]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
scsi: mpt3sas: Fix calltrace observed while running IO & reset
[linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99         " enable detection of firmware fault and halt firmware - (default=0)");
100
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103
104 /**
105  * mpt3sas_base_check_cmd_timeout - Function
106  *              to check timeout and command termination due
107  *              to Host reset.
108  *
109  * @ioc:        per adapter object.
110  * @status:     Status of issued command.
111  * @mpi_request:mf request pointer.
112  * @sz:         size of buffer.
113  *
114  * @Returns - 1/0 Reset to be done or Not
115  */
116 u8
117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
118                 u8 status, void *mpi_request, int sz)
119 {
120         u8 issue_reset = 0;
121
122         if (!(status & MPT3_CMD_RESET))
123                 issue_reset = 1;
124
125         pr_err(MPT3SAS_FMT "Command %s\n", ioc->name,
126             ((issue_reset == 0) ? "terminated due to Host Reset" : "Timeout"));
127         _debug_dump_mf(mpi_request, sz);
128
129         return issue_reset;
130 }
131
132 /**
133  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
134  * @val: ?
135  * @kp: ?
136  *
137  * Return: ?
138  */
139 static int
140 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
141 {
142         int ret = param_set_int(val, kp);
143         struct MPT3SAS_ADAPTER *ioc;
144
145         if (ret)
146                 return ret;
147
148         /* global ioc spinlock to protect controller list on list operations */
149         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
150         spin_lock(&gioc_lock);
151         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
152                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
153         spin_unlock(&gioc_lock);
154         return 0;
155 }
156 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
157         param_get_int, &mpt3sas_fwfault_debug, 0644);
158
159 /**
160  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
161  *                                in BAR0 space.
162  *
163  * @ioc: per adapter object
164  * @reply: reply message frame(lower 32bit addr)
165  * @index: System request message index.
166  */
167 static void
168 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
169                 u32 index)
170 {
171         /*
172          * 256 is offset within sys register.
173          * 256 offset MPI frame starts. Max MPI frame supported is 32.
174          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
175          */
176         u16 cmd_credit = ioc->facts.RequestCredit + 1;
177         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
178                         MPI_FRAME_START_OFFSET +
179                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
180
181         writel(reply, reply_free_iomem);
182 }
183
184 /**
185  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
186  *                              to system/BAR0 region.
187  *
188  * @dst_iomem: Pointer to the destination location in BAR0 space.
189  * @src: Pointer to the Source data.
190  * @size: Size of data to be copied.
191  */
192 static void
193 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
194 {
195         int i;
196         u32 *src_virt_mem = (u32 *)src;
197
198         for (i = 0; i < size/4; i++)
199                 writel((u32)src_virt_mem[i],
200                                 (void __iomem *)dst_iomem + (i * 4));
201 }
202
203 /**
204  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
205  *
206  * @dst_iomem: Pointer to the destination location in BAR0 space.
207  * @src: Pointer to the Source data.
208  * @size: Size of data to be copied.
209  */
210 static void
211 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
212 {
213         int i;
214         u32 *src_virt_mem = (u32 *)(src);
215
216         for (i = 0; i < size/4; i++)
217                 writel((u32)src_virt_mem[i],
218                         (void __iomem *)dst_iomem + (i * 4));
219 }
220
221 /**
222  * _base_get_chain - Calculates and Returns virtual chain address
223  *                       for the provided smid in BAR0 space.
224  *
225  * @ioc: per adapter object
226  * @smid: system request message index
227  * @sge_chain_count: Scatter gather chain count.
228  *
229  * Return: the chain address.
230  */
231 static inline void __iomem*
232 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
233                 u8 sge_chain_count)
234 {
235         void __iomem *base_chain, *chain_virt;
236         u16 cmd_credit = ioc->facts.RequestCredit + 1;
237
238         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
239                 (cmd_credit * ioc->request_sz) +
240                 REPLY_FREE_POOL_SIZE;
241         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
242                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
243         return chain_virt;
244 }
245
246 /**
247  * _base_get_chain_phys - Calculates and Returns physical address
248  *                      in BAR0 for scatter gather chains, for
249  *                      the provided smid.
250  *
251  * @ioc: per adapter object
252  * @smid: system request message index
253  * @sge_chain_count: Scatter gather chain count.
254  *
255  * Return: Physical chain address.
256  */
257 static inline phys_addr_t
258 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
259                 u8 sge_chain_count)
260 {
261         phys_addr_t base_chain_phys, chain_phys;
262         u16 cmd_credit = ioc->facts.RequestCredit + 1;
263
264         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
265                 (cmd_credit * ioc->request_sz) +
266                 REPLY_FREE_POOL_SIZE;
267         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
268                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
269         return chain_phys;
270 }
271
272 /**
273  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
274  *                      buffer address for the provided smid.
275  *                      (Each smid can have 64K starts from 17024)
276  *
277  * @ioc: per adapter object
278  * @smid: system request message index
279  *
280  * Return: Pointer to buffer location in BAR0.
281  */
282
283 static void __iomem *
284 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
285 {
286         u16 cmd_credit = ioc->facts.RequestCredit + 1;
287         // Added extra 1 to reach end of chain.
288         void __iomem *chain_end = _base_get_chain(ioc,
289                         cmd_credit + 1,
290                         ioc->facts.MaxChainDepth);
291         return chain_end + (smid * 64 * 1024);
292 }
293
294 /**
295  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
296  *              Host buffer Physical address for the provided smid.
297  *              (Each smid can have 64K starts from 17024)
298  *
299  * @ioc: per adapter object
300  * @smid: system request message index
301  *
302  * Return: Pointer to buffer location in BAR0.
303  */
304 static phys_addr_t
305 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
306 {
307         u16 cmd_credit = ioc->facts.RequestCredit + 1;
308         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
309                         cmd_credit + 1,
310                         ioc->facts.MaxChainDepth);
311         return chain_end_phys + (smid * 64 * 1024);
312 }
313
314 /**
315  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
316  *                      lookup list and Provides chain_buffer
317  *                      address for the matching dma address.
318  *                      (Each smid can have 64K starts from 17024)
319  *
320  * @ioc: per adapter object
321  * @chain_buffer_dma: Chain buffer dma address.
322  *
323  * Return: Pointer to chain buffer. Or Null on Failure.
324  */
325 static void *
326 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
327                 dma_addr_t chain_buffer_dma)
328 {
329         u16 index, j;
330         struct chain_tracker *ct;
331
332         for (index = 0; index < ioc->scsiio_depth; index++) {
333                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
334                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
335                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
336                                 return ct->chain_buffer;
337                 }
338         }
339         pr_info(MPT3SAS_FMT
340             "Provided chain_buffer_dma address is not in the lookup list\n",
341             ioc->name);
342         return NULL;
343 }
344
345 /**
346  * _clone_sg_entries -  MPI EP's scsiio and config requests
347  *                      are handled here. Base function for
348  *                      double buffering, before submitting
349  *                      the requests.
350  *
351  * @ioc: per adapter object.
352  * @mpi_request: mf request pointer.
353  * @smid: system request message index.
354  */
355 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
356                 void *mpi_request, u16 smid)
357 {
358         Mpi2SGESimple32_t *sgel, *sgel_next;
359         u32  sgl_flags, sge_chain_count = 0;
360         bool is_write = 0;
361         u16 i = 0;
362         void __iomem *buffer_iomem;
363         phys_addr_t buffer_iomem_phys;
364         void __iomem *buff_ptr;
365         phys_addr_t buff_ptr_phys;
366         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
367         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
368         phys_addr_t dst_addr_phys;
369         MPI2RequestHeader_t *request_hdr;
370         struct scsi_cmnd *scmd;
371         struct scatterlist *sg_scmd = NULL;
372         int is_scsiio_req = 0;
373
374         request_hdr = (MPI2RequestHeader_t *) mpi_request;
375
376         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
377                 Mpi25SCSIIORequest_t *scsiio_request =
378                         (Mpi25SCSIIORequest_t *)mpi_request;
379                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
380                 is_scsiio_req = 1;
381         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
382                 Mpi2ConfigRequest_t  *config_req =
383                         (Mpi2ConfigRequest_t *)mpi_request;
384                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
385         } else
386                 return;
387
388         /* From smid we can get scsi_cmd, once we have sg_scmd,
389          * we just need to get sg_virt and sg_next to get virual
390          * address associated with sgel->Address.
391          */
392
393         if (is_scsiio_req) {
394                 /* Get scsi_cmd using smid */
395                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
396                 if (scmd == NULL) {
397                         pr_err(MPT3SAS_FMT "scmd is NULL\n", ioc->name);
398                         return;
399                 }
400
401                 /* Get sg_scmd from scmd provided */
402                 sg_scmd = scsi_sglist(scmd);
403         }
404
405         /*
406          * 0 - 255      System register
407          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
408          * 4352 - 4864  Reply_free pool (512 byte is reserved
409          *              considering maxCredit 32. Reply need extra
410          *              room, for mCPU case kept four times of
411          *              maxCredit).
412          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
413          *              128 byte size = 12288)
414          * 17152 - x    Host buffer mapped with smid.
415          *              (Each smid can have 64K Max IO.)
416          * BAR0+Last 1K MSIX Addr and Data
417          * Total size in use 2113664 bytes of 4MB BAR0
418          */
419
420         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
421         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
422
423         buff_ptr = buffer_iomem;
424         buff_ptr_phys = buffer_iomem_phys;
425         WARN_ON(buff_ptr_phys > U32_MAX);
426
427         if (le32_to_cpu(sgel->FlagsLength) &
428                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
429                 is_write = 1;
430
431         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
432
433                 sgl_flags =
434                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
435
436                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
437                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
438                         /*
439                          * Helper function which on passing
440                          * chain_buffer_dma returns chain_buffer. Get
441                          * the virtual address for sgel->Address
442                          */
443                         sgel_next =
444                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
445                                                 le32_to_cpu(sgel->Address));
446                         if (sgel_next == NULL)
447                                 return;
448                         /*
449                          * This is coping 128 byte chain
450                          * frame (not a host buffer)
451                          */
452                         dst_chain_addr[sge_chain_count] =
453                                 _base_get_chain(ioc,
454                                         smid, sge_chain_count);
455                         src_chain_addr[sge_chain_count] =
456                                                 (void *) sgel_next;
457                         dst_addr_phys = _base_get_chain_phys(ioc,
458                                                 smid, sge_chain_count);
459                         WARN_ON(dst_addr_phys > U32_MAX);
460                         sgel->Address =
461                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
462                         sgel = sgel_next;
463                         sge_chain_count++;
464                         break;
465                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
466                         if (is_write) {
467                                 if (is_scsiio_req) {
468                                         _base_clone_to_sys_mem(buff_ptr,
469                                             sg_virt(sg_scmd),
470                                             (le32_to_cpu(sgel->FlagsLength) &
471                                             0x00ffffff));
472                                         /*
473                                          * FIXME: this relies on a a zero
474                                          * PCI mem_offset.
475                                          */
476                                         sgel->Address =
477                                             cpu_to_le32((u32)buff_ptr_phys);
478                                 } else {
479                                         _base_clone_to_sys_mem(buff_ptr,
480                                             ioc->config_vaddr,
481                                             (le32_to_cpu(sgel->FlagsLength) &
482                                             0x00ffffff));
483                                         sgel->Address =
484                                             cpu_to_le32((u32)buff_ptr_phys);
485                                 }
486                         }
487                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
488                             0x00ffffff);
489                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
490                             0x00ffffff);
491                         if ((le32_to_cpu(sgel->FlagsLength) &
492                             (MPI2_SGE_FLAGS_END_OF_BUFFER
493                                         << MPI2_SGE_FLAGS_SHIFT)))
494                                 goto eob_clone_chain;
495                         else {
496                                 /*
497                                  * Every single element in MPT will have
498                                  * associated sg_next. Better to sanity that
499                                  * sg_next is not NULL, but it will be a bug
500                                  * if it is null.
501                                  */
502                                 if (is_scsiio_req) {
503                                         sg_scmd = sg_next(sg_scmd);
504                                         if (sg_scmd)
505                                                 sgel++;
506                                         else
507                                                 goto eob_clone_chain;
508                                 }
509                         }
510                         break;
511                 }
512         }
513
514 eob_clone_chain:
515         for (i = 0; i < sge_chain_count; i++) {
516                 if (is_scsiio_req)
517                         _base_clone_to_sys_mem(dst_chain_addr[i],
518                                 src_chain_addr[i], ioc->request_sz);
519         }
520 }
521
522 /**
523  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
524  * @arg: input argument, used to derive ioc
525  *
526  * Return:
527  * 0 if controller is removed from pci subsystem.
528  * -1 for other case.
529  */
530 static int mpt3sas_remove_dead_ioc_func(void *arg)
531 {
532         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
533         struct pci_dev *pdev;
534
535         if ((ioc == NULL))
536                 return -1;
537
538         pdev = ioc->pdev;
539         if ((pdev == NULL))
540                 return -1;
541         pci_stop_and_remove_bus_device_locked(pdev);
542         return 0;
543 }
544
545 /**
546  * _base_fault_reset_work - workq handling ioc fault conditions
547  * @work: input argument, used to derive ioc
548  *
549  * Context: sleep.
550  */
551 static void
552 _base_fault_reset_work(struct work_struct *work)
553 {
554         struct MPT3SAS_ADAPTER *ioc =
555             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
556         unsigned long    flags;
557         u32 doorbell;
558         int rc;
559         struct task_struct *p;
560
561
562         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
563         if (ioc->shost_recovery || ioc->pci_error_recovery)
564                 goto rearm_timer;
565         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
566
567         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
568         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
569                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
570                     ioc->name);
571
572                 /* It may be possible that EEH recovery can resolve some of
573                  * pci bus failure issues rather removing the dead ioc function
574                  * by considering controller is in a non-operational state. So
575                  * here priority is given to the EEH recovery. If it doesn't
576                  * not resolve this issue, mpt3sas driver will consider this
577                  * controller to non-operational state and remove the dead ioc
578                  * function.
579                  */
580                 if (ioc->non_operational_loop++ < 5) {
581                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
582                                                          flags);
583                         goto rearm_timer;
584                 }
585
586                 /*
587                  * Call _scsih_flush_pending_cmds callback so that we flush all
588                  * pending commands back to OS. This call is required to aovid
589                  * deadlock at block layer. Dead IOC will fail to do diag reset,
590                  * and this call is safe since dead ioc will never return any
591                  * command back from HW.
592                  */
593                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
594                 /*
595                  * Set remove_host flag early since kernel thread will
596                  * take some time to execute.
597                  */
598                 ioc->remove_host = 1;
599                 /*Remove the Dead Host */
600                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
601                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
602                 if (IS_ERR(p))
603                         pr_err(MPT3SAS_FMT
604                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
605                         ioc->name, __func__);
606                 else
607                         pr_err(MPT3SAS_FMT
608                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
609                         ioc->name, __func__);
610                 return; /* don't rearm timer */
611         }
612
613         ioc->non_operational_loop = 0;
614
615         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
616                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
617                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
618                     __func__, (rc == 0) ? "success" : "failed");
619                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
620                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
621                         mpt3sas_base_fault_info(ioc, doorbell &
622                             MPI2_DOORBELL_DATA_MASK);
623                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
624                     MPI2_IOC_STATE_OPERATIONAL)
625                         return; /* don't rearm timer */
626         }
627
628         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
629  rearm_timer:
630         if (ioc->fault_reset_work_q)
631                 queue_delayed_work(ioc->fault_reset_work_q,
632                     &ioc->fault_reset_work,
633                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
634         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
635 }
636
637 /**
638  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
639  * @ioc: per adapter object
640  *
641  * Context: sleep.
642  */
643 void
644 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
645 {
646         unsigned long    flags;
647
648         if (ioc->fault_reset_work_q)
649                 return;
650
651         /* initialize fault polling */
652
653         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
654         snprintf(ioc->fault_reset_work_q_name,
655             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
656             ioc->driver_name, ioc->id);
657         ioc->fault_reset_work_q =
658                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
659         if (!ioc->fault_reset_work_q) {
660                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
661                     ioc->name, __func__, __LINE__);
662                 return;
663         }
664         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
665         if (ioc->fault_reset_work_q)
666                 queue_delayed_work(ioc->fault_reset_work_q,
667                     &ioc->fault_reset_work,
668                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
669         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
670 }
671
672 /**
673  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
674  * @ioc: per adapter object
675  *
676  * Context: sleep.
677  */
678 void
679 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
680 {
681         unsigned long flags;
682         struct workqueue_struct *wq;
683
684         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
685         wq = ioc->fault_reset_work_q;
686         ioc->fault_reset_work_q = NULL;
687         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
688         if (wq) {
689                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
690                         flush_workqueue(wq);
691                 destroy_workqueue(wq);
692         }
693 }
694
695 /**
696  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
697  * @ioc: per adapter object
698  * @fault_code: fault code
699  */
700 void
701 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
702 {
703         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
704             ioc->name, fault_code);
705 }
706
707 /**
708  * mpt3sas_halt_firmware - halt's mpt controller firmware
709  * @ioc: per adapter object
710  *
711  * For debugging timeout related issues.  Writing 0xCOFFEE00
712  * to the doorbell register will halt controller firmware. With
713  * the purpose to stop both driver and firmware, the enduser can
714  * obtain a ring buffer from controller UART.
715  */
716 void
717 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
718 {
719         u32 doorbell;
720
721         if (!ioc->fwfault_debug)
722                 return;
723
724         dump_stack();
725
726         doorbell = readl(&ioc->chip->Doorbell);
727         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
728                 mpt3sas_base_fault_info(ioc , doorbell);
729         else {
730                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
731                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
732                         ioc->name);
733         }
734
735         if (ioc->fwfault_debug == 2)
736                 for (;;)
737                         ;
738         else
739                 panic("panic in %s\n", __func__);
740 }
741
742 /**
743  * _base_sas_ioc_info - verbose translation of the ioc status
744  * @ioc: per adapter object
745  * @mpi_reply: reply mf payload returned from firmware
746  * @request_hdr: request mf
747  */
748 static void
749 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
750         MPI2RequestHeader_t *request_hdr)
751 {
752         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
753             MPI2_IOCSTATUS_MASK;
754         char *desc = NULL;
755         u16 frame_sz;
756         char *func_str = NULL;
757
758         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
759         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
760             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
761             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
762                 return;
763
764         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
765                 return;
766
767         switch (ioc_status) {
768
769 /****************************************************************************
770 *  Common IOCStatus values for all replies
771 ****************************************************************************/
772
773         case MPI2_IOCSTATUS_INVALID_FUNCTION:
774                 desc = "invalid function";
775                 break;
776         case MPI2_IOCSTATUS_BUSY:
777                 desc = "busy";
778                 break;
779         case MPI2_IOCSTATUS_INVALID_SGL:
780                 desc = "invalid sgl";
781                 break;
782         case MPI2_IOCSTATUS_INTERNAL_ERROR:
783                 desc = "internal error";
784                 break;
785         case MPI2_IOCSTATUS_INVALID_VPID:
786                 desc = "invalid vpid";
787                 break;
788         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
789                 desc = "insufficient resources";
790                 break;
791         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
792                 desc = "insufficient power";
793                 break;
794         case MPI2_IOCSTATUS_INVALID_FIELD:
795                 desc = "invalid field";
796                 break;
797         case MPI2_IOCSTATUS_INVALID_STATE:
798                 desc = "invalid state";
799                 break;
800         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
801                 desc = "op state not supported";
802                 break;
803
804 /****************************************************************************
805 *  Config IOCStatus values
806 ****************************************************************************/
807
808         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
809                 desc = "config invalid action";
810                 break;
811         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
812                 desc = "config invalid type";
813                 break;
814         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
815                 desc = "config invalid page";
816                 break;
817         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
818                 desc = "config invalid data";
819                 break;
820         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
821                 desc = "config no defaults";
822                 break;
823         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
824                 desc = "config cant commit";
825                 break;
826
827 /****************************************************************************
828 *  SCSI IO Reply
829 ****************************************************************************/
830
831         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
832         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
833         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
834         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
835         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
836         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
837         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
838         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
839         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
840         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
841         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
842         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
843                 break;
844
845 /****************************************************************************
846 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
847 ****************************************************************************/
848
849         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
850                 desc = "eedp guard error";
851                 break;
852         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
853                 desc = "eedp ref tag error";
854                 break;
855         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
856                 desc = "eedp app tag error";
857                 break;
858
859 /****************************************************************************
860 *  SCSI Target values
861 ****************************************************************************/
862
863         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
864                 desc = "target invalid io index";
865                 break;
866         case MPI2_IOCSTATUS_TARGET_ABORTED:
867                 desc = "target aborted";
868                 break;
869         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
870                 desc = "target no conn retryable";
871                 break;
872         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
873                 desc = "target no connection";
874                 break;
875         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
876                 desc = "target xfer count mismatch";
877                 break;
878         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
879                 desc = "target data offset error";
880                 break;
881         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
882                 desc = "target too much write data";
883                 break;
884         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
885                 desc = "target iu too short";
886                 break;
887         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
888                 desc = "target ack nak timeout";
889                 break;
890         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
891                 desc = "target nak received";
892                 break;
893
894 /****************************************************************************
895 *  Serial Attached SCSI values
896 ****************************************************************************/
897
898         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
899                 desc = "smp request failed";
900                 break;
901         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
902                 desc = "smp data overrun";
903                 break;
904
905 /****************************************************************************
906 *  Diagnostic Buffer Post / Diagnostic Release values
907 ****************************************************************************/
908
909         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
910                 desc = "diagnostic released";
911                 break;
912         default:
913                 break;
914         }
915
916         if (!desc)
917                 return;
918
919         switch (request_hdr->Function) {
920         case MPI2_FUNCTION_CONFIG:
921                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
922                 func_str = "config_page";
923                 break;
924         case MPI2_FUNCTION_SCSI_TASK_MGMT:
925                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
926                 func_str = "task_mgmt";
927                 break;
928         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
929                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
930                 func_str = "sas_iounit_ctl";
931                 break;
932         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
933                 frame_sz = sizeof(Mpi2SepRequest_t);
934                 func_str = "enclosure";
935                 break;
936         case MPI2_FUNCTION_IOC_INIT:
937                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
938                 func_str = "ioc_init";
939                 break;
940         case MPI2_FUNCTION_PORT_ENABLE:
941                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
942                 func_str = "port_enable";
943                 break;
944         case MPI2_FUNCTION_SMP_PASSTHROUGH:
945                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
946                 func_str = "smp_passthru";
947                 break;
948         case MPI2_FUNCTION_NVME_ENCAPSULATED:
949                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
950                     ioc->sge_size;
951                 func_str = "nvme_encapsulated";
952                 break;
953         default:
954                 frame_sz = 32;
955                 func_str = "unknown";
956                 break;
957         }
958
959         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
960                 ioc->name, desc, ioc_status, request_hdr, func_str);
961
962         _debug_dump_mf(request_hdr, frame_sz/4);
963 }
964
965 /**
966  * _base_display_event_data - verbose translation of firmware asyn events
967  * @ioc: per adapter object
968  * @mpi_reply: reply mf payload returned from firmware
969  */
970 static void
971 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
972         Mpi2EventNotificationReply_t *mpi_reply)
973 {
974         char *desc = NULL;
975         u16 event;
976
977         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
978                 return;
979
980         event = le16_to_cpu(mpi_reply->Event);
981
982         switch (event) {
983         case MPI2_EVENT_LOG_DATA:
984                 desc = "Log Data";
985                 break;
986         case MPI2_EVENT_STATE_CHANGE:
987                 desc = "Status Change";
988                 break;
989         case MPI2_EVENT_HARD_RESET_RECEIVED:
990                 desc = "Hard Reset Received";
991                 break;
992         case MPI2_EVENT_EVENT_CHANGE:
993                 desc = "Event Change";
994                 break;
995         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
996                 desc = "Device Status Change";
997                 break;
998         case MPI2_EVENT_IR_OPERATION_STATUS:
999                 if (!ioc->hide_ir_msg)
1000                         desc = "IR Operation Status";
1001                 break;
1002         case MPI2_EVENT_SAS_DISCOVERY:
1003         {
1004                 Mpi2EventDataSasDiscovery_t *event_data =
1005                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1006                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
1007                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
1008                     "start" : "stop");
1009                 if (event_data->DiscoveryStatus)
1010                         pr_cont(" discovery_status(0x%08x)",
1011                             le32_to_cpu(event_data->DiscoveryStatus));
1012                 pr_cont("\n");
1013                 return;
1014         }
1015         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1016                 desc = "SAS Broadcast Primitive";
1017                 break;
1018         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1019                 desc = "SAS Init Device Status Change";
1020                 break;
1021         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1022                 desc = "SAS Init Table Overflow";
1023                 break;
1024         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1025                 desc = "SAS Topology Change List";
1026                 break;
1027         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1028                 desc = "SAS Enclosure Device Status Change";
1029                 break;
1030         case MPI2_EVENT_IR_VOLUME:
1031                 if (!ioc->hide_ir_msg)
1032                         desc = "IR Volume";
1033                 break;
1034         case MPI2_EVENT_IR_PHYSICAL_DISK:
1035                 if (!ioc->hide_ir_msg)
1036                         desc = "IR Physical Disk";
1037                 break;
1038         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1039                 if (!ioc->hide_ir_msg)
1040                         desc = "IR Configuration Change List";
1041                 break;
1042         case MPI2_EVENT_LOG_ENTRY_ADDED:
1043                 if (!ioc->hide_ir_msg)
1044                         desc = "Log Entry Added";
1045                 break;
1046         case MPI2_EVENT_TEMP_THRESHOLD:
1047                 desc = "Temperature Threshold";
1048                 break;
1049         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1050                 desc = "Cable Event";
1051                 break;
1052         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1053                 desc = "SAS Device Discovery Error";
1054                 break;
1055         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1056                 desc = "PCIE Device Status Change";
1057                 break;
1058         case MPI2_EVENT_PCIE_ENUMERATION:
1059         {
1060                 Mpi26EventDataPCIeEnumeration_t *event_data =
1061                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1062                 pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
1063                            (event_data->ReasonCode ==
1064                                 MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
1065                                 "start" : "stop");
1066                 if (event_data->EnumerationStatus)
1067                         pr_info("enumeration_status(0x%08x)",
1068                                    le32_to_cpu(event_data->EnumerationStatus));
1069                 pr_info("\n");
1070                 return;
1071         }
1072         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1073                 desc = "PCIE Topology Change List";
1074                 break;
1075         }
1076
1077         if (!desc)
1078                 return;
1079
1080         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
1081 }
1082
1083 /**
1084  * _base_sas_log_info - verbose translation of firmware log info
1085  * @ioc: per adapter object
1086  * @log_info: log info
1087  */
1088 static void
1089 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1090 {
1091         union loginfo_type {
1092                 u32     loginfo;
1093                 struct {
1094                         u32     subcode:16;
1095                         u32     code:8;
1096                         u32     originator:4;
1097                         u32     bus_type:4;
1098                 } dw;
1099         };
1100         union loginfo_type sas_loginfo;
1101         char *originator_str = NULL;
1102
1103         sas_loginfo.loginfo = log_info;
1104         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1105                 return;
1106
1107         /* each nexus loss loginfo */
1108         if (log_info == 0x31170000)
1109                 return;
1110
1111         /* eat the loginfos associated with task aborts */
1112         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1113             0x31140000 || log_info == 0x31130000))
1114                 return;
1115
1116         switch (sas_loginfo.dw.originator) {
1117         case 0:
1118                 originator_str = "IOP";
1119                 break;
1120         case 1:
1121                 originator_str = "PL";
1122                 break;
1123         case 2:
1124                 if (!ioc->hide_ir_msg)
1125                         originator_str = "IR";
1126                 else
1127                         originator_str = "WarpDrive";
1128                 break;
1129         }
1130
1131         pr_warn(MPT3SAS_FMT
1132                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1133                 ioc->name, log_info,
1134              originator_str, sas_loginfo.dw.code,
1135              sas_loginfo.dw.subcode);
1136 }
1137
1138 /**
1139  * _base_display_reply_info -
1140  * @ioc: per adapter object
1141  * @smid: system request message index
1142  * @msix_index: MSIX table index supplied by the OS
1143  * @reply: reply message frame(lower 32bit addr)
1144  */
1145 static void
1146 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1147         u32 reply)
1148 {
1149         MPI2DefaultReply_t *mpi_reply;
1150         u16 ioc_status;
1151         u32 loginfo = 0;
1152
1153         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1154         if (unlikely(!mpi_reply)) {
1155                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
1156                     ioc->name, __FILE__, __LINE__, __func__);
1157                 return;
1158         }
1159         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1160
1161         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1162             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1163                 _base_sas_ioc_info(ioc , mpi_reply,
1164                    mpt3sas_base_get_msg_frame(ioc, smid));
1165         }
1166
1167         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1168                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1169                 _base_sas_log_info(ioc, loginfo);
1170         }
1171
1172         if (ioc_status || loginfo) {
1173                 ioc_status &= MPI2_IOCSTATUS_MASK;
1174                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1175         }
1176 }
1177
1178 /**
1179  * mpt3sas_base_done - base internal command completion routine
1180  * @ioc: per adapter object
1181  * @smid: system request message index
1182  * @msix_index: MSIX table index supplied by the OS
1183  * @reply: reply message frame(lower 32bit addr)
1184  *
1185  * Return:
1186  * 1 meaning mf should be freed from _base_interrupt
1187  * 0 means the mf is freed from this function.
