]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/scsi_lib.c
Merge branch 'stable/for-jens-4.15' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56                                    unsigned char *sense_buffer)
57 {
58         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59                         sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63         gfp_t gfp_mask, int numa_node)
64 {
65         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66                                      gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71         struct kmem_cache *cache;
72         int ret = 0;
73
74         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75         if (cache)
76                 return 0;
77
78         mutex_lock(&scsi_sense_cache_mutex);
79         if (shost->unchecked_isa_dma) {
80                 scsi_sense_isadma_cache =
81                         kmem_cache_create("scsi_sense_cache(DMA)",
82                                 SCSI_SENSE_BUFFERSIZE, 0,
83                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84                 if (!scsi_sense_isadma_cache)
85                         ret = -ENOMEM;
86         } else {
87                 scsi_sense_cache =
88                         kmem_cache_create_usercopy("scsi_sense_cache",
89                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
91                 if (!scsi_sense_cache)
92                         ret = -ENOMEM;
93         }
94
95         mutex_unlock(&scsi_sense_cache_mutex);
96         return ret;
97 }
98
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY        3
105
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109         struct Scsi_Host *host = cmd->device->host;
110         struct scsi_device *device = cmd->device;
111         struct scsi_target *starget = scsi_target(device);
112
113         /*
114          * Set the appropriate busy bit for the device/host.
115          *
116          * If the host/device isn't busy, assume that something actually
117          * completed, and that we should be able to queue a command now.
118          *
119          * Note that the prior mid-layer assumption that any host could
120          * always queue at least one command is now broken.  The mid-layer
121          * will implement a user specifiable stall (see
122          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123          * if a command is requeued with no other commands outstanding
124          * either for the device or for the host.
125          */
126         switch (reason) {
127         case SCSI_MLQUEUE_HOST_BUSY:
128                 atomic_set(&host->host_blocked, host->max_host_blocked);
129                 break;
130         case SCSI_MLQUEUE_DEVICE_BUSY:
131         case SCSI_MLQUEUE_EH_RETRY:
132                 atomic_set(&device->device_blocked,
133                            device->max_device_blocked);
134                 break;
135         case SCSI_MLQUEUE_TARGET_BUSY:
136                 atomic_set(&starget->target_blocked,
137                            starget->max_target_blocked);
138                 break;
139         }
140 }
141
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144         struct scsi_device *sdev = cmd->device;
145
146         if (cmd->request->rq_flags & RQF_DONTPREP) {
147                 cmd->request->rq_flags &= ~RQF_DONTPREP;
148                 scsi_mq_uninit_cmd(cmd);
149         } else {
150                 WARN_ON_ONCE(true);
151         }
152         blk_mq_requeue_request(cmd->request, true);
153         put_device(&sdev->sdev_gendev);
154 }
155
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170         struct scsi_device *device = cmd->device;
171         struct request_queue *q = device->request_queue;
172         unsigned long flags;
173
174         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175                 "Inserting command %p into mlqueue\n", cmd));
176
177         scsi_set_blocked(cmd, reason);
178
179         /*
180          * Decrement the counters, since these commands are no longer
181          * active on the host/device.
182          */
183         if (unbusy)
184                 scsi_device_unbusy(device);
185
186         /*
187          * Requeue this command.  It will go before all other commands
188          * that are already in the queue. Schedule requeue work under
189          * lock such that the kblockd_schedule_work() call happens
190          * before blk_cleanup_queue() finishes.
191          */
192         cmd->result = 0;
193         if (q->mq_ops) {
194                 scsi_mq_requeue_cmd(cmd);
195                 return;
196         }
197         spin_lock_irqsave(q->queue_lock, flags);
198         blk_requeue_request(q, cmd->request);
199         kblockd_schedule_work(&device->requeue_work);
200         spin_unlock_irqrestore(q->queue_lock, flags);
201 }
202
203 /*
204  * Function:    scsi_queue_insert()
205  *
206  * Purpose:     Insert a command in the midlevel queue.
207  *
208  * Arguments:   cmd    - command that we are adding to queue.
209  *              reason - why we are inserting command to queue.
210  *
211  * Lock status: Assumed that lock is not held upon entry.
212  *
213  * Returns:     Nothing.
214  *
215  * Notes:       We do this for one of two cases.  Either the host is busy
216  *              and it cannot accept any more commands for the time being,
217  *              or the device returned QUEUE_FULL and can accept no more
218  *              commands.
219  * Notes:       This could be called either from an interrupt context or a
220  *              normal process context.
221  */
222 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
223 {
224         __scsi_queue_insert(cmd, reason, true);
225 }
226
227
228 /**
229  * scsi_execute - insert request and wait for the result
230  * @sdev:       scsi device
231  * @cmd:        scsi command
232  * @data_direction: data direction
233  * @buffer:     data buffer
234  * @bufflen:    len of buffer
235  * @sense:      optional sense buffer
236  * @sshdr:      optional decoded sense header
237  * @timeout:    request timeout in seconds
238  * @retries:    number of times to retry request
239  * @flags:      flags for ->cmd_flags
240  * @rq_flags:   flags for ->rq_flags
241  * @resid:      optional residual length
242  *
243  * Returns the scsi_cmnd result field if a command was executed, or a negative
244  * Linux error code if we didn't get that far.
245  */
246 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
247                  int data_direction, void *buffer, unsigned bufflen,
248                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
249                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
250                  int *resid)
251 {
252         struct request *req;
253         struct scsi_request *rq;
254         int ret = DRIVER_ERROR << 24;
255
256         req = blk_get_request_flags(sdev->request_queue,
257                         data_direction == DMA_TO_DEVICE ?
258                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
259         if (IS_ERR(req))
260                 return ret;
261         rq = scsi_req(req);
262
263         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
264                                         buffer, bufflen, __GFP_RECLAIM))
265                 goto out;
266
267         rq->cmd_len = COMMAND_SIZE(cmd[0]);
268         memcpy(rq->cmd, cmd, rq->cmd_len);
269         rq->retries = retries;
270         req->timeout = timeout;
271         req->cmd_flags |= flags;
272         req->rq_flags |= rq_flags | RQF_QUIET;
273
274         /*
275          * head injection *required* here otherwise quiesce won't work
276          */
277         blk_execute_rq(req->q, NULL, req, 1);
278
279         /*
280          * Some devices (USB mass-storage in particular) may transfer
281          * garbage data together with a residue indicating that the data
282          * is invalid.  Prevent the garbage from being misinterpreted
283          * and prevent security leaks by zeroing out the excess data.
