]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/scsi_lib.c
938a7e398cd432d79f4561192240a5ffc5aecc15
[linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(bool unchecked_isa_dma)
49 {
50         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
54                                    unsigned char *sense_buffer)
55 {
56         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
57                         sense_buffer);
58 }
59
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
61         gfp_t gfp_mask, int numa_node)
62 {
63         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
64                                      gfp_mask, numa_node);
65 }
66
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69         struct kmem_cache *cache;
70         int ret = 0;
71
72         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
73         if (cache)
74                 return 0;
75
76         mutex_lock(&scsi_sense_cache_mutex);
77         if (shost->unchecked_isa_dma) {
78                 scsi_sense_isadma_cache =
79                         kmem_cache_create("scsi_sense_cache(DMA)",
80                         SCSI_SENSE_BUFFERSIZE, 0,
81                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82                 if (!scsi_sense_isadma_cache)
83                         ret = -ENOMEM;
84         } else {
85                 scsi_sense_cache =
86                         kmem_cache_create("scsi_sense_cache",
87                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88                 if (!scsi_sense_cache)
89                         ret = -ENOMEM;
90         }
91
92         mutex_unlock(&scsi_sense_cache_mutex);
93         return ret;
94 }
95
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY        3
102
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106         struct Scsi_Host *host = cmd->device->host;
107         struct scsi_device *device = cmd->device;
108         struct scsi_target *starget = scsi_target(device);
109
110         /*
111          * Set the appropriate busy bit for the device/host.
112          *
113          * If the host/device isn't busy, assume that something actually
114          * completed, and that we should be able to queue a command now.
115          *
116          * Note that the prior mid-layer assumption that any host could
117          * always queue at least one command is now broken.  The mid-layer
118          * will implement a user specifiable stall (see
119          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120          * if a command is requeued with no other commands outstanding
121          * either for the device or for the host.
122          */
123         switch (reason) {
124         case SCSI_MLQUEUE_HOST_BUSY:
125                 atomic_set(&host->host_blocked, host->max_host_blocked);
126                 break;
127         case SCSI_MLQUEUE_DEVICE_BUSY:
128         case SCSI_MLQUEUE_EH_RETRY:
129                 atomic_set(&device->device_blocked,
130                            device->max_device_blocked);
131                 break;
132         case SCSI_MLQUEUE_TARGET_BUSY:
133                 atomic_set(&starget->target_blocked,
134                            starget->max_target_blocked);
135                 break;
136         }
137 }
138
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141         struct scsi_device *sdev = cmd->device;
142
143         blk_mq_requeue_request(cmd->request, true);
144         put_device(&sdev->sdev_gendev);
145 }
146
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161         struct scsi_device *device = cmd->device;
162         struct request_queue *q = device->request_queue;
163         unsigned long flags;
164
165         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166                 "Inserting command %p into mlqueue\n", cmd));
167
168         scsi_set_blocked(cmd, reason);
169
170         /*
171          * Decrement the counters, since these commands are no longer
172          * active on the host/device.
173          */
174         if (unbusy)
175                 scsi_device_unbusy(device);
176
177         /*
178          * Requeue this command.  It will go before all other commands
179          * that are already in the queue. Schedule requeue work under
180          * lock such that the kblockd_schedule_work() call happens
181          * before blk_cleanup_queue() finishes.
182          */
183         cmd->result = 0;
184         if (q->mq_ops) {
185                 scsi_mq_requeue_cmd(cmd);
186                 return;
187         }
188         spin_lock_irqsave(q->queue_lock, flags);
189         blk_requeue_request(q, cmd->request);
190         kblockd_schedule_work(&device->requeue_work);
191         spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215         __scsi_queue_insert(cmd, reason, 1);
216 }
217
218
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:       scsi device
222  * @cmd:        scsi command
223  * @data_direction: data direction
224  * @buffer:     data buffer
225  * @bufflen:    len of buffer
226  * @sense:      optional sense buffer
227  * @sshdr:      optional decoded sense header
228  * @timeout:    request timeout in seconds
229  * @retries:    number of times to retry request
230  * @flags:      flags for ->cmd_flags
231  * @rq_flags:   flags for ->rq_flags
232  * @resid:      optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238                  int data_direction, void *buffer, unsigned bufflen,
239                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
240                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
241                  int *resid)
242 {
243         struct request *req;
244         struct scsi_request *rq;
245         int ret = DRIVER_ERROR << 24;
246
247         req = blk_get_request(sdev->request_queue,
248                         data_direction == DMA_TO_DEVICE ?
249                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250         if (IS_ERR(req))
251                 return ret;
252         rq = scsi_req(req);
253
254         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
255                                         buffer, bufflen, __GFP_RECLAIM))
256                 goto out;
257
258         rq->cmd_len = COMMAND_SIZE(cmd[0]);
259         memcpy(rq->cmd, cmd, rq->cmd_len);
260         rq->retries = retries;
261         req->timeout = timeout;
262         req->cmd_flags |= flags;
263         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264
265         /*
266          * head injection *required* here otherwise quiesce won't work
267          */
268         blk_execute_rq(req->q, NULL, req, 1);
269
270         /*
271          * Some devices (USB mass-storage in particular) may transfer
272          * garbage data together with a residue indicating that the data
273          * is invalid.  Prevent the garbage from being misinterpreted
274          * and prevent security leaks by zeroing out the excess data.
275          */
276         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278
279         if (resid)
280                 *resid = rq->resid_len;
281         if (sense && rq->sense_len)
282                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283         if (sshdr)
284                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285         ret = rq->result;
286  out:
287         blk_put_request(req);
288
289         return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292
293 /*
294  * Function:    scsi_init_cmd_errh()
295  *
296  * Purpose:     Initialize cmd fields related to error handling.
297  *
298  * Arguments:   cmd     - command that is ready to be queued.
299  *
300  * Notes:       This function has the job of initializing a number of
301  *              fields related to error handling.   Typically this will
302  *              be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306         cmd->serial_number = 0;
307         scsi_set_resid(cmd, 0);
308         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309         if (cmd->cmd_len == 0)
310                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315         struct Scsi_Host *shost = sdev->host;
316         struct scsi_target *starget = scsi_target(sdev);
317         unsigned long flags;
318
319         atomic_dec(&shost->host_busy);
320         if (starget->can_queue > 0)
321                 atomic_dec(&starget->target_busy);
322
323         if (unlikely(scsi_host_in_recovery(shost) &&
324                      (shost->host_failed || shost->host_eh_scheduled))) {
325                 spin_lock_irqsave(shost->host_lock, flags);
326                 scsi_eh_wakeup(shost);
327                 spin_unlock_irqrestore(shost->host_lock, flags);
328         }
329
330         atomic_dec(&sdev->device_busy);
331 }
332
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335         if (q->mq_ops)
336                 blk_mq_start_hw_queues(q);
337         else
338                 blk_run_queue(q);
339 }
340
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350         struct Scsi_Host *shost = current_sdev->host;
351         struct scsi_device *sdev, *tmp;
352         struct scsi_target *starget = scsi_target(current_sdev);
353         unsigned long flags;
354
355         spin_lock_irqsave(shost->host_lock, flags);
356         starget->starget_sdev_user = NULL;
357         spin_unlock_irqrestore(shost->host_lock, flags);
358
359         /*
360          * Call blk_run_queue for all LUNs on the target, starting with
361          * current_sdev. We race with others (to set starget_sdev_user),
362          * but in most cases, we will be first. Ideally, each LU on the
363          * target would get some limited time or requests on the target.
364          */
365         scsi_kick_queue(current_sdev->request_queue);
366
367         spin_lock_irqsave(shost->host_lock, flags);
368         if (starget->starget_sdev_user)
369                 goto out;
370         list_for_each_entry_safe(sdev, tmp, &starget->devices,
371                         same_target_siblings) {
372                 if (sdev == current_sdev)
373                         continue;
374                 if (scsi_device_get(sdev))
375                         continue;
376
377                 spin_unlock_irqrestore(shost->host_lock, flags);
378                 scsi_kick_queue(sdev->request_queue);
379                 spin_lock_irqsave(shost->host_lock, flags);
380         
381                 scsi_device_put(sdev);
382         }
383  out:
384         spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390                 return true;
391         if (atomic_read(&sdev->device_blocked) > 0)
392                 return true;
393         return false;
394 }
395
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398         if (starget->can_queue > 0) {
399                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
400                         return true;
401                 if (atomic_read(&starget->target_blocked) > 0)
402                         return true;
403         }
404         return false;
405 }
406
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409         if (shost->can_queue > 0 &&
410             atomic_read(&shost->host_busy) >= shost->can_queue)
411                 return true;
412         if (atomic_read(&shost->host_blocked) > 0)
413                 return true;
414         if (shost->host_self_blocked)
415                 return true;
416         return false;
417 }
418
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421         LIST_HEAD(starved_list);
422         struct scsi_device *sdev;
423         unsigned long flags;
424
425         spin_lock_irqsave(shost->host_lock, flags);
426         list_splice_init(&shost->starved_list, &starved_list);
427
428         while (!list_empty(&starved_list)) {
429                 struct request_queue *slq;
430
431                 /*
432                  * As long as shost is accepting commands and we have
433                  * starved queues, call blk_run_queue. scsi_request_fn
434                  * drops the queue_lock and can add us back to the
435                  * starved_list.
436                  *
437                  * host_lock protects the starved_list and starved_entry.
438                  * scsi_request_fn must get the host_lock before checking
439                  * or modifying starved_list or starved_entry.
440                  */
441                 if (scsi_host_is_busy(shost))
442                         break;
443
444                 sdev = list_entry(starved_list.next,
445                                   struct scsi_device, starved_entry);
446                 list_del_init(&sdev->starved_entry);
447                 if (scsi_target_is_busy(scsi_target(sdev))) {
448                         list_move_tail(&sdev->starved_entry,
449                                        &shost->starved_list);
450                         continue;
451                 }
452
453                 /*
454                  * Once we drop the host lock, a racing scsi_remove_device()
455                  * call may remove the sdev from the starved list and destroy
456                  * it and the queue.  Mitigate by taking a reference to the
457                  * queue and never touching the sdev again after we drop the
458                  * host lock.  Note: if __scsi_remove_device() invokes
459                  * blk_cleanup_queue() before the queue is run from this
460                  * function then blk_run_queue() will return immediately since
461                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462                  */
463                 slq = sdev->request_queue;
464                 if (!blk_get_queue(slq))
465                         continue;
466                 spin_unlock_irqrestore(shost->host_lock, flags);
467
468                 scsi_kick_queue(slq);
469                 blk_put_queue(slq);
470
471                 spin_lock_irqsave(shost->host_lock, flags);
472         }
473         /* put any unprocessed entries back */
474         list_splice(&starved_list, &shost->starved_list);
475         spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477
478 /*
479  * Function:   scsi_run_queue()
480  *
481  * Purpose:    Select a proper request queue to serve next
482  *
483  * Arguments:  q       - last request's queue
484  *
485  * Returns:     Nothing
486  *
487  * Notes:      The previous command was completely finished, start
488  *             a new one if possible.
489  */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492         struct scsi_device *sdev = q->queuedata;
493
494         if (scsi_target(sdev)->single_lun)
495                 scsi_single_lun_run(sdev);
496         if (!list_empty(&sdev->host->starved_list))
497                 scsi_starved_list_run(sdev->host);
498
499         if (q->mq_ops)
500                 blk_mq_run_hw_queues(q, false);
501         else
502                 blk_run_queue(q);
503 }
504
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507         struct scsi_device *sdev;
508         struct request_queue *q;
509
510         sdev = container_of(work, struct scsi_device, requeue_work);
511         q = sdev->request_queue;
512         scsi_run_queue(q);
513 }
514
515 /*
516  * Function:    scsi_requeue_command()
517  *
518  * Purpose:     Handle post-processing of completed commands.
519  *
520  * Arguments:   q       - queue to operate on
521  *              cmd     - command that may need to be requeued.
522  *
523  * Returns:     Nothing
524  *
525  * Notes:       After command completion, there may be blocks left
526  *              over which weren't finished by the previous command
527  *              this can be for a number of reasons - the main one is
528  *              I/O errors in the middle of the request, in which case
529  *              we need to request the blocks that come after the bad
530  *              sector.
531  * Notes:       Upon return, cmd is a stale pointer.
