]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/hpsa.c
hpsa: enhance device messages
[linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75         HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83                 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87         "Use 'simple mode' rather than 'performant mode'");
88
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
143                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144         {0,}
145 };
146
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154         {0x3241103C, "Smart Array P212", &SA5_access},
155         {0x3243103C, "Smart Array P410", &SA5_access},
156         {0x3245103C, "Smart Array P410i", &SA5_access},
157         {0x3247103C, "Smart Array P411", &SA5_access},
158         {0x3249103C, "Smart Array P812", &SA5_access},
159         {0x324A103C, "Smart Array P712m", &SA5_access},
160         {0x324B103C, "Smart Array P711m", &SA5_access},
161         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162         {0x3350103C, "Smart Array P222", &SA5_access},
163         {0x3351103C, "Smart Array P420", &SA5_access},
164         {0x3352103C, "Smart Array P421", &SA5_access},
165         {0x3353103C, "Smart Array P822", &SA5_access},
166         {0x3354103C, "Smart Array P420i", &SA5_access},
167         {0x3355103C, "Smart Array P220i", &SA5_access},
168         {0x3356103C, "Smart Array P721m", &SA5_access},
169         {0x1921103C, "Smart Array P830i", &SA5_access},
170         {0x1922103C, "Smart Array P430", &SA5_access},
171         {0x1923103C, "Smart Array P431", &SA5_access},
172         {0x1924103C, "Smart Array P830", &SA5_access},
173         {0x1926103C, "Smart Array P731m", &SA5_access},
174         {0x1928103C, "Smart Array P230i", &SA5_access},
175         {0x1929103C, "Smart Array P530", &SA5_access},
176         {0x21BD103C, "Smart Array P244br", &SA5_access},
177         {0x21BE103C, "Smart Array P741m", &SA5_access},
178         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179         {0x21C0103C, "Smart Array P440ar", &SA5_access},
180         {0x21C1103C, "Smart Array P840ar", &SA5_access},
181         {0x21C2103C, "Smart Array P440", &SA5_access},
182         {0x21C3103C, "Smart Array P441", &SA5_access},
183         {0x21C4103C, "Smart Array", &SA5_access},
184         {0x21C5103C, "Smart Array P841", &SA5_access},
185         {0x21C6103C, "Smart HBA H244br", &SA5_access},
186         {0x21C7103C, "Smart HBA H240", &SA5_access},
187         {0x21C8103C, "Smart HBA H241", &SA5_access},
188         {0x21C9103C, "Smart Array", &SA5_access},
189         {0x21CA103C, "Smart Array P246br", &SA5_access},
190         {0x21CB103C, "Smart Array P840", &SA5_access},
191         {0x21CC103C, "Smart Array", &SA5_access},
192         {0x21CD103C, "Smart Array", &SA5_access},
193         {0x21CE103C, "Smart HBA", &SA5_access},
194         {0x05809005, "SmartHBA-SA", &SA5_access},
195         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220         void __user *arg);
221 #endif
222
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227                                             struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230         int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 #define HPSA_SIMPLE_ERROR_BITS 0x03
234
235 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
236 static void hpsa_scan_start(struct Scsi_Host *);
237 static int hpsa_scan_finished(struct Scsi_Host *sh,
238         unsigned long elapsed_time);
239 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
240
241 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
243 static int hpsa_slave_alloc(struct scsi_device *sdev);
244 static int hpsa_slave_configure(struct scsi_device *sdev);
245 static void hpsa_slave_destroy(struct scsi_device *sdev);
246
247 static void hpsa_update_scsi_devices(struct ctlr_info *h);
248 static int check_for_unit_attention(struct ctlr_info *h,
249         struct CommandList *c);
250 static void check_ioctl_unit_attention(struct ctlr_info *h,
251         struct CommandList *c);
252 /* performant mode helper functions */
253 static void calc_bucket_map(int *bucket, int num_buckets,
254         int nsgs, int min_blocks, u32 *bucket_map);
255 static void hpsa_free_performant_mode(struct ctlr_info *h);
256 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
257 static inline u32 next_command(struct ctlr_info *h, u8 q);
258 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
259                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
260                                u64 *cfg_offset);
261 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
262                                     unsigned long *memory_bar);
263 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
264 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
265                                      int wait_for_ready);
266 static inline void finish_cmd(struct CommandList *c);
267 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
268 #define BOARD_NOT_READY 0
269 #define BOARD_READY 1
270 static void hpsa_drain_accel_commands(struct ctlr_info *h);
271 static void hpsa_flush_cache(struct ctlr_info *h);
272 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
273         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
274         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
275 static void hpsa_command_resubmit_worker(struct work_struct *work);
276 static u32 lockup_detected(struct ctlr_info *h);
277 static int detect_controller_lockup(struct ctlr_info *h);
278 static void hpsa_disable_rld_caching(struct ctlr_info *h);
279 static int hpsa_luns_changed(struct ctlr_info *h);
280
281 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
282 {
283         unsigned long *priv = shost_priv(sdev->host);
284         return (struct ctlr_info *) *priv;
285 }
286
287 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
288 {
289         unsigned long *priv = shost_priv(sh);
290         return (struct ctlr_info *) *priv;
291 }
292
293 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
294 {
295         return c->scsi_cmd == SCSI_CMD_IDLE;
296 }
297
298 static inline bool hpsa_is_pending_event(struct CommandList *c)
299 {
300         return c->abort_pending || c->reset_pending;
301 }
302
303 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
304 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
305                         u8 *sense_key, u8 *asc, u8 *ascq)
306 {
307         struct scsi_sense_hdr sshdr;
308         bool rc;
309
310         *sense_key = -1;
311         *asc = -1;
312         *ascq = -1;
313
314         if (sense_data_len < 1)
315                 return;
316
317         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
318         if (rc) {
319                 *sense_key = sshdr.sense_key;
320                 *asc = sshdr.asc;
321                 *ascq = sshdr.ascq;
322         }
323 }
324
325 static int check_for_unit_attention(struct ctlr_info *h,
326         struct CommandList *c)
327 {
328         u8 sense_key, asc, ascq;
329         int sense_len;
330
331         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
332                 sense_len = sizeof(c->err_info->SenseInfo);
333         else
334                 sense_len = c->err_info->SenseLen;
335
336         decode_sense_data(c->err_info->SenseInfo, sense_len,
337                                 &sense_key, &asc, &ascq);
338         if (sense_key != UNIT_ATTENTION || asc == 0xff)
339                 return 0;
340
341         switch (asc) {
342         case STATE_CHANGED:
343                 dev_warn(&h->pdev->dev,
344                         "%s: a state change detected, command retried\n",
345                         h->devname);
346                 break;
347         case LUN_FAILED:
348                 dev_warn(&h->pdev->dev,
349                         "%s: LUN failure detected\n", h->devname);
350                 break;
351         case REPORT_LUNS_CHANGED:
352                 dev_warn(&h->pdev->dev,
353                         "%s: report LUN data changed\n", h->devname);
354         /*
355          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
356          * target (array) devices.
357          */
358                 break;
359         case POWER_OR_RESET:
360                 dev_warn(&h->pdev->dev,
361                         "%s: a power on or device reset detected\n",
362                         h->devname);
363                 break;
364         case UNIT_ATTENTION_CLEARED:
365                 dev_warn(&h->pdev->dev,
366                         "%s: unit attention cleared by another initiator\n",
367                         h->devname);
368                 break;
369         default:
370                 dev_warn(&h->pdev->dev,
371                         "%s: unknown unit attention detected\n",
372                         h->devname);
373                 break;
374         }
375         return 1;
376 }
377
378 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
379 {
380         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
381                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
382                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
383                 return 0;
384         dev_warn(&h->pdev->dev, HPSA "device busy");
385         return 1;
386 }
387
388 static u32 lockup_detected(struct ctlr_info *h);
389 static ssize_t host_show_lockup_detected(struct device *dev,
390                 struct device_attribute *attr, char *buf)
391 {
392         int ld;
393         struct ctlr_info *h;
394         struct Scsi_Host *shost = class_to_shost(dev);
395
396         h = shost_to_hba(shost);
397         ld = lockup_detected(h);
398
399         return sprintf(buf, "ld=%d\n", ld);
400 }
401
402 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
403                                          struct device_attribute *attr,
404                                          const char *buf, size_t count)
405 {
406         int status, len;
407         struct ctlr_info *h;
408         struct Scsi_Host *shost = class_to_shost(dev);
409         char tmpbuf[10];
410
411         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
412                 return -EACCES;
413         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
414         strncpy(tmpbuf, buf, len);
415         tmpbuf[len] = '\0';
416         if (sscanf(tmpbuf, "%d", &status) != 1)
417                 return -EINVAL;
418         h = shost_to_hba(shost);
419         h->acciopath_status = !!status;
420         dev_warn(&h->pdev->dev,
421                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
422                 h->acciopath_status ? "enabled" : "disabled");
423         return count;
424 }
425
426 static ssize_t host_store_raid_offload_debug(struct device *dev,
427                                          struct device_attribute *attr,
428                                          const char *buf, size_t count)
429 {
430         int debug_level, len;
431         struct ctlr_info *h;
432         struct Scsi_Host *shost = class_to_shost(dev);
433         char tmpbuf[10];
434
435         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
436                 return -EACCES;
437         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
438         strncpy(tmpbuf, buf, len);
439         tmpbuf[len] = '\0';
440         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
441                 return -EINVAL;
442         if (debug_level < 0)
443                 debug_level = 0;
444         h = shost_to_hba(shost);
445         h->raid_offload_debug = debug_level;
446         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
447                 h->raid_offload_debug);
448         return count;
449 }
450
451 static ssize_t host_store_rescan(struct device *dev,
452                                  struct device_attribute *attr,
453                                  const char *buf, size_t count)
454 {
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         h = shost_to_hba(shost);
458         hpsa_scan_start(h->scsi_host);
459         return count;
460 }
461
462 static ssize_t host_show_firmware_revision(struct device *dev,
463              struct device_attribute *attr, char *buf)
464 {
465         struct ctlr_info *h;
466         struct Scsi_Host *shost = class_to_shost(dev);
467         unsigned char *fwrev;
468
469         h = shost_to_hba(shost);
470         if (!h->hba_inquiry_data)
471                 return 0;
472         fwrev = &h->hba_inquiry_data[32];
473         return snprintf(buf, 20, "%c%c%c%c\n",
474                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
475 }
476
477 static ssize_t host_show_commands_outstanding(struct device *dev,
478              struct device_attribute *attr, char *buf)
479 {
480         struct Scsi_Host *shost = class_to_shost(dev);
481         struct ctlr_info *h = shost_to_hba(shost);
482
483         return snprintf(buf, 20, "%d\n",
484                         atomic_read(&h->commands_outstanding));
485 }
486
487 static ssize_t host_show_transport_mode(struct device *dev,
488         struct device_attribute *attr, char *buf)
489 {
490         struct ctlr_info *h;
491         struct Scsi_Host *shost = class_to_shost(dev);
492
493         h = shost_to_hba(shost);
494         return snprintf(buf, 20, "%s\n",
495                 h->transMethod & CFGTBL_Trans_Performant ?
496                         "performant" : "simple");
497 }
498
499 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
500         struct device_attribute *attr, char *buf)
501 {
502         struct ctlr_info *h;
503         struct Scsi_Host *shost = class_to_shost(dev);
504
505         h = shost_to_hba(shost);
506         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
507                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
508 }
509
510 /* List of controllers which cannot be hard reset on kexec with reset_devices */
511 static u32 unresettable_controller[] = {
512         0x324a103C, /* Smart Array P712m */
513         0x324b103C, /* Smart Array P711m */
514         0x3223103C, /* Smart Array P800 */
515         0x3234103C, /* Smart Array P400 */
516         0x3235103C, /* Smart Array P400i */
517         0x3211103C, /* Smart Array E200i */
518         0x3212103C, /* Smart Array E200 */
519         0x3213103C, /* Smart Array E200i */
520         0x3214103C, /* Smart Array E200i */
521         0x3215103C, /* Smart Array E200i */
522         0x3237103C, /* Smart Array E500 */
523         0x323D103C, /* Smart Array P700m */
524         0x40800E11, /* Smart Array 5i */
525         0x409C0E11, /* Smart Array 6400 */
526         0x409D0E11, /* Smart Array 6400 EM */
527         0x40700E11, /* Smart Array 5300 */
528         0x40820E11, /* Smart Array 532 */
529         0x40830E11, /* Smart Array 5312 */
530         0x409A0E11, /* Smart Array 641 */
531         0x409B0E11, /* Smart Array 642 */
532         0x40910E11, /* Smart Array 6i */
533 };
534
535 /* List of controllers which cannot even be soft reset */
536 static u32 soft_unresettable_controller[] = {
537         0x40800E11, /* Smart Array 5i */
538         0x40700E11, /* Smart Array 5300 */
539         0x40820E11, /* Smart Array 532 */
540         0x40830E11, /* Smart Array 5312 */
541         0x409A0E11, /* Smart Array 641 */
542         0x409B0E11, /* Smart Array 642 */
543         0x40910E11, /* Smart Array 6i */
544         /* Exclude 640x boards.  These are two pci devices in one slot
545          * which share a battery backed cache module.  One controls the
546          * cache, the other accesses the cache through the one that controls
547          * it.  If we reset the one controlling the cache, the other will
548          * likely not be happy.  Just forbid resetting this conjoined mess.
549          * The 640x isn't really supported by hpsa anyway.
550          */
551         0x409C0E11, /* Smart Array 6400 */
552         0x409D0E11, /* Smart Array 6400 EM */
553 };
554
555 static u32 needs_abort_tags_swizzled[] = {
556         0x323D103C, /* Smart Array P700m */
557         0x324a103C, /* Smart Array P712m */
558         0x324b103C, /* SmartArray P711m */
559 };
560
561 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
562 {
563         int i;
564
565         for (i = 0; i < nelems; i++)
566                 if (a[i] == board_id)
567                         return 1;
568         return 0;
569 }
570
571 static int ctlr_is_hard_resettable(u32 board_id)
572 {
573         return !board_id_in_array(unresettable_controller,
574                         ARRAY_SIZE(unresettable_controller), board_id);
575 }
576
577 static int ctlr_is_soft_resettable(u32 board_id)
578 {
579         return !board_id_in_array(soft_unresettable_controller,
580                         ARRAY_SIZE(soft_unresettable_controller), board_id);
581 }
582
583 static int ctlr_is_resettable(u32 board_id)
584 {
585         return ctlr_is_hard_resettable(board_id) ||
586                 ctlr_is_soft_resettable(board_id);
587 }
588
589 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
590 {
591         return board_id_in_array(needs_abort_tags_swizzled,
592                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
593 }
594
595 static ssize_t host_show_resettable(struct device *dev,
596         struct device_attribute *attr, char *buf)
597 {
598         struct ctlr_info *h;
599         struct Scsi_Host *shost = class_to_shost(dev);
600
601         h = shost_to_hba(shost);
602         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
603 }
604
605 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
606 {
607         return (scsi3addr[3] & 0xC0) == 0x40;
608 }
609
610 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
611         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
612 };
613 #define HPSA_RAID_0     0
614 #define HPSA_RAID_4     1
615 #define HPSA_RAID_1     2       /* also used for RAID 10 */
616 #define HPSA_RAID_5     3       /* also used for RAID 50 */
617 #define HPSA_RAID_51    4
618 #define HPSA_RAID_6     5       /* also used for RAID 60 */
619 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
620 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
621 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
622
623 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
624 {
625         return !device->physical_device;
626 }
627
628 static ssize_t raid_level_show(struct device *dev,
629              struct device_attribute *attr, char *buf)
630 {
631         ssize_t l = 0;
632         unsigned char rlevel;
633         struct ctlr_info *h;
634         struct scsi_device *sdev;
635         struct hpsa_scsi_dev_t *hdev;
636         unsigned long flags;
637
638         sdev = to_scsi_device(dev);
639         h = sdev_to_hba(sdev);
640         spin_lock_irqsave(&h->lock, flags);
641         hdev = sdev->hostdata;
642         if (!hdev) {
643                 spin_unlock_irqrestore(&h->lock, flags);
644                 return -ENODEV;
645         }
646
647         /* Is this even a logical drive? */
648         if (!is_logical_device(hdev)) {
649                 spin_unlock_irqrestore(&h->lock, flags);
650                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
651                 return l;
652         }
653
654         rlevel = hdev->raid_level;
655         spin_unlock_irqrestore(&h->lock, flags);
656         if (rlevel > RAID_UNKNOWN)
657                 rlevel = RAID_UNKNOWN;
658         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
659         return l;
660 }
661
662 static ssize_t lunid_show(struct device *dev,
663              struct device_attribute *attr, char *buf)
664 {
665         struct ctlr_info *h;
666         struct scsi_device *sdev;
667         struct hpsa_scsi_dev_t *hdev;
668         unsigned long flags;
669         unsigned char lunid[8];
670
671         sdev = to_scsi_device(dev);
672         h = sdev_to_hba(sdev);
673         spin_lock_irqsave(&h->lock, flags);
674         hdev = sdev->hostdata;
675         if (!hdev) {
676                 spin_unlock_irqrestore(&h->lock, flags);
677                 return -ENODEV;
678         }
679         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
680         spin_unlock_irqrestore(&h->lock, flags);
681         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
682                 lunid[0], lunid[1], lunid[2], lunid[3],
683                 lunid[4], lunid[5], lunid[6], lunid[7]);
684 }
685
686 static ssize_t unique_id_show(struct device *dev,
687              struct device_attribute *attr, char *buf)
688 {
689         struct ctlr_info *h;
690         struct scsi_device *sdev;
691         struct hpsa_scsi_dev_t *hdev;
692         unsigned long flags;
693         unsigned char sn[16];
694
695         sdev = to_scsi_device(dev);
696         h = sdev_to_hba(sdev);
697         spin_lock_irqsave(&h->lock, flags);
698         hdev = sdev->hostdata;
699         if (!hdev) {
700                 spin_unlock_irqrestore(&h->lock, flags);
701                 return -ENODEV;
702         }
703         memcpy(sn, hdev->device_id, sizeof(sn));
704         spin_unlock_irqrestore(&h->lock, flags);
705         return snprintf(buf, 16 * 2 + 2,
706                         "%02X%02X%02X%02X%02X%02X%02X%02X"
707                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
708                         sn[0], sn[1], sn[2], sn[3],
709                         sn[4], sn[5], sn[6], sn[7],
710                         sn[8], sn[9], sn[10], sn[11],
711                         sn[12], sn[13], sn[14], sn[15]);
712 }
713
714 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
715              struct device_attribute *attr, char *buf)
716 {
717         struct ctlr_info *h;
718         struct scsi_device *sdev;
719         struct hpsa_scsi_dev_t *hdev;
720         unsigned long flags;
721         int offload_enabled;
722
723         sdev = to_scsi_device(dev);
724         h = sdev_to_hba(sdev);
725         spin_lock_irqsave(&h->lock, flags);
726         hdev = sdev->hostdata;
727         if (!hdev) {
728                 spin_unlock_irqrestore(&h->lock, flags);
729                 return -ENODEV;
730         }
731         offload_enabled = hdev->offload_enabled;
732         spin_unlock_irqrestore(&h->lock, flags);
733         return snprintf(buf, 20, "%d\n", offload_enabled);
734 }
735
736 #define MAX_PATHS 8
737 #define PATH_STRING_LEN 50
738
739 static ssize_t path_info_show(struct device *dev,
740              struct device_attribute *attr, char *buf)
741 {
742         struct ctlr_info *h;
743         struct scsi_device *sdev;
744         struct hpsa_scsi_dev_t *hdev;
745         unsigned long flags;
746         int i;
747         int output_len = 0;
748         u8 box;
749         u8 bay;
750         u8 path_map_index = 0;
751         char *active;
752         unsigned char phys_connector[2];
753         unsigned char path[MAX_PATHS][PATH_STRING_LEN];
754
755         memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
756         sdev = to_scsi_device(dev);
757         h = sdev_to_hba(sdev);
758         spin_lock_irqsave(&h->devlock, flags);
759         hdev = sdev->hostdata;
760         if (!hdev) {
761                 spin_unlock_irqrestore(&h->devlock, flags);
762                 return -ENODEV;
763         }
764
765         bay = hdev->bay;
766         for (i = 0; i < MAX_PATHS; i++) {
767                 path_map_index = 1<<i;
768                 if (i == hdev->active_path_index)
769                         active = "Active";
770                 else if (hdev->path_map & path_map_index)
771                         active = "Inactive";
772                 else
773                         continue;
774
775                 output_len = snprintf(path[i],
776                                 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
777                                 h->scsi_host->host_no,
778                                 hdev->bus, hdev->target, hdev->lun,
779                                 scsi_device_type(hdev->devtype));
780
781                 if (hdev->external ||
782                         hdev->devtype == TYPE_RAID ||
783                         is_logical_device(hdev)) {
784                         output_len += snprintf(path[i] + output_len,
785                                                 PATH_STRING_LEN, "%s\n",
786                                                 active);
787                         continue;
788                 }
789
790                 box = hdev->box[i];
791                 memcpy(&phys_connector, &hdev->phys_connector[i],
792                         sizeof(phys_connector));
793                 if (phys_connector[0] < '0')
794                         phys_connector[0] = '0';
795                 if (phys_connector[1] < '0')
796                         phys_connector[1] = '0';
797                 if (hdev->phys_connector[i] > 0)
798                         output_len += snprintf(path[i] + output_len,
799                                 PATH_STRING_LEN,
800                                 "PORT: %.2s ",
801                                 phys_connector);
802                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
803                         if (box == 0 || box == 0xFF) {
804                                 output_len += snprintf(path[i] + output_len,
805                                         PATH_STRING_LEN,
806                                         "BAY: %hhu %s\n",
807                                         bay, active);
808                         } else {
809                                 output_len += snprintf(path[i] + output_len,
810                                         PATH_STRING_LEN,
811                                         "BOX: %hhu BAY: %hhu %s\n",
812                                         box, bay, active);
813                         }
814                 } else if (box != 0 && box != 0xFF) {
815                         output_len += snprintf(path[i] + output_len,
816                                 PATH_STRING_LEN, "BOX: %hhu %s\n",
817                                 box, active);
818                 } else
819                         output_len += snprintf(path[i] + output_len,
820                                 PATH_STRING_LEN, "%s\n", active);
821         }
822
823         spin_unlock_irqrestore(&h->devlock, flags);
824         return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
825                 path[0], path[1], path[2], path[3],
826                 path[4], path[5], path[6], path[7]);
827 }
828
829 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
830 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
831 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
832 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
833 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
834                         host_show_hp_ssd_smart_path_enabled, NULL);
835 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
836 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
837                 host_show_hp_ssd_smart_path_status,
838                 host_store_hp_ssd_smart_path_status);
839 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
840                         host_store_raid_offload_debug);
841 static DEVICE_ATTR(firmware_revision, S_IRUGO,
842         host_show_firmware_revision, NULL);
843 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
844         host_show_commands_outstanding, NULL);
845 static DEVICE_ATTR(transport_mode, S_IRUGO,
846         host_show_transport_mode, NULL);
847 static DEVICE_ATTR(resettable, S_IRUGO,
848         host_show_resettable, NULL);
849 static DEVICE_ATTR(lockup_detected, S_IRUGO,
850         host_show_lockup_detected, NULL);
851
852 static struct device_attribute *hpsa_sdev_attrs[] = {
853         &dev_attr_raid_level,
854         &dev_attr_lunid,
855         &dev_attr_unique_id,
856         &dev_attr_hp_ssd_smart_path_enabled,
857         &dev_attr_path_info,
858         &dev_attr_lockup_detected,
859         NULL,
860 };
861
862 static struct device_attribute *hpsa_shost_attrs[] = {
863         &dev_attr_rescan,
864         &dev_attr_firmware_revision,
865         &dev_attr_commands_outstanding,
866         &dev_attr_transport_mode,
867         &dev_attr_resettable,
868         &dev_attr_hp_ssd_smart_path_status,
869         &dev_attr_raid_offload_debug,
870         NULL,
871 };
872
873 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
874                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
875
876 static struct scsi_host_template hpsa_driver_template = {
877         .module                 = THIS_MODULE,
878         .name                   = HPSA,
879         .proc_name              = HPSA,
880         .queuecommand           = hpsa_scsi_queue_command,
881         .scan_start             = hpsa_scan_start,
882         .scan_finished          = hpsa_scan_finished,
883         .change_queue_depth     = hpsa_change_queue_depth,
884         .this_id                = -1,
885         .use_clustering         = ENABLE_CLUSTERING,
886         .eh_abort_handler       = hpsa_eh_abort_handler,
887         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
888         .ioctl                  = hpsa_ioctl,
889         .slave_alloc            = hpsa_slave_alloc,
890         .slave_configure        = hpsa_slave_configure,
891         .slave_destroy          = hpsa_slave_destroy,
892 #ifdef CONFIG_COMPAT
893         .compat_ioctl           = hpsa_compat_ioctl,
894 #endif
895         .sdev_attrs = hpsa_sdev_attrs,
896         .shost_attrs = hpsa_shost_attrs,
897         .max_sectors = 8192,
898         .no_write_same = 1,
899 };
900
901 static inline u32 next_command(struct ctlr_info *h, u8 q)
902 {
903         u32 a;
904         struct reply_queue_buffer *rq = &h->reply_queue[q];
905
906         if (h->transMethod & CFGTBL_Trans_io_accel1)
907                 return h->access.command_completed(h, q);
908
909         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
910                 return h->access.command_completed(h, q);
911
912         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
913                 a = rq->head[rq->current_entry];
914                 rq->current_entry++;
915                 atomic_dec(&h->commands_outstanding);
916         } else {
917                 a = FIFO_EMPTY;
918         }
919         /* Check for wraparound */
920         if (rq->current_entry == h->max_commands) {
921                 rq->current_entry = 0;
922                 rq->wraparound ^= 1;
923         }
924         return a;
925 }
926
927 /*
928  * There are some special bits in the bus address of the
929  * command that we have to set for the controller to know
930  * how to process the command:
931  *
932  * Normal performant mode:
933  * bit 0: 1 means performant mode, 0 means simple mode.
934  * bits 1-3 = block fetch table entry
935  * bits 4-6 = command type (== 0)
936  *
937  * ioaccel1 mode:
938  * bit 0 = "performant mode" bit.
939  * bits 1-3 = block fetch table entry
940  * bits 4-6 = command type (== 110)
941  * (command type is needed because ioaccel1 mode
942  * commands are submitted through the same register as normal
943  * mode commands, so this is how the controller knows whether
944  * the command is normal mode or ioaccel1 mode.)
945  *
946  * ioaccel2 mode:
947  * bit 0 = "performant mode" bit.
948  * bits 1-4 = block fetch table entry (note extra bit)
949  * bits 4-6 = not needed, because ioaccel2 mode has
950  * a separate special register for submitting commands.
951  */
952
953 /*
954  * set_performant_mode: Modify the tag for cciss performant
955  * set bit 0 for pull model, bits 3-1 for block fetch
956  * register number
957  */
958 #define DEFAULT_REPLY_QUEUE (-1)
959 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
960                                         int reply_queue)
961 {
962         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
963                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
964                 if (unlikely(!h->msix_vector))
965                         return;
966                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
967                         c->Header.ReplyQueue =
968                                 raw_smp_processor_id() % h->nreply_queues;
969                 else
970                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
971         }
972 }
973
974 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
975                                                 struct CommandList *c,
976                                                 int reply_queue)
977 {
978         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
979
980         /*
981          * Tell the controller to post the reply to the queue for this
982          * processor.  This seems to give the best I/O throughput.
983          */
984         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
985                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
986         else
987                 cp->ReplyQueue = reply_queue % h->nreply_queues;
988         /*
989          * Set the bits in the address sent down to include:
990          *  - performant mode bit (bit 0)
991          *  - pull count (bits 1-3)
992          *  - command type (bits 4-6)
993          */
994         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
995                                         IOACCEL1_BUSADDR_CMDTYPE;
996 }
997
998 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
999                                                 struct CommandList *c,
1000                                                 int reply_queue)
1001 {
1002         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1003                 &h->ioaccel2_cmd_pool[c->cmdindex];
1004
1005         /* Tell the controller to post the reply to the queue for this
1006          * processor.  This seems to give the best I/O throughput.
1007          */
1008         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1009                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1010         else
1011                 cp->reply_queue = reply_queue % h->nreply_queues;
1012         /* Set the bits in the address sent down to include:
1013          *  - performant mode bit not used in ioaccel mode 2
1014          *  - pull count (bits 0-3)
1015          *  - command type isn't needed for ioaccel2
1016          */
1017         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1018 }
1019
1020 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1021                                                 struct CommandList *c,
1022                                                 int reply_queue)
1023 {
1024         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1025
1026         /*
1027          * Tell the controller to post the reply to the queue for this
1028          * processor.  This seems to give the best I/O throughput.
1029          */
1030         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1031                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1032         else
1033                 cp->reply_queue = reply_queue % h->nreply_queues;
1034         /*
1035          * Set the bits in the address sent down to include:
1036          *  - performant mode bit not used in ioaccel mode 2
1037          *  - pull count (bits 0-3)
1038          *  - command type isn't needed for ioaccel2
1039          */
1040         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1041 }
1042
1043 static int is_firmware_flash_cmd(u8 *cdb)
1044 {
1045         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1046 }
1047
1048 /*
1049  * During firmware flash, the heartbeat register may not update as frequently
1050  * as it should.  So we dial down lockup detection during firmware flash. and
1051  * dial it back up when firmware flash completes.
1052  */
1053 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1054 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1055 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1056                 struct CommandList *c)
1057 {
1058         if (!is_firmware_flash_cmd(c->Request.CDB))
1059                 return;
1060         atomic_inc(&h->firmware_flash_in_progress);
1061         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1062 }
1063
1064 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1065                 struct CommandList *c)
1066 {
1067         if (is_firmware_flash_cmd(c->Request.CDB) &&
1068                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1069                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1070 }
1071
1072 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1073         struct CommandList *c, int reply_queue)
1074 {
1075         dial_down_lockup_detection_during_fw_flash(h, c);
1076         atomic_inc(&h->commands_outstanding);
1077         switch (c->cmd_type) {
1078         case CMD_IOACCEL1:
1079                 set_ioaccel1_performant_mode(h, c, reply_queue);
1080                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1081                 break;
1082         case CMD_IOACCEL2:
1083                 set_ioaccel2_performant_mode(h, c, reply_queue);
1084                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1085                 break;
1086         case IOACCEL2_TMF:
1087                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1088                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1089                 break;
1090         default:
1091                 set_performant_mode(h, c, reply_queue);
1092                 h->access.submit_command(h, c);
1093         }
1094 }
1095
1096 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1097 {
1098         if (unlikely(hpsa_is_pending_event(c)))
1099                 return finish_cmd(c);
1100
1101         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1102 }
1103
1104 static inline int is_hba_lunid(unsigned char scsi3addr[])
1105 {
1106         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1107 }
1108
1109 static inline int is_scsi_rev_5(struct ctlr_info *h)
1110 {
1111         if (!h->hba_inquiry_data)
1112                 return 0;
1113         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1114                 return 1;
1115         return 0;
1116 }
1117
1118 static int hpsa_find_target_lun(struct ctlr_info *h,
1119         unsigned char scsi3addr[], int bus, int *target, int *lun)
1120 {
1121         /* finds an unused bus, target, lun for a new physical device
1122          * assumes h->devlock is held
1123          */
1124         int i, found = 0;
1125         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1126
1127         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1128
1129         for (i = 0; i < h->ndevices; i++) {
1130                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1131                         __set_bit(h->dev[i]->target, lun_taken);
1132         }
1133
1134         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1135         if (i < HPSA_MAX_DEVICES) {
1136                 /* *bus = 1; */
1137                 *target = i;
1138                 *lun = 0;
1139                 found = 1;
1140         }
1141         return !found;
1142 }
1143
1144 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1145         struct hpsa_scsi_dev_t *dev, char *description)
1146 {
1147 #define LABEL_SIZE 25
1148         char label[LABEL_SIZE];
1149
1150         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1151                 return;
1152
1153         switch (dev->devtype) {
1154         case TYPE_RAID:
1155                 snprintf(label, LABEL_SIZE, "controller");
1156                 break;
1157         case TYPE_ENCLOSURE:
1158                 snprintf(label, LABEL_SIZE, "enclosure");
1159                 break;
1160         case TYPE_DISK:
1161                 if (dev->external)
1162                         snprintf(label, LABEL_SIZE, "external");
1163                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1164                         snprintf(label, LABEL_SIZE, "%s",
1165                                 raid_label[PHYSICAL_DRIVE]);
1166                 else
1167                         snprintf(label, LABEL_SIZE, "RAID-%s",
1168                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1169                                 raid_label[dev->raid_level]);
1170                 break;
1171         case TYPE_ROM:
1172                 snprintf(label, LABEL_SIZE, "rom");
1173                 break;
1174         case TYPE_TAPE:
1175                 snprintf(label, LABEL_SIZE, "tape");
1176                 break;
1177         case TYPE_MEDIUM_CHANGER:
1178                 snprintf(label, LABEL_SIZE, "changer");
1179                 break;
1180         default:
1181                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1182                 break;
1183         }
1184
1185         dev_printk(level, &h->pdev->dev,
1186                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1187                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1188                         description,
1189                         scsi_device_type(dev->devtype),
1190                         dev->vendor,
1191                         dev->model,
1192                         label,
1193                         dev->offload_config ? '+' : '-',
1194                         dev->offload_enabled ? '+' : '-',
1195                         dev->expose_device);
1196 }
1197
1198 /* Add an entry into h->dev[] array. */
1199 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1200                 struct hpsa_scsi_dev_t *device,
1201                 struct hpsa_scsi_dev_t *added[], int *nadded)
1202 {
1203         /* assumes h->devlock is held */
1204         int n = h->ndevices;
1205         int i;
1206         unsigned char addr1[8], addr2[8];
1207         struct hpsa_scsi_dev_t *sd;
1208
1209         if (n >= HPSA_MAX_DEVICES) {
1210                 dev_err(&h->pdev->dev, "too many devices, some will be "
1211                         "inaccessible.\n");
1212                 return -1;
1213         }
1214
1215         /* physical devices do not have lun or target assigned until now. */
1216         if (device->lun != -1)
1217                 /* Logical device, lun is already assigned. */
1218                 goto lun_assigned;
1219
1220         /* If this device a non-zero lun of a multi-lun device
1221          * byte 4 of the 8-byte LUN addr will contain the logical
1222          * unit no, zero otherwise.
1223          */
1224         if (device->scsi3addr[4] == 0) {
1225                 /* This is not a non-zero lun of a multi-lun device */
1226                 if (hpsa_find_target_lun(h, device->scsi3addr,
1227                         device->bus, &device->target, &device->lun) != 0)
1228                         return -1;
1229                 goto lun_assigned;
1230         }
1231
1232         /* This is a non-zero lun of a multi-lun device.
1233          * Search through our list and find the device which
1234          * has the same 8 byte LUN address, excepting byte 4 and 5.
1235          * Assign the same bus and target for this new LUN.
1236          * Use the logical unit number from the firmware.