284          */
285         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
286                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
287
288         if (resid)
289                 *resid = rq->resid_len;
290         if (sense && rq->sense_len)
291                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
292         if (sshdr)
293                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
294         ret = rq->result;
295  out:
296         blk_put_request(req);
297
298         return ret;
299 }
300 EXPORT_SYMBOL(scsi_execute);
301
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd     - command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315         cmd->serial_number = 0;
316         scsi_set_resid(cmd, 0);
317         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318         if (cmd->cmd_len == 0)
319                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321
322 /*
323  * Decrement the host_busy counter and wake up the error handler if necessary.
324  * Avoid as follows that the error handler is not woken up if shost->host_busy
325  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
326  * with an RCU read lock in this function to ensure that this function in its
327  * entirety either finishes before scsi_eh_scmd_add() increases the
328  * host_failed counter or that it notices the shost state change made by
329  * scsi_eh_scmd_add().
330  */
331 static void scsi_dec_host_busy(struct Scsi_Host *shost)
332 {
333         unsigned long flags;
334
335         rcu_read_lock();
336         atomic_dec(&shost->host_busy);
337         if (unlikely(scsi_host_in_recovery(shost))) {
338                 spin_lock_irqsave(shost->host_lock, flags);
339                 if (shost->host_failed || shost->host_eh_scheduled)
340                         scsi_eh_wakeup(shost);
341                 spin_unlock_irqrestore(shost->host_lock, flags);
342         }
343         rcu_read_unlock();
344 }
345
346 void scsi_device_unbusy(struct scsi_device *sdev)
347 {
348         struct Scsi_Host *shost = sdev->host;
349         struct scsi_target *starget = scsi_target(sdev);
350
351         scsi_dec_host_busy(shost);
352
353         if (starget->can_queue > 0)
354                 atomic_dec(&starget->target_busy);
355
356         atomic_dec(&sdev->device_busy);
357 }
358
359 static void scsi_kick_queue(struct request_queue *q)
360 {
361         if (q->mq_ops)
362                 blk_mq_start_hw_queues(q);
363         else
364                 blk_run_queue(q);
365 }
366
367 /*
368  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
369  * and call blk_run_queue for all the scsi_devices on the target -
370  * including current_sdev first.
371  *
372  * Called with *no* scsi locks held.
373  */
374 static void scsi_single_lun_run(struct scsi_device *current_sdev)
375 {
376         struct Scsi_Host *shost = current_sdev->host;
377         struct scsi_device *sdev, *tmp;
378         struct scsi_target *starget = scsi_target(current_sdev);
379         unsigned long flags;
380
381         spin_lock_irqsave(shost->host_lock, flags);
382         starget->starget_sdev_user = NULL;
383         spin_unlock_irqrestore(shost->host_lock, flags);
384
385         /*
386          * Call blk_run_queue for all LUNs on the target, starting with
387          * current_sdev. We race with others (to set starget_sdev_user),
388          * but in most cases, we will be first. Ideally, each LU on the
389          * target would get some limited time or requests on the target.
390          */
391         scsi_kick_queue(current_sdev->request_queue);
392
393         spin_lock_irqsave(shost->host_lock, flags);
394         if (starget->starget_sdev_user)
395                 goto out;
396         list_for_each_entry_safe(sdev, tmp, &starget->devices,
397                         same_target_siblings) {
398                 if (sdev == current_sdev)
399                         continue;
400                 if (scsi_device_get(sdev))
401                         continue;
402
403                 spin_unlock_irqrestore(shost->host_lock, flags);
404                 scsi_kick_queue(sdev->request_queue);
405                 spin_lock_irqsave(shost->host_lock, flags);
406         
407                 scsi_device_put(sdev);
408         }
409  out:
410         spin_unlock_irqrestore(shost->host_lock, flags);
411 }
412
413 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
414 {
415         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
416                 return true;
417         if (atomic_read(&sdev->device_blocked) > 0)
418                 return true;
419         return false;
420 }
421
422 static inline bool scsi_target_is_busy(struct scsi_target *starget)
423 {
424         if (starget->can_queue > 0) {
425                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
426                         return true;
427                 if (atomic_read(&starget->target_blocked) > 0)
428                         return true;
429         }
430         return false;
431 }
432
433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
434 {
435         if (shost->can_queue > 0 &&
436             atomic_read(&shost->host_busy) >= shost->can_queue)
437                 return true;
438         if (atomic_read(&shost->host_blocked) > 0)
439                 return true;
440         if (shost->host_self_blocked)
441                 return true;
442         return false;
443 }
444
445 static void scsi_starved_list_run(struct Scsi_Host *shost)
446 {
447         LIST_HEAD(starved_list);
448         struct scsi_device *sdev;
449         unsigned long flags;
450
451         spin_lock_irqsave(shost->host_lock, flags);
452         list_splice_init(&shost->starved_list, &starved_list);
453
454         while (!list_empty(&starved_list)) {
455                 struct request_queue *slq;
456
457                 /*
458                  * As long as shost is accepting commands and we have
459                  * starved queues, call blk_run_queue. scsi_request_fn
460                  * drops the queue_lock and can add us back to the
461                  * starved_list.
462                  *
463                  * host_lock protects the starved_list and starved_entry.
464                  * scsi_request_fn must get the host_lock before checking
465                  * or modifying starved_list or starved_entry.