532  */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535         struct scsi_device *sdev = cmd->device;
536         struct request *req = cmd->request;
537         unsigned long flags;
538
539         spin_lock_irqsave(q->queue_lock, flags);
540         blk_unprep_request(req);
541         req->special = NULL;
542         scsi_put_command(cmd);
543         blk_requeue_request(q, req);
544         spin_unlock_irqrestore(q->queue_lock, flags);
545
546         scsi_run_queue(q);
547
548         put_device(&sdev->sdev_gendev);
549 }
550
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553         struct scsi_device *sdev;
554
555         shost_for_each_device(sdev, shost)
556                 scsi_run_queue(sdev->request_queue);
557 }
558
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561         if (!blk_rq_is_passthrough(cmd->request)) {
562                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563
564                 if (drv->uninit_command)
565                         drv->uninit_command(cmd);
566         }
567 }
568
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571         struct scsi_data_buffer *sdb;
572
573         if (cmd->sdb.table.nents)
574                 sg_free_table_chained(&cmd->sdb.table, true);
575         if (cmd->request->next_rq) {
576                 sdb = cmd->request->next_rq->special;
577                 if (sdb)
578                         sg_free_table_chained(&sdb->table, true);
579         }
580         if (scsi_prot_sg_count(cmd))
581                 sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586         scsi_mq_free_sgtables(cmd);
587         scsi_uninit_cmd(cmd);
588         scsi_del_cmd_from_list(cmd);
589 }
590
591 /*
592  * Function:    scsi_release_buffers()
593  *
594  * Purpose:     Free resources allocate for a scsi_command.
595  *
596  * Arguments:   cmd     - command that we are bailing.
597  *
598  * Lock status: Assumed that no lock is held upon entry.
599  *
600  * Returns:     Nothing
601  *
602  * Notes:       In the event that an upper level driver rejects a
603  *              command, we must release resources allocated during
604  *              the __init_io() function.  Primarily this would involve
605  *              the scatter-gather table.
606  */
607 static void scsi_release_buffers(struct scsi_cmnd *cmd)
608 {
609         if (cmd->sdb.table.nents)
610                 sg_free_table_chained(&cmd->sdb.table, false);
611
612         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
613
614         if (scsi_prot_sg_count(cmd))
615                 sg_free_table_chained(&cmd->prot_sdb->table, false);
616 }
617
618 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
619 {
620         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
621
622         sg_free_table_chained(&bidi_sdb->table, false);
623         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
624         cmd->request->next_rq->special = NULL;
625 }
626
627 static bool scsi_end_request(struct request *req, blk_status_t error,
628                 unsigned int bytes, unsigned int bidi_bytes)
629 {
630         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
631         struct scsi_device *sdev = cmd->device;
632         struct request_queue *q = sdev->request_queue;
633
634         if (blk_update_request(req, error, bytes))
635                 return true;
636
637         /* Bidi request must be completed as a whole */
638         if (unlikely(bidi_bytes) &&
639             blk_update_request(req->next_rq, error, bidi_bytes))
640                 return true;
641
642         if (blk_queue_add_random(q))
643                 add_disk_randomness(req->rq_disk);
644
645         if (req->mq_ctx) {
646                 /*
647                  * In the MQ case the command gets freed by __blk_mq_end_request,
648                  * so we have to do all cleanup that depends on it earlier.
649                  *
650                  * We also can't kick the queues from irq context, so we
651                  * will have to defer it to a workqueue.
652                  */
653                 scsi_mq_uninit_cmd(cmd);
654
655                 __blk_mq_end_request(req, error);
656
657                 if (scsi_target(sdev)->single_lun ||
658                     !list_empty(&sdev->host->starved_list))
659                         kblockd_schedule_work(&sdev->requeue_work);
660                 else
661                         blk_mq_run_hw_queues(q, true);
662         } else {
663                 unsigned long flags;
664
665                 if (bidi_bytes)
666                         scsi_release_bidi_buffers(cmd);
667                 scsi_release_buffers(cmd);
668                 scsi_put_command(cmd);
669
670                 spin_lock_irqsave(q->queue_lock, flags);
671                 blk_finish_request(req, error);
672                 spin_unlock_irqrestore(q->queue_lock, flags);
673
674                 scsi_run_queue(q);
675         }
676
677         put_device(&sdev->sdev_gendev);
678         return false;
679 }
680
681 /**
682  * __scsi_error_from_host_byte - translate SCSI error code into errno
683  * @cmd:        SCSI command (unused)
684  * @result:     scsi error code
685  *
686  * Translate SCSI error code into block errors.
687  */
688 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
689                 int result)
690 {
691         switch (host_byte(result)) {
692         case DID_TRANSPORT_FAILFAST:
693                 return BLK_STS_TRANSPORT;
694         case DID_TARGET_FAILURE:
695                 set_host_byte(cmd, DID_OK);
696                 return BLK_STS_TARGET;
697         case DID_NEXUS_FAILURE:
698                 return BLK_STS_NEXUS;
699         case DID_ALLOC_FAILURE:
700                 set_host_byte(cmd, DID_OK);
701                 return BLK_STS_NOSPC;
702         case DID_MEDIUM_ERROR:
703                 set_host_byte(cmd, DID_OK);
704                 return BLK_STS_MEDIUM;
705         default:
706                 return BLK_STS_IOERR;
707         }
708 }
709
710 /*
711  * Function:    scsi_io_completion()
712  *
713  * Purpose:     Completion processing for block device I/O requests.
714  *
715  * Arguments:   cmd   - command that is finished.
716  *
717  * Lock status: Assumed that no lock is held upon entry.
718  *
719  * Returns:     Nothing
720  *
721  * Notes:       We will finish off the specified number of sectors.  If we
722  *              are done, the command block will be released and the queue
723  *              function will be goosed.  If we are not done then we have to
724  *              figure out what to do next:
725  *
726  *              a) We can call scsi_requeue_command().  The request
727  *                 will be unprepared and put back on the queue.  Then
728  *                 a new command will be created for it.  This should
729  *                 be used if we made forward progress, or if we want
730  *                 to switch from READ(10) to READ(6) for example.
731  *
732  *              b) We can call __scsi_queue_insert().  The request will
733  *                 be put back on the queue and retried using the same
734  *                 command as before, possibly after a delay.
735  *
736  *              c) We can call scsi_end_request() with -EIO to fail
737  *                 the remainder of the request.
738  */
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
740 {
741         int result = cmd->result;
742         struct request_queue *q = cmd->device->request_queue;
743         struct request *req = cmd->request;
744         blk_status_t error = BLK_STS_OK;
745         struct scsi_sense_hdr sshdr;
746         bool sense_valid = false;
747         int sense_deferred = 0, level = 0;
748         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
749               ACTION_DELAYED_RETRY} action;
750         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
751
752         if (result) {
753                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
754                 if (sense_valid)
755                         sense_deferred = scsi_sense_is_deferred(&sshdr);
756         }
757
758         if (blk_rq_is_passthrough(req)) {
759                 if (result) {
760                         if (sense_valid) {
761                                 /*
762                                  * SG_IO wants current and deferred errors
763                                  */
764                                 scsi_req(req)->sense_len =
765                                         min(8 + cmd->sense_buffer[7],
766                                             SCSI_SENSE_BUFFERSIZE);
767                         }
768                         if (!sense_deferred)
769                                 error = __scsi_error_from_host_byte(cmd, result);
770                 }
771                 /*
772                  * __scsi_error_from_host_byte may have reset the host_byte
773                  */
774                 scsi_req(req)->result = cmd->result;
775                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
776
777                 if (scsi_bidi_cmnd(cmd)) {
778                         /*
779                          * Bidi commands Must be complete as a whole,
780                          * both sides at once.
781                          */
782                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
783                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
784                                         blk_rq_bytes(req->next_rq)))
785                                 BUG();
786                         return;
787                 }
788         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
789                 /*
790                  * Flush commands do not transfers any data, and thus cannot use
791                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
792                  * This sets the error explicitly for the problem case.
793                  */
794                 error = __scsi_error_from_host_byte(cmd, result);
795         }
796
797         /* no bidi support for !blk_rq_is_passthrough yet */
798         BUG_ON(blk_bidi_rq(req));
799
800         /*
801          * Next deal with any sectors which we were able to correctly
802          * handle.
803          */
804         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
805                 "%u sectors total, %d bytes done.\n",
806                 blk_rq_sectors(req), good_bytes));
807
808         /*
809          * Recovered errors need reporting, but they're always treated as
810          * success, so fiddle the result code here.  For passthrough requests
811          * we already took a copy of the original into sreq->result which
812          * is what gets returned to the user
813          */
814         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
815                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816                  * print since caller wants ATA registers. Only occurs on
817                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
818                  */
819                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
820                         ;
821                 else if (!(req->rq_flags & RQF_QUIET))
822                         scsi_print_sense(cmd);
823                 result = 0;
824                 /* for passthrough error may be set */
825                 error = BLK_STS_OK;
826         }
827
828         /*
829          * special case: failed zero length commands always need to
830          * drop down into the retry code. Otherwise, if we finished
831          * all bytes in the request we are done now.
832          */
833         if (!(blk_rq_bytes(req) == 0 && error) &&
834             !scsi_end_request(req, error, good_bytes, 0))
835                 return;
836
837         /*
838          * Kill remainder if no retrys.
839          */
840         if (error && scsi_noretry_cmd(cmd)) {
841                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
842                         BUG();
843                 return;
844         }
845
846         /*
847          * If there had been no error, but we have leftover bytes in the
848          * requeues just queue the command up again.
849          */
850         if (result == 0)
851                 goto requeue;
852
853         error = __scsi_error_from_host_byte(cmd, result);
854
855         if (host_byte(result) == DID_RESET) {
856                 /* Third party bus reset or reset for error recovery
857                  * reasons.  Just retry the command and see what
858                  * happens.
859                  */
860                 action = ACTION_RETRY;
861         } else if (sense_valid && !sense_deferred) {
862                 switch (sshdr.sense_key) {
863                 case UNIT_ATTENTION:
864                         if (cmd->device->removable) {
865                                 /* Detected disc change.  Set a bit
866                                  * and quietly refuse further access.
867                                  */
868                                 cmd->device->changed = 1;
869                                 action = ACTION_FAIL;
870                         } else {
871                                 /* Must have been a power glitch, or a
872                                  * bus reset.  Could not have been a
873                                  * media change, so we just retry the
874                                  * command and see what happens.
875                                  */
876                                 action = ACTION_RETRY;
877                         }
878                         break;
879                 case ILLEGAL_REQUEST:
880                         /* If we had an ILLEGAL REQUEST returned, then
881                          * we may have performed an unsupported
882                          * command.  The only thing this should be
883                          * would be a ten byte read where only a six
884                          * byte read was supported.  Also, on a system
885                          * where READ CAPACITY failed, we may have
886                          * read past the end of the disk.
887                          */
888                         if ((cmd->device->use_10_for_rw &&
889                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
890                             (cmd->cmnd[0] == READ_10 ||
891                              cmd->cmnd[0] == WRITE_10)) {
892                                 /* This will issue a new 6-byte command. */
893                                 cmd->device->use_10_for_rw = 0;
894                                 action = ACTION_REPREP;
895                         } else if (sshdr.asc == 0x10) /* DIX */ {
896                                 action = ACTION_FAIL;
897                                 error = BLK_STS_PROTECTION;
898                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
899                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
900                                 action = ACTION_FAIL;
901                                 error = BLK_STS_TARGET;
902                         } else
903                                 action = ACTION_FAIL;
904                         break;
905                 case ABORTED_COMMAND:
906                         action = ACTION_FAIL;
907                         if (sshdr.asc == 0x10) /* DIF */
908                                 error = BLK_STS_PROTECTION;
909                         break;
910                 case NOT_READY:
911                         /* If the device is in the process of becoming
912                          * ready, or has a temporary blockage, retry.
913                          */
914                         if (sshdr.asc == 0x04) {
915                                 switch (sshdr.ascq) {
916                                 case 0x01: /* becoming ready */
917                                 case 0x04: /* format in progress */
918                                 case 0x05: /* rebuild in progress */
919                                 case 0x06: /* recalculation in progress */
920                                 case 0x07: /* operation in progress */
921                                 case 0x08: /* Long write in progress */
922                                 case 0x09: /* self test in progress */
923                                 case 0x14: /* space allocation in progress */
924                                         action = ACTION_DELAYED_RETRY;
925                                         break;
926                                 default:
927                                         action = ACTION_FAIL;
928                                         break;
929                                 }
930                         } else
931                                 action = ACTION_FAIL;
932                         break;
933                 case VOLUME_OVERFLOW:
934                         /* See SSC3rXX or current. */
935                         action = ACTION_FAIL;
936                         break;
937                 default:
938                         action = ACTION_FAIL;
939                         break;
940                 }
941         } else
942                 action = ACTION_FAIL;
943
944         if (action != ACTION_FAIL &&
945             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
946                 action = ACTION_FAIL;
947
948         switch (action) {
949         case ACTION_FAIL:
950                 /* Give up and fail the remainder of the request */
951                 if (!(req->rq_flags & RQF_QUIET)) {
952                         static DEFINE_RATELIMIT_STATE(_rs,
953                                         DEFAULT_RATELIMIT_INTERVAL,
954                                         DEFAULT_RATELIMIT_BURST);
955
956                         if (unlikely(scsi_logging_level))
957                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
958                                                        SCSI_LOG_MLCOMPLETE_BITS);
959
960                         /*
961                          * if logging is enabled the failure will be printed
962                          * in scsi_log_completion(), so avoid duplicate messages
963                          */
964                         if (!level && __ratelimit(&_rs)) {
965                                 scsi_print_result(cmd, NULL, FAILED);
966                                 if (driver_byte(result) & DRIVER_SENSE)
967                                         scsi_print_sense(cmd);
968                                 scsi_print_command(cmd);
969                         }
970                 }
971                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
972                         return;
973                 /*FALLTHRU*/
974         case ACTION_REPREP:
975         requeue:
976                 /* Unprep the request and put it back at the head of the queue.