1237          */
1238         memcpy(addr1, device->scsi3addr, 8);
1239         addr1[4] = 0;
1240         addr1[5] = 0;
1241         for (i = 0; i < n; i++) {
1242                 sd = h->dev[i];
1243                 memcpy(addr2, sd->scsi3addr, 8);
1244                 addr2[4] = 0;
1245                 addr2[5] = 0;
1246                 /* differ only in byte 4 and 5? */
1247                 if (memcmp(addr1, addr2, 8) == 0) {
1248                         device->bus = sd->bus;
1249                         device->target = sd->target;
1250                         device->lun = device->scsi3addr[4];
1251                         break;
1252                 }
1253         }
1254         if (device->lun == -1) {
1255                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1256                         " suspect firmware bug or unsupported hardware "
1257                         "configuration.\n");
1258                         return -1;
1259         }
1260
1261 lun_assigned:
1262
1263         h->dev[n] = device;
1264         h->ndevices++;
1265         added[*nadded] = device;
1266         (*nadded)++;
1267         hpsa_show_dev_msg(KERN_INFO, h, device,
1268                 device->expose_device ? "added" : "masked");
1269         device->offload_to_be_enabled = device->offload_enabled;
1270         device->offload_enabled = 0;
1271         return 0;
1272 }
1273
1274 /* Update an entry in h->dev[] array. */
1275 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1276         int entry, struct hpsa_scsi_dev_t *new_entry)
1277 {
1278         int offload_enabled;
1279         /* assumes h->devlock is held */
1280         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1281
1282         /* Raid level changed. */
1283         h->dev[entry]->raid_level = new_entry->raid_level;
1284
1285         /* Raid offload parameters changed.  Careful about the ordering. */
1286         if (new_entry->offload_config && new_entry->offload_enabled) {
1287                 /*
1288                  * if drive is newly offload_enabled, we want to copy the
1289                  * raid map data first.  If previously offload_enabled and
1290                  * offload_config were set, raid map data had better be
1291                  * the same as it was before.  if raid map data is changed
1292                  * then it had better be the case that
1293                  * h->dev[entry]->offload_enabled is currently 0.
1294                  */
1295                 h->dev[entry]->raid_map = new_entry->raid_map;
1296                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1297         }
1298         if (new_entry->hba_ioaccel_enabled) {
1299                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1300                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1301         }
1302         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1303         h->dev[entry]->offload_config = new_entry->offload_config;
1304         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1305         h->dev[entry]->queue_depth = new_entry->queue_depth;
1306
1307         /*
1308          * We can turn off ioaccel offload now, but need to delay turning
1309          * it on until we can update h->dev[entry]->phys_disk[], but we
1310          * can't do that until all the devices are updated.
1311          */
1312         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1313         if (!new_entry->offload_enabled)
1314                 h->dev[entry]->offload_enabled = 0;
1315
1316         offload_enabled = h->dev[entry]->offload_enabled;
1317         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1318         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1319         h->dev[entry]->offload_enabled = offload_enabled;
1320 }
1321
1322 /* Replace an entry from h->dev[] array. */
1323 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1324         int entry, struct hpsa_scsi_dev_t *new_entry,
1325         struct hpsa_scsi_dev_t *added[], int *nadded,
1326         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1327 {
1328         /* assumes h->devlock is held */
1329         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1330         removed[*nremoved] = h->dev[entry];
1331         (*nremoved)++;
1332
1333         /*
1334          * New physical devices won't have target/lun assigned yet
1335          * so we need to preserve the values in the slot we are replacing.
1336          */
1337         if (new_entry->target == -1) {
1338                 new_entry->target = h->dev[entry]->target;
1339                 new_entry->lun = h->dev[entry]->lun;
1340         }
1341
1342         h->dev[entry] = new_entry;
1343         added[*nadded] = new_entry;
1344         (*nadded)++;
1345         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1346         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1347         new_entry->offload_enabled = 0;
1348 }
1349
1350 /* Remove an entry from h->dev[] array. */
1351 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1352         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1353 {
1354         /* assumes h->devlock is held */
1355         int i;
1356         struct hpsa_scsi_dev_t *sd;
1357
1358         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1359
1360         sd = h->dev[entry];
1361         removed[*nremoved] = h->dev[entry];
1362         (*nremoved)++;
1363
1364         for (i = entry; i < h->ndevices-1; i++)
1365                 h->dev[i] = h->dev[i+1];
1366         h->ndevices--;
1367         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1368 }
1369
1370 #define SCSI3ADDR_EQ(a, b) ( \
1371         (a)[7] == (b)[7] && \
1372         (a)[6] == (b)[6] && \
1373         (a)[5] == (b)[5] && \
1374         (a)[4] == (b)[4] && \
1375         (a)[3] == (b)[3] && \
1376         (a)[2] == (b)[2] && \
1377         (a)[1] == (b)[1] && \
1378         (a)[0] == (b)[0])
1379
1380 static void fixup_botched_add(struct ctlr_info *h,
1381         struct hpsa_scsi_dev_t *added)
1382 {
1383         /* called when scsi_add_device fails in order to re-adjust
1384          * h->dev[] to match the mid layer's view.
1385          */
1386         unsigned long flags;
1387         int i, j;
1388
1389         spin_lock_irqsave(&h->lock, flags);
1390         for (i = 0; i < h->ndevices; i++) {
1391                 if (h->dev[i] == added) {
1392                         for (j = i; j < h->ndevices-1; j++)
1393                                 h->dev[j] = h->dev[j+1];
1394                         h->ndevices--;
1395                         break;
1396                 }
1397         }
1398         spin_unlock_irqrestore(&h->lock, flags);
1399         kfree(added);
1400 }
1401
1402 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1403         struct hpsa_scsi_dev_t *dev2)
1404 {
1405         /* we compare everything except lun and target as these
1406          * are not yet assigned.  Compare parts likely
1407          * to differ first
1408          */
1409         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1410                 sizeof(dev1->scsi3addr)) != 0)
1411                 return 0;
1412         if (memcmp(dev1->device_id, dev2->device_id,
1413                 sizeof(dev1->device_id)) != 0)
1414                 return 0;
1415         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1416                 return 0;
1417         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1418                 return 0;
1419         if (dev1->devtype != dev2->devtype)
1420                 return 0;
1421         if (dev1->bus != dev2->bus)
1422                 return 0;
1423         return 1;
1424 }
1425
1426 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1427         struct hpsa_scsi_dev_t *dev2)
1428 {
1429         /* Device attributes that can change, but don't mean
1430          * that the device is a different device, nor that the OS
1431          * needs to be told anything about the change.
1432          */
1433         if (dev1->raid_level != dev2->raid_level)
1434                 return 1;
1435         if (dev1->offload_config != dev2->offload_config)
1436                 return 1;
1437         if (dev1->offload_enabled != dev2->offload_enabled)
1438                 return 1;
1439         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1440                 if (dev1->queue_depth != dev2->queue_depth)
1441                         return 1;
1442         return 0;
1443 }
1444
1445 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1446  * and return needle location in *index.  If scsi3addr matches, but not
1447  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1448  * location in *index.
1449  * In the case of a minor device attribute change, such as RAID level, just
1450  * return DEVICE_UPDATED, along with the updated device's location in index.
1451  * If needle not found, return DEVICE_NOT_FOUND.
1452  */
1453 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1454         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1455         int *index)
1456 {
1457         int i;
1458 #define DEVICE_NOT_FOUND 0
1459 #define DEVICE_CHANGED 1
1460 #define DEVICE_SAME 2
1461 #define DEVICE_UPDATED 3
1462         if (needle == NULL)
1463                 return DEVICE_NOT_FOUND;
1464
1465         for (i = 0; i < haystack_size; i++) {
1466                 if (haystack[i] == NULL) /* previously removed. */
1467                         continue;
1468                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1469                         *index = i;
1470                         if (device_is_the_same(needle, haystack[i])) {
1471                                 if (device_updated(needle, haystack[i]))
1472                                         return DEVICE_UPDATED;
1473                                 return DEVICE_SAME;
1474                         } else {
1475                                 /* Keep offline devices offline */
1476                                 if (needle->volume_offline)
1477                                         return DEVICE_NOT_FOUND;
1478                                 return DEVICE_CHANGED;
1479                         }
1480                 }
1481         }
1482         *index = -1;
1483         return DEVICE_NOT_FOUND;
1484 }
1485
1486 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1487                                         unsigned char scsi3addr[])
1488 {
1489         struct offline_device_entry *device;
1490         unsigned long flags;
1491
1492         /* Check to see if device is already on the list */
1493         spin_lock_irqsave(&h->offline_device_lock, flags);
1494         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1495                 if (memcmp(device->scsi3addr, scsi3addr,
1496                         sizeof(device->scsi3addr)) == 0) {
1497                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1498                         return;
1499                 }
1500         }
1501         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1502
1503         /* Device is not on the list, add it. */
1504         device = kmalloc(sizeof(*device), GFP_KERNEL);
1505         if (!device) {
1506                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1507                 return;
1508         }
1509         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1510         spin_lock_irqsave(&h->offline_device_lock, flags);
1511         list_add_tail(&device->offline_list, &h->offline_device_list);
1512         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1513 }
1514
1515 /* Print a message explaining various offline volume states */
1516 static void hpsa_show_volume_status(struct ctlr_info *h,
1517         struct hpsa_scsi_dev_t *sd)
1518 {
1519         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1520                 dev_info(&h->pdev->dev,
1521                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1522                         h->scsi_host->host_no,
1523                         sd->bus, sd->target, sd->lun);
1524         switch (sd->volume_offline) {
1525         case HPSA_LV_OK:
1526                 break;
1527         case HPSA_LV_UNDERGOING_ERASE:
1528                 dev_info(&h->pdev->dev,
1529                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1530                         h->scsi_host->host_no,
1531                         sd->bus, sd->target, sd->lun);
1532                 break;
1533         case HPSA_LV_NOT_AVAILABLE:
1534                 dev_info(&h->pdev->dev,
1535                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1536                         h->scsi_host->host_no,
1537                         sd->bus, sd->target, sd->lun);
1538                 break;
1539         case HPSA_LV_UNDERGOING_RPI:
1540                 dev_info(&h->pdev->dev,
1541                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1542                         h->scsi_host->host_no,
1543                         sd->bus, sd->target, sd->lun);
1544                 break;
1545         case HPSA_LV_PENDING_RPI:
1546                 dev_info(&h->pdev->dev,
1547                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1548                         h->scsi_host->host_no,
1549                         sd->bus, sd->target, sd->lun);
1550                 break;
1551         case HPSA_LV_ENCRYPTED_NO_KEY:
1552                 dev_info(&h->pdev->dev,
1553                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1554                         h->scsi_host->host_no,
1555                         sd->bus, sd->target, sd->lun);
1556                 break;
1557         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1558                 dev_info(&h->pdev->dev,
1559                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1560                         h->scsi_host->host_no,
1561                         sd->bus, sd->target, sd->lun);
1562                 break;
1563         case HPSA_LV_UNDERGOING_ENCRYPTION:
1564                 dev_info(&h->pdev->dev,
1565                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1566                         h->scsi_host->host_no,
1567                         sd->bus, sd->target, sd->lun);
1568                 break;
1569         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1570                 dev_info(&h->pdev->dev,
1571                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1572                         h->scsi_host->host_no,
1573                         sd->bus, sd->target, sd->lun);
1574                 break;
1575         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1576                 dev_info(&h->pdev->dev,
1577                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1578                         h->scsi_host->host_no,
1579                         sd->bus, sd->target, sd->lun);
1580                 break;
1581         case HPSA_LV_PENDING_ENCRYPTION:
1582                 dev_info(&h->pdev->dev,
1583                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1584                         h->scsi_host->host_no,
1585                         sd->bus, sd->target, sd->lun);
1586                 break;
1587         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1588                 dev_info(&h->pdev->dev,
1589                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1590                         h->scsi_host->host_no,
1591                         sd->bus, sd->target, sd->lun);
1592                 break;
1593         }
1594 }
1595
1596 /*
1597  * Figure the list of physical drive pointers for a logical drive with
1598  * raid offload configured.
1599  */
1600 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1601                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1602                                 struct hpsa_scsi_dev_t *logical_drive)
1603 {
1604         struct raid_map_data *map = &logical_drive->raid_map;
1605         struct raid_map_disk_data *dd = &map->data[0];
1606         int i, j;
1607         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1608                                 le16_to_cpu(map->metadata_disks_per_row);
1609         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1610                                 le16_to_cpu(map->layout_map_count) *
1611                                 total_disks_per_row;
1612         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1613                                 total_disks_per_row;
1614         int qdepth;
1615
1616         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1617                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1618
1619         logical_drive->nphysical_disks = nraid_map_entries;
1620
1621         qdepth = 0;
1622         for (i = 0; i < nraid_map_entries; i++) {
1623                 logical_drive->phys_disk[i] = NULL;
1624                 if (!logical_drive->offload_config)
1625                         continue;
1626                 for (j = 0; j < ndevices; j++) {
1627                         if (dev[j] == NULL)
1628                                 continue;
1629                         if (dev[j]->devtype != TYPE_DISK)
1630                                 continue;
1631                         if (is_logical_device(dev[j]))
1632                                 continue;
1633                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1634                                 continue;
1635
1636                         logical_drive->phys_disk[i] = dev[j];
1637                         if (i < nphys_disk)
1638                                 qdepth = min(h->nr_cmds, qdepth +
1639                                     logical_drive->phys_disk[i]->queue_depth);
1640                         break;
1641                 }
1642
1643                 /*
1644                  * This can happen if a physical drive is removed and
1645                  * the logical drive is degraded.  In that case, the RAID
1646                  * map data will refer to a physical disk which isn't actually
1647                  * present.  And in that case offload_enabled should already
1648                  * be 0, but we'll turn it off here just in case
1649                  */
1650                 if (!logical_drive->phys_disk[i]) {
1651                         logical_drive->offload_enabled = 0;
1652                         logical_drive->offload_to_be_enabled = 0;
1653                         logical_drive->queue_depth = 8;
1654                 }
1655         }
1656         if (nraid_map_entries)
1657                 /*
1658                  * This is correct for reads, too high for full stripe writes,
1659                  * way too high for partial stripe writes
1660                  */
1661                 logical_drive->queue_depth = qdepth;
1662         else
1663                 logical_drive->queue_depth = h->nr_cmds;
1664 }
1665
1666 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1667                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1668 {
1669         int i;
1670
1671         for (i = 0; i < ndevices; i++) {
1672                 if (dev[i] == NULL)
1673                         continue;
1674                 if (dev[i]->devtype != TYPE_DISK)
1675                         continue;
1676                 if (!is_logical_device(dev[i]))
1677                         continue;
1678
1679                 /*
1680                  * If offload is currently enabled, the RAID map and
1681                  * phys_disk[] assignment *better* not be changing
1682                  * and since it isn't changing, we do not need to
1683                  * update it.
1684                  */
1685                 if (dev[i]->offload_enabled)
1686                         continue;
1687
1688                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1689         }
1690 }
1691
1692 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1693 {
1694         int rc = 0;
1695
1696         if (!h->scsi_host)
1697                 return 1;
1698
1699         rc = scsi_add_device(h->scsi_host, device->bus,
1700                                         device->target, device->lun);
1701         return rc;
1702 }
1703
1704 static void hpsa_remove_device(struct ctlr_info *h,
1705                         struct hpsa_scsi_dev_t *device)
1706 {
1707         struct scsi_device *sdev = NULL;
1708
1709         if (!h->scsi_host)
1710                 return;
1711
1712         sdev = scsi_device_lookup(h->scsi_host, device->bus,
1713                                                 device->target, device->lun);
1714
1715         if (sdev) {
1716                 scsi_remove_device(sdev);
1717                 scsi_device_put(sdev);
1718         } else {
1719                 /*
1720                  * We don't expect to get here.  Future commands
1721                  * to this device will get a selection timeout as
1722                  * if the device were gone.
1723                  */
1724                 hpsa_show_dev_msg(KERN_WARNING, h, device,
1725                                         "didn't find device for removal.");
1726         }
1727 }
1728
1729 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1730         struct hpsa_scsi_dev_t *sd[], int nsds)
1731 {
1732         /* sd contains scsi3 addresses and devtypes, and inquiry
1733          * data.  This function takes what's in sd to be the current
1734          * reality and updates h->dev[] to reflect that reality.
1735          */
1736         int i, entry, device_change, changes = 0;
1737         struct hpsa_scsi_dev_t *csd;
1738         unsigned long flags;
1739         struct hpsa_scsi_dev_t **added, **removed;
1740         int nadded, nremoved;
1741
1742         /*
1743          * A reset can cause a device status to change
1744          * re-schedule the scan to see what happened.
1745          */
1746         if (h->reset_in_progress) {
1747                 h->drv_req_rescan = 1;
1748                 return;
1749         }
1750
1751         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1752         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1753
1754         if (!added || !removed) {
1755                 dev_warn(&h->pdev->dev, "out of memory in "
1756                         "adjust_hpsa_scsi_table\n");
1757                 goto free_and_out;
1758         }
1759
1760         spin_lock_irqsave(&h->devlock, flags);
1761
1762         /* find any devices in h->dev[] that are not in
1763          * sd[] and remove them from h->dev[], and for any
1764          * devices which have changed, remove the old device
1765          * info and add the new device info.
1766          * If minor device attributes change, just update
1767          * the existing device structure.
1768          */
1769         i = 0;
1770         nremoved = 0;
1771         nadded = 0;
1772         while (i < h->ndevices) {
1773                 csd = h->dev[i];
1774                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1775                 if (device_change == DEVICE_NOT_FOUND) {
1776                         changes++;
1777                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1778                         continue; /* remove ^^^, hence i not incremented */
1779                 } else if (device_change == DEVICE_CHANGED) {
1780                         changes++;
1781                         hpsa_scsi_replace_entry(h, i, sd[entry],
1782                                 added, &nadded, removed, &nremoved);
1783                         /* Set it to NULL to prevent it from being freed
1784                          * at the bottom of hpsa_update_scsi_devices()
1785                          */
1786                         sd[entry] = NULL;
1787                 } else if (device_change == DEVICE_UPDATED) {
1788                         hpsa_scsi_update_entry(h, i, sd[entry]);
1789                 }
1790                 i++;
1791         }
1792
1793         /* Now, make sure every device listed in sd[] is also
1794          * listed in h->dev[], adding them if they aren't found
1795          */
1796
1797         for (i = 0; i < nsds; i++) {
1798                 if (!sd[i]) /* if already added above. */
1799                         continue;
1800
1801                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1802                  * as the SCSI mid-layer does not handle such devices well.
1803                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1804                  * at 160Hz, and prevents the system from coming up.
1805                  */
1806                 if (sd[i]->volume_offline) {
1807                         hpsa_show_volume_status(h, sd[i]);
1808                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1809                         continue;
1810                 }
1811
1812                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1813                                         h->ndevices, &entry);
1814                 if (device_change == DEVICE_NOT_FOUND) {
1815                         changes++;
1816                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1817                                 break;
1818                         sd[i] = NULL; /* prevent from being freed later. */
1819                 } else if (device_change == DEVICE_CHANGED) {
1820                         /* should never happen... */
1821                         changes++;
1822                         dev_warn(&h->pdev->dev,
1823                                 "device unexpectedly changed.\n");
1824                         /* but if it does happen, we just ignore that device */
1825                 }
1826         }
1827         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1828
1829         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1830          * any logical drives that need it enabled.
1831          */
1832         for (i = 0; i < h->ndevices; i++) {
1833                 if (h->dev[i] == NULL)
1834                         continue;
1835                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1836         }
1837
1838         spin_unlock_irqrestore(&h->devlock, flags);
1839
1840         /* Monitor devices which are in one of several NOT READY states to be
1841          * brought online later. This must be done without holding h->devlock,
1842          * so don't touch h->dev[]
1843          */
1844         for (i = 0; i < nsds; i++) {
1845                 if (!sd[i]) /* if already added above. */
1846                         continue;
1847                 if (sd[i]->volume_offline)
1848                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1849         }
1850
1851         /* Don't notify scsi mid layer of any changes the first time through
1852          * (or if there are no changes) scsi_scan_host will do it later the
1853          * first time through.
1854          */
1855         if (!changes)
1856                 goto free_and_out;
1857
1858         /* Notify scsi mid layer of any removed devices */
1859         for (i = 0; i < nremoved; i++) {
1860                 if (removed[i] == NULL)
1861                         continue;
1862                 if (removed[i]->expose_device)
1863                         hpsa_remove_device(h, removed[i]);
1864                 kfree(removed[i]);
1865                 removed[i] = NULL;
1866         }
1867
1868         /* Notify scsi mid layer of any added devices */
1869         for (i = 0; i < nadded; i++) {
1870                 int rc = 0;
1871
1872                 if (added[i] == NULL)
1873                         continue;
1874                 if (!(added[i]->expose_device))
1875                         continue;
1876                 rc = hpsa_add_device(h, added[i]);
1877                 if (!rc)
1878                         continue;
1879                 dev_warn(&h->pdev->dev,
1880                         "addition failed %d, device not added.", rc);
1881                 /* now we have to remove it from h->dev,
1882                  * since it didn't get added to scsi mid layer
1883                  */
1884                 fixup_botched_add(h, added[i]);
1885                 h->drv_req_rescan = 1;
1886         }
1887
1888 free_and_out:
1889         kfree(added);
1890         kfree(removed);
1891 }
1892
1893 /*
1894  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1895  * Assume's h->devlock is held.
1896  */
1897 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1898         int bus, int target, int lun)
1899 {
1900         int i;
1901         struct hpsa_scsi_dev_t *sd;
1902
1903         for (i = 0; i < h->ndevices; i++) {
1904                 sd = h->dev[i];
1905                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1906                         return sd;
1907         }
1908         return NULL;
1909 }
1910
1911 static int hpsa_slave_alloc(struct scsi_device *sdev)
1912 {
1913         struct hpsa_scsi_dev_t *sd;
1914         unsigned long flags;
1915         struct ctlr_info *h;
1916
1917         h = sdev_to_hba(sdev);
1918         spin_lock_irqsave(&h->devlock, flags);
1919         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1920                 sdev_id(sdev), sdev->lun);
1921         if (likely(sd)) {
1922                 atomic_set(&sd->ioaccel_cmds_out, 0);
1923                 sdev->hostdata = sd->expose_device ? sd : NULL;
1924         } else
1925                 sdev->hostdata = NULL;
1926         spin_unlock_irqrestore(&h->devlock, flags);
1927         return 0;
1928 }
1929
1930 /* configure scsi device based on internal per-device structure */
1931 static int hpsa_slave_configure(struct scsi_device *sdev)
1932 {
1933         struct hpsa_scsi_dev_t *sd;
1934         int queue_depth;
1935
1936         sd = sdev->hostdata;
1937         sdev->no_uld_attach = !sd || !sd->expose_device;
1938
1939         if (sd)
1940                 queue_depth = sd->queue_depth != 0 ?
1941                         sd->queue_depth : sdev->host->can_queue;
1942         else
1943                 queue_depth = sdev->host->can_queue;
1944
1945         scsi_change_queue_depth(sdev, queue_depth);
1946
1947         return 0;
1948 }
1949
1950 static void hpsa_slave_destroy(struct scsi_device *sdev)
1951 {
1952         /* nothing to do. */
1953 }
1954
1955 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1956 {
1957         int i;
1958
1959         if (!h->ioaccel2_cmd_sg_list)
1960                 return;
1961         for (i = 0; i < h->nr_cmds; i++) {
1962                 kfree(h->ioaccel2_cmd_sg_list[i]);
1963                 h->ioaccel2_cmd_sg_list[i] = NULL;
1964         }
1965         kfree(h->ioaccel2_cmd_sg_list);
1966         h->ioaccel2_cmd_sg_list = NULL;
1967 }
1968
1969 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1970 {
1971         int i;
1972
1973         if (h->chainsize <= 0)
1974                 return 0;
1975
1976         h->ioaccel2_cmd_sg_list =
1977                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1978                                         GFP_KERNEL);
1979         if (!h->ioaccel2_cmd_sg_list)
1980                 return -ENOMEM;
1981         for (i = 0; i < h->nr_cmds; i++) {
1982                 h->ioaccel2_cmd_sg_list[i] =
1983                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1984                                         h->maxsgentries, GFP_KERNEL);
1985                 if (!h->ioaccel2_cmd_sg_list[i])
1986                         goto clean;
1987         }
1988         return 0;
1989
1990 clean:
1991         hpsa_free_ioaccel2_sg_chain_blocks(h);
1992         return -ENOMEM;
1993 }
1994
1995 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1996 {
1997         int i;
1998
1999         if (!h->cmd_sg_list)
2000                 return;
2001         for (i = 0; i < h->nr_cmds; i++) {
2002                 kfree(h->cmd_sg_list[i]);
2003                 h->cmd_sg_list[i] = NULL;
2004         }
2005         kfree(h->cmd_sg_list);
2006         h->cmd_sg_list = NULL;
2007 }
2008
2009 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2010 {
2011         int i;
2012
2013         if (h->chainsize <= 0)
2014                 return 0;
2015
2016         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2017                                 GFP_KERNEL);
2018         if (!h->cmd_sg_list) {
2019                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2020                 return -ENOMEM;
2021         }
2022         for (i = 0; i < h->nr_cmds; i++) {
2023                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2024                                                 h->chainsize, GFP_KERNEL);
2025                 if (!h->cmd_sg_list[i]) {
2026                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2027                         goto clean;
2028                 }
2029         }
2030         return 0;
2031
2032 clean:
2033         hpsa_free_sg_chain_blocks(h);
2034         return -ENOMEM;
2035 }
2036
2037 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2038         struct io_accel2_cmd *cp, struct CommandList *c)
2039 {
2040         struct ioaccel2_sg_element *chain_block;
2041         u64 temp64;
2042         u32 chain_size;
2043
2044         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2045         chain_size = le32_to_cpu(cp->sg[0].length);
2046         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2047                                 PCI_DMA_TODEVICE);
2048         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2049                 /* prevent subsequent unmapping */
2050                 cp->sg->address = 0;
2051                 return -1;
2052         }
2053         cp->sg->address = cpu_to_le64(temp64);
2054         return 0;
2055 }
2056
2057 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2058         struct io_accel2_cmd *cp)
2059 {
2060         struct ioaccel2_sg_element *chain_sg;
2061         u64 temp64;
2062         u32 chain_size;
2063
2064         chain_sg = cp->sg;
2065         temp64 = le64_to_cpu(chain_sg->address);
2066         chain_size = le32_to_cpu(cp->sg[0].length);
2067         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2068 }
2069
2070 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2071         struct CommandList *c)
2072 {
2073         struct SGDescriptor *chain_sg, *chain_block;
2074         u64 temp64;
2075         u32 chain_len;
2076
2077         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2078         chain_block = h->cmd_sg_list[c->cmdindex];
2079         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2080         chain_len = sizeof(*chain_sg) *
2081                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2082         chain_sg->Len = cpu_to_le32(chain_len);
2083         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2084                                 PCI_DMA_TODEVICE);
2085         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2086                 /* prevent subsequent unmapping */
2087                 chain_sg->Addr = cpu_to_le64(0);
2088                 return -1;
2089         }
2090         chain_sg->Addr = cpu_to_le64(temp64);
2091         return 0;
2092 }
2093
2094 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2095         struct CommandList *c)
2096 {
2097         struct SGDescriptor *chain_sg;
2098
2099         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2100                 return;
2101
2102         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2103         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2104                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2105 }
2106
2107
2108 /* Decode the various types of errors on ioaccel2 path.
2109  * Return 1 for any error that should generate a RAID path retry.
2110  * Return 0 for errors that don't require a RAID path retry.
2111  */
2112 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2113                                         struct CommandList *c,
2114                                         struct scsi_cmnd *cmd,
2115                                         struct io_accel2_cmd *c2)
2116 {
2117         int data_len;
2118         int retry = 0;
2119         u32 ioaccel2_resid = 0;
2120
2121         switch (c2->error_data.serv_response) {
2122         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2123                 switch (c2->error_data.status) {
2124                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2125                         break;
2126                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2127                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2128                         if (c2->error_data.data_present !=
2129                                         IOACCEL2_SENSE_DATA_PRESENT) {
2130                                 memset(cmd->sense_buffer, 0,
2131                                         SCSI_SENSE_BUFFERSIZE);
2132                                 break;
2133                         }
2134                         /* copy the sense data */
2135                         data_len = c2->error_data.sense_data_len;
2136                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2137                                 data_len = SCSI_SENSE_BUFFERSIZE;
2138                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2139                                 data_len =
2140                                         sizeof(c2->error_data.sense_data_buff);
2141                         memcpy(cmd->sense_buffer,
2142                                 c2->error_data.sense_data_buff, data_len);
2143                         retry = 1;
2144                         break;
2145                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2146                         retry = 1;
2147                         break;
2148                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2149                         retry = 1;
2150                         break;
2151                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2152                         retry = 1;
2153                         break;
2154                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2155                         retry = 1;
2156                         break;
2157                 default:
2158                         retry = 1;
2159                         break;
2160                 }
2161                 break;
2162         case IOACCEL2_SERV_RESPONSE_FAILURE:
2163                 switch (c2->error_data.status) {
2164                 case IOACCEL2_STATUS_SR_IO_ERROR:
2165                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2166                 case IOACCEL2_STATUS_SR_OVERRUN:
2167                         retry = 1;
2168                         break;
2169                 case IOACCEL2_STATUS_SR_UNDERRUN:
2170                         cmd->result = (DID_OK << 16);           /* host byte */
2171                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2172                         ioaccel2_resid = get_unaligned_le32(
2173                                                 &c2->error_data.resid_cnt[0]);
2174                         scsi_set_resid(cmd, ioaccel2_resid);
2175                         break;
2176                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2177                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2178                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2179                         /* We will get an event from ctlr to trigger rescan */
2180                         retry = 1;
2181                         break;
2182                 default:
2183                         retry = 1;
2184                 }
2185                 break;
2186         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2187                 break;
2188         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2189                 break;
2190         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2191                 retry = 1;
2192                 break;
2193         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2194                 break;
2195         default:
2196                 retry = 1;
2197                 break;
2198         }
2199
2200         return retry;   /* retry on raid path? */
2201 }
2202
2203 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2204                 struct CommandList *c)
2205 {
2206         bool do_wake = false;
2207
2208         /*
2209          * Prevent the following race in the abort handler:
2210          *
2211          * 1. LLD is requested to abort a SCSI command
2212          * 2. The SCSI command completes
2213          * 3. The struct CommandList associated with step 2 is made available
2214          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2215          * 5. Abort handler follows scsi_cmnd->host_scribble and
2216          *    finds struct CommandList and tries to aborts it
2217          * Now we have aborted the wrong command.
2218          *
2219          * Reset c->scsi_cmd here so that the abort or reset handler will know
2220          * this command has completed.  Then, check to see if the handler is
2221          * waiting for this command, and, if so, wake it.
2222          */
2223         c->scsi_cmd = SCSI_CMD_IDLE;
2224         mb();   /* Declare command idle before checking for pending events. */
2225         if (c->abort_pending) {
2226                 do_wake = true;
2227                 c->abort_pending = false;
2228         }
2229         if (c->reset_pending) {
2230                 unsigned long flags;
2231                 struct hpsa_scsi_dev_t *dev;
2232
2233                 /*
2234                  * There appears to be a reset pending; lock the lock and
2235                  * reconfirm.  If so, then decrement the count of outstanding
2236                  * commands and wake the reset command if this is the last one.
2237                  */
2238                 spin_lock_irqsave(&h->lock, flags);
2239                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2240                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2241                         do_wake = true;
2242                 c->reset_pending = NULL;
2243                 spin_unlock_irqrestore(&h->lock, flags);
2244         }
2245
2246         if (do_wake)
2247                 wake_up_all(&h->event_sync_wait_queue);
2248 }
2249
2250 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2251                                       struct CommandList *c)
2252 {
2253         hpsa_cmd_resolve_events(h, c);
2254         cmd_tagged_free(h, c);
2255 }
2256
2257 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2258                 struct CommandList *c, struct scsi_cmnd *cmd)
2259 {
2260         hpsa_cmd_resolve_and_free(h, c);
2261         cmd->scsi_done(cmd);
2262 }
2263
2264 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2265 {
2266         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2267         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2268 }
2269
2270 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2271 {
2272         cmd->result = DID_ABORT << 16;
2273 }
2274
2275 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2276                                     struct scsi_cmnd *cmd)
2277 {
2278         hpsa_set_scsi_cmd_aborted(cmd);
2279         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2280                          c->Request.CDB, c->err_info->ScsiStatus);
2281         hpsa_cmd_resolve_and_free(h, c);
2282 }
2283
2284 static void process_ioaccel2_completion(struct ctlr_info *h,
2285                 struct CommandList *c, struct scsi_cmnd *cmd,
2286                 struct hpsa_scsi_dev_t *dev)
2287 {
2288         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2289
2290         /* check for good status */
2291         if (likely(c2->error_data.serv_response == 0 &&
2292                         c2->error_data.status == 0))
2293                 return hpsa_cmd_free_and_done(h, c, cmd);
2294
2295         /*
2296          * Any RAID offload error results in retry which will use
2297          * the normal I/O path so the controller can handle whatever's
2298          * wrong.
2299          */
2300         if (is_logical_device(dev) &&
2301                 c2->error_data.serv_response ==
2302                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2303                 if (c2->error_data.status ==
2304                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2305                         dev->offload_enabled = 0;
2306
2307                 return hpsa_retry_cmd(h, c);
2308         }
2309
2310         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2311                 return hpsa_retry_cmd(h, c);
2312
2313         return hpsa_cmd_free_and_done(h, c, cmd);
2314 }
2315
2316 /* Returns 0 on success, < 0 otherwise. */
2317 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2318                                         struct CommandList *cp)
2319 {
2320         u8 tmf_status = cp->err_info->ScsiStatus;
2321
2322         switch (tmf_status) {
2323         case CISS_TMF_COMPLETE:
2324                 /*
2325                  * CISS_TMF_COMPLETE never happens, instead,
2326                  * ei->CommandStatus == 0 for this case.
2327                  */
2328         case CISS_TMF_SUCCESS:
2329                 return 0;
2330         case CISS_TMF_INVALID_FRAME:
2331         case CISS_TMF_NOT_SUPPORTED:
2332         case CISS_TMF_FAILED:
2333         case CISS_TMF_WRONG_LUN:
2334         case CISS_TMF_OVERLAPPED_TAG:
2335                 break;
2336         default:
2337                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2338                                 tmf_status);
2339                 break;
2340         }
2341         return -tmf_status;
2342 }
2343
2344 static void complete_scsi_command(struct CommandList *cp)
2345 {
2346         struct scsi_cmnd *cmd;
2347         struct ctlr_info *h;
2348         struct ErrorInfo *ei;
2349         struct hpsa_scsi_dev_t *dev;
2350         struct io_accel2_cmd *c2;
2351
2352         u8 sense_key;
2353         u8 asc;      /* additional sense code */
2354         u8 ascq;     /* additional sense code qualifier */
2355         unsigned long sense_data_size;
2356
2357         ei = cp->err_info;
2358         cmd = cp->scsi_cmd;
2359         h = cp->h;
2360         dev = cmd->device->hostdata;
2361         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2362
2363         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2364         if ((cp->cmd_type == CMD_SCSI) &&
2365                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2366                 hpsa_unmap_sg_chain_block(h, cp);
2367
2368         if ((cp->cmd_type == CMD_IOACCEL2) &&
2369                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2370                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2371
2372         cmd->result = (DID_OK << 16);           /* host byte */
2373         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2374
2375         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2376                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2377
2378         /*
2379          * We check for lockup status here as it may be set for
2380          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2381          * fail_all_oustanding_cmds()
2382          */
2383         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2384                 /* DID_NO_CONNECT will prevent a retry */
2385                 cmd->result = DID_NO_CONNECT << 16;
2386                 return hpsa_cmd_free_and_done(h, cp, cmd);
2387         }
2388
2389         if ((unlikely(hpsa_is_pending_event(cp)))) {
2390                 if (cp->reset_pending)
2391                         return hpsa_cmd_resolve_and_free(h, cp);
2392                 if (cp->abort_pending)
2393                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2394         }
2395
2396         if (cp->cmd_type == CMD_IOACCEL2)
2397                 return process_ioaccel2_completion(h, cp, cmd, dev);
2398
2399         scsi_set_resid(cmd, ei->ResidualCnt);
2400         if (ei->CommandStatus == 0)
2401                 return hpsa_cmd_free_and_done(h, cp, cmd);
2402
2403         /* For I/O accelerator commands, copy over some fields to the normal
2404          * CISS header used below for error handling.