466                  */
467                 if (scsi_host_is_busy(shost))
468                         break;
469
470                 sdev = list_entry(starved_list.next,
471                                   struct scsi_device, starved_entry);
472                 list_del_init(&sdev->starved_entry);
473                 if (scsi_target_is_busy(scsi_target(sdev))) {
474                         list_move_tail(&sdev->starved_entry,
475                                        &shost->starved_list);
476                         continue;
477                 }
478
479                 /*
480                  * Once we drop the host lock, a racing scsi_remove_device()
481                  * call may remove the sdev from the starved list and destroy
482                  * it and the queue.  Mitigate by taking a reference to the
483                  * queue and never touching the sdev again after we drop the
484                  * host lock.  Note: if __scsi_remove_device() invokes
485                  * blk_cleanup_queue() before the queue is run from this
486                  * function then blk_run_queue() will return immediately since
487                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
488                  */
489                 slq = sdev->request_queue;
490                 if (!blk_get_queue(slq))
491                         continue;
492                 spin_unlock_irqrestore(shost->host_lock, flags);
493
494                 scsi_kick_queue(slq);
495                 blk_put_queue(slq);
496
497                 spin_lock_irqsave(shost->host_lock, flags);
498         }
499         /* put any unprocessed entries back */
500         list_splice(&starved_list, &shost->starved_list);
501         spin_unlock_irqrestore(shost->host_lock, flags);
502 }
503
504 /*
505  * Function:   scsi_run_queue()
506  *
507  * Purpose:    Select a proper request queue to serve next
508  *
509  * Arguments:  q       - last request's queue
510  *
511  * Returns:     Nothing
512  *
513  * Notes:      The previous command was completely finished, start
514  *             a new one if possible.
515  */
516 static void scsi_run_queue(struct request_queue *q)
517 {
518         struct scsi_device *sdev = q->queuedata;
519
520         if (scsi_target(sdev)->single_lun)
521                 scsi_single_lun_run(sdev);
522         if (!list_empty(&sdev->host->starved_list))
523                 scsi_starved_list_run(sdev->host);
524
525         if (q->mq_ops)
526                 blk_mq_run_hw_queues(q, false);
527         else
528                 blk_run_queue(q);
529 }
530
531 void scsi_requeue_run_queue(struct work_struct *work)
532 {
533         struct scsi_device *sdev;
534         struct request_queue *q;
535
536         sdev = container_of(work, struct scsi_device, requeue_work);
537         q = sdev->request_queue;
538         scsi_run_queue(q);
539 }
540
541 /*
542  * Function:    scsi_requeue_command()
543  *
544  * Purpose:     Handle post-processing of completed commands.
545  *
546  * Arguments:   q       - queue to operate on
547  *              cmd     - command that may need to be requeued.
548  *
549  * Returns:     Nothing
550  *
551  * Notes:       After command completion, there may be blocks left
552  *              over which weren't finished by the previous command
553  *              this can be for a number of reasons - the main one is
554  *              I/O errors in the middle of the request, in which case
555  *              we need to request the blocks that come after the bad
556  *              sector.
557  * Notes:       Upon return, cmd is a stale pointer.
558  */
559 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
560 {
561         struct scsi_device *sdev = cmd->device;
562         struct request *req = cmd->request;
563         unsigned long flags;
564
565         spin_lock_irqsave(q->queue_lock, flags);
566         blk_unprep_request(req);
567         req->special = NULL;
568         scsi_put_command(cmd);
569         blk_requeue_request(q, req);
570         spin_unlock_irqrestore(q->queue_lock, flags);
571
572         scsi_run_queue(q);
573
574         put_device(&sdev->sdev_gendev);
575 }
576
577 void scsi_run_host_queues(struct Scsi_Host *shost)
578 {
579         struct scsi_device *sdev;
580
581         shost_for_each_device(sdev, shost)
582                 scsi_run_queue(sdev->request_queue);
583 }
584
585 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
586 {
587         if (!blk_rq_is_passthrough(cmd->request)) {
588                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
589
590                 if (drv->uninit_command)
591                         drv->uninit_command(cmd);
592         }
593 }
594
595 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
596 {
597         struct scsi_data_buffer *sdb;
598
599         if (cmd->sdb.table.nents)
600                 sg_free_table_chained(&cmd->sdb.table, true);
601         if (cmd->request->next_rq) {
602                 sdb = cmd->request->next_rq->special;
603                 if (sdb)
604                         sg_free_table_chained(&sdb->table, true);
605         }
606         if (scsi_prot_sg_count(cmd))
607                 sg_free_table_chained(&cmd->prot_sdb->table, true);
608 }
609
610 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
611 {
612         scsi_mq_free_sgtables(cmd);
613         scsi_uninit_cmd(cmd);
614         scsi_del_cmd_from_list(cmd);
615 }
616
617 /*
618  * Function:    scsi_release_buffers()
619  *
620  * Purpose:     Free resources allocate for a scsi_command.
621  *
622  * Arguments:   cmd     - command that we are bailing.
623  *
624  * Lock status: Assumed that no lock is held upon entry.
625  *
626  * Returns:     Nothing
627  *
628  * Notes:       In the event that an upper level driver rejects a
629  *              command, we must release resources allocated during
630  *              the __init_io() function.  Primarily this would involve
631  *              the scatter-gather table.
632  */
633 static void scsi_release_buffers(struct scsi_cmnd *cmd)
634 {
635         if (cmd->sdb.table.nents)
636                 sg_free_table_chained(&cmd->sdb.table, false);
637
638         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639
640         if (scsi_prot_sg_count(cmd))
641                 sg_free_table_chained(&cmd->prot_sdb->table, false);
642 }
643
644 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
645 {
646         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
647
648         sg_free_table_chained(&bidi_sdb->table, false);
649         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
650         cmd->request->next_rq->special = NULL;
651 }
652
653 static bool scsi_end_request(struct request *req, blk_status_t error,
654                 unsigned int bytes, unsigned int bidi_bytes)
655 {
656         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
657         struct scsi_device *sdev = cmd->device;
658         struct request_queue *q = sdev->request_queue;
659
660         if (blk_update_request(req, error, bytes))
661                 return true;
662
663         /* Bidi request must be completed as a whole */
664         if (unlikely(bidi_bytes) &&
665             blk_update_request(req->next_rq, error, bidi_bytes))
666                 return true;
667
668         if (blk_queue_add_random(q))
669                 add_disk_randomness(req->rq_disk);
670
671         if (!blk_rq_is_scsi(req)) {
672                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
673                 cmd->flags &= ~SCMD_INITIALIZED;
674         }
675
676         if (req->mq_ctx) {
677                 /*
678                  * In the MQ case the command gets freed by __blk_mq_end_request,
679                  * so we have to do all cleanup that depends on it earlier.