977                  * A new command will be prepared and issued.
978                  */
979                 if (q->mq_ops) {
980                         cmd->request->rq_flags &= ~RQF_DONTPREP;
981                         scsi_mq_uninit_cmd(cmd);
982                         scsi_mq_requeue_cmd(cmd);
983                 } else {
984                         scsi_release_buffers(cmd);
985                         scsi_requeue_command(q, cmd);
986                 }
987                 break;
988         case ACTION_RETRY:
989                 /* Retry the same command immediately */
990                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
991                 break;
992         case ACTION_DELAYED_RETRY:
993                 /* Retry the same command after a delay */
994                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
995                 break;
996         }
997 }
998
999 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1000 {
1001         int count;
1002
1003         /*
1004          * If sg table allocation fails, requeue request later.
1005          */
1006         if (unlikely(sg_alloc_table_chained(&sdb->table,
1007                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1008                 return BLKPREP_DEFER;
1009
1010         /* 
1011          * Next, walk the list, and fill in the addresses and sizes of
1012          * each segment.
1013          */
1014         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1015         BUG_ON(count > sdb->table.nents);
1016         sdb->table.nents = count;
1017         sdb->length = blk_rq_payload_bytes(req);
1018         return BLKPREP_OK;
1019 }
1020
1021 /*
1022  * Function:    scsi_init_io()
1023  *
1024  * Purpose:     SCSI I/O initialize function.
1025  *
1026  * Arguments:   cmd   - Command descriptor we wish to initialize
1027  *
1028  * Returns:     0 on success
1029  *              BLKPREP_DEFER if the failure is retryable
1030  *              BLKPREP_KILL if the failure is fatal
1031  */
1032 int scsi_init_io(struct scsi_cmnd *cmd)
1033 {
1034         struct scsi_device *sdev = cmd->device;
1035         struct request *rq = cmd->request;
1036         bool is_mq = (rq->mq_ctx != NULL);
1037         int error = BLKPREP_KILL;
1038
1039         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1040                 goto err_exit;
1041
1042         error = scsi_init_sgtable(rq, &cmd->sdb);
1043         if (error)
1044                 goto err_exit;
1045
1046         if (blk_bidi_rq(rq)) {
1047                 if (!rq->q->mq_ops) {
1048                         struct scsi_data_buffer *bidi_sdb =
1049                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1050                         if (!bidi_sdb) {
1051                                 error = BLKPREP_DEFER;
1052                                 goto err_exit;
1053                         }
1054
1055                         rq->next_rq->special = bidi_sdb;
1056                 }
1057
1058                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1059                 if (error)
1060                         goto err_exit;
1061         }
1062
1063         if (blk_integrity_rq(rq)) {
1064                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065                 int ivecs, count;
1066
1067                 if (prot_sdb == NULL) {
1068                         /*
1069                          * This can happen if someone (e.g. multipath)
1070                          * queues a command to a device on an adapter
1071                          * that does not support DIX.
1072                          */
1073                         WARN_ON_ONCE(1);
1074                         error = BLKPREP_KILL;
1075                         goto err_exit;
1076                 }
1077
1078                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079
1080                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081                                 prot_sdb->table.sgl)) {
1082                         error = BLKPREP_DEFER;
1083                         goto err_exit;
1084                 }
1085
1086                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087                                                 prot_sdb->table.sgl);
1088                 BUG_ON(unlikely(count > ivecs));
1089                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1090
1091                 cmd->prot_sdb = prot_sdb;
1092                 cmd->prot_sdb->table.nents = count;
1093         }
1094
1095         return BLKPREP_OK;
1096 err_exit:
1097         if (is_mq) {
1098                 scsi_mq_free_sgtables(cmd);
1099         } else {
1100                 scsi_release_buffers(cmd);
1101                 cmd->request->special = NULL;
1102                 scsi_put_command(cmd);
1103                 put_device(&sdev->sdev_gendev);
1104         }
1105         return error;
1106 }
1107 EXPORT_SYMBOL(scsi_init_io);
1108
1109 /**
1110  * scsi_initialize_rq - initialize struct scsi_cmnd.req
1111  * @rq: Request associated with the SCSI command to be initialized.
1112  *
1113  * Called from inside blk_get_request().
1114  */
1115 void scsi_initialize_rq(struct request *rq)
1116 {
1117         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1118
1119         scsi_req_init(&cmd->req);
1120 }
1121 EXPORT_SYMBOL(scsi_initialize_rq);
1122
1123 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1124 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1125 {
1126         struct scsi_device *sdev = cmd->device;
1127         struct Scsi_Host *shost = sdev->host;
1128         unsigned long flags;
1129
1130         if (shost->use_cmd_list) {
1131                 spin_lock_irqsave(&sdev->list_lock, flags);
1132                 list_add_tail(&cmd->list, &sdev->cmd_list);
1133                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1134         }
1135 }
1136
1137 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1138 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1139 {
1140         struct scsi_device *sdev = cmd->device;
1141         struct Scsi_Host *shost = sdev->host;
1142         unsigned long flags;
1143
1144         if (shost->use_cmd_list) {
1145                 spin_lock_irqsave(&sdev->list_lock, flags);
1146                 BUG_ON(list_empty(&cmd->list));
1147                 list_del_init(&cmd->list);
1148                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1149         }
1150 }
1151
1152 /* Called after a request has been started. */
1153 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1154 {
1155         void *buf = cmd->sense_buffer;
1156         void *prot = cmd->prot_sdb;
1157         unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1158
1159         /* zero out the cmd, except for the embedded scsi_request */
1160         memset((char *)cmd + sizeof(cmd->req), 0,
1161                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1162
1163         cmd->device = dev;
1164         cmd->sense_buffer = buf;
1165         cmd->prot_sdb = prot;
1166         cmd->flags = unchecked_isa_dma;
1167         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168         cmd->jiffies_at_alloc = jiffies;
1169
1170         scsi_add_cmd_to_list(cmd);
1171 }
1172
1173 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1174 {
1175         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176
1177         /*
1178          * Passthrough requests may transfer data, in which case they must
1179          * a bio attached to them.  Or they might contain a SCSI command
1180          * that does not transfer data, in which case they may optionally
1181          * submit a request without an attached bio.
1182          */
1183         if (req->bio) {
1184                 int ret = scsi_init_io(cmd);
1185                 if (unlikely(ret))
1186                         return ret;
1187         } else {
1188                 BUG_ON(blk_rq_bytes(req));
1189
1190                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191         }
1192
1193         cmd->cmd_len = scsi_req(req)->cmd_len;
1194         cmd->cmnd = scsi_req(req)->cmd;
1195         cmd->transfersize = blk_rq_bytes(req);
1196         cmd->allowed = scsi_req(req)->retries;
1197         return BLKPREP_OK;
1198 }
1199
1200 /*
1201  * Setup a normal block command.  These are simple request from filesystems
1202  * that still need to be translated to SCSI CDBs from the ULD.
1203  */
1204 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1205 {
1206         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1207
1208         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1209                 int ret = sdev->handler->prep_fn(sdev, req);
1210                 if (ret != BLKPREP_OK)
1211                         return ret;
1212         }
1213
1214         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1215         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1216         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1217 }
1218
1219 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1220 {
1221         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1222
1223         if (!blk_rq_bytes(req))
1224                 cmd->sc_data_direction = DMA_NONE;
1225         else if (rq_data_dir(req) == WRITE)
1226                 cmd->sc_data_direction = DMA_TO_DEVICE;
1227         else
1228                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1229
1230         if (blk_rq_is_scsi(req))
1231                 return scsi_setup_scsi_cmnd(sdev, req);
1232         else
1233                 return scsi_setup_fs_cmnd(sdev, req);
1234 }
1235
1236 static int
1237 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1238 {
1239         int ret = BLKPREP_OK;
1240
1241         /*
1242          * If the device is not in running state we will reject some
1243          * or all commands.
1244          */
1245         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1246                 switch (sdev->sdev_state) {
1247                 case SDEV_OFFLINE:
1248                 case SDEV_TRANSPORT_OFFLINE:
1249                         /*
1250                          * If the device is offline we refuse to process any
1251                          * commands.  The device must be brought online
1252                          * before trying any recovery commands.
1253                          */
1254                         sdev_printk(KERN_ERR, sdev,
1255                                     "rejecting I/O to offline device\n");
1256                         ret = BLKPREP_KILL;
1257                         break;
1258                 case SDEV_DEL:
1259                         /*
1260                          * If the device is fully deleted, we refuse to
1261                          * process any commands as well.
1262                          */
1263                         sdev_printk(KERN_ERR, sdev,
1264                                     "rejecting I/O to dead device\n");
1265                         ret = BLKPREP_KILL;
1266                         break;
1267                 case SDEV_BLOCK:
1268                 case SDEV_CREATED_BLOCK:
1269                         ret = BLKPREP_DEFER;
1270                         break;
1271                 case SDEV_QUIESCE:
1272                         /*
1273                          * If the devices is blocked we defer normal commands.
1274                          */
1275                         if (!(req->rq_flags & RQF_PREEMPT))
1276                                 ret = BLKPREP_DEFER;
1277                         break;
1278                 default:
1279                         /*
1280                          * For any other not fully online state we only allow
1281                          * special commands.  In particular any user initiated
1282                          * command is not allowed.
1283                          */
1284                         if (!(req->rq_flags & RQF_PREEMPT))
1285                                 ret = BLKPREP_KILL;
1286                         break;
1287                 }
1288         }
1289         return ret;
1290 }
1291
1292 static int
1293 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1294 {
1295         struct scsi_device *sdev = q->queuedata;
1296
1297         switch (ret) {
1298         case BLKPREP_KILL:
1299         case BLKPREP_INVALID:
1300                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1301                 /* release the command and kill it */
1302                 if (req->special) {
1303                         struct scsi_cmnd *cmd = req->special;
1304                         scsi_release_buffers(cmd);
1305                         scsi_put_command(cmd);
1306                         put_device(&sdev->sdev_gendev);
1307                         req->special = NULL;
1308                 }
1309                 break;
1310         case BLKPREP_DEFER:
1311                 /*
1312                  * If we defer, the blk_peek_request() returns NULL, but the
1313                  * queue must be restarted, so we schedule a callback to happen
1314                  * shortly.
1315                  */
1316                 if (atomic_read(&sdev->device_busy) == 0)
1317                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1318                 break;
1319         default:
1320                 req->rq_flags |= RQF_DONTPREP;
1321         }
1322
1323         return ret;
1324 }
1325
1326 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1327 {
1328         struct scsi_device *sdev = q->queuedata;
1329         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1330         int ret;
1331
1332         ret = scsi_prep_state_check(sdev, req);
1333         if (ret != BLKPREP_OK)
1334                 goto out;
1335
1336         if (!req->special) {
1337                 /* Bail if we can't get a reference to the device */
1338                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1339                         ret = BLKPREP_DEFER;
1340                         goto out;
1341                 }
1342
1343                 scsi_init_command(sdev, cmd);
1344                 req->special = cmd;
1345         }
1346
1347         cmd->tag = req->tag;
1348         cmd->request = req;
1349         cmd->prot_op = SCSI_PROT_NORMAL;
1350
1351         ret = scsi_setup_cmnd(sdev, req);
1352 out:
1353         return scsi_prep_return(q, req, ret);
1354 }
1355
1356 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1357 {
1358         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1359 }
1360
1361 /*
1362  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1363  * return 0.
1364  *
1365  * Called with the queue_lock held.
1366  */
1367 static inline int scsi_dev_queue_ready(struct request_queue *q,
1368                                   struct scsi_device *sdev)
1369 {
1370         unsigned int busy;
1371
1372         busy = atomic_inc_return(&sdev->device_busy) - 1;
1373         if (atomic_read(&sdev->device_blocked)) {
1374                 if (busy)
1375                         goto out_dec;
1376
1377                 /*
1378                  * unblock after device_blocked iterates to zero
1379                  */
1380                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1381                         /*
1382                          * For the MQ case we take care of this in the caller.