2405          */
2406         if (cp->cmd_type == CMD_IOACCEL1) {
2407                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2408                 cp->Header.SGList = scsi_sg_count(cmd);
2409                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2410                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2411                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2412                 cp->Header.tag = c->tag;
2413                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2414                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2415
2416                 /* Any RAID offload error results in retry which will use
2417                  * the normal I/O path so the controller can handle whatever's
2418                  * wrong.
2419                  */
2420                 if (is_logical_device(dev)) {
2421                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2422                                 dev->offload_enabled = 0;
2423                         return hpsa_retry_cmd(h, cp);
2424                 }
2425         }
2426
2427         /* an error has occurred */
2428         switch (ei->CommandStatus) {
2429
2430         case CMD_TARGET_STATUS:
2431                 cmd->result |= ei->ScsiStatus;
2432                 /* copy the sense data */
2433                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2434                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2435                 else
2436                         sense_data_size = sizeof(ei->SenseInfo);
2437                 if (ei->SenseLen < sense_data_size)
2438                         sense_data_size = ei->SenseLen;
2439                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2440                 if (ei->ScsiStatus)
2441                         decode_sense_data(ei->SenseInfo, sense_data_size,
2442                                 &sense_key, &asc, &ascq);
2443                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2444                         if (sense_key == ABORTED_COMMAND) {
2445                                 cmd->result |= DID_SOFT_ERROR << 16;
2446                                 break;
2447                         }
2448                         break;
2449                 }
2450                 /* Problem was not a check condition
2451                  * Pass it up to the upper layers...
2452                  */
2453                 if (ei->ScsiStatus) {
2454                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2455                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2456                                 "Returning result: 0x%x\n",
2457                                 cp, ei->ScsiStatus,
2458                                 sense_key, asc, ascq,
2459                                 cmd->result);
2460                 } else {  /* scsi status is zero??? How??? */
2461                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2462                                 "Returning no connection.\n", cp),
2463
2464                         /* Ordinarily, this case should never happen,
2465                          * but there is a bug in some released firmware
2466                          * revisions that allows it to happen if, for
2467                          * example, a 4100 backplane loses power and
2468                          * the tape drive is in it.  We assume that
2469                          * it's a fatal error of some kind because we
2470                          * can't show that it wasn't. We will make it
2471                          * look like selection timeout since that is
2472                          * the most common reason for this to occur,
2473                          * and it's severe enough.
2474                          */
2475
2476                         cmd->result = DID_NO_CONNECT << 16;
2477                 }
2478                 break;
2479
2480         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2481                 break;
2482         case CMD_DATA_OVERRUN:
2483                 dev_warn(&h->pdev->dev,
2484                         "CDB %16phN data overrun\n", cp->Request.CDB);
2485                 break;
2486         case CMD_INVALID: {
2487                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2488                 print_cmd(cp); */
2489                 /* We get CMD_INVALID if you address a non-existent device
2490                  * instead of a selection timeout (no response).  You will
2491                  * see this if you yank out a drive, then try to access it.
2492                  * This is kind of a shame because it means that any other
2493                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2494                  * missing target. */
2495                 cmd->result = DID_NO_CONNECT << 16;
2496         }
2497                 break;
2498         case CMD_PROTOCOL_ERR:
2499                 cmd->result = DID_ERROR << 16;
2500                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2501                                 cp->Request.CDB);
2502                 break;
2503         case CMD_HARDWARE_ERR:
2504                 cmd->result = DID_ERROR << 16;
2505                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2506                         cp->Request.CDB);
2507                 break;
2508         case CMD_CONNECTION_LOST:
2509                 cmd->result = DID_ERROR << 16;
2510                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2511                         cp->Request.CDB);
2512                 break;
2513         case CMD_ABORTED:
2514                 /* Return now to avoid calling scsi_done(). */
2515                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2516         case CMD_ABORT_FAILED:
2517                 cmd->result = DID_ERROR << 16;
2518                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2519                         cp->Request.CDB);
2520                 break;
2521         case CMD_UNSOLICITED_ABORT:
2522                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2523                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2524                         cp->Request.CDB);
2525                 break;
2526         case CMD_TIMEOUT:
2527                 cmd->result = DID_TIME_OUT << 16;
2528                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2529                         cp->Request.CDB);
2530                 break;
2531         case CMD_UNABORTABLE:
2532                 cmd->result = DID_ERROR << 16;
2533                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2534                 break;
2535         case CMD_TMF_STATUS:
2536                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2537                         cmd->result = DID_ERROR << 16;
2538                 break;
2539         case CMD_IOACCEL_DISABLED:
2540                 /* This only handles the direct pass-through case since RAID
2541                  * offload is handled above.  Just attempt a retry.
2542                  */
2543                 cmd->result = DID_SOFT_ERROR << 16;
2544                 dev_warn(&h->pdev->dev,
2545                                 "cp %p had HP SSD Smart Path error\n", cp);
2546                 break;
2547         default:
2548                 cmd->result = DID_ERROR << 16;
2549                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2550                                 cp, ei->CommandStatus);
2551         }
2552
2553         return hpsa_cmd_free_and_done(h, cp, cmd);
2554 }
2555
2556 static void hpsa_pci_unmap(struct pci_dev *pdev,
2557         struct CommandList *c, int sg_used, int data_direction)
2558 {
2559         int i;
2560
2561         for (i = 0; i < sg_used; i++)
2562                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2563                                 le32_to_cpu(c->SG[i].Len),
2564                                 data_direction);
2565 }
2566
2567 static int hpsa_map_one(struct pci_dev *pdev,
2568                 struct CommandList *cp,
2569                 unsigned char *buf,
2570                 size_t buflen,
2571                 int data_direction)
2572 {
2573         u64 addr64;
2574
2575         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2576                 cp->Header.SGList = 0;
2577                 cp->Header.SGTotal = cpu_to_le16(0);
2578                 return 0;
2579         }
2580
2581         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2582         if (dma_mapping_error(&pdev->dev, addr64)) {
2583                 /* Prevent subsequent unmap of something never mapped */
2584                 cp->Header.SGList = 0;
2585                 cp->Header.SGTotal = cpu_to_le16(0);
2586                 return -1;
2587         }
2588         cp->SG[0].Addr = cpu_to_le64(addr64);
2589         cp->SG[0].Len = cpu_to_le32(buflen);
2590         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2591         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2592         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2593         return 0;
2594 }
2595
2596 #define NO_TIMEOUT ((unsigned long) -1)
2597 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2598 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2599         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2600 {
2601         DECLARE_COMPLETION_ONSTACK(wait);
2602
2603         c->waiting = &wait;
2604         __enqueue_cmd_and_start_io(h, c, reply_queue);
2605         if (timeout_msecs == NO_TIMEOUT) {
2606                 /* TODO: get rid of this no-timeout thing */
2607                 wait_for_completion_io(&wait);
2608                 return IO_OK;
2609         }
2610         if (!wait_for_completion_io_timeout(&wait,
2611                                         msecs_to_jiffies(timeout_msecs))) {
2612                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2613                 return -ETIMEDOUT;
2614         }
2615         return IO_OK;
2616 }
2617
2618 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2619                                    int reply_queue, unsigned long timeout_msecs)
2620 {
2621         if (unlikely(lockup_detected(h))) {
2622                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2623                 return IO_OK;
2624         }
2625         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2626 }
2627
2628 static u32 lockup_detected(struct ctlr_info *h)
2629 {
2630         int cpu;
2631         u32 rc, *lockup_detected;
2632
2633         cpu = get_cpu();
2634         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2635         rc = *lockup_detected;
2636         put_cpu();
2637         return rc;
2638 }
2639
2640 #define MAX_DRIVER_CMD_RETRIES 25
2641 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2642         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2643 {
2644         int backoff_time = 10, retry_count = 0;
2645         int rc;
2646
2647         do {
2648                 memset(c->err_info, 0, sizeof(*c->err_info));
2649                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2650                                                   timeout_msecs);
2651                 if (rc)
2652                         break;
2653                 retry_count++;
2654                 if (retry_count > 3) {
2655                         msleep(backoff_time);
2656                         if (backoff_time < 1000)
2657                                 backoff_time *= 2;
2658                 }
2659         } while ((check_for_unit_attention(h, c) ||
2660                         check_for_busy(h, c)) &&
2661                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2662         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2663         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2664                 rc = -EIO;
2665         return rc;
2666 }
2667
2668 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2669                                 struct CommandList *c)
2670 {
2671         const u8 *cdb = c->Request.CDB;
2672         const u8 *lun = c->Header.LUN.LunAddrBytes;
2673
2674         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2675         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2676                 txt, lun[0], lun[1], lun[2], lun[3],
2677                 lun[4], lun[5], lun[6], lun[7],
2678                 cdb[0], cdb[1], cdb[2], cdb[3],
2679                 cdb[4], cdb[5], cdb[6], cdb[7],
2680                 cdb[8], cdb[9], cdb[10], cdb[11],
2681                 cdb[12], cdb[13], cdb[14], cdb[15]);
2682 }
2683
2684 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2685                         struct CommandList *cp)
2686 {
2687         const struct ErrorInfo *ei = cp->err_info;
2688         struct device *d = &cp->h->pdev->dev;
2689         u8 sense_key, asc, ascq;
2690         int sense_len;
2691
2692         switch (ei->CommandStatus) {
2693         case CMD_TARGET_STATUS:
2694                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2695                         sense_len = sizeof(ei->SenseInfo);
2696                 else
2697                         sense_len = ei->SenseLen;
2698                 decode_sense_data(ei->SenseInfo, sense_len,
2699                                         &sense_key, &asc, &ascq);
2700                 hpsa_print_cmd(h, "SCSI status", cp);
2701                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2702                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2703                                 sense_key, asc, ascq);
2704                 else
2705                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2706                 if (ei->ScsiStatus == 0)
2707                         dev_warn(d, "SCSI status is abnormally zero.  "
2708                         "(probably indicates selection timeout "
2709                         "reported incorrectly due to a known "
2710                         "firmware bug, circa July, 2001.)\n");
2711                 break;
2712         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2713                 break;
2714         case CMD_DATA_OVERRUN:
2715                 hpsa_print_cmd(h, "overrun condition", cp);
2716                 break;
2717         case CMD_INVALID: {
2718                 /* controller unfortunately reports SCSI passthru's
2719                  * to non-existent targets as invalid commands.
2720                  */
2721                 hpsa_print_cmd(h, "invalid command", cp);
2722                 dev_warn(d, "probably means device no longer present\n");
2723                 }
2724                 break;
2725         case CMD_PROTOCOL_ERR:
2726                 hpsa_print_cmd(h, "protocol error", cp);
2727                 break;
2728         case CMD_HARDWARE_ERR:
2729                 hpsa_print_cmd(h, "hardware error", cp);
2730                 break;
2731         case CMD_CONNECTION_LOST:
2732                 hpsa_print_cmd(h, "connection lost", cp);
2733                 break;
2734         case CMD_ABORTED:
2735                 hpsa_print_cmd(h, "aborted", cp);
2736                 break;
2737         case CMD_ABORT_FAILED:
2738                 hpsa_print_cmd(h, "abort failed", cp);
2739                 break;
2740         case CMD_UNSOLICITED_ABORT:
2741                 hpsa_print_cmd(h, "unsolicited abort", cp);
2742                 break;
2743         case CMD_TIMEOUT:
2744                 hpsa_print_cmd(h, "timed out", cp);
2745                 break;
2746         case CMD_UNABORTABLE:
2747                 hpsa_print_cmd(h, "unabortable", cp);
2748                 break;
2749         case CMD_CTLR_LOCKUP:
2750                 hpsa_print_cmd(h, "controller lockup detected", cp);
2751                 break;
2752         default:
2753                 hpsa_print_cmd(h, "unknown status", cp);
2754                 dev_warn(d, "Unknown command status %x\n",
2755                                 ei->CommandStatus);
2756         }
2757 }
2758
2759 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2760                         u16 page, unsigned char *buf,
2761                         unsigned char bufsize)
2762 {
2763         int rc = IO_OK;
2764         struct CommandList *c;
2765         struct ErrorInfo *ei;
2766
2767         c = cmd_alloc(h);
2768
2769         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2770                         page, scsi3addr, TYPE_CMD)) {
2771                 rc = -1;
2772                 goto out;
2773         }
2774         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2775                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2776         if (rc)
2777                 goto out;
2778         ei = c->err_info;
2779         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2780                 hpsa_scsi_interpret_error(h, c);
2781                 rc = -1;
2782         }
2783 out:
2784         cmd_free(h, c);
2785         return rc;
2786 }
2787
2788 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2789         u8 reset_type, int reply_queue)
2790 {
2791         int rc = IO_OK;
2792         struct CommandList *c;
2793         struct ErrorInfo *ei;
2794
2795         c = cmd_alloc(h);
2796
2797
2798         /* fill_cmd can't fail here, no data buffer to map. */
2799         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2800                         scsi3addr, TYPE_MSG);
2801         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2802         if (rc) {
2803                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2804                 goto out;
2805         }
2806         /* no unmap needed here because no data xfer. */
2807
2808         ei = c->err_info;
2809         if (ei->CommandStatus != 0) {
2810                 hpsa_scsi_interpret_error(h, c);
2811                 rc = -1;
2812         }
2813 out:
2814         cmd_free(h, c);
2815         return rc;
2816 }
2817
2818 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2819                                struct hpsa_scsi_dev_t *dev,
2820                                unsigned char *scsi3addr)
2821 {
2822         int i;
2823         bool match = false;
2824         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2825         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2826
2827         if (hpsa_is_cmd_idle(c))
2828                 return false;
2829
2830         switch (c->cmd_type) {
2831         case CMD_SCSI:
2832         case CMD_IOCTL_PEND:
2833                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2834                                 sizeof(c->Header.LUN.LunAddrBytes));
2835                 break;
2836
2837         case CMD_IOACCEL1:
2838         case CMD_IOACCEL2:
2839                 if (c->phys_disk == dev) {
2840                         /* HBA mode match */
2841                         match = true;
2842                 } else {
2843                         /* Possible RAID mode -- check each phys dev. */
2844                         /* FIXME:  Do we need to take out a lock here?  If
2845                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2846                          * instead. */
2847                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2848                                 /* FIXME: an alternate test might be
2849                                  *
2850                                  * match = dev->phys_disk[i]->ioaccel_handle
2851                                  *              == c2->scsi_nexus;      */
2852                                 match = dev->phys_disk[i] == c->phys_disk;
2853                         }
2854                 }
2855                 break;
2856
2857         case IOACCEL2_TMF:
2858                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2859                         match = dev->phys_disk[i]->ioaccel_handle ==
2860                                         le32_to_cpu(ac->it_nexus);
2861                 }
2862                 break;
2863
2864         case 0:         /* The command is in the middle of being initialized. */
2865                 match = false;
2866                 break;
2867
2868         default:
2869                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2870                         c->cmd_type);
2871                 BUG();
2872         }
2873
2874         return match;
2875 }
2876
2877 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2878         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2879 {
2880         int i;
2881         int rc = 0;
2882
2883         /* We can really only handle one reset at a time */
2884         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2885                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2886                 return -EINTR;
2887         }
2888
2889         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2890
2891         for (i = 0; i < h->nr_cmds; i++) {
2892                 struct CommandList *c = h->cmd_pool + i;
2893                 int refcount = atomic_inc_return(&c->refcount);
2894
2895                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2896                         unsigned long flags;
2897
2898                         /*
2899                          * Mark the target command as having a reset pending,
2900                          * then lock a lock so that the command cannot complete
2901                          * while we're considering it.  If the command is not
2902                          * idle then count it; otherwise revoke the event.
2903                          */
2904                         c->reset_pending = dev;
2905                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2906                         if (!hpsa_is_cmd_idle(c))
2907                                 atomic_inc(&dev->reset_cmds_out);
2908                         else
2909                                 c->reset_pending = NULL;
2910                         spin_unlock_irqrestore(&h->lock, flags);
2911                 }
2912
2913                 cmd_free(h, c);
2914         }
2915
2916         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2917         if (!rc)
2918                 wait_event(h->event_sync_wait_queue,
2919                         atomic_read(&dev->reset_cmds_out) == 0 ||
2920                         lockup_detected(h));
2921
2922         if (unlikely(lockup_detected(h))) {
2923                 dev_warn(&h->pdev->dev,
2924                          "Controller lockup detected during reset wait\n");
2925                 rc = -ENODEV;
2926         }
2927
2928         if (unlikely(rc))
2929                 atomic_set(&dev->reset_cmds_out, 0);
2930
2931         mutex_unlock(&h->reset_mutex);
2932         return rc;
2933 }
2934
2935 static void hpsa_get_raid_level(struct ctlr_info *h,
2936         unsigned char *scsi3addr, unsigned char *raid_level)
2937 {
2938         int rc;
2939         unsigned char *buf;
2940
2941         *raid_level = RAID_UNKNOWN;
2942         buf = kzalloc(64, GFP_KERNEL);
2943         if (!buf)
2944                 return;
2945         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2946         if (rc == 0)
2947                 *raid_level = buf[8];
2948         if (*raid_level > RAID_UNKNOWN)
2949                 *raid_level = RAID_UNKNOWN;
2950         kfree(buf);
2951         return;
2952 }
2953
2954 #define HPSA_MAP_DEBUG
2955 #ifdef HPSA_MAP_DEBUG
2956 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2957                                 struct raid_map_data *map_buff)
2958 {
2959         struct raid_map_disk_data *dd = &map_buff->data[0];
2960         int map, row, col;
2961         u16 map_cnt, row_cnt, disks_per_row;
2962
2963         if (rc != 0)
2964                 return;
2965
2966         /* Show details only if debugging has been activated. */
2967         if (h->raid_offload_debug < 2)
2968                 return;
2969
2970         dev_info(&h->pdev->dev, "structure_size = %u\n",
2971                                 le32_to_cpu(map_buff->structure_size));
2972         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2973                         le32_to_cpu(map_buff->volume_blk_size));
2974         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2975                         le64_to_cpu(map_buff->volume_blk_cnt));
2976         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2977                         map_buff->phys_blk_shift);
2978         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2979                         map_buff->parity_rotation_shift);
2980         dev_info(&h->pdev->dev, "strip_size = %u\n",
2981                         le16_to_cpu(map_buff->strip_size));
2982         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2983                         le64_to_cpu(map_buff->disk_starting_blk));
2984         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2985                         le64_to_cpu(map_buff->disk_blk_cnt));
2986         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2987                         le16_to_cpu(map_buff->data_disks_per_row));
2988         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2989                         le16_to_cpu(map_buff->metadata_disks_per_row));
2990         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2991                         le16_to_cpu(map_buff->row_cnt));
2992         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2993                         le16_to_cpu(map_buff->layout_map_count));
2994         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2995                         le16_to_cpu(map_buff->flags));
2996         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2997                         le16_to_cpu(map_buff->flags) &
2998                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2999         dev_info(&h->pdev->dev, "dekindex = %u\n",
3000                         le16_to_cpu(map_buff->dekindex));
3001         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3002         for (map = 0; map < map_cnt; map++) {
3003                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3004                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3005                 for (row = 0; row < row_cnt; row++) {
3006                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3007                         disks_per_row =
3008                                 le16_to_cpu(map_buff->data_disks_per_row);
3009                         for (col = 0; col < disks_per_row; col++, dd++)
3010                                 dev_info(&h->pdev->dev,
3011                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3012                                         col, dd->ioaccel_handle,
3013                                         dd->xor_mult[0], dd->xor_mult[1]);
3014                         disks_per_row =
3015                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3016                         for (col = 0; col < disks_per_row; col++, dd++)
3017                                 dev_info(&h->pdev->dev,
3018                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3019                                         col, dd->ioaccel_handle,
3020                                         dd->xor_mult[0], dd->xor_mult[1]);
3021                 }
3022         }
3023 }
3024 #else
3025 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3026                         __attribute__((unused)) int rc,
3027                         __attribute__((unused)) struct raid_map_data *map_buff)
3028 {
3029 }
3030 #endif
3031
3032 static int hpsa_get_raid_map(struct ctlr_info *h,
3033         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3034 {
3035         int rc = 0;
3036         struct CommandList *c;
3037         struct ErrorInfo *ei;
3038
3039         c = cmd_alloc(h);
3040
3041         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3042                         sizeof(this_device->raid_map), 0,
3043                         scsi3addr, TYPE_CMD)) {
3044                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3045                 cmd_free(h, c);
3046                 return -1;
3047         }
3048         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3049                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3050         if (rc)
3051                 goto out;
3052         ei = c->err_info;
3053         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3054                 hpsa_scsi_interpret_error(h, c);
3055                 rc = -1;
3056                 goto out;
3057         }
3058         cmd_free(h, c);
3059
3060         /* @todo in the future, dynamically allocate RAID map memory */
3061         if (le32_to_cpu(this_device->raid_map.structure_size) >
3062                                 sizeof(this_device->raid_map)) {
3063                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3064                 rc = -1;
3065         }
3066         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3067         return rc;
3068 out:
3069         cmd_free(h, c);
3070         return rc;
3071 }
3072
3073 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3074         struct bmic_identify_controller *buf, size_t bufsize)
3075 {
3076         int rc = IO_OK;
3077         struct CommandList *c;
3078         struct ErrorInfo *ei;
3079
3080         c = cmd_alloc(h);
3081
3082         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3083                 0, RAID_CTLR_LUNID, TYPE_CMD);
3084         if (rc)
3085                 goto out;
3086
3087         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3088                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3089         if (rc)
3090                 goto out;
3091         ei = c->err_info;
3092         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3093                 hpsa_scsi_interpret_error(h, c);
3094                 rc = -1;
3095         }
3096 out:
3097         cmd_free(h, c);
3098         return rc;
3099 }
3100
3101
3102 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3103                 unsigned char scsi3addr[], u16 bmic_device_index,
3104                 struct bmic_identify_physical_device *buf, size_t bufsize)
3105 {
3106         int rc = IO_OK;
3107         struct CommandList *c;
3108         struct ErrorInfo *ei;
3109
3110         c = cmd_alloc(h);
3111         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3112                 0, RAID_CTLR_LUNID, TYPE_CMD);
3113         if (rc)
3114                 goto out;
3115
3116         c->Request.CDB[2] = bmic_device_index & 0xff;
3117         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3118
3119         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3120                                                 NO_TIMEOUT);
3121         ei = c->err_info;
3122         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3123                 hpsa_scsi_interpret_error(h, c);
3124                 rc = -1;
3125         }
3126 out:
3127         cmd_free(h, c);
3128         return rc;
3129 }
3130
3131 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3132         unsigned char scsi3addr[], u8 page)
3133 {
3134         int rc;
3135         int i;
3136         int pages;
3137         unsigned char *buf, bufsize;
3138
3139         buf = kzalloc(256, GFP_KERNEL);
3140         if (!buf)
3141                 return 0;
3142
3143         /* Get the size of the page list first */
3144         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3145                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3146                                 buf, HPSA_VPD_HEADER_SZ);
3147         if (rc != 0)
3148                 goto exit_unsupported;
3149         pages = buf[3];
3150         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3151                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3152         else
3153                 bufsize = 255;
3154
3155         /* Get the whole VPD page list */
3156         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3157                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3158                                 buf, bufsize);
3159         if (rc != 0)
3160                 goto exit_unsupported;
3161
3162         pages = buf[3];
3163         for (i = 1; i <= pages; i++)
3164                 if (buf[3 + i] == page)
3165                         goto exit_supported;
3166 exit_unsupported:
3167         kfree(buf);
3168         return 0;
3169 exit_supported:
3170         kfree(buf);
3171         return 1;
3172 }
3173
3174 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3175         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3176 {
3177         int rc;
3178         unsigned char *buf;
3179         u8 ioaccel_status;
3180
3181         this_device->offload_config = 0;
3182         this_device->offload_enabled = 0;
3183         this_device->offload_to_be_enabled = 0;
3184
3185         buf = kzalloc(64, GFP_KERNEL);
3186         if (!buf)
3187                 return;
3188         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3189                 goto out;
3190         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3191                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3192         if (rc != 0)
3193                 goto out;
3194
3195 #define IOACCEL_STATUS_BYTE 4
3196 #define OFFLOAD_CONFIGURED_BIT 0x01
3197 #define OFFLOAD_ENABLED_BIT 0x02
3198         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3199         this_device->offload_config =
3200                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3201         if (this_device->offload_config) {
3202                 this_device->offload_enabled =
3203                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3204                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3205                         this_device->offload_enabled = 0;
3206         }
3207         this_device->offload_to_be_enabled = this_device->offload_enabled;
3208 out:
3209         kfree(buf);
3210         return;
3211 }
3212
3213 /* Get the device id from inquiry page 0x83 */
3214 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3215         unsigned char *device_id, int index, int buflen)
3216 {
3217         int rc;
3218         unsigned char *buf;
3219
3220         if (buflen > 16)
3221                 buflen = 16;
3222         buf = kzalloc(64, GFP_KERNEL);
3223         if (!buf)
3224                 return -ENOMEM;
3225         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3226         if (rc == 0)
3227                 memcpy(device_id, &buf[index], buflen);
3228
3229         kfree(buf);
3230
3231         return rc != 0;
3232 }
3233
3234 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3235                 void *buf, int bufsize,
3236                 int extended_response)
3237 {
3238         int rc = IO_OK;
3239         struct CommandList *c;
3240         unsigned char scsi3addr[8];
3241         struct ErrorInfo *ei;
3242
3243         c = cmd_alloc(h);
3244
3245         /* address the controller */
3246         memset(scsi3addr, 0, sizeof(scsi3addr));
3247         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3248                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3249                 rc = -1;
3250                 goto out;
3251         }
3252         if (extended_response)
3253                 c->Request.CDB[1] = extended_response;
3254         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3255                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3256         if (rc)
3257                 goto out;
3258         ei = c->err_info;
3259         if (ei->CommandStatus != 0 &&
3260             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3261                 hpsa_scsi_interpret_error(h, c);
3262                 rc = -1;
3263         } else {
3264                 struct ReportLUNdata *rld = buf;
3265
3266                 if (rld->extended_response_flag != extended_response) {
3267                         dev_err(&h->pdev->dev,
3268                                 "report luns requested format %u, got %u\n",
3269                                 extended_response,
3270                                 rld->extended_response_flag);
3271                         rc = -1;
3272                 }
3273         }
3274 out:
3275         cmd_free(h, c);
3276         return rc;
3277 }
3278
3279 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3280                 struct ReportExtendedLUNdata *buf, int bufsize)
3281 {
3282         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3283                                                 HPSA_REPORT_PHYS_EXTENDED);
3284 }
3285
3286 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3287                 struct ReportLUNdata *buf, int bufsize)
3288 {
3289         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3290 }
3291
3292 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3293         int bus, int target, int lun)
3294 {
3295         device->bus = bus;
3296         device->target = target;
3297         device->lun = lun;
3298 }
3299
3300 /* Use VPD inquiry to get details of volume status */
3301 static int hpsa_get_volume_status(struct ctlr_info *h,
3302                                         unsigned char scsi3addr[])
3303 {
3304         int rc;
3305         int status;
3306         int size;
3307         unsigned char *buf;
3308
3309         buf = kzalloc(64, GFP_KERNEL);
3310         if (!buf)
3311                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3312
3313         /* Does controller have VPD for logical volume status? */
3314         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3315                 goto exit_failed;
3316
3317         /* Get the size of the VPD return buffer */
3318         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3319                                         buf, HPSA_VPD_HEADER_SZ);
3320         if (rc != 0)
3321                 goto exit_failed;
3322         size = buf[3];
3323
3324         /* Now get the whole VPD buffer */
3325         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3326                                         buf, size + HPSA_VPD_HEADER_SZ);
3327         if (rc != 0)
3328                 goto exit_failed;
3329         status = buf[4]; /* status byte */
3330
3331         kfree(buf);
3332         return status;
3333 exit_failed:
3334         kfree(buf);
3335         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3336 }
3337
3338 /* Determine offline status of a volume.
3339  * Return either:
3340  *  0 (not offline)
3341  *  0xff (offline for unknown reasons)
3342  *  # (integer code indicating one of several NOT READY states
3343  *     describing why a volume is to be kept offline)
3344  */
3345 static int hpsa_volume_offline(struct ctlr_info *h,
3346                                         unsigned char scsi3addr[])
3347 {
3348         struct CommandList *c;
3349         unsigned char *sense;
3350         u8 sense_key, asc, ascq;
3351         int sense_len;
3352         int rc, ldstat = 0;
3353         u16 cmd_status;
3354         u8 scsi_status;
3355 #define ASC_LUN_NOT_READY 0x04
3356 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3357 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3358
3359         c = cmd_alloc(h);
3360
3361         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3362         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3363         if (rc) {
3364                 cmd_free(h, c);
3365                 return 0;
3366         }
3367         sense = c->err_info->SenseInfo;
3368         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3369                 sense_len = sizeof(c->err_info->SenseInfo);
3370         else
3371                 sense_len = c->err_info->SenseLen;
3372         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3373         cmd_status = c->err_info->CommandStatus;
3374         scsi_status = c->err_info->ScsiStatus;
3375         cmd_free(h, c);
3376         /* Is the volume 'not ready'? */
3377         if (cmd_status != CMD_TARGET_STATUS ||
3378                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3379                 sense_key != NOT_READY ||
3380                 asc != ASC_LUN_NOT_READY)  {
3381                 return 0;
3382         }
3383
3384         /* Determine the reason for not ready state */
3385         ldstat = hpsa_get_volume_status(h, scsi3addr);
3386
3387         /* Keep volume offline in certain cases: */
3388         switch (ldstat) {
3389         case HPSA_LV_UNDERGOING_ERASE:
3390         case HPSA_LV_NOT_AVAILABLE:
3391         case HPSA_LV_UNDERGOING_RPI:
3392         case HPSA_LV_PENDING_RPI:
3393         case HPSA_LV_ENCRYPTED_NO_KEY:
3394         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3395         case HPSA_LV_UNDERGOING_ENCRYPTION:
3396         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3397         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3398                 return ldstat;
3399         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3400                 /* If VPD status page isn't available,
3401                  * use ASC/ASCQ to determine state
3402                  */
3403                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3404                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3405                         return ldstat;
3406                 break;
3407         default:
3408                 break;
3409         }
3410         return 0;
3411 }
3412
3413 /*
3414  * Find out if a logical device supports aborts by simply trying one.
3415  * Smart Array may claim not to support aborts on logical drives, but
3416  * if a MSA2000 * is connected, the drives on that will be presented
3417  * by the Smart Array as logical drives, and aborts may be sent to
3418  * those devices successfully.  So the simplest way to find out is
3419  * to simply try an abort and see how the device responds.
3420  */
3421 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3422                                         unsigned char *scsi3addr)
3423 {
3424         struct CommandList *c;
3425         struct ErrorInfo *ei;
3426         int rc = 0;
3427
3428         u64 tag = (u64) -1; /* bogus tag */
3429
3430         /* Assume that physical devices support aborts */
3431         if (!is_logical_dev_addr_mode(scsi3addr))
3432                 return 1;
3433
3434         c = cmd_alloc(h);
3435
3436         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3437         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3438         /* no unmap needed here because no data xfer. */
3439         ei = c->err_info;
3440         switch (ei->CommandStatus) {
3441         case CMD_INVALID:
3442                 rc = 0;
3443                 break;
3444         case CMD_UNABORTABLE:
3445         case CMD_ABORT_FAILED:
3446                 rc = 1;
3447                 break;
3448         case CMD_TMF_STATUS:
3449                 rc = hpsa_evaluate_tmf_status(h, c);
3450                 break;
3451         default:
3452                 rc = 0;
3453                 break;
3454         }
3455         cmd_free(h, c);
3456         return rc;
3457 }
3458
3459 static void sanitize_inquiry_string(unsigned char *s, int len)
3460 {
3461         bool terminated = false;
3462
3463         for (; len > 0; (--len, ++s)) {
3464                 if (*s == 0)
3465                         terminated = true;
3466                 if (terminated || *s < 0x20 || *s > 0x7e)
3467                         *s = ' ';
3468         }
3469 }
3470
3471 static int hpsa_update_device_info(struct ctlr_info *h,
3472         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3473         unsigned char *is_OBDR_device)
3474 {
3475
3476 #define OBDR_SIG_OFFSET 43
3477 #define OBDR_TAPE_SIG "$DR-10"
3478 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3479 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3480
3481         unsigned char *inq_buff;
3482         unsigned char *obdr_sig;
3483         int rc = 0;
3484
3485         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3486         if (!inq_buff) {
3487                 rc = -ENOMEM;
3488                 goto bail_out;
3489         }
3490
3491         /* Do an inquiry to the device to see what it is. */
3492         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3493                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3494                 /* Inquiry failed (msg printed already) */
3495                 dev_err(&h->pdev->dev,
3496                         "hpsa_update_device_info: inquiry failed\n");
3497                 rc = -EIO;
3498                 goto bail_out;
3499         }
3500
3501         sanitize_inquiry_string(&inq_buff[8], 8);
3502         sanitize_inquiry_string(&inq_buff[16], 16);
3503
3504         this_device->devtype = (inq_buff[0] & 0x1f);
3505         memcpy(this_device->scsi3addr, scsi3addr, 8);
3506         memcpy(this_device->vendor, &inq_buff[8],
3507                 sizeof(this_device->vendor));
3508         memcpy(this_device->model, &inq_buff[16],
3509                 sizeof(this_device->model));
3510         memset(this_device->device_id, 0,
3511                 sizeof(this_device->device_id));
3512         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3513                 sizeof(this_device->device_id));
3514
3515         if (this_device->devtype == TYPE_DISK &&
3516                 is_logical_dev_addr_mode(scsi3addr)) {
3517                 int volume_offline;
3518
3519                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3520                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3521                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3522                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3523                 if (volume_offline < 0 || volume_offline > 0xff)
3524                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3525                 this_device->volume_offline = volume_offline & 0xff;
3526         } else {
3527                 this_device->raid_level = RAID_UNKNOWN;
3528                 this_device->offload_config = 0;
3529                 this_device->offload_enabled = 0;
3530                 this_device->offload_to_be_enabled = 0;
3531                 this_device->hba_ioaccel_enabled = 0;
3532                 this_device->volume_offline = 0;
3533                 this_device->queue_depth = h->nr_cmds;
3534         }
3535
3536         if (is_OBDR_device) {
3537                 /* See if this is a One-Button-Disaster-Recovery device
3538                  * by looking for "$DR-10" at offset 43 in inquiry data.
3539                  */
3540                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3541                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3542                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3543                                                 OBDR_SIG_LEN) == 0);
3544         }
3545         kfree(inq_buff);
3546         return 0;
3547
3548 bail_out:
3549         kfree(inq_buff);
3550         return rc;
3551 }
3552
3553 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3554                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3555 {
3556         unsigned long flags;
3557         int rc, entry;
3558         /*
3559          * See if this device supports aborts.  If we already know
3560          * the device, we already know if it supports aborts, otherwise
3561          * we have to find out if it supports aborts by trying one.
3562          */
3563         spin_lock_irqsave(&h->devlock, flags);
3564         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3565         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3566                 entry >= 0 && entry < h->ndevices) {
3567                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3568                 spin_unlock_irqrestore(&h->devlock, flags);
3569         } else {
3570                 spin_unlock_irqrestore(&h->devlock, flags);
3571                 dev->supports_aborts =
3572                                 hpsa_device_supports_aborts(h, scsi3addr);
3573                 if (dev->supports_aborts < 0)
3574                         dev->supports_aborts = 0;
3575         }
3576 }
3577
3578 /*
3579  * Helper function to assign bus, target, lun mapping of devices.