680                  *
681                  * We also can't kick the queues from irq context, so we
682                  * will have to defer it to a workqueue.
683                  */
684                 scsi_mq_uninit_cmd(cmd);
685
686                 __blk_mq_end_request(req, error);
687
688                 if (scsi_target(sdev)->single_lun ||
689                     !list_empty(&sdev->host->starved_list))
690                         kblockd_schedule_work(&sdev->requeue_work);
691                 else
692                         blk_mq_run_hw_queues(q, true);
693         } else {
694                 unsigned long flags;
695
696                 if (bidi_bytes)
697                         scsi_release_bidi_buffers(cmd);
698                 scsi_release_buffers(cmd);
699                 scsi_put_command(cmd);
700
701                 spin_lock_irqsave(q->queue_lock, flags);
702                 blk_finish_request(req, error);
703                 spin_unlock_irqrestore(q->queue_lock, flags);
704
705                 scsi_run_queue(q);
706         }
707
708         put_device(&sdev->sdev_gendev);
709         return false;
710 }
711
712 /**
713  * __scsi_error_from_host_byte - translate SCSI error code into errno
714  * @cmd:        SCSI command (unused)
715  * @result:     scsi error code
716  *
717  * Translate SCSI error code into block errors.
718  */
719 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
720                 int result)
721 {
722         switch (host_byte(result)) {
723         case DID_TRANSPORT_FAILFAST:
724                 return BLK_STS_TRANSPORT;
725         case DID_TARGET_FAILURE:
726                 set_host_byte(cmd, DID_OK);
727                 return BLK_STS_TARGET;
728         case DID_NEXUS_FAILURE:
729                 return BLK_STS_NEXUS;
730         case DID_ALLOC_FAILURE:
731                 set_host_byte(cmd, DID_OK);
732                 return BLK_STS_NOSPC;
733         case DID_MEDIUM_ERROR:
734                 set_host_byte(cmd, DID_OK);
735                 return BLK_STS_MEDIUM;
736         default:
737                 return BLK_STS_IOERR;
738         }
739 }
740
741 /*
742  * Function:    scsi_io_completion()
743  *
744  * Purpose:     Completion processing for block device I/O requests.
745  *
746  * Arguments:   cmd   - command that is finished.
747  *
748  * Lock status: Assumed that no lock is held upon entry.
749  *
750  * Returns:     Nothing
751  *
752  * Notes:       We will finish off the specified number of sectors.  If we
753  *              are done, the command block will be released and the queue
754  *              function will be goosed.  If we are not done then we have to
755  *              figure out what to do next:
756  *
757  *              a) We can call scsi_requeue_command().  The request
758  *                 will be unprepared and put back on the queue.  Then
759  *                 a new command will be created for it.  This should
760  *                 be used if we made forward progress, or if we want
761  *                 to switch from READ(10) to READ(6) for example.
762  *
763  *              b) We can call __scsi_queue_insert().  The request will
764  *                 be put back on the queue and retried using the same
765  *                 command as before, possibly after a delay.
766  *
767  *              c) We can call scsi_end_request() with -EIO to fail
768  *                 the remainder of the request.
769  */
770 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
771 {
772         int result = cmd->result;
773         struct request_queue *q = cmd->device->request_queue;
774         struct request *req = cmd->request;
775         blk_status_t error = BLK_STS_OK;
776         struct scsi_sense_hdr sshdr;
777         bool sense_valid = false;
778         int sense_deferred = 0, level = 0;
779         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
780               ACTION_DELAYED_RETRY} action;
781         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
782
783         if (result) {
784                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
785                 if (sense_valid)
786                         sense_deferred = scsi_sense_is_deferred(&sshdr);
787         }
788
789         if (blk_rq_is_passthrough(req)) {
790                 if (result) {
791                         if (sense_valid) {
792                                 /*
793                                  * SG_IO wants current and deferred errors
794                                  */
795                                 scsi_req(req)->sense_len =
796                                         min(8 + cmd->sense_buffer[7],
797                                             SCSI_SENSE_BUFFERSIZE);
798                         }
799                         if (!sense_deferred)
800                                 error = __scsi_error_from_host_byte(cmd, result);
801                 }
802                 /*
803                  * __scsi_error_from_host_byte may have reset the host_byte
804                  */
805                 scsi_req(req)->result = cmd->result;
806                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
807
808                 if (scsi_bidi_cmnd(cmd)) {
809                         /*
810                          * Bidi commands Must be complete as a whole,
811                          * both sides at once.
812                          */
813                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
814                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
815                                         blk_rq_bytes(req->next_rq)))
816                                 BUG();
817                         return;
818                 }
819         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
820                 /*
821                  * Flush commands do not transfers any data, and thus cannot use
822                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
823                  * This sets the error explicitly for the problem case.
824                  */
825                 error = __scsi_error_from_host_byte(cmd, result);
826         }
827
828         /* no bidi support for !blk_rq_is_passthrough yet */
829         BUG_ON(blk_bidi_rq(req));
830
831         /*
832          * Next deal with any sectors which we were able to correctly
833          * handle.
834          */
835         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
836                 "%u sectors total, %d bytes done.\n",
837                 blk_rq_sectors(req), good_bytes));
838
839         /*
840          * Recovered errors need reporting, but they're always treated as
841          * success, so fiddle the result code here.  For passthrough requests
842          * we already took a copy of the original into sreq->result which
843          * is what gets returned to the user
844          */
845         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
846                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
847                  * print since caller wants ATA registers. Only occurs on
848                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
849                  */
850                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
851                         ;
852                 else if (!(req->rq_flags & RQF_QUIET))
853                         scsi_print_sense(cmd);
854                 result = 0;
855                 /* for passthrough error may be set */
856                 error = BLK_STS_OK;
857         }
858
859         /*
860          * special case: failed zero length commands always need to
861          * drop down into the retry code. Otherwise, if we finished
862          * all bytes in the request we are done now.