1383                          */
1384                         if (!q->mq_ops)
1385                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1386                         goto out_dec;
1387                 }
1388                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1389                                    "unblocking device at zero depth\n"));
1390         }
1391
1392         if (busy >= sdev->queue_depth)
1393                 goto out_dec;
1394
1395         return 1;
1396 out_dec:
1397         atomic_dec(&sdev->device_busy);
1398         return 0;
1399 }
1400
1401 /*
1402  * scsi_target_queue_ready: checks if there we can send commands to target
1403  * @sdev: scsi device on starget to check.
1404  */
1405 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1406                                            struct scsi_device *sdev)
1407 {
1408         struct scsi_target *starget = scsi_target(sdev);
1409         unsigned int busy;
1410
1411         if (starget->single_lun) {
1412                 spin_lock_irq(shost->host_lock);
1413                 if (starget->starget_sdev_user &&
1414                     starget->starget_sdev_user != sdev) {
1415                         spin_unlock_irq(shost->host_lock);
1416                         return 0;
1417                 }
1418                 starget->starget_sdev_user = sdev;
1419                 spin_unlock_irq(shost->host_lock);
1420         }
1421
1422         if (starget->can_queue <= 0)
1423                 return 1;
1424
1425         busy = atomic_inc_return(&starget->target_busy) - 1;
1426         if (atomic_read(&starget->target_blocked) > 0) {
1427                 if (busy)
1428                         goto starved;
1429
1430                 /*
1431                  * unblock after target_blocked iterates to zero
1432                  */
1433                 if (atomic_dec_return(&starget->target_blocked) > 0)
1434                         goto out_dec;
1435
1436                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1437                                  "unblocking target at zero depth\n"));
1438         }
1439
1440         if (busy >= starget->can_queue)
1441                 goto starved;
1442
1443         return 1;
1444
1445 starved:
1446         spin_lock_irq(shost->host_lock);
1447         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1448         spin_unlock_irq(shost->host_lock);
1449 out_dec:
1450         if (starget->can_queue > 0)
1451                 atomic_dec(&starget->target_busy);
1452         return 0;
1453 }
1454
1455 /*
1456  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1457  * return 0. We must end up running the queue again whenever 0 is
1458  * returned, else IO can hang.
1459  */
1460 static inline int scsi_host_queue_ready(struct request_queue *q,
1461                                    struct Scsi_Host *shost,
1462                                    struct scsi_device *sdev)
1463 {
1464         unsigned int busy;
1465
1466         if (scsi_host_in_recovery(shost))
1467                 return 0;
1468
1469         busy = atomic_inc_return(&shost->host_busy) - 1;
1470         if (atomic_read(&shost->host_blocked) > 0) {
1471                 if (busy)
1472                         goto starved;
1473
1474                 /*
1475                  * unblock after host_blocked iterates to zero
1476                  */
1477                 if (atomic_dec_return(&shost->host_blocked) > 0)
1478                         goto out_dec;
1479
1480                 SCSI_LOG_MLQUEUE(3,
1481                         shost_printk(KERN_INFO, shost,
1482                                      "unblocking host at zero depth\n"));
1483         }
1484
1485         if (shost->can_queue > 0 && busy >= shost->can_queue)
1486                 goto starved;
1487         if (shost->host_self_blocked)
1488                 goto starved;
1489
1490         /* We're OK to process the command, so we can't be starved */
1491         if (!list_empty(&sdev->starved_entry)) {
1492                 spin_lock_irq(shost->host_lock);
1493                 if (!list_empty(&sdev->starved_entry))
1494                         list_del_init(&sdev->starved_entry);
1495                 spin_unlock_irq(shost->host_lock);
1496         }
1497
1498         return 1;
1499
1500 starved:
1501         spin_lock_irq(shost->host_lock);
1502         if (list_empty(&sdev->starved_entry))
1503                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1504         spin_unlock_irq(shost->host_lock);
1505 out_dec:
1506         atomic_dec(&shost->host_busy);
1507         return 0;
1508 }
1509
1510 /*
1511  * Busy state exporting function for request stacking drivers.
1512  *
1513  * For efficiency, no lock is taken to check the busy state of
1514  * shost/starget/sdev, since the returned value is not guaranteed and
1515  * may be changed after request stacking drivers call the function,
1516  * regardless of taking lock or not.
1517  *
1518  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1519  * needs to return 'not busy'. Otherwise, request stacking drivers
1520  * may hold requests forever.
1521  */
1522 static int scsi_lld_busy(struct request_queue *q)
1523 {
1524         struct scsi_device *sdev = q->queuedata;
1525         struct Scsi_Host *shost;
1526
1527         if (blk_queue_dying(q))
1528                 return 0;
1529
1530         shost = sdev->host;
1531
1532         /*
1533          * Ignore host/starget busy state.
1534          * Since block layer does not have a concept of fairness across
1535          * multiple queues, congestion of host/starget needs to be handled
1536          * in SCSI layer.
1537          */
1538         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1539                 return 1;
1540
1541         return 0;
1542 }
1543
1544 /*
1545  * Kill a request for a dead device
1546  */
1547 static void scsi_kill_request(struct request *req, struct request_queue *q)
1548 {
1549         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1550         struct scsi_device *sdev;
1551         struct scsi_target *starget;
1552         struct Scsi_Host *shost;
1553
1554         blk_start_request(req);
1555
1556         scmd_printk(KERN_INFO, cmd, "killing request\n");
1557
1558         sdev = cmd->device;
1559         starget = scsi_target(sdev);
1560         shost = sdev->host;
1561         scsi_init_cmd_errh(cmd);
1562         cmd->result = DID_NO_CONNECT << 16;
1563         atomic_inc(&cmd->device->iorequest_cnt);
1564
1565         /*
1566          * SCSI request completion path will do scsi_device_unbusy(),
1567          * bump busy counts.  To bump the counters, we need to dance
1568          * with the locks as normal issue path does.
1569          */
1570         atomic_inc(&sdev->device_busy);
1571         atomic_inc(&shost->host_busy);
1572         if (starget->can_queue > 0)
1573                 atomic_inc(&starget->target_busy);
1574
1575         blk_complete_request(req);
1576 }
1577
1578 static void scsi_softirq_done(struct request *rq)
1579 {
1580         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1581         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1582         int disposition;
1583
1584         INIT_LIST_HEAD(&cmd->eh_entry);
1585
1586         atomic_inc(&cmd->device->iodone_cnt);
1587         if (cmd->result)
1588                 atomic_inc(&cmd->device->ioerr_cnt);
1589
1590         disposition = scsi_decide_disposition(cmd);
1591         if (disposition != SUCCESS &&
1592             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1593                 sdev_printk(KERN_ERR, cmd->device,
1594                             "timing out command, waited %lus\n",
1595                             wait_for/HZ);
1596                 disposition = SUCCESS;
1597         }
1598
1599         scsi_log_completion(cmd, disposition);
1600
1601         switch (disposition) {
1602                 case SUCCESS:
1603                         scsi_finish_command(cmd);
1604                         break;
1605                 case NEEDS_RETRY:
1606                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1607                         break;
1608                 case ADD_TO_MLQUEUE:
1609                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1610                         break;
1611                 default:
1612                         scsi_eh_scmd_add(cmd);
1613                         break;
1614         }
1615 }
1616
1617 /**
1618  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1619  * @cmd: command block we are dispatching.
1620  *
1621  * Return: nonzero return request was rejected and device's queue needs to be
1622  * plugged.
1623  */
1624 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1625 {
1626         struct Scsi_Host *host = cmd->device->host;
1627         int rtn = 0;
1628
1629         atomic_inc(&cmd->device->iorequest_cnt);
1630
1631         /* check if the device is still usable */
1632         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1633                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1634                  * returns an immediate error upwards, and signals
1635                  * that the device is no longer present */
1636                 cmd->result = DID_NO_CONNECT << 16;
1637                 goto done;
1638         }
1639
1640         /* Check to see if the scsi lld made this device blocked. */
1641         if (unlikely(scsi_device_blocked(cmd->device))) {
1642                 /*
1643                  * in blocked state, the command is just put back on
1644                  * the device queue.  The suspend state has already
1645                  * blocked the queue so future requests should not
1646                  * occur until the device transitions out of the
1647                  * suspend state.
1648                  */
1649                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1650                         "queuecommand : device blocked\n"));
1651                 return SCSI_MLQUEUE_DEVICE_BUSY;
1652         }
1653
1654         /* Store the LUN value in cmnd, if needed. */
1655         if (cmd->device->lun_in_cdb)
1656                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1657                                (cmd->device->lun << 5 & 0xe0);
1658
1659         scsi_log_send(cmd);
1660
1661         /*
1662          * Before we queue this command, check if the command
1663          * length exceeds what the host adapter can handle.
1664          */
1665         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1666                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1667                                "queuecommand : command too long. "
1668                                "cdb_size=%d host->max_cmd_len=%d\n",
1669                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1670                 cmd->result = (DID_ABORT << 16);
1671                 goto done;
1672         }
1673
1674         if (unlikely(host->shost_state == SHOST_DEL)) {
1675                 cmd->result = (DID_NO_CONNECT << 16);
1676                 goto done;
1677
1678         }
1679
1680         trace_scsi_dispatch_cmd_start(cmd);
1681         rtn = host->hostt->queuecommand(host, cmd);
1682         if (rtn) {
1683                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1684                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1685                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1686                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1687
1688                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1689                         "queuecommand : request rejected\n"));
1690         }
1691
1692         return rtn;
1693  done:
1694         cmd->scsi_done(cmd);
1695         return 0;
1696 }
1697
1698 /**
1699  * scsi_done - Invoke completion on finished SCSI command.
1700  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1701  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1702  *
1703  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1704  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1705  * calls blk_complete_request() for further processing.
1706  *
1707  * This function is interrupt context safe.
1708  */
1709 static void scsi_done(struct scsi_cmnd *cmd)
1710 {
1711         trace_scsi_dispatch_cmd_done(cmd);
1712         blk_complete_request(cmd->request);
1713 }
1714
1715 /*
1716  * Function:    scsi_request_fn()
1717  *
1718  * Purpose:     Main strategy routine for SCSI.
1719  *
1720  * Arguments:   q       - Pointer to actual queue.
1721  *
1722  * Returns:     Nothing
1723  *
1724  * Lock status: IO request lock assumed to be held when called.
1725  */
1726 static void scsi_request_fn(struct request_queue *q)
1727         __releases(q->queue_lock)
1728         __acquires(q->queue_lock)
1729 {
1730         struct scsi_device *sdev = q->queuedata;
1731         struct Scsi_Host *shost;
1732         struct scsi_cmnd *cmd;
1733         struct request *req;
1734
1735         /*
1736          * To start with, we keep looping until the queue is empty, or until
1737          * the host is no longer able to accept any more requests.
1738          */
1739         shost = sdev->host;
1740         for (;;) {
1741                 int rtn;
1742                 /*
1743                  * get next queueable request.  We do this early to make sure
1744                  * that the request is fully prepared even if we cannot
1745                  * accept it.
1746                  */
1747                 req = blk_peek_request(q);
1748                 if (!req)
1749                         break;
1750
1751                 if (unlikely(!scsi_device_online(sdev))) {
1752                         sdev_printk(KERN_ERR, sdev,
1753                                     "rejecting I/O to offline device\n");
1754                         scsi_kill_request(req, q);
1755                         continue;
1756                 }
1757
1758                 if (!scsi_dev_queue_ready(q, sdev))
1759                         break;
1760
1761                 /*
1762                  * Remove the request from the request list.
1763                  */
1764                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1765                         blk_start_request(req);
1766
1767                 spin_unlock_irq(q->queue_lock);
1768                 cmd = blk_mq_rq_to_pdu(req);
1769                 if (cmd != req->special) {
1770                         printk(KERN_CRIT "impossible request in %s.\n"
1771                                          "please mail a stack trace to "
1772                                          "linux-scsi@vger.kernel.org\n",
1773                                          __func__);
1774                         blk_dump_rq_flags(req, "foo");
1775                         BUG();
1776                 }
1777
1778                 /*
1779                  * We hit this when the driver is using a host wide
1780                  * tag map. For device level tag maps the queue_depth check
1781                  * in the device ready fn would prevent us from trying
1782                  * to allocate a tag. Since the map is a shared host resource
1783                  * we add the dev to the starved list so it eventually gets
1784                  * a run when a tag is freed.
1785                  */
1786                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1787                         spin_lock_irq(shost->host_lock);
1788                         if (list_empty(&sdev->starved_entry))
1789                                 list_add_tail(&sdev->starved_entry,
1790                                               &shost->starved_list);
1791                         spin_unlock_irq(shost->host_lock);
1792                         goto not_ready;
1793                 }
1794
1795                 if (!scsi_target_queue_ready(shost, sdev))
1796                         goto not_ready;
1797
1798                 if (!scsi_host_queue_ready(q, shost, sdev))
1799                         goto host_not_ready;
1800         
1801                 if (sdev->simple_tags)
1802                         cmd->flags |= SCMD_TAGGED;
1803                 else
1804                         cmd->flags &= ~SCMD_TAGGED;
1805
1806                 /*
1807                  * Finally, initialize any error handling parameters, and set up
1808                  * the timers for timeouts.