3580  * Logical drive target and lun are assigned at this time, but
3581  * physical device lun and target assignment are deferred (assigned
3582  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3583 */
3584 static void figure_bus_target_lun(struct ctlr_info *h,
3585         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3586 {
3587         u32 lunid = get_unaligned_le32(lunaddrbytes);
3588
3589         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3590                 /* physical device, target and lun filled in later */
3591                 if (is_hba_lunid(lunaddrbytes))
3592                         hpsa_set_bus_target_lun(device,
3593                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3594                 else
3595                         /* defer target, lun assignment for physical devices */
3596                         hpsa_set_bus_target_lun(device,
3597                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3598                 return;
3599         }
3600         /* It's a logical device */
3601         if (device->external) {
3602                 hpsa_set_bus_target_lun(device,
3603                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3604                         lunid & 0x00ff);
3605                 return;
3606         }
3607         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3608                                 0, lunid & 0x3fff);
3609 }
3610
3611
3612 /*
3613  * Get address of physical disk used for an ioaccel2 mode command:
3614  *      1. Extract ioaccel2 handle from the command.
3615  *      2. Find a matching ioaccel2 handle from list of physical disks.
3616  *      3. Return:
3617  *              1 and set scsi3addr to address of matching physical
3618  *              0 if no matching physical disk was found.
3619  */
3620 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3621         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3622 {
3623         struct io_accel2_cmd *c2 =
3624                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3625         unsigned long flags;
3626         int i;
3627
3628         spin_lock_irqsave(&h->devlock, flags);
3629         for (i = 0; i < h->ndevices; i++)
3630                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3631                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3632                                 sizeof(h->dev[i]->scsi3addr));
3633                         spin_unlock_irqrestore(&h->devlock, flags);
3634                         return 1;
3635                 }
3636         spin_unlock_irqrestore(&h->devlock, flags);
3637         return 0;
3638 }
3639
3640 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3641         int i, int nphysicals, int nlocal_logicals)
3642 {
3643         /* In report logicals, local logicals are listed first,
3644         * then any externals.
3645         */
3646         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3647
3648         if (i == raid_ctlr_position)
3649                 return 0;
3650
3651         if (i < logicals_start)
3652                 return 0;
3653
3654         /* i is in logicals range, but still within local logicals */
3655         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3656                 return 0;
3657
3658         return 1; /* it's an external lun */
3659 }
3660
3661 /*
3662  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3663  * logdev.  The number of luns in physdev and logdev are returned in
3664  * *nphysicals and *nlogicals, respectively.
3665  * Returns 0 on success, -1 otherwise.
3666  */
3667 static int hpsa_gather_lun_info(struct ctlr_info *h,
3668         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3669         struct ReportLUNdata *logdev, u32 *nlogicals)
3670 {
3671         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3672                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3673                 return -1;
3674         }
3675         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3676         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3677                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3678                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3679                 *nphysicals = HPSA_MAX_PHYS_LUN;
3680         }
3681         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3682                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3683                 return -1;
3684         }
3685         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3686         /* Reject Logicals in excess of our max capability. */
3687         if (*nlogicals > HPSA_MAX_LUN) {
3688                 dev_warn(&h->pdev->dev,
3689                         "maximum logical LUNs (%d) exceeded.  "
3690                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3691                         *nlogicals - HPSA_MAX_LUN);
3692                         *nlogicals = HPSA_MAX_LUN;
3693         }
3694         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3695                 dev_warn(&h->pdev->dev,
3696                         "maximum logical + physical LUNs (%d) exceeded. "
3697                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3698                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3699                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3700         }
3701         return 0;
3702 }
3703
3704 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3705         int i, int nphysicals, int nlogicals,
3706         struct ReportExtendedLUNdata *physdev_list,
3707         struct ReportLUNdata *logdev_list)
3708 {
3709         /* Helper function, figure out where the LUN ID info is coming from
3710          * given index i, lists of physical and logical devices, where in
3711          * the list the raid controller is supposed to appear (first or last)
3712          */
3713
3714         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3715         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3716
3717         if (i == raid_ctlr_position)
3718                 return RAID_CTLR_LUNID;
3719
3720         if (i < logicals_start)
3721                 return &physdev_list->LUN[i -
3722                                 (raid_ctlr_position == 0)].lunid[0];
3723
3724         if (i < last_device)
3725                 return &logdev_list->LUN[i - nphysicals -
3726                         (raid_ctlr_position == 0)][0];
3727         BUG();
3728         return NULL;
3729 }
3730
3731 /* get physical drive ioaccel handle and queue depth */
3732 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3733                 struct hpsa_scsi_dev_t *dev,
3734                 struct ReportExtendedLUNdata *rlep, int rle_index,
3735                 struct bmic_identify_physical_device *id_phys)
3736 {
3737         int rc;
3738         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3739
3740         dev->ioaccel_handle = rle->ioaccel_handle;
3741         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3742                 dev->hba_ioaccel_enabled = 1;
3743         memset(id_phys, 0, sizeof(*id_phys));
3744         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3745                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3746                         sizeof(*id_phys));
3747         if (!rc)
3748                 /* Reserve space for FW operations */
3749 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3750 #define DRIVE_QUEUE_DEPTH 7
3751                 dev->queue_depth =
3752                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3753                                 DRIVE_CMDS_RESERVED_FOR_FW;
3754         else
3755                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3756 }
3757
3758 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3759         struct ReportExtendedLUNdata *rlep, int rle_index,
3760         struct bmic_identify_physical_device *id_phys)
3761 {
3762         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3763
3764         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3765                 this_device->hba_ioaccel_enabled = 1;
3766
3767         memcpy(&this_device->active_path_index,
3768                 &id_phys->active_path_number,
3769                 sizeof(this_device->active_path_index));
3770         memcpy(&this_device->path_map,
3771                 &id_phys->redundant_path_present_map,
3772                 sizeof(this_device->path_map));
3773         memcpy(&this_device->box,
3774                 &id_phys->alternate_paths_phys_box_on_port,
3775                 sizeof(this_device->box));
3776         memcpy(&this_device->phys_connector,
3777                 &id_phys->alternate_paths_phys_connector,
3778                 sizeof(this_device->phys_connector));
3779         memcpy(&this_device->bay,
3780                 &id_phys->phys_bay_in_box,
3781                 sizeof(this_device->bay));
3782 }
3783
3784 /* get number of local logical disks. */
3785 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3786         struct bmic_identify_controller *id_ctlr,
3787         u32 *nlocals)
3788 {
3789         int rc;
3790
3791         if (!id_ctlr) {
3792                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3793                         __func__);
3794                 return -ENOMEM;
3795         }
3796         memset(id_ctlr, 0, sizeof(*id_ctlr));
3797         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3798         if (!rc)
3799                 if (id_ctlr->configured_logical_drive_count < 256)
3800                         *nlocals = id_ctlr->configured_logical_drive_count;
3801                 else
3802                         *nlocals = le16_to_cpu(
3803                                         id_ctlr->extended_logical_unit_count);
3804         else
3805                 *nlocals = -1;
3806         return rc;
3807 }
3808
3809
3810 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3811 {
3812         /* the idea here is we could get notified
3813          * that some devices have changed, so we do a report
3814          * physical luns and report logical luns cmd, and adjust
3815          * our list of devices accordingly.
3816          *
3817          * The scsi3addr's of devices won't change so long as the
3818          * adapter is not reset.  That means we can rescan and
3819          * tell which devices we already know about, vs. new
3820          * devices, vs.  disappearing devices.
3821          */
3822         struct ReportExtendedLUNdata *physdev_list = NULL;
3823         struct ReportLUNdata *logdev_list = NULL;
3824         struct bmic_identify_physical_device *id_phys = NULL;
3825         struct bmic_identify_controller *id_ctlr = NULL;
3826         u32 nphysicals = 0;
3827         u32 nlogicals = 0;
3828         u32 nlocal_logicals = 0;
3829         u32 ndev_allocated = 0;
3830         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3831         int ncurrent = 0;
3832         int i, n_ext_target_devs, ndevs_to_allocate;
3833         int raid_ctlr_position;
3834         bool physical_device;
3835         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3836
3837         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3838         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3839         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3840         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3841         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3842         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
3843
3844         if (!currentsd || !physdev_list || !logdev_list ||
3845                 !tmpdevice || !id_phys || !id_ctlr) {
3846                 dev_err(&h->pdev->dev, "out of memory\n");
3847                 goto out;
3848         }
3849         memset(lunzerobits, 0, sizeof(lunzerobits));
3850
3851         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3852
3853         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3854                         logdev_list, &nlogicals)) {
3855                 h->drv_req_rescan = 1;
3856                 goto out;
3857         }
3858
3859         /* Set number of local logicals (non PTRAID) */
3860         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
3861                 dev_warn(&h->pdev->dev,
3862                         "%s: Can't determine number of local logical devices.\n",
3863                         __func__);
3864         }
3865
3866         /* We might see up to the maximum number of logical and physical disks
3867          * plus external target devices, and a device for the local RAID
3868          * controller.
3869          */
3870         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3871
3872         /* Allocate the per device structures */
3873         for (i = 0; i < ndevs_to_allocate; i++) {
3874                 if (i >= HPSA_MAX_DEVICES) {
3875                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3876                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3877                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3878                         break;
3879                 }
3880
3881                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3882                 if (!currentsd[i]) {
3883                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3884                                 __FILE__, __LINE__);
3885                         h->drv_req_rescan = 1;
3886                         goto out;
3887                 }
3888                 ndev_allocated++;
3889         }
3890
3891         if (is_scsi_rev_5(h))
3892                 raid_ctlr_position = 0;
3893         else
3894                 raid_ctlr_position = nphysicals + nlogicals;
3895
3896         /* adjust our table of devices */
3897         n_ext_target_devs = 0;
3898         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3899                 u8 *lunaddrbytes, is_OBDR = 0;
3900                 int rc = 0;
3901                 int phys_dev_index = i - (raid_ctlr_position == 0);
3902
3903                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
3904
3905                 /* Figure out where the LUN ID info is coming from */
3906                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3907                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3908
3909                 /* skip masked non-disk devices */
3910                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
3911                         (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
3912                         continue;
3913
3914                 /* Get device type, vendor, model, device id */
3915                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3916                                                         &is_OBDR);
3917                 if (rc == -ENOMEM) {
3918                         dev_warn(&h->pdev->dev,
3919                                 "Out of memory, rescan deferred.\n");
3920                         h->drv_req_rescan = 1;
3921                         goto out;
3922                 }
3923                 if (rc) {
3924                         dev_warn(&h->pdev->dev,
3925                                 "Inquiry failed, skipping device.\n");
3926                         continue;
3927                 }
3928
3929                 /* Determine if this is a lun from an external target array */
3930                 tmpdevice->external =
3931                         figure_external_status(h, raid_ctlr_position, i,
3932                                                 nphysicals, nlocal_logicals);
3933
3934                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3935                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3936                 this_device = currentsd[ncurrent];
3937
3938                 /* Turn on discovery_polling if there are ext target devices.
3939                  * Event-based change notification is unreliable for those.
3940                  */
3941                 if (!h->discovery_polling) {
3942                         if (tmpdevice->external) {
3943                                 h->discovery_polling = 1;
3944                                 dev_info(&h->pdev->dev,
3945                                         "External target, activate discovery polling.\n");
3946                         }
3947                 }
3948
3949
3950                 *this_device = *tmpdevice;
3951                 this_device->physical_device = physical_device;
3952
3953                 /*
3954                  * Expose all devices except for physical devices that
3955                  * are masked.
3956                  */
3957                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
3958                         this_device->expose_device = 0;
3959                 else
3960                         this_device->expose_device = 1;
3961
3962                 switch (this_device->devtype) {
3963                 case TYPE_ROM:
3964                         /* We don't *really* support actual CD-ROM devices,
3965                          * just "One Button Disaster Recovery" tape drive
3966                          * which temporarily pretends to be a CD-ROM drive.
3967                          * So we check that the device is really an OBDR tape
3968                          * device by checking for "$DR-10" in bytes 43-48 of
3969                          * the inquiry data.
3970                          */
3971                         if (is_OBDR)
3972                                 ncurrent++;
3973                         break;
3974                 case TYPE_DISK:
3975                         if (this_device->physical_device) {
3976                                 /* The disk is in HBA mode. */
3977                                 /* Never use RAID mapper in HBA mode. */
3978                                 this_device->offload_enabled = 0;
3979                                 hpsa_get_ioaccel_drive_info(h, this_device,
3980                                         physdev_list, phys_dev_index, id_phys);
3981                                 hpsa_get_path_info(this_device,
3982                                         physdev_list, phys_dev_index, id_phys);
3983                         }
3984                         ncurrent++;
3985                         break;
3986                 case TYPE_TAPE:
3987                 case TYPE_MEDIUM_CHANGER:
3988                 case TYPE_ENCLOSURE:
3989                         ncurrent++;
3990                         break;
3991                 case TYPE_RAID:
3992                         /* Only present the Smartarray HBA as a RAID controller.
3993                          * If it's a RAID controller other than the HBA itself
3994                          * (an external RAID controller, MSA500 or similar)
3995                          * don't present it.
3996                          */
3997                         if (!is_hba_lunid(lunaddrbytes))
3998                                 break;
3999                         ncurrent++;
4000                         break;
4001                 default:
4002                         break;
4003                 }
4004                 if (ncurrent >= HPSA_MAX_DEVICES)
4005                         break;
4006         }
4007         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4008 out:
4009         kfree(tmpdevice);
4010         for (i = 0; i < ndev_allocated; i++)
4011                 kfree(currentsd[i]);
4012         kfree(currentsd);
4013         kfree(physdev_list);
4014         kfree(logdev_list);
4015         kfree(id_ctlr);
4016         kfree(id_phys);
4017 }
4018
4019 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4020                                    struct scatterlist *sg)
4021 {
4022         u64 addr64 = (u64) sg_dma_address(sg);
4023         unsigned int len = sg_dma_len(sg);
4024
4025         desc->Addr = cpu_to_le64(addr64);
4026         desc->Len = cpu_to_le32(len);
4027         desc->Ext = 0;
4028 }
4029
4030 /*
4031  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4032  * dma mapping  and fills in the scatter gather entries of the
4033  * hpsa command, cp.
4034  */
4035 static int hpsa_scatter_gather(struct ctlr_info *h,
4036                 struct CommandList *cp,
4037                 struct scsi_cmnd *cmd)
4038 {
4039         struct scatterlist *sg;
4040         int use_sg, i, sg_limit, chained, last_sg;
4041         struct SGDescriptor *curr_sg;
4042
4043         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4044
4045         use_sg = scsi_dma_map(cmd);
4046         if (use_sg < 0)
4047                 return use_sg;
4048
4049         if (!use_sg)
4050                 goto sglist_finished;
4051
4052         /*
4053          * If the number of entries is greater than the max for a single list,
4054          * then we have a chained list; we will set up all but one entry in the
4055          * first list (the last entry is saved for link information);
4056          * otherwise, we don't have a chained list and we'll set up at each of
4057          * the entries in the one list.
4058          */
4059         curr_sg = cp->SG;
4060         chained = use_sg > h->max_cmd_sg_entries;
4061         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4062         last_sg = scsi_sg_count(cmd) - 1;
4063         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4064                 hpsa_set_sg_descriptor(curr_sg, sg);
4065                 curr_sg++;
4066         }
4067
4068         if (chained) {
4069                 /*
4070                  * Continue with the chained list.  Set curr_sg to the chained
4071                  * list.  Modify the limit to the total count less the entries
4072                  * we've already set up.  Resume the scan at the list entry
4073                  * where the previous loop left off.
4074                  */
4075                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4076                 sg_limit = use_sg - sg_limit;
4077                 for_each_sg(sg, sg, sg_limit, i) {
4078                         hpsa_set_sg_descriptor(curr_sg, sg);
4079                         curr_sg++;
4080                 }
4081         }
4082
4083         /* Back the pointer up to the last entry and mark it as "last". */
4084         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4085
4086         if (use_sg + chained > h->maxSG)
4087                 h->maxSG = use_sg + chained;
4088
4089         if (chained) {
4090                 cp->Header.SGList = h->max_cmd_sg_entries;
4091                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4092                 if (hpsa_map_sg_chain_block(h, cp)) {
4093                         scsi_dma_unmap(cmd);
4094                         return -1;
4095                 }
4096                 return 0;
4097         }
4098
4099 sglist_finished:
4100
4101         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4102         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4103         return 0;
4104 }
4105
4106 #define IO_ACCEL_INELIGIBLE (1)
4107 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4108 {
4109         int is_write = 0;
4110         u32 block;
4111         u32 block_cnt;
4112
4113         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4114         switch (cdb[0]) {
4115         case WRITE_6:
4116         case WRITE_12:
4117                 is_write = 1;
4118         case READ_6:
4119         case READ_12:
4120                 if (*cdb_len == 6) {
4121                         block = get_unaligned_be16(&cdb[2]);
4122                         block_cnt = cdb[4];
4123                         if (block_cnt == 0)
4124                                 block_cnt = 256;
4125                 } else {
4126                         BUG_ON(*cdb_len != 12);
4127                         block = get_unaligned_be32(&cdb[2]);
4128                         block_cnt = get_unaligned_be32(&cdb[6]);
4129                 }
4130                 if (block_cnt > 0xffff)
4131                         return IO_ACCEL_INELIGIBLE;
4132
4133                 cdb[0] = is_write ? WRITE_10 : READ_10;
4134                 cdb[1] = 0;
4135                 cdb[2] = (u8) (block >> 24);
4136                 cdb[3] = (u8) (block >> 16);
4137                 cdb[4] = (u8) (block >> 8);
4138                 cdb[5] = (u8) (block);
4139                 cdb[6] = 0;
4140                 cdb[7] = (u8) (block_cnt >> 8);
4141                 cdb[8] = (u8) (block_cnt);
4142                 cdb[9] = 0;
4143                 *cdb_len = 10;
4144                 break;
4145         }
4146         return 0;
4147 }
4148
4149 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4150         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4151         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4152 {
4153         struct scsi_cmnd *cmd = c->scsi_cmd;
4154         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4155         unsigned int len;
4156         unsigned int total_len = 0;
4157         struct scatterlist *sg;
4158         u64 addr64;
4159         int use_sg, i;
4160         struct SGDescriptor *curr_sg;
4161         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4162
4163         /* TODO: implement chaining support */
4164         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4165                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4166                 return IO_ACCEL_INELIGIBLE;
4167         }
4168
4169         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4170
4171         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4172                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4173                 return IO_ACCEL_INELIGIBLE;
4174         }
4175
4176         c->cmd_type = CMD_IOACCEL1;
4177
4178         /* Adjust the DMA address to point to the accelerated command buffer */
4179         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4180                                 (c->cmdindex * sizeof(*cp));
4181         BUG_ON(c->busaddr & 0x0000007F);
4182
4183         use_sg = scsi_dma_map(cmd);
4184         if (use_sg < 0) {
4185                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4186                 return use_sg;
4187         }
4188
4189         if (use_sg) {
4190                 curr_sg = cp->SG;
4191                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4192                         addr64 = (u64) sg_dma_address(sg);
4193                         len  = sg_dma_len(sg);
4194                         total_len += len;
4195                         curr_sg->Addr = cpu_to_le64(addr64);
4196                         curr_sg->Len = cpu_to_le32(len);
4197                         curr_sg->Ext = cpu_to_le32(0);
4198                         curr_sg++;
4199                 }
4200                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4201
4202                 switch (cmd->sc_data_direction) {
4203                 case DMA_TO_DEVICE:
4204                         control |= IOACCEL1_CONTROL_DATA_OUT;
4205                         break;
4206                 case DMA_FROM_DEVICE:
4207                         control |= IOACCEL1_CONTROL_DATA_IN;
4208                         break;
4209                 case DMA_NONE:
4210                         control |= IOACCEL1_CONTROL_NODATAXFER;
4211                         break;
4212                 default:
4213                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4214                         cmd->sc_data_direction);
4215                         BUG();
4216                         break;
4217                 }
4218         } else {
4219                 control |= IOACCEL1_CONTROL_NODATAXFER;
4220         }
4221
4222         c->Header.SGList = use_sg;
4223         /* Fill out the command structure to submit */
4224         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4225         cp->transfer_len = cpu_to_le32(total_len);
4226         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4227                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4228         cp->control = cpu_to_le32(control);
4229         memcpy(cp->CDB, cdb, cdb_len);
4230         memcpy(cp->CISS_LUN, scsi3addr, 8);
4231         /* Tag was already set at init time. */
4232         enqueue_cmd_and_start_io(h, c);
4233         return 0;
4234 }
4235
4236 /*
4237  * Queue a command directly to a device behind the controller using the
4238  * I/O accelerator path.
4239  */
4240 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4241         struct CommandList *c)
4242 {
4243         struct scsi_cmnd *cmd = c->scsi_cmd;
4244         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4245
4246         c->phys_disk = dev;
4247
4248         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4249                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4250 }
4251
4252 /*
4253  * Set encryption parameters for the ioaccel2 request
4254  */
4255 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4256         struct CommandList *c, struct io_accel2_cmd *cp)
4257 {
4258         struct scsi_cmnd *cmd = c->scsi_cmd;
4259         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4260         struct raid_map_data *map = &dev->raid_map;
4261         u64 first_block;
4262
4263         /* Are we doing encryption on this device */
4264         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4265                 return;
4266         /* Set the data encryption key index. */
4267         cp->dekindex = map->dekindex;
4268
4269         /* Set the encryption enable flag, encoded into direction field. */
4270         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4271
4272         /* Set encryption tweak values based on logical block address
4273          * If block size is 512, tweak value is LBA.
4274          * For other block sizes, tweak is (LBA * block size)/ 512)
4275          */
4276         switch (cmd->cmnd[0]) {
4277         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4278         case WRITE_6:
4279         case READ_6:
4280                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4281                 break;
4282         case WRITE_10:
4283         case READ_10:
4284         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4285         case WRITE_12:
4286         case READ_12:
4287                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4288                 break;
4289         case WRITE_16:
4290         case READ_16:
4291                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4292                 break;
4293         default:
4294                 dev_err(&h->pdev->dev,
4295                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4296                         __func__, cmd->cmnd[0]);
4297                 BUG();
4298                 break;
4299         }
4300
4301         if (le32_to_cpu(map->volume_blk_size) != 512)
4302                 first_block = first_block *
4303                                 le32_to_cpu(map->volume_blk_size)/512;
4304
4305         cp->tweak_lower = cpu_to_le32(first_block);
4306         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4307 }
4308
4309 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4310         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4311         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4312 {
4313         struct scsi_cmnd *cmd = c->scsi_cmd;
4314         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4315         struct ioaccel2_sg_element *curr_sg;
4316         int use_sg, i;
4317         struct scatterlist *sg;
4318         u64 addr64;
4319         u32 len;
4320         u32 total_len = 0;
4321
4322         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4323
4324         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4325                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4326                 return IO_ACCEL_INELIGIBLE;
4327         }
4328
4329         c->cmd_type = CMD_IOACCEL2;
4330         /* Adjust the DMA address to point to the accelerated command buffer */
4331         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4332                                 (c->cmdindex * sizeof(*cp));
4333         BUG_ON(c->busaddr & 0x0000007F);
4334
4335         memset(cp, 0, sizeof(*cp));
4336         cp->IU_type = IOACCEL2_IU_TYPE;
4337
4338         use_sg = scsi_dma_map(cmd);
4339         if (use_sg < 0) {
4340                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4341                 return use_sg;
4342         }
4343
4344         if (use_sg) {
4345                 curr_sg = cp->sg;
4346                 if (use_sg > h->ioaccel_maxsg) {
4347                         addr64 = le64_to_cpu(
4348                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4349                         curr_sg->address = cpu_to_le64(addr64);
4350                         curr_sg->length = 0;
4351                         curr_sg->reserved[0] = 0;
4352                         curr_sg->reserved[1] = 0;
4353                         curr_sg->reserved[2] = 0;
4354                         curr_sg->chain_indicator = 0x80;
4355
4356                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4357                 }
4358                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4359                         addr64 = (u64) sg_dma_address(sg);
4360                         len  = sg_dma_len(sg);
4361                         total_len += len;
4362                         curr_sg->address = cpu_to_le64(addr64);
4363                         curr_sg->length = cpu_to_le32(len);
4364                         curr_sg->reserved[0] = 0;
4365                         curr_sg->reserved[1] = 0;
4366                         curr_sg->reserved[2] = 0;
4367                         curr_sg->chain_indicator = 0;
4368                         curr_sg++;
4369                 }
4370
4371                 switch (cmd->sc_data_direction) {
4372                 case DMA_TO_DEVICE:
4373                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4374                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4375                         break;
4376                 case DMA_FROM_DEVICE:
4377                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4378                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4379                         break;
4380                 case DMA_NONE:
4381                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4382                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4383                         break;
4384                 default:
4385                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4386                                 cmd->sc_data_direction);
4387                         BUG();
4388                         break;
4389                 }
4390         } else {
4391                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4392                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4393         }
4394
4395         /* Set encryption parameters, if necessary */
4396         set_encrypt_ioaccel2(h, c, cp);
4397
4398         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4399         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4400         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4401
4402         cp->data_len = cpu_to_le32(total_len);
4403         cp->err_ptr = cpu_to_le64(c->busaddr +
4404                         offsetof(struct io_accel2_cmd, error_data));
4405         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4406
4407         /* fill in sg elements */
4408         if (use_sg > h->ioaccel_maxsg) {
4409                 cp->sg_count = 1;
4410                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4411                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4412                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4413                         scsi_dma_unmap(cmd);
4414                         return -1;
4415                 }
4416         } else
4417                 cp->sg_count = (u8) use_sg;
4418
4419         enqueue_cmd_and_start_io(h, c);
4420         return 0;
4421 }
4422
4423 /*
4424  * Queue a command to the correct I/O accelerator path.
4425  */
4426 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4427         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4428         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4429 {
4430         /* Try to honor the device's queue depth */
4431         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4432                                         phys_disk->queue_depth) {
4433                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4434                 return IO_ACCEL_INELIGIBLE;
4435         }
4436         if (h->transMethod & CFGTBL_Trans_io_accel1)
4437                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4438                                                 cdb, cdb_len, scsi3addr,
4439                                                 phys_disk);
4440         else
4441                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4442                                                 cdb, cdb_len, scsi3addr,
4443                                                 phys_disk);
4444 }
4445
4446 static void raid_map_helper(struct raid_map_data *map,
4447                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4448 {
4449         if (offload_to_mirror == 0)  {
4450                 /* use physical disk in the first mirrored group. */
4451                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4452                 return;
4453         }
4454         do {
4455                 /* determine mirror group that *map_index indicates */
4456                 *current_group = *map_index /
4457                         le16_to_cpu(map->data_disks_per_row);
4458                 if (offload_to_mirror == *current_group)
4459                         continue;
4460                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4461                         /* select map index from next group */
4462                         *map_index += le16_to_cpu(map->data_disks_per_row);
4463                         (*current_group)++;
4464                 } else {
4465                         /* select map index from first group */
4466                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4467                         *current_group = 0;
4468                 }
4469         } while (offload_to_mirror != *current_group);
4470 }
4471
4472 /*
4473  * Attempt to perform offload RAID mapping for a logical volume I/O.
4474  */
4475 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4476         struct CommandList *c)
4477 {
4478         struct scsi_cmnd *cmd = c->scsi_cmd;
4479         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4480         struct raid_map_data *map = &dev->raid_map;
4481         struct raid_map_disk_data *dd = &map->data[0];
4482         int is_write = 0;
4483         u32 map_index;
4484         u64 first_block, last_block;
4485         u32 block_cnt;
4486         u32 blocks_per_row;
4487         u64 first_row, last_row;
4488         u32 first_row_offset, last_row_offset;
4489         u32 first_column, last_column;
4490         u64 r0_first_row, r0_last_row;
4491         u32 r5or6_blocks_per_row;
4492         u64 r5or6_first_row, r5or6_last_row;
4493         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4494         u32 r5or6_first_column, r5or6_last_column;
4495         u32 total_disks_per_row;
4496         u32 stripesize;
4497         u32 first_group, last_group, current_group;
4498         u32 map_row;
4499         u32 disk_handle;
4500         u64 disk_block;
4501         u32 disk_block_cnt;
4502         u8 cdb[16];
4503         u8 cdb_len;
4504         u16 strip_size;
4505 #if BITS_PER_LONG == 32
4506         u64 tmpdiv;
4507 #endif
4508         int offload_to_mirror;
4509
4510         /* check for valid opcode, get LBA and block count */
4511         switch (cmd->cmnd[0]) {
4512         case WRITE_6:
4513                 is_write = 1;
4514         case READ_6:
4515                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4516                 block_cnt = cmd->cmnd[4];
4517                 if (block_cnt == 0)
4518                         block_cnt = 256;
4519                 break;
4520         case WRITE_10:
4521                 is_write = 1;
4522         case READ_10:
4523                 first_block =
4524                         (((u64) cmd->cmnd[2]) << 24) |
4525                         (((u64) cmd->cmnd[3]) << 16) |
4526                         (((u64) cmd->cmnd[4]) << 8) |
4527                         cmd->cmnd[5];
4528                 block_cnt =
4529                         (((u32) cmd->cmnd[7]) << 8) |
4530                         cmd->cmnd[8];
4531                 break;
4532         case WRITE_12:
4533                 is_write = 1;
4534         case READ_12:
4535                 first_block =
4536                         (((u64) cmd->cmnd[2]) << 24) |
4537                         (((u64) cmd->cmnd[3]) << 16) |
4538                         (((u64) cmd->cmnd[4]) << 8) |
4539                         cmd->cmnd[5];
4540                 block_cnt =
4541                         (((u32) cmd->cmnd[6]) << 24) |
4542                         (((u32) cmd->cmnd[7]) << 16) |
4543                         (((u32) cmd->cmnd[8]) << 8) |
4544                 cmd->cmnd[9];
4545                 break;
4546         case WRITE_16:
4547                 is_write = 1;
4548         case READ_16:
4549                 first_block =
4550                         (((u64) cmd->cmnd[2]) << 56) |
4551                         (((u64) cmd->cmnd[3]) << 48) |
4552                         (((u64) cmd->cmnd[4]) << 40) |
4553                         (((u64) cmd->cmnd[5]) << 32) |
4554                         (((u64) cmd->cmnd[6]) << 24) |
4555                         (((u64) cmd->cmnd[7]) << 16) |
4556                         (((u64) cmd->cmnd[8]) << 8) |
4557                         cmd->cmnd[9];
4558                 block_cnt =
4559                         (((u32) cmd->cmnd[10]) << 24) |
4560                         (((u32) cmd->cmnd[11]) << 16) |
4561                         (((u32) cmd->cmnd[12]) << 8) |
4562                         cmd->cmnd[13];
4563                 break;
4564         default:
4565                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4566         }
4567         last_block = first_block + block_cnt - 1;
4568
4569         /* check for write to non-RAID-0 */
4570         if (is_write && dev->raid_level != 0)
4571                 return IO_ACCEL_INELIGIBLE;
4572
4573         /* check for invalid block or wraparound */
4574         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4575                 last_block < first_block)
4576                 return IO_ACCEL_INELIGIBLE;
4577
4578         /* calculate stripe information for the request */
4579         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4580                                 le16_to_cpu(map->strip_size);
4581         strip_size = le16_to_cpu(map->strip_size);
4582 #if BITS_PER_LONG == 32
4583         tmpdiv = first_block;
4584         (void) do_div(tmpdiv, blocks_per_row);
4585         first_row = tmpdiv;
4586         tmpdiv = last_block;
4587         (void) do_div(tmpdiv, blocks_per_row);
4588         last_row = tmpdiv;
4589         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4590         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4591         tmpdiv = first_row_offset;
4592         (void) do_div(tmpdiv, strip_size);
4593         first_column = tmpdiv;
4594         tmpdiv = last_row_offset;
4595         (void) do_div(tmpdiv, strip_size);
4596         last_column = tmpdiv;
4597 #else
4598         first_row = first_block / blocks_per_row;
4599         last_row = last_block / blocks_per_row;
4600         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4601         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4602         first_column = first_row_offset / strip_size;
4603         last_column = last_row_offset / strip_size;
4604 #endif
4605
4606         /* if this isn't a single row/column then give to the controller */
4607         if ((first_row != last_row) || (first_column != last_column))
4608                 return IO_ACCEL_INELIGIBLE;
4609
4610         /* proceeding with driver mapping */
4611         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4612                                 le16_to_cpu(map->metadata_disks_per_row);
4613         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4614                                 le16_to_cpu(map->row_cnt);
4615         map_index = (map_row * total_disks_per_row) + first_column;
4616
4617         switch (dev->raid_level) {
4618         case HPSA_RAID_0:
4619                 break; /* nothing special to do */
4620         case HPSA_RAID_1:
4621                 /* Handles load balance across RAID 1 members.
4622                  * (2-drive R1 and R10 with even # of drives.)
4623                  * Appropriate for SSDs, not optimal for HDDs
4624                  */
4625                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4626                 if (dev->offload_to_mirror)
4627                         map_index += le16_to_cpu(map->data_disks_per_row);
4628                 dev->offload_to_mirror = !dev->offload_to_mirror;
4629                 break;
4630         case HPSA_RAID_ADM:
4631                 /* Handles N-way mirrors  (R1-ADM)
4632                  * and R10 with # of drives divisible by 3.)
4633                  */
4634                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4635
4636                 offload_to_mirror = dev->offload_to_mirror;
4637                 raid_map_helper(map, offload_to_mirror,
4638                                 &map_index, &current_group);
4639                 /* set mirror group to use next time */
4640                 offload_to_mirror =
4641                         (offload_to_mirror >=
4642                         le16_to_cpu(map->layout_map_count) - 1)
4643                         ? 0 : offload_to_mirror + 1;
4644                 dev->offload_to_mirror = offload_to_mirror;
4645                 /* Avoid direct use of dev->offload_to_mirror within this
4646                  * function since multiple threads might simultaneously
4647                  * increment it beyond the range of dev->layout_map_count -1.