1188  */
1189 u8
1190 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1191         u32 reply)
1192 {
1193         MPI2DefaultReply_t *mpi_reply;
1194
1195         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1196         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1197                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1198
1199         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1200                 return 1;
1201
1202         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1203         if (mpi_reply) {
1204                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1205                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1206         }
1207         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1208
1209         complete(&ioc->base_cmds.done);
1210         return 1;
1211 }
1212
1213 /**
1214  * _base_async_event - main callback handler for firmware asyn events
1215  * @ioc: per adapter object
1216  * @msix_index: MSIX table index supplied by the OS
1217  * @reply: reply message frame(lower 32bit addr)
1218  *
1219  * Return:
1220  * 1 meaning mf should be freed from _base_interrupt
1221  * 0 means the mf is freed from this function.
1222  */
1223 static u8
1224 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1225 {
1226         Mpi2EventNotificationReply_t *mpi_reply;
1227         Mpi2EventAckRequest_t *ack_request;
1228         u16 smid;
1229         struct _event_ack_list *delayed_event_ack;
1230
1231         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1232         if (!mpi_reply)
1233                 return 1;
1234         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1235                 return 1;
1236
1237         _base_display_event_data(ioc, mpi_reply);
1238
1239         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1240                 goto out;
1241         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1242         if (!smid) {
1243                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1244                                         GFP_ATOMIC);
1245                 if (!delayed_event_ack)
1246                         goto out;
1247                 INIT_LIST_HEAD(&delayed_event_ack->list);
1248                 delayed_event_ack->Event = mpi_reply->Event;
1249                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1250                 list_add_tail(&delayed_event_ack->list,
1251                                 &ioc->delayed_event_ack_list);
1252                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
1253                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
1254                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
1255                 goto out;
1256         }
1257
1258         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1259         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1260         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1261         ack_request->Event = mpi_reply->Event;
1262         ack_request->EventContext = mpi_reply->EventContext;
1263         ack_request->VF_ID = 0;  /* TODO */
1264         ack_request->VP_ID = 0;
1265         mpt3sas_base_put_smid_default(ioc, smid);
1266
1267  out:
1268
1269         /* scsih callback handler */
1270         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1271
1272         /* ctl callback handler */
1273         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1274
1275         return 1;
1276 }
1277
1278 static struct scsiio_tracker *
1279 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1280 {
1281         struct scsi_cmnd *cmd;
1282
1283         if (WARN_ON(!smid) ||
1284             WARN_ON(smid >= ioc->hi_priority_smid))
1285                 return NULL;
1286
1287         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1288         if (cmd)
1289                 return scsi_cmd_priv(cmd);
1290
1291         return NULL;
1292 }
1293
1294 /**
1295  * _base_get_cb_idx - obtain the callback index
1296  * @ioc: per adapter object
1297  * @smid: system request message index
1298  *
1299  * Return: callback index.
1300  */
1301 static u8
1302 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1303 {
1304         int i;
1305         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1306         u8 cb_idx = 0xFF;
1307
1308         if (smid < ioc->hi_priority_smid) {
1309                 struct scsiio_tracker *st;
1310
1311                 if (smid < ctl_smid) {
1312                         st = _get_st_from_smid(ioc, smid);
1313                         if (st)
1314                                 cb_idx = st->cb_idx;
1315                 } else if (smid == ctl_smid)
1316                         cb_idx = ioc->ctl_cb_idx;
1317         } else if (smid < ioc->internal_smid) {
1318                 i = smid - ioc->hi_priority_smid;
1319                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1320         } else if (smid <= ioc->hba_queue_depth) {
1321                 i = smid - ioc->internal_smid;
1322                 cb_idx = ioc->internal_lookup[i].cb_idx;
1323         }
1324         return cb_idx;
1325 }
1326
1327 /**
1328  * _base_mask_interrupts - disable interrupts
1329  * @ioc: per adapter object
1330  *
1331  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1332  */
1333 static void
1334 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1335 {
1336         u32 him_register;
1337
1338         ioc->mask_interrupts = 1;
1339         him_register = readl(&ioc->chip->HostInterruptMask);
1340         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1341         writel(him_register, &ioc->chip->HostInterruptMask);
1342         readl(&ioc->chip->HostInterruptMask);
1343 }
1344
1345 /**
1346  * _base_unmask_interrupts - enable interrupts
1347  * @ioc: per adapter object
1348  *
1349  * Enabling only Reply Interrupts
1350  */
1351 static void
1352 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1353 {
1354         u32 him_register;
1355
1356         him_register = readl(&ioc->chip->HostInterruptMask);
1357         him_register &= ~MPI2_HIM_RIM;
1358         writel(him_register, &ioc->chip->HostInterruptMask);
1359         ioc->mask_interrupts = 0;
1360 }
1361
1362 union reply_descriptor {
1363         u64 word;
1364         struct {
1365                 u32 low;
1366                 u32 high;
1367         } u;
1368 };
1369
1370 /**
1371  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1372  * @irq: irq number (not used)
1373  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1374  *
1375  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1376  */
1377 static irqreturn_t
1378 _base_interrupt(int irq, void *bus_id)
1379 {
1380         struct adapter_reply_queue *reply_q = bus_id;
1381         union reply_descriptor rd;
1382         u32 completed_cmds;
1383         u8 request_desript_type;
1384         u16 smid;
1385         u8 cb_idx;
1386         u32 reply;
1387         u8 msix_index = reply_q->msix_index;
1388         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1389         Mpi2ReplyDescriptorsUnion_t *rpf;
1390         u8 rc;
1391
1392         if (ioc->mask_interrupts)
1393                 return IRQ_NONE;
1394
1395         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1396                 return IRQ_NONE;
1397
1398         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1399         request_desript_type = rpf->Default.ReplyFlags
1400              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1401         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1402                 atomic_dec(&reply_q->busy);
1403                 return IRQ_NONE;
1404         }
1405
1406         completed_cmds = 0;
1407         cb_idx = 0xFF;
1408         do {
1409                 rd.word = le64_to_cpu(rpf->Words);
1410                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1411                         goto out;
1412                 reply = 0;
1413                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1414                 if (request_desript_type ==
1415                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1416                     request_desript_type ==
1417                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1418                     request_desript_type ==
1419                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1420                         cb_idx = _base_get_cb_idx(ioc, smid);
1421                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1422                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1423                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1424                                     msix_index, 0);
1425                                 if (rc)
1426                                         mpt3sas_base_free_smid(ioc, smid);
1427                         }
1428                 } else if (request_desript_type ==
1429                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1430                         reply = le32_to_cpu(
1431                             rpf->AddressReply.ReplyFrameAddress);
1432                         if (reply > ioc->reply_dma_max_address ||
1433                             reply < ioc->reply_dma_min_address)
1434                                 reply = 0;
1435                         if (smid) {
1436                                 cb_idx = _base_get_cb_idx(ioc, smid);
1437                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1438                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1439                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1440                                             msix_index, reply);
1441                                         if (reply)
1442                                                 _base_display_reply_info(ioc,
1443                                                     smid, msix_index, reply);
1444                                         if (rc)
1445                                                 mpt3sas_base_free_smid(ioc,
1446                                                     smid);
1447                                 }
1448                         } else {
1449                                 _base_async_event(ioc, msix_index, reply);
1450                         }
1451
1452                         /* reply free queue handling */
1453                         if (reply) {
1454                                 ioc->reply_free_host_index =
1455                                     (ioc->reply_free_host_index ==
1456                                     (ioc->reply_free_queue_depth - 1)) ?
1457                                     0 : ioc->reply_free_host_index + 1;
1458                                 ioc->reply_free[ioc->reply_free_host_index] =
1459                                     cpu_to_le32(reply);
1460                                 if (ioc->is_mcpu_endpoint)
1461                                         _base_clone_reply_to_sys_mem(ioc,
1462                                                 reply,
1463                                                 ioc->reply_free_host_index);
1464                                 writel(ioc->reply_free_host_index,
1465                                     &ioc->chip->ReplyFreeHostIndex);
1466                         }
1467                 }
1468
1469                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1470                 reply_q->reply_post_host_index =
1471                     (reply_q->reply_post_host_index ==
1472                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1473                     reply_q->reply_post_host_index + 1;
1474                 request_desript_type =
1475                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1476                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1477                 completed_cmds++;
1478                 /* Update the reply post host index after continuously
1479                  * processing the threshold number of Reply Descriptors.
1480                  * So that FW can find enough entries to post the Reply
1481                  * Descriptors in the reply descriptor post queue.
1482                  */
1483                 if (completed_cmds > ioc->hba_queue_depth/3) {
1484                         if (ioc->combined_reply_queue) {
1485                                 writel(reply_q->reply_post_host_index |
1486                                                 ((msix_index  & 7) <<
1487                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1488                                     ioc->replyPostRegisterIndex[msix_index/8]);
1489                         } else {
1490                                 writel(reply_q->reply_post_host_index |
1491                                                 (msix_index <<
1492                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1493                                                 &ioc->chip->ReplyPostHostIndex);
1494                         }
1495                         completed_cmds = 1;
1496                 }
1497                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1498                         goto out;
1499                 if (!reply_q->reply_post_host_index)
1500                         rpf = reply_q->reply_post_free;
1501                 else
1502                         rpf++;
1503         } while (1);
1504
1505  out:
1506
1507         if (!completed_cmds) {
1508                 atomic_dec(&reply_q->busy);
1509                 return IRQ_NONE;
1510         }
1511
1512         if (ioc->is_warpdrive) {
1513                 writel(reply_q->reply_post_host_index,
1514                 ioc->reply_post_host_index[msix_index]);
1515                 atomic_dec(&reply_q->busy);
1516                 return IRQ_HANDLED;
1517         }
1518
1519         /* Update Reply Post Host Index.
1520          * For those HBA's which support combined reply queue feature
1521          * 1. Get the correct Supplemental Reply Post Host Index Register.
1522          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1523          *    Index Register address bank i.e replyPostRegisterIndex[],
1524          * 2. Then update this register with new reply host index value
1525          *    in ReplyPostIndex field and the MSIxIndex field with
1526          *    msix_index value reduced to a value between 0 and 7,
1527          *    using a modulo 8 operation. Since each Supplemental Reply Post
1528          *    Host Index Register supports 8 MSI-X vectors.
1529          *
1530          * For other HBA's just update the Reply Post Host Index register with
1531          * new reply host index value in ReplyPostIndex Field and msix_index
1532          * value in MSIxIndex field.
1533          */
1534         if (ioc->combined_reply_queue)
1535                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1536                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1537                         ioc->replyPostRegisterIndex[msix_index/8]);
1538         else
1539                 writel(reply_q->reply_post_host_index | (msix_index <<
1540                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1541                         &ioc->chip->ReplyPostHostIndex);
1542         atomic_dec(&reply_q->busy);
1543         return IRQ_HANDLED;
1544 }
1545
1546 /**
1547  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1548  * @ioc: per adapter object
1549  *
1550  * Return: Whether or not MSI/X is enabled.
1551  */
1552 static inline int
1553 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1554 {
1555         return (ioc->facts.IOCCapabilities &
1556             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1557 }
1558
1559 /**
1560  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1561  * @ioc: per adapter object
1562  * Context: non ISR conext
1563  *
1564  * Called when a Task Management request has completed.
1565  */
1566 void
1567 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1568 {
1569         struct adapter_reply_queue *reply_q;
1570
1571         /* If MSIX capability is turned off
1572          * then multi-queues are not enabled
1573          */
1574         if (!_base_is_controller_msix_enabled(ioc))
1575                 return;
1576
1577         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1578                 if (ioc->shost_recovery || ioc->remove_host ||
1579                                 ioc->pci_error_recovery)
1580                         return;
1581                 /* TMs are on msix_index == 0 */
1582                 if (reply_q->msix_index == 0)
1583                         continue;
1584                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1585         }
1586 }
1587
1588 /**
1589  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1590  * @cb_idx: callback index
1591  */
1592 void
1593 mpt3sas_base_release_callback_handler(u8 cb_idx)
1594 {
1595         mpt_callbacks[cb_idx] = NULL;
1596 }
1597
1598 /**
1599  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1600  * @cb_func: callback function
1601  *
1602  * Return: Index of @cb_func.
1603  */
1604 u8
1605 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1606 {
1607         u8 cb_idx;
1608
1609         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1610                 if (mpt_callbacks[cb_idx] == NULL)
1611                         break;
1612
1613         mpt_callbacks[cb_idx] = cb_func;
1614         return cb_idx;
1615 }
1616
1617 /**
1618  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1619  */
1620 void
1621 mpt3sas_base_initialize_callback_handler(void)
1622 {
1623         u8 cb_idx;
1624
1625         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1626                 mpt3sas_base_release_callback_handler(cb_idx);
1627 }
1628
1629
1630 /**
1631  * _base_build_zero_len_sge - build zero length sg entry
1632  * @ioc: per adapter object
1633  * @paddr: virtual address for SGE
1634  *
1635  * Create a zero length scatter gather entry to insure the IOCs hardware has
1636  * something to use if the target device goes brain dead and tries
1637  * to send data even when none is asked for.
1638  */
1639 static void
1640 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1641 {
1642         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1643             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1644             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1645             MPI2_SGE_FLAGS_SHIFT);
1646         ioc->base_add_sg_single(paddr, flags_length, -1);
1647 }
1648
1649 /**
1650  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1651  * @paddr: virtual address for SGE
1652  * @flags_length: SGE flags and data transfer length
1653  * @dma_addr: Physical address
1654  */
1655 static void
1656 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1657 {
1658         Mpi2SGESimple32_t *sgel = paddr;
1659
1660         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1661             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1662         sgel->FlagsLength = cpu_to_le32(flags_length);
1663         sgel->Address = cpu_to_le32(dma_addr);
1664 }
1665
1666
1667 /**
1668  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1669  * @paddr: virtual address for SGE
1670  * @flags_length: SGE flags and data transfer length
1671  * @dma_addr: Physical address
1672  */
1673 static void
1674 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1675 {
1676         Mpi2SGESimple64_t *sgel = paddr;
1677
1678         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1679             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1680         sgel->FlagsLength = cpu_to_le32(flags_length);
1681         sgel->Address = cpu_to_le64(dma_addr);
1682 }
1683
1684 /**
1685  * _base_get_chain_buffer_tracker - obtain chain tracker
1686  * @ioc: per adapter object
1687  * @scmd: SCSI commands of the IO request
1688  *
1689  * Return: chain tracker from chain_lookup table using key as
1690  * smid and smid's chain_offset.
1691  */
1692 static struct chain_tracker *
1693 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1694                                struct scsi_cmnd *scmd)
1695 {
1696         struct chain_tracker *chain_req;
1697         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1698         u16 smid = st->smid;
1699         u8 chain_offset =
1700            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1701
1702         if (chain_offset == ioc->chains_needed_per_io)
1703                 return NULL;
1704
1705         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1706         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1707         return chain_req;
1708 }
1709
1710
1711 /**
1712  * _base_build_sg - build generic sg
1713  * @ioc: per adapter object
1714  * @psge: virtual address for SGE
1715  * @data_out_dma: physical address for WRITES
1716  * @data_out_sz: data xfer size for WRITES
1717  * @data_in_dma: physical address for READS
1718  * @data_in_sz: data xfer size for READS
1719  */
1720 static void
1721 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1722         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1723         size_t data_in_sz)
1724 {
1725         u32 sgl_flags;
1726
1727         if (!data_out_sz && !data_in_sz) {
1728                 _base_build_zero_len_sge(ioc, psge);
1729                 return;
1730         }
1731
1732         if (data_out_sz && data_in_sz) {
1733                 /* WRITE sgel first */
1734                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1735                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1736                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1737                 ioc->base_add_sg_single(psge, sgl_flags |
1738                     data_out_sz, data_out_dma);
1739
1740                 /* incr sgel */
1741                 psge += ioc->sge_size;
1742
1743                 /* READ sgel last */
1744                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1745                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1746                     MPI2_SGE_FLAGS_END_OF_LIST);
1747                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1748                 ioc->base_add_sg_single(psge, sgl_flags |
1749                     data_in_sz, data_in_dma);
1750         } else if (data_out_sz) /* WRITE */ {
1751                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1752                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1753                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1754                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1755                 ioc->base_add_sg_single(psge, sgl_flags |
1756                     data_out_sz, data_out_dma);
1757         } else if (data_in_sz) /* READ */ {
1758                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1759                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1760                     MPI2_SGE_FLAGS_END_OF_LIST);
1761                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1762                 ioc->base_add_sg_single(psge, sgl_flags |
1763                     data_in_sz, data_in_dma);
1764         }
1765 }
1766
1767 /* IEEE format sgls */
1768
1769 /**
1770  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1771  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1772  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1773  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1774  * used to describe a larger data buffer.  If the data buffer is too large to
1775  * describe using the two PRP entriess inside the NVMe message, then PRP1
1776  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1777  * list located elsewhere in memory to describe the remaining data memory
1778  * segments.  The PRP list will be contiguous.
1779  *
1780  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1781  * consists of a list of PRP entries to describe a number of noncontigous
1782  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1783  * however, that this function is only used by the IOCTL call, so the memory
1784  * given will be guaranteed to be contiguous.  There is no need to translate
1785  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1786  * contiguous space that is one page size each.
1787  *
1788  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1789  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1790  * contains the second PRP element if the memory being described fits within 2
1791  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1792  *
1793  * A PRP list pointer contains the address of a PRP list, structured as a linear
1794  * array of PRP entries.  Each PRP entry in this list describes a segment of
1795  * physical memory.
1796  *
1797  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1798  * always points at the beginning of a 4KB physical memory page, and the offset
1799  * describes where within that 4KB page the memory segment begins.  Only the
1800  * first element in a PRP list may contain a non-zero offest, implying that all
1801  * memory segments following the first begin at the start of a 4KB page.
1802  *
1803  * Each PRP element normally describes 4KB of physical memory, with exceptions
1804  * for the first and last elements in the list.  If the memory being described
1805  * by the list begins at a non-zero offset within the first 4KB page, then the
1806  * first PRP element will contain a non-zero offset indicating where the region
1807  * begins within the 4KB page.  The last memory segment may end before the end
1808  * of the 4KB segment, depending upon the overall size of the memory being
1809  * described by the PRP list.
1810  *
1811  * Since PRP entries lack any indication of size, the overall data buffer length
1812  * is used to determine where the end of the data memory buffer is located, and
1813  * how many PRP entries are required to describe it.
1814  *
1815  * @ioc: per adapter object
1816  * @smid: system request message index for getting asscociated SGL
1817  * @nvme_encap_request: the NVMe request msg frame pointer
1818  * @data_out_dma: physical address for WRITES
1819  * @data_out_sz: data xfer size for WRITES
1820  * @data_in_dma: physical address for READS
1821  * @data_in_sz: data xfer size for READS
1822  */
1823 static void
1824 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1825         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1826         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1827         size_t data_in_sz)
1828 {
1829         int             prp_size = NVME_PRP_SIZE;
1830         __le64          *prp_entry, *prp1_entry, *prp2_entry;
1831         __le64          *prp_page;
1832         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1833         u32             offset, entry_len;
1834         u32             page_mask_result, page_mask;
1835         size_t          length;
1836         struct mpt3sas_nvme_cmd *nvme_cmd =
1837                 (void *)nvme_encap_request->NVMe_Command;
1838
1839         /*
1840          * Not all commands require a data transfer. If no data, just return
1841          * without constructing any PRP.