1809                  */
1810                 scsi_init_cmd_errh(cmd);
1811
1812                 /*
1813                  * Dispatch the command to the low-level driver.
1814                  */
1815                 cmd->scsi_done = scsi_done;
1816                 rtn = scsi_dispatch_cmd(cmd);
1817                 if (rtn) {
1818                         scsi_queue_insert(cmd, rtn);
1819                         spin_lock_irq(q->queue_lock);
1820                         goto out_delay;
1821                 }
1822                 spin_lock_irq(q->queue_lock);
1823         }
1824
1825         return;
1826
1827  host_not_ready:
1828         if (scsi_target(sdev)->can_queue > 0)
1829                 atomic_dec(&scsi_target(sdev)->target_busy);
1830  not_ready:
1831         /*
1832          * lock q, handle tag, requeue req, and decrement device_busy. We
1833          * must return with queue_lock held.
1834          *
1835          * Decrementing device_busy without checking it is OK, as all such
1836          * cases (host limits or settings) should run the queue at some
1837          * later time.
1838          */
1839         spin_lock_irq(q->queue_lock);
1840         blk_requeue_request(q, req);
1841         atomic_dec(&sdev->device_busy);
1842 out_delay:
1843         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1844                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1845 }
1846
1847 static inline blk_status_t prep_to_mq(int ret)
1848 {
1849         switch (ret) {
1850         case BLKPREP_OK:
1851                 return BLK_STS_OK;
1852         case BLKPREP_DEFER:
1853                 return BLK_STS_RESOURCE;
1854         default:
1855                 return BLK_STS_IOERR;
1856         }
1857 }
1858
1859 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1860 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1861 {
1862         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1863                 sizeof(struct scatterlist);
1864 }
1865
1866 static int scsi_mq_prep_fn(struct request *req)
1867 {
1868         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1869         struct scsi_device *sdev = req->q->queuedata;
1870         struct Scsi_Host *shost = sdev->host;
1871         struct scatterlist *sg;
1872
1873         scsi_init_command(sdev, cmd);
1874
1875         req->special = cmd;
1876
1877         cmd->request = req;
1878
1879         cmd->tag = req->tag;
1880         cmd->prot_op = SCSI_PROT_NORMAL;
1881
1882         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1883         cmd->sdb.table.sgl = sg;
1884
1885         if (scsi_host_get_prot(shost)) {
1886                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1887
1888                 cmd->prot_sdb->table.sgl =
1889                         (struct scatterlist *)(cmd->prot_sdb + 1);
1890         }
1891
1892         if (blk_bidi_rq(req)) {
1893                 struct request *next_rq = req->next_rq;
1894                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1895
1896                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1897                 bidi_sdb->table.sgl =
1898                         (struct scatterlist *)(bidi_sdb + 1);
1899
1900                 next_rq->special = bidi_sdb;
1901         }
1902
1903         blk_mq_start_request(req);
1904
1905         return scsi_setup_cmnd(sdev, req);
1906 }
1907
1908 static void scsi_mq_done(struct scsi_cmnd *cmd)
1909 {
1910         trace_scsi_dispatch_cmd_done(cmd);
1911         blk_mq_complete_request(cmd->request);
1912 }
1913
1914 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1915                          const struct blk_mq_queue_data *bd)
1916 {
1917         struct request *req = bd->rq;
1918         struct request_queue *q = req->q;
1919         struct scsi_device *sdev = q->queuedata;
1920         struct Scsi_Host *shost = sdev->host;
1921         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1922         blk_status_t ret;
1923         int reason;
1924
1925         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1926         if (ret != BLK_STS_OK)
1927                 goto out;
1928
1929         ret = BLK_STS_RESOURCE;
1930         if (!get_device(&sdev->sdev_gendev))
1931                 goto out;
1932
1933         if (!scsi_dev_queue_ready(q, sdev))
1934                 goto out_put_device;
1935         if (!scsi_target_queue_ready(shost, sdev))
1936                 goto out_dec_device_busy;
1937         if (!scsi_host_queue_ready(q, shost, sdev))
1938                 goto out_dec_target_busy;
1939
1940         if (!(req->rq_flags & RQF_DONTPREP)) {
1941                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1942                 if (ret != BLK_STS_OK)
1943                         goto out_dec_host_busy;
1944                 req->rq_flags |= RQF_DONTPREP;
1945         } else {
1946                 blk_mq_start_request(req);
1947         }
1948
1949         if (sdev->simple_tags)
1950                 cmd->flags |= SCMD_TAGGED;
1951         else
1952                 cmd->flags &= ~SCMD_TAGGED;
1953
1954         scsi_init_cmd_errh(cmd);
1955         cmd->scsi_done = scsi_mq_done;
1956
1957         reason = scsi_dispatch_cmd(cmd);
1958         if (reason) {
1959                 scsi_set_blocked(cmd, reason);
1960                 ret = BLK_STS_RESOURCE;
1961                 goto out_dec_host_busy;
1962         }
1963
1964         return BLK_STS_OK;
1965
1966 out_dec_host_busy:
1967         atomic_dec(&shost->host_busy);
1968 out_dec_target_busy:
1969         if (scsi_target(sdev)->can_queue > 0)
1970                 atomic_dec(&scsi_target(sdev)->target_busy);
1971 out_dec_device_busy:
1972         atomic_dec(&sdev->device_busy);
1973 out_put_device:
1974         put_device(&sdev->sdev_gendev);
1975 out:
1976         switch (ret) {
1977         case BLK_STS_OK:
1978                 break;
1979         case BLK_STS_RESOURCE:
1980                 if (atomic_read(&sdev->device_busy) == 0 &&
1981                     !scsi_device_blocked(sdev))
1982                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1983                 break;
1984         default:
1985                 /*
1986                  * Make sure to release all allocated ressources when
1987                  * we hit an error, as we will never see this command
1988                  * again.
1989                  */
1990                 if (req->rq_flags & RQF_DONTPREP)
1991                         scsi_mq_uninit_cmd(cmd);
1992                 break;
1993         }
1994         return ret;
1995 }
1996
1997 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1998                 bool reserved)
1999 {
2000         if (reserved)
2001                 return BLK_EH_RESET_TIMER;
2002         return scsi_times_out(req);
2003 }
2004
2005 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2006                                 unsigned int hctx_idx, unsigned int numa_node)
2007 {
2008         struct Scsi_Host *shost = set->driver_data;
2009         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2010         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2011         struct scatterlist *sg;
2012
2013         if (unchecked_isa_dma)
2014                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2015         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2016                                                     GFP_KERNEL, numa_node);
2017         if (!cmd->sense_buffer)
2018                 return -ENOMEM;
2019         cmd->req.sense = cmd->sense_buffer;
2020
2021         if (scsi_host_get_prot(shost)) {
2022                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2023                         shost->hostt->cmd_size;
2024                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2025         }
2026
2027         return 0;
2028 }
2029
2030 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2031                                  unsigned int hctx_idx)
2032 {
2033         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2034
2035         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2036                                cmd->sense_buffer);
2037 }
2038
2039 static int scsi_map_queues(struct blk_mq_tag_set *set)
2040 {
2041         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2042
2043         if (shost->hostt->map_queues)
2044                 return shost->hostt->map_queues(shost);
2045         return blk_mq_map_queues(set);
2046 }
2047
2048 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2049 {
2050         struct device *host_dev;
2051         u64 bounce_limit = 0xffffffff;
2052
2053         if (shost->unchecked_isa_dma)
2054                 return BLK_BOUNCE_ISA;
2055         /*
2056          * Platforms with virtual-DMA translation
2057          * hardware have no practical limit.
2058          */
2059         if (!PCI_DMA_BUS_IS_PHYS)
2060                 return BLK_BOUNCE_ANY;
2061
2062         host_dev = scsi_get_device(shost);
2063         if (host_dev && host_dev->dma_mask)
2064                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2065
2066         return bounce_limit;
2067 }
2068
2069 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2070 {
2071         struct device *dev = shost->dma_dev;
2072
2073         queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2074
2075         /*
2076          * this limit is imposed by hardware restrictions
2077          */
2078         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2079                                         SG_MAX_SEGMENTS));
2080
2081         if (scsi_host_prot_dma(shost)) {
2082                 shost->sg_prot_tablesize =
2083                         min_not_zero(shost->sg_prot_tablesize,
2084                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2085                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2086                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2087         }
2088
2089         blk_queue_max_hw_sectors(q, shost->max_sectors);
2090         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2091         blk_queue_segment_boundary(q, shost->dma_boundary);
2092         dma_set_seg_boundary(dev, shost->dma_boundary);
2093
2094         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2095
2096         if (!shost->use_clustering)
2097                 q->limits.cluster = 0;
2098
2099         /*
2100          * set a reasonable default alignment on word boundaries: the
2101          * host and device may alter it using
2102          * blk_queue_update_dma_alignment() later.
2103          */
2104         blk_queue_dma_alignment(q, 0x03);
2105 }
2106 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2107
2108 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2109                             gfp_t gfp)
2110 {
2111         struct Scsi_Host *shost = q->rq_alloc_data;
2112         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2113         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2114
2115         memset(cmd, 0, sizeof(*cmd));
2116
2117         if (unchecked_isa_dma)
2118                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2120                                                     NUMA_NO_NODE);
2121         if (!cmd->sense_buffer)
2122                 goto fail;
2123         cmd->req.sense = cmd->sense_buffer;
2124
2125         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2126                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2127                 if (!cmd->prot_sdb)
2128                         goto fail_free_sense;
2129         }
2130
2131         return 0;
2132
2133 fail_free_sense:
2134         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2135 fail:
2136         return -ENOMEM;
2137 }
2138
2139 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2140 {
2141         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2142
2143         if (cmd->prot_sdb)
2144                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2145         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2146                                cmd->sense_buffer);
2147 }
2148
2149 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2150 {
2151         struct Scsi_Host *shost = sdev->host;
2152         struct request_queue *q;
2153
2154         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2155         if (!q)
2156                 return NULL;
2157         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2158         q->rq_alloc_data = shost;
2159         q->request_fn = scsi_request_fn;
2160         q->init_rq_fn = scsi_old_init_rq;
2161         q->exit_rq_fn = scsi_old_exit_rq;
2162         q->initialize_rq_fn = scsi_initialize_rq;
2163
2164         if (blk_init_allocated_queue(q) < 0) {
2165                 blk_cleanup_queue(q);
2166                 return NULL;
2167         }
2168
2169         __scsi_init_queue(shost, q);
2170         blk_queue_prep_rq(q, scsi_prep_fn);
2171         blk_queue_unprep_rq(q, scsi_unprep_fn);
2172         blk_queue_softirq_done(q, scsi_softirq_done);
2173         blk_queue_rq_timed_out(q, scsi_times_out);
2174         blk_queue_lld_busy(q, scsi_lld_busy);
2175         return q;
2176 }
2177
2178 static const struct blk_mq_ops scsi_mq_ops = {
2179         .queue_rq       = scsi_queue_rq,
2180         .complete       = scsi_softirq_done,
2181         .timeout        = scsi_timeout,
2182 #ifdef CONFIG_BLK_DEBUG_FS
2183         .show_rq        = scsi_show_rq,
2184 #endif
2185         .init_request   = scsi_mq_init_request,
2186         .exit_request   = scsi_mq_exit_request,
2187         .initialize_rq_fn = scsi_initialize_rq,
2188         .map_queues     = scsi_map_queues,
2189 };
2190
2191 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2192 {
2193         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2194         if (IS_ERR(sdev->request_queue))
2195                 return NULL;
2196
2197         sdev->request_queue->queuedata = sdev;
2198         __scsi_init_queue(sdev->host, sdev->request_queue);
2199         return sdev->request_queue;
2200 }
2201
2202 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2203 {
2204         unsigned int cmd_size, sgl_size;
2205
2206         sgl_size = scsi_mq_sgl_size(shost);
2207         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2208         if (scsi_host_get_prot(shost))
2209                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2210
2211         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2212         shost->tag_set.ops = &scsi_mq_ops;
2213         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2214         shost->tag_set.queue_depth = shost->can_queue;
2215         shost->tag_set.cmd_size = cmd_size;
2216         shost->tag_set.numa_node = NUMA_NO_NODE;
2217         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2218         shost->tag_set.flags |=
2219                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2220         shost->tag_set.driver_data = shost;
2221
2222         return blk_mq_alloc_tag_set(&shost->tag_set);
2223 }
2224
2225 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2226 {
2227         blk_mq_free_tag_set(&shost->tag_set);
2228 }
2229
2230 /**
2231  * scsi_device_from_queue - return sdev associated with a request_queue
2232  * @q: The request queue to return the sdev from
2233  *
2234  * Return the sdev associated with a request queue or NULL if the
2235  * request_queue does not reference a SCSI device.