4648                  */
4649                 break;
4650         case HPSA_RAID_5:
4651         case HPSA_RAID_6:
4652                 if (le16_to_cpu(map->layout_map_count) <= 1)
4653                         break;
4654
4655                 /* Verify first and last block are in same RAID group */
4656                 r5or6_blocks_per_row =
4657                         le16_to_cpu(map->strip_size) *
4658                         le16_to_cpu(map->data_disks_per_row);
4659                 BUG_ON(r5or6_blocks_per_row == 0);
4660                 stripesize = r5or6_blocks_per_row *
4661                         le16_to_cpu(map->layout_map_count);
4662 #if BITS_PER_LONG == 32
4663                 tmpdiv = first_block;
4664                 first_group = do_div(tmpdiv, stripesize);
4665                 tmpdiv = first_group;
4666                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4667                 first_group = tmpdiv;
4668                 tmpdiv = last_block;
4669                 last_group = do_div(tmpdiv, stripesize);
4670                 tmpdiv = last_group;
4671                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4672                 last_group = tmpdiv;
4673 #else
4674                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4675                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4676 #endif
4677                 if (first_group != last_group)
4678                         return IO_ACCEL_INELIGIBLE;
4679
4680                 /* Verify request is in a single row of RAID 5/6 */
4681 #if BITS_PER_LONG == 32
4682                 tmpdiv = first_block;
4683                 (void) do_div(tmpdiv, stripesize);
4684                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4685                 tmpdiv = last_block;
4686                 (void) do_div(tmpdiv, stripesize);
4687                 r5or6_last_row = r0_last_row = tmpdiv;
4688 #else
4689                 first_row = r5or6_first_row = r0_first_row =
4690                                                 first_block / stripesize;
4691                 r5or6_last_row = r0_last_row = last_block / stripesize;
4692 #endif
4693                 if (r5or6_first_row != r5or6_last_row)
4694                         return IO_ACCEL_INELIGIBLE;
4695
4696
4697                 /* Verify request is in a single column */
4698 #if BITS_PER_LONG == 32
4699                 tmpdiv = first_block;
4700                 first_row_offset = do_div(tmpdiv, stripesize);
4701                 tmpdiv = first_row_offset;
4702                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4703                 r5or6_first_row_offset = first_row_offset;
4704                 tmpdiv = last_block;
4705                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4706                 tmpdiv = r5or6_last_row_offset;
4707                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4708                 tmpdiv = r5or6_first_row_offset;
4709                 (void) do_div(tmpdiv, map->strip_size);
4710                 first_column = r5or6_first_column = tmpdiv;
4711                 tmpdiv = r5or6_last_row_offset;
4712                 (void) do_div(tmpdiv, map->strip_size);
4713                 r5or6_last_column = tmpdiv;
4714 #else
4715                 first_row_offset = r5or6_first_row_offset =
4716                         (u32)((first_block % stripesize) %
4717                                                 r5or6_blocks_per_row);
4718
4719                 r5or6_last_row_offset =
4720                         (u32)((last_block % stripesize) %
4721                                                 r5or6_blocks_per_row);
4722
4723                 first_column = r5or6_first_column =
4724                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4725                 r5or6_last_column =
4726                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4727 #endif
4728                 if (r5or6_first_column != r5or6_last_column)
4729                         return IO_ACCEL_INELIGIBLE;
4730
4731                 /* Request is eligible */
4732                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4733                         le16_to_cpu(map->row_cnt);
4734
4735                 map_index = (first_group *
4736                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4737                         (map_row * total_disks_per_row) + first_column;
4738                 break;
4739         default:
4740                 return IO_ACCEL_INELIGIBLE;
4741         }
4742
4743         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4744                 return IO_ACCEL_INELIGIBLE;
4745
4746         c->phys_disk = dev->phys_disk[map_index];
4747
4748         disk_handle = dd[map_index].ioaccel_handle;
4749         disk_block = le64_to_cpu(map->disk_starting_blk) +
4750                         first_row * le16_to_cpu(map->strip_size) +
4751                         (first_row_offset - first_column *
4752                         le16_to_cpu(map->strip_size));
4753         disk_block_cnt = block_cnt;
4754
4755         /* handle differing logical/physical block sizes */
4756         if (map->phys_blk_shift) {
4757                 disk_block <<= map->phys_blk_shift;
4758                 disk_block_cnt <<= map->phys_blk_shift;
4759         }
4760         BUG_ON(disk_block_cnt > 0xffff);
4761
4762         /* build the new CDB for the physical disk I/O */
4763         if (disk_block > 0xffffffff) {
4764                 cdb[0] = is_write ? WRITE_16 : READ_16;
4765                 cdb[1] = 0;
4766                 cdb[2] = (u8) (disk_block >> 56);
4767                 cdb[3] = (u8) (disk_block >> 48);
4768                 cdb[4] = (u8) (disk_block >> 40);
4769                 cdb[5] = (u8) (disk_block >> 32);
4770                 cdb[6] = (u8) (disk_block >> 24);
4771                 cdb[7] = (u8) (disk_block >> 16);
4772                 cdb[8] = (u8) (disk_block >> 8);
4773                 cdb[9] = (u8) (disk_block);
4774                 cdb[10] = (u8) (disk_block_cnt >> 24);
4775                 cdb[11] = (u8) (disk_block_cnt >> 16);
4776                 cdb[12] = (u8) (disk_block_cnt >> 8);
4777                 cdb[13] = (u8) (disk_block_cnt);
4778                 cdb[14] = 0;
4779                 cdb[15] = 0;
4780                 cdb_len = 16;
4781         } else {
4782                 cdb[0] = is_write ? WRITE_10 : READ_10;
4783                 cdb[1] = 0;
4784                 cdb[2] = (u8) (disk_block >> 24);
4785                 cdb[3] = (u8) (disk_block >> 16);
4786                 cdb[4] = (u8) (disk_block >> 8);
4787                 cdb[5] = (u8) (disk_block);
4788                 cdb[6] = 0;
4789                 cdb[7] = (u8) (disk_block_cnt >> 8);
4790                 cdb[8] = (u8) (disk_block_cnt);
4791                 cdb[9] = 0;
4792                 cdb_len = 10;
4793         }
4794         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4795                                                 dev->scsi3addr,
4796                                                 dev->phys_disk[map_index]);
4797 }
4798
4799 /*
4800  * Submit commands down the "normal" RAID stack path
4801  * All callers to hpsa_ciss_submit must check lockup_detected
4802  * beforehand, before (opt.) and after calling cmd_alloc
4803  */
4804 static int hpsa_ciss_submit(struct ctlr_info *h,
4805         struct CommandList *c, struct scsi_cmnd *cmd,
4806         unsigned char scsi3addr[])
4807 {
4808         cmd->host_scribble = (unsigned char *) c;
4809         c->cmd_type = CMD_SCSI;
4810         c->scsi_cmd = cmd;
4811         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4812         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4813         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4814
4815         /* Fill in the request block... */
4816
4817         c->Request.Timeout = 0;
4818         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4819         c->Request.CDBLen = cmd->cmd_len;
4820         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4821         switch (cmd->sc_data_direction) {
4822         case DMA_TO_DEVICE:
4823                 c->Request.type_attr_dir =
4824                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4825                 break;
4826         case DMA_FROM_DEVICE:
4827                 c->Request.type_attr_dir =
4828                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4829                 break;
4830         case DMA_NONE:
4831                 c->Request.type_attr_dir =
4832                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4833                 break;
4834         case DMA_BIDIRECTIONAL:
4835                 /* This can happen if a buggy application does a scsi passthru
4836                  * and sets both inlen and outlen to non-zero. ( see
4837                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4838                  */
4839
4840                 c->Request.type_attr_dir =
4841                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4842                 /* This is technically wrong, and hpsa controllers should
4843                  * reject it with CMD_INVALID, which is the most correct
4844                  * response, but non-fibre backends appear to let it
4845                  * slide by, and give the same results as if this field
4846                  * were set correctly.  Either way is acceptable for
4847                  * our purposes here.
4848                  */
4849
4850                 break;
4851
4852         default:
4853                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4854                         cmd->sc_data_direction);
4855                 BUG();
4856                 break;
4857         }
4858
4859         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4860                 hpsa_cmd_resolve_and_free(h, c);
4861                 return SCSI_MLQUEUE_HOST_BUSY;
4862         }
4863         enqueue_cmd_and_start_io(h, c);
4864         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4865         return 0;
4866 }
4867
4868 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4869                                 struct CommandList *c)
4870 {
4871         dma_addr_t cmd_dma_handle, err_dma_handle;
4872
4873         /* Zero out all of commandlist except the last field, refcount */
4874         memset(c, 0, offsetof(struct CommandList, refcount));
4875         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4876         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4877         c->err_info = h->errinfo_pool + index;
4878         memset(c->err_info, 0, sizeof(*c->err_info));
4879         err_dma_handle = h->errinfo_pool_dhandle
4880             + index * sizeof(*c->err_info);
4881         c->cmdindex = index;
4882         c->busaddr = (u32) cmd_dma_handle;
4883         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4884         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4885         c->h = h;
4886         c->scsi_cmd = SCSI_CMD_IDLE;
4887 }
4888
4889 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4890 {
4891         int i;
4892
4893         for (i = 0; i < h->nr_cmds; i++) {
4894                 struct CommandList *c = h->cmd_pool + i;
4895
4896                 hpsa_cmd_init(h, i, c);
4897                 atomic_set(&c->refcount, 0);
4898         }
4899 }
4900
4901 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4902                                 struct CommandList *c)
4903 {
4904         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4905
4906         BUG_ON(c->cmdindex != index);
4907
4908         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4909         memset(c->err_info, 0, sizeof(*c->err_info));
4910         c->busaddr = (u32) cmd_dma_handle;
4911 }
4912
4913 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4914                 struct CommandList *c, struct scsi_cmnd *cmd,
4915                 unsigned char *scsi3addr)
4916 {
4917         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4918         int rc = IO_ACCEL_INELIGIBLE;
4919
4920         cmd->host_scribble = (unsigned char *) c;
4921
4922         if (dev->offload_enabled) {
4923                 hpsa_cmd_init(h, c->cmdindex, c);
4924                 c->cmd_type = CMD_SCSI;
4925                 c->scsi_cmd = cmd;
4926                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4927                 if (rc < 0)     /* scsi_dma_map failed. */
4928                         rc = SCSI_MLQUEUE_HOST_BUSY;
4929         } else if (dev->hba_ioaccel_enabled) {
4930                 hpsa_cmd_init(h, c->cmdindex, c);
4931                 c->cmd_type = CMD_SCSI;
4932                 c->scsi_cmd = cmd;
4933                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4934                 if (rc < 0)     /* scsi_dma_map failed. */
4935                         rc = SCSI_MLQUEUE_HOST_BUSY;
4936         }
4937         return rc;
4938 }
4939
4940 static void hpsa_command_resubmit_worker(struct work_struct *work)
4941 {
4942         struct scsi_cmnd *cmd;
4943         struct hpsa_scsi_dev_t *dev;
4944         struct CommandList *c = container_of(work, struct CommandList, work);
4945
4946         cmd = c->scsi_cmd;
4947         dev = cmd->device->hostdata;
4948         if (!dev) {
4949                 cmd->result = DID_NO_CONNECT << 16;
4950                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4951         }
4952         if (c->reset_pending)
4953                 return hpsa_cmd_resolve_and_free(c->h, c);
4954         if (c->abort_pending)
4955                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4956         if (c->cmd_type == CMD_IOACCEL2) {
4957                 struct ctlr_info *h = c->h;
4958                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4959                 int rc;
4960
4961                 if (c2->error_data.serv_response ==
4962                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4963                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4964                         if (rc == 0)
4965                                 return;
4966                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4967                                 /*
4968                                  * If we get here, it means dma mapping failed.
4969                                  * Try again via scsi mid layer, which will
4970                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4971                                  */
4972                                 cmd->result = DID_IMM_RETRY << 16;
4973                                 return hpsa_cmd_free_and_done(h, c, cmd);
4974                         }
4975                         /* else, fall thru and resubmit down CISS path */
4976                 }
4977         }
4978         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4979         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4980                 /*
4981                  * If we get here, it means dma mapping failed. Try
4982                  * again via scsi mid layer, which will then get
4983                  * SCSI_MLQUEUE_HOST_BUSY.
4984                  *
4985                  * hpsa_ciss_submit will have already freed c
4986                  * if it encountered a dma mapping failure.
4987                  */
4988                 cmd->result = DID_IMM_RETRY << 16;
4989                 cmd->scsi_done(cmd);
4990         }
4991 }
4992
4993 /* Running in struct Scsi_Host->host_lock less mode */
4994 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4995 {
4996         struct ctlr_info *h;
4997         struct hpsa_scsi_dev_t *dev;
4998         unsigned char scsi3addr[8];
4999         struct CommandList *c;
5000         int rc = 0;
5001
5002         /* Get the ptr to our adapter structure out of cmd->host. */
5003         h = sdev_to_hba(cmd->device);
5004
5005         BUG_ON(cmd->request->tag < 0);
5006
5007         dev = cmd->device->hostdata;
5008         if (!dev) {
5009                 cmd->result = DID_NO_CONNECT << 16;
5010                 cmd->scsi_done(cmd);
5011                 return 0;
5012         }
5013
5014         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5015
5016         if (unlikely(lockup_detected(h))) {
5017                 cmd->result = DID_NO_CONNECT << 16;
5018                 cmd->scsi_done(cmd);
5019                 return 0;
5020         }
5021         c = cmd_tagged_alloc(h, cmd);
5022
5023         /*
5024          * Call alternate submit routine for I/O accelerated commands.
5025          * Retries always go down the normal I/O path.
5026          */
5027         if (likely(cmd->retries == 0 &&
5028                 cmd->request->cmd_type == REQ_TYPE_FS &&
5029                 h->acciopath_status)) {
5030                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5031                 if (rc == 0)
5032                         return 0;
5033                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5034                         hpsa_cmd_resolve_and_free(h, c);
5035                         return SCSI_MLQUEUE_HOST_BUSY;
5036                 }
5037         }
5038         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5039 }
5040
5041 static void hpsa_scan_complete(struct ctlr_info *h)
5042 {
5043         unsigned long flags;
5044
5045         spin_lock_irqsave(&h->scan_lock, flags);
5046         h->scan_finished = 1;
5047         wake_up_all(&h->scan_wait_queue);
5048         spin_unlock_irqrestore(&h->scan_lock, flags);
5049 }
5050
5051 static void hpsa_scan_start(struct Scsi_Host *sh)
5052 {
5053         struct ctlr_info *h = shost_to_hba(sh);
5054         unsigned long flags;
5055
5056         /*
5057          * Don't let rescans be initiated on a controller known to be locked
5058          * up.  If the controller locks up *during* a rescan, that thread is
5059          * probably hosed, but at least we can prevent new rescan threads from
5060          * piling up on a locked up controller.
5061          */
5062         if (unlikely(lockup_detected(h)))
5063                 return hpsa_scan_complete(h);
5064
5065         /* wait until any scan already in progress is finished. */
5066         while (1) {
5067                 spin_lock_irqsave(&h->scan_lock, flags);
5068                 if (h->scan_finished)
5069                         break;
5070                 spin_unlock_irqrestore(&h->scan_lock, flags);
5071                 wait_event(h->scan_wait_queue, h->scan_finished);
5072                 /* Note: We don't need to worry about a race between this
5073                  * thread and driver unload because the midlayer will
5074                  * have incremented the reference count, so unload won't
5075                  * happen if we're in here.
5076                  */
5077         }
5078         h->scan_finished = 0; /* mark scan as in progress */
5079         spin_unlock_irqrestore(&h->scan_lock, flags);
5080
5081         if (unlikely(lockup_detected(h)))
5082                 return hpsa_scan_complete(h);
5083
5084         hpsa_update_scsi_devices(h);
5085
5086         hpsa_scan_complete(h);
5087 }
5088
5089 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5090 {
5091         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5092
5093         if (!logical_drive)
5094                 return -ENODEV;
5095
5096         if (qdepth < 1)
5097                 qdepth = 1;
5098         else if (qdepth > logical_drive->queue_depth)
5099                 qdepth = logical_drive->queue_depth;
5100
5101         return scsi_change_queue_depth(sdev, qdepth);
5102 }
5103
5104 static int hpsa_scan_finished(struct Scsi_Host *sh,
5105         unsigned long elapsed_time)
5106 {
5107         struct ctlr_info *h = shost_to_hba(sh);
5108         unsigned long flags;
5109         int finished;
5110
5111         spin_lock_irqsave(&h->scan_lock, flags);
5112         finished = h->scan_finished;
5113         spin_unlock_irqrestore(&h->scan_lock, flags);
5114         return finished;
5115 }
5116
5117 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5118 {
5119         struct Scsi_Host *sh;
5120         int error;
5121
5122         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5123         if (sh == NULL) {
5124                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5125                 return -ENOMEM;
5126         }
5127
5128         sh->io_port = 0;
5129         sh->n_io_port = 0;
5130         sh->this_id = -1;
5131         sh->max_channel = 3;
5132         sh->max_cmd_len = MAX_COMMAND_SIZE;
5133         sh->max_lun = HPSA_MAX_LUN;
5134         sh->max_id = HPSA_MAX_LUN;
5135         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5136         sh->cmd_per_lun = sh->can_queue;
5137         sh->sg_tablesize = h->maxsgentries;
5138         sh->hostdata[0] = (unsigned long) h;
5139         sh->irq = h->intr[h->intr_mode];
5140         sh->unique_id = sh->irq;
5141         error = scsi_init_shared_tag_map(sh, sh->can_queue);
5142         if (error) {
5143                 dev_err(&h->pdev->dev,
5144                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
5145                         __func__, h->ctlr);
5146                         scsi_host_put(sh);
5147                         return error;
5148         }
5149         h->scsi_host = sh;
5150         return 0;
5151 }
5152
5153 static int hpsa_scsi_add_host(struct ctlr_info *h)
5154 {
5155         int rv;
5156
5157         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5158         if (rv) {
5159                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5160                 return rv;
5161         }
5162         scsi_scan_host(h->scsi_host);
5163         return 0;
5164 }
5165
5166 /*
5167  * The block layer has already gone to the trouble of picking out a unique,
5168  * small-integer tag for this request.  We use an offset from that value as
5169  * an index to select our command block.  (The offset allows us to reserve the
5170  * low-numbered entries for our own uses.)
5171  */
5172 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5173 {
5174         int idx = scmd->request->tag;
5175
5176         if (idx < 0)
5177                 return idx;
5178
5179         /* Offset to leave space for internal cmds. */
5180         return idx += HPSA_NRESERVED_CMDS;
5181 }
5182
5183 /*
5184  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5185  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5186  */
5187 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5188                                 struct CommandList *c, unsigned char lunaddr[],
5189                                 int reply_queue)
5190 {
5191         int rc;
5192
5193         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5194         (void) fill_cmd(c, TEST_UNIT_READY, h,
5195                         NULL, 0, 0, lunaddr, TYPE_CMD);
5196         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5197         if (rc)
5198                 return rc;
5199         /* no unmap needed here because no data xfer. */
5200
5201         /* Check if the unit is already ready. */
5202         if (c->err_info->CommandStatus == CMD_SUCCESS)
5203                 return 0;
5204
5205         /*
5206          * The first command sent after reset will receive "unit attention" to
5207          * indicate that the LUN has been reset...this is actually what we're
5208          * looking for (but, success is good too).
5209          */
5210         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5211                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5212                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5213                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5214                 return 0;
5215
5216         return 1;
5217 }
5218
5219 /*
5220  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5221  * returns zero when the unit is ready, and non-zero when giving up.
5222  */
5223 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5224                                 struct CommandList *c,
5225                                 unsigned char lunaddr[], int reply_queue)
5226 {
5227         int rc;
5228         int count = 0;
5229         int waittime = 1; /* seconds */
5230
5231         /* Send test unit ready until device ready, or give up. */
5232         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5233
5234                 /*
5235                  * Wait for a bit.  do this first, because if we send
5236                  * the TUR right away, the reset will just abort it.
5237                  */
5238                 msleep(1000 * waittime);
5239
5240                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5241                 if (!rc)
5242                         break;
5243
5244                 /* Increase wait time with each try, up to a point. */
5245                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5246                         waittime *= 2;
5247
5248                 dev_warn(&h->pdev->dev,
5249                          "waiting %d secs for device to become ready.\n",
5250                          waittime);
5251         }
5252
5253         return rc;
5254 }
5255
5256 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5257                                            unsigned char lunaddr[],
5258                                            int reply_queue)
5259 {
5260         int first_queue;
5261         int last_queue;
5262         int rq;
5263         int rc = 0;
5264         struct CommandList *c;
5265
5266         c = cmd_alloc(h);
5267
5268         /*
5269          * If no specific reply queue was requested, then send the TUR
5270          * repeatedly, requesting a reply on each reply queue; otherwise execute
5271          * the loop exactly once using only the specified queue.
5272          */
5273         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5274                 first_queue = 0;
5275                 last_queue = h->nreply_queues - 1;
5276         } else {
5277                 first_queue = reply_queue;
5278                 last_queue = reply_queue;
5279         }
5280
5281         for (rq = first_queue; rq <= last_queue; rq++) {
5282                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5283                 if (rc)
5284                         break;
5285         }
5286
5287         if (rc)
5288                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5289         else
5290                 dev_warn(&h->pdev->dev, "device is ready.\n");
5291
5292         cmd_free(h, c);
5293         return rc;
5294 }
5295
5296 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5297  * complaining.  Doing a host- or bus-reset can't do anything good here.
5298  */
5299 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5300 {
5301         int rc;
5302         struct ctlr_info *h;
5303         struct hpsa_scsi_dev_t *dev;
5304         u8 reset_type;
5305         char msg[48];
5306
5307         /* find the controller to which the command to be aborted was sent */
5308         h = sdev_to_hba(scsicmd->device);
5309         if (h == NULL) /* paranoia */
5310                 return FAILED;
5311
5312         if (lockup_detected(h))
5313                 return FAILED;
5314
5315         dev = scsicmd->device->hostdata;
5316         if (!dev) {
5317                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5318                 return FAILED;
5319         }
5320
5321         /* if controller locked up, we can guarantee command won't complete */
5322         if (lockup_detected(h)) {
5323                 snprintf(msg, sizeof(msg),
5324                          "cmd %d RESET FAILED, lockup detected",
5325                          hpsa_get_cmd_index(scsicmd));
5326                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5327                 return FAILED;
5328         }
5329
5330         /* this reset request might be the result of a lockup; check */
5331         if (detect_controller_lockup(h)) {
5332                 snprintf(msg, sizeof(msg),
5333                          "cmd %d RESET FAILED, new lockup detected",
5334                          hpsa_get_cmd_index(scsicmd));
5335                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5336                 return FAILED;
5337         }
5338
5339         /* Do not attempt on controller */
5340         if (is_hba_lunid(dev->scsi3addr))
5341                 return SUCCESS;
5342
5343         if (is_logical_dev_addr_mode(dev->scsi3addr))
5344                 reset_type = HPSA_DEVICE_RESET_MSG;
5345         else
5346                 reset_type = HPSA_PHYS_TARGET_RESET;
5347
5348         sprintf(msg, "resetting %s",
5349                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5350         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5351
5352         h->reset_in_progress = 1;
5353
5354         /* send a reset to the SCSI LUN which the command was sent to */
5355         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5356                            DEFAULT_REPLY_QUEUE);
5357         sprintf(msg, "reset %s %s",
5358                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5359                 rc == 0 ? "completed successfully" : "failed");
5360         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5361         h->reset_in_progress = 0;
5362         return rc == 0 ? SUCCESS : FAILED;
5363 }
5364
5365 static void swizzle_abort_tag(u8 *tag)
5366 {
5367         u8 original_tag[8];
5368
5369         memcpy(original_tag, tag, 8);
5370         tag[0] = original_tag[3];
5371         tag[1] = original_tag[2];
5372         tag[2] = original_tag[1];
5373         tag[3] = original_tag[0];
5374         tag[4] = original_tag[7];
5375         tag[5] = original_tag[6];
5376         tag[6] = original_tag[5];
5377         tag[7] = original_tag[4];
5378 }
5379
5380 static void hpsa_get_tag(struct ctlr_info *h,
5381         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5382 {
5383         u64 tag;
5384         if (c->cmd_type == CMD_IOACCEL1) {
5385                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5386                         &h->ioaccel_cmd_pool[c->cmdindex];
5387                 tag = le64_to_cpu(cm1->tag);
5388                 *tagupper = cpu_to_le32(tag >> 32);
5389                 *taglower = cpu_to_le32(tag);
5390                 return;
5391         }
5392         if (c->cmd_type == CMD_IOACCEL2) {
5393                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5394                         &h->ioaccel2_cmd_pool[c->cmdindex];
5395                 /* upper tag not used in ioaccel2 mode */
5396                 memset(tagupper, 0, sizeof(*tagupper));
5397                 *taglower = cm2->Tag;
5398                 return;
5399         }
5400         tag = le64_to_cpu(c->Header.tag);
5401         *tagupper = cpu_to_le32(tag >> 32);
5402         *taglower = cpu_to_le32(tag);
5403 }
5404
5405 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5406         struct CommandList *abort, int reply_queue)
5407 {
5408         int rc = IO_OK;
5409         struct CommandList *c;
5410         struct ErrorInfo *ei;
5411         __le32 tagupper, taglower;
5412
5413         c = cmd_alloc(h);
5414
5415         /* fill_cmd can't fail here, no buffer to map */
5416         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5417                 0, 0, scsi3addr, TYPE_MSG);
5418         if (h->needs_abort_tags_swizzled)
5419                 swizzle_abort_tag(&c->Request.CDB[4]);
5420         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5421         hpsa_get_tag(h, abort, &taglower, &tagupper);
5422         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5423                 __func__, tagupper, taglower);
5424         /* no unmap needed here because no data xfer. */
5425
5426         ei = c->err_info;
5427         switch (ei->CommandStatus) {
5428         case CMD_SUCCESS:
5429                 break;
5430         case CMD_TMF_STATUS:
5431                 rc = hpsa_evaluate_tmf_status(h, c);
5432                 break;
5433         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5434                 rc = -1;
5435                 break;
5436         default:
5437                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5438                         __func__, tagupper, taglower);
5439                 hpsa_scsi_interpret_error(h, c);
5440                 rc = -1;
5441                 break;
5442         }
5443         cmd_free(h, c);
5444         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5445                 __func__, tagupper, taglower);
5446         return rc;
5447 }
5448
5449 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5450         struct CommandList *command_to_abort, int reply_queue)
5451 {
5452         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5453         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5454         struct io_accel2_cmd *c2a =
5455                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5456         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5457         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5458
5459         /*
5460          * We're overlaying struct hpsa_tmf_struct on top of something which
5461          * was allocated as a struct io_accel2_cmd, so we better be sure it
5462          * actually fits, and doesn't overrun the error info space.
5463          */
5464         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5465                         sizeof(struct io_accel2_cmd));
5466         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5467                         offsetof(struct hpsa_tmf_struct, error_len) +
5468                                 sizeof(ac->error_len));
5469
5470         c->cmd_type = IOACCEL2_TMF;
5471         c->scsi_cmd = SCSI_CMD_BUSY;
5472
5473         /* Adjust the DMA address to point to the accelerated command buffer */
5474         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5475                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5476         BUG_ON(c->busaddr & 0x0000007F);
5477
5478         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5479         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5480         ac->reply_queue = reply_queue;
5481         ac->tmf = IOACCEL2_TMF_ABORT;
5482         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5483         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5484         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5485         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5486         ac->error_ptr = cpu_to_le64(c->busaddr +
5487                         offsetof(struct io_accel2_cmd, error_data));
5488         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5489 }
5490
5491 /* ioaccel2 path firmware cannot handle abort task requests.
5492  * Change abort requests to physical target reset, and send to the
5493  * address of the physical disk used for the ioaccel 2 command.
5494  * Return 0 on success (IO_OK)
5495  *       -1 on failure
5496  */
5497
5498 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5499         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5500 {
5501         int rc = IO_OK;
5502         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5503         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5504         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5505         unsigned char *psa = &phys_scsi3addr[0];
5506
5507         /* Get a pointer to the hpsa logical device. */
5508         scmd = abort->scsi_cmd;
5509         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5510         if (dev == NULL) {
5511                 dev_warn(&h->pdev->dev,
5512                         "Cannot abort: no device pointer for command.\n");
5513                         return -1; /* not abortable */
5514         }
5515
5516         if (h->raid_offload_debug > 0)
5517                 dev_info(&h->pdev->dev,
5518                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5519                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5520                         "Reset as abort",
5521                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5522                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5523
5524         if (!dev->offload_enabled) {
5525                 dev_warn(&h->pdev->dev,
5526                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5527                 return -1; /* not abortable */
5528         }
5529
5530         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5531         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5532                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5533                 return -1; /* not abortable */
5534         }
5535
5536         /* send the reset */
5537         if (h->raid_offload_debug > 0)
5538                 dev_info(&h->pdev->dev,
5539                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5540                         psa[0], psa[1], psa[2], psa[3],
5541                         psa[4], psa[5], psa[6], psa[7]);
5542         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5543         if (rc != 0) {
5544                 dev_warn(&h->pdev->dev,
5545                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5546                         psa[0], psa[1], psa[2], psa[3],
5547                         psa[4], psa[5], psa[6], psa[7]);
5548                 return rc; /* failed to reset */
5549         }
5550
5551         /* wait for device to recover */
5552         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5553                 dev_warn(&h->pdev->dev,
5554                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5555                         psa[0], psa[1], psa[2], psa[3],
5556                         psa[4], psa[5], psa[6], psa[7]);
5557                 return -1;  /* failed to recover */
5558         }
5559
5560         /* device recovered */
5561         dev_info(&h->pdev->dev,
5562                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5563                 psa[0], psa[1], psa[2], psa[3],
5564                 psa[4], psa[5], psa[6], psa[7]);
5565
5566         return rc; /* success */
5567 }
5568
5569 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5570         struct CommandList *abort, int reply_queue)
5571 {
5572         int rc = IO_OK;
5573         struct CommandList *c;
5574         __le32 taglower, tagupper;
5575         struct hpsa_scsi_dev_t *dev;
5576         struct io_accel2_cmd *c2;
5577
5578         dev = abort->scsi_cmd->device->hostdata;
5579         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5580                 return -1;
5581
5582         c = cmd_alloc(h);
5583         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5584         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5585         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5586         hpsa_get_tag(h, abort, &taglower, &tagupper);
5587         dev_dbg(&h->pdev->dev,
5588                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5589                 __func__, tagupper, taglower);
5590         /* no unmap needed here because no data xfer. */
5591
5592         dev_dbg(&h->pdev->dev,
5593                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5594                 __func__, tagupper, taglower, c2->error_data.serv_response);
5595         switch (c2->error_data.serv_response) {
5596         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5597         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5598                 rc = 0;
5599                 break;
5600         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5601         case IOACCEL2_SERV_RESPONSE_FAILURE:
5602         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5603                 rc = -1;
5604                 break;
5605         default:
5606                 dev_warn(&h->pdev->dev,
5607                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5608                         __func__, tagupper, taglower,
5609                         c2->error_data.serv_response);
5610                 rc = -1;
5611         }
5612         cmd_free(h, c);
5613         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5614                 tagupper, taglower);
5615         return rc;
5616 }
5617
5618 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5619         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5620 {
5621         /*
5622          * ioccelerator mode 2 commands should be aborted via the
5623          * accelerated path, since RAID path is unaware of these commands,
5624          * but not all underlying firmware can handle abort TMF.
5625          * Change abort to physical device reset when abort TMF is unsupported.
5626          */
5627         if (abort->cmd_type == CMD_IOACCEL2) {
5628                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5629                         return hpsa_send_abort_ioaccel2(h, abort,
5630                                                 reply_queue);
5631                 else
5632                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5633                                                         abort, reply_queue);
5634         }
5635         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5636 }
5637
5638 /* Find out which reply queue a command was meant to return on */
5639 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5640                                         struct CommandList *c)
5641 {
5642         if (c->cmd_type == CMD_IOACCEL2)
5643                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5644         return c->Header.ReplyQueue;
5645 }
5646
5647 /*
5648  * Limit concurrency of abort commands to prevent
5649  * over-subscription of commands
5650  */
5651 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5652 {
5653 #define ABORT_CMD_WAIT_MSECS 5000
5654         return !wait_event_timeout(h->abort_cmd_wait_queue,
5655                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5656                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5657 }
5658
5659 /* Send an abort for the specified command.
5660  *      If the device and controller support it,
5661  *              send a task abort request.
5662  */
5663 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5664 {
5665
5666         int rc;
5667         struct ctlr_info *h;
5668         struct hpsa_scsi_dev_t *dev;
5669         struct CommandList *abort; /* pointer to command to be aborted */
5670         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5671         char msg[256];          /* For debug messaging. */
5672         int ml = 0;
5673         __le32 tagupper, taglower;
5674         int refcount, reply_queue;
5675
5676         if (sc == NULL)
5677                 return FAILED;
5678
5679         if (sc->device == NULL)
5680                 return FAILED;
5681
5682         /* Find the controller of the command to be aborted */
5683         h = sdev_to_hba(sc->device);
5684         if (h == NULL)
5685                 return FAILED;
5686
5687         /* Find the device of the command to be aborted */
5688         dev = sc->device->hostdata;
5689         if (!dev) {
5690                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5691                                 msg);
5692                 return FAILED;
5693         }
5694
5695         /* If controller locked up, we can guarantee command won't complete */
5696         if (lockup_detected(h)) {
5697                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5698                                         "ABORT FAILED, lockup detected");
5699                 return FAILED;
5700         }
5701
5702         /* This is a good time to check if controller lockup has occurred */
5703         if (detect_controller_lockup(h)) {
5704                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5705                                         "ABORT FAILED, new lockup detected");
5706                 return FAILED;
5707         }
5708
5709         /* Check that controller supports some kind of task abort */
5710         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5711                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5712                 return FAILED;
5713
5714         memset(msg, 0, sizeof(msg));
5715         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5716                 h->scsi_host->host_no, sc->device->channel,
5717                 sc->device->id, sc->device->lun,
5718                 "Aborting command", sc);
5719
5720         /* Get SCSI command to be aborted */
5721         abort = (struct CommandList *) sc->host_scribble;
5722         if (abort == NULL) {
5723                 /* This can happen if the command already completed. */
5724                 return SUCCESS;
5725         }
5726         refcount = atomic_inc_return(&abort->refcount);
5727         if (refcount == 1) { /* Command is done already. */
5728                 cmd_free(h, abort);
5729                 return SUCCESS;
5730         }
5731
5732         /* Don't bother trying the abort if we know it won't work. */
5733         if (abort->cmd_type != CMD_IOACCEL2 &&
5734                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5735                 cmd_free(h, abort);
5736                 return FAILED;
5737         }
5738
5739         /*
5740          * Check that we're aborting the right command.
5741          * It's possible the CommandList already completed and got re-used.
5742          */
5743         if (abort->scsi_cmd != sc) {
5744                 cmd_free(h, abort);
5745                 return SUCCESS;
5746         }
5747
5748         abort->abort_pending = true;
5749         hpsa_get_tag(h, abort, &taglower, &tagupper);
5750         reply_queue = hpsa_extract_reply_queue(h, abort);
5751         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5752         as  = abort->scsi_cmd;
5753         if (as != NULL)
5754                 ml += sprintf(msg+ml,
5755                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5756                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5757                         as->serial_number);
5758         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5759         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5760
5761         /*
5762          * Command is in flight, or possibly already completed
5763          * by the firmware (but not to the scsi mid layer) but we can't
5764          * distinguish which.  Send the abort down.
5765          */
5766         if (wait_for_available_abort_cmd(h)) {
5767                 dev_warn(&h->pdev->dev,
5768                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5769                         msg);
5770                 cmd_free(h, abort);
5771                 return FAILED;
5772         }
5773         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5774         atomic_inc(&h->abort_cmds_available);
5775         wake_up_all(&h->abort_cmd_wait_queue);
5776         if (rc != 0) {
5777                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5778                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5779                                 "FAILED to abort command");
5780                 cmd_free(h, abort);
5781                 return FAILED;
5782         }
5783         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5784         wait_event(h->event_sync_wait_queue,
5785                    abort->scsi_cmd != sc || lockup_detected(h));
5786         cmd_free(h, abort);
5787         return !lockup_detected(h) ? SUCCESS : FAILED;
5788 }
5789
5790 /*
5791  * For operations with an associated SCSI command, a command block is allocated
5792  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5793  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5794  * the complement, although cmd_free() may be called instead.
5795  */
5796 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5797                                             struct scsi_cmnd *scmd)
5798 {
5799         int idx = hpsa_get_cmd_index(scmd);
5800         struct CommandList *c = h->cmd_pool + idx;
5801
5802         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5803                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5804                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5805                 /* The index value comes from the block layer, so if it's out of
5806                  * bounds, it's probably not our bug.
5807                  */
5808                 BUG();
5809         }
5810
5811         atomic_inc(&c->refcount);
5812         if (unlikely(!hpsa_is_cmd_idle(c))) {
5813                 /*
5814                  * We expect that the SCSI layer will hand us a unique tag
5815                  * value.  Thus, there should never be a collision here between
5816                  * two requests...because if the selected command isn't idle
5817                  * then someone is going to be very disappointed.