1842          */
1843         if (!data_in_sz && !data_out_sz)
1844                 return;
1845         prp1_entry = &nvme_cmd->prp1;
1846         prp2_entry = &nvme_cmd->prp2;
1847         prp_entry = prp1_entry;
1848         /*
1849          * For the PRP entries, use the specially allocated buffer of
1850          * contiguous memory.
1851          */
1852         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1853         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1854
1855         /*
1856          * Check if we are within 1 entry of a page boundary we don't
1857          * want our first entry to be a PRP List entry.
1858          */
1859         page_mask = ioc->page_size - 1;
1860         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1861         if (!page_mask_result) {
1862                 /* Bump up to next page boundary. */
1863                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1864                 prp_page_dma = prp_page_dma + prp_size;
1865         }
1866
1867         /*
1868          * Set PRP physical pointer, which initially points to the current PRP
1869          * DMA memory page.
1870          */
1871         prp_entry_dma = prp_page_dma;
1872
1873         /* Get physical address and length of the data buffer. */
1874         if (data_in_sz) {
1875                 dma_addr = data_in_dma;
1876                 length = data_in_sz;
1877         } else {
1878                 dma_addr = data_out_dma;
1879                 length = data_out_sz;
1880         }
1881
1882         /* Loop while the length is not zero. */
1883         while (length) {
1884                 /*
1885                  * Check if we need to put a list pointer here if we are at
1886                  * page boundary - prp_size (8 bytes).
1887                  */
1888                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1889                 if (!page_mask_result) {
1890                         /*
1891                          * This is the last entry in a PRP List, so we need to
1892                          * put a PRP list pointer here.  What this does is:
1893                          *   - bump the current memory pointer to the next
1894                          *     address, which will be the next full page.
1895                          *   - set the PRP Entry to point to that page.  This
1896                          *     is now the PRP List pointer.
1897                          *   - bump the PRP Entry pointer the start of the
1898                          *     next page.  Since all of this PRP memory is
1899                          *     contiguous, no need to get a new page - it's
1900                          *     just the next address.
1901                          */
1902                         prp_entry_dma++;
1903                         *prp_entry = cpu_to_le64(prp_entry_dma);
1904                         prp_entry++;
1905                 }
1906
1907                 /* Need to handle if entry will be part of a page. */
1908                 offset = dma_addr & page_mask;
1909                 entry_len = ioc->page_size - offset;
1910
1911                 if (prp_entry == prp1_entry) {
1912                         /*
1913                          * Must fill in the first PRP pointer (PRP1) before
1914                          * moving on.
1915                          */
1916                         *prp1_entry = cpu_to_le64(dma_addr);
1917
1918                         /*
1919                          * Now point to the second PRP entry within the
1920                          * command (PRP2).
1921                          */
1922                         prp_entry = prp2_entry;
1923                 } else if (prp_entry == prp2_entry) {
1924                         /*
1925                          * Should the PRP2 entry be a PRP List pointer or just
1926                          * a regular PRP pointer?  If there is more than one
1927                          * more page of data, must use a PRP List pointer.
1928                          */
1929                         if (length > ioc->page_size) {
1930                                 /*
1931                                  * PRP2 will contain a PRP List pointer because
1932                                  * more PRP's are needed with this command. The
1933                                  * list will start at the beginning of the
1934                                  * contiguous buffer.
1935                                  */
1936                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
1937
1938                                 /*
1939                                  * The next PRP Entry will be the start of the
1940                                  * first PRP List.
1941                                  */
1942                                 prp_entry = prp_page;
1943                         } else {
1944                                 /*
1945                                  * After this, the PRP Entries are complete.
1946                                  * This command uses 2 PRP's and no PRP list.
1947                                  */
1948                                 *prp2_entry = cpu_to_le64(dma_addr);
1949                         }
1950                 } else {
1951                         /*
1952                          * Put entry in list and bump the addresses.
1953                          *
1954                          * After PRP1 and PRP2 are filled in, this will fill in
1955                          * all remaining PRP entries in a PRP List, one per
1956                          * each time through the loop.
1957                          */
1958                         *prp_entry = cpu_to_le64(dma_addr);
1959                         prp_entry++;
1960                         prp_entry_dma++;
1961                 }
1962
1963                 /*
1964                  * Bump the phys address of the command's data buffer by the
1965                  * entry_len.
1966                  */
1967                 dma_addr += entry_len;
1968
1969                 /* Decrement length accounting for last partial page. */
1970                 if (entry_len > length)
1971                         length = 0;
1972                 else
1973                         length -= entry_len;
1974         }
1975 }
1976
1977 /**
1978  * base_make_prp_nvme -
1979  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1980  *
1981  * @ioc:                per adapter object
1982  * @scmd:               SCSI command from the mid-layer
1983  * @mpi_request:        mpi request
1984  * @smid:               msg Index
1985  * @sge_count:          scatter gather element count.
1986  *
1987  * Return:              true: PRPs are built
1988  *                      false: IEEE SGLs needs to be built
1989  */
1990 static void
1991 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
1992                 struct scsi_cmnd *scmd,
1993                 Mpi25SCSIIORequest_t *mpi_request,
1994                 u16 smid, int sge_count)
1995 {
1996         int sge_len, num_prp_in_chain = 0;
1997         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
1998         __le64 *curr_buff;
1999         dma_addr_t msg_dma, sge_addr, offset;
2000         u32 page_mask, page_mask_result;
2001         struct scatterlist *sg_scmd;
2002         u32 first_prp_len;
2003         int data_len = scsi_bufflen(scmd);
2004         u32 nvme_pg_size;
2005
2006         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2007         /*
2008          * Nvme has a very convoluted prp format.  One prp is required
2009          * for each page or partial page. Driver need to split up OS sg_list
2010          * entries if it is longer than one page or cross a page
2011          * boundary.  Driver also have to insert a PRP list pointer entry as
2012          * the last entry in each physical page of the PRP list.
2013          *
2014          * NOTE: The first PRP "entry" is actually placed in the first
2015          * SGL entry in the main message as IEEE 64 format.  The 2nd
2016          * entry in the main message is the chain element, and the rest
2017          * of the PRP entries are built in the contiguous pcie buffer.
2018          */
2019         page_mask = nvme_pg_size - 1;
2020
2021         /*
2022          * Native SGL is needed.
2023          * Put a chain element in main message frame that points to the first
2024          * chain buffer.
2025          *
2026          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2027          *        a native SGL.
2028          */
2029
2030         /* Set main message chain element pointer */
2031         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2032         /*
2033          * For NVMe the chain element needs to be the 2nd SG entry in the main
2034          * message.
2035          */
2036         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2037                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2038
2039         /*
2040          * For the PRP entries, use the specially allocated buffer of
2041          * contiguous memory.  Normal chain buffers can't be used
2042          * because each chain buffer would need to be the size of an OS
2043          * page (4k).
2044          */
2045         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2046         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2047
2048         main_chain_element->Address = cpu_to_le64(msg_dma);
2049         main_chain_element->NextChainOffset = 0;
2050         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2051                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2052                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2053
2054         /* Build first prp, sge need not to be page aligned*/
2055         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2056         sg_scmd = scsi_sglist(scmd);
2057         sge_addr = sg_dma_address(sg_scmd);
2058         sge_len = sg_dma_len(sg_scmd);
2059
2060         offset = sge_addr & page_mask;
2061         first_prp_len = nvme_pg_size - offset;
2062
2063         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2064         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2065
2066         data_len -= first_prp_len;
2067
2068         if (sge_len > first_prp_len) {
2069                 sge_addr += first_prp_len;
2070                 sge_len -= first_prp_len;
2071         } else if (data_len && (sge_len == first_prp_len)) {
2072                 sg_scmd = sg_next(sg_scmd);
2073                 sge_addr = sg_dma_address(sg_scmd);
2074                 sge_len = sg_dma_len(sg_scmd);
2075         }
2076
2077         for (;;) {
2078                 offset = sge_addr & page_mask;
2079
2080                 /* Put PRP pointer due to page boundary*/
2081                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2082                 if (unlikely(!page_mask_result)) {
2083                         scmd_printk(KERN_NOTICE,
2084                                 scmd, "page boundary curr_buff: 0x%p\n",
2085                                 curr_buff);
2086                         msg_dma += 8;
2087                         *curr_buff = cpu_to_le64(msg_dma);
2088                         curr_buff++;
2089                         num_prp_in_chain++;
2090                 }
2091
2092                 *curr_buff = cpu_to_le64(sge_addr);
2093                 curr_buff++;
2094                 msg_dma += 8;
2095                 num_prp_in_chain++;
2096
2097                 sge_addr += nvme_pg_size;
2098                 sge_len -= nvme_pg_size;
2099                 data_len -= nvme_pg_size;
2100
2101                 if (data_len <= 0)
2102                         break;
2103
2104                 if (sge_len > 0)
2105                         continue;
2106
2107                 sg_scmd = sg_next(sg_scmd);
2108                 sge_addr = sg_dma_address(sg_scmd);
2109                 sge_len = sg_dma_len(sg_scmd);
2110         }
2111
2112         main_chain_element->Length =
2113                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2114         return;
2115 }
2116
2117 static bool
2118 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2119         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2120 {
2121         u32 data_length = 0;
2122         bool build_prp = true;
2123
2124         data_length = scsi_bufflen(scmd);
2125
2126         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2127          * we built IEEE SGL
2128          */
2129         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2130                 build_prp = false;
2131
2132         return build_prp;
2133 }
2134
2135 /**
2136  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2137  * determine if the driver needs to build a native SGL.  If so, that native
2138  * SGL is built in the special contiguous buffers allocated especially for
2139  * PCIe SGL creation.  If the driver will not build a native SGL, return
2140  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2141  * supports NVMe.
2142  * @ioc: per adapter object
2143  * @mpi_request: mf request pointer
2144  * @smid: system request message index
2145  * @scmd: scsi command
2146  * @pcie_device: points to the PCIe device's info
2147  *
2148  * Return: 0 if native SGL was built, 1 if no SGL was built
2149  */
2150 static int
2151 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2152         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2153         struct _pcie_device *pcie_device)
2154 {
2155         int sges_left;
2156
2157         /* Get the SG list pointer and info. */
2158         sges_left = scsi_dma_map(scmd);
2159         if (sges_left < 0) {
2160                 sdev_printk(KERN_ERR, scmd->device,
2161                         "scsi_dma_map failed: request for %d bytes!\n",
2162                         scsi_bufflen(scmd));
2163                 return 1;
2164         }
2165
2166         /* Check if we need to build a native SG list. */
2167         if (base_is_prp_possible(ioc, pcie_device,
2168                                 scmd, sges_left) == 0) {
2169                 /* We built a native SG list, just return. */
2170                 goto out;
2171         }
2172
2173         /*
2174          * Build native NVMe PRP.
2175          */
2176         base_make_prp_nvme(ioc, scmd, mpi_request,
2177                         smid, sges_left);
2178
2179         return 0;
2180 out:
2181         scsi_dma_unmap(scmd);
2182         return 1;
2183 }
2184
2185 /**
2186  * _base_add_sg_single_ieee - add sg element for IEEE format
2187  * @paddr: virtual address for SGE
2188  * @flags: SGE flags
2189  * @chain_offset: number of 128 byte elements from start of segment
2190  * @length: data transfer length
2191  * @dma_addr: Physical address
2192  */
2193 static void
2194 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2195         dma_addr_t dma_addr)
2196 {
2197         Mpi25IeeeSgeChain64_t *sgel = paddr;
2198
2199         sgel->Flags = flags;
2200         sgel->NextChainOffset = chain_offset;
2201         sgel->Length = cpu_to_le32(length);
2202         sgel->Address = cpu_to_le64(dma_addr);
2203 }
2204
2205 /**
2206  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2207  * @ioc: per adapter object
2208  * @paddr: virtual address for SGE
2209  *
2210  * Create a zero length scatter gather entry to insure the IOCs hardware has
2211  * something to use if the target device goes brain dead and tries
2212  * to send data even when none is asked for.
2213  */
2214 static void
2215 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2216 {
2217         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2218                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2219                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2220
2221         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2222 }
2223
2224 /**
2225  * _base_build_sg_scmd - main sg creation routine
2226  *              pcie_device is unused here!
2227  * @ioc: per adapter object
2228  * @scmd: scsi command
2229  * @smid: system request message index
2230  * @unused: unused pcie_device pointer
2231  * Context: none.
2232  *
2233  * The main routine that builds scatter gather table from a given
2234  * scsi request sent via the .queuecommand main handler.
2235  *
2236  * Return: 0 success, anything else error
2237  */
2238 static int
2239 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2240         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2241 {
2242         Mpi2SCSIIORequest_t *mpi_request;
2243         dma_addr_t chain_dma;
2244         struct scatterlist *sg_scmd;
2245         void *sg_local, *chain;
2246         u32 chain_offset;
2247         u32 chain_length;
2248         u32 chain_flags;
2249         int sges_left;
2250         u32 sges_in_segment;
2251         u32 sgl_flags;
2252         u32 sgl_flags_last_element;
2253         u32 sgl_flags_end_buffer;
2254         struct chain_tracker *chain_req;
2255
2256         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2257
2258         /* init scatter gather flags */
2259         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2260         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2261                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2262         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2263             << MPI2_SGE_FLAGS_SHIFT;
2264         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2265             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2266             << MPI2_SGE_FLAGS_SHIFT;
2267         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2268
2269         sg_scmd = scsi_sglist(scmd);
2270         sges_left = scsi_dma_map(scmd);
2271         if (sges_left < 0) {
2272                 sdev_printk(KERN_ERR, scmd->device,
2273                  "pci_map_sg failed: request for %d bytes!\n",
2274                  scsi_bufflen(scmd));
2275                 return -ENOMEM;
2276         }
2277
2278         sg_local = &mpi_request->SGL;
2279         sges_in_segment = ioc->max_sges_in_main_message;
2280         if (sges_left <= sges_in_segment)
2281                 goto fill_in_last_segment;
2282
2283         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2284             (sges_in_segment * ioc->sge_size))/4;
2285
2286         /* fill in main message segment when there is a chain following */
2287         while (sges_in_segment) {
2288                 if (sges_in_segment == 1)
2289                         ioc->base_add_sg_single(sg_local,
2290                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2291                             sg_dma_address(sg_scmd));
2292                 else
2293                         ioc->base_add_sg_single(sg_local, sgl_flags |
2294                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2295                 sg_scmd = sg_next(sg_scmd);
2296                 sg_local += ioc->sge_size;
2297                 sges_left--;
2298                 sges_in_segment--;
2299         }
2300
2301         /* initializing the chain flags and pointers */
2302         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2303         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2304         if (!chain_req)
2305                 return -1;
2306         chain = chain_req->chain_buffer;
2307         chain_dma = chain_req->chain_buffer_dma;
2308         do {
2309                 sges_in_segment = (sges_left <=
2310                     ioc->max_sges_in_chain_message) ? sges_left :
2311                     ioc->max_sges_in_chain_message;
2312                 chain_offset = (sges_left == sges_in_segment) ?
2313                     0 : (sges_in_segment * ioc->sge_size)/4;
2314                 chain_length = sges_in_segment * ioc->sge_size;
2315                 if (chain_offset) {
2316                         chain_offset = chain_offset <<
2317                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2318                         chain_length += ioc->sge_size;
2319                 }
2320                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2321                     chain_length, chain_dma);
2322                 sg_local = chain;
2323                 if (!chain_offset)
2324                         goto fill_in_last_segment;
2325
2326                 /* fill in chain segments */
2327                 while (sges_in_segment) {
2328                         if (sges_in_segment == 1)
2329                                 ioc->base_add_sg_single(sg_local,
2330                                     sgl_flags_last_element |
2331                                     sg_dma_len(sg_scmd),
2332                                     sg_dma_address(sg_scmd));
2333                         else
2334                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2335                                     sg_dma_len(sg_scmd),
2336                                     sg_dma_address(sg_scmd));
2337                         sg_scmd = sg_next(sg_scmd);
2338                         sg_local += ioc->sge_size;
2339                         sges_left--;
2340                         sges_in_segment--;
2341                 }
2342
2343                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2344                 if (!chain_req)
2345                         return -1;
2346                 chain = chain_req->chain_buffer;
2347                 chain_dma = chain_req->chain_buffer_dma;
2348         } while (1);
2349
2350
2351  fill_in_last_segment:
2352
2353         /* fill the last segment */
2354         while (sges_left) {
2355                 if (sges_left == 1)
2356                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2357                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2358                 else
2359                         ioc->base_add_sg_single(sg_local, sgl_flags |
2360                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2361                 sg_scmd = sg_next(sg_scmd);
2362                 sg_local += ioc->sge_size;
2363                 sges_left--;
2364         }
2365
2366         return 0;
2367 }
2368
2369 /**
2370  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2371  * @ioc: per adapter object
2372  * @scmd: scsi command
2373  * @smid: system request message index
2374  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2375  * constructed on need.
2376  * Context: none.
2377  *
2378  * The main routine that builds scatter gather table from a given
2379  * scsi request sent via the .queuecommand main handler.
2380  *
2381  * Return: 0 success, anything else error
2382  */
2383 static int
2384 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2385         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2386 {
2387         Mpi25SCSIIORequest_t *mpi_request;
2388         dma_addr_t chain_dma;
2389         struct scatterlist *sg_scmd;
2390         void *sg_local, *chain;
2391         u32 chain_offset;
2392         u32 chain_length;
2393         int sges_left;
2394         u32 sges_in_segment;
2395         u8 simple_sgl_flags;
2396         u8 simple_sgl_flags_last;
2397         u8 chain_sgl_flags;
2398         struct chain_tracker *chain_req;
2399
2400         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2401
2402         /* init scatter gather flags */
2403         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2404             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2405         simple_sgl_flags_last = simple_sgl_flags |
2406             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2407         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2408             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2409
2410         /* Check if we need to build a native SG list. */
2411         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2412                         smid, scmd, pcie_device) == 0)) {
2413                 /* We built a native SG list, just return. */
2414                 return 0;
2415         }
2416
2417         sg_scmd = scsi_sglist(scmd);
2418         sges_left = scsi_dma_map(scmd);
2419         if (sges_left < 0) {
2420                 sdev_printk(KERN_ERR, scmd->device,
2421                         "pci_map_sg failed: request for %d bytes!\n",
2422                         scsi_bufflen(scmd));
2423                 return -ENOMEM;
2424         }
2425
2426         sg_local = &mpi_request->SGL;
2427         sges_in_segment = (ioc->request_sz -
2428                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2429         if (sges_left <= sges_in_segment)
2430                 goto fill_in_last_segment;
2431
2432         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2433             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2434
2435         /* fill in main message segment when there is a chain following */
2436         while (sges_in_segment > 1) {
2437                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2438                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2439                 sg_scmd = sg_next(sg_scmd);
2440                 sg_local += ioc->sge_size_ieee;
2441                 sges_left--;
2442                 sges_in_segment--;
2443         }
2444
2445         /* initializing the pointers */
2446         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2447         if (!chain_req)
2448                 return -1;
2449         chain = chain_req->chain_buffer;
2450         chain_dma = chain_req->chain_buffer_dma;
2451         do {
2452                 sges_in_segment = (sges_left <=
2453                     ioc->max_sges_in_chain_message) ? sges_left :
2454                     ioc->max_sges_in_chain_message;
2455                 chain_offset = (sges_left == sges_in_segment) ?
2456                     0 : sges_in_segment;
2457                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2458                 if (chain_offset)
2459                         chain_length += ioc->sge_size_ieee;
2460                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2461                     chain_offset, chain_length, chain_dma);
2462
2463                 sg_local = chain;
2464                 if (!chain_offset)
2465                         goto fill_in_last_segment;
2466
2467                 /* fill in chain segments */
2468                 while (sges_in_segment) {
2469                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2470                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2471                         sg_scmd = sg_next(sg_scmd);
2472                         sg_local += ioc->sge_size_ieee;
2473                         sges_left--;
2474                         sges_in_segment--;
2475                 }
2476
2477                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2478                 if (!chain_req)
2479                         return -1;
2480                 chain = chain_req->chain_buffer;
2481                 chain_dma = chain_req->chain_buffer_dma;
2482         } while (1);
2483
2484
2485  fill_in_last_segment:
2486
2487         /* fill the last segment */
2488         while (sges_left > 0) {
2489                 if (sges_left == 1)
2490                         _base_add_sg_single_ieee(sg_local,
2491                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2492                             sg_dma_address(sg_scmd));
2493                 else
2494                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2495                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2496                 sg_scmd = sg_next(sg_scmd);
2497                 sg_local += ioc->sge_size_ieee;
2498                 sges_left--;
2499         }
2500
2501         return 0;
2502 }
2503
2504 /**
2505  * _base_build_sg_ieee - build generic sg for IEEE format
2506  * @ioc: per adapter object
2507  * @psge: virtual address for SGE
2508  * @data_out_dma: physical address for WRITES
2509  * @data_out_sz: data xfer size for WRITES
2510  * @data_in_dma: physical address for READS
2511  * @data_in_sz: data xfer size for READS
2512  */
2513 static void
2514 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2515         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2516         size_t data_in_sz)
2517 {
2518         u8 sgl_flags;
2519
2520         if (!data_out_sz && !data_in_sz) {
2521                 _base_build_zero_len_sge_ieee(ioc, psge);
2522                 return;
2523         }
2524
2525         if (data_out_sz && data_in_sz) {
2526                 /* WRITE sgel first */
2527                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2528                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2529                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2530                     data_out_dma);
2531
2532                 /* incr sgel */
2533                 psge += ioc->sge_size_ieee;
2534
2535                 /* READ sgel last */
2536                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2537                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2538                     data_in_dma);
2539         } else if (data_out_sz) /* WRITE */ {
2540                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2541                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2542                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2543                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2544                     data_out_dma);
2545         } else if (data_in_sz) /* READ */ {
2546                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2547                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2548                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2549                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2550                     data_in_dma);
2551         }
2552 }
2553
2554 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2555
2556 /**
2557  * _base_config_dma_addressing - set dma addressing
2558  * @ioc: per adapter object
2559  * @pdev: PCI device struct
2560  *
2561  * Return: 0 for success, non-zero for failure.
2562  */
2563 static int
2564 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2565 {
2566         struct sysinfo s;
2567         u64 consistent_dma_mask;
2568
2569         if (ioc->is_mcpu_endpoint)
2570                 goto try_32bit;
2571
2572         if (ioc->dma_mask)
2573                 consistent_dma_mask = DMA_BIT_MASK(64);
2574         else
2575                 consistent_dma_mask = DMA_BIT_MASK(32);
2576
2577         if (sizeof(dma_addr_t) > 4) {
2578                 const uint64_t required_mask =
2579                     dma_get_required_mask(&pdev->dev);
2580                 if ((required_mask > DMA_BIT_MASK(32)) &&
2581                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2582                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2583                         ioc->base_add_sg_single = &_base_add_sg_single_64;
2584                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2585                         ioc->dma_mask = 64;
2586                         goto out;
2587                 }
2588         }
2589
2590  try_32bit:
2591         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2592             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2593                 ioc->base_add_sg_single = &_base_add_sg_single_32;
2594                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2595                 ioc->dma_mask = 32;
2596         } else
2597                 return -ENODEV;
2598
2599  out:
2600         si_meminfo(&s);
2601         pr_info(MPT3SAS_FMT
2602                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2603                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2604
2605         return 0;
2606 }
2607
2608 static int
2609 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2610                                       struct pci_dev *pdev)
2611 {
2612         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2613                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2614                         return -ENODEV;
2615         }
2616         return 0;
2617 }
2618
2619 /**
2620  * _base_check_enable_msix - checks MSIX capabable.
2621  * @ioc: per adapter object
2622  *
2623  * Check to see if card is capable of MSIX, and set number
2624  * of available msix vectors
2625  */
2626 static int
2627 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2628 {
2629         int base;
2630         u16 message_control;
2631
2632         /* Check whether controller SAS2008 B0 controller,
2633          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2634          */
2635         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2636             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2637                 return -EINVAL;
2638         }
2639
2640         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2641         if (!base) {
2642                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2643                         ioc->name));
2644                 return -EINVAL;
2645         }
2646
2647         /* get msix vector count */
2648         /* NUMA_IO not supported for older controllers */
2649         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2650             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2651             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2652             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2653             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2654             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2655             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2656                 ioc->msix_vector_count = 1;
2657         else {
2658                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2659                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2660         }
2661         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2662                 "msix is supported, vector_count(%d)\n",
2663                 ioc->name, ioc->msix_vector_count));
2664         return 0;
2665 }
2666
2667 /**
2668  * _base_free_irq - free irq
2669  * @ioc: per adapter object
2670  *
2671  * Freeing respective reply_queue from the list.
