */
8747                 accel_cmds_out = 0;
8748                 for (i = 0; i < h->nr_cmds; i++) {
8749                         c = h->cmd_pool + i;
8750                         refcount = atomic_inc_return(&c->refcount);
8751                         if (refcount > 1) /* Command is allocated */
8752                                 accel_cmds_out += is_accelerated_cmd(c);
8753                         cmd_free(h, c);
8754                 }
8755                 if (accel_cmds_out <= 0)
8756                         break;
8757                 msleep(100);
8758         } while (1);
8759 }
8760
8761 /*
8762  *  This is it.  Register the PCI driver information for the cards we control
8763  *  the OS will call our registered routines when it finds one of our cards.
8764  */
8765 static int __init hpsa_init(void)
8766 {
8767         return pci_register_driver(&hpsa_pci_driver);
8768 }
8769
8770 static void __exit hpsa_cleanup(void)
8771 {
8772         pci_unregister_driver(&hpsa_pci_driver);
8773 }
8774
8775 static void __attribute__((unused)) verify_offsets(void)
8776 {
8777 #define VERIFY_OFFSET(member, offset) \
8778         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8779
8780         VERIFY_OFFSET(structure_size, 0);
8781         VERIFY_OFFSET(volume_blk_size, 4);
8782         VERIFY_OFFSET(volume_blk_cnt, 8);
8783         VERIFY_OFFSET(phys_blk_shift, 16);
8784         VERIFY_OFFSET(parity_rotation_shift, 17);
8785         VERIFY_OFFSET(strip_size, 18);
8786         VERIFY_OFFSET(disk_starting_blk, 20);
8787         VERIFY_OFFSET(disk_blk_cnt, 28);
8788         VERIFY_OFFSET(data_disks_per_row, 36);
8789         VERIFY_OFFSET(metadata_disks_per_row, 38);
8790         VERIFY_OFFSET(row_cnt, 40);
8791         VERIFY_OFFSET(layout_map_count, 42);
8792         VERIFY_OFFSET(flags, 44);
8793         VERIFY_OFFSET(dekindex, 46);
8794         /* VERIFY_OFFSET(reserved, 48 */
8795         VERIFY_OFFSET(data, 64);
8796
8797 #undef VERIFY_OFFSET
8798
8799 #define VERIFY_OFFSET(member, offset) \
8800         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8801
8802         VERIFY_OFFSET(IU_type, 0);
8803         VERIFY_OFFSET(direction, 1);
8804         VERIFY_OFFSET(reply_queue, 2);
8805         /* VERIFY_OFFSET(reserved1, 3);  */
8806         VERIFY_OFFSET(scsi_nexus, 4);
8807         VERIFY_OFFSET(Tag, 8);
8808         VERIFY_OFFSET(cdb, 16);
8809         VERIFY_OFFSET(cciss_lun, 32);
8810         VERIFY_OFFSET(data_len, 40);
8811         VERIFY_OFFSET(cmd_priority_task_attr, 44);
8812         VERIFY_OFFSET(sg_count, 45);
8813         /* VERIFY_OFFSET(reserved3 */
8814         VERIFY_OFFSET(err_ptr, 48);
8815         VERIFY_OFFSET(err_len, 56);
8816         /* VERIFY_OFFSET(reserved4  */
8817         VERIFY_OFFSET(sg, 64);
8818
8819 #undef VERIFY_OFFSET
8820
8821 #define VERIFY_OFFSET(member, offset) \
8822         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8823
8824         VERIFY_OFFSET(dev_handle, 0x00);
8825         VERIFY_OFFSET(reserved1, 0x02);
8826         VERIFY_OFFSET(function, 0x03);
8827         VERIFY_OFFSET(reserved2, 0x04);
8828         VERIFY_OFFSET(err_info, 0x0C);
8829         VERIFY_OFFSET(reserved3, 0x10);
8830         VERIFY_OFFSET(err_info_len, 0x12);
8831         VERIFY_OFFSET(reserved4, 0x13);
8832         VERIFY_OFFSET(sgl_offset, 0x14);
8833         VERIFY_OFFSET(reserved5, 0x15);
8834         VERIFY_OFFSET(transfer_len, 0x1C);
8835         VERIFY_OFFSET(reserved6, 0x20);
8836         VERIFY_OFFSET(io_flags, 0x24);
8837         VERIFY_OFFSET(reserved7, 0x26);
8838         VERIFY_OFFSET(LUN, 0x34);
8839         VERIFY_OFFSET(control, 0x3C);
8840         VERIFY_OFFSET(CDB, 0x40);
8841         VERIFY_OFFSET(reserved8, 0x50);
8842         VERIFY_OFFSET(host_context_flags, 0x60);
8843         VERIFY_OFFSET(timeout_sec, 0x62);
8844         VERIFY_OFFSET(ReplyQueue, 0x64);
8845         VERIFY_OFFSET(reserved9, 0x65);
8846         VERIFY_OFFSET(tag, 0x68);
8847         VERIFY_OFFSET(host_addr, 0x70);
8848         VERIFY_OFFSET(CISS_LUN, 0x78);
8849         VERIFY_OFFSET(SG, 0x78 + 8);
8850 #undef VERIFY_OFFSET
8851 }
8852
8853 module_init(hpsa_init);
8854 module_exit(hpsa_cleanup);