2236  */
2237 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2238 {
2239         struct scsi_device *sdev = NULL;
2240
2241         if (q->mq_ops) {
2242                 if (q->mq_ops == &scsi_mq_ops)
2243                         sdev = q->queuedata;
2244         } else if (q->request_fn == scsi_request_fn)
2245                 sdev = q->queuedata;
2246         if (!sdev || !get_device(&sdev->sdev_gendev))
2247                 sdev = NULL;
2248
2249         return sdev;
2250 }
2251 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2252
2253 /*
2254  * Function:    scsi_block_requests()
2255  *
2256  * Purpose:     Utility function used by low-level drivers to prevent further
2257  *              commands from being queued to the device.
2258  *
2259  * Arguments:   shost       - Host in question
2260  *
2261  * Returns:     Nothing
2262  *
2263  * Lock status: No locks are assumed held.
2264  *
2265  * Notes:       There is no timer nor any other means by which the requests
2266  *              get unblocked other than the low-level driver calling
2267  *              scsi_unblock_requests().
2268  */
2269 void scsi_block_requests(struct Scsi_Host *shost)
2270 {
2271         shost->host_self_blocked = 1;
2272 }
2273 EXPORT_SYMBOL(scsi_block_requests);
2274
2275 /*
2276  * Function:    scsi_unblock_requests()
2277  *
2278  * Purpose:     Utility function used by low-level drivers to allow further
2279  *              commands from being queued to the device.
2280  *
2281  * Arguments:   shost       - Host in question
2282  *
2283  * Returns:     Nothing
2284  *
2285  * Lock status: No locks are assumed held.
2286  *
2287  * Notes:       There is no timer nor any other means by which the requests
2288  *              get unblocked other than the low-level driver calling
2289  *              scsi_unblock_requests().
2290  *
2291  *              This is done as an API function so that changes to the
2292  *              internals of the scsi mid-layer won't require wholesale
2293  *              changes to drivers that use this feature.
2294  */
2295 void scsi_unblock_requests(struct Scsi_Host *shost)
2296 {
2297         shost->host_self_blocked = 0;
2298         scsi_run_host_queues(shost);
2299 }
2300 EXPORT_SYMBOL(scsi_unblock_requests);
2301
2302 int __init scsi_init_queue(void)
2303 {
2304         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2305                                            sizeof(struct scsi_data_buffer),
2306                                            0, 0, NULL);
2307         if (!scsi_sdb_cache) {
2308                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2309                 return -ENOMEM;
2310         }
2311
2312         return 0;
2313 }
2314
2315 void scsi_exit_queue(void)
2316 {
2317         kmem_cache_destroy(scsi_sense_cache);
2318         kmem_cache_destroy(scsi_sense_isadma_cache);
2319         kmem_cache_destroy(scsi_sdb_cache);
2320 }
2321
2322 /**
2323  *      scsi_mode_select - issue a mode select
2324  *      @sdev:  SCSI device to be queried
2325  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2326  *      @sp:    Save page bit (0 == don't save, 1 == save)
2327  *      @modepage: mode page being requested
2328  *      @buffer: request buffer (may not be smaller than eight bytes)
2329  *      @len:   length of request buffer.
2330  *      @timeout: command timeout
2331  *      @retries: number of retries before failing
2332  *      @data: returns a structure abstracting the mode header data
2333  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2334  *              must be SCSI_SENSE_BUFFERSIZE big.
2335  *
2336  *      Returns zero if successful; negative error number or scsi
2337  *      status on error
2338  *
2339  */
2340 int
2341 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2342                  unsigned char *buffer, int len, int timeout, int retries,
2343                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2344 {
2345         unsigned char cmd[10];
2346         unsigned char *real_buffer;
2347         int ret;
2348
2349         memset(cmd, 0, sizeof(cmd));
2350         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2351
2352         if (sdev->use_10_for_ms) {
2353                 if (len > 65535)
2354                         return -EINVAL;
2355                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2356                 if (!real_buffer)
2357                         return -ENOMEM;
2358                 memcpy(real_buffer + 8, buffer, len);
2359                 len += 8;
2360                 real_buffer[0] = 0;
2361                 real_buffer[1] = 0;
2362                 real_buffer[2] = data->medium_type;
2363                 real_buffer[3] = data->device_specific;
2364                 real_buffer[4] = data->longlba ? 0x01 : 0;
2365                 real_buffer[5] = 0;
2366                 real_buffer[6] = data->block_descriptor_length >> 8;
2367                 real_buffer[7] = data->block_descriptor_length;
2368
2369                 cmd[0] = MODE_SELECT_10;
2370                 cmd[7] = len >> 8;
2371                 cmd[8] = len;
2372         } else {
2373                 if (len > 255 || data->block_descriptor_length > 255 ||
2374                     data->longlba)
2375                         return -EINVAL;
2376
2377                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2378                 if (!real_buffer)
2379                         return -ENOMEM;
2380                 memcpy(real_buffer + 4, buffer, len);
2381                 len += 4;
2382                 real_buffer[0] = 0;
2383                 real_buffer[1] = data->medium_type;
2384                 real_buffer[2] = data->device_specific;
2385                 real_buffer[3] = data->block_descriptor_length;
2386                 
2387
2388                 cmd[0] = MODE_SELECT;
2389                 cmd[4] = len;
2390         }
2391
2392         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2393                                sshdr, timeout, retries, NULL);
2394         kfree(real_buffer);
2395         return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(scsi_mode_select);
2398
2399 /**
2400  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2401  *      @sdev:  SCSI device to be queried
2402  *      @dbd:   set if mode sense will allow block descriptors to be returned
2403  *      @modepage: mode page being requested
2404  *      @buffer: request buffer (may not be smaller than eight bytes)
2405  *      @len:   length of request buffer.
2406  *      @timeout: command timeout
2407  *      @retries: number of retries before failing
2408  *      @data: returns a structure abstracting the mode header data
2409  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2410  *              must be SCSI_SENSE_BUFFERSIZE big.
2411  *
2412  *      Returns zero if unsuccessful, or the header offset (either 4
2413  *      or 8 depending on whether a six or ten byte command was
2414  *      issued) if successful.
2415  */
2416 int
2417 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2418                   unsigned char *buffer, int len, int timeout, int retries,
2419                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2420 {
2421         unsigned char cmd[12];
2422         int use_10_for_ms;
2423         int header_length;
2424         int result, retry_count = retries;
2425         struct scsi_sense_hdr my_sshdr;
2426
2427         memset(data, 0, sizeof(*data));
2428         memset(&cmd[0], 0, 12);
2429         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2430         cmd[2] = modepage;
2431
2432         /* caller might not be interested in sense, but we need it */
2433         if (!sshdr)
2434                 sshdr = &my_sshdr;
2435
2436  retry:
2437         use_10_for_ms = sdev->use_10_for_ms;
2438
2439         if (use_10_for_ms) {
2440                 if (len < 8)
2441                         len = 8;
2442
2443                 cmd[0] = MODE_SENSE_10;
2444                 cmd[8] = len;
2445                 header_length = 8;
2446         } else {
2447                 if (len < 4)
2448                         len = 4;
2449
2450                 cmd[0] = MODE_SENSE;
2451                 cmd[4] = len;
2452                 header_length = 4;
2453         }
2454
2455         memset(buffer, 0, len);
2456
2457         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2458                                   sshdr, timeout, retries, NULL);
2459
2460         /* This code looks awful: what it's doing is making sure an
2461          * ILLEGAL REQUEST sense return identifies the actual command
2462          * byte as the problem.  MODE_SENSE commands can return
2463          * ILLEGAL REQUEST if the code page isn't supported */
2464
2465         if (use_10_for_ms && !scsi_status_is_good(result) &&
2466             (driver_byte(result) & DRIVER_SENSE)) {
2467                 if (scsi_sense_valid(sshdr)) {
2468                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2469                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2470                                 /* 
2471                                  * Invalid command operation code
2472                                  */
2473                                 sdev->use_10_for_ms = 0;
2474                                 goto retry;
2475                         }
2476                 }
2477         }
2478
2479         if(scsi_status_is_good(result)) {
2480                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2481                              (modepage == 6 || modepage == 8))) {
2482                         /* Initio breakage? */
2483                         header_length = 0;
2484                         data->length = 13;
2485                         data->medium_type = 0;
2486                         data->device_specific = 0;
2487                         data->longlba = 0;
2488                         data->block_descriptor_length = 0;
2489                 } else if(use_10_for_ms) {
2490                         data->length = buffer[0]*256 + buffer[1] + 2;
2491                         data->medium_type = buffer[2];
2492                         data->device_specific = buffer[3];
2493                         data->longlba = buffer[4] & 0x01;
2494                         data->block_descriptor_length = buffer[6]*256
2495                                 + buffer[7];
2496                 } else {
2497                         data->length = buffer[0] + 1;
2498                         data->medium_type = buffer[1];
2499                         data->device_specific = buffer[2];
2500                         data->block_descriptor_length = buffer[3];
2501                 }
2502                 data->header_length = header_length;
2503         } else if ((status_byte(result) == CHECK_CONDITION) &&
2504                    scsi_sense_valid(sshdr) &&
2505                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2506                 retry_count--;
2507                 goto retry;
2508         }
2509
2510         return result;
2511 }
2512 EXPORT_SYMBOL(scsi_mode_sense);
2513
2514 /**
2515  *      scsi_test_unit_ready - test if unit is ready
2516  *      @sdev:  scsi device to change the state of.
2517  *      @timeout: command timeout
2518  *      @retries: number of retries before failing
2519  *      @sshdr: outpout pointer for decoded sense information.
2520  *
2521  *      Returns zero if unsuccessful or an error if TUR failed.  For
2522  *      removable media, UNIT_ATTENTION sets ->changed flag.
2523  **/
2524 int
2525 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2526                      struct scsi_sense_hdr *sshdr)
2527 {
2528         char cmd[] = {
2529                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2530         };
2531         int result;
2532
2533         /* try to eat the UNIT_ATTENTION if there are enough retries */
2534         do {
2535                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2536                                           timeout, retries, NULL);
2537                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2538                     sshdr->sense_key == UNIT_ATTENTION)
2539                         sdev->changed = 1;
2540         } while (scsi_sense_valid(sshdr) &&
2541                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2542
2543         return result;
2544 }
2545 EXPORT_SYMBOL(scsi_test_unit_ready);
2546
2547 /**
2548  *      scsi_device_set_state - Take the given device through the device state model.
2549  *      @sdev:  scsi device to change the state of.
2550  *      @state: state to change to.
2551  *
2552  *      Returns zero if successful or an error if the requested
2553  *      transition is illegal.
2554  */
2555 int
2556 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2557 {
2558         enum scsi_device_state oldstate = sdev->sdev_state;
2559
2560         if (state == oldstate)
2561                 return 0;
2562
2563         switch (state) {
2564         case SDEV_CREATED:
2565                 switch (oldstate) {
2566                 case SDEV_CREATED_BLOCK:
2567                         break;
2568                 default:
2569                         goto illegal;
2570                 }
2571                 break;
2572                         
2573         case SDEV_RUNNING:
2574                 switch (oldstate) {
2575                 case SDEV_CREATED:
2576                 case SDEV_OFFLINE:
2577                 case SDEV_TRANSPORT_OFFLINE:
2578                 case SDEV_QUIESCE:
2579                 case SDEV_BLOCK:
2580                         break;
2581                 default:
2582                         goto illegal;
2583                 }
2584                 break;
2585
2586         case SDEV_QUIESCE:
2587                 switch (oldstate) {
2588                 case SDEV_RUNNING:
2589                 case SDEV_OFFLINE:
2590                 case SDEV_TRANSPORT_OFFLINE:
2591                         break;
2592                 default:
2593                         goto illegal;
2594                 }
2595                 break;
2596
2597         case SDEV_OFFLINE:
2598         case SDEV_TRANSPORT_OFFLINE:
2599                 switch (oldstate) {
2600                 case SDEV_CREATED:
2601                 case SDEV_RUNNING:
2602                 case SDEV_QUIESCE:
2603                 case SDEV_BLOCK:
2604                         break;
2605                 default:
2606                         goto illegal;
2607                 }
2608                 break;
2609
2610         case SDEV_BLOCK:
2611                 switch (oldstate) {
2612                 case SDEV_RUNNING:
2613                 case SDEV_CREATED_BLOCK:
2614                         break;
2615                 default:
2616                         goto illegal;
2617                 }
2618                 break;
2619
2620         case SDEV_CREATED_BLOCK:
2621                 switch (oldstate) {
2622                 case SDEV_CREATED:
2623                         break;
2624                 default:
2625                         goto illegal;
2626                 }
2627                 break;
2628
2629         case SDEV_CANCEL:
2630                 switch (oldstate) {
2631                 case SDEV_CREATED:
2632                 case SDEV_RUNNING:
2633                 case SDEV_QUIESCE:
2634                 case SDEV_OFFLINE:
2635                 case SDEV_TRANSPORT_OFFLINE:
2636                         break;
2637                 default:
2638                         goto illegal;
2639                 }
2640                 break;
2641
2642         case SDEV_DEL:
2643                 switch (oldstate) {
2644                 case SDEV_CREATED:
2645                 case SDEV_RUNNING:
2646                 case SDEV_OFFLINE:
2647                 case SDEV_TRANSPORT_OFFLINE:
2648                 case SDEV_CANCEL:
2649                 case SDEV_BLOCK:
2650                 case SDEV_CREATED_BLOCK:
2651                         break;
2652                 default:
2653                         goto illegal;
2654                 }
2655                 break;
2656
2657         }
2658         sdev->sdev_state = state;
2659         sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
2660         return 0;
2661
2662  illegal:
2663         SCSI_LOG_ERROR_RECOVERY(1,
2664                                 sdev_printk(KERN_ERR, sdev,
2665                                             "Illegal state transition %s->%s",
2666                                             scsi_device_state_name(oldstate),
2667                                             scsi_device_state_name(state))
2668                                 );
2669         return -EINVAL;
2670 }
2671 EXPORT_SYMBOL(scsi_device_set_state);
2672
2673 /**
2674  *      sdev_evt_emit - emit a single SCSI device uevent
2675  *      @sdev: associated SCSI device
2676  *      @evt: event to emit
2677  *
2678  *      Send a single uevent (scsi_event) to the associated scsi_device.