863          */
864         if (!(blk_rq_bytes(req) == 0 && error) &&
865             !scsi_end_request(req, error, good_bytes, 0))
866                 return;
867
868         /*
869          * Kill remainder if no retrys.
870          */
871         if (error && scsi_noretry_cmd(cmd)) {
872                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
873                         BUG();
874                 return;
875         }
876
877         /*
878          * If there had been no error, but we have leftover bytes in the
879          * requeues just queue the command up again.
880          */
881         if (result == 0)
882                 goto requeue;
883
884         error = __scsi_error_from_host_byte(cmd, result);
885
886         if (host_byte(result) == DID_RESET) {
887                 /* Third party bus reset or reset for error recovery
888                  * reasons.  Just retry the command and see what
889                  * happens.
890                  */
891                 action = ACTION_RETRY;
892         } else if (sense_valid && !sense_deferred) {
893                 switch (sshdr.sense_key) {
894                 case UNIT_ATTENTION:
895                         if (cmd->device->removable) {
896                                 /* Detected disc change.  Set a bit
897                                  * and quietly refuse further access.
898                                  */
899                                 cmd->device->changed = 1;
900                                 action = ACTION_FAIL;
901                         } else {
902                                 /* Must have been a power glitch, or a
903                                  * bus reset.  Could not have been a
904                                  * media change, so we just retry the
905                                  * command and see what happens.
906                                  */
907                                 action = ACTION_RETRY;
908                         }
909                         break;
910                 case ILLEGAL_REQUEST:
911                         /* If we had an ILLEGAL REQUEST returned, then
912                          * we may have performed an unsupported
913                          * command.  The only thing this should be
914                          * would be a ten byte read where only a six
915                          * byte read was supported.  Also, on a system
916                          * where READ CAPACITY failed, we may have
917                          * read past the end of the disk.
918                          */
919                         if ((cmd->device->use_10_for_rw &&
920                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
921                             (cmd->cmnd[0] == READ_10 ||
922                              cmd->cmnd[0] == WRITE_10)) {
923                                 /* This will issue a new 6-byte command. */
924                                 cmd->device->use_10_for_rw = 0;
925                                 action = ACTION_REPREP;
926                         } else if (sshdr.asc == 0x10) /* DIX */ {
927                                 action = ACTION_FAIL;
928                                 error = BLK_STS_PROTECTION;
929                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
930                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
931                                 action = ACTION_FAIL;
932                                 error = BLK_STS_TARGET;
933                         } else
934                                 action = ACTION_FAIL;
935                         break;
936                 case ABORTED_COMMAND:
937                         action = ACTION_FAIL;
938                         if (sshdr.asc == 0x10) /* DIF */
939                                 error = BLK_STS_PROTECTION;
940                         break;
941                 case NOT_READY:
942                         /* If the device is in the process of becoming
943                          * ready, or has a temporary blockage, retry.
944                          */
945                         if (sshdr.asc == 0x04) {
946                                 switch (sshdr.ascq) {
947                                 case 0x01: /* becoming ready */
948                                 case 0x04: /* format in progress */
949                                 case 0x05: /* rebuild in progress */
950                                 case 0x06: /* recalculation in progress */
951                                 case 0x07: /* operation in progress */
952                                 case 0x08: /* Long write in progress */
953                                 case 0x09: /* self test in progress */
954                                 case 0x14: /* space allocation in progress */
955                                         action = ACTION_DELAYED_RETRY;
956                                         break;
957                                 default:
958                                         action = ACTION_FAIL;
959                                         break;
960                                 }
961                         } else
962                                 action = ACTION_FAIL;
963                         break;
964                 case VOLUME_OVERFLOW:
965                         /* See SSC3rXX or current. */
966                         action = ACTION_FAIL;
967                         break;
968                 default:
969                         action = ACTION_FAIL;
970                         break;
971                 }
972         } else
973                 action = ACTION_FAIL;
974
975         if (action != ACTION_FAIL &&
976             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
977                 action = ACTION_FAIL;
978
979         switch (action) {
980         case ACTION_FAIL:
981                 /* Give up and fail the remainder of the request */
982                 if (!(req->rq_flags & RQF_QUIET)) {
983                         static DEFINE_RATELIMIT_STATE(_rs,
984                                         DEFAULT_RATELIMIT_INTERVAL,
985                                         DEFAULT_RATELIMIT_BURST);
986
987                         if (unlikely(scsi_logging_level))
988                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
989                                                        SCSI_LOG_MLCOMPLETE_BITS);
990
991                         /*
992                          * if logging is enabled the failure will be printed
993                          * in scsi_log_completion(), so avoid duplicate messages
994                          */
995                         if (!level && __ratelimit(&_rs)) {
996                                 scsi_print_result(cmd, NULL, FAILED);
997                                 if (driver_byte(result) & DRIVER_SENSE)
998                                         scsi_print_sense(cmd);
999                                 scsi_print_command(cmd);
1000                         }
1001                 }
1002                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1003                         return;
1004                 /*FALLTHRU*/
1005         case ACTION_REPREP:
1006         requeue:
1007                 /* Unprep the request and put it back at the head of the queue.
1008                  * A new command will be prepared and issued.
1009                  */
1010                 if (q->mq_ops) {
1011                         scsi_mq_requeue_cmd(cmd);
1012                 } else {
1013                         scsi_release_buffers(cmd);
1014                         scsi_requeue_command(q, cmd);
1015                 }
1016                 break;
1017         case ACTION_RETRY:
1018                 /* Retry the same command immediately */
1019                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1020                 break;
1021         case ACTION_DELAYED_RETRY:
1022                 /* Retry the same command after a delay */
1023                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1024                 break;
1025         }
1026 }
1027
1028 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1029 {
1030         int count;
1031
1032         /*
1033          * If sg table allocation fails, requeue request later.
1034          */
1035         if (unlikely(sg_alloc_table_chained(&sdb->table,
1036                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1037                 return BLKPREP_DEFER;
1038
1039         /* 
1040          * Next, walk the list, and fill in the addresses and sizes of
1041          * each segment.