2672  */
2673 static void
2674 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2675 {
2676         struct adapter_reply_queue *reply_q, *next;
2677
2678         if (list_empty(&ioc->reply_queue_list))
2679                 return;
2680
2681         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2682                 list_del(&reply_q->list);
2683                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2684                          reply_q);
2685                 kfree(reply_q);
2686         }
2687 }
2688
2689 /**
2690  * _base_request_irq - request irq
2691  * @ioc: per adapter object
2692  * @index: msix index into vector table
2693  *
2694  * Inserting respective reply_queue into the list.
2695  */
2696 static int
2697 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2698 {
2699         struct pci_dev *pdev = ioc->pdev;
2700         struct adapter_reply_queue *reply_q;
2701         int r;
2702
2703         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2704         if (!reply_q) {
2705                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2706                     ioc->name, (int)sizeof(struct adapter_reply_queue));
2707                 return -ENOMEM;
2708         }
2709         reply_q->ioc = ioc;
2710         reply_q->msix_index = index;
2711
2712         atomic_set(&reply_q->busy, 0);
2713         if (ioc->msix_enable)
2714                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2715                     ioc->driver_name, ioc->id, index);
2716         else
2717                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2718                     ioc->driver_name, ioc->id);
2719         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2720                         IRQF_SHARED, reply_q->name, reply_q);
2721         if (r) {
2722                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2723                        reply_q->name, pci_irq_vector(pdev, index));
2724                 kfree(reply_q);
2725                 return -EBUSY;
2726         }
2727
2728         INIT_LIST_HEAD(&reply_q->list);
2729         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2730         return 0;
2731 }
2732
2733 /**
2734  * _base_assign_reply_queues - assigning msix index for each cpu
2735  * @ioc: per adapter object
2736  *
2737  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2738  *
2739  * It would nice if we could call irq_set_affinity, however it is not
2740  * an exported symbol
2741  */
2742 static void
2743 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2744 {
2745         unsigned int cpu, nr_cpus, nr_msix, index = 0;
2746         struct adapter_reply_queue *reply_q;
2747
2748         if (!_base_is_controller_msix_enabled(ioc))
2749                 return;
2750
2751         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2752
2753         nr_cpus = num_online_cpus();
2754         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2755                                                ioc->facts.MaxMSIxVectors);
2756         if (!nr_msix)
2757                 return;
2758
2759         if (smp_affinity_enable) {
2760                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2761                         const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2762                                                         reply_q->msix_index);
2763                         if (!mask) {
2764                                 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2765                                         ioc->name, reply_q->msix_index);
2766                                 continue;
2767                         }
2768
2769                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
2770                                 if (cpu >= ioc->cpu_msix_table_sz)
2771                                         break;
2772                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2773                         }
2774                 }
2775                 return;
2776         }
2777         cpu = cpumask_first(cpu_online_mask);
2778
2779         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2780
2781                 unsigned int i, group = nr_cpus / nr_msix;
2782
2783                 if (cpu >= nr_cpus)
2784                         break;
2785
2786                 if (index < nr_cpus % nr_msix)
2787                         group++;
2788
2789                 for (i = 0 ; i < group ; i++) {
2790                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2791                         cpu = cpumask_next(cpu, cpu_online_mask);
2792                 }
2793                 index++;
2794         }
2795 }
2796
2797 /**
2798  * _base_disable_msix - disables msix
2799  * @ioc: per adapter object
2800  *
2801  */
2802 static void
2803 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2804 {
2805         if (!ioc->msix_enable)
2806                 return;
2807         pci_disable_msix(ioc->pdev);
2808         ioc->msix_enable = 0;
2809 }
2810
2811 /**
2812  * _base_enable_msix - enables msix, failback to io_apic
2813  * @ioc: per adapter object
2814  *
2815  */
2816 static int
2817 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2818 {
2819         int r;
2820         int i, local_max_msix_vectors;
2821         u8 try_msix = 0;
2822         unsigned int irq_flags = PCI_IRQ_MSIX;
2823
2824         if (msix_disable == -1 || msix_disable == 0)
2825                 try_msix = 1;
2826
2827         if (!try_msix)
2828                 goto try_ioapic;
2829
2830         if (_base_check_enable_msix(ioc) != 0)
2831                 goto try_ioapic;
2832
2833         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2834                 ioc->msix_vector_count);
2835
2836         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2837           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2838           ioc->cpu_count, max_msix_vectors);
2839
2840         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2841                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
2842         else
2843                 local_max_msix_vectors = max_msix_vectors;
2844
2845         if (local_max_msix_vectors > 0)
2846                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2847                         ioc->reply_queue_count);
2848         else if (local_max_msix_vectors == 0)
2849                 goto try_ioapic;
2850
2851         if (ioc->msix_vector_count < ioc->cpu_count)
2852                 smp_affinity_enable = 0;
2853
2854         if (smp_affinity_enable)
2855                 irq_flags |= PCI_IRQ_AFFINITY;
2856
2857         r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2858                                   irq_flags);
2859         if (r < 0) {
2860                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2861                         "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2862                         ioc->name, r));
2863                 goto try_ioapic;
2864         }
2865
2866         ioc->msix_enable = 1;
2867         ioc->reply_queue_count = r;
2868         for (i = 0; i < ioc->reply_queue_count; i++) {
2869                 r = _base_request_irq(ioc, i);
2870                 if (r) {
2871                         _base_free_irq(ioc);
2872                         _base_disable_msix(ioc);
2873                         goto try_ioapic;
2874                 }
2875         }
2876
2877         return 0;
2878
2879 /* failback to io_apic interrupt routing */
2880  try_ioapic:
2881
2882         ioc->reply_queue_count = 1;
2883         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2884         if (r < 0) {
2885                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2886                         "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2887                         ioc->name, r));
2888         } else
2889                 r = _base_request_irq(ioc, 0);
2890
2891         return r;
2892 }
2893
2894 /**
2895  * mpt3sas_base_unmap_resources - free controller resources
2896  * @ioc: per adapter object
2897  */
2898 static void
2899 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2900 {
2901         struct pci_dev *pdev = ioc->pdev;
2902
2903         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2904                 ioc->name, __func__));
2905
2906         _base_free_irq(ioc);
2907         _base_disable_msix(ioc);
2908
2909         kfree(ioc->replyPostRegisterIndex);
2910         ioc->replyPostRegisterIndex = NULL;
2911
2912
2913         if (ioc->chip_phys) {
2914                 iounmap(ioc->chip);
2915                 ioc->chip_phys = 0;
2916         }
2917
2918         if (pci_is_enabled(pdev)) {
2919                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2920                 pci_disable_pcie_error_reporting(pdev);
2921                 pci_disable_device(pdev);
2922         }
2923 }
2924
2925 /**
2926  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2927  * @ioc: per adapter object
2928  *
2929  * Return: 0 for success, non-zero for failure.
2930  */
2931 int
2932 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2933 {
2934         struct pci_dev *pdev = ioc->pdev;
2935         u32 memap_sz;
2936         u32 pio_sz;
2937         int i, r = 0;
2938         u64 pio_chip = 0;
2939         phys_addr_t chip_phys = 0;
2940         struct adapter_reply_queue *reply_q;
2941
2942         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2943             ioc->name, __func__));
2944
2945         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2946         if (pci_enable_device_mem(pdev)) {
2947                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2948                         ioc->name);
2949                 ioc->bars = 0;
2950                 return -ENODEV;
2951         }
2952
2953
2954         if (pci_request_selected_regions(pdev, ioc->bars,
2955             ioc->driver_name)) {
2956                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2957                         ioc->name);
2958                 ioc->bars = 0;
2959                 r = -ENODEV;
2960                 goto out_fail;
2961         }
2962
2963 /* AER (Advanced Error Reporting) hooks */
2964         pci_enable_pcie_error_reporting(pdev);
2965
2966         pci_set_master(pdev);
2967
2968
2969         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2970                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2971                     ioc->name, pci_name(pdev));
2972                 r = -ENODEV;
2973                 goto out_fail;
2974         }
2975
2976         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2977              (!memap_sz || !pio_sz); i++) {
2978                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2979                         if (pio_sz)
2980                                 continue;
2981                         pio_chip = (u64)pci_resource_start(pdev, i);
2982                         pio_sz = pci_resource_len(pdev, i);
2983                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2984                         if (memap_sz)
2985                                 continue;
2986                         ioc->chip_phys = pci_resource_start(pdev, i);
2987                         chip_phys = ioc->chip_phys;
2988                         memap_sz = pci_resource_len(pdev, i);
2989                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2990                 }
2991         }
2992
2993         if (ioc->chip == NULL) {
2994                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2995                         " or resource not found\n", ioc->name);
2996                 r = -EINVAL;
2997                 goto out_fail;
2998         }
2999
3000         _base_mask_interrupts(ioc);
3001
3002         r = _base_get_ioc_facts(ioc);
3003         if (r)
3004                 goto out_fail;
3005
3006         if (!ioc->rdpq_array_enable_assigned) {
3007                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3008                 ioc->rdpq_array_enable_assigned = 1;
3009         }
3010
3011         r = _base_enable_msix(ioc);
3012         if (r)
3013                 goto out_fail;
3014
3015         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3016          * revision HBAs and also only when reply queue count is greater than 8
3017          */
3018         if (ioc->combined_reply_queue) {
3019                 /* Determine the Supplemental Reply Post Host Index Registers
3020                  * Addresse. Supplemental Reply Post Host Index Registers
3021                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3022                  * each register is at offset bytes of
3023                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3024                  */
3025                 ioc->replyPostRegisterIndex = kcalloc(
3026                      ioc->combined_reply_index_count,
3027                      sizeof(resource_size_t *), GFP_KERNEL);
3028                 if (!ioc->replyPostRegisterIndex) {
3029                         dfailprintk(ioc, printk(MPT3SAS_FMT
3030                         "allocation for reply Post Register Index failed!!!\n",
3031                                                                    ioc->name));
3032                         r = -ENOMEM;
3033                         goto out_fail;
3034                 }
3035
3036                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3037                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3038                              ((u8 __force *)&ioc->chip->Doorbell +
3039                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3040                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3041                 }
3042         }
3043
3044         if (ioc->is_warpdrive) {
3045                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3046                     &ioc->chip->ReplyPostHostIndex;
3047
3048                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3049                         ioc->reply_post_host_index[i] =
3050                         (resource_size_t __iomem *)
3051                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3052                         * 4)));
3053         }
3054
3055         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3056                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
3057                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
3058                     "IO-APIC enabled"),
3059                     pci_irq_vector(ioc->pdev, reply_q->msix_index));
3060
3061         pr_info(MPT3SAS_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
3062             ioc->name, &chip_phys, ioc->chip, memap_sz);
3063         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
3064             ioc->name, (unsigned long long)pio_chip, pio_sz);
3065
3066         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3067         pci_save_state(pdev);
3068         return 0;
3069
3070  out_fail:
3071         mpt3sas_base_unmap_resources(ioc);
3072         return r;
3073 }
3074
3075 /**
3076  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3077  * @ioc: per adapter object
3078  * @smid: system request message index(smid zero is invalid)
3079  *
3080  * Return: virt pointer to message frame.
3081  */
3082 void *
3083 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3084 {
3085         return (void *)(ioc->request + (smid * ioc->request_sz));
3086 }
3087
3088 /**
3089  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3090  * @ioc: per adapter object
3091  * @smid: system request message index
3092  *
3093  * Return: virt pointer to sense buffer.
3094  */
3095 void *
3096 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3097 {
3098         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3099 }
3100
3101 /**
3102  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3103  * @ioc: per adapter object
3104  * @smid: system request message index
3105  *
3106  * Return: phys pointer to the low 32bit address of the sense buffer.
3107  */
3108 __le32
3109 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3110 {
3111         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3112             SCSI_SENSE_BUFFERSIZE));
3113 }
3114
3115 /**
3116  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3117  * @ioc: per adapter object
3118  * @smid: system request message index
3119  *
3120  * Return: virt pointer to a PCIe SGL.
3121  */
3122 void *
3123 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3124 {
3125         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3126 }
3127
3128 /**
3129  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3130  * @ioc: per adapter object
3131  * @smid: system request message index
3132  *
3133  * Return: phys pointer to the address of the PCIe buffer.
3134  */
3135 dma_addr_t
3136 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3137 {
3138         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3139 }
3140
3141 /**
3142  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3143  * @ioc: per adapter object
3144  * @phys_addr: lower 32 physical addr of the reply
3145  *
3146  * Converts 32bit lower physical addr into a virt address.
3147  */
3148 void *
3149 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3150 {
3151         if (!phys_addr)
3152                 return NULL;
3153         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3154 }
3155
3156 static inline u8
3157 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3158 {
3159         return ioc->cpu_msix_table[raw_smp_processor_id()];
3160 }
3161
3162 /**
3163  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3164  * @ioc: per adapter object
3165  * @cb_idx: callback index
3166  *
3167  * Return: smid (zero is invalid)
3168  */
3169 u16
3170 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3171 {
3172         unsigned long flags;
3173         struct request_tracker *request;
3174         u16 smid;
3175
3176         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3177         if (list_empty(&ioc->internal_free_list)) {
3178                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3179                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
3180                     ioc->name, __func__);
3181                 return 0;
3182         }
3183
3184         request = list_entry(ioc->internal_free_list.next,
3185             struct request_tracker, tracker_list);
3186         request->cb_idx = cb_idx;
3187         smid = request->smid;
3188         list_del(&request->tracker_list);
3189         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3190         return smid;
3191 }
3192
3193 /**
3194  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3195  * @ioc: per adapter object
3196  * @cb_idx: callback index
3197  * @scmd: pointer to scsi command object
3198  *
3199  * Return: smid (zero is invalid)
3200  */
3201 u16
3202 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3203         struct scsi_cmnd *scmd)
3204 {
3205         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3206         unsigned int tag = scmd->request->tag;
3207         u16 smid;
3208
3209         smid = tag + 1;
3210         request->cb_idx = cb_idx;
3211         request->msix_io = _base_get_msix_index(ioc);
3212         request->smid = smid;
3213         INIT_LIST_HEAD(&request->chain_list);
3214         return smid;
3215 }
3216
3217 /**
3218  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3219  * @ioc: per adapter object
3220  * @cb_idx: callback index
3221  *
3222  * Return: smid (zero is invalid)
3223  */
3224 u16
3225 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3226 {
3227         unsigned long flags;
3228         struct request_tracker *request;
3229         u16 smid;
3230
3231         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3232         if (list_empty(&ioc->hpr_free_list)) {
3233                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3234                 return 0;
3235         }
3236
3237         request = list_entry(ioc->hpr_free_list.next,
3238             struct request_tracker, tracker_list);
3239         request->cb_idx = cb_idx;
3240         smid = request->smid;
3241         list_del(&request->tracker_list);
3242         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3243         return smid;
3244 }
3245
3246 static void
3247 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3248 {
3249         /*
3250          * See _wait_for_commands_to_complete() call with regards to this code.
3251          */
3252         if (ioc->shost_recovery && ioc->pending_io_count) {
3253                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3254                 if (ioc->pending_io_count == 0)
3255                         wake_up(&ioc->reset_wq);
3256         }
3257 }
3258
3259 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3260                            struct scsiio_tracker *st)
3261 {
3262         if (WARN_ON(st->smid == 0))
3263                 return;
3264         st->cb_idx = 0xFF;
3265         st->direct_io = 0;
3266         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3267         st->smid = 0;
3268 }
3269
3270 /**
3271  * mpt3sas_base_free_smid - put smid back on free_list
3272  * @ioc: per adapter object
3273  * @smid: system request message index
3274  */
3275 void
3276 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3277 {
3278         unsigned long flags;
3279         int i;
3280
3281         if (smid < ioc->hi_priority_smid) {
3282                 struct scsiio_tracker *st;
3283
3284                 st = _get_st_from_smid(ioc, smid);
3285                 if (!st) {
3286                         _base_recovery_check(ioc);
3287                         return;
3288                 }
3289                 mpt3sas_base_clear_st(ioc, st);
3290                 _base_recovery_check(ioc);
3291                 return;
3292         }
3293
3294         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3295         if (smid < ioc->internal_smid) {
3296                 /* hi-priority */
3297                 i = smid - ioc->hi_priority_smid;
3298                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3299                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3300         } else if (smid <= ioc->hba_queue_depth) {
3301                 /* internal queue */
3302                 i = smid - ioc->internal_smid;
3303                 ioc->internal_lookup[i].cb_idx = 0xFF;
3304                 list_add(&ioc->internal_lookup[i].tracker_list,
3305                     &ioc->internal_free_list);
3306         }
3307         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3308 }
3309
3310 /**
3311  * _base_mpi_ep_writeq - 32 bit write to MMIO
3312  * @b: data payload
3313  * @addr: address in MMIO space
3314  * @writeq_lock: spin lock
3315  *
3316  * This special handling for MPI EP to take care of 32 bit
3317  * environment where its not quarenteed to send the entire word
3318  * in one transfer.
3319  */
3320 static inline void
3321 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3322                                         spinlock_t *writeq_lock)
3323 {
3324         unsigned long flags;
3325         __u64 data_out = cpu_to_le64(b);
3326
3327         spin_lock_irqsave(writeq_lock, flags);
3328         writel((u32)(data_out), addr);
3329         writel((u32)(data_out >> 32), (addr + 4));
3330         mmiowb();
3331         spin_unlock_irqrestore(writeq_lock, flags);
3332 }
3333
3334 /**
3335  * _base_writeq - 64 bit write to MMIO
3336  * @b: data payload
3337  * @addr: address in MMIO space
3338  * @writeq_lock: spin lock
3339  *
3340  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3341  * care of 32 bit environment where its not quarenteed to send the entire word
3342  * in one transfer.
3343  */
3344 #if defined(writeq) && defined(CONFIG_64BIT)
3345 static inline void
3346 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3347 {
3348         writeq(cpu_to_le64(b), addr);
3349 }
3350 #else
3351 static inline void
3352 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3353 {
3354         _base_mpi_ep_writeq(b, addr, writeq_lock);
3355 }
3356 #endif
3357
3358 /**
3359  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3360  * @ioc: per adapter object
3361  * @smid: system request message index
3362  * @handle: device handle
3363  */
3364 static void
3365 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3366 {
3367         Mpi2RequestDescriptorUnion_t descriptor;
3368         u64 *request = (u64 *)&descriptor;
3369         void *mpi_req_iomem;
3370         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3371
3372         _clone_sg_entries(ioc, (void *) mfp, smid);
3373         mpi_req_iomem = (void __force *)ioc->chip +
3374                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3375         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3376                                         ioc->request_sz);
3377         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3378         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3379         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3380         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3381         descriptor.SCSIIO.LMID = 0;
3382         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3383             &ioc->scsi_lookup_lock);
3384 }
3385
3386 /**
3387  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3388  * @ioc: per adapter object
3389  * @smid: system request message index
3390  * @handle: device handle
3391  */
3392 static void
3393 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3394 {
3395         Mpi2RequestDescriptorUnion_t descriptor;
3396         u64 *request = (u64 *)&descriptor;
3397
3398
3399         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3400         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3401         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3402         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3403         descriptor.SCSIIO.LMID = 0;
3404         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3405             &ioc->scsi_lookup_lock);
3406 }
3407
3408 /**
3409  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3410  * @ioc: per adapter object
3411  * @smid: system request message index
3412  * @handle: device handle
3413  */
3414 void
3415 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3416         u16 handle)
3417 {
3418         Mpi2RequestDescriptorUnion_t descriptor;
3419         u64 *request = (u64 *)&descriptor;
3420
3421         descriptor.SCSIIO.RequestFlags =
3422             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3423         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3424         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3425         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3426         descriptor.SCSIIO.LMID = 0;
3427         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3428             &ioc->scsi_lookup_lock);
3429 }
3430
3431 /**
3432  * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3433  * @ioc: per adapter object
3434  * @smid: system request message index
3435  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3436  */
3437 void
3438 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3439         u16 msix_task)
3440 {
3441         Mpi2RequestDescriptorUnion_t descriptor;
3442         void *mpi_req_iomem;
3443         u64 *request;
3444
3445         if (ioc->is_mcpu_endpoint) {
3446                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3447
3448                 /* TBD 256 is offset within sys register. */
3449                 mpi_req_iomem = (void __force *)ioc->chip
3450                                         + MPI_FRAME_START_OFFSET
3451                                         + (smid * ioc->request_sz);
3452                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3453                                                         ioc->request_sz);
3454         }
3455
3456         request = (u64 *)&descriptor;
3457
3458         descriptor.HighPriority.RequestFlags =
3459             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3460         descriptor.HighPriority.MSIxIndex =  msix_task;
3461         descriptor.HighPriority.SMID = cpu_to_le16(smid);
3462         descriptor.HighPriority.LMID = 0;
3463         descriptor.HighPriority.Reserved1 = 0;
3464         if (ioc->is_mcpu_endpoint)
3465                 _base_mpi_ep_writeq(*request,
3466                                 &ioc->chip->RequestDescriptorPostLow,
3467                                 &ioc->scsi_lookup_lock);
3468         else
3469                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3470                     &ioc->scsi_lookup_lock);
3471 }
3472
3473 /**
3474  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3475  *  firmware
3476  * @ioc: per adapter object
3477  * @smid: system request message index
3478  */
3479 void
3480 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3481 {
3482         Mpi2RequestDescriptorUnion_t descriptor;
3483         u64 *request = (u64 *)&descriptor;
3484
3485         descriptor.Default.RequestFlags =
3486                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3487         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3488         descriptor.Default.SMID = cpu_to_le16(smid);
3489         descriptor.Default.LMID = 0;
3490         descriptor.Default.DescriptorTypeDependent = 0;
3491         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3492             &ioc->scsi_lookup_lock);
3493 }
3494
3495 /**
3496  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3497  * @ioc: per adapter object
3498  * @smid: system request message index
3499  */
3500 void
3501 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502 {
3503         Mpi2RequestDescriptorUnion_t descriptor;
3504         void *mpi_req_iomem;
3505         u64 *request;
3506
3507         if (ioc->is_mcpu_endpoint) {
3508                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3509
3510                 _clone_sg_entries(ioc, (void *) mfp, smid);
3511                 /* TBD 256 is offset within sys register */
3512                 mpi_req_iomem = (void __force *)ioc->chip +
3513                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3514                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3515                                                         ioc->request_sz);
3516         }
3517         request = (u64 *)&descriptor;
3518         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3519         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3520         descriptor.Default.SMID = cpu_to_le16(smid);
3521         descriptor.Default.LMID = 0;
3522         descriptor.Default.DescriptorTypeDependent = 0;
3523         if (ioc->is_mcpu_endpoint)
3524                 _base_mpi_ep_writeq(*request,
3525                                 &ioc->chip->RequestDescriptorPostLow,
3526                                 &ioc->scsi_lookup_lock);
3527         else
3528                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3529                                 &ioc->scsi_lookup_lock);
3530 }
3531
3532 /**
3533  * _base_display_OEMs_branding - Display branding string
3534  * @ioc: per adapter object
3535  */
3536 static void
3537 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3538 {
3539         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3540                 return;
3541
3542         switch (ioc->pdev->subsystem_vendor) {
3543         case PCI_VENDOR_ID_INTEL:
3544                 switch (ioc->pdev->device) {
3545                 case MPI2_MFGPAGE_DEVID_SAS2008:
3546                         switch (ioc->pdev->subsystem_device) {
3547                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
3548                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3549                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
3550                                 break;
3551                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
3552                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3553                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
3554                                 break;
3555                         case MPT2SAS_INTEL_SSD910_SSDID:
3556                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3557                                     MPT2SAS_INTEL_SSD910_BRANDING);
3558                                 break;
3559                         default:
3560                                 pr_info(MPT3SAS_FMT
3561                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3562                                  ioc->name, ioc->pdev->subsystem_device);
3563                                 break;
3564                         }
3565                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3566                         switch (ioc->pdev->subsystem_device) {
3567                         case MPT2SAS_INTEL_RS25GB008_SSDID:
3568                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3569                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
3570                                 break;
3571                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
3572                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3573                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
3574                                 break;
3575                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
3576                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3577                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
3578                                 break;
3579                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
3580                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3581                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
3582                                 break;
3583                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
3584                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3585                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
3586                                 break;
3587                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
3588                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3589                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
3590                                 break;
3591                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
3592                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3593                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
3594                                 break;
3595                         default:
3596                                 pr_info(MPT3SAS_FMT
3597                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3598                                  ioc->name, ioc->pdev->subsystem_device);
3599                                 break;
3600                         }
3601                 case MPI25_MFGPAGE_DEVID_SAS3008:
3602                         switch (ioc->pdev->subsystem_device) {
3603                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
3604                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3605                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
3606                                 break;
3607
3608                         case MPT3SAS_INTEL_RS3GC008_SSDID:
3609                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3610                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
3611                                 break;
3612                         case MPT3SAS_INTEL_RS3FC044_SSDID:
3613                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3614                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
3615                                 break;
3616                         case MPT3SAS_INTEL_RS3UC080_SSDID:
3617                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3618                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
3619                                 break;
3620                         default:
3621                                 pr_info(MPT3SAS_FMT
3622                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3623                                  ioc->name, ioc->pdev->subsystem_device);
3624                                 break;
3625                         }
3626                         break;
3627                 default:
3628                         pr_info(MPT3SAS_FMT
3629                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
3630                          ioc->name, ioc->pdev->subsystem_device);
3631                         break;
3632                 }
3633                 break;
3634         case PCI_VENDOR_ID_DELL:
3635                 switch (ioc->pdev->device) {
3636                 case MPI2_MFGPAGE_DEVID_SAS2008:
3637                         switch (ioc->pdev->subsystem_device) {
3638                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3639                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3640                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3641                                 break;
3642                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3643                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3644                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3645                                 break;
3646                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3647                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3648                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3649                                 break;
3650                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3651                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3652                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3653                                 break;
3654                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3655                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3656                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3657                                 break;
3658                         case MPT2SAS_DELL_PERC_H200_SSDID:
3659                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3660                                  MPT2SAS_DELL_PERC_H200_BRANDING);
3661                                 break;
3662                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3663                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3664                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3665                                 break;
3666                         default:
3667                                 pr_info(MPT3SAS_FMT
3668                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3669                                    ioc->name, ioc->pdev->subsystem_device);
3670                                 break;
3671                         }
3672                         break;
3673                 case MPI25_MFGPAGE_DEVID_SAS3008:
3674                         switch (ioc->pdev->subsystem_device) {
3675                         case MPT3SAS_DELL_12G_HBA_SSDID:
3676                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3677                                         MPT3SAS_DELL_12G_HBA_BRANDING);
3678                                 break;
3679                         default:
3680                                 pr_info(MPT3SAS_FMT
3681                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3682                                    ioc->name, ioc->pdev->subsystem_device);
3683                                 break;
3684                         }
3685                         break;
3686                 default:
3687                         pr_info(MPT3SAS_FMT
3688                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3689                            ioc->pdev->subsystem_device);
3690                         break;
3691                 }
3692                 break;
3693         case PCI_VENDOR_ID_CISCO:
3694                 switch (ioc->pdev->device) {
3695                 case MPI25_MFGPAGE_DEVID_SAS3008:
3696                         switch (ioc->pdev->subsystem_device) {
3697                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3698                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3699                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3700                                 break;
3701                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3702                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3703                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3704                                 break;
3705                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3706                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3707                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3708                                 break;
3709                         default:
3710                                 pr_info(MPT3SAS_FMT
3711                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3712                                   ioc->name, ioc->pdev->subsystem_device);
3713                                 break;
3714                         }
3715                         break;
3716                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
3717                         switch (ioc->pdev->subsystem_device) {
3718                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3719                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3720                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3721                                 break;
3722                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3723                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3724                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3725                                 );
3726                                 break;
3727                         default:
3728                                 pr_info(MPT3SAS_FMT
3729                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3730                                  ioc->name, ioc->pdev->subsystem_device);
3731                                 break;
3732                         }
3733                         break;
3734                 default:
3735                         pr_info(MPT3SAS_FMT
3736                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3737                            ioc->name, ioc->pdev->subsystem_device);
3738                         break;
3739                 }
3740                 break;
3741         case MPT2SAS_HP_3PAR_SSVID:
3742                 switch (ioc->pdev->device) {
3743                 case MPI2_MFGPAGE_DEVID_SAS2004:
3744                         switch (ioc->pdev->subsystem_device) {
3745                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3746                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3747                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3748                                 break;
3749                         default:
3750                                 pr_info(MPT3SAS_FMT
3751                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3752                                    ioc->name, ioc->pdev->subsystem_device);
3753                                 break;
3754                         }
3755                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3756                         switch (ioc->pdev->subsystem_device) {
3757                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3758                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3759                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3760                                 break;
3761                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3762                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3763                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3764                                 break;
3765                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3766                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3767                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3768                                 break;
3769                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3770                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3771                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3772                                 break;
3773                         default:
3774                                 pr_info(MPT3SAS_FMT
3775                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3776                                    ioc->name, ioc->pdev->subsystem_device);
3777                                 break;
3778                         }
3779                 default:
3780                         pr_info(MPT3SAS_FMT
3781                            "HP SAS HBA: Subsystem ID: 0x%X\n",
3782                            ioc->name, ioc->pdev->subsystem_device);
3783                         break;
3784                 }
3785         default:
3786                 break;
3787         }
3788 }
3789
3790 /**
3791  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3792  *                              version from FW Image Header.