5818                  */
5819                 dev_err(&h->pdev->dev,
5820                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5821                         idx);
5822                 if (c->scsi_cmd != NULL)
5823                         scsi_print_command(c->scsi_cmd);
5824                 scsi_print_command(scmd);
5825         }
5826
5827         hpsa_cmd_partial_init(h, idx, c);
5828         return c;
5829 }
5830
5831 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5832 {
5833         /*
5834          * Release our reference to the block.  We don't need to do anything
5835          * else to free it, because it is accessed by index.  (There's no point
5836          * in checking the result of the decrement, since we cannot guarantee
5837          * that there isn't a concurrent abort which is also accessing it.)
5838          */
5839         (void)atomic_dec(&c->refcount);
5840 }
5841
5842 /*
5843  * For operations that cannot sleep, a command block is allocated at init,
5844  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5845  * which ones are free or in use.  Lock must be held when calling this.
5846  * cmd_free() is the complement.
5847  * This function never gives up and returns NULL.  If it hangs,
5848  * another thread must call cmd_free() to free some tags.
5849  */
5850
5851 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5852 {
5853         struct CommandList *c;
5854         int refcount, i;
5855         int offset = 0;
5856
5857         /*
5858          * There is some *extremely* small but non-zero chance that that
5859          * multiple threads could get in here, and one thread could
5860          * be scanning through the list of bits looking for a free
5861          * one, but the free ones are always behind him, and other
5862          * threads sneak in behind him and eat them before he can
5863          * get to them, so that while there is always a free one, a
5864          * very unlucky thread might be starved anyway, never able to
5865          * beat the other threads.  In reality, this happens so
5866          * infrequently as to be indistinguishable from never.
5867          *
5868          * Note that we start allocating commands before the SCSI host structure
5869          * is initialized.  Since the search starts at bit zero, this
5870          * all works, since we have at least one command structure available;
5871          * however, it means that the structures with the low indexes have to be
5872          * reserved for driver-initiated requests, while requests from the block
5873          * layer will use the higher indexes.
5874          */
5875
5876         for (;;) {
5877                 i = find_next_zero_bit(h->cmd_pool_bits,
5878                                         HPSA_NRESERVED_CMDS,
5879                                         offset);
5880                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5881                         offset = 0;
5882                         continue;
5883                 }
5884                 c = h->cmd_pool + i;
5885                 refcount = atomic_inc_return(&c->refcount);
5886                 if (unlikely(refcount > 1)) {
5887                         cmd_free(h, c); /* already in use */
5888                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5889                         continue;
5890                 }
5891                 set_bit(i & (BITS_PER_LONG - 1),
5892                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5893                 break; /* it's ours now. */
5894         }
5895         hpsa_cmd_partial_init(h, i, c);
5896         return c;
5897 }
5898
5899 /*
5900  * This is the complementary operation to cmd_alloc().  Note, however, in some
5901  * corner cases it may also be used to free blocks allocated by
5902  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5903  * the clear-bit is harmless.
5904  */
5905 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5906 {
5907         if (atomic_dec_and_test(&c->refcount)) {
5908                 int i;
5909
5910                 i = c - h->cmd_pool;
5911                 clear_bit(i & (BITS_PER_LONG - 1),
5912                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5913         }
5914 }
5915
5916 #ifdef CONFIG_COMPAT
5917
5918 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5919         void __user *arg)
5920 {
5921         IOCTL32_Command_struct __user *arg32 =
5922             (IOCTL32_Command_struct __user *) arg;
5923         IOCTL_Command_struct arg64;
5924         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5925         int err;
5926         u32 cp;
5927
5928         memset(&arg64, 0, sizeof(arg64));
5929         err = 0;
5930         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5931                            sizeof(arg64.LUN_info));
5932         err |= copy_from_user(&arg64.Request, &arg32->Request,
5933                            sizeof(arg64.Request));
5934         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5935                            sizeof(arg64.error_info));
5936         err |= get_user(arg64.buf_size, &arg32->buf_size);
5937         err |= get_user(cp, &arg32->buf);
5938         arg64.buf = compat_ptr(cp);
5939         err |= copy_to_user(p, &arg64, sizeof(arg64));
5940
5941         if (err)
5942                 return -EFAULT;
5943
5944         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5945         if (err)
5946                 return err;
5947         err |= copy_in_user(&arg32->error_info, &p->error_info,
5948                          sizeof(arg32->error_info));
5949         if (err)
5950                 return -EFAULT;
5951         return err;
5952 }
5953
5954 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5955         int cmd, void __user *arg)
5956 {
5957         BIG_IOCTL32_Command_struct __user *arg32 =
5958             (BIG_IOCTL32_Command_struct __user *) arg;
5959         BIG_IOCTL_Command_struct arg64;
5960         BIG_IOCTL_Command_struct __user *p =
5961             compat_alloc_user_space(sizeof(arg64));
5962         int err;
5963         u32 cp;
5964
5965         memset(&arg64, 0, sizeof(arg64));
5966         err = 0;
5967         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5968                            sizeof(arg64.LUN_info));
5969         err |= copy_from_user(&arg64.Request, &arg32->Request,
5970                            sizeof(arg64.Request));
5971         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5972                            sizeof(arg64.error_info));
5973         err |= get_user(arg64.buf_size, &arg32->buf_size);
5974         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5975         err |= get_user(cp, &arg32->buf);
5976         arg64.buf = compat_ptr(cp);
5977         err |= copy_to_user(p, &arg64, sizeof(arg64));
5978
5979         if (err)
5980                 return -EFAULT;
5981
5982         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5983         if (err)
5984                 return err;
5985         err |= copy_in_user(&arg32->error_info, &p->error_info,
5986                          sizeof(arg32->error_info));
5987         if (err)
5988                 return -EFAULT;
5989         return err;
5990 }
5991
5992 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5993 {
5994         switch (cmd) {
5995         case CCISS_GETPCIINFO:
5996         case CCISS_GETINTINFO:
5997         case CCISS_SETINTINFO:
5998         case CCISS_GETNODENAME:
5999         case CCISS_SETNODENAME:
6000         case CCISS_GETHEARTBEAT:
6001         case CCISS_GETBUSTYPES:
6002         case CCISS_GETFIRMVER:
6003         case CCISS_GETDRIVVER:
6004         case CCISS_REVALIDVOLS:
6005         case CCISS_DEREGDISK:
6006         case CCISS_REGNEWDISK:
6007         case CCISS_REGNEWD:
6008         case CCISS_RESCANDISK:
6009         case CCISS_GETLUNINFO:
6010                 return hpsa_ioctl(dev, cmd, arg);
6011
6012         case CCISS_PASSTHRU32:
6013                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6014         case CCISS_BIG_PASSTHRU32:
6015                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6016
6017         default:
6018                 return -ENOIOCTLCMD;
6019         }
6020 }
6021 #endif
6022
6023 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6024 {
6025         struct hpsa_pci_info pciinfo;
6026
6027         if (!argp)
6028                 return -EINVAL;
6029         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6030         pciinfo.bus = h->pdev->bus->number;
6031         pciinfo.dev_fn = h->pdev->devfn;
6032         pciinfo.board_id = h->board_id;
6033         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6034                 return -EFAULT;
6035         return 0;
6036 }
6037
6038 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6039 {
6040         DriverVer_type DriverVer;
6041         unsigned char vmaj, vmin, vsubmin;
6042         int rc;
6043
6044         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6045                 &vmaj, &vmin, &vsubmin);
6046         if (rc != 3) {
6047                 dev_info(&h->pdev->dev, "driver version string '%s' "
6048                         "unrecognized.", HPSA_DRIVER_VERSION);
6049                 vmaj = 0;
6050                 vmin = 0;
6051                 vsubmin = 0;
6052         }
6053         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6054         if (!argp)
6055                 return -EINVAL;
6056         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6057                 return -EFAULT;
6058         return 0;
6059 }
6060
6061 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6062 {
6063         IOCTL_Command_struct iocommand;
6064         struct CommandList *c;
6065         char *buff = NULL;
6066         u64 temp64;
6067         int rc = 0;
6068
6069         if (!argp)
6070                 return -EINVAL;
6071         if (!capable(CAP_SYS_RAWIO))
6072                 return -EPERM;
6073         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6074                 return -EFAULT;
6075         if ((iocommand.buf_size < 1) &&
6076             (iocommand.Request.Type.Direction != XFER_NONE)) {
6077                 return -EINVAL;
6078         }
6079         if (iocommand.buf_size > 0) {
6080                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6081                 if (buff == NULL)
6082                         return -ENOMEM;
6083                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6084                         /* Copy the data into the buffer we created */
6085                         if (copy_from_user(buff, iocommand.buf,
6086                                 iocommand.buf_size)) {
6087                                 rc = -EFAULT;
6088                                 goto out_kfree;
6089                         }
6090                 } else {
6091                         memset(buff, 0, iocommand.buf_size);
6092                 }
6093         }
6094         c = cmd_alloc(h);
6095
6096         /* Fill in the command type */
6097         c->cmd_type = CMD_IOCTL_PEND;
6098         c->scsi_cmd = SCSI_CMD_BUSY;
6099         /* Fill in Command Header */
6100         c->Header.ReplyQueue = 0; /* unused in simple mode */
6101         if (iocommand.buf_size > 0) {   /* buffer to fill */
6102                 c->Header.SGList = 1;
6103                 c->Header.SGTotal = cpu_to_le16(1);
6104         } else  { /* no buffers to fill */
6105                 c->Header.SGList = 0;
6106                 c->Header.SGTotal = cpu_to_le16(0);
6107         }
6108         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6109
6110         /* Fill in Request block */
6111         memcpy(&c->Request, &iocommand.Request,
6112                 sizeof(c->Request));
6113
6114         /* Fill in the scatter gather information */
6115         if (iocommand.buf_size > 0) {
6116                 temp64 = pci_map_single(h->pdev, buff,
6117                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6118                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6119                         c->SG[0].Addr = cpu_to_le64(0);
6120                         c->SG[0].Len = cpu_to_le32(0);
6121                         rc = -ENOMEM;
6122                         goto out;
6123                 }
6124                 c->SG[0].Addr = cpu_to_le64(temp64);
6125                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6126                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6127         }
6128         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6129         if (iocommand.buf_size > 0)
6130                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6131         check_ioctl_unit_attention(h, c);
6132         if (rc) {
6133                 rc = -EIO;
6134                 goto out;
6135         }
6136
6137         /* Copy the error information out */
6138         memcpy(&iocommand.error_info, c->err_info,
6139                 sizeof(iocommand.error_info));
6140         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6141                 rc = -EFAULT;
6142                 goto out;
6143         }
6144         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6145                 iocommand.buf_size > 0) {
6146                 /* Copy the data out of the buffer we created */
6147                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6148                         rc = -EFAULT;
6149                         goto out;
6150                 }
6151         }
6152 out:
6153         cmd_free(h, c);
6154 out_kfree:
6155         kfree(buff);
6156         return rc;
6157 }
6158
6159 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6160 {
6161         BIG_IOCTL_Command_struct *ioc;
6162         struct CommandList *c;
6163         unsigned char **buff = NULL;
6164         int *buff_size = NULL;
6165         u64 temp64;
6166         BYTE sg_used = 0;
6167         int status = 0;
6168         u32 left;
6169         u32 sz;
6170         BYTE __user *data_ptr;
6171
6172         if (!argp)
6173                 return -EINVAL;
6174         if (!capable(CAP_SYS_RAWIO))
6175                 return -EPERM;
6176         ioc = (BIG_IOCTL_Command_struct *)
6177             kmalloc(sizeof(*ioc), GFP_KERNEL);
6178         if (!ioc) {
6179                 status = -ENOMEM;
6180                 goto cleanup1;
6181         }
6182         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6183                 status = -EFAULT;
6184                 goto cleanup1;
6185         }
6186         if ((ioc->buf_size < 1) &&
6187             (ioc->Request.Type.Direction != XFER_NONE)) {
6188                 status = -EINVAL;
6189                 goto cleanup1;
6190         }
6191         /* Check kmalloc limits  using all SGs */
6192         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6193                 status = -EINVAL;
6194                 goto cleanup1;
6195         }
6196         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6197                 status = -EINVAL;
6198                 goto cleanup1;
6199         }
6200         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6201         if (!buff) {
6202                 status = -ENOMEM;
6203                 goto cleanup1;
6204         }
6205         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6206         if (!buff_size) {
6207                 status = -ENOMEM;
6208                 goto cleanup1;
6209         }
6210         left = ioc->buf_size;
6211         data_ptr = ioc->buf;
6212         while (left) {
6213                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6214                 buff_size[sg_used] = sz;
6215                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6216                 if (buff[sg_used] == NULL) {
6217                         status = -ENOMEM;
6218                         goto cleanup1;
6219                 }
6220                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6221                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6222                                 status = -EFAULT;
6223                                 goto cleanup1;
6224                         }
6225                 } else
6226                         memset(buff[sg_used], 0, sz);
6227                 left -= sz;
6228                 data_ptr += sz;
6229                 sg_used++;
6230         }
6231         c = cmd_alloc(h);
6232
6233         c->cmd_type = CMD_IOCTL_PEND;
6234         c->scsi_cmd = SCSI_CMD_BUSY;
6235         c->Header.ReplyQueue = 0;
6236         c->Header.SGList = (u8) sg_used;
6237         c->Header.SGTotal = cpu_to_le16(sg_used);
6238         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6239         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6240         if (ioc->buf_size > 0) {
6241                 int i;
6242                 for (i = 0; i < sg_used; i++) {
6243                         temp64 = pci_map_single(h->pdev, buff[i],
6244                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6245                         if (dma_mapping_error(&h->pdev->dev,
6246                                                         (dma_addr_t) temp64)) {
6247                                 c->SG[i].Addr = cpu_to_le64(0);
6248                                 c->SG[i].Len = cpu_to_le32(0);
6249                                 hpsa_pci_unmap(h->pdev, c, i,
6250                                         PCI_DMA_BIDIRECTIONAL);
6251                                 status = -ENOMEM;
6252                                 goto cleanup0;
6253                         }
6254                         c->SG[i].Addr = cpu_to_le64(temp64);
6255                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6256                         c->SG[i].Ext = cpu_to_le32(0);
6257                 }
6258                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6259         }
6260         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6261         if (sg_used)
6262                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6263         check_ioctl_unit_attention(h, c);
6264         if (status) {
6265                 status = -EIO;
6266                 goto cleanup0;
6267         }
6268
6269         /* Copy the error information out */
6270         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6271         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6272                 status = -EFAULT;
6273                 goto cleanup0;
6274         }
6275         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6276                 int i;
6277
6278                 /* Copy the data out of the buffer we created */
6279                 BYTE __user *ptr = ioc->buf;
6280                 for (i = 0; i < sg_used; i++) {
6281                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6282                                 status = -EFAULT;
6283                                 goto cleanup0;
6284                         }
6285                         ptr += buff_size[i];
6286                 }
6287         }
6288         status = 0;
6289 cleanup0:
6290         cmd_free(h, c);
6291 cleanup1:
6292         if (buff) {
6293                 int i;
6294
6295                 for (i = 0; i < sg_used; i++)
6296                         kfree(buff[i]);
6297                 kfree(buff);
6298         }
6299         kfree(buff_size);
6300         kfree(ioc);
6301         return status;
6302 }
6303
6304 static void check_ioctl_unit_attention(struct ctlr_info *h,
6305         struct CommandList *c)
6306 {
6307         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6308                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6309                 (void) check_for_unit_attention(h, c);
6310 }
6311
6312 /*
6313  * ioctl
6314  */
6315 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6316 {
6317         struct ctlr_info *h;
6318         void __user *argp = (void __user *)arg;
6319         int rc;
6320
6321         h = sdev_to_hba(dev);
6322
6323         switch (cmd) {
6324         case CCISS_DEREGDISK:
6325         case CCISS_REGNEWDISK:
6326         case CCISS_REGNEWD:
6327                 hpsa_scan_start(h->scsi_host);
6328                 return 0;
6329         case CCISS_GETPCIINFO:
6330                 return hpsa_getpciinfo_ioctl(h, argp);
6331         case CCISS_GETDRIVVER:
6332                 return hpsa_getdrivver_ioctl(h, argp);
6333         case CCISS_PASSTHRU:
6334                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6335                         return -EAGAIN;
6336                 rc = hpsa_passthru_ioctl(h, argp);
6337                 atomic_inc(&h->passthru_cmds_avail);
6338                 return rc;
6339         case CCISS_BIG_PASSTHRU:
6340                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6341                         return -EAGAIN;
6342                 rc = hpsa_big_passthru_ioctl(h, argp);
6343                 atomic_inc(&h->passthru_cmds_avail);
6344                 return rc;
6345         default:
6346                 return -ENOTTY;
6347         }
6348 }
6349
6350 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6351                                 u8 reset_type)
6352 {
6353         struct CommandList *c;
6354
6355         c = cmd_alloc(h);
6356
6357         /* fill_cmd can't fail here, no data buffer to map */
6358         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6359                 RAID_CTLR_LUNID, TYPE_MSG);
6360         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6361         c->waiting = NULL;
6362         enqueue_cmd_and_start_io(h, c);
6363         /* Don't wait for completion, the reset won't complete.  Don't free
6364          * the command either.  This is the last command we will send before
6365          * re-initializing everything, so it doesn't matter and won't leak.
6366          */
6367         return;
6368 }
6369
6370 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6371         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6372         int cmd_type)
6373 {
6374         int pci_dir = XFER_NONE;
6375         u64 tag; /* for commands to be aborted */
6376
6377         c->cmd_type = CMD_IOCTL_PEND;
6378         c->scsi_cmd = SCSI_CMD_BUSY;
6379         c->Header.ReplyQueue = 0;
6380         if (buff != NULL && size > 0) {
6381                 c->Header.SGList = 1;
6382                 c->Header.SGTotal = cpu_to_le16(1);
6383         } else {
6384                 c->Header.SGList = 0;
6385                 c->Header.SGTotal = cpu_to_le16(0);
6386         }
6387         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6388
6389         if (cmd_type == TYPE_CMD) {
6390                 switch (cmd) {
6391                 case HPSA_INQUIRY:
6392                         /* are we trying to read a vital product page */
6393                         if (page_code & VPD_PAGE) {
6394                                 c->Request.CDB[1] = 0x01;
6395                                 c->Request.CDB[2] = (page_code & 0xff);
6396                         }
6397                         c->Request.CDBLen = 6;
6398                         c->Request.type_attr_dir =
6399                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6400                         c->Request.Timeout = 0;
6401                         c->Request.CDB[0] = HPSA_INQUIRY;
6402                         c->Request.CDB[4] = size & 0xFF;
6403                         break;
6404                 case HPSA_REPORT_LOG:
6405                 case HPSA_REPORT_PHYS:
6406                         /* Talking to controller so It's a physical command
6407                            mode = 00 target = 0.  Nothing to write.
6408                          */
6409                         c->Request.CDBLen = 12;
6410                         c->Request.type_attr_dir =
6411                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6412                         c->Request.Timeout = 0;
6413                         c->Request.CDB[0] = cmd;
6414                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6415                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6416                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6417                         c->Request.CDB[9] = size & 0xFF;
6418                         break;
6419                 case BMIC_SENSE_DIAG_OPTIONS:
6420                         c->Request.CDBLen = 16;
6421                         c->Request.type_attr_dir =
6422                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6423                         c->Request.Timeout = 0;
6424                         /* Spec says this should be BMIC_WRITE */
6425                         c->Request.CDB[0] = BMIC_READ;
6426                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6427                         break;
6428                 case BMIC_SET_DIAG_OPTIONS:
6429                         c->Request.CDBLen = 16;
6430                         c->Request.type_attr_dir =
6431                                         TYPE_ATTR_DIR(cmd_type,
6432                                                 ATTR_SIMPLE, XFER_WRITE);
6433                         c->Request.Timeout = 0;
6434                         c->Request.CDB[0] = BMIC_WRITE;
6435                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6436                         break;
6437                 case HPSA_CACHE_FLUSH:
6438                         c->Request.CDBLen = 12;
6439                         c->Request.type_attr_dir =
6440                                         TYPE_ATTR_DIR(cmd_type,
6441                                                 ATTR_SIMPLE, XFER_WRITE);
6442                         c->Request.Timeout = 0;
6443                         c->Request.CDB[0] = BMIC_WRITE;
6444                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6445                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6446                         c->Request.CDB[8] = size & 0xFF;
6447                         break;
6448                 case TEST_UNIT_READY:
6449                         c->Request.CDBLen = 6;
6450                         c->Request.type_attr_dir =
6451                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6452                         c->Request.Timeout = 0;
6453                         break;
6454                 case HPSA_GET_RAID_MAP:
6455                         c->Request.CDBLen = 12;
6456                         c->Request.type_attr_dir =
6457                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6458                         c->Request.Timeout = 0;
6459                         c->Request.CDB[0] = HPSA_CISS_READ;
6460                         c->Request.CDB[1] = cmd;
6461                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6462                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6463                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6464                         c->Request.CDB[9] = size & 0xFF;
6465                         break;
6466                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6467                         c->Request.CDBLen = 10;
6468                         c->Request.type_attr_dir =
6469                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6470                         c->Request.Timeout = 0;
6471                         c->Request.CDB[0] = BMIC_READ;
6472                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6473                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6474                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6475                         break;
6476                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6477                         c->Request.CDBLen = 10;
6478                         c->Request.type_attr_dir =
6479                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6480                         c->Request.Timeout = 0;
6481                         c->Request.CDB[0] = BMIC_READ;
6482                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6483                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6484                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6485                         break;
6486                 case BMIC_IDENTIFY_CONTROLLER:
6487                         c->Request.CDBLen = 10;
6488                         c->Request.type_attr_dir =
6489                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6490                         c->Request.Timeout = 0;
6491                         c->Request.CDB[0] = BMIC_READ;
6492                         c->Request.CDB[1] = 0;
6493                         c->Request.CDB[2] = 0;
6494                         c->Request.CDB[3] = 0;
6495                         c->Request.CDB[4] = 0;
6496                         c->Request.CDB[5] = 0;
6497                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6498                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6499                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6500                         c->Request.CDB[9] = 0;
6501                         break;
6502
6503                 default:
6504                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6505                         BUG();
6506                         return -1;
6507                 }
6508         } else if (cmd_type == TYPE_MSG) {
6509                 switch (cmd) {
6510
6511                 case  HPSA_PHYS_TARGET_RESET:
6512                         c->Request.CDBLen = 16;
6513                         c->Request.type_attr_dir =
6514                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6515                         c->Request.Timeout = 0; /* Don't time out */
6516                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6517                         c->Request.CDB[0] = HPSA_RESET;
6518                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6519                         /* Physical target reset needs no control bytes 4-7*/
6520                         c->Request.CDB[4] = 0x00;
6521                         c->Request.CDB[5] = 0x00;
6522                         c->Request.CDB[6] = 0x00;
6523                         c->Request.CDB[7] = 0x00;
6524                         break;
6525                 case  HPSA_DEVICE_RESET_MSG:
6526                         c->Request.CDBLen = 16;
6527                         c->Request.type_attr_dir =
6528                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6529                         c->Request.Timeout = 0; /* Don't time out */
6530                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6531                         c->Request.CDB[0] =  cmd;
6532                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6533                         /* If bytes 4-7 are zero, it means reset the */
6534                         /* LunID device */
6535                         c->Request.CDB[4] = 0x00;
6536                         c->Request.CDB[5] = 0x00;
6537                         c->Request.CDB[6] = 0x00;
6538                         c->Request.CDB[7] = 0x00;
6539                         break;
6540                 case  HPSA_ABORT_MSG:
6541                         memcpy(&tag, buff, sizeof(tag));
6542                         dev_dbg(&h->pdev->dev,
6543                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6544                                 tag, c->Header.tag);
6545                         c->Request.CDBLen = 16;
6546                         c->Request.type_attr_dir =
6547                                         TYPE_ATTR_DIR(cmd_type,
6548                                                 ATTR_SIMPLE, XFER_WRITE);
6549                         c->Request.Timeout = 0; /* Don't time out */
6550                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6551                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6552                         c->Request.CDB[2] = 0x00; /* reserved */
6553                         c->Request.CDB[3] = 0x00; /* reserved */
6554                         /* Tag to abort goes in CDB[4]-CDB[11] */
6555                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6556                         c->Request.CDB[12] = 0x00; /* reserved */
6557                         c->Request.CDB[13] = 0x00; /* reserved */
6558                         c->Request.CDB[14] = 0x00; /* reserved */
6559                         c->Request.CDB[15] = 0x00; /* reserved */
6560                 break;
6561                 default:
6562                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6563                                 cmd);
6564                         BUG();
6565                 }
6566         } else {
6567                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6568                 BUG();
6569         }
6570
6571         switch (GET_DIR(c->Request.type_attr_dir)) {
6572         case XFER_READ:
6573                 pci_dir = PCI_DMA_FROMDEVICE;
6574                 break;
6575         case XFER_WRITE:
6576                 pci_dir = PCI_DMA_TODEVICE;
6577                 break;
6578         case XFER_NONE:
6579                 pci_dir = PCI_DMA_NONE;
6580                 break;
6581         default:
6582                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6583         }
6584         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6585                 return -1;
6586         return 0;
6587 }
6588
6589 /*
6590  * Map (physical) PCI mem into (virtual) kernel space
6591  */
6592 static void __iomem *remap_pci_mem(ulong base, ulong size)
6593 {
6594         ulong page_base = ((ulong) base) & PAGE_MASK;
6595         ulong page_offs = ((ulong) base) - page_base;
6596         void __iomem *page_remapped = ioremap_nocache(page_base,
6597                 page_offs + size);
6598
6599         return page_remapped ? (page_remapped + page_offs) : NULL;
6600 }
6601
6602 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6603 {
6604         return h->access.command_completed(h, q);
6605 }
6606
6607 static inline bool interrupt_pending(struct ctlr_info *h)
6608 {
6609         return h->access.intr_pending(h);
6610 }
6611
6612 static inline long interrupt_not_for_us(struct ctlr_info *h)
6613 {
6614         return (h->access.intr_pending(h) == 0) ||
6615                 (h->interrupts_enabled == 0);
6616 }
6617
6618 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6619         u32 raw_tag)
6620 {
6621         if (unlikely(tag_index >= h->nr_cmds)) {
6622                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6623                 return 1;
6624         }
6625         return 0;
6626 }
6627
6628 static inline void finish_cmd(struct CommandList *c)
6629 {
6630         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6631         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6632                         || c->cmd_type == CMD_IOACCEL2))
6633                 complete_scsi_command(c);
6634         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6635                 complete(c->waiting);
6636 }
6637
6638 /* process completion of an indexed ("direct lookup") command */
6639 static inline void process_indexed_cmd(struct ctlr_info *h,
6640         u32 raw_tag)
6641 {
6642         u32 tag_index;
6643         struct CommandList *c;
6644
6645         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6646         if (!bad_tag(h, tag_index, raw_tag)) {
6647                 c = h->cmd_pool + tag_index;
6648                 finish_cmd(c);
6649         }
6650 }
6651
6652 /* Some controllers, like p400, will give us one interrupt
6653  * after a soft reset, even if we turned interrupts off.
6654  * Only need to check for this in the hpsa_xxx_discard_completions
6655  * functions.
6656  */
6657 static int ignore_bogus_interrupt(struct ctlr_info *h)
6658 {
6659         if (likely(!reset_devices))
6660                 return 0;
6661
6662         if (likely(h->interrupts_enabled))
6663                 return 0;
6664
6665         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6666                 "(known firmware bug.)  Ignoring.\n");
6667
6668         return 1;
6669 }
6670
6671 /*
6672  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6673  * Relies on (h-q[x] == x) being true for x such that
6674  * 0 <= x < MAX_REPLY_QUEUES.
6675  */
6676 static struct ctlr_info *queue_to_hba(u8 *queue)
6677 {
6678         return container_of((queue - *queue), struct ctlr_info, q[0]);
6679 }
6680
6681 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6682 {
6683         struct ctlr_info *h = queue_to_hba(queue);
6684         u8 q = *(u8 *) queue;
6685         u32 raw_tag;
6686
6687         if (ignore_bogus_interrupt(h))
6688                 return IRQ_NONE;
6689
6690         if (interrupt_not_for_us(h))
6691                 return IRQ_NONE;
6692         h->last_intr_timestamp = get_jiffies_64();
6693         while (interrupt_pending(h)) {
6694                 raw_tag = get_next_completion(h, q);
6695                 while (raw_tag != FIFO_EMPTY)
6696                         raw_tag = next_command(h, q);
6697         }
6698         return IRQ_HANDLED;
6699 }
6700
6701 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6702 {
6703         struct ctlr_info *h = queue_to_hba(queue);
6704         u32 raw_tag;
6705         u8 q = *(u8 *) queue;
6706
6707         if (ignore_bogus_interrupt(h))
6708                 return IRQ_NONE;
6709
6710         h->last_intr_timestamp = get_jiffies_64();
6711         raw_tag = get_next_completion(h, q);
6712         while (raw_tag != FIFO_EMPTY)
6713                 raw_tag = next_command(h, q);
6714         return IRQ_HANDLED;
6715 }
6716
6717 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6718 {
6719         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6720         u32 raw_tag;
6721         u8 q = *(u8 *) queue;
6722
6723         if (interrupt_not_for_us(h))
6724                 return IRQ_NONE;
6725         h->last_intr_timestamp = get_jiffies_64();
6726         while (interrupt_pending(h)) {
6727                 raw_tag = get_next_completion(h, q);
6728                 while (raw_tag != FIFO_EMPTY) {
6729                         process_indexed_cmd(h, raw_tag);
6730                         raw_tag = next_command(h, q);
6731                 }
6732         }
6733         return IRQ_HANDLED;
6734 }
6735
6736 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6737 {
6738         struct ctlr_info *h = queue_to_hba(queue);
6739         u32 raw_tag;
6740         u8 q = *(u8 *) queue;
6741
6742         h->last_intr_timestamp = get_jiffies_64();
6743         raw_tag = get_next_completion(h, q);
6744         while (raw_tag != FIFO_EMPTY) {
6745                 process_indexed_cmd(h, raw_tag);
6746                 raw_tag = next_command(h, q);
6747         }
6748         return IRQ_HANDLED;
6749 }
6750
6751 /* Send a message CDB to the firmware. Careful, this only works
6752  * in simple mode, not performant mode due to the tag lookup.
6753  * We only ever use this immediately after a controller reset.
6754  */
6755 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6756                         unsigned char type)
6757 {
6758         struct Command {
6759                 struct CommandListHeader CommandHeader;
6760                 struct RequestBlock Request;
6761                 struct ErrDescriptor ErrorDescriptor;
6762         };
6763         struct Command *cmd;
6764         static const size_t cmd_sz = sizeof(*cmd) +
6765                                         sizeof(cmd->ErrorDescriptor);
6766         dma_addr_t paddr64;
6767         __le32 paddr32;
6768         u32 tag;
6769         void __iomem *vaddr;
6770         int i, err;
6771
6772         vaddr = pci_ioremap_bar(pdev, 0);
6773         if (vaddr == NULL)
6774                 return -ENOMEM;
6775
6776         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6777          * CCISS commands, so they must be allocated from the lower 4GiB of
6778          * memory.
6779          */
6780         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6781         if (err) {
6782                 iounmap(vaddr);
6783                 return err;
6784         }
6785
6786         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6787         if (cmd == NULL) {
6788                 iounmap(vaddr);
6789                 return -ENOMEM;
6790         }
6791
6792         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6793          * although there's no guarantee, we assume that the address is at
6794          * least 4-byte aligned (most likely, it's page-aligned).
6795          */
6796         paddr32 = cpu_to_le32(paddr64);
6797
6798         cmd->CommandHeader.ReplyQueue = 0;
6799         cmd->CommandHeader.SGList = 0;
6800         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6801         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6802         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6803
6804         cmd->Request.CDBLen = 16;
6805         cmd->Request.type_attr_dir =
6806                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6807         cmd->Request.Timeout = 0; /* Don't time out */
6808         cmd->Request.CDB[0] = opcode;
6809         cmd->Request.CDB[1] = type;
6810         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6811         cmd->ErrorDescriptor.Addr =
6812                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6813         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6814
6815         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6816
6817         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6818                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6819                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6820                         break;
6821                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6822         }
6823
6824         iounmap(vaddr);
6825
6826         /* we leak the DMA buffer here ... no choice since the controller could
6827          *  still complete the command.
6828          */
6829         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6830                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6831                         opcode, type);
6832                 return -ETIMEDOUT;
6833         }
6834
6835         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6836
6837         if (tag & HPSA_ERROR_BIT) {
6838                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6839                         opcode, type);
6840                 return -EIO;
6841         }
6842
6843         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6844                 opcode, type);
6845         return 0;
6846 }
6847
6848 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6849
6850 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6851         void __iomem *vaddr, u32 use_doorbell)
6852 {
6853
6854         if (use_doorbell) {
6855                 /* For everything after the P600, the PCI power state method
6856                  * of resetting the controller doesn't work, so we have this
6857                  * other way using the doorbell register.
6858                  */
6859                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6860                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6861
6862                 /* PMC hardware guys tell us we need a 10 second delay after
6863                  * doorbell reset and before any attempt to talk to the board
6864                  * at all to ensure that this actually works and doesn't fall
6865                  * over in some weird corner cases.
6866                  */
6867                 msleep(10000);
6868         } else { /* Try to do it the PCI power state way */
6869
6870                 /* Quoting from the Open CISS Specification: "The Power
6871                  * Management Control/Status Register (CSR) controls the power
6872                  * state of the device.  The normal operating state is D0,
6873                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6874                  * the controller, place the interface device in D3 then to D0,
6875                  * this causes a secondary PCI reset which will reset the
6876                  * controller." */
6877
6878                 int rc = 0;
6879
6880                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6881
6882                 /* enter the D3hot power management state */
6883                 rc = pci_set_power_state(pdev, PCI_D3hot);
6884                 if (rc)
6885                         return rc;
6886
6887                 msleep(500);
6888
6889                 /* enter the D0 power management state */
6890                 rc = pci_set_power_state(pdev, PCI_D0);
6891                 if (rc)
6892                         return rc;
6893
6894                 /*
6895                  * The P600 requires a small delay when changing states.
6896                  * Otherwise we may think the board did not reset and we bail.
6897                  * This for kdump only and is particular to the P600.
6898                  */
6899                 msleep(500);
6900         }
6901         return 0;
6902 }
6903
6904 static void init_driver_version(char *driver_version, int len)
6905 {
6906         memset(driver_version, 0, len);
6907         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6908 }
6909
6910 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6911 {
6912         char *driver_version;
6913         int i, size = sizeof(cfgtable->driver_version);
6914
6915         driver_version = kmalloc(size, GFP_KERNEL);
6916         if (!driver_version)
6917                 return -ENOMEM;
6918
6919         init_driver_version(driver_version, size);
6920         for (i = 0; i < size; i++)
6921                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6922         kfree(driver_version);
6923         return 0;
6924 }
6925
6926 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6927                                           unsigned char *driver_ver)
6928 {
6929         int i;
6930
6931         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6932                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6933 }
6934
6935 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6936 {
6937
6938         char *driver_ver, *old_driver_ver;
6939         int rc, size = sizeof(cfgtable->driver_version);
6940
6941         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6942         if (!old_driver_ver)
6943                 return -ENOMEM;
6944         driver_ver = old_driver_ver + size;
6945
6946         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6947          * should have been changed, otherwise we know the reset failed.
6948          */
6949         init_driver_version(old_driver_ver, size);
6950         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6951         rc = !memcmp(driver_ver, old_driver_ver, size);
6952         kfree(old_driver_ver);
6953         return rc;
6954 }
6955 /* This does a hard reset of the controller using PCI power management
6956  * states or the using the doorbell register.