1042          */
1043         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1044         BUG_ON(count > sdb->table.nents);
1045         sdb->table.nents = count;
1046         sdb->length = blk_rq_payload_bytes(req);
1047         return BLKPREP_OK;
1048 }
1049
1050 /*
1051  * Function:    scsi_init_io()
1052  *
1053  * Purpose:     SCSI I/O initialize function.
1054  *
1055  * Arguments:   cmd   - Command descriptor we wish to initialize
1056  *
1057  * Returns:     0 on success
1058  *              BLKPREP_DEFER if the failure is retryable
1059  *              BLKPREP_KILL if the failure is fatal
1060  */
1061 int scsi_init_io(struct scsi_cmnd *cmd)
1062 {
1063         struct scsi_device *sdev = cmd->device;
1064         struct request *rq = cmd->request;
1065         bool is_mq = (rq->mq_ctx != NULL);
1066         int error = BLKPREP_KILL;
1067
1068         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1069                 goto err_exit;
1070
1071         error = scsi_init_sgtable(rq, &cmd->sdb);
1072         if (error)
1073                 goto err_exit;
1074
1075         if (blk_bidi_rq(rq)) {
1076                 if (!rq->q->mq_ops) {
1077                         struct scsi_data_buffer *bidi_sdb =
1078                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1079                         if (!bidi_sdb) {
1080                                 error = BLKPREP_DEFER;
1081                                 goto err_exit;
1082                         }
1083
1084                         rq->next_rq->special = bidi_sdb;
1085                 }
1086
1087                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1088                 if (error)
1089                         goto err_exit;
1090         }
1091
1092         if (blk_integrity_rq(rq)) {
1093                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1094                 int ivecs, count;
1095
1096                 if (prot_sdb == NULL) {
1097                         /*
1098                          * This can happen if someone (e.g. multipath)
1099                          * queues a command to a device on an adapter
1100                          * that does not support DIX.
1101                          */
1102                         WARN_ON_ONCE(1);
1103                         error = BLKPREP_KILL;
1104                         goto err_exit;
1105                 }
1106
1107                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1108
1109                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1110                                 prot_sdb->table.sgl)) {
1111                         error = BLKPREP_DEFER;
1112                         goto err_exit;
1113                 }
1114
1115                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1116                                                 prot_sdb->table.sgl);
1117                 BUG_ON(unlikely(count > ivecs));
1118                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1119
1120                 cmd->prot_sdb = prot_sdb;
1121                 cmd->prot_sdb->table.nents = count;
1122         }
1123
1124         return BLKPREP_OK;
1125 err_exit:
1126         if (is_mq) {
1127                 scsi_mq_free_sgtables(cmd);
1128         } else {
1129                 scsi_release_buffers(cmd);
1130                 cmd->request->special = NULL;
1131                 scsi_put_command(cmd);
1132                 put_device(&sdev->sdev_gendev);
1133         }
1134         return error;
1135 }
1136 EXPORT_SYMBOL(scsi_init_io);
1137
1138 /**
1139  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1140  * @rq: Request associated with the SCSI command to be initialized.
1141  *
1142  * This function initializes the members of struct scsi_cmnd that must be
1143  * initialized before request processing starts and that won't be
1144  * reinitialized if a SCSI command is requeued.
1145  *
1146  * Called from inside blk_get_request() for pass-through requests and from
1147  * inside scsi_init_command() for filesystem requests.
1148  */
1149 static void scsi_initialize_rq(struct request *rq)
1150 {
1151         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1152
1153         scsi_req_init(&cmd->req);
1154         cmd->jiffies_at_alloc = jiffies;
1155         cmd->retries = 0;
1156 }
1157
1158 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1159 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1160 {
1161         struct scsi_device *sdev = cmd->device;
1162         struct Scsi_Host *shost = sdev->host;
1163         unsigned long flags;
1164
1165         if (shost->use_cmd_list) {
1166                 spin_lock_irqsave(&sdev->list_lock, flags);
1167                 list_add_tail(&cmd->list, &sdev->cmd_list);
1168                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1169         }
1170 }
1171
1172 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1173 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1174 {
1175         struct scsi_device *sdev = cmd->device;
1176         struct Scsi_Host *shost = sdev->host;
1177         unsigned long flags;
1178
1179         if (shost->use_cmd_list) {
1180                 spin_lock_irqsave(&sdev->list_lock, flags);
1181                 BUG_ON(list_empty(&cmd->list));
1182                 list_del_init(&cmd->list);
1183                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1184         }
1185 }
1186
1187 /* Called after a request has been started. */
1188 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1189 {
1190         void *buf = cmd->sense_buffer;
1191         void *prot = cmd->prot_sdb;
1192         struct request *rq = blk_mq_rq_from_pdu(cmd);
1193         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1194         unsigned long jiffies_at_alloc;
1195         int retries;
1196
1197         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1198                 flags |= SCMD_INITIALIZED;
1199                 scsi_initialize_rq(rq);
1200         }
1201
1202         jiffies_at_alloc = cmd->jiffies_at_alloc;
1203         retries = cmd->retries;
1204         /* zero out the cmd, except for the embedded scsi_request */
1205         memset((char *)cmd + sizeof(cmd->req), 0,
1206                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1207
1208         cmd->device = dev;
1209         cmd->sense_buffer = buf;
1210         cmd->prot_sdb = prot;
1211         cmd->flags = flags;
1212         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1213         cmd->jiffies_at_alloc = jiffies_at_alloc;
1214         cmd->retries = retries;
1215
1216         scsi_add_cmd_to_list(cmd);
1217 }
1218
1219 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1220 {
1221         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1222
1223         /*
1224          * Passthrough requests may transfer data, in which case they must
1225          * a bio attached to them.  Or they might contain a SCSI command
1226          * that does not transfer data, in which case they may optionally
1227          * submit a request without an attached bio.