3793  * @ioc: per adapter object
3794  *
3795  * Return: 0 for success, non-zero for failure.
3796  */
3797         static int
3798 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3799 {
3800         Mpi2FWImageHeader_t *FWImgHdr;
3801         Mpi25FWUploadRequest_t *mpi_request;
3802         Mpi2FWUploadReply_t mpi_reply;
3803         int r = 0;
3804         void *fwpkg_data = NULL;
3805         dma_addr_t fwpkg_data_dma;
3806         u16 smid, ioc_status;
3807         size_t data_length;
3808
3809         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3810                                 __func__));
3811
3812         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3813                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3814                                 ioc->name, __func__);
3815                 return -EAGAIN;
3816         }
3817
3818         data_length = sizeof(Mpi2FWImageHeader_t);
3819         fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
3820                         &fwpkg_data_dma);
3821         if (!fwpkg_data) {
3822                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3823                                 ioc->name, __FILE__, __LINE__, __func__);
3824                 return -ENOMEM;
3825         }
3826
3827         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3828         if (!smid) {
3829                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3830                                 ioc->name, __func__);
3831                 r = -EAGAIN;
3832                 goto out;
3833         }
3834
3835         ioc->base_cmds.status = MPT3_CMD_PENDING;
3836         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3837         ioc->base_cmds.smid = smid;
3838         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3839         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3840         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3841         mpi_request->ImageSize = cpu_to_le32(data_length);
3842         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3843                         data_length);
3844         init_completion(&ioc->base_cmds.done);
3845         mpt3sas_base_put_smid_default(ioc, smid);
3846         /* Wait for 15 seconds */
3847         wait_for_completion_timeout(&ioc->base_cmds.done,
3848                         FW_IMG_HDR_READ_TIMEOUT*HZ);
3849         pr_info(MPT3SAS_FMT "%s: complete\n",
3850                         ioc->name, __func__);
3851         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3852                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3853                                 ioc->name, __func__);
3854                 _debug_dump_mf(mpi_request,
3855                                 sizeof(Mpi25FWUploadRequest_t)/4);
3856                 r = -ETIME;
3857         } else {
3858                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3859                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3860                         memcpy(&mpi_reply, ioc->base_cmds.reply,
3861                                         sizeof(Mpi2FWUploadReply_t));
3862                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3863                                                 MPI2_IOCSTATUS_MASK;
3864                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3865                                 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3866                                 if (FWImgHdr->PackageVersion.Word) {
3867                                         pr_info(MPT3SAS_FMT "FW Package Version"
3868                                         "(%02d.%02d.%02d.%02d)\n",
3869                                         ioc->name,
3870                                         FWImgHdr->PackageVersion.Struct.Major,
3871                                         FWImgHdr->PackageVersion.Struct.Minor,
3872                                         FWImgHdr->PackageVersion.Struct.Unit,
3873                                         FWImgHdr->PackageVersion.Struct.Dev);
3874                                 }
3875                         } else {
3876                                 _debug_dump_mf(&mpi_reply,
3877                                                 sizeof(Mpi2FWUploadReply_t)/4);
3878                         }
3879                 }
3880         }
3881         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3882 out:
3883         if (fwpkg_data)
3884                 pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
3885                                 fwpkg_data_dma);
3886         return r;
3887 }
3888
3889 /**
3890  * _base_display_ioc_capabilities - Disply IOC's capabilities.
3891  * @ioc: per adapter object
3892  */
3893 static void
3894 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3895 {
3896         int i = 0;
3897         char desc[16];
3898         u32 iounit_pg1_flags;
3899         u32 bios_version;
3900
3901         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3902         strncpy(desc, ioc->manu_pg0.ChipName, 16);
3903         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3904            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3905             ioc->name, desc,
3906            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3907            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3908            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3909            ioc->facts.FWVersion.Word & 0x000000FF,
3910            ioc->pdev->revision,
3911            (bios_version & 0xFF000000) >> 24,
3912            (bios_version & 0x00FF0000) >> 16,
3913            (bios_version & 0x0000FF00) >> 8,
3914             bios_version & 0x000000FF);
3915
3916         _base_display_OEMs_branding(ioc);
3917
3918         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3919                 pr_info("%sNVMe", i ? "," : "");
3920                 i++;
3921         }
3922
3923         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3924
3925         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3926                 pr_info("Initiator");
3927                 i++;
3928         }
3929
3930         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3931                 pr_info("%sTarget", i ? "," : "");
3932                 i++;
3933         }
3934
3935         i = 0;
3936         pr_info("), ");
3937         pr_info("Capabilities=(");
3938
3939         if (!ioc->hide_ir_msg) {
3940                 if (ioc->facts.IOCCapabilities &
3941                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3942                         pr_info("Raid");
3943                         i++;
3944                 }
3945         }
3946
3947         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3948                 pr_info("%sTLR", i ? "," : "");
3949                 i++;
3950         }
3951
3952         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3953                 pr_info("%sMulticast", i ? "," : "");
3954                 i++;
3955         }
3956
3957         if (ioc->facts.IOCCapabilities &
3958             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3959                 pr_info("%sBIDI Target", i ? "," : "");
3960                 i++;
3961         }
3962
3963         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3964                 pr_info("%sEEDP", i ? "," : "");
3965                 i++;
3966         }
3967
3968         if (ioc->facts.IOCCapabilities &
3969             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3970                 pr_info("%sSnapshot Buffer", i ? "," : "");
3971                 i++;
3972         }
3973
3974         if (ioc->facts.IOCCapabilities &
3975             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3976                 pr_info("%sDiag Trace Buffer", i ? "," : "");
3977                 i++;
3978         }
3979
3980         if (ioc->facts.IOCCapabilities &
3981             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3982                 pr_info("%sDiag Extended Buffer", i ? "," : "");
3983                 i++;
3984         }
3985
3986         if (ioc->facts.IOCCapabilities &
3987             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3988                 pr_info("%sTask Set Full", i ? "," : "");
3989                 i++;
3990         }
3991
3992         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3993         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3994                 pr_info("%sNCQ", i ? "," : "");
3995                 i++;
3996         }
3997
3998         pr_info(")\n");
3999 }
4000
4001 /**
4002  * mpt3sas_base_update_missing_delay - change the missing delay timers
4003  * @ioc: per adapter object
4004  * @device_missing_delay: amount of time till device is reported missing
4005  * @io_missing_delay: interval IO is returned when there is a missing device
4006  *
4007  * Passed on the command line, this function will modify the device missing
4008  * delay, as well as the io missing delay. This should be called at driver
4009  * load time.
4010  */
4011 void
4012 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4013         u16 device_missing_delay, u8 io_missing_delay)
4014 {
4015         u16 dmd, dmd_new, dmd_orignal;
4016         u8 io_missing_delay_original;
4017         u16 sz;
4018         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4019         Mpi2ConfigReply_t mpi_reply;
4020         u8 num_phys = 0;
4021         u16 ioc_status;
4022
4023         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4024         if (!num_phys)
4025                 return;
4026
4027         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4028             sizeof(Mpi2SasIOUnit1PhyData_t));
4029         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4030         if (!sas_iounit_pg1) {
4031                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4032                     ioc->name, __FILE__, __LINE__, __func__);
4033                 goto out;
4034         }
4035         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4036             sas_iounit_pg1, sz))) {
4037                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4038                     ioc->name, __FILE__, __LINE__, __func__);
4039                 goto out;
4040         }
4041         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4042             MPI2_IOCSTATUS_MASK;
4043         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4044                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4045                     ioc->name, __FILE__, __LINE__, __func__);
4046                 goto out;
4047         }
4048
4049         /* device missing delay */
4050         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4051         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4052                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4053         else
4054                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4055         dmd_orignal = dmd;
4056         if (device_missing_delay > 0x7F) {
4057                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4058                     device_missing_delay;
4059                 dmd = dmd / 16;
4060                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4061         } else
4062                 dmd = device_missing_delay;
4063         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4064
4065         /* io missing delay */
4066         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4067         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4068
4069         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4070             sz)) {
4071                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4072                         dmd_new = (dmd &
4073                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4074                 else
4075                         dmd_new =
4076                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4077                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
4078                         ioc->name, dmd_orignal, dmd_new);
4079                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
4080                         ioc->name, io_missing_delay_original,
4081                     io_missing_delay);
4082                 ioc->device_missing_delay = dmd_new;
4083                 ioc->io_missing_delay = io_missing_delay;
4084         }
4085
4086 out:
4087         kfree(sas_iounit_pg1);
4088 }
4089
4090 /**
4091  * _base_static_config_pages - static start of day config pages
4092  * @ioc: per adapter object
4093  */
4094 static void
4095 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4096 {
4097         Mpi2ConfigReply_t mpi_reply;
4098         u32 iounit_pg1_flags;
4099
4100         ioc->nvme_abort_timeout = 30;
4101         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4102         if (ioc->ir_firmware)
4103                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4104                     &ioc->manu_pg10);
4105
4106         /*
4107          * Ensure correct T10 PI operation if vendor left EEDPTagMode
4108          * flag unset in NVDATA.
4109          */
4110         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4111         if (ioc->manu_pg11.EEDPTagMode == 0) {
4112                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4113                     ioc->name);
4114                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4115                 ioc->manu_pg11.EEDPTagMode |= 0x1;
4116                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4117                     &ioc->manu_pg11);
4118         }
4119         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4120                 ioc->tm_custom_handling = 1;
4121         else {
4122                 ioc->tm_custom_handling = 0;
4123                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4124                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4125                 else if (ioc->manu_pg11.NVMeAbortTO >
4126                                         NVME_TASK_ABORT_MAX_TIMEOUT)
4127                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4128                 else
4129                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4130         }
4131
4132         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4133         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4134         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4135         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4136         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4137         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4138         _base_display_ioc_capabilities(ioc);
4139
4140         /*
4141          * Enable task_set_full handling in iounit_pg1 when the
4142          * facts capabilities indicate that its supported.
4143          */
4144         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4145         if ((ioc->facts.IOCCapabilities &
4146             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4147                 iounit_pg1_flags &=
4148                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4149         else
4150                 iounit_pg1_flags |=
4151                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4152         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4153         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4154
4155         if (ioc->iounit_pg8.NumSensors)
4156                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4157 }
4158
4159 /**
4160  * mpt3sas_free_enclosure_list - release memory
4161  * @ioc: per adapter object
4162  *
4163  * Free memory allocated during encloure add.
4164  */
4165 void
4166 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4167 {
4168         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4169
4170         /* Free enclosure list */
4171         list_for_each_entry_safe(enclosure_dev,
4172                         enclosure_dev_next, &ioc->enclosure_list, list) {
4173                 list_del(&enclosure_dev->list);
4174                 kfree(enclosure_dev);
4175         }
4176 }
4177
4178 /**
4179  * _base_release_memory_pools - release memory
4180  * @ioc: per adapter object
4181  *
4182  * Free memory allocated from _base_allocate_memory_pools.
4183  */
4184 static void
4185 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4186 {
4187         int i = 0;
4188         int j = 0;
4189         struct chain_tracker *ct;
4190         struct reply_post_struct *rps;
4191
4192         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4193             __func__));
4194
4195         if (ioc->request) {
4196                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4197                     ioc->request,  ioc->request_dma);
4198                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4199                         "request_pool(0x%p): free\n",
4200                         ioc->name, ioc->request));
4201                 ioc->request = NULL;
4202         }
4203
4204         if (ioc->sense) {
4205                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4206                 dma_pool_destroy(ioc->sense_dma_pool);
4207                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4208                         "sense_pool(0x%p): free\n",
4209                         ioc->name, ioc->sense));
4210                 ioc->sense = NULL;
4211         }
4212
4213         if (ioc->reply) {
4214                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4215                 dma_pool_destroy(ioc->reply_dma_pool);
4216                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4217                         "reply_pool(0x%p): free\n",
4218                         ioc->name, ioc->reply));
4219                 ioc->reply = NULL;
4220         }
4221
4222         if (ioc->reply_free) {
4223                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4224                     ioc->reply_free_dma);
4225                 dma_pool_destroy(ioc->reply_free_dma_pool);
4226                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4227                         "reply_free_pool(0x%p): free\n",
4228                         ioc->name, ioc->reply_free));
4229                 ioc->reply_free = NULL;
4230         }
4231
4232         if (ioc->reply_post) {
4233                 do {
4234                         rps = &ioc->reply_post[i];
4235                         if (rps->reply_post_free) {
4236                                 dma_pool_free(
4237                                     ioc->reply_post_free_dma_pool,
4238                                     rps->reply_post_free,
4239                                     rps->reply_post_free_dma);
4240                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4241                                     "reply_post_free_pool(0x%p): free\n",
4242                                     ioc->name, rps->reply_post_free));
4243                                 rps->reply_post_free = NULL;
4244                         }
4245                 } while (ioc->rdpq_array_enable &&
4246                            (++i < ioc->reply_queue_count));
4247                 if (ioc->reply_post_free_array &&
4248                         ioc->rdpq_array_enable) {
4249                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
4250                                 ioc->reply_post_free_array,
4251                                 ioc->reply_post_free_array_dma);
4252                         ioc->reply_post_free_array = NULL;
4253                 }
4254                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4255                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4256                 kfree(ioc->reply_post);
4257         }
4258
4259         if (ioc->pcie_sgl_dma_pool) {
4260                 for (i = 0; i < ioc->scsiio_depth; i++) {
4261                         dma_pool_free(ioc->pcie_sgl_dma_pool,
4262                                         ioc->pcie_sg_lookup[i].pcie_sgl,
4263                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4264                 }
4265                 if (ioc->pcie_sgl_dma_pool)
4266                         dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4267         }
4268
4269         if (ioc->config_page) {
4270                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4271                     "config_page(0x%p): free\n", ioc->name,
4272                     ioc->config_page));
4273                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4274                     ioc->config_page, ioc->config_page_dma);
4275         }
4276
4277         kfree(ioc->hpr_lookup);
4278         kfree(ioc->internal_lookup);
4279         if (ioc->chain_lookup) {
4280                 for (i = 0; i < ioc->scsiio_depth; i++) {
4281                         for (j = ioc->chains_per_prp_buffer;
4282                             j < ioc->chains_needed_per_io; j++) {
4283                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4284                                 if (ct && ct->chain_buffer)
4285                                         dma_pool_free(ioc->chain_dma_pool,
4286                                                 ct->chain_buffer,
4287                                                 ct->chain_buffer_dma);
4288                         }
4289                         kfree(ioc->chain_lookup[i].chains_per_smid);
4290                 }
4291                 dma_pool_destroy(ioc->chain_dma_pool);
4292                 kfree(ioc->chain_lookup);
4293                 ioc->chain_lookup = NULL;
4294         }
4295 }
4296
4297 /**
4298  * is_MSB_are_same - checks whether all reply queues in a set are
4299  *      having same upper 32bits in their base memory address.
4300  * @reply_pool_start_address: Base address of a reply queue set
4301  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4302  *
4303  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4304  * memory address, else 0.
4305  */
4306
4307 static int
4308 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4309 {
4310         long reply_pool_end_address;
4311
4312         reply_pool_end_address = reply_pool_start_address + pool_sz;
4313
4314         if (upper_32_bits(reply_pool_start_address) ==
4315                 upper_32_bits(reply_pool_end_address))
4316                 return 1;
4317         else
4318                 return 0;
4319 }
4320
4321 /**
4322  * _base_allocate_memory_pools - allocate start of day memory pools
4323  * @ioc: per adapter object
4324  *
4325  * Return: 0 success, anything else error.
4326  */
4327 static int
4328 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4329 {
4330         struct mpt3sas_facts *facts;
4331         u16 max_sge_elements;
4332         u16 chains_needed_per_io;
4333         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4334         u32 retry_sz;
4335         u16 max_request_credit, nvme_blocks_needed;
4336         unsigned short sg_tablesize;
4337         u16 sge_size;
4338         int i, j;
4339         struct chain_tracker *ct;
4340
4341         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4342             __func__));
4343
4344
4345         retry_sz = 0;
4346         facts = &ioc->facts;
4347
4348         /* command line tunables for max sgl entries */
4349         if (max_sgl_entries != -1)
4350                 sg_tablesize = max_sgl_entries;
4351         else {
4352                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4353                         sg_tablesize = MPT2SAS_SG_DEPTH;
4354                 else
4355                         sg_tablesize = MPT3SAS_SG_DEPTH;
4356         }
4357
4358         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4359         if (reset_devices)
4360                 sg_tablesize = min_t(unsigned short, sg_tablesize,
4361                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
4362
4363         if (ioc->is_mcpu_endpoint)
4364                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4365         else {
4366                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4367                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4368                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4369                         sg_tablesize = min_t(unsigned short, sg_tablesize,
4370                                         SG_MAX_SEGMENTS);
4371                         pr_warn(MPT3SAS_FMT
4372                                 "sg_tablesize(%u) is bigger than kernel "
4373                                 "defined SG_CHUNK_SIZE(%u)\n", ioc->name,
4374                                 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4375                 }
4376                 ioc->shost->sg_tablesize = sg_tablesize;
4377         }
4378
4379         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4380                 (facts->RequestCredit / 4));
4381         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4382                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4383                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
4384                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
4385                             Credits, it has just %d number of credits\n",
4386                             ioc->name, facts->RequestCredit);
4387                         return -ENOMEM;
4388                 }
4389                 ioc->internal_depth = 10;
4390         }
4391
4392         ioc->hi_priority_depth = ioc->internal_depth - (5);
4393         /* command line tunables  for max controller queue depth */
4394         if (max_queue_depth != -1 && max_queue_depth != 0) {
4395                 max_request_credit = min_t(u16, max_queue_depth +
4396                         ioc->internal_depth, facts->RequestCredit);
4397                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4398                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4399         } else if (reset_devices)
4400                 max_request_credit = min_t(u16, facts->RequestCredit,
4401                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4402         else
4403                 max_request_credit = min_t(u16, facts->RequestCredit,
4404                     MAX_HBA_QUEUE_DEPTH);
4405
4406         /* Firmware maintains additional facts->HighPriorityCredit number of
4407          * credits for HiPriprity Request messages, so hba queue depth will be
4408          * sum of max_request_credit and high priority queue depth.