6957  */
6958 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6959 {
6960         u64 cfg_offset;
6961         u32 cfg_base_addr;
6962         u64 cfg_base_addr_index;
6963         void __iomem *vaddr;
6964         unsigned long paddr;
6965         u32 misc_fw_support;
6966         int rc;
6967         struct CfgTable __iomem *cfgtable;
6968         u32 use_doorbell;
6969         u16 command_register;
6970
6971         /* For controllers as old as the P600, this is very nearly
6972          * the same thing as
6973          *
6974          * pci_save_state(pci_dev);
6975          * pci_set_power_state(pci_dev, PCI_D3hot);
6976          * pci_set_power_state(pci_dev, PCI_D0);
6977          * pci_restore_state(pci_dev);
6978          *
6979          * For controllers newer than the P600, the pci power state
6980          * method of resetting doesn't work so we have another way
6981          * using the doorbell register.
6982          */
6983
6984         if (!ctlr_is_resettable(board_id)) {
6985                 dev_warn(&pdev->dev, "Controller not resettable\n");
6986                 return -ENODEV;
6987         }
6988
6989         /* if controller is soft- but not hard resettable... */
6990         if (!ctlr_is_hard_resettable(board_id))
6991                 return -ENOTSUPP; /* try soft reset later. */
6992
6993         /* Save the PCI command register */
6994         pci_read_config_word(pdev, 4, &command_register);
6995         pci_save_state(pdev);
6996
6997         /* find the first memory BAR, so we can find the cfg table */
6998         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6999         if (rc)
7000                 return rc;
7001         vaddr = remap_pci_mem(paddr, 0x250);
7002         if (!vaddr)
7003                 return -ENOMEM;
7004
7005         /* find cfgtable in order to check if reset via doorbell is supported */
7006         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7007                                         &cfg_base_addr_index, &cfg_offset);
7008         if (rc)
7009                 goto unmap_vaddr;
7010         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7011                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7012         if (!cfgtable) {
7013                 rc = -ENOMEM;
7014                 goto unmap_vaddr;
7015         }
7016         rc = write_driver_ver_to_cfgtable(cfgtable);
7017         if (rc)
7018                 goto unmap_cfgtable;
7019
7020         /* If reset via doorbell register is supported, use that.
7021          * There are two such methods.  Favor the newest method.
7022          */
7023         misc_fw_support = readl(&cfgtable->misc_fw_support);
7024         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7025         if (use_doorbell) {
7026                 use_doorbell = DOORBELL_CTLR_RESET2;
7027         } else {
7028                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7029                 if (use_doorbell) {
7030                         dev_warn(&pdev->dev,
7031                                 "Soft reset not supported. Firmware update is required.\n");
7032                         rc = -ENOTSUPP; /* try soft reset */
7033                         goto unmap_cfgtable;
7034                 }
7035         }
7036
7037         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7038         if (rc)
7039                 goto unmap_cfgtable;
7040
7041         pci_restore_state(pdev);
7042         pci_write_config_word(pdev, 4, command_register);
7043
7044         /* Some devices (notably the HP Smart Array 5i Controller)
7045            need a little pause here */
7046         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7047
7048         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7049         if (rc) {
7050                 dev_warn(&pdev->dev,
7051                         "Failed waiting for board to become ready after hard reset\n");
7052                 goto unmap_cfgtable;
7053         }
7054
7055         rc = controller_reset_failed(vaddr);
7056         if (rc < 0)
7057                 goto unmap_cfgtable;
7058         if (rc) {
7059                 dev_warn(&pdev->dev, "Unable to successfully reset "
7060                         "controller. Will try soft reset.\n");
7061                 rc = -ENOTSUPP;
7062         } else {
7063                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7064         }
7065
7066 unmap_cfgtable:
7067         iounmap(cfgtable);
7068
7069 unmap_vaddr:
7070         iounmap(vaddr);
7071         return rc;
7072 }
7073
7074 /*
7075  *  We cannot read the structure directly, for portability we must use
7076  *   the io functions.
7077  *   This is for debug only.
7078  */
7079 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7080 {
7081 #ifdef HPSA_DEBUG
7082         int i;
7083         char temp_name[17];
7084
7085         dev_info(dev, "Controller Configuration information\n");
7086         dev_info(dev, "------------------------------------\n");
7087         for (i = 0; i < 4; i++)
7088                 temp_name[i] = readb(&(tb->Signature[i]));
7089         temp_name[4] = '\0';
7090         dev_info(dev, "   Signature = %s\n", temp_name);
7091         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7092         dev_info(dev, "   Transport methods supported = 0x%x\n",
7093                readl(&(tb->TransportSupport)));
7094         dev_info(dev, "   Transport methods active = 0x%x\n",
7095                readl(&(tb->TransportActive)));
7096         dev_info(dev, "   Requested transport Method = 0x%x\n",
7097                readl(&(tb->HostWrite.TransportRequest)));
7098         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7099                readl(&(tb->HostWrite.CoalIntDelay)));
7100         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7101                readl(&(tb->HostWrite.CoalIntCount)));
7102         dev_info(dev, "   Max outstanding commands = %d\n",
7103                readl(&(tb->CmdsOutMax)));
7104         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7105         for (i = 0; i < 16; i++)
7106                 temp_name[i] = readb(&(tb->ServerName[i]));
7107         temp_name[16] = '\0';
7108         dev_info(dev, "   Server Name = %s\n", temp_name);
7109         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7110                 readl(&(tb->HeartBeat)));
7111 #endif                          /* HPSA_DEBUG */
7112 }
7113
7114 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7115 {
7116         int i, offset, mem_type, bar_type;
7117
7118         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7119                 return 0;
7120         offset = 0;
7121         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7122                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7123                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7124                         offset += 4;
7125                 else {
7126                         mem_type = pci_resource_flags(pdev, i) &
7127                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7128                         switch (mem_type) {
7129                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7130                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7131                                 offset += 4;    /* 32 bit */
7132                                 break;
7133                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7134                                 offset += 8;
7135                                 break;
7136                         default:        /* reserved in PCI 2.2 */
7137                                 dev_warn(&pdev->dev,
7138                                        "base address is invalid\n");
7139                                 return -1;
7140                                 break;
7141                         }
7142                 }
7143                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7144                         return i + 1;
7145         }
7146         return -1;
7147 }
7148
7149 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7150 {
7151         if (h->msix_vector) {
7152                 if (h->pdev->msix_enabled)
7153                         pci_disable_msix(h->pdev);
7154                 h->msix_vector = 0;
7155         } else if (h->msi_vector) {
7156                 if (h->pdev->msi_enabled)
7157                         pci_disable_msi(h->pdev);
7158                 h->msi_vector = 0;
7159         }
7160 }
7161
7162 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7163  * controllers that are capable. If not, we use legacy INTx mode.
7164  */
7165 static void hpsa_interrupt_mode(struct ctlr_info *h)
7166 {
7167 #ifdef CONFIG_PCI_MSI
7168         int err, i;
7169         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7170
7171         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7172                 hpsa_msix_entries[i].vector = 0;
7173                 hpsa_msix_entries[i].entry = i;
7174         }
7175
7176         /* Some boards advertise MSI but don't really support it */
7177         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7178             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7179                 goto default_int_mode;
7180         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7181                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7182                 h->msix_vector = MAX_REPLY_QUEUES;
7183                 if (h->msix_vector > num_online_cpus())
7184                         h->msix_vector = num_online_cpus();
7185                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7186                                             1, h->msix_vector);
7187                 if (err < 0) {
7188                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7189                         h->msix_vector = 0;
7190                         goto single_msi_mode;
7191                 } else if (err < h->msix_vector) {
7192                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7193                                "available\n", err);
7194                 }
7195                 h->msix_vector = err;
7196                 for (i = 0; i < h->msix_vector; i++)
7197                         h->intr[i] = hpsa_msix_entries[i].vector;
7198                 return;
7199         }
7200 single_msi_mode:
7201         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7202                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7203                 if (!pci_enable_msi(h->pdev))
7204                         h->msi_vector = 1;
7205                 else
7206                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7207         }
7208 default_int_mode:
7209 #endif                          /* CONFIG_PCI_MSI */
7210         /* if we get here we're going to use the default interrupt mode */
7211         h->intr[h->intr_mode] = h->pdev->irq;
7212 }
7213
7214 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7215 {
7216         int i;
7217         u32 subsystem_vendor_id, subsystem_device_id;
7218
7219         subsystem_vendor_id = pdev->subsystem_vendor;
7220         subsystem_device_id = pdev->subsystem_device;
7221         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7222                     subsystem_vendor_id;
7223
7224         for (i = 0; i < ARRAY_SIZE(products); i++)
7225                 if (*board_id == products[i].board_id)
7226                         return i;
7227
7228         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7229                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7230                 !hpsa_allow_any) {
7231                 dev_warn(&pdev->dev, "unrecognized board ID: "
7232                         "0x%08x, ignoring.\n", *board_id);
7233                         return -ENODEV;
7234         }
7235         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7236 }
7237
7238 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7239                                     unsigned long *memory_bar)
7240 {
7241         int i;
7242
7243         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7244                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7245                         /* addressing mode bits already removed */
7246                         *memory_bar = pci_resource_start(pdev, i);
7247                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7248                                 *memory_bar);
7249                         return 0;
7250                 }
7251         dev_warn(&pdev->dev, "no memory BAR found\n");
7252         return -ENODEV;
7253 }
7254
7255 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7256                                      int wait_for_ready)
7257 {
7258         int i, iterations;
7259         u32 scratchpad;
7260         if (wait_for_ready)
7261                 iterations = HPSA_BOARD_READY_ITERATIONS;
7262         else
7263                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7264
7265         for (i = 0; i < iterations; i++) {
7266                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7267                 if (wait_for_ready) {
7268                         if (scratchpad == HPSA_FIRMWARE_READY)
7269                                 return 0;
7270                 } else {
7271                         if (scratchpad != HPSA_FIRMWARE_READY)
7272                                 return 0;
7273                 }
7274                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7275         }
7276         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7277         return -ENODEV;
7278 }
7279
7280 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7281                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7282                                u64 *cfg_offset)
7283 {
7284         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7285         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7286         *cfg_base_addr &= (u32) 0x0000ffff;
7287         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7288         if (*cfg_base_addr_index == -1) {
7289                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7290                 return -ENODEV;
7291         }
7292         return 0;
7293 }
7294
7295 static void hpsa_free_cfgtables(struct ctlr_info *h)
7296 {
7297         if (h->transtable) {
7298                 iounmap(h->transtable);
7299                 h->transtable = NULL;
7300         }
7301         if (h->cfgtable) {
7302                 iounmap(h->cfgtable);
7303                 h->cfgtable = NULL;
7304         }
7305 }
7306
7307 /* Find and map CISS config table and transfer table
7308 + * several items must be unmapped (freed) later
7309 + * */
7310 static int hpsa_find_cfgtables(struct ctlr_info *h)
7311 {
7312         u64 cfg_offset;
7313         u32 cfg_base_addr;
7314         u64 cfg_base_addr_index;
7315         u32 trans_offset;
7316         int rc;
7317
7318         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7319                 &cfg_base_addr_index, &cfg_offset);
7320         if (rc)
7321                 return rc;
7322         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7323                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7324         if (!h->cfgtable) {
7325                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7326                 return -ENOMEM;
7327         }
7328         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7329         if (rc)
7330                 return rc;
7331         /* Find performant mode table. */
7332         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7333         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7334                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7335                                 sizeof(*h->transtable));
7336         if (!h->transtable) {
7337                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7338                 hpsa_free_cfgtables(h);
7339                 return -ENOMEM;
7340         }
7341         return 0;
7342 }
7343
7344 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7345 {
7346 #define MIN_MAX_COMMANDS 16
7347         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7348
7349         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7350
7351         /* Limit commands in memory limited kdump scenario. */
7352         if (reset_devices && h->max_commands > 32)
7353                 h->max_commands = 32;
7354
7355         if (h->max_commands < MIN_MAX_COMMANDS) {
7356                 dev_warn(&h->pdev->dev,
7357                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7358                         h->max_commands,
7359                         MIN_MAX_COMMANDS);
7360                 h->max_commands = MIN_MAX_COMMANDS;
7361         }
7362 }
7363
7364 /* If the controller reports that the total max sg entries is greater than 512,
7365  * then we know that chained SG blocks work.  (Original smart arrays did not
7366  * support chained SG blocks and would return zero for max sg entries.)
7367  */
7368 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7369 {
7370         return h->maxsgentries > 512;
7371 }
7372
7373 /* Interrogate the hardware for some limits:
7374  * max commands, max SG elements without chaining, and with chaining,
7375  * SG chain block size, etc.
7376  */
7377 static void hpsa_find_board_params(struct ctlr_info *h)
7378 {
7379         hpsa_get_max_perf_mode_cmds(h);
7380         h->nr_cmds = h->max_commands;
7381         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7382         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7383         if (hpsa_supports_chained_sg_blocks(h)) {
7384                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7385                 h->max_cmd_sg_entries = 32;
7386                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7387                 h->maxsgentries--; /* save one for chain pointer */
7388         } else {
7389                 /*
7390                  * Original smart arrays supported at most 31 s/g entries
7391                  * embedded inline in the command (trying to use more
7392                  * would lock up the controller)
7393                  */
7394                 h->max_cmd_sg_entries = 31;
7395                 h->maxsgentries = 31; /* default to traditional values */
7396                 h->chainsize = 0;
7397         }
7398
7399         /* Find out what task management functions are supported and cache */
7400         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7401         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7402                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7403         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7404                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7405         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7406                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7407 }
7408
7409 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7410 {
7411         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7412                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7413                 return false;
7414         }
7415         return true;
7416 }
7417
7418 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7419 {
7420         u32 driver_support;
7421
7422         driver_support = readl(&(h->cfgtable->driver_support));
7423         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7424 #ifdef CONFIG_X86
7425         driver_support |= ENABLE_SCSI_PREFETCH;
7426 #endif
7427         driver_support |= ENABLE_UNIT_ATTN;
7428         writel(driver_support, &(h->cfgtable->driver_support));
7429 }
7430
7431 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7432  * in a prefetch beyond physical memory.
7433  */
7434 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7435 {
7436         u32 dma_prefetch;
7437
7438         if (h->board_id != 0x3225103C)
7439                 return;
7440         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7441         dma_prefetch |= 0x8000;
7442         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7443 }
7444
7445 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7446 {
7447         int i;
7448         u32 doorbell_value;
7449         unsigned long flags;
7450         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7451         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7452                 spin_lock_irqsave(&h->lock, flags);
7453                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7454                 spin_unlock_irqrestore(&h->lock, flags);
7455                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7456                         goto done;
7457                 /* delay and try again */
7458                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7459         }
7460         return -ENODEV;
7461 done:
7462         return 0;
7463 }
7464
7465 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7466 {
7467         int i;
7468         u32 doorbell_value;
7469         unsigned long flags;
7470
7471         /* under certain very rare conditions, this can take awhile.
7472          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7473          * as we enter this code.)
7474          */
7475         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7476                 if (h->remove_in_progress)
7477                         goto done;
7478                 spin_lock_irqsave(&h->lock, flags);
7479                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7480                 spin_unlock_irqrestore(&h->lock, flags);
7481                 if (!(doorbell_value & CFGTBL_ChangeReq))
7482                         goto done;
7483                 /* delay and try again */
7484                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7485         }
7486         return -ENODEV;
7487 done:
7488         return 0;
7489 }
7490
7491 /* return -ENODEV or other reason on error, 0 on success */
7492 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7493 {
7494         u32 trans_support;
7495
7496         trans_support = readl(&(h->cfgtable->TransportSupport));
7497         if (!(trans_support & SIMPLE_MODE))
7498                 return -ENOTSUPP;
7499
7500         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7501
7502         /* Update the field, and then ring the doorbell */
7503         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7504         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7505         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7506         if (hpsa_wait_for_mode_change_ack(h))
7507                 goto error;
7508         print_cfg_table(&h->pdev->dev, h->cfgtable);
7509         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7510                 goto error;
7511         h->transMethod = CFGTBL_Trans_Simple;
7512         return 0;
7513 error:
7514         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7515         return -ENODEV;
7516 }
7517
7518 /* free items allocated or mapped by hpsa_pci_init */
7519 static void hpsa_free_pci_init(struct ctlr_info *h)
7520 {
7521         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7522         iounmap(h->vaddr);                      /* pci_init 3 */
7523         h->vaddr = NULL;
7524         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7525         /*
7526          * call pci_disable_device before pci_release_regions per
7527          * Documentation/PCI/pci.txt
7528          */
7529         pci_disable_device(h->pdev);            /* pci_init 1 */
7530         pci_release_regions(h->pdev);           /* pci_init 2 */
7531 }
7532
7533 /* several items must be freed later */
7534 static int hpsa_pci_init(struct ctlr_info *h)
7535 {
7536         int prod_index, err;
7537
7538         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7539         if (prod_index < 0)
7540                 return prod_index;
7541         h->product_name = products[prod_index].product_name;
7542         h->access = *(products[prod_index].access);
7543
7544         h->needs_abort_tags_swizzled =
7545                 ctlr_needs_abort_tags_swizzled(h->board_id);
7546
7547         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7548                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7549
7550         err = pci_enable_device(h->pdev);
7551         if (err) {
7552                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7553                 pci_disable_device(h->pdev);
7554                 return err;
7555         }
7556
7557         err = pci_request_regions(h->pdev, HPSA);
7558         if (err) {
7559                 dev_err(&h->pdev->dev,
7560                         "failed to obtain PCI resources\n");
7561                 pci_disable_device(h->pdev);
7562                 return err;
7563         }
7564
7565         pci_set_master(h->pdev);
7566
7567         hpsa_interrupt_mode(h);
7568         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7569         if (err)
7570                 goto clean2;    /* intmode+region, pci */
7571         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7572         if (!h->vaddr) {
7573                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7574                 err = -ENOMEM;
7575                 goto clean2;    /* intmode+region, pci */
7576         }
7577         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7578         if (err)
7579                 goto clean3;    /* vaddr, intmode+region, pci */
7580         err = hpsa_find_cfgtables(h);
7581         if (err)
7582                 goto clean3;    /* vaddr, intmode+region, pci */
7583         hpsa_find_board_params(h);
7584
7585         if (!hpsa_CISS_signature_present(h)) {
7586                 err = -ENODEV;
7587                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7588         }
7589         hpsa_set_driver_support_bits(h);
7590         hpsa_p600_dma_prefetch_quirk(h);
7591         err = hpsa_enter_simple_mode(h);
7592         if (err)
7593                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7594         return 0;
7595
7596 clean4: /* cfgtables, vaddr, intmode+region, pci */
7597         hpsa_free_cfgtables(h);
7598 clean3: /* vaddr, intmode+region, pci */
7599         iounmap(h->vaddr);
7600         h->vaddr = NULL;
7601 clean2: /* intmode+region, pci */
7602         hpsa_disable_interrupt_mode(h);
7603         /*
7604          * call pci_disable_device before pci_release_regions per
7605          * Documentation/PCI/pci.txt
7606          */
7607         pci_disable_device(h->pdev);
7608         pci_release_regions(h->pdev);
7609         return err;
7610 }
7611
7612 static void hpsa_hba_inquiry(struct ctlr_info *h)
7613 {
7614         int rc;
7615
7616 #define HBA_INQUIRY_BYTE_COUNT 64
7617         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7618         if (!h->hba_inquiry_data)
7619                 return;
7620         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7621                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7622         if (rc != 0) {
7623                 kfree(h->hba_inquiry_data);
7624                 h->hba_inquiry_data = NULL;
7625         }
7626 }
7627
7628 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7629 {
7630         int rc, i;
7631         void __iomem *vaddr;
7632
7633         if (!reset_devices)
7634                 return 0;
7635
7636         /* kdump kernel is loading, we don't know in which state is
7637          * the pci interface. The dev->enable_cnt is equal zero
7638          * so we call enable+disable, wait a while and switch it on.
7639          */
7640         rc = pci_enable_device(pdev);
7641         if (rc) {
7642                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7643                 return -ENODEV;
7644         }
7645         pci_disable_device(pdev);
7646         msleep(260);                    /* a randomly chosen number */
7647         rc = pci_enable_device(pdev);
7648         if (rc) {
7649                 dev_warn(&pdev->dev, "failed to enable device.\n");
7650                 return -ENODEV;
7651         }
7652
7653         pci_set_master(pdev);
7654
7655         vaddr = pci_ioremap_bar(pdev, 0);
7656         if (vaddr == NULL) {
7657                 rc = -ENOMEM;
7658                 goto out_disable;
7659         }
7660         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7661         iounmap(vaddr);
7662
7663         /* Reset the controller with a PCI power-cycle or via doorbell */
7664         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7665
7666         /* -ENOTSUPP here means we cannot reset the controller
7667          * but it's already (and still) up and running in
7668          * "performant mode".  Or, it might be 640x, which can't reset
7669          * due to concerns about shared bbwc between 6402/6404 pair.
7670          */
7671         if (rc)
7672                 goto out_disable;
7673
7674         /* Now try to get the controller to respond to a no-op */
7675         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7676         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7677                 if (hpsa_noop(pdev) == 0)
7678                         break;
7679                 else
7680                         dev_warn(&pdev->dev, "no-op failed%s\n",
7681                                         (i < 11 ? "; re-trying" : ""));
7682         }
7683
7684 out_disable:
7685
7686         pci_disable_device(pdev);
7687         return rc;
7688 }
7689
7690 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7691 {
7692         kfree(h->cmd_pool_bits);
7693         h->cmd_pool_bits = NULL;
7694         if (h->cmd_pool) {
7695                 pci_free_consistent(h->pdev,
7696                                 h->nr_cmds * sizeof(struct CommandList),
7697                                 h->cmd_pool,
7698                                 h->cmd_pool_dhandle);
7699                 h->cmd_pool = NULL;
7700                 h->cmd_pool_dhandle = 0;
7701         }
7702         if (h->errinfo_pool) {
7703                 pci_free_consistent(h->pdev,
7704                                 h->nr_cmds * sizeof(struct ErrorInfo),
7705                                 h->errinfo_pool,
7706                                 h->errinfo_pool_dhandle);
7707                 h->errinfo_pool = NULL;
7708                 h->errinfo_pool_dhandle = 0;
7709         }
7710 }
7711
7712 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7713 {
7714         h->cmd_pool_bits = kzalloc(
7715                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7716                 sizeof(unsigned long), GFP_KERNEL);
7717         h->cmd_pool = pci_alloc_consistent(h->pdev,
7718                     h->nr_cmds * sizeof(*h->cmd_pool),
7719                     &(h->cmd_pool_dhandle));
7720         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7721                     h->nr_cmds * sizeof(*h->errinfo_pool),
7722                     &(h->errinfo_pool_dhandle));
7723         if ((h->cmd_pool_bits == NULL)
7724             || (h->cmd_pool == NULL)
7725             || (h->errinfo_pool == NULL)) {
7726                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7727                 goto clean_up;
7728         }
7729         hpsa_preinitialize_commands(h);
7730         return 0;
7731 clean_up:
7732         hpsa_free_cmd_pool(h);
7733         return -ENOMEM;
7734 }
7735
7736 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7737 {
7738         int i, cpu;
7739
7740         cpu = cpumask_first(cpu_online_mask);
7741         for (i = 0; i < h->msix_vector; i++) {
7742                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7743                 cpu = cpumask_next(cpu, cpu_online_mask);
7744         }
7745 }
7746
7747 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7748 static void hpsa_free_irqs(struct ctlr_info *h)
7749 {
7750         int i;
7751
7752         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7753                 /* Single reply queue, only one irq to free */
7754                 i = h->intr_mode;
7755                 irq_set_affinity_hint(h->intr[i], NULL);
7756                 free_irq(h->intr[i], &h->q[i]);
7757                 h->q[i] = 0;
7758                 return;
7759         }
7760
7761         for (i = 0; i < h->msix_vector; i++) {
7762                 irq_set_affinity_hint(h->intr[i], NULL);
7763                 free_irq(h->intr[i], &h->q[i]);
7764                 h->q[i] = 0;
7765         }
7766         for (; i < MAX_REPLY_QUEUES; i++)
7767                 h->q[i] = 0;
7768 }
7769
7770 /* returns 0 on success; cleans up and returns -Enn on error */
7771 static int hpsa_request_irqs(struct ctlr_info *h,
7772         irqreturn_t (*msixhandler)(int, void *),
7773         irqreturn_t (*intxhandler)(int, void *))
7774 {
7775         int rc, i;
7776
7777         /*
7778          * initialize h->q[x] = x so that interrupt handlers know which
7779          * queue to process.
7780          */
7781         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7782                 h->q[i] = (u8) i;
7783
7784         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7785                 /* If performant mode and MSI-X, use multiple reply queues */
7786                 for (i = 0; i < h->msix_vector; i++) {
7787                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7788                         rc = request_irq(h->intr[i], msixhandler,
7789                                         0, h->intrname[i],
7790                                         &h->q[i]);
7791                         if (rc) {
7792                                 int j;
7793
7794                                 dev_err(&h->pdev->dev,
7795                                         "failed to get irq %d for %s\n",
7796                                        h->intr[i], h->devname);
7797                                 for (j = 0; j < i; j++) {
7798                                         free_irq(h->intr[j], &h->q[j]);
7799                                         h->q[j] = 0;
7800                                 }
7801                                 for (; j < MAX_REPLY_QUEUES; j++)
7802                                         h->q[j] = 0;
7803                                 return rc;
7804                         }
7805                 }
7806                 hpsa_irq_affinity_hints(h);
7807         } else {
7808                 /* Use single reply pool */
7809                 if (h->msix_vector > 0 || h->msi_vector) {
7810                         if (h->msix_vector)
7811                                 sprintf(h->intrname[h->intr_mode],
7812                                         "%s-msix", h->devname);
7813                         else
7814                                 sprintf(h->intrname[h->intr_mode],
7815                                         "%s-msi", h->devname);
7816                         rc = request_irq(h->intr[h->intr_mode],
7817                                 msixhandler, 0,
7818                                 h->intrname[h->intr_mode],
7819                                 &h->q[h->intr_mode]);
7820                 } else {
7821                         sprintf(h->intrname[h->intr_mode],
7822                                 "%s-intx", h->devname);
7823                         rc = request_irq(h->intr[h->intr_mode],
7824                                 intxhandler, IRQF_SHARED,
7825                                 h->intrname[h->intr_mode],
7826                                 &h->q[h->intr_mode]);
7827                 }
7828                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7829         }
7830         if (rc) {
7831                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7832                        h->intr[h->intr_mode], h->devname);
7833                 hpsa_free_irqs(h);
7834                 return -ENODEV;
7835         }
7836         return 0;
7837 }
7838
7839 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7840 {
7841         int rc;
7842         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7843
7844         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7845         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7846         if (rc) {
7847                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7848                 return rc;
7849         }
7850
7851         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7852         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7853         if (rc) {
7854                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7855                         "after soft reset.\n");
7856                 return rc;
7857         }
7858
7859         return 0;
7860 }
7861
7862 static void hpsa_free_reply_queues(struct ctlr_info *h)
7863 {
7864         int i;
7865
7866         for (i = 0; i < h->nreply_queues; i++) {
7867                 if (!h->reply_queue[i].head)
7868                         continue;
7869                 pci_free_consistent(h->pdev,
7870                                         h->reply_queue_size,
7871                                         h->reply_queue[i].head,
7872                                         h->reply_queue[i].busaddr);
7873                 h->reply_queue[i].head = NULL;
7874                 h->reply_queue[i].busaddr = 0;
7875         }
7876         h->reply_queue_size = 0;
7877 }
7878
7879 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7880 {
7881         hpsa_free_performant_mode(h);           /* init_one 7 */
7882         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7883         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7884         hpsa_free_irqs(h);                      /* init_one 4 */
7885         scsi_host_put(h->scsi_host);            /* init_one 3 */
7886         h->scsi_host = NULL;                    /* init_one 3 */
7887         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7888         free_percpu(h->lockup_detected);        /* init_one 2 */
7889         h->lockup_detected = NULL;              /* init_one 2 */
7890         if (h->resubmit_wq) {
7891                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7892                 h->resubmit_wq = NULL;
7893         }
7894         if (h->rescan_ctlr_wq) {
7895                 destroy_workqueue(h->rescan_ctlr_wq);
7896                 h->rescan_ctlr_wq = NULL;
7897         }
7898         kfree(h);                               /* init_one 1 */
7899 }
7900
7901 /* Called when controller lockup detected. */
7902 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7903 {
7904         int i, refcount;
7905         struct CommandList *c;
7906         int failcount = 0;
7907
7908         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7909         for (i = 0; i < h->nr_cmds; i++) {
7910                 c = h->cmd_pool + i;
7911                 refcount = atomic_inc_return(&c->refcount);
7912                 if (refcount > 1) {
7913                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7914                         finish_cmd(c);
7915                         atomic_dec(&h->commands_outstanding);
7916                         failcount++;
7917                 }
7918                 cmd_free(h, c);
7919         }
7920         dev_warn(&h->pdev->dev,
7921                 "failed %d commands in fail_all\n", failcount);
7922 }
7923
7924 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7925 {
7926         int cpu;
7927
7928         for_each_online_cpu(cpu) {
7929                 u32 *lockup_detected;
7930                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7931                 *lockup_detected = value;
7932         }
7933         wmb(); /* be sure the per-cpu variables are out to memory */
7934 }
7935
7936 static void controller_lockup_detected(struct ctlr_info *h)
7937 {
7938         unsigned long flags;
7939         u32 lockup_detected;
7940
7941         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7942         spin_lock_irqsave(&h->lock, flags);
7943         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7944         if (!lockup_detected) {
7945                 /* no heartbeat, but controller gave us a zero. */
7946                 dev_warn(&h->pdev->dev,
7947                         "lockup detected after %d but scratchpad register is zero\n",
7948                         h->heartbeat_sample_interval / HZ);
7949                 lockup_detected = 0xffffffff;
7950         }
7951         set_lockup_detected_for_all_cpus(h, lockup_detected);
7952         spin_unlock_irqrestore(&h->lock, flags);
7953         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7954                         lockup_detected, h->heartbeat_sample_interval / HZ);
7955         pci_disable_device(h->pdev);
7956         fail_all_outstanding_cmds(h);
7957 }
7958
7959 static int detect_controller_lockup(struct ctlr_info *h)
7960 {
7961         u64 now;
7962         u32 heartbeat;
7963         unsigned long flags;
7964
7965         now = get_jiffies_64();
7966         /* If we've received an interrupt recently, we're ok. */
7967         if (time_after64(h->last_intr_timestamp +
7968                                 (h->heartbeat_sample_interval), now))
7969                 return false;
7970
7971         /*
7972          * If we've already checked the heartbeat recently, we're ok.
7973          * This could happen if someone sends us a signal. We
7974          * otherwise don't care about signals in this thread.
7975          */
7976         if (time_after64(h->last_heartbeat_timestamp +
7977                                 (h->heartbeat_sample_interval), now))
7978                 return false;
7979
7980         /* If heartbeat has not changed since we last looked, we're not ok. */
7981         spin_lock_irqsave(&h->lock, flags);
7982         heartbeat = readl(&h->cfgtable->HeartBeat);
7983         spin_unlock_irqrestore(&h->lock, flags);
7984         if (h->last_heartbeat == heartbeat) {
7985                 controller_lockup_detected(h);
7986                 return true;
7987         }
7988
7989         /* We're ok. */
7990         h->last_heartbeat = heartbeat;
7991         h->last_heartbeat_timestamp = now;
7992         return false;
7993 }
7994
7995 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7996 {
7997         int i;
7998         char *event_type;
7999
8000         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8001                 return;
8002
8003         /* Ask the controller to clear the events we're handling. */
8004         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8005                         | CFGTBL_Trans_io_accel2)) &&
8006                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8007                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8008
8009                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8010                         event_type = "state change";
8011                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8012                         event_type = "configuration change";
8013                 /* Stop sending new RAID offload reqs via the IO accelerator */
8014                 scsi_block_requests(h->scsi_host);
8015                 for (i = 0; i < h->ndevices; i++)
8016                         h->dev[i]->offload_enabled = 0;
8017                 hpsa_drain_accel_commands(h);
8018                 /* Set 'accelerator path config change' bit */
8019                 dev_warn(&h->pdev->dev,
8020                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8021                         h->events, event_type);
8022                 writel(h->events, &(h->cfgtable->clear_event_notify));
8023                 /* Set the "clear event notify field update" bit 6 */
8024                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8025                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8026                 hpsa_wait_for_clear_event_notify_ack(h);
8027                 scsi_unblock_requests(h->scsi_host);
8028         } else {
8029                 /* Acknowledge controller notification events. */
8030                 writel(h->events, &(h->cfgtable->clear_event_notify));
8031                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8032                 hpsa_wait_for_clear_event_notify_ack(h);
8033 #if 0
8034                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8035                 hpsa_wait_for_mode_change_ack(h);
8036 #endif
8037         }
8038         return;
8039 }
8040
8041 /* Check a register on the controller to see if there are configuration
8042  * changes (added/changed/removed logical drives, etc.) which mean that
8043  * we should rescan the controller for devices.
8044  * Also check flag for driver-initiated rescan.
8045  */
8046 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8047 {
8048         if (h->drv_req_rescan) {
8049                 h->drv_req_rescan = 0;
8050                 return 1;
8051         }
8052
8053         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8054                 return 0;
8055
8056         h->events = readl(&(h->cfgtable->event_notify));
8057         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8058 }
8059
8060 /*
8061  * Check if any of the offline devices have become ready
8062  */
8063 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8064 {
8065         unsigned long flags;
8066         struct offline_device_entry *d;
8067         struct list_head *this, *tmp;
8068
8069         spin_lock_irqsave(&h->offline_device_lock, flags);
8070         list_for_each_safe(this, tmp, &h->offline_device_list) {
8071                 d = list_entry(this, struct offline_device_entry,
8072                                 offline_list);
8073                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8074                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8075                         spin_lock_irqsave(&h->offline_device_lock, flags);
8076                         list_del(&d->offline_list);
8077                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8078                         return 1;
8079                 }
8080                 spin_lock_irqsave(&h->offline_device_lock, flags);
8081         }
8082         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8083         return 0;
8084 }
8085
8086 static int hpsa_luns_changed(struct ctlr_info *h)
8087 {
8088         int rc = 1; /* assume there are changes */
8089         struct ReportLUNdata *logdev = NULL;
8090
8091         /* if we can't find out if lun data has changed,
8092          * assume that it has.