1228          */
1229         if (req->bio) {
1230                 int ret = scsi_init_io(cmd);
1231                 if (unlikely(ret))
1232                         return ret;
1233         } else {
1234                 BUG_ON(blk_rq_bytes(req));
1235
1236                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1237         }
1238
1239         cmd->cmd_len = scsi_req(req)->cmd_len;
1240         cmd->cmnd = scsi_req(req)->cmd;
1241         cmd->transfersize = blk_rq_bytes(req);
1242         cmd->allowed = scsi_req(req)->retries;
1243         return BLKPREP_OK;
1244 }
1245
1246 /*
1247  * Setup a normal block command.  These are simple request from filesystems
1248  * that still need to be translated to SCSI CDBs from the ULD.
1249  */
1250 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1251 {
1252         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1253
1254         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1255                 int ret = sdev->handler->prep_fn(sdev, req);
1256                 if (ret != BLKPREP_OK)
1257                         return ret;
1258         }
1259
1260         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1261         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1262         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1263 }
1264
1265 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1266 {
1267         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268
1269         if (!blk_rq_bytes(req))
1270                 cmd->sc_data_direction = DMA_NONE;
1271         else if (rq_data_dir(req) == WRITE)
1272                 cmd->sc_data_direction = DMA_TO_DEVICE;
1273         else
1274                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1275
1276         if (blk_rq_is_scsi(req))
1277                 return scsi_setup_scsi_cmnd(sdev, req);
1278         else
1279                 return scsi_setup_fs_cmnd(sdev, req);
1280 }
1281
1282 static int
1283 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1284 {
1285         int ret = BLKPREP_OK;
1286
1287         /*
1288          * If the device is not in running state we will reject some
1289          * or all commands.
1290          */
1291         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1292                 switch (sdev->sdev_state) {
1293                 case SDEV_OFFLINE:
1294                 case SDEV_TRANSPORT_OFFLINE:
1295                         /*
1296                          * If the device is offline we refuse to process any
1297                          * commands.  The device must be brought online
1298                          * before trying any recovery commands.
1299                          */
1300                         sdev_printk(KERN_ERR, sdev,
1301                                     "rejecting I/O to offline device\n");
1302                         ret = BLKPREP_KILL;
1303                         break;
1304                 case SDEV_DEL:
1305                         /*
1306                          * If the device is fully deleted, we refuse to
1307                          * process any commands as well.
1308                          */
1309                         sdev_printk(KERN_ERR, sdev,
1310                                     "rejecting I/O to dead device\n");
1311                         ret = BLKPREP_KILL;
1312                         break;
1313                 case SDEV_BLOCK:
1314                 case SDEV_CREATED_BLOCK:
1315                         ret = BLKPREP_DEFER;
1316                         break;
1317                 case SDEV_QUIESCE:
1318                         /*
1319                          * If the devices is blocked we defer normal commands.
1320                          */
1321                         if (req && !(req->rq_flags & RQF_PREEMPT))
1322                                 ret = BLKPREP_DEFER;
1323                         break;
1324                 default:
1325                         /*
1326                          * For any other not fully online state we only allow
1327                          * special commands.  In particular any user initiated
1328                          * command is not allowed.
1329                          */
1330                         if (req && !(req->rq_flags & RQF_PREEMPT))
1331                                 ret = BLKPREP_KILL;
1332                         break;
1333                 }
1334         }
1335         return ret;
1336 }
1337
1338 static int
1339 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1340 {
1341         struct scsi_device *sdev = q->queuedata;
1342
1343         switch (ret) {
1344         case BLKPREP_KILL:
1345         case BLKPREP_INVALID:
1346                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1347                 /* release the command and kill it */
1348                 if (req->special) {
1349                         struct scsi_cmnd *cmd = req->special;
1350                         scsi_release_buffers(cmd);
1351                         scsi_put_command(cmd);
1352                         put_device(&sdev->sdev_gendev);
1353                         req->special = NULL;
1354                 }
1355                 break;
1356         case BLKPREP_DEFER:
1357                 /*
1358                  * If we defer, the blk_peek_request() returns NULL, but the
1359                  * queue must be restarted, so we schedule a callback to happen
1360                  * shortly.
1361                  */
1362                 if (atomic_read(&sdev->device_busy) == 0)
1363                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364                 break;
1365         default:
1366                 req->rq_flags |= RQF_DONTPREP;
1367         }
1368
1369         return ret;
1370 }
1371
1372 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1373 {
1374         struct scsi_device *sdev = q->queuedata;
1375         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1376         int ret;
1377
1378         ret = scsi_prep_state_check(sdev, req);
1379         if (ret != BLKPREP_OK)
1380                 goto out;
1381
1382         if (!req->special) {
1383                 /* Bail if we can't get a reference to the device */
1384                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1385                         ret = BLKPREP_DEFER;
1386                         goto out;
1387                 }
1388
1389                 scsi_init_command(sdev, cmd);
1390                 req->special = cmd;
1391         }
1392
1393         cmd->tag = req->tag;
1394         cmd->request = req;
1395         cmd->prot_op = SCSI_PROT_NORMAL;
1396
1397         ret = scsi_setup_cmnd(sdev, req);
1398 out:
1399         return scsi_prep_return(q, req, ret);
1400 }
1401
1402 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1403 {
1404         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1405 }
1406
1407 /*
1408  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1409  * return 0.
1410  *
1411  * Called with the queue_lock held.
1412  */
1413 static inline int scsi_dev_queue_ready(struct request_queue *q,
1414                                   struct scsi_device *sdev)
1415 {
1416         unsigned int busy;
1417
1418         busy = atomic_inc_return(&sdev->device_busy) - 1;
1419         if (atomic_read(&sdev->device_blocked)) {
1420                 if (busy)
1421                         goto out_dec;
1422
1423                 /*
1424                  * unblock after device_blocked iterates to zero
1425                  */
1426                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1427                         /*
1428                          * For the MQ case we take care of this in the caller.
1429                          */
1430                         if (!q->mq_ops)
1431                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1432                         goto out_dec;
1433                 }
1434                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1435                                    "unblocking device at zero depth\n"));
1436         }
1437
1438         if (busy >= sdev->queue_depth)
1439                 goto out_dec;
1440
1441         return 1;
1442 out_dec:
1443         atomic_dec(&sdev->device_busy);
1444         return 0;
1445 }
1446
1447 /*
1448  * scsi_target_queue_ready: checks if there we can send commands to target
1449  * @sdev: scsi device on starget to check.