4409          */
4410         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4411
4412         /* request frame size */
4413         ioc->request_sz = facts->IOCRequestFrameSize * 4;
4414
4415         /* reply frame size */
4416         ioc->reply_sz = facts->ReplyFrameSize * 4;
4417
4418         /* chain segment size */
4419         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4420                 if (facts->IOCMaxChainSegmentSize)
4421                         ioc->chain_segment_sz =
4422                                         facts->IOCMaxChainSegmentSize *
4423                                         MAX_CHAIN_ELEMT_SZ;
4424                 else
4425                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4426                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4427                                                     MAX_CHAIN_ELEMT_SZ;
4428         } else
4429                 ioc->chain_segment_sz = ioc->request_sz;
4430
4431         /* calculate the max scatter element size */
4432         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4433
4434  retry_allocation:
4435         total_sz = 0;
4436         /* calculate number of sg elements left over in the 1st frame */
4437         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4438             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4439         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4440
4441         /* now do the same for a chain buffer */
4442         max_sge_elements = ioc->chain_segment_sz - sge_size;
4443         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4444
4445         /*
4446          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4447          */
4448         chains_needed_per_io = ((ioc->shost->sg_tablesize -
4449            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4450             + 1;
4451         if (chains_needed_per_io > facts->MaxChainDepth) {
4452                 chains_needed_per_io = facts->MaxChainDepth;
4453                 ioc->shost->sg_tablesize = min_t(u16,
4454                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4455                 * chains_needed_per_io), ioc->shost->sg_tablesize);
4456         }
4457         ioc->chains_needed_per_io = chains_needed_per_io;
4458
4459         /* reply free queue sizing - taking into account for 64 FW events */
4460         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4461
4462         /* mCPU manage single counters for simplicity */
4463         if (ioc->is_mcpu_endpoint)
4464                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4465         else {
4466                 /* calculate reply descriptor post queue depth */
4467                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4468                         ioc->reply_free_queue_depth +  1;
4469                 /* align the reply post queue on the next 16 count boundary */
4470                 if (ioc->reply_post_queue_depth % 16)
4471                         ioc->reply_post_queue_depth += 16 -
4472                                 (ioc->reply_post_queue_depth % 16);
4473         }
4474
4475         if (ioc->reply_post_queue_depth >
4476             facts->MaxReplyDescriptorPostQueueDepth) {
4477                 ioc->reply_post_queue_depth =
4478                                 facts->MaxReplyDescriptorPostQueueDepth -
4479                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
4480                 ioc->hba_queue_depth =
4481                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4482                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4483         }
4484
4485         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4486             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4487             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4488             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4489             ioc->chains_needed_per_io));
4490
4491         /* reply post queue, 16 byte align */
4492         reply_post_free_sz = ioc->reply_post_queue_depth *
4493             sizeof(Mpi2DefaultReplyDescriptor_t);
4494
4495         sz = reply_post_free_sz;
4496         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4497                 sz *= ioc->reply_queue_count;
4498
4499         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4500             (ioc->reply_queue_count):1,
4501             sizeof(struct reply_post_struct), GFP_KERNEL);
4502
4503         if (!ioc->reply_post) {
4504                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4505                         ioc->name);
4506                 goto out;
4507         }
4508         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4509             &ioc->pdev->dev, sz, 16, 0);
4510         if (!ioc->reply_post_free_dma_pool) {
4511                 pr_err(MPT3SAS_FMT
4512                  "reply_post_free pool: dma_pool_create failed\n",
4513                  ioc->name);
4514                 goto out;
4515         }
4516         i = 0;
4517         do {
4518                 ioc->reply_post[i].reply_post_free =
4519                     dma_pool_alloc(ioc->reply_post_free_dma_pool,
4520                     GFP_KERNEL,
4521                     &ioc->reply_post[i].reply_post_free_dma);
4522                 if (!ioc->reply_post[i].reply_post_free) {
4523                         pr_err(MPT3SAS_FMT
4524                         "reply_post_free pool: dma_pool_alloc failed\n",
4525                         ioc->name);
4526                         goto out;
4527                 }
4528                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
4529                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4530                     "reply post free pool (0x%p): depth(%d),"
4531                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
4532                     ioc->reply_post[i].reply_post_free,
4533                     ioc->reply_post_queue_depth, 8, sz/1024));
4534                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4535                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
4536                     (unsigned long long)
4537                     ioc->reply_post[i].reply_post_free_dma));
4538                 total_sz += sz;
4539         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4540
4541         if (ioc->dma_mask == 64) {
4542                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4543                         pr_warn(MPT3SAS_FMT
4544                             "no suitable consistent DMA mask for %s\n",
4545                             ioc->name, pci_name(ioc->pdev));
4546                         goto out;
4547                 }
4548         }
4549
4550         ioc->scsiio_depth = ioc->hba_queue_depth -
4551             ioc->hi_priority_depth - ioc->internal_depth;
4552
4553         /* set the scsi host can_queue depth
4554          * with some internal commands that could be outstanding
4555          */
4556         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4557         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4558                 "scsi host: can_queue depth (%d)\n",
4559                 ioc->name, ioc->shost->can_queue));
4560
4561
4562         /* contiguous pool for request and chains, 16 byte align, one extra "
4563          * "frame for smid=0
4564          */
4565         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4566         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4567
4568         /* hi-priority queue */
4569         sz += (ioc->hi_priority_depth * ioc->request_sz);
4570
4571         /* internal queue */
4572         sz += (ioc->internal_depth * ioc->request_sz);
4573
4574         ioc->request_dma_sz = sz;
4575         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4576         if (!ioc->request) {
4577                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4578                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4579                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4580                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4581                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4582                         goto out;
4583                 retry_sz = 64;
4584                 ioc->hba_queue_depth -= retry_sz;
4585                 _base_release_memory_pools(ioc);
4586                 goto retry_allocation;
4587         }
4588
4589         if (retry_sz)
4590                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4591                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4592                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4593                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4594
4595         /* hi-priority queue */
4596         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4597             ioc->request_sz);
4598         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4599             ioc->request_sz);
4600
4601         /* internal queue */
4602         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4603             ioc->request_sz);
4604         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4605             ioc->request_sz);
4606
4607         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4608                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4609                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4610             (ioc->hba_queue_depth * ioc->request_sz)/1024));
4611
4612         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4613             ioc->name, (unsigned long long) ioc->request_dma));
4614         total_sz += sz;
4615
4616         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4617                 ioc->name, ioc->request, ioc->scsiio_depth));
4618
4619         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4620         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4621         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4622         if (!ioc->chain_lookup) {
4623                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages "
4624                                 "failed\n", ioc->name);
4625                 goto out;
4626         }
4627
4628         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4629         for (i = 0; i < ioc->scsiio_depth; i++) {
4630                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4631                 if (!ioc->chain_lookup[i].chains_per_smid) {
4632                         pr_err(MPT3SAS_FMT "chain_lookup: "
4633                                         " kzalloc failed\n", ioc->name);
4634                         goto out;
4635                 }
4636         }
4637
4638         /* initialize hi-priority queue smid's */
4639         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4640             sizeof(struct request_tracker), GFP_KERNEL);
4641         if (!ioc->hpr_lookup) {
4642                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4643                     ioc->name);
4644                 goto out;
4645         }
4646         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4647         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4648                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4649                 ioc->name, ioc->hi_priority,
4650             ioc->hi_priority_depth, ioc->hi_priority_smid));
4651
4652         /* initialize internal queue smid's */
4653         ioc->internal_lookup = kcalloc(ioc->internal_depth,
4654             sizeof(struct request_tracker), GFP_KERNEL);
4655         if (!ioc->internal_lookup) {
4656                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4657                     ioc->name);
4658                 goto out;
4659         }
4660         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4661         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4662                 "internal(0x%p): depth(%d), start smid(%d)\n",
4663                 ioc->name, ioc->internal,
4664             ioc->internal_depth, ioc->internal_smid));
4665         /*
4666          * The number of NVMe page sized blocks needed is:
4667          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4668          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4669          * that is placed in the main message frame.  8 is the size of each PRP
4670          * entry or PRP list pointer entry.  8 is subtracted from page_size
4671          * because of the PRP list pointer entry at the end of a page, so this
4672          * is not counted as a PRP entry.  The 1 added page is a round up.
4673          *
4674          * To avoid allocation failures due to the amount of memory that could
4675          * be required for NVMe PRP's, only each set of NVMe blocks will be
4676          * contiguous, so a new set is allocated for each possible I/O.
4677          */
4678         ioc->chains_per_prp_buffer = 0;
4679         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4680                 nvme_blocks_needed =
4681                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4682                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4683                 nvme_blocks_needed++;
4684
4685                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4686                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4687                 if (!ioc->pcie_sg_lookup) {
4688                         pr_info(MPT3SAS_FMT
4689                             "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4690                         goto out;
4691                 }
4692                 sz = nvme_blocks_needed * ioc->page_size;
4693                 ioc->pcie_sgl_dma_pool =
4694                         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4695                 if (!ioc->pcie_sgl_dma_pool) {
4696                         pr_info(MPT3SAS_FMT
4697                             "PCIe SGL pool: dma_pool_create failed\n",
4698                             ioc->name);
4699                         goto out;
4700                 }
4701
4702                 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4703                 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4704                                                 ioc->chains_needed_per_io);
4705
4706                 for (i = 0; i < ioc->scsiio_depth; i++) {
4707                         ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4708                                 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4709                                 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4710                         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4711                                 pr_info(MPT3SAS_FMT
4712                                     "PCIe SGL pool: dma_pool_alloc failed\n",
4713                                     ioc->name);
4714                                 goto out;
4715                         }
4716                         for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4717                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4718                                 ct->chain_buffer =
4719                                     ioc->pcie_sg_lookup[i].pcie_sgl +
4720                                     (j * ioc->chain_segment_sz);
4721                                 ct->chain_buffer_dma =
4722                                     ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4723                                     (j * ioc->chain_segment_sz);
4724                         }
4725                 }
4726
4727                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4728                         "element_size(%d), pool_size(%d kB)\n", ioc->name,
4729                         ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4730                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "Number of chains can "
4731                     "fit in a PRP page(%d)\n", ioc->name,
4732                     ioc->chains_per_prp_buffer));
4733                 total_sz += sz * ioc->scsiio_depth;
4734         }
4735
4736         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4737             ioc->chain_segment_sz, 16, 0);
4738         if (!ioc->chain_dma_pool) {
4739                 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4740                         ioc->name);
4741                 goto out;
4742         }
4743         for (i = 0; i < ioc->scsiio_depth; i++) {
4744                 for (j = ioc->chains_per_prp_buffer;
4745                                 j < ioc->chains_needed_per_io; j++) {
4746                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
4747                         ct->chain_buffer = dma_pool_alloc(
4748                                         ioc->chain_dma_pool, GFP_KERNEL,
4749                                         &ct->chain_buffer_dma);
4750                         if (!ct->chain_buffer) {
4751                                 pr_err(MPT3SAS_FMT "chain_lookup: "
4752                                 " pci_pool_alloc failed\n", ioc->name);
4753                                 _base_release_memory_pools(ioc);
4754                                 goto out;
4755                         }
4756                 }
4757                 total_sz += ioc->chain_segment_sz;
4758         }
4759
4760         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4761                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4762                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4763                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
4764
4765         /* sense buffers, 4 byte align */
4766         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4767         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4768                                               4, 0);
4769         if (!ioc->sense_dma_pool) {
4770                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4771                     ioc->name);
4772                 goto out;
4773         }
4774         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4775             &ioc->sense_dma);
4776         if (!ioc->sense) {
4777                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4778                     ioc->name);
4779                 goto out;
4780         }
4781         /* sense buffer requires to be in same 4 gb region.
4782          * Below function will check the same.
4783          * In case of failure, new pci pool will be created with updated
4784          * alignment. Older allocation and pool will be destroyed.
4785          * Alignment will be used such a way that next allocation if
4786          * success, will always meet same 4gb region requirement.
4787          * Actual requirement is not alignment, but we need start and end of
4788          * DMA address must have same upper 32 bit address.
4789          */
4790         if (!is_MSB_are_same((long)ioc->sense, sz)) {
4791                 //Release Sense pool & Reallocate
4792                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4793                 dma_pool_destroy(ioc->sense_dma_pool);
4794                 ioc->sense = NULL;
4795
4796                 ioc->sense_dma_pool =
4797                         dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4798                                                 roundup_pow_of_two(sz), 0);
4799                 if (!ioc->sense_dma_pool) {
4800                         pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
4801                                         ioc->name);
4802                         goto out;
4803                 }
4804                 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4805                                 &ioc->sense_dma);
4806                 if (!ioc->sense) {
4807                         pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
4808                                         ioc->name);
4809                         goto out;
4810                 }
4811         }
4812         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4813             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4814             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4815             SCSI_SENSE_BUFFERSIZE, sz/1024));
4816         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4817             ioc->name, (unsigned long long)ioc->sense_dma));
4818         total_sz += sz;
4819
4820         /* reply pool, 4 byte align */
4821         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4822         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4823                                               4, 0);
4824         if (!ioc->reply_dma_pool) {
4825                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4826                     ioc->name);
4827                 goto out;
4828         }
4829         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4830             &ioc->reply_dma);
4831         if (!ioc->reply) {
4832                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4833                     ioc->name);
4834                 goto out;
4835         }
4836         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4837         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4838         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4839                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4840                 ioc->name, ioc->reply,
4841             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4842         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4843             ioc->name, (unsigned long long)ioc->reply_dma));
4844         total_sz += sz;
4845
4846         /* reply free queue, 16 byte align */
4847         sz = ioc->reply_free_queue_depth * 4;
4848         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4849             &ioc->pdev->dev, sz, 16, 0);
4850         if (!ioc->reply_free_dma_pool) {
4851                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4852                         ioc->name);
4853                 goto out;
4854         }
4855         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4856             &ioc->reply_free_dma);
4857         if (!ioc->reply_free) {
4858                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4859                         ioc->name);
4860                 goto out;
4861         }
4862         memset(ioc->reply_free, 0, sz);
4863         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4864             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4865             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4866         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4867                 "reply_free_dma (0x%llx)\n",
4868                 ioc->name, (unsigned long long)ioc->reply_free_dma));
4869         total_sz += sz;
4870
4871         if (ioc->rdpq_array_enable) {
4872                 reply_post_free_array_sz = ioc->reply_queue_count *
4873                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4874                 ioc->reply_post_free_array_dma_pool =
4875                     dma_pool_create("reply_post_free_array pool",
4876                     &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4877                 if (!ioc->reply_post_free_array_dma_pool) {
4878                         dinitprintk(ioc,
4879                             pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4880                             "dma_pool_create failed\n", ioc->name));
4881                         goto out;
4882                 }
4883                 ioc->reply_post_free_array =
4884                     dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4885                     GFP_KERNEL, &ioc->reply_post_free_array_dma);
4886                 if (!ioc->reply_post_free_array) {
4887                         dinitprintk(ioc,
4888                             pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4889                             "dma_pool_alloc failed\n", ioc->name));
4890                         goto out;
4891                 }
4892         }
4893         ioc->config_page_sz = 512;
4894         ioc->config_page = pci_alloc_consistent(ioc->pdev,
4895             ioc->config_page_sz, &ioc->config_page_dma);
4896         if (!ioc->config_page) {
4897                 pr_err(MPT3SAS_FMT
4898                         "config page: dma_pool_alloc failed\n",
4899                         ioc->name);
4900                 goto out;
4901         }
4902         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4903                 "config page(0x%p): size(%d)\n",
4904                 ioc->name, ioc->config_page, ioc->config_page_sz));
4905         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4906                 ioc->name, (unsigned long long)ioc->config_page_dma));
4907         total_sz += ioc->config_page_sz;
4908
4909         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4910             ioc->name, total_sz/1024);
4911         pr_info(MPT3SAS_FMT
4912                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4913             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4914         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4915             ioc->name, ioc->shost->sg_tablesize);
4916         return 0;
4917
4918  out:
4919         return -ENOMEM;
4920 }
4921
4922 /**
4923  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4924  * @ioc: Pointer to MPT_ADAPTER structure
4925  * @cooked: Request raw or cooked IOC state
4926  *
4927  * Return: all IOC Doorbell register bits if cooked==0, else just the
4928  * Doorbell bits in MPI_IOC_STATE_MASK.
4929  */
4930 u32
4931 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4932 {
4933         u32 s, sc;
4934
4935         s = readl(&ioc->chip->Doorbell);
4936         sc = s & MPI2_IOC_STATE_MASK;
4937         return cooked ? sc : s;
4938 }
4939
4940 /**
4941  * _base_wait_on_iocstate - waiting on a particular ioc state
4942  * @ioc: ?
4943  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4944  * @timeout: timeout in second
4945  *
4946  * Return: 0 for success, non-zero for failure.
4947  */
4948 static int
4949 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4950 {
4951         u32 count, cntdn;
4952         u32 current_state;
4953
4954         count = 0;
4955         cntdn = 1000 * timeout;
4956         do {
4957                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
4958                 if (current_state == ioc_state)
4959                         return 0;
4960                 if (count && current_state == MPI2_IOC_STATE_FAULT)
4961                         break;
4962
4963                 usleep_range(1000, 1500);
4964                 count++;
4965         } while (--cntdn);
4966
4967         return current_state;
4968 }
4969
4970 /**
4971  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4972  * a write to the doorbell)
4973  * @ioc: per adapter object
4974  *
4975  * Return: 0 for success, non-zero for failure.
4976  *
4977  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4978  */
4979 static int
4980 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4981
4982 static int
4983 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4984 {
4985         u32 cntdn, count;
4986         u32 int_status;
4987
4988         count = 0;
4989         cntdn = 1000 * timeout;
4990         do {
4991                 int_status = readl(&ioc->chip->HostInterruptStatus);
4992                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4993                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
4994                                 "%s: successful count(%d), timeout(%d)\n",
4995                                 ioc->name, __func__, count, timeout));
4996                         return 0;
4997                 }
4998
4999                 usleep_range(1000, 1500);
5000                 count++;
5001         } while (--cntdn);
5002
5003         pr_err(MPT3SAS_FMT
5004                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5005                 ioc->name, __func__, count, int_status);
5006         return -EFAULT;
5007 }
5008
5009 static int
5010 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5011 {
5012         u32 cntdn, count;
5013         u32 int_status;
5014
5015         count = 0;
5016         cntdn = 2000 * timeout;
5017         do {
5018                 int_status = readl(&ioc->chip->HostInterruptStatus);
5019                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5020                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5021                                 "%s: successful count(%d), timeout(%d)\n",
5022                                 ioc->name, __func__, count, timeout));
5023                         return 0;
5024                 }
5025
5026                 udelay(500);
5027                 count++;
5028         } while (--cntdn);
5029
5030         pr_err(MPT3SAS_FMT
5031                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5032                 ioc->name, __func__, count, int_status);
5033         return -EFAULT;
5034
5035 }
5036
5037 /**
5038  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5039  * @ioc: per adapter object
5040  * @timeout: timeout in second
5041  *
5042  * Return: 0 for success, non-zero for failure.
5043  *
5044  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5045  * doorbell.
5046  */
5047 static int
5048 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5049 {
5050         u32 cntdn, count;
5051         u32 int_status;
5052         u32 doorbell;
5053
5054         count = 0;
5055         cntdn = 1000 * timeout;
5056         do {
5057                 int_status = readl(&ioc->chip->HostInterruptStatus);
5058                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5059                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5060                                 "%s: successful count(%d), timeout(%d)\n",
5061                                 ioc->name, __func__, count, timeout));
5062                         return 0;
5063                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5064                         doorbell = readl(&ioc->chip->Doorbell);
5065                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
5066                             MPI2_IOC_STATE_FAULT) {
5067                                 mpt3sas_base_fault_info(ioc , doorbell);
5068                                 return -EFAULT;
5069                         }
5070                 } else if (int_status == 0xFFFFFFFF)
5071                         goto out;
5072
5073                 usleep_range(1000, 1500);
5074                 count++;
5075         } while (--cntdn);
5076
5077  out:
5078         pr_err(MPT3SAS_FMT
5079          "%s: failed due to timeout count(%d), int_status(%x)!\n",
5080          ioc->name, __func__, count, int_status);
5081         return -EFAULT;
5082 }
5083
5084 /**
5085  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5086  * @ioc: per adapter object
5087  * @timeout: timeout in second
5088  *
5089  * Return: 0 for success, non-zero for failure.
5090  */
5091 static int
5092 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5093 {
5094         u32 cntdn, count;
5095         u32 doorbell_reg;
5096
5097         count = 0;
5098         cntdn = 1000 * timeout;
5099         do {
5100                 doorbell_reg = readl(&ioc->chip->Doorbell);
5101                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5102                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
5103                                 "%s: successful count(%d), timeout(%d)\n",
5104                                 ioc->name, __func__, count, timeout));
5105                         return 0;
5106                 }
5107
5108                 usleep_range(1000, 1500);
5109                 count++;
5110         } while (--cntdn);
5111
5112         pr_err(MPT3SAS_FMT
5113                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5114                 ioc->name, __func__, count, doorbell_reg);
5115         return -EFAULT;
5116 }
5117
5118 /**
5119  * _base_send_ioc_reset - send doorbell reset
5120  * @ioc: per adapter object
5121  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5122  * @timeout: timeout in second
5123  *
5124  * Return: 0 for success, non-zero for failure.
5125  */
5126 static int
5127 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5128 {
5129         u32 ioc_state;
5130         int r = 0;
5131
5132         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5133                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
5134                     ioc->name, __func__);
5135                 return -EFAULT;
5136         }
5137
5138         if (!(ioc->facts.IOCCapabilities &
5139            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5140                 return -EFAULT;
5141
5142         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
5143
5144         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5145             &ioc->chip->Doorbell);
5146         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5147                 r = -EFAULT;
5148                 goto out;
5149         }
5150         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5151         if (ioc_state) {
5152                 pr_err(MPT3SAS_FMT
5153                         "%s: failed going to ready state (ioc_state=0x%x)\n",
5154                         ioc->name, __func__, ioc_state);
5155                 r = -EFAULT;
5156                 goto out;
5157         }
5158  out:
5159         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
5160             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
5161         return r;
5162 }
5163
5164 /**
5165  * _base_handshake_req_reply_wait - send request thru doorbell interface
5166  * @ioc: per adapter object
5167  * @request_bytes: request length
5168  * @request: pointer having request payload
5169  * @reply_bytes: reply length
5170  * @reply: pointer to reply payload
5171  * @timeout: timeout in second
5172  *
5173  * Return: 0 for success, non-zero for failure.
5174  */
5175 static int
5176 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5177         u32 *request, int reply_bytes, u16 *reply, int timeout)
5178 {
5179         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5180         int i;
5181         u8 failed;
5182         __le32 *mfp;
5183
5184         /* make sure doorbell is not in use */
5185         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5186                 pr_err(MPT3SAS_FMT
5187                         "doorbell is in use (line=%d)\n",
5188                         ioc->name, __LINE__);
5189                 return -EFAULT;
5190         }
5191
5192         /* clear pending doorbell interrupts from previous state changes */
5193         if (readl(&ioc->chip->HostInterruptStatus) &
5194             MPI2_HIS_IOC2SYS_DB_STATUS)
5195                 writel(0, &ioc->chip->HostInterruptStatus);
5196
5197         /* send message to ioc */
5198         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5199             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5200             &ioc->chip->Doorbell);
5201
5202         if ((_base_spin_on_doorbell_int(ioc, 5))) {
5203                 pr_err(MPT3SAS_FMT
5204                         "doorbell handshake int failed (line=%d)\n",
5205                         ioc->name, __LINE__);
5206                 return -EFAULT;
5207         }
5208         writel(0, &ioc->chip->HostInterruptStatus);
5209
5210         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5211                 pr_err(MPT3SAS_FMT
5212                         "doorbell handshake ack failed (line=%d)\n",
5213                         ioc->name, __LINE__);
5214                 return -EFAULT;
5215         }
5216
5217         /* send message 32-bits at a time */
5218         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5219                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5220                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5221                         failed = 1;
5222         }
5223
5224         if (failed) {
5225                 pr_err(MPT3SAS_FMT
5226                         "doorbell handshake sending request failed (line=%d)\n",
5227                         ioc->name, __LINE__);
5228                 return -EFAULT;
5229         }
5230
5231         /* now wait for the reply */
5232         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5233                 pr_err(MPT3SAS_FMT
5234                         "doorbell handshake int failed (line=%d)\n",
5235                         ioc->name, __LINE__);
5236                 return -EFAULT;
5237         }
5238
5239         /* read the first two 16-bits, it gives the total length of the reply */
5240         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5241             & MPI2_DOORBELL_DATA_MASK);
5242         writel(0, &ioc->chip->HostInterruptStatus);
5243         if ((_base_wait_for_doorbell_int(ioc, 5))) {
5244                 pr_err(MPT3SAS_FMT
5245                         "doorbell handshake int failed (line=%d)\n",
5246                         ioc->name, __LINE__);
5247                 return -EFAULT;
5248         }
5249         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5250             & MPI2_DOORBELL_DATA_MASK);
5251         writel(0, &ioc->chip->HostInterruptStatus);
5252
5253         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5254                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5255                         pr_err(MPT3SAS_FMT
5256                                 "doorbell handshake int failed (line=%d)\n",
5257                                 ioc->name, __LINE__);
5258                         return -EFAULT;
5259                 }
5260                 if (i >=  reply_bytes/2) /* overflow case */
5261                         readl(&ioc->chip->Doorbell);
5262                 else
5263                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5264                             & MPI2_DOORBELL_DATA_MASK);
5265                 writel(0, &ioc->chip->HostInterruptStatus);
5266         }
5267
5268         _base_wait_for_doorbell_int(ioc, 5);
5269         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5270                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5271                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
5272         }
5273         writel(0, &ioc->chip->HostInterruptStatus);
5274
5275         if (ioc->logging_level & MPT_DEBUG_INIT) {
5276                 mfp = (__le32 *)reply;
5277                 pr_info("\toffset:data\n");
5278                 for (i = 0; i < reply_bytes/4; i++)
5279                         pr_info("\t[0x%02x]:%08x\n", i*4,
5280                             le32_to_cpu(mfp[i]));
5281         }
5282         return 0;
5283 }
5284
5285 /**
5286  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5287  * @ioc: per adapter object
5288  * @mpi_reply: the reply payload from FW
5289  * @mpi_request: the request payload sent to FW
5290  *
5291  * The SAS IO Unit Control Request message allows the host to perform low-level
5292  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5293  * to obtain the IOC assigned device handles for a device if it has other
5294  * identifying information about the device, in addition allows the host to
5295  * remove IOC resources associated with the device.