2679  */
2680 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2681 {
2682         int idx = 0;
2683         char *envp[3];
2684
2685         switch (evt->evt_type) {
2686         case SDEV_EVT_MEDIA_CHANGE:
2687                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2688                 break;
2689         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2690                 scsi_rescan_device(&sdev->sdev_gendev);
2691                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2692                 break;
2693         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2694                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2695                 break;
2696         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2697                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2698                 break;
2699         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2700                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2701                 break;
2702         case SDEV_EVT_LUN_CHANGE_REPORTED:
2703                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2704                 break;
2705         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2706                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2707                 break;
2708         default:
2709                 /* do nothing */
2710                 break;
2711         }
2712
2713         envp[idx++] = NULL;
2714
2715         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2716 }
2717
2718 /**
2719  *      sdev_evt_thread - send a uevent for each scsi event
2720  *      @work: work struct for scsi_device
2721  *
2722  *      Dispatch queued events to their associated scsi_device kobjects
2723  *      as uevents.
2724  */
2725 void scsi_evt_thread(struct work_struct *work)
2726 {
2727         struct scsi_device *sdev;
2728         enum scsi_device_event evt_type;
2729         LIST_HEAD(event_list);
2730
2731         sdev = container_of(work, struct scsi_device, event_work);
2732
2733         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2734                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2735                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2736
2737         while (1) {
2738                 struct scsi_event *evt;
2739                 struct list_head *this, *tmp;
2740                 unsigned long flags;
2741
2742                 spin_lock_irqsave(&sdev->list_lock, flags);
2743                 list_splice_init(&sdev->event_list, &event_list);
2744                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2745
2746                 if (list_empty(&event_list))
2747                         break;
2748
2749                 list_for_each_safe(this, tmp, &event_list) {
2750                         evt = list_entry(this, struct scsi_event, node);
2751                         list_del(&evt->node);
2752                         scsi_evt_emit(sdev, evt);
2753                         kfree(evt);
2754                 }
2755         }
2756 }
2757
2758 /**
2759  *      sdev_evt_send - send asserted event to uevent thread
2760  *      @sdev: scsi_device event occurred on
2761  *      @evt: event to send
2762  *
2763  *      Assert scsi device event asynchronously.
2764  */
2765 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2766 {
2767         unsigned long flags;
2768
2769 #if 0
2770         /* FIXME: currently this check eliminates all media change events
2771          * for polled devices.  Need to update to discriminate between AN
2772          * and polled events */
2773         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2774                 kfree(evt);
2775                 return;
2776         }
2777 #endif
2778
2779         spin_lock_irqsave(&sdev->list_lock, flags);
2780         list_add_tail(&evt->node, &sdev->event_list);
2781         schedule_work(&sdev->event_work);
2782         spin_unlock_irqrestore(&sdev->list_lock, flags);
2783 }
2784 EXPORT_SYMBOL_GPL(sdev_evt_send);
2785
2786 /**
2787  *      sdev_evt_alloc - allocate a new scsi event
2788  *      @evt_type: type of event to allocate
2789  *      @gfpflags: GFP flags for allocation
2790  *
2791  *      Allocates and returns a new scsi_event.
2792  */
2793 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2794                                   gfp_t gfpflags)
2795 {
2796         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2797         if (!evt)
2798                 return NULL;
2799
2800         evt->evt_type = evt_type;
2801         INIT_LIST_HEAD(&evt->node);
2802
2803         /* evt_type-specific initialization, if any */
2804         switch (evt_type) {
2805         case SDEV_EVT_MEDIA_CHANGE:
2806         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2807         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2808         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2809         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2810         case SDEV_EVT_LUN_CHANGE_REPORTED:
2811         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2812         default:
2813                 /* do nothing */
2814                 break;
2815         }
2816
2817         return evt;
2818 }
2819 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2820
2821 /**
2822  *      sdev_evt_send_simple - send asserted event to uevent thread
2823  *      @sdev: scsi_device event occurred on
2824  *      @evt_type: type of event to send
2825  *      @gfpflags: GFP flags for allocation
2826  *
2827  *      Assert scsi device event asynchronously, given an event type.
2828  */
2829 void sdev_evt_send_simple(struct scsi_device *sdev,
2830                           enum scsi_device_event evt_type, gfp_t gfpflags)
2831 {
2832         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2833         if (!evt) {
2834                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2835                             evt_type);
2836                 return;
2837         }
2838
2839         sdev_evt_send(sdev, evt);
2840 }
2841 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2842
2843 /**
2844  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2845  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2846  */
2847 static int scsi_request_fn_active(struct scsi_device *sdev)
2848 {
2849         struct request_queue *q = sdev->request_queue;
2850         int request_fn_active;
2851
2852         WARN_ON_ONCE(sdev->host->use_blk_mq);
2853
2854         spin_lock_irq(q->queue_lock);
2855         request_fn_active = q->request_fn_active;
2856         spin_unlock_irq(q->queue_lock);
2857
2858         return request_fn_active;
2859 }
2860
2861 /**
2862  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2863  * @sdev: SCSI device pointer.
2864  *
2865  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2866  * invoked from scsi_request_fn() have finished.
2867  */
2868 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2869 {
2870         WARN_ON_ONCE(sdev->host->use_blk_mq);
2871
2872         while (scsi_request_fn_active(sdev))
2873                 msleep(20);
2874 }
2875
2876 /**
2877  *      scsi_device_quiesce - Block user issued commands.
2878  *      @sdev:  scsi device to quiesce.
2879  *
2880  *      This works by trying to transition to the SDEV_QUIESCE state
2881  *      (which must be a legal transition).  When the device is in this
2882  *      state, only special requests will be accepted, all others will
2883  *      be deferred.  Since special requests may also be requeued requests,
2884  *      a successful return doesn't guarantee the device will be 
2885  *      totally quiescent.
2886  *
2887  *      Must be called with user context, may sleep.
2888  *
2889  *      Returns zero if unsuccessful or an error if not.
2890  */
2891 int
2892 scsi_device_quiesce(struct scsi_device *sdev)
2893 {
2894         int err;
2895
2896         mutex_lock(&sdev->state_mutex);
2897         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2898         mutex_unlock(&sdev->state_mutex);
2899
2900         if (err)
2901                 return err;
2902
2903         scsi_run_queue(sdev->request_queue);
2904         while (atomic_read(&sdev->device_busy)) {
2905                 msleep_interruptible(200);
2906                 scsi_run_queue(sdev->request_queue);
2907         }
2908         return 0;
2909 }
2910 EXPORT_SYMBOL(scsi_device_quiesce);
2911
2912 /**
2913  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2914  *      @sdev:  scsi device to resume.
2915  *
2916  *      Moves the device from quiesced back to running and restarts the
2917  *      queues.
2918  *
2919  *      Must be called with user context, may sleep.
2920  */
2921 void scsi_device_resume(struct scsi_device *sdev)
2922 {
2923         /* check if the device state was mutated prior to resume, and if
2924          * so assume the state is being managed elsewhere (for example
2925          * device deleted during suspend)
2926          */
2927         mutex_lock(&sdev->state_mutex);
2928         if (sdev->sdev_state == SDEV_QUIESCE &&
2929             scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2930                 scsi_run_queue(sdev->request_queue);
2931         mutex_unlock(&sdev->state_mutex);
2932 }
2933 EXPORT_SYMBOL(scsi_device_resume);
2934
2935 static void
2936 device_quiesce_fn(struct scsi_device *sdev, void *data)
2937 {
2938         scsi_device_quiesce(sdev);
2939 }
2940
2941 void
2942 scsi_target_quiesce(struct scsi_target *starget)
2943 {
2944         starget_for_each_device(starget, NULL, device_quiesce_fn);
2945 }
2946 EXPORT_SYMBOL(scsi_target_quiesce);
2947
2948 static void
2949 device_resume_fn(struct scsi_device *sdev, void *data)
2950 {
2951         scsi_device_resume(sdev);
2952 }
2953
2954 void
2955 scsi_target_resume(struct scsi_target *starget)
2956 {
2957         starget_for_each_device(starget, NULL, device_resume_fn);
2958 }
2959 EXPORT_SYMBOL(scsi_target_resume);
2960
2961 /**
2962  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2963  * @sdev: device to block
2964  *
2965  * Pause SCSI command processing on the specified device. Does not sleep.
2966  *
2967  * Returns zero if successful or a negative error code upon failure.
2968  *
2969  * Notes:
2970  * This routine transitions the device to the SDEV_BLOCK state (which must be
2971  * a legal transition). When the device is in this state, command processing
2972  * is paused until the device leaves the SDEV_BLOCK state. See also
2973  * scsi_internal_device_unblock_nowait().
2974  */
2975 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2976 {
2977         struct request_queue *q = sdev->request_queue;
2978         unsigned long flags;
2979         int err = 0;
2980
2981         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2982         if (err) {
2983                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2984
2985                 if (err)
2986                         return err;
2987         }
2988
2989         /* 
2990          * The device has transitioned to SDEV_BLOCK.  Stop the
2991          * block layer from calling the midlayer with this device's
2992          * request queue. 
2993          */
2994         if (q->mq_ops) {
2995                 blk_mq_quiesce_queue_nowait(q);
2996         } else {
2997                 spin_lock_irqsave(q->queue_lock, flags);
2998                 blk_stop_queue(q);
2999                 spin_unlock_irqrestore(q->queue_lock, flags);
3000         }
3001
3002         return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3005
3006 /**
3007  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3008  * @sdev: device to block
3009  *
3010  * Pause SCSI command processing on the specified device and wait until all
3011  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3012  *
3013  * Returns zero if successful or a negative error code upon failure.
3014  *
3015  * Note:
3016  * This routine transitions the device to the SDEV_BLOCK state (which must be
3017  * a legal transition). When the device is in this state, command processing
3018  * is paused until the device leaves the SDEV_BLOCK state. See also
3019  * scsi_internal_device_unblock().
3020  *
3021  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3022  * scsi_internal_device_block() has blocked a SCSI device and also
3023  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3024  */
3025 static int scsi_internal_device_block(struct scsi_device *sdev)
3026 {
3027         struct request_queue *q = sdev->request_queue;
3028         int err;
3029
3030         mutex_lock(&sdev->state_mutex);
3031         err = scsi_internal_device_block_nowait(sdev);
3032         if (err == 0) {
3033                 if (q->mq_ops)
3034                         blk_mq_quiesce_queue(q);
3035                 else
3036                         scsi_wait_for_queuecommand(sdev);
3037         }
3038         mutex_unlock(&sdev->state_mutex);
3039
3040         return err;
3041 }
3042  
3043 void scsi_start_queue(struct scsi_device *sdev)
3044 {
3045         struct request_queue *q = sdev->request_queue;
3046         unsigned long flags;
3047
3048         if (q->mq_ops) {
3049                 blk_mq_unquiesce_queue(q);
3050         } else {
3051                 spin_lock_irqsave(q->queue_lock, flags);
3052                 blk_start_queue(q);
3053                 spin_unlock_irqrestore(q->queue_lock, flags);
3054         }
3055 }
3056
3057 /**
3058  * scsi_internal_device_unblock_nowait - resume a device after a block request
3059  * @sdev:       device to resume
3060  * @new_state:  state to set the device to after unblocking
3061  *
3062  * Restart the device queue for a previously suspended SCSI device. Does not
3063  * sleep.