8093          */
8094
8095         if (!h->lastlogicals)
8096                 goto out;
8097
8098         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8099         if (!logdev) {
8100                 dev_warn(&h->pdev->dev,
8101                         "Out of memory, can't track lun changes.\n");
8102                 goto out;
8103         }
8104         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8105                 dev_warn(&h->pdev->dev,
8106                         "report luns failed, can't track lun changes.\n");
8107                 goto out;
8108         }
8109         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8110                 dev_info(&h->pdev->dev,
8111                         "Lun changes detected.\n");
8112                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8113                 goto out;
8114         } else
8115                 rc = 0; /* no changes detected. */
8116 out:
8117         kfree(logdev);
8118         return rc;
8119 }
8120
8121 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8122 {
8123         unsigned long flags;
8124         struct ctlr_info *h = container_of(to_delayed_work(work),
8125                                         struct ctlr_info, rescan_ctlr_work);
8126
8127
8128         if (h->remove_in_progress)
8129                 return;
8130
8131         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8132                 scsi_host_get(h->scsi_host);
8133                 hpsa_ack_ctlr_events(h);
8134                 hpsa_scan_start(h->scsi_host);
8135                 scsi_host_put(h->scsi_host);
8136         } else if (h->discovery_polling) {
8137                 hpsa_disable_rld_caching(h);
8138                 if (hpsa_luns_changed(h)) {
8139                         struct Scsi_Host *sh = NULL;
8140
8141                         dev_info(&h->pdev->dev,
8142                                 "driver discovery polling rescan.\n");
8143                         sh = scsi_host_get(h->scsi_host);
8144                         if (sh != NULL) {
8145                                 hpsa_scan_start(sh);
8146                                 scsi_host_put(sh);
8147                         }
8148                 }
8149         }
8150         spin_lock_irqsave(&h->lock, flags);
8151         if (!h->remove_in_progress)
8152                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8153                                 h->heartbeat_sample_interval);
8154         spin_unlock_irqrestore(&h->lock, flags);
8155 }
8156
8157 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8158 {
8159         unsigned long flags;
8160         struct ctlr_info *h = container_of(to_delayed_work(work),
8161                                         struct ctlr_info, monitor_ctlr_work);
8162
8163         detect_controller_lockup(h);
8164         if (lockup_detected(h))
8165                 return;
8166
8167         spin_lock_irqsave(&h->lock, flags);
8168         if (!h->remove_in_progress)
8169                 schedule_delayed_work(&h->monitor_ctlr_work,
8170                                 h->heartbeat_sample_interval);
8171         spin_unlock_irqrestore(&h->lock, flags);
8172 }
8173
8174 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8175                                                 char *name)
8176 {
8177         struct workqueue_struct *wq = NULL;
8178
8179         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8180         if (!wq)
8181                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8182
8183         return wq;
8184 }
8185
8186 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8187 {
8188         int dac, rc;
8189         struct ctlr_info *h;
8190         int try_soft_reset = 0;
8191         unsigned long flags;
8192         u32 board_id;
8193
8194         if (number_of_controllers == 0)
8195                 printk(KERN_INFO DRIVER_NAME "\n");
8196
8197         rc = hpsa_lookup_board_id(pdev, &board_id);
8198         if (rc < 0) {
8199                 dev_warn(&pdev->dev, "Board ID not found\n");
8200                 return rc;
8201         }
8202
8203         rc = hpsa_init_reset_devices(pdev, board_id);
8204         if (rc) {
8205                 if (rc != -ENOTSUPP)
8206                         return rc;
8207                 /* If the reset fails in a particular way (it has no way to do
8208                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8209                  * a soft reset once we get the controller configured up to the
8210                  * point that it can accept a command.
8211                  */
8212                 try_soft_reset = 1;
8213                 rc = 0;
8214         }
8215
8216 reinit_after_soft_reset:
8217
8218         /* Command structures must be aligned on a 32-byte boundary because
8219          * the 5 lower bits of the address are used by the hardware. and by
8220          * the driver.  See comments in hpsa.h for more info.
8221          */
8222         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8223         h = kzalloc(sizeof(*h), GFP_KERNEL);
8224         if (!h) {
8225                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8226                 return -ENOMEM;
8227         }
8228
8229         h->pdev = pdev;
8230
8231         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8232         INIT_LIST_HEAD(&h->offline_device_list);
8233         spin_lock_init(&h->lock);
8234         spin_lock_init(&h->offline_device_lock);
8235         spin_lock_init(&h->scan_lock);
8236         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8237         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8238
8239         /* Allocate and clear per-cpu variable lockup_detected */
8240         h->lockup_detected = alloc_percpu(u32);
8241         if (!h->lockup_detected) {
8242                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8243                 rc = -ENOMEM;
8244                 goto clean1;    /* aer/h */
8245         }
8246         set_lockup_detected_for_all_cpus(h, 0);
8247
8248         rc = hpsa_pci_init(h);
8249         if (rc)
8250                 goto clean2;    /* lu, aer/h */
8251
8252         /* relies on h-> settings made by hpsa_pci_init, including
8253          * interrupt_mode h->intr */
8254         rc = hpsa_scsi_host_alloc(h);
8255         if (rc)
8256                 goto clean2_5;  /* pci, lu, aer/h */
8257
8258         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8259         h->ctlr = number_of_controllers;
8260         number_of_controllers++;
8261
8262         /* configure PCI DMA stuff */
8263         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8264         if (rc == 0) {
8265                 dac = 1;
8266         } else {
8267                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8268                 if (rc == 0) {
8269                         dac = 0;
8270                 } else {
8271                         dev_err(&pdev->dev, "no suitable DMA available\n");
8272                         goto clean3;    /* shost, pci, lu, aer/h */
8273                 }
8274         }
8275
8276         /* make sure the board interrupts are off */
8277         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8278
8279         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8280         if (rc)
8281                 goto clean3;    /* shost, pci, lu, aer/h */
8282         rc = hpsa_alloc_cmd_pool(h);
8283         if (rc)
8284                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8285         rc = hpsa_alloc_sg_chain_blocks(h);
8286         if (rc)
8287                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8288         init_waitqueue_head(&h->scan_wait_queue);
8289         init_waitqueue_head(&h->abort_cmd_wait_queue);
8290         init_waitqueue_head(&h->event_sync_wait_queue);
8291         mutex_init(&h->reset_mutex);
8292         h->scan_finished = 1; /* no scan currently in progress */
8293
8294         pci_set_drvdata(pdev, h);
8295         h->ndevices = 0;
8296
8297         spin_lock_init(&h->devlock);
8298         rc = hpsa_put_ctlr_into_performant_mode(h);
8299         if (rc)
8300                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8301
8302         /* hook into SCSI subsystem */
8303         rc = hpsa_scsi_add_host(h);
8304         if (rc)
8305                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8306
8307         /* create the resubmit workqueue */
8308         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8309         if (!h->rescan_ctlr_wq) {
8310                 rc = -ENOMEM;
8311                 goto clean7;
8312         }
8313
8314         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8315         if (!h->resubmit_wq) {
8316                 rc = -ENOMEM;
8317                 goto clean7;    /* aer/h */
8318         }
8319
8320         /*
8321          * At this point, the controller is ready to take commands.
8322          * Now, if reset_devices and the hard reset didn't work, try
8323          * the soft reset and see if that works.
8324          */
8325         if (try_soft_reset) {
8326
8327                 /* This is kind of gross.  We may or may not get a completion
8328                  * from the soft reset command, and if we do, then the value
8329                  * from the fifo may or may not be valid.  So, we wait 10 secs
8330                  * after the reset throwing away any completions we get during
8331                  * that time.  Unregister the interrupt handler and register
8332                  * fake ones to scoop up any residual completions.
8333                  */
8334                 spin_lock_irqsave(&h->lock, flags);
8335                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8336                 spin_unlock_irqrestore(&h->lock, flags);
8337                 hpsa_free_irqs(h);
8338                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8339                                         hpsa_intx_discard_completions);
8340                 if (rc) {
8341                         dev_warn(&h->pdev->dev,
8342                                 "Failed to request_irq after soft reset.\n");
8343                         /*
8344                          * cannot goto clean7 or free_irqs will be called
8345                          * again. Instead, do its work
8346                          */
8347                         hpsa_free_performant_mode(h);   /* clean7 */
8348                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8349                         hpsa_free_cmd_pool(h);          /* clean5 */
8350                         /*
8351                          * skip hpsa_free_irqs(h) clean4 since that
8352                          * was just called before request_irqs failed
8353                          */
8354                         goto clean3;
8355                 }
8356
8357                 rc = hpsa_kdump_soft_reset(h);
8358                 if (rc)
8359                         /* Neither hard nor soft reset worked, we're hosed. */
8360                         goto clean7;
8361
8362                 dev_info(&h->pdev->dev, "Board READY.\n");
8363                 dev_info(&h->pdev->dev,
8364                         "Waiting for stale completions to drain.\n");
8365                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8366                 msleep(10000);
8367                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8368
8369                 rc = controller_reset_failed(h->cfgtable);
8370                 if (rc)
8371                         dev_info(&h->pdev->dev,
8372                                 "Soft reset appears to have failed.\n");
8373
8374                 /* since the controller's reset, we have to go back and re-init
8375                  * everything.  Easiest to just forget what we've done and do it
8376                  * all over again.
8377                  */
8378                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8379                 try_soft_reset = 0;
8380                 if (rc)
8381                         /* don't goto clean, we already unallocated */
8382                         return -ENODEV;
8383
8384                 goto reinit_after_soft_reset;
8385         }
8386
8387         /* Enable Accelerated IO path at driver layer */
8388         h->acciopath_status = 1;
8389         /* Disable discovery polling.*/
8390         h->discovery_polling = 0;
8391
8392
8393         /* Turn the interrupts on so we can service requests */
8394         h->access.set_intr_mask(h, HPSA_INTR_ON);
8395
8396         hpsa_hba_inquiry(h);
8397
8398         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8399         if (!h->lastlogicals)
8400                 dev_info(&h->pdev->dev,
8401                         "Can't track change to report lun data\n");
8402
8403         /* Monitor the controller for firmware lockups */
8404         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8405         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8406         schedule_delayed_work(&h->monitor_ctlr_work,
8407                                 h->heartbeat_sample_interval);
8408         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8409         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8410                                 h->heartbeat_sample_interval);
8411         return 0;
8412
8413 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8414         hpsa_free_performant_mode(h);
8415         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8416 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8417         hpsa_free_sg_chain_blocks(h);
8418 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8419         hpsa_free_cmd_pool(h);
8420 clean4: /* irq, shost, pci, lu, aer/h */
8421         hpsa_free_irqs(h);
8422 clean3: /* shost, pci, lu, aer/h */
8423         scsi_host_put(h->scsi_host);
8424         h->scsi_host = NULL;
8425 clean2_5: /* pci, lu, aer/h */
8426         hpsa_free_pci_init(h);
8427 clean2: /* lu, aer/h */
8428         if (h->lockup_detected) {
8429                 free_percpu(h->lockup_detected);
8430                 h->lockup_detected = NULL;
8431         }
8432 clean1: /* wq/aer/h */
8433         if (h->resubmit_wq) {
8434                 destroy_workqueue(h->resubmit_wq);
8435                 h->resubmit_wq = NULL;
8436         }
8437         if (h->rescan_ctlr_wq) {
8438                 destroy_workqueue(h->rescan_ctlr_wq);
8439                 h->rescan_ctlr_wq = NULL;
8440         }
8441         kfree(h);
8442         return rc;
8443 }
8444
8445 static void hpsa_flush_cache(struct ctlr_info *h)
8446 {
8447         char *flush_buf;
8448         struct CommandList *c;
8449         int rc;
8450
8451         if (unlikely(lockup_detected(h)))
8452                 return;
8453         flush_buf = kzalloc(4, GFP_KERNEL);
8454         if (!flush_buf)
8455                 return;
8456
8457         c = cmd_alloc(h);
8458
8459         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8460                 RAID_CTLR_LUNID, TYPE_CMD)) {
8461                 goto out;
8462         }
8463         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8464                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8465         if (rc)
8466                 goto out;
8467         if (c->err_info->CommandStatus != 0)
8468 out:
8469                 dev_warn(&h->pdev->dev,
8470                         "error flushing cache on controller\n");
8471         cmd_free(h, c);
8472         kfree(flush_buf);
8473 }
8474
8475 /* Make controller gather fresh report lun data each time we
8476  * send down a report luns request
8477  */
8478 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8479 {
8480         u32 *options;
8481         struct CommandList *c;
8482         int rc;
8483
8484         /* Don't bother trying to set diag options if locked up */
8485         if (unlikely(h->lockup_detected))
8486                 return;
8487
8488         options = kzalloc(sizeof(*options), GFP_KERNEL);
8489         if (!options) {
8490                 dev_err(&h->pdev->dev,
8491                         "Error: failed to disable rld caching, during alloc.\n");
8492                 return;
8493         }
8494
8495         c = cmd_alloc(h);
8496
8497         /* first, get the current diag options settings */
8498         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8499                 RAID_CTLR_LUNID, TYPE_CMD))
8500                 goto errout;
8501
8502         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8503                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8504         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8505                 goto errout;
8506
8507         /* Now, set the bit for disabling the RLD caching */
8508         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8509
8510         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8511                 RAID_CTLR_LUNID, TYPE_CMD))
8512                 goto errout;
8513
8514         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8515                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8516         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8517                 goto errout;
8518
8519         /* Now verify that it got set: */
8520         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8521                 RAID_CTLR_LUNID, TYPE_CMD))
8522                 goto errout;
8523
8524         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8525                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8526         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8527                 goto errout;
8528
8529         if (*options && HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8530                 goto out;
8531
8532 errout:
8533         dev_err(&h->pdev->dev,
8534                         "Error: failed to disable report lun data caching.\n");
8535 out:
8536         cmd_free(h, c);
8537         kfree(options);
8538 }
8539
8540 static void hpsa_shutdown(struct pci_dev *pdev)
8541 {
8542         struct ctlr_info *h;
8543
8544         h = pci_get_drvdata(pdev);
8545         /* Turn board interrupts off  and send the flush cache command
8546          * sendcmd will turn off interrupt, and send the flush...
8547          * To write all data in the battery backed cache to disks
8548          */
8549         hpsa_flush_cache(h);
8550         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8551         hpsa_free_irqs(h);                      /* init_one 4 */
8552         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8553 }
8554
8555 static void hpsa_free_device_info(struct ctlr_info *h)
8556 {
8557         int i;
8558
8559         for (i = 0; i < h->ndevices; i++) {
8560                 kfree(h->dev[i]);
8561                 h->dev[i] = NULL;
8562         }
8563 }
8564
8565 static void hpsa_remove_one(struct pci_dev *pdev)
8566 {
8567         struct ctlr_info *h;
8568         unsigned long flags;
8569
8570         if (pci_get_drvdata(pdev) == NULL) {
8571                 dev_err(&pdev->dev, "unable to remove device\n");
8572                 return;
8573         }
8574         h = pci_get_drvdata(pdev);
8575
8576         /* Get rid of any controller monitoring work items */
8577         spin_lock_irqsave(&h->lock, flags);
8578         h->remove_in_progress = 1;
8579         spin_unlock_irqrestore(&h->lock, flags);
8580         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8581         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8582         destroy_workqueue(h->rescan_ctlr_wq);
8583         destroy_workqueue(h->resubmit_wq);
8584
8585         /*
8586          * Call before disabling interrupts.
8587          * scsi_remove_host can trigger I/O operations especially
8588          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8589          * operations which cannot complete and will hang the system.
8590          */
8591         if (h->scsi_host)
8592                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8593         /* includes hpsa_free_irqs - init_one 4 */
8594         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8595         hpsa_shutdown(pdev);
8596
8597         hpsa_free_device_info(h);               /* scan */
8598
8599         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8600         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8601         hpsa_free_ioaccel2_sg_chain_blocks(h);
8602         hpsa_free_performant_mode(h);                   /* init_one 7 */
8603         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8604         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8605         kfree(h->lastlogicals);
8606
8607         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8608
8609         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8610         h->scsi_host = NULL;                            /* init_one 3 */
8611
8612         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8613         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8614
8615         free_percpu(h->lockup_detected);                /* init_one 2 */
8616         h->lockup_detected = NULL;                      /* init_one 2 */
8617         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8618         kfree(h);                                       /* init_one 1 */
8619 }
8620
8621 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8622         __attribute__((unused)) pm_message_t state)
8623 {
8624         return -ENOSYS;
8625 }
8626
8627 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8628 {
8629         return -ENOSYS;
8630 }
8631
8632 static struct pci_driver hpsa_pci_driver = {
8633         .name = HPSA,
8634         .probe = hpsa_init_one,
8635         .remove = hpsa_remove_one,
8636         .id_table = hpsa_pci_device_id, /* id_table */
8637         .shutdown = hpsa_shutdown,
8638         .suspend = hpsa_suspend,
8639         .resume = hpsa_resume,
8640 };
8641
8642 /* Fill in bucket_map[], given nsgs (the max number of
8643  * scatter gather elements supported) and bucket[],
8644  * which is an array of 8 integers.  The bucket[] array
8645  * contains 8 different DMA transfer sizes (in 16
8646  * byte increments) which the controller uses to fetch
8647  * commands.  This function fills in bucket_map[], which
8648  * maps a given number of scatter gather elements to one of
8649  * the 8 DMA transfer sizes.  The point of it is to allow the
8650  * controller to only do as much DMA as needed to fetch the
8651  * command, with the DMA transfer size encoded in the lower
8652  * bits of the command address.
8653  */
8654 static void  calc_bucket_map(int bucket[], int num_buckets,
8655         int nsgs, int min_blocks, u32 *bucket_map)
8656 {
8657         int i, j, b, size;
8658
8659         /* Note, bucket_map must have nsgs+1 entries. */
8660         for (i = 0; i <= nsgs; i++) {
8661                 /* Compute size of a command with i SG entries */
8662                 size = i + min_blocks;
8663                 b = num_buckets; /* Assume the biggest bucket */
8664                 /* Find the bucket that is just big enough */
8665                 for (j = 0; j < num_buckets; j++) {
8666                         if (bucket[j] >= size) {
8667                                 b = j;
8668                                 break;
8669                         }
8670                 }
8671                 /* for a command with i SG entries, use bucket b. */
8672                 bucket_map[i] = b;
8673         }
8674 }
8675
8676 /*
8677  * return -ENODEV on err, 0 on success (or no action)
8678  * allocates numerous items that must be freed later
8679  */
8680 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8681 {
8682         int i;
8683         unsigned long register_value;
8684         unsigned long transMethod = CFGTBL_Trans_Performant |
8685                         (trans_support & CFGTBL_Trans_use_short_tags) |
8686                                 CFGTBL_Trans_enable_directed_msix |
8687                         (trans_support & (CFGTBL_Trans_io_accel1 |
8688                                 CFGTBL_Trans_io_accel2));
8689         struct access_method access = SA5_performant_access;
8690
8691         /* This is a bit complicated.  There are 8 registers on
8692          * the controller which we write to to tell it 8 different
8693          * sizes of commands which there may be.  It's a way of
8694          * reducing the DMA done to fetch each command.  Encoded into
8695          * each command's tag are 3 bits which communicate to the controller
8696          * which of the eight sizes that command fits within.  The size of
8697          * each command depends on how many scatter gather entries there are.
8698          * Each SG entry requires 16 bytes.  The eight registers are programmed
8699          * with the number of 16-byte blocks a command of that size requires.
8700          * The smallest command possible requires 5 such 16 byte blocks.
8701          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8702          * blocks.  Note, this only extends to the SG entries contained
8703          * within the command block, and does not extend to chained blocks
8704          * of SG elements.   bft[] contains the eight values we write to
8705          * the registers.  They are not evenly distributed, but have more
8706          * sizes for small commands, and fewer sizes for larger commands.
8707          */
8708         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8709 #define MIN_IOACCEL2_BFT_ENTRY 5
8710 #define HPSA_IOACCEL2_HEADER_SZ 4
8711         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8712                         13, 14, 15, 16, 17, 18, 19,
8713                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8714         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8715         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8716         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8717                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8718         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8719         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8720         /*  5 = 1 s/g entry or 4k
8721          *  6 = 2 s/g entry or 8k
8722          *  8 = 4 s/g entry or 16k
8723          * 10 = 6 s/g entry or 24k
8724          */
8725
8726         /* If the controller supports either ioaccel method then
8727          * we can also use the RAID stack submit path that does not
8728          * perform the superfluous readl() after each command submission.
8729          */
8730         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8731                 access = SA5_performant_access_no_read;
8732
8733         /* Controller spec: zero out this buffer. */
8734         for (i = 0; i < h->nreply_queues; i++)
8735                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8736
8737         bft[7] = SG_ENTRIES_IN_CMD + 4;
8738         calc_bucket_map(bft, ARRAY_SIZE(bft),
8739                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8740         for (i = 0; i < 8; i++)
8741                 writel(bft[i], &h->transtable->BlockFetch[i]);
8742
8743         /* size of controller ring buffer */
8744         writel(h->max_commands, &h->transtable->RepQSize);
8745         writel(h->nreply_queues, &h->transtable->RepQCount);
8746         writel(0, &h->transtable->RepQCtrAddrLow32);
8747         writel(0, &h->transtable->RepQCtrAddrHigh32);
8748
8749         for (i = 0; i < h->nreply_queues; i++) {
8750                 writel(0, &h->transtable->RepQAddr[i].upper);
8751                 writel(h->reply_queue[i].busaddr,
8752                         &h->transtable->RepQAddr[i].lower);
8753         }
8754
8755         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8756         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8757         /*
8758          * enable outbound interrupt coalescing in accelerator mode;
8759          */
8760         if (trans_support & CFGTBL_Trans_io_accel1) {
8761                 access = SA5_ioaccel_mode1_access;
8762                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8763                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8764         } else {
8765                 if (trans_support & CFGTBL_Trans_io_accel2) {
8766                         access = SA5_ioaccel_mode2_access;
8767                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8768                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8769                 }
8770         }
8771         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8772         if (hpsa_wait_for_mode_change_ack(h)) {
8773                 dev_err(&h->pdev->dev,
8774                         "performant mode problem - doorbell timeout\n");
8775                 return -ENODEV;
8776         }
8777         register_value = readl(&(h->cfgtable->TransportActive));
8778         if (!(register_value & CFGTBL_Trans_Performant)) {
8779                 dev_err(&h->pdev->dev,
8780                         "performant mode problem - transport not active\n");
8781                 return -ENODEV;
8782         }
8783         /* Change the access methods to the performant access methods */
8784         h->access = access;
8785         h->transMethod = transMethod;
8786
8787         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8788                 (trans_support & CFGTBL_Trans_io_accel2)))
8789                 return 0;
8790
8791         if (trans_support & CFGTBL_Trans_io_accel1) {
8792                 /* Set up I/O accelerator mode */
8793                 for (i = 0; i < h->nreply_queues; i++) {
8794                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8795                         h->reply_queue[i].current_entry =
8796                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8797                 }
8798                 bft[7] = h->ioaccel_maxsg + 8;
8799                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8800                                 h->ioaccel1_blockFetchTable);
8801
8802                 /* initialize all reply queue entries to unused */
8803                 for (i = 0; i < h->nreply_queues; i++)
8804                         memset(h->reply_queue[i].head,
8805                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8806                                 h->reply_queue_size);
8807
8808                 /* set all the constant fields in the accelerator command
8809                  * frames once at init time to save CPU cycles later.
8810                  */
8811                 for (i = 0; i < h->nr_cmds; i++) {
8812                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8813
8814                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8815                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8816                                         (i * sizeof(struct ErrorInfo)));
8817                         cp->err_info_len = sizeof(struct ErrorInfo);
8818                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8819                         cp->host_context_flags =
8820                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8821                         cp->timeout_sec = 0;
8822                         cp->ReplyQueue = 0;
8823                         cp->tag =
8824                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8825                         cp->host_addr =
8826                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8827                                         (i * sizeof(struct io_accel1_cmd)));
8828                 }
8829         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8830                 u64 cfg_offset, cfg_base_addr_index;
8831                 u32 bft2_offset, cfg_base_addr;
8832                 int rc;
8833
8834                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8835                         &cfg_base_addr_index, &cfg_offset);
8836                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8837                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8838                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8839                                 4, h->ioaccel2_blockFetchTable);
8840                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8841                 BUILD_BUG_ON(offsetof(struct CfgTable,
8842                                 io_accel_request_size_offset) != 0xb8);
8843                 h->ioaccel2_bft2_regs =
8844                         remap_pci_mem(pci_resource_start(h->pdev,
8845                                         cfg_base_addr_index) +
8846                                         cfg_offset + bft2_offset,
8847                                         ARRAY_SIZE(bft2) *
8848                                         sizeof(*h->ioaccel2_bft2_regs));
8849                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8850                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8851         }
8852         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8853         if (hpsa_wait_for_mode_change_ack(h)) {
8854                 dev_err(&h->pdev->dev,
8855                         "performant mode problem - enabling ioaccel mode\n");
8856                 return -ENODEV;
8857         }
8858         return 0;
8859 }
8860
8861 /* Free ioaccel1 mode command blocks and block fetch table */
8862 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8863 {
8864         if (h->ioaccel_cmd_pool) {
8865                 pci_free_consistent(h->pdev,
8866                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8867                         h->ioaccel_cmd_pool,
8868                         h->ioaccel_cmd_pool_dhandle);
8869                 h->ioaccel_cmd_pool = NULL;
8870                 h->ioaccel_cmd_pool_dhandle = 0;
8871         }
8872         kfree(h->ioaccel1_blockFetchTable);
8873         h->ioaccel1_blockFetchTable = NULL;
8874 }
8875
8876 /* Allocate ioaccel1 mode command blocks and block fetch table */
8877 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8878 {
8879         h->ioaccel_maxsg =
8880                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8881         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8882                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8883
8884         /* Command structures must be aligned on a 128-byte boundary
8885          * because the 7 lower bits of the address are used by the
8886          * hardware.
8887          */
8888         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8889                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8890         h->ioaccel_cmd_pool =
8891                 pci_alloc_consistent(h->pdev,
8892                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8893                         &(h->ioaccel_cmd_pool_dhandle));
8894
8895         h->ioaccel1_blockFetchTable =
8896                 kmalloc(((h->ioaccel_maxsg + 1) *
8897                                 sizeof(u32)), GFP_KERNEL);
8898
8899         if ((h->ioaccel_cmd_pool == NULL) ||
8900                 (h->ioaccel1_blockFetchTable == NULL))
8901                 goto clean_up;
8902
8903         memset(h->ioaccel_cmd_pool, 0,
8904                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8905         return 0;
8906
8907 clean_up:
8908         hpsa_free_ioaccel1_cmd_and_bft(h);
8909         return -ENOMEM;
8910 }
8911
8912 /* Free ioaccel2 mode command blocks and block fetch table */
8913 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8914 {
8915         hpsa_free_ioaccel2_sg_chain_blocks(h);
8916
8917         if (h->ioaccel2_cmd_pool) {
8918                 pci_free_consistent(h->pdev,
8919                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8920                         h->ioaccel2_cmd_pool,
8921                         h->ioaccel2_cmd_pool_dhandle);
8922                 h->ioaccel2_cmd_pool = NULL;
8923                 h->ioaccel2_cmd_pool_dhandle = 0;
8924         }
8925         kfree(h->ioaccel2_blockFetchTable);
8926         h->ioaccel2_blockFetchTable = NULL;
8927 }
8928
8929 /* Allocate ioaccel2 mode command blocks and block fetch table */
8930 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8931 {
8932         int rc;
8933
8934         /* Allocate ioaccel2 mode command blocks and block fetch table */
8935
8936         h->ioaccel_maxsg =
8937                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8938         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8939                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8940
8941         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8942                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8943         h->ioaccel2_cmd_pool =
8944                 pci_alloc_consistent(h->pdev,
8945                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8946                         &(h->ioaccel2_cmd_pool_dhandle));
8947
8948         h->ioaccel2_blockFetchTable =
8949                 kmalloc(((h->ioaccel_maxsg + 1) *
8950                                 sizeof(u32)), GFP_KERNEL);
8951
8952         if ((h->ioaccel2_cmd_pool == NULL) ||
8953                 (h->ioaccel2_blockFetchTable == NULL)) {
8954                 rc = -ENOMEM;
8955                 goto clean_up;
8956         }
8957
8958         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8959         if (rc)
8960                 goto clean_up;
8961
8962         memset(h->ioaccel2_cmd_pool, 0,
8963                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8964         return 0;
8965
8966 clean_up:
8967         hpsa_free_ioaccel2_cmd_and_bft(h);
8968         return rc;
8969 }
8970
8971 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8972 static void hpsa_free_performant_mode(struct ctlr_info *h)
8973 {
8974         kfree(h->blockFetchTable);
8975         h->blockFetchTable = NULL;
8976         hpsa_free_reply_queues(h);
8977         hpsa_free_ioaccel1_cmd_and_bft(h);
8978         hpsa_free_ioaccel2_cmd_and_bft(h);
8979 }
8980
8981 /* return -ENODEV on error, 0 on success (or no action)
8982  * allocates numerous items that must be freed later
8983  */
8984 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8985 {
8986         u32 trans_support;
8987         unsigned long transMethod = CFGTBL_Trans_Performant |
8988                                         CFGTBL_Trans_use_short_tags;
8989         int i, rc;
8990
8991         if (hpsa_simple_mode)
8992                 return 0;
8993
8994         trans_support = readl(&(h->cfgtable->TransportSupport));
8995         if (!(trans_support & PERFORMANT_MODE))
8996                 return 0;
8997
8998         /* Check for I/O accelerator mode support */
8999         if (trans_support & CFGTBL_Trans_io_accel1) {
9000                 transMethod |= CFGTBL_Trans_io_accel1 |
9001                                 CFGTBL_Trans_enable_directed_msix;
9002                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9003                 if (rc)
9004                         return rc;
9005         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9006                 transMethod |= CFGTBL_Trans_io_accel2 |
9007                                 CFGTBL_Trans_enable_directed_msix;
9008                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9009                 if (rc)
9010                         return rc;
9011         }
9012
9013         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9014         hpsa_get_max_perf_mode_cmds(h);
9015         /* Performant mode ring buffer and supporting data structures */
9016         h->reply_queue_size = h->max_commands * sizeof(u64);
9017
9018         for (i = 0; i < h->nreply_queues; i++) {
9019                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9020                                                 h->reply_queue_size,
9021                                                 &(h->reply_queue[i].busaddr));
9022                 if (!h->reply_queue[i].head) {
9023                         rc = -ENOMEM;
9024                         goto clean1;    /* rq, ioaccel */
9025                 }
9026                 h->reply_queue[i].size = h->max_commands;
9027                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9028                 h->reply_queue[i].current_entry = 0;
9029         }
9030
9031         /* Need a block fetch table for performant mode */
9032         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9033                                 sizeof(u32)), GFP_KERNEL);
9034         if (!h->blockFetchTable) {
9035                 rc = -ENOMEM;
9036                 goto clean1;    /* rq, ioaccel */
9037         }
9038
9039         rc = hpsa_enter_performant_mode(h, trans_support);
9040         if (rc)
9041                 goto clean2;    /* bft, rq, ioaccel */
9042         return 0;
9043
9044 clean2: /* bft, rq, ioaccel */
9045         kfree(h->blockFetchTable);
9046         h->blockFetchTable = NULL;
9047 clean1: /* rq, ioaccel */
9048         hpsa_free_reply_queues(h);
9049         hpsa_free_ioaccel1_cmd_and_bft(h);
9050         hpsa_free_ioaccel2_cmd_and_bft(h);
9051         return rc;
9052 }
9053
9054 static int is_accelerated_cmd(struct CommandList *c)
9055 {
9056         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9057 }
9058
9059 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9060 {
9061         struct CommandList *c = NULL;
9062         int i, accel_cmds_out;
9063         int refcount;
9064
9065         do { /* wait for all outstanding ioaccel commands to drain out */
9066                 accel_cmds_out = 0;
9067                 for (i = 0; i < h->nr_cmds; i++) {
9068                         c = h->cmd_pool + i;
9069                         refcount = atomic_inc_return(&c->refcount);
9070                         if (refcount > 1) /* Command is allocated */
9071                                 accel_cmds_out += is_accelerated_cmd(c);
9072                         cmd_free(h, c);
9073                 }
9074                 if (accel_cmds_out <= 0)
9075                         break;
9076                 msleep(100);
9077         } while (1);
9078 }
9079
9080 /*
9081  *  This is it.  Register the PCI driver information for the cards we control
9082  *  the OS will call our registered routines when it finds one of our cards.
9083  */
9084 static int __init hpsa_init(void)
9085 {
9086         return pci_register_driver(&hpsa_pci_driver);
9087 }
9088
9089 static void __exit hpsa_cleanup(void)
9090 {
9091         pci_unregister_driver(&hpsa_pci_driver);
9092 }
9093
9094 static void __attribute__((unused)) verify_offsets(void)
9095 {
9096 #define VERIFY_OFFSET(member, offset) \
9097         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9098
9099         VERIFY_OFFSET(structure_size, 0);
9100         VERIFY_OFFSET(volume_blk_size, 4);
9101         VERIFY_OFFSET(volume_blk_cnt, 8);
9102         VERIFY_OFFSET(phys_blk_shift, 16);
9103         VERIFY_OFFSET(parity_rotation_shift, 17);
9104         VERIFY_OFFSET(strip_size, 18);
9105         VERIFY_OFFSET(disk_starting_blk, 20);
9106         VERIFY_OFFSET(disk_blk_cnt, 28);
9107         VERIFY_OFFSET(data_disks_per_row, 36);
9108         VERIFY_OFFSET(metadata_disks_per_row, 38);
9109         VERIFY_OFFSET(row_cnt, 40);
9110         VERIFY_OFFSET(layout_map_count, 42);
9111         VERIFY_OFFSET(flags, 44);
9112         VERIFY_OFFSET(dekindex, 46);
9113         /* VERIFY_OFFSET(reserved, 48 */
9114         VERIFY_OFFSET(data, 64);
9115
9116 #undef VERIFY_OFFSET
9117
9118 #define VERIFY_OFFSET(member, offset) \
9119         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9120
9121         VERIFY_OFFSET(IU_type, 0);
9122         VERIFY_OFFSET(direction, 1);
9123         VERIFY_OFFSET(reply_queue, 2);
9124         /* VERIFY_OFFSET(reserved1, 3);  */
9125         VERIFY_OFFSET(scsi_nexus, 4);
9126         VERIFY_OFFSET(Tag, 8);
9127         VERIFY_OFFSET(cdb, 16);
9128         VERIFY_OFFSET(cciss_lun, 32);
9129         VERIFY_OFFSET(data_len, 40);
9130         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9131         VERIFY_OFFSET(sg_count, 45);
9132         /* VERIFY_OFFSET(reserved3 */
9133         VERIFY_OFFSET(err_ptr, 48);
9134         VERIFY_OFFSET(err_len, 56);
9135         /* VERIFY_OFFSET(reserved4  */
9136         VERIFY_OFFSET(sg, 64);
9137
9138 #undef VERIFY_OFFSET
9139
9140 #define VERIFY_OFFSET(member, offset) \
9141         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9142
9143         VERIFY_OFFSET(dev_handle, 0x00);
9144         VERIFY_OFFSET(reserved1, 0x02);
9145         VERIFY_OFFSET(function, 0x03);
9146         VERIFY_OFFSET(reserved2, 0x04);
9147         VERIFY_OFFSET(err_info, 0x0C);
9148         VERIFY_OFFSET(reserved3, 0x10);
9149         VERIFY_OFFSET(err_info_len, 0x12);
9150         VERIFY_OFFSET(reserved4, 0x13);
9151         VERIFY_OFFSET(sgl_offset, 0x14);
9152         VERIFY_OFFSET(reserved5, 0x15);
9153         VERIFY_OFFSET(transfer_len, 0x1C);
9154         VERIFY_OFFSET(reserved6, 0x20);
9155         VERIFY_OFFSET(io_flags, 0x24);
9156         VERIFY_OFFSET(reserved7, 0x26);
9157         VERIFY_OFFSET(LUN, 0x34);
9158         VERIFY_OFFSET(control, 0x3C);
9159         VERIFY_OFFSET(CDB, 0x40);
9160         VERIFY_OFFSET(reserved8, 0x50);
9161         VERIFY_OFFSET(host_context_flags, 0x60);
9162         VERIFY_OFFSET(timeout_sec, 0x62);
9163         VERIFY_OFFSET(ReplyQueue, 0x64);
9164         VERIFY_OFFSET(reserved9, 0x65);
9165         VERIFY_OFFSET(tag, 0x68);
9166         VERIFY_OFFSET(host_addr, 0x70);
9167         VERIFY_OFFSET(CISS_LUN, 0x78);
9168         VERIFY_OFFSET(SG, 0x78 + 8);
9169 #undef VERIFY_OFFSET
9170 }
9171
9172 module_init(hpsa_init);
9173 module_exit(hpsa_cleanup);