5296  *
5297  * Return: 0 for success, non-zero for failure.
5298  */
5299 int
5300 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5301         Mpi2SasIoUnitControlReply_t *mpi_reply,
5302         Mpi2SasIoUnitControlRequest_t *mpi_request)
5303 {
5304         u16 smid;
5305         u32 ioc_state;
5306         u8 issue_reset = 0;
5307         int rc;
5308         void *request;
5309         u16 wait_state_count;
5310
5311         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5312             __func__));
5313
5314         mutex_lock(&ioc->base_cmds.mutex);
5315
5316         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5317                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5318                     ioc->name, __func__);
5319                 rc = -EAGAIN;
5320                 goto out;
5321         }
5322
5323         wait_state_count = 0;
5324         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5325         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5326                 if (wait_state_count++ == 10) {
5327                         pr_err(MPT3SAS_FMT
5328                             "%s: failed due to ioc not operational\n",
5329                             ioc->name, __func__);
5330                         rc = -EFAULT;
5331                         goto out;
5332                 }
5333                 ssleep(1);
5334                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5335                 pr_info(MPT3SAS_FMT
5336                         "%s: waiting for operational state(count=%d)\n",
5337                         ioc->name, __func__, wait_state_count);
5338         }
5339
5340         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5341         if (!smid) {
5342                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5343                     ioc->name, __func__);
5344                 rc = -EAGAIN;
5345                 goto out;
5346         }
5347
5348         rc = 0;
5349         ioc->base_cmds.status = MPT3_CMD_PENDING;
5350         request = mpt3sas_base_get_msg_frame(ioc, smid);
5351         ioc->base_cmds.smid = smid;
5352         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5353         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5354             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5355                 ioc->ioc_link_reset_in_progress = 1;
5356         init_completion(&ioc->base_cmds.done);
5357         mpt3sas_base_put_smid_default(ioc, smid);
5358         wait_for_completion_timeout(&ioc->base_cmds.done,
5359             msecs_to_jiffies(10000));
5360         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5361             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5362             ioc->ioc_link_reset_in_progress)
5363                 ioc->ioc_link_reset_in_progress = 0;
5364         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5365                 issue_reset =
5366                         mpt3sas_base_check_cmd_timeout(ioc,
5367                                 ioc->base_cmds.status, mpi_request,
5368                                 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5369                 goto issue_host_reset;
5370         }
5371         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5372                 memcpy(mpi_reply, ioc->base_cmds.reply,
5373                     sizeof(Mpi2SasIoUnitControlReply_t));
5374         else
5375                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5376         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5377         goto out;
5378
5379  issue_host_reset:
5380         if (issue_reset)
5381                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5382         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5383         rc = -EFAULT;
5384  out:
5385         mutex_unlock(&ioc->base_cmds.mutex);
5386         return rc;
5387 }
5388
5389 /**
5390  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5391  * @ioc: per adapter object
5392  * @mpi_reply: the reply payload from FW
5393  * @mpi_request: the request payload sent to FW
5394  *
5395  * The SCSI Enclosure Processor request message causes the IOC to
5396  * communicate with SES devices to control LED status signals.
5397  *
5398  * Return: 0 for success, non-zero for failure.
5399  */
5400 int
5401 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5402         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5403 {
5404         u16 smid;
5405         u32 ioc_state;
5406         u8 issue_reset = 0;
5407         int rc;
5408         void *request;
5409         u16 wait_state_count;
5410
5411         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5412             __func__));
5413
5414         mutex_lock(&ioc->base_cmds.mutex);
5415
5416         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5417                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5418                     ioc->name, __func__);
5419                 rc = -EAGAIN;
5420                 goto out;
5421         }
5422
5423         wait_state_count = 0;
5424         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5425         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5426                 if (wait_state_count++ == 10) {
5427                         pr_err(MPT3SAS_FMT
5428                             "%s: failed due to ioc not operational\n",
5429                             ioc->name, __func__);
5430                         rc = -EFAULT;
5431                         goto out;
5432                 }
5433                 ssleep(1);
5434                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5435                 pr_info(MPT3SAS_FMT
5436                         "%s: waiting for operational state(count=%d)\n",
5437                         ioc->name,
5438                     __func__, wait_state_count);
5439         }
5440
5441         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5442         if (!smid) {
5443                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5444                     ioc->name, __func__);
5445                 rc = -EAGAIN;
5446                 goto out;
5447         }
5448
5449         rc = 0;
5450         ioc->base_cmds.status = MPT3_CMD_PENDING;
5451         request = mpt3sas_base_get_msg_frame(ioc, smid);
5452         ioc->base_cmds.smid = smid;
5453         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5454         init_completion(&ioc->base_cmds.done);
5455         mpt3sas_base_put_smid_default(ioc, smid);
5456         wait_for_completion_timeout(&ioc->base_cmds.done,
5457             msecs_to_jiffies(10000));
5458         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5459                 issue_reset =
5460                         mpt3sas_base_check_cmd_timeout(ioc,
5461                                 ioc->base_cmds.status, mpi_request,
5462                                 sizeof(Mpi2SepRequest_t)/4);
5463                 goto issue_host_reset;
5464         }
5465         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5466                 memcpy(mpi_reply, ioc->base_cmds.reply,
5467                     sizeof(Mpi2SepReply_t));
5468         else
5469                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5470         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5471         goto out;
5472
5473  issue_host_reset:
5474         if (issue_reset)
5475                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5476         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5477         rc = -EFAULT;
5478  out:
5479         mutex_unlock(&ioc->base_cmds.mutex);
5480         return rc;
5481 }
5482
5483 /**
5484  * _base_get_port_facts - obtain port facts reply and save in ioc
5485  * @ioc: per adapter object
5486  * @port: ?
5487  *
5488  * Return: 0 for success, non-zero for failure.
5489  */
5490 static int
5491 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5492 {
5493         Mpi2PortFactsRequest_t mpi_request;
5494         Mpi2PortFactsReply_t mpi_reply;
5495         struct mpt3sas_port_facts *pfacts;
5496         int mpi_reply_sz, mpi_request_sz, r;
5497
5498         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5499             __func__));
5500
5501         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5502         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5503         memset(&mpi_request, 0, mpi_request_sz);
5504         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5505         mpi_request.PortNumber = port;
5506         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5507             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5508
5509         if (r != 0) {
5510                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5511                     ioc->name, __func__, r);
5512                 return r;
5513         }
5514
5515         pfacts = &ioc->pfacts[port];
5516         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5517         pfacts->PortNumber = mpi_reply.PortNumber;
5518         pfacts->VP_ID = mpi_reply.VP_ID;
5519         pfacts->VF_ID = mpi_reply.VF_ID;
5520         pfacts->MaxPostedCmdBuffers =
5521             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5522
5523         return 0;
5524 }
5525
5526 /**
5527  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5528  * @ioc: per adapter object
5529  * @timeout:
5530  *
5531  * Return: 0 for success, non-zero for failure.
5532  */
5533 static int
5534 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5535 {
5536         u32 ioc_state;
5537         int rc;
5538
5539         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
5540             __func__));
5541
5542         if (ioc->pci_error_recovery) {
5543                 dfailprintk(ioc, printk(MPT3SAS_FMT
5544                     "%s: host in pci error recovery\n", ioc->name, __func__));
5545                 return -EFAULT;
5546         }
5547
5548         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5549         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5550             ioc->name, __func__, ioc_state));
5551
5552         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5553             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5554                 return 0;
5555
5556         if (ioc_state & MPI2_DOORBELL_USED) {
5557                 dhsprintk(ioc, printk(MPT3SAS_FMT
5558                     "unexpected doorbell active!\n", ioc->name));
5559                 goto issue_diag_reset;
5560         }
5561
5562         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5563                 mpt3sas_base_fault_info(ioc, ioc_state &
5564                     MPI2_DOORBELL_DATA_MASK);
5565                 goto issue_diag_reset;
5566         }
5567
5568         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5569         if (ioc_state) {
5570                 dfailprintk(ioc, printk(MPT3SAS_FMT
5571                     "%s: failed going to ready state (ioc_state=0x%x)\n",
5572                     ioc->name, __func__, ioc_state));
5573                 return -EFAULT;
5574         }
5575
5576  issue_diag_reset:
5577         rc = _base_diag_reset(ioc);
5578         return rc;
5579 }
5580
5581 /**
5582  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5583  * @ioc: per adapter object
5584  *
5585  * Return: 0 for success, non-zero for failure.
5586  */
5587 static int
5588 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5589 {
5590         Mpi2IOCFactsRequest_t mpi_request;
5591         Mpi2IOCFactsReply_t mpi_reply;
5592         struct mpt3sas_facts *facts;
5593         int mpi_reply_sz, mpi_request_sz, r;
5594
5595         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5596             __func__));
5597
5598         r = _base_wait_for_iocstate(ioc, 10);
5599         if (r) {
5600                 dfailprintk(ioc, printk(MPT3SAS_FMT
5601                     "%s: failed getting to correct state\n",
5602                     ioc->name, __func__));
5603                 return r;
5604         }
5605         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5606         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5607         memset(&mpi_request, 0, mpi_request_sz);
5608         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5609         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5610             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5611
5612         if (r != 0) {
5613                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5614                     ioc->name, __func__, r);
5615                 return r;
5616         }
5617
5618         facts = &ioc->facts;
5619         memset(facts, 0, sizeof(struct mpt3sas_facts));
5620         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5621         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5622         facts->VP_ID = mpi_reply.VP_ID;
5623         facts->VF_ID = mpi_reply.VF_ID;
5624         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5625         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5626         facts->WhoInit = mpi_reply.WhoInit;
5627         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5628         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5629         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
5630             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
5631                 ioc->combined_reply_queue = 0;
5632         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5633         facts->MaxReplyDescriptorPostQueueDepth =
5634             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5635         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5636         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5637         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5638                 ioc->ir_firmware = 1;
5639         if ((facts->IOCCapabilities &
5640               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5641                 ioc->rdpq_array_capable = 1;
5642         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5643         facts->IOCRequestFrameSize =
5644             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5645         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5646                 facts->IOCMaxChainSegmentSize =
5647                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5648         }
5649         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5650         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5651         ioc->shost->max_id = -1;
5652         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5653         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5654         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5655         facts->HighPriorityCredit =
5656             le16_to_cpu(mpi_reply.HighPriorityCredit);
5657         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5658         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5659         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5660
5661         /*
5662          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5663          */
5664         ioc->page_size = 1 << facts->CurrentHostPageSize;
5665         if (ioc->page_size == 1) {
5666                 pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5667                         "default host page size to 4k\n", ioc->name);
5668                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5669         }
5670         dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5671                 ioc->name, facts->CurrentHostPageSize));
5672
5673         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5674                 "hba queue depth(%d), max chains per io(%d)\n",
5675                 ioc->name, facts->RequestCredit,
5676             facts->MaxChainDepth));
5677         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5678                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
5679             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5680         return 0;
5681 }
5682
5683 /**
5684  * _base_send_ioc_init - send ioc_init to firmware
5685  * @ioc: per adapter object
5686  *
5687  * Return: 0 for success, non-zero for failure.
5688  */
5689 static int
5690 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5691 {
5692         Mpi2IOCInitRequest_t mpi_request;
5693         Mpi2IOCInitReply_t mpi_reply;
5694         int i, r = 0;
5695         ktime_t current_time;
5696         u16 ioc_status;
5697         u32 reply_post_free_array_sz = 0;
5698
5699         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5700             __func__));
5701
5702         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5703         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5704         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5705         mpi_request.VF_ID = 0; /* TODO */
5706         mpi_request.VP_ID = 0;
5707         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5708         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5709         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5710
5711         if (_base_is_controller_msix_enabled(ioc))
5712                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5713         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5714         mpi_request.ReplyDescriptorPostQueueDepth =
5715             cpu_to_le16(ioc->reply_post_queue_depth);
5716         mpi_request.ReplyFreeQueueDepth =
5717             cpu_to_le16(ioc->reply_free_queue_depth);
5718
5719         mpi_request.SenseBufferAddressHigh =
5720             cpu_to_le32((u64)ioc->sense_dma >> 32);
5721         mpi_request.SystemReplyAddressHigh =
5722             cpu_to_le32((u64)ioc->reply_dma >> 32);
5723         mpi_request.SystemRequestFrameBaseAddress =
5724             cpu_to_le64((u64)ioc->request_dma);
5725         mpi_request.ReplyFreeQueueAddress =
5726             cpu_to_le64((u64)ioc->reply_free_dma);
5727
5728         if (ioc->rdpq_array_enable) {
5729                 reply_post_free_array_sz = ioc->reply_queue_count *
5730                     sizeof(Mpi2IOCInitRDPQArrayEntry);
5731                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5732                 for (i = 0; i < ioc->reply_queue_count; i++)
5733                         ioc->reply_post_free_array[i].RDPQBaseAddress =
5734                             cpu_to_le64(
5735                                 (u64)ioc->reply_post[i].reply_post_free_dma);
5736                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5737                 mpi_request.ReplyDescriptorPostQueueAddress =
5738                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5739         } else {
5740                 mpi_request.ReplyDescriptorPostQueueAddress =
5741                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5742         }
5743
5744         /* This time stamp specifies number of milliseconds
5745          * since epoch ~ midnight January 1, 1970.
5746          */
5747         current_time = ktime_get_real();
5748         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5749
5750         if (ioc->logging_level & MPT_DEBUG_INIT) {
5751                 __le32 *mfp;
5752                 int i;
5753
5754                 mfp = (__le32 *)&mpi_request;
5755                 pr_info("\toffset:data\n");
5756                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5757                         pr_info("\t[0x%02x]:%08x\n", i*4,
5758                             le32_to_cpu(mfp[i]));
5759         }
5760
5761         r = _base_handshake_req_reply_wait(ioc,
5762             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5763             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5764
5765         if (r != 0) {
5766                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5767                     ioc->name, __func__, r);
5768                 return r;
5769         }
5770
5771         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5772         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5773             mpi_reply.IOCLogInfo) {
5774                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5775                 r = -EIO;
5776         }
5777
5778         return r;
5779 }
5780
5781 /**
5782  * mpt3sas_port_enable_done - command completion routine for port enable
5783  * @ioc: per adapter object
5784  * @smid: system request message index
5785  * @msix_index: MSIX table index supplied by the OS
5786  * @reply: reply message frame(lower 32bit addr)
5787  *
5788  * Return: 1 meaning mf should be freed from _base_interrupt
5789  *          0 means the mf is freed from this function.
5790  */
5791 u8
5792 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5793         u32 reply)
5794 {
5795         MPI2DefaultReply_t *mpi_reply;
5796         u16 ioc_status;
5797
5798         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5799                 return 1;
5800
5801         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5802         if (!mpi_reply)
5803                 return 1;
5804
5805         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5806                 return 1;
5807
5808         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5809         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5810         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5811         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5812         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5813         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5814                 ioc->port_enable_failed = 1;
5815
5816         if (ioc->is_driver_loading) {
5817                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5818                         mpt3sas_port_enable_complete(ioc);
5819                         return 1;
5820                 } else {
5821                         ioc->start_scan_failed = ioc_status;
5822                         ioc->start_scan = 0;
5823                         return 1;
5824                 }
5825         }
5826         complete(&ioc->port_enable_cmds.done);
5827         return 1;
5828 }
5829
5830 /**
5831  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5832  * @ioc: per adapter object
5833  *
5834  * Return: 0 for success, non-zero for failure.
5835  */
5836 static int
5837 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5838 {
5839         Mpi2PortEnableRequest_t *mpi_request;
5840         Mpi2PortEnableReply_t *mpi_reply;
5841         int r = 0;
5842         u16 smid;
5843         u16 ioc_status;
5844
5845         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5846
5847         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5848                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5849                     ioc->name, __func__);
5850                 return -EAGAIN;
5851         }
5852
5853         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5854         if (!smid) {
5855                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5856                     ioc->name, __func__);
5857                 return -EAGAIN;
5858         }
5859
5860         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5861         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5862         ioc->port_enable_cmds.smid = smid;
5863         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5864         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5865
5866         init_completion(&ioc->port_enable_cmds.done);
5867         mpt3sas_base_put_smid_default(ioc, smid);
5868         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5869         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5870                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5871                     ioc->name, __func__);
5872                 _debug_dump_mf(mpi_request,
5873                     sizeof(Mpi2PortEnableRequest_t)/4);
5874                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5875                         r = -EFAULT;
5876                 else
5877                         r = -ETIME;
5878                 goto out;
5879         }
5880
5881         mpi_reply = ioc->port_enable_cmds.reply;
5882         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5883         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5884                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5885                     ioc->name, __func__, ioc_status);
5886                 r = -EFAULT;
5887                 goto out;
5888         }
5889
5890  out:
5891         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5892         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5893             "SUCCESS" : "FAILED"));
5894         return r;
5895 }
5896
5897 /**
5898  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5899  * @ioc: per adapter object
5900  *
5901  * Return: 0 for success, non-zero for failure.
5902  */
5903 int
5904 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5905 {
5906         Mpi2PortEnableRequest_t *mpi_request;
5907         u16 smid;
5908
5909         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5910
5911         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5912                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5913                     ioc->name, __func__);
5914                 return -EAGAIN;
5915         }
5916
5917         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5918         if (!smid) {
5919                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5920                     ioc->name, __func__);
5921                 return -EAGAIN;
5922         }
5923
5924         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5925         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5926         ioc->port_enable_cmds.smid = smid;
5927         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5928         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5929
5930         mpt3sas_base_put_smid_default(ioc, smid);
5931         return 0;
5932 }
5933
5934 /**
5935  * _base_determine_wait_on_discovery - desposition
5936  * @ioc: per adapter object
5937  *
5938  * Decide whether to wait on discovery to complete. Used to either
5939  * locate boot device, or report volumes ahead of physical devices.
5940  *
5941  * Return: 1 for wait, 0 for don't wait.
5942  */
5943 static int
5944 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5945 {
5946         /* We wait for discovery to complete if IR firmware is loaded.
5947          * The sas topology events arrive before PD events, so we need time to
5948          * turn on the bit in ioc->pd_handles to indicate PD
5949          * Also, it maybe required to report Volumes ahead of physical
5950          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5951          */
5952         if (ioc->ir_firmware)
5953                 return 1;
5954
5955         /* if no Bios, then we don't need to wait */
5956         if (!ioc->bios_pg3.BiosVersion)
5957                 return 0;
5958
5959         /* Bios is present, then we drop down here.
5960          *
5961          * If there any entries in the Bios Page 2, then we wait
5962          * for discovery to complete.
5963          */
5964
5965         /* Current Boot Device */
5966         if ((ioc->bios_pg2.CurrentBootDeviceForm &
5967             MPI2_BIOSPAGE2_FORM_MASK) ==
5968             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5969         /* Request Boot Device */
5970            (ioc->bios_pg2.ReqBootDeviceForm &
5971             MPI2_BIOSPAGE2_FORM_MASK) ==
5972             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5973         /* Alternate Request Boot Device */
5974            (ioc->bios_pg2.ReqAltBootDeviceForm &
5975             MPI2_BIOSPAGE2_FORM_MASK) ==
5976             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5977                 return 0;
5978
5979         return 1;
5980 }
5981
5982 /**
5983  * _base_unmask_events - turn on notification for this event
5984  * @ioc: per adapter object
5985  * @event: firmware event
5986  *
5987  * The mask is stored in ioc->event_masks.
5988  */
5989 static void
5990 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5991 {
5992         u32 desired_event;
5993
5994         if (event >= 128)
5995                 return;
5996
5997         desired_event = (1 << (event % 32));
5998
5999         if (event < 32)
6000                 ioc->event_masks[0] &= ~desired_event;
6001         else if (event < 64)
6002                 ioc->event_masks[1] &= ~desired_event;
6003         else if (event < 96)
6004                 ioc->event_masks[2] &= ~desired_event;
6005         else if (event < 128)
6006                 ioc->event_masks[3] &= ~desired_event;
6007 }
6008
6009 /**
6010  * _base_event_notification - send event notification
6011  * @ioc: per adapter object
6012  *
6013  * Return: 0 for success, non-zero for failure.
6014  */
6015 static int
6016 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6017 {
6018         Mpi2EventNotificationRequest_t *mpi_request;
6019         u16 smid;
6020         int r = 0;
6021         int i;
6022
6023         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6024             __func__));
6025
6026         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6027                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
6028                     ioc->name, __func__);
6029                 return -EAGAIN;
6030         }
6031
6032         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6033         if (!smid) {
6034                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
6035                     ioc->name, __func__);
6036                 return -EAGAIN;
6037         }
6038         ioc->base_cmds.status = MPT3_CMD_PENDING;
6039         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6040         ioc->base_cmds.smid = smid;
6041         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6042         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6043         mpi_request->VF_ID = 0; /* TODO */
6044         mpi_request->VP_ID = 0;
6045         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6046                 mpi_request->EventMasks[i] =
6047                     cpu_to_le32(ioc->event_masks[i]);
6048         init_completion(&ioc->base_cmds.done);
6049         mpt3sas_base_put_smid_default(ioc, smid);
6050         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6051         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6052                 pr_err(MPT3SAS_FMT "%s: timeout\n",
6053                     ioc->name, __func__);
6054                 _debug_dump_mf(mpi_request,
6055                     sizeof(Mpi2EventNotificationRequest_t)/4);
6056                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6057                         r = -EFAULT;
6058                 else
6059                         r = -ETIME;
6060         } else
6061                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
6062                     ioc->name, __func__));
6063         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6064         return r;
6065 }
6066
6067 /**
6068  * mpt3sas_base_validate_event_type - validating event types
6069  * @ioc: per adapter object
6070  * @event_type: firmware event
6071  *
6072  * This will turn on firmware event notification when application
6073  * ask for that event. We don't mask events that are already enabled.
6074  */
6075 void
6076 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6077 {
6078         int i, j;
6079         u32 event_mask, desired_event;
6080         u8 send_update_to_fw;
6081
6082         for (i = 0, send_update_to_fw = 0; i <
6083             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6084                 event_mask = ~event_type[i];
6085                 desired_event = 1;
6086                 for (j = 0; j < 32; j++) {
6087                         if (!(event_mask & desired_event) &&
6088                             (ioc->event_masks[i] & desired_event)) {
6089                                 ioc->event_masks[i] &= ~desired_event;
6090                                 send_update_to_fw = 1;
6091                         }
6092                         desired_event = (desired_event << 1);
6093                 }
6094         }
6095
6096         if (!send_update_to_fw)
6097                 return;
6098
6099         mutex_lock(&ioc->base_cmds.mutex);
6100         _base_event_notification(ioc);
6101         mutex_unlock(&ioc->base_cmds.mutex);
6102 }
6103
6104 /**
6105  * _base_diag_reset - the "big hammer" start of day reset
6106  * @ioc: per adapter object
6107  *
6108  * Return: 0 for success, non-zero for failure.