3064  *
3065  * Returns zero if successful or a negative error code upon failure.
3066  *
3067  * Notes:
3068  * This routine transitions the device to the SDEV_RUNNING state or to one of
3069  * the offline states (which must be a legal transition) allowing the midlayer
3070  * to goose the queue for this device.
3071  */
3072 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3073                                         enum scsi_device_state new_state)
3074 {
3075         /*
3076          * Try to transition the scsi device to SDEV_RUNNING or one of the
3077          * offlined states and goose the device queue if successful.
3078          */
3079         switch (sdev->sdev_state) {
3080         case SDEV_BLOCK:
3081         case SDEV_TRANSPORT_OFFLINE:
3082                 sdev->sdev_state = new_state;
3083                 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3084                 break;
3085         case SDEV_CREATED_BLOCK:
3086                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3087                     new_state == SDEV_OFFLINE)
3088                         sdev->sdev_state = new_state;
3089                 else
3090                         sdev->sdev_state = SDEV_CREATED;
3091                 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3092                 break;
3093         case SDEV_CANCEL:
3094         case SDEV_OFFLINE:
3095                 break;
3096         default:
3097                 return -EINVAL;
3098         }
3099         scsi_start_queue(sdev);
3100
3101         return 0;
3102 }
3103 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3104
3105 /**
3106  * scsi_internal_device_unblock - resume a device after a block request
3107  * @sdev:       device to resume
3108  * @new_state:  state to set the device to after unblocking
3109  *
3110  * Restart the device queue for a previously suspended SCSI device. May sleep.
3111  *
3112  * Returns zero if successful or a negative error code upon failure.
3113  *
3114  * Notes:
3115  * This routine transitions the device to the SDEV_RUNNING state or to one of
3116  * the offline states (which must be a legal transition) allowing the midlayer
3117  * to goose the queue for this device.
3118  */
3119 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3120                                         enum scsi_device_state new_state)
3121 {
3122         int ret;
3123
3124         mutex_lock(&sdev->state_mutex);
3125         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3126         mutex_unlock(&sdev->state_mutex);
3127
3128         return ret;
3129 }
3130
3131 static void
3132 device_block(struct scsi_device *sdev, void *data)
3133 {
3134         scsi_internal_device_block(sdev);
3135 }
3136
3137 static int
3138 target_block(struct device *dev, void *data)
3139 {
3140         if (scsi_is_target_device(dev))
3141                 starget_for_each_device(to_scsi_target(dev), NULL,
3142                                         device_block);
3143         return 0;
3144 }
3145
3146 void
3147 scsi_target_block(struct device *dev)
3148 {
3149         if (scsi_is_target_device(dev))
3150                 starget_for_each_device(to_scsi_target(dev), NULL,
3151                                         device_block);
3152         else
3153                 device_for_each_child(dev, NULL, target_block);
3154 }
3155 EXPORT_SYMBOL_GPL(scsi_target_block);
3156
3157 static void
3158 device_unblock(struct scsi_device *sdev, void *data)
3159 {
3160         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3161 }
3162
3163 static int
3164 target_unblock(struct device *dev, void *data)
3165 {
3166         if (scsi_is_target_device(dev))
3167                 starget_for_each_device(to_scsi_target(dev), data,
3168                                         device_unblock);
3169         return 0;
3170 }
3171
3172 void
3173 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3174 {
3175         if (scsi_is_target_device(dev))
3176                 starget_for_each_device(to_scsi_target(dev), &new_state,
3177                                         device_unblock);
3178         else
3179                 device_for_each_child(dev, &new_state, target_unblock);
3180 }
3181 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3182
3183 /**
3184  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3185  * @sgl:        scatter-gather list
3186  * @sg_count:   number of segments in sg
3187  * @offset:     offset in bytes into sg, on return offset into the mapped area
3188  * @len:        bytes to map, on return number of bytes mapped
3189  *
3190  * Returns virtual address of the start of the mapped page
3191  */
3192 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3193                           size_t *offset, size_t *len)
3194 {
3195         int i;
3196         size_t sg_len = 0, len_complete = 0;
3197         struct scatterlist *sg;
3198         struct page *page;
3199
3200         WARN_ON(!irqs_disabled());
3201
3202         for_each_sg(sgl, sg, sg_count, i) {
3203                 len_complete = sg_len; /* Complete sg-entries */
3204                 sg_len += sg->length;
3205                 if (sg_len > *offset)
3206                         break;
3207         }
3208
3209         if (unlikely(i == sg_count)) {
3210                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3211                         "elements %d\n",
3212                        __func__, sg_len, *offset, sg_count);
3213                 WARN_ON(1);
3214                 return NULL;
3215         }
3216
3217         /* Offset starting from the beginning of first page in this sg-entry */
3218         *offset = *offset - len_complete + sg->offset;
3219
3220         /* Assumption: contiguous pages can be accessed as "page + i" */
3221         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3222         *offset &= ~PAGE_MASK;
3223
3224         /* Bytes in this sg-entry from *offset to the end of the page */
3225         sg_len = PAGE_SIZE - *offset;
3226         if (*len > sg_len)
3227                 *len = sg_len;
3228
3229         return kmap_atomic(page);
3230 }
3231 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3232
3233 /**
3234  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3235  * @virt:       virtual address to be unmapped
3236  */
3237 void scsi_kunmap_atomic_sg(void *virt)
3238 {
3239         kunmap_atomic(virt);
3240 }
3241 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3242
3243 void sdev_disable_disk_events(struct scsi_device *sdev)
3244 {
3245         atomic_inc(&sdev->disk_events_disable_depth);
3246 }
3247 EXPORT_SYMBOL(sdev_disable_disk_events);
3248
3249 void sdev_enable_disk_events(struct scsi_device *sdev)
3250 {
3251         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3252                 return;
3253         atomic_dec(&sdev->disk_events_disable_depth);
3254 }
3255 EXPORT_SYMBOL(sdev_enable_disk_events);
3256
3257 /**
3258  * scsi_vpd_lun_id - return a unique device identification
3259  * @sdev: SCSI device
3260  * @id:   buffer for the identification
3261  * @id_len:  length of the buffer
3262  *
3263  * Copies a unique device identification into @id based
3264  * on the information in the VPD page 0x83 of the device.
3265  * The string will be formatted as a SCSI name string.
3266  *
3267  * Returns the length of the identification or error on failure.
3268  * If the identifier is longer than the supplied buffer the actual
3269  * identifier length is returned and the buffer is not zero-padded.
3270  */
3271 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3272 {
3273         u8 cur_id_type = 0xff;
3274         u8 cur_id_size = 0;
3275         const unsigned char *d, *cur_id_str;
3276         const struct scsi_vpd *vpd_pg83;
3277         int id_size = -EINVAL;
3278
3279         rcu_read_lock();
3280         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3281         if (!vpd_pg83) {
3282                 rcu_read_unlock();
3283                 return -ENXIO;
3284         }
3285
3286         /*
3287          * Look for the correct descriptor.
3288          * Order of preference for lun descriptor:
3289          * - SCSI name string
3290          * - NAA IEEE Registered Extended
3291          * - EUI-64 based 16-byte
3292          * - EUI-64 based 12-byte
3293          * - NAA IEEE Registered
3294          * - NAA IEEE Extended
3295          * - T10 Vendor ID
3296          * as longer descriptors reduce the likelyhood
3297          * of identification clashes.
3298          */
3299
3300         /* The id string must be at least 20 bytes + terminating NULL byte */
3301         if (id_len < 21) {
3302                 rcu_read_unlock();
3303                 return -EINVAL;
3304         }
3305
3306         memset(id, 0, id_len);
3307         d = vpd_pg83->data + 4;
3308         while (d < vpd_pg83->data + vpd_pg83->len) {
3309                 /* Skip designators not referring to the LUN */
3310                 if ((d[1] & 0x30) != 0x00)
3311                         goto next_desig;
3312
3313                 switch (d[1] & 0xf) {
3314                 case 0x1:
3315                         /* T10 Vendor ID */
3316                         if (cur_id_size > d[3])
3317                                 break;
3318                         /* Prefer anything */
3319                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3320                                 break;
3321                         cur_id_size = d[3];
3322                         if (cur_id_size + 4 > id_len)
3323                                 cur_id_size = id_len - 4;
3324                         cur_id_str = d + 4;
3325                         cur_id_type = d[1] & 0xf;
3326                         id_size = snprintf(id, id_len, "t10.%*pE",
3327                                            cur_id_size, cur_id_str);
3328                         break;
3329                 case 0x2:
3330                         /* EUI-64 */
3331                         if (cur_id_size > d[3])
3332                                 break;
3333                         /* Prefer NAA IEEE Registered Extended */
3334                         if (cur_id_type == 0x3 &&
3335                             cur_id_size == d[3])
3336                                 break;
3337                         cur_id_size = d[3];
3338                         cur_id_str = d + 4;
3339                         cur_id_type = d[1] & 0xf;
3340                         switch (cur_id_size) {
3341                         case 8:
3342                                 id_size = snprintf(id, id_len,
3343                                                    "eui.%8phN",
3344                                                    cur_id_str);
3345                                 break;
3346                         case 12:
3347                                 id_size = snprintf(id, id_len,
3348                                                    "eui.%12phN",
3349                                                    cur_id_str);
3350                                 break;
3351                         case 16:
3352                                 id_size = snprintf(id, id_len,
3353                                                    "eui.%16phN",
3354                                                    cur_id_str);
3355                                 break;
3356                         default:
3357                                 cur_id_size = 0;
3358                                 break;
3359                         }
3360                         break;
3361                 case 0x3:
3362                         /* NAA */
3363                         if (cur_id_size > d[3])
3364                                 break;
3365                         cur_id_size = d[3];
3366                         cur_id_str = d + 4;
3367                         cur_id_type = d[1] & 0xf;
3368                         switch (cur_id_size) {
3369                         case 8:
3370                                 id_size = snprintf(id, id_len,
3371                                                    "naa.%8phN",
3372                                                    cur_id_str);
3373                                 break;
3374                         case 16:
3375                                 id_size = snprintf(id, id_len,
3376                                                    "naa.%16phN",
3377                                                    cur_id_str);
3378                                 break;
3379                         default:
3380                                 cur_id_size = 0;
3381                                 break;
3382                         }
3383                         break;
3384                 case 0x8:
3385                         /* SCSI name string */
3386                         if (cur_id_size + 4 > d[3])
3387                                 break;
3388                         /* Prefer others for truncated descriptor */
3389                         if (cur_id_size && d[3] > id_len)
3390                                 break;
3391                         cur_id_size = id_size = d[3];
3392                         cur_id_str = d + 4;
3393                         cur_id_type = d[1] & 0xf;
3394                         if (cur_id_size >= id_len)
3395                                 cur_id_size = id_len - 1;
3396                         memcpy(id, cur_id_str, cur_id_size);
3397                         /* Decrease priority for truncated descriptor */
3398                         if (cur_id_size != id_size)
3399                                 cur_id_size = 6;
3400                         break;
3401                 default:
3402                         break;
3403                 }
3404 next_desig:
3405                 d += d[3] + 4;
3406         }
3407         rcu_read_unlock();
3408
3409         return id_size;
3410 }
3411 EXPORT_SYMBOL(scsi_vpd_lun_id);
3412
3413 /*
3414  * scsi_vpd_tpg_id - return a target port group identifier
3415  * @sdev: SCSI device
3416  *
3417  * Returns the Target Port Group identifier from the information
3418  * froom VPD page 0x83 of the device.
3419  *
3420  * Returns the identifier or error on failure.
3421  */
3422 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3423 {
3424         const unsigned char *d;
3425         const struct scsi_vpd *vpd_pg83;
3426         int group_id = -EAGAIN, rel_port = -1;
3427
3428         rcu_read_lock();
3429         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3430         if (!vpd_pg83) {
3431                 rcu_read_unlock();
3432                 return -ENXIO;
3433         }
3434
3435         d = vpd_pg83->data + 4;
3436         while (d < vpd_pg83->data + vpd_pg83->len) {
3437                 switch (d[1] & 0xf) {
3438                 case 0x4:
3439                         /* Relative target port */
3440                         rel_port = get_unaligned_be16(&d[6]);
3441                         break;
3442                 case 0x5:
3443                         /* Target port group */
3444                         group_id = get_unaligned_be16(&d[6]);
3445                         break;
3446                 default:
3447                         break;
3448                 }
3449                 d += d[3] + 4;
3450         }
3451         rcu_read_unlock();
3452
3453         if (group_id >= 0 && rel_id && rel_port != -1)
3454                 *rel_id = rel_port;
3455
3456         return group_id;
3457 }
3458 EXPORT_SYMBOL(scsi_vpd_tpg_id);