6109  */
6110 static int
6111 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6112 {
6113         u32 host_diagnostic;
6114         u32 ioc_state;
6115         u32 count;
6116         u32 hcb_size;
6117
6118         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
6119
6120         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
6121             ioc->name));
6122
6123         count = 0;
6124         do {
6125                 /* Write magic sequence to WriteSequence register
6126                  * Loop until in diagnostic mode
6127                  */
6128                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6129                         "write magic sequence\n", ioc->name));
6130                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6131                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6132                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6133                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6134                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6135                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6136                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6137
6138                 /* wait 100 msec */
6139                 msleep(100);
6140
6141                 if (count++ > 20)
6142                         goto out;
6143
6144                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6145                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6146                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6147                     ioc->name, count, host_diagnostic));
6148
6149         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6150
6151         hcb_size = readl(&ioc->chip->HCBSize);
6152
6153         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
6154             ioc->name));
6155         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6156              &ioc->chip->HostDiagnostic);
6157
6158         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6159         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6160
6161         /* Approximately 300 second max wait */
6162         for (count = 0; count < (300000000 /
6163                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6164
6165                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6166
6167                 if (host_diagnostic == 0xFFFFFFFF)
6168                         goto out;
6169                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6170                         break;
6171
6172                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6173         }
6174
6175         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6176
6177                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6178                 "restart the adapter assuming the HCB Address points to good F/W\n",
6179                     ioc->name));
6180                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6181                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6182                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6183
6184                 drsprintk(ioc, pr_info(MPT3SAS_FMT
6185                     "re-enable the HCDW\n", ioc->name));
6186                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6187                     &ioc->chip->HCBSize);
6188         }
6189
6190         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
6191             ioc->name));
6192         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6193             &ioc->chip->HostDiagnostic);
6194
6195         drsprintk(ioc, pr_info(MPT3SAS_FMT
6196                 "disable writes to the diagnostic register\n", ioc->name));
6197         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6198
6199         drsprintk(ioc, pr_info(MPT3SAS_FMT
6200                 "Wait for FW to go to the READY state\n", ioc->name));
6201         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6202         if (ioc_state) {
6203                 pr_err(MPT3SAS_FMT
6204                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6205                         ioc->name, __func__, ioc_state);
6206                 goto out;
6207         }
6208
6209         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
6210         return 0;
6211
6212  out:
6213         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
6214         return -EFAULT;
6215 }
6216
6217 /**
6218  * _base_make_ioc_ready - put controller in READY state
6219  * @ioc: per adapter object
6220  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6221  *
6222  * Return: 0 for success, non-zero for failure.
6223  */
6224 static int
6225 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6226 {
6227         u32 ioc_state;
6228         int rc;
6229         int count;
6230
6231         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6232             __func__));
6233
6234         if (ioc->pci_error_recovery)
6235                 return 0;
6236
6237         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6238         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
6239             ioc->name, __func__, ioc_state));
6240
6241         /* if in RESET state, it should move to READY state shortly */
6242         count = 0;
6243         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6244                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6245                     MPI2_IOC_STATE_READY) {
6246                         if (count++ == 10) {
6247                                 pr_err(MPT3SAS_FMT
6248                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6249                                     ioc->name, __func__, ioc_state);
6250                                 return -EFAULT;
6251                         }
6252                         ssleep(1);
6253                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6254                 }
6255         }
6256
6257         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6258                 return 0;
6259
6260         if (ioc_state & MPI2_DOORBELL_USED) {
6261                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
6262                         "unexpected doorbell active!\n",
6263                         ioc->name));
6264                 goto issue_diag_reset;
6265         }
6266
6267         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6268                 mpt3sas_base_fault_info(ioc, ioc_state &
6269                     MPI2_DOORBELL_DATA_MASK);
6270                 goto issue_diag_reset;
6271         }
6272
6273         if (type == FORCE_BIG_HAMMER)
6274                 goto issue_diag_reset;
6275
6276         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6277                 if (!(_base_send_ioc_reset(ioc,
6278                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6279                         return 0;
6280         }
6281
6282  issue_diag_reset:
6283         rc = _base_diag_reset(ioc);
6284         return rc;
6285 }
6286
6287 /**
6288  * _base_make_ioc_operational - put controller in OPERATIONAL state
6289  * @ioc: per adapter object
6290  *
6291  * Return: 0 for success, non-zero for failure.
6292  */
6293 static int
6294 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6295 {
6296         int r, i, index;
6297         unsigned long   flags;
6298         u32 reply_address;
6299         u16 smid;
6300         struct _tr_list *delayed_tr, *delayed_tr_next;
6301         struct _sc_list *delayed_sc, *delayed_sc_next;
6302         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6303         u8 hide_flag;
6304         struct adapter_reply_queue *reply_q;
6305         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6306
6307         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6308             __func__));
6309
6310         /* clean the delayed target reset list */
6311         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6312             &ioc->delayed_tr_list, list) {
6313                 list_del(&delayed_tr->list);
6314                 kfree(delayed_tr);
6315         }
6316
6317
6318         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6319             &ioc->delayed_tr_volume_list, list) {
6320                 list_del(&delayed_tr->list);
6321                 kfree(delayed_tr);
6322         }
6323
6324         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6325             &ioc->delayed_sc_list, list) {
6326                 list_del(&delayed_sc->list);
6327                 kfree(delayed_sc);
6328         }
6329
6330         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6331             &ioc->delayed_event_ack_list, list) {
6332                 list_del(&delayed_event_ack->list);
6333                 kfree(delayed_event_ack);
6334         }
6335
6336         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6337
6338         /* hi-priority queue */
6339         INIT_LIST_HEAD(&ioc->hpr_free_list);
6340         smid = ioc->hi_priority_smid;
6341         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6342                 ioc->hpr_lookup[i].cb_idx = 0xFF;
6343                 ioc->hpr_lookup[i].smid = smid;
6344                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6345                     &ioc->hpr_free_list);
6346         }
6347
6348         /* internal queue */
6349         INIT_LIST_HEAD(&ioc->internal_free_list);
6350         smid = ioc->internal_smid;
6351         for (i = 0; i < ioc->internal_depth; i++, smid++) {
6352                 ioc->internal_lookup[i].cb_idx = 0xFF;
6353                 ioc->internal_lookup[i].smid = smid;
6354                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6355                     &ioc->internal_free_list);
6356         }
6357
6358         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6359
6360         /* initialize Reply Free Queue */
6361         for (i = 0, reply_address = (u32)ioc->reply_dma ;
6362             i < ioc->reply_free_queue_depth ; i++, reply_address +=
6363             ioc->reply_sz) {
6364                 ioc->reply_free[i] = cpu_to_le32(reply_address);
6365                 if (ioc->is_mcpu_endpoint)
6366                         _base_clone_reply_to_sys_mem(ioc,
6367                                         reply_address, i);
6368         }
6369
6370         /* initialize reply queues */
6371         if (ioc->is_driver_loading)
6372                 _base_assign_reply_queues(ioc);
6373
6374         /* initialize Reply Post Free Queue */
6375         index = 0;
6376         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6377         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6378                 /*
6379                  * If RDPQ is enabled, switch to the next allocation.
6380                  * Otherwise advance within the contiguous region.
6381                  */
6382                 if (ioc->rdpq_array_enable) {
6383                         reply_q->reply_post_free =
6384                                 ioc->reply_post[index++].reply_post_free;
6385                 } else {
6386                         reply_q->reply_post_free = reply_post_free_contig;
6387                         reply_post_free_contig += ioc->reply_post_queue_depth;
6388                 }
6389
6390                 reply_q->reply_post_host_index = 0;
6391                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6392                         reply_q->reply_post_free[i].Words =
6393                             cpu_to_le64(ULLONG_MAX);
6394                 if (!_base_is_controller_msix_enabled(ioc))
6395                         goto skip_init_reply_post_free_queue;
6396         }
6397  skip_init_reply_post_free_queue:
6398
6399         r = _base_send_ioc_init(ioc);
6400         if (r)
6401                 return r;
6402
6403         /* initialize reply free host index */
6404         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6405         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6406
6407         /* initialize reply post host index */
6408         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6409                 if (ioc->combined_reply_queue)
6410                         writel((reply_q->msix_index & 7)<<
6411                            MPI2_RPHI_MSIX_INDEX_SHIFT,
6412                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6413                 else
6414                         writel(reply_q->msix_index <<
6415                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
6416                                 &ioc->chip->ReplyPostHostIndex);
6417
6418                 if (!_base_is_controller_msix_enabled(ioc))
6419                         goto skip_init_reply_post_host_index;
6420         }
6421
6422  skip_init_reply_post_host_index:
6423
6424         _base_unmask_interrupts(ioc);
6425
6426         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6427                 r = _base_display_fwpkg_version(ioc);
6428                 if (r)
6429                         return r;
6430         }
6431
6432         _base_static_config_pages(ioc);
6433         r = _base_event_notification(ioc);
6434         if (r)
6435                 return r;
6436
6437         if (ioc->is_driver_loading) {
6438
6439                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6440                     == 0x80) {
6441                         hide_flag = (u8) (
6442                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6443                             MFG_PAGE10_HIDE_SSDS_MASK);
6444                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6445                                 ioc->mfg_pg10_hide_flag = hide_flag;
6446                 }
6447
6448                 ioc->wait_for_discovery_to_complete =
6449                     _base_determine_wait_on_discovery(ioc);
6450
6451                 return r; /* scan_start and scan_finished support */
6452         }
6453
6454         r = _base_send_port_enable(ioc);
6455         if (r)
6456                 return r;
6457
6458         return r;
6459 }
6460
6461 /**
6462  * mpt3sas_base_free_resources - free resources controller resources
6463  * @ioc: per adapter object
6464  */
6465 void
6466 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6467 {
6468         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6469             __func__));
6470
6471         /* synchronizing freeing resource with pci_access_mutex lock */
6472         mutex_lock(&ioc->pci_access_mutex);
6473         if (ioc->chip_phys && ioc->chip) {
6474                 _base_mask_interrupts(ioc);
6475                 ioc->shost_recovery = 1;
6476                 _base_make_ioc_ready(ioc, SOFT_RESET);
6477                 ioc->shost_recovery = 0;
6478         }
6479
6480         mpt3sas_base_unmap_resources(ioc);
6481         mutex_unlock(&ioc->pci_access_mutex);
6482         return;
6483 }
6484
6485 /**
6486  * mpt3sas_base_attach - attach controller instance
6487  * @ioc: per adapter object
6488  *
6489  * Return: 0 for success, non-zero for failure.
6490  */
6491 int
6492 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6493 {
6494         int r, i;
6495         int cpu_id, last_cpu_id = 0;
6496
6497         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6498             __func__));
6499
6500         /* setup cpu_msix_table */
6501         ioc->cpu_count = num_online_cpus();
6502         for_each_online_cpu(cpu_id)
6503                 last_cpu_id = cpu_id;
6504         ioc->cpu_msix_table_sz = last_cpu_id + 1;
6505         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6506         ioc->reply_queue_count = 1;
6507         if (!ioc->cpu_msix_table) {
6508                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
6509                         "allocation for cpu_msix_table failed!!!\n",
6510                         ioc->name));
6511                 r = -ENOMEM;
6512                 goto out_free_resources;
6513         }
6514
6515         if (ioc->is_warpdrive) {
6516                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6517                     sizeof(resource_size_t *), GFP_KERNEL);
6518                 if (!ioc->reply_post_host_index) {
6519                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
6520                                 "for reply_post_host_index failed!!!\n",
6521                                 ioc->name));
6522                         r = -ENOMEM;
6523                         goto out_free_resources;
6524                 }
6525         }
6526
6527         ioc->rdpq_array_enable_assigned = 0;
6528         ioc->dma_mask = 0;
6529         r = mpt3sas_base_map_resources(ioc);
6530         if (r)
6531                 goto out_free_resources;
6532
6533         pci_set_drvdata(ioc->pdev, ioc->shost);
6534         r = _base_get_ioc_facts(ioc);
6535         if (r)
6536                 goto out_free_resources;
6537
6538         switch (ioc->hba_mpi_version_belonged) {
6539         case MPI2_VERSION:
6540                 ioc->build_sg_scmd = &_base_build_sg_scmd;
6541                 ioc->build_sg = &_base_build_sg;
6542                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6543                 break;
6544         case MPI25_VERSION:
6545         case MPI26_VERSION:
6546                 /*
6547                  * In SAS3.0,
6548                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6549                  * Target Status - all require the IEEE formated scatter gather
6550                  * elements.
6551                  */
6552                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6553                 ioc->build_sg = &_base_build_sg_ieee;
6554                 ioc->build_nvme_prp = &_base_build_nvme_prp;
6555                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6556                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6557
6558                 break;
6559         }
6560
6561         if (ioc->is_mcpu_endpoint)
6562                 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6563         else
6564                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6565
6566         /*
6567          * These function pointers for other requests that don't
6568          * the require IEEE scatter gather elements.
6569          *
6570          * For example Configuration Pages and SAS IOUNIT Control don't.
6571          */
6572         ioc->build_sg_mpi = &_base_build_sg;
6573         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6574
6575         r = _base_make_ioc_ready(ioc, SOFT_RESET);
6576         if (r)
6577                 goto out_free_resources;
6578
6579         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6580             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6581         if (!ioc->pfacts) {
6582                 r = -ENOMEM;
6583                 goto out_free_resources;
6584         }
6585
6586         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6587                 r = _base_get_port_facts(ioc, i);
6588                 if (r)
6589                         goto out_free_resources;
6590         }
6591
6592         r = _base_allocate_memory_pools(ioc);
6593         if (r)
6594                 goto out_free_resources;
6595
6596         init_waitqueue_head(&ioc->reset_wq);
6597
6598         /* allocate memory pd handle bitmask list */
6599         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6600         if (ioc->facts.MaxDevHandle % 8)
6601                 ioc->pd_handles_sz++;
6602         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6603             GFP_KERNEL);
6604         if (!ioc->pd_handles) {
6605                 r = -ENOMEM;
6606                 goto out_free_resources;
6607         }
6608         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6609             GFP_KERNEL);
6610         if (!ioc->blocking_handles) {
6611                 r = -ENOMEM;
6612                 goto out_free_resources;
6613         }
6614
6615         /* allocate memory for pending OS device add list */
6616         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6617         if (ioc->facts.MaxDevHandle % 8)
6618                 ioc->pend_os_device_add_sz++;
6619         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6620             GFP_KERNEL);
6621         if (!ioc->pend_os_device_add)
6622                 goto out_free_resources;
6623
6624         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6625         ioc->device_remove_in_progress =
6626                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6627         if (!ioc->device_remove_in_progress)
6628                 goto out_free_resources;
6629
6630         ioc->fwfault_debug = mpt3sas_fwfault_debug;
6631
6632         /* base internal command bits */
6633         mutex_init(&ioc->base_cmds.mutex);
6634         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6635         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6636
6637         /* port_enable command bits */
6638         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6639         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6640
6641         /* transport internal command bits */
6642         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6643         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6644         mutex_init(&ioc->transport_cmds.mutex);
6645
6646         /* scsih internal command bits */
6647         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6648         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6649         mutex_init(&ioc->scsih_cmds.mutex);
6650
6651         /* task management internal command bits */
6652         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6653         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6654         mutex_init(&ioc->tm_cmds.mutex);
6655
6656         /* config page internal command bits */
6657         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6658         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6659         mutex_init(&ioc->config_cmds.mutex);
6660
6661         /* ctl module internal command bits */
6662         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6663         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6664         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6665         mutex_init(&ioc->ctl_cmds.mutex);
6666
6667         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6668             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6669             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6670             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6671                 r = -ENOMEM;
6672                 goto out_free_resources;
6673         }
6674
6675         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6676                 ioc->event_masks[i] = -1;
6677
6678         /* here we enable the events we care about */
6679         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6680         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6681         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6682         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6683         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6684         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6685         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6686         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6687         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6688         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6689         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6690         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6691         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6692         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6693                 if (ioc->is_gen35_ioc) {
6694                         _base_unmask_events(ioc,
6695                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6696                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6697                         _base_unmask_events(ioc,
6698                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6699                 }
6700         }
6701         r = _base_make_ioc_operational(ioc);
6702         if (r)
6703                 goto out_free_resources;
6704
6705         ioc->non_operational_loop = 0;
6706         ioc->got_task_abort_from_ioctl = 0;
6707         return 0;
6708
6709  out_free_resources:
6710
6711         ioc->remove_host = 1;
6712
6713         mpt3sas_base_free_resources(ioc);
6714         _base_release_memory_pools(ioc);
6715         pci_set_drvdata(ioc->pdev, NULL);
6716         kfree(ioc->cpu_msix_table);
6717         if (ioc->is_warpdrive)
6718                 kfree(ioc->reply_post_host_index);
6719         kfree(ioc->pd_handles);
6720         kfree(ioc->blocking_handles);
6721         kfree(ioc->device_remove_in_progress);
6722         kfree(ioc->pend_os_device_add);
6723         kfree(ioc->tm_cmds.reply);
6724         kfree(ioc->transport_cmds.reply);
6725         kfree(ioc->scsih_cmds.reply);
6726         kfree(ioc->config_cmds.reply);
6727         kfree(ioc->base_cmds.reply);
6728         kfree(ioc->port_enable_cmds.reply);
6729         kfree(ioc->ctl_cmds.reply);
6730         kfree(ioc->ctl_cmds.sense);
6731         kfree(ioc->pfacts);
6732         ioc->ctl_cmds.reply = NULL;
6733         ioc->base_cmds.reply = NULL;
6734         ioc->tm_cmds.reply = NULL;
6735         ioc->scsih_cmds.reply = NULL;
6736         ioc->transport_cmds.reply = NULL;
6737         ioc->config_cmds.reply = NULL;
6738         ioc->pfacts = NULL;
6739         return r;
6740 }
6741
6742
6743 /**
6744  * mpt3sas_base_detach - remove controller instance
6745  * @ioc: per adapter object
6746  */
6747 void
6748 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6749 {
6750         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6751             __func__));
6752
6753         mpt3sas_base_stop_watchdog(ioc);
6754         mpt3sas_base_free_resources(ioc);
6755         _base_release_memory_pools(ioc);
6756         mpt3sas_free_enclosure_list(ioc);
6757         pci_set_drvdata(ioc->pdev, NULL);
6758         kfree(ioc->cpu_msix_table);
6759         if (ioc->is_warpdrive)
6760                 kfree(ioc->reply_post_host_index);
6761         kfree(ioc->pd_handles);
6762         kfree(ioc->blocking_handles);
6763         kfree(ioc->device_remove_in_progress);
6764         kfree(ioc->pend_os_device_add);
6765         kfree(ioc->pfacts);
6766         kfree(ioc->ctl_cmds.reply);
6767         kfree(ioc->ctl_cmds.sense);
6768         kfree(ioc->base_cmds.reply);
6769         kfree(ioc->port_enable_cmds.reply);
6770         kfree(ioc->tm_cmds.reply);
6771         kfree(ioc->transport_cmds.reply);
6772         kfree(ioc->scsih_cmds.reply);
6773         kfree(ioc->config_cmds.reply);
6774 }
6775
6776 /**
6777  * _base_pre_reset_handler - pre reset handler
6778  * @ioc: per adapter object
6779  */
6780 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6781 {
6782         mpt3sas_scsih_pre_reset_handler(ioc);
6783         mpt3sas_ctl_pre_reset_handler(ioc);
6784         dtmprintk(ioc, pr_info(MPT3SAS_FMT
6785                         "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6786 }
6787
6788 /**
6789  * _base_after_reset_handler - after reset handler
6790  * @ioc: per adapter object
6791  */
6792 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6793 {
6794         mpt3sas_scsih_after_reset_handler(ioc);
6795         mpt3sas_ctl_after_reset_handler(ioc);
6796         dtmprintk(ioc, pr_info(MPT3SAS_FMT
6797                         "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6798         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6799                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
6800                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6801                 complete(&ioc->transport_cmds.done);
6802         }
6803         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6804                 ioc->base_cmds.status |= MPT3_CMD_RESET;
6805                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6806                 complete(&ioc->base_cmds.done);
6807         }
6808         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6809                 ioc->port_enable_failed = 1;
6810                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6811                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6812                 if (ioc->is_driver_loading) {
6813                         ioc->start_scan_failed =
6814                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
6815                         ioc->start_scan = 0;
6816                         ioc->port_enable_cmds.status =
6817                                 MPT3_CMD_NOT_USED;
6818                 } else {
6819                         complete(&ioc->port_enable_cmds.done);
6820                 }
6821         }
6822         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6823                 ioc->config_cmds.status |= MPT3_CMD_RESET;
6824                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6825                 ioc->config_cmds.smid = USHRT_MAX;
6826                 complete(&ioc->config_cmds.done);
6827         }
6828 }
6829
6830 /**
6831  * _base_reset_done_handler - reset done handler
6832  * @ioc: per adapter object
6833  */
6834 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
6835 {
6836         mpt3sas_scsih_reset_done_handler(ioc);
6837         mpt3sas_ctl_reset_done_handler(ioc);
6838         dtmprintk(ioc, pr_info(MPT3SAS_FMT
6839                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6840 }
6841
6842 /**
6843  * mpt3sas_wait_for_commands_to_complete - reset controller
6844  * @ioc: Pointer to MPT_ADAPTER structure
6845  *
6846  * This function is waiting 10s for all pending commands to complete
6847  * prior to putting controller in reset.
6848  */
6849 void
6850 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6851 {
6852         u32 ioc_state;
6853
6854         ioc->pending_io_count = 0;
6855
6856         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6857         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6858                 return;
6859
6860         /* pending command count */
6861         ioc->pending_io_count = scsi_host_busy(ioc->shost);
6862
6863         if (!ioc->pending_io_count)
6864                 return;
6865
6866         /* wait for pending commands to complete */
6867         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6868 }
6869
6870 /**
6871  * mpt3sas_base_hard_reset_handler - reset controller
6872  * @ioc: Pointer to MPT_ADAPTER structure
6873  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6874  *
6875  * Return: 0 for success, non-zero for failure.
6876  */
6877 int
6878 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6879         enum reset_type type)
6880 {
6881         int r;
6882         unsigned long flags;
6883         u32 ioc_state;
6884         u8 is_fault = 0, is_trigger = 0;
6885
6886         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6887             __func__));
6888
6889         if (ioc->pci_error_recovery) {
6890                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6891                     ioc->name, __func__);
6892                 r = 0;
6893                 goto out_unlocked;
6894         }
6895
6896         if (mpt3sas_fwfault_debug)
6897                 mpt3sas_halt_firmware(ioc);
6898
6899         /* wait for an active reset in progress to complete */
6900         mutex_lock(&ioc->reset_in_progress_mutex);
6901
6902         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6903         ioc->shost_recovery = 1;
6904         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6905
6906         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6907             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6908             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6909             MPT3_DIAG_BUFFER_IS_RELEASED))) {
6910                 is_trigger = 1;
6911                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6912                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6913                         is_fault = 1;
6914         }
6915         _base_pre_reset_handler(ioc);
6916         mpt3sas_wait_for_commands_to_complete(ioc);
6917         _base_mask_interrupts(ioc);
6918         r = _base_make_ioc_ready(ioc, type);
6919         if (r)
6920                 goto out;
6921         _base_after_reset_handler(ioc);
6922
6923         /* If this hard reset is called while port enable is active, then
6924          * there is no reason to call make_ioc_operational
6925          */
6926         if (ioc->is_driver_loading && ioc->port_enable_failed) {
6927                 ioc->remove_host = 1;
6928                 r = -EFAULT;
6929                 goto out;
6930         }
6931         r = _base_get_ioc_facts(ioc);
6932         if (r)
6933                 goto out;
6934
6935         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6936                 panic("%s: Issue occurred with flashing controller firmware."
6937                       "Please reboot the system and ensure that the correct"
6938                       " firmware version is running\n", ioc->name);
6939
6940         r = _base_make_ioc_operational(ioc);
6941         if (!r)
6942                 _base_reset_done_handler(ioc);
6943
6944  out:
6945         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
6946             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
6947
6948         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6949         ioc->shost_recovery = 0;
6950         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6951         ioc->ioc_reset_count++;
6952         mutex_unlock(&ioc->reset_in_progress_mutex);
6953
6954  out_unlocked:
6955         if ((r == 0) && is_trigger) {
6956                 if (is_fault)
6957                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6958                 else
6959                         mpt3sas_trigger_master(ioc,
6960                             MASTER_TRIGGER_ADAPTER_RESET);
6961         }
6962         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6963             __func__));
6964         return r;
6965 }