1450  */
1451 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1452                                            struct scsi_device *sdev)
1453 {
1454         struct scsi_target *starget = scsi_target(sdev);
1455         unsigned int busy;
1456
1457         if (starget->single_lun) {
1458                 spin_lock_irq(shost->host_lock);
1459                 if (starget->starget_sdev_user &&
1460                     starget->starget_sdev_user != sdev) {
1461                         spin_unlock_irq(shost->host_lock);
1462                         return 0;
1463                 }
1464                 starget->starget_sdev_user = sdev;
1465                 spin_unlock_irq(shost->host_lock);
1466         }
1467
1468         if (starget->can_queue <= 0)
1469                 return 1;
1470
1471         busy = atomic_inc_return(&starget->target_busy) - 1;
1472         if (atomic_read(&starget->target_blocked) > 0) {
1473                 if (busy)
1474                         goto starved;
1475
1476                 /*
1477                  * unblock after target_blocked iterates to zero
1478                  */
1479                 if (atomic_dec_return(&starget->target_blocked) > 0)
1480                         goto out_dec;
1481
1482                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1483                                  "unblocking target at zero depth\n"));
1484         }
1485
1486         if (busy >= starget->can_queue)
1487                 goto starved;
1488
1489         return 1;
1490
1491 starved:
1492         spin_lock_irq(shost->host_lock);
1493         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1494         spin_unlock_irq(shost->host_lock);
1495 out_dec:
1496         if (starget->can_queue > 0)
1497                 atomic_dec(&starget->target_busy);
1498         return 0;
1499 }
1500
1501 /*
1502  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1503  * return 0. We must end up running the queue again whenever 0 is
1504  * returned, else IO can hang.
1505  */
1506 static inline int scsi_host_queue_ready(struct request_queue *q,
1507                                    struct Scsi_Host *shost,
1508                                    struct scsi_device *sdev)
1509 {
1510         unsigned int busy;
1511
1512         if (scsi_host_in_recovery(shost))
1513                 return 0;
1514
1515         busy = atomic_inc_return(&shost->host_busy) - 1;
1516         if (atomic_read(&shost->host_blocked) > 0) {
1517                 if (busy)
1518                         goto starved;
1519
1520                 /*
1521                  * unblock after host_blocked iterates to zero
1522                  */
1523                 if (atomic_dec_return(&shost->host_blocked) > 0)
1524                         goto out_dec;
1525
1526                 SCSI_LOG_MLQUEUE(3,
1527                         shost_printk(KERN_INFO, shost,
1528                                      "unblocking host at zero depth\n"));
1529         }
1530
1531         if (shost->can_queue > 0 && busy >= shost->can_queue)
1532                 goto starved;
1533         if (shost->host_self_blocked)
1534                 goto starved;
1535
1536         /* We're OK to process the command, so we can't be starved */
1537         if (!list_empty(&sdev->starved_entry)) {
1538                 spin_lock_irq(shost->host_lock);
1539                 if (!list_empty(&sdev->starved_entry))
1540                         list_del_init(&sdev->starved_entry);
1541                 spin_unlock_irq(shost->host_lock);
1542         }
1543
1544         return 1;
1545
1546 starved:
1547         spin_lock_irq(shost->host_lock);
1548         if (list_empty(&sdev->starved_entry))
1549                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1550         spin_unlock_irq(shost->host_lock);
1551 out_dec:
1552         scsi_dec_host_busy(shost);
1553         return 0;
1554 }
1555
1556 /*
1557  * Busy state exporting function for request stacking drivers.
1558  *
1559  * For efficiency, no lock is taken to check the busy state of
1560  * shost/starget/sdev, since the returned value is not guaranteed and
1561  * may be changed after request stacking drivers call the function,
1562  * regardless of taking lock or not.
1563  *
1564  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1565  * needs to return 'not busy'. Otherwise, request stacking drivers
1566  * may hold requests forever.
1567  */
1568 static int scsi_lld_busy(struct request_queue *q)
1569 {
1570         struct scsi_device *sdev = q->queuedata;
1571         struct Scsi_Host *shost;
1572
1573         if (blk_queue_dying(q))
1574                 return 0;
1575
1576         shost = sdev->host;
1577
1578         /*
1579          * Ignore host/starget busy state.
1580          * Since block layer does not have a concept of fairness across
1581          * multiple queues, congestion of host/starget needs to be handled
1582          * in SCSI layer.
1583          */
1584         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1585                 return 1;
1586
1587         return 0;
1588 }
1589
1590 /*
1591  * Kill a request for a dead device
1592  */
1593 static void scsi_kill_request(struct request *req, struct request_queue *q)
1594 {
1595         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1596         struct scsi_device *sdev;
1597         struct scsi_target *starget;
1598         struct Scsi_Host *shost;
1599
1600         blk_start_request(req);
1601
1602         scmd_printk(KERN_INFO, cmd, "killing request\n");
1603
1604         sdev = cmd->device;
1605         starget = scsi_target(sdev);
1606         shost = sdev->host;
1607         scsi_init_cmd_errh(cmd);
1608         cmd->result = DID_NO_CONNECT << 16;
1609         atomic_inc(&cmd->device->iorequest_cnt);
1610
1611         /*
1612          * SCSI request completion path will do scsi_device_unbusy(),
1613          * bump busy counts.  To bump the counters, we need to dance
1614          * with the locks as normal issue path does.
1615          */
1616         atomic_inc(&sdev->device_busy);
1617         atomic_inc(&shost->host_busy);
1618         if (starget->can_queue > 0)
1619                 atomic_inc(&starget->target_busy);
1620
1621         blk_complete_request(req);
1622 }
1623
1624 static void scsi_softirq_done(struct request *rq)
1625 {
1626         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1627         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1628         int disposition;
1629
1630         INIT_LIST_HEAD(&cmd->eh_entry);
1631
1632         atomic_inc(&cmd->device->iodone_cnt);
1633         if (cmd->result)
1634                 atomic_inc(&cmd->device->ioerr_cnt);
1635
1636         disposition = scsi_decide_disposition(cmd);
1637         if (disposition != SUCCESS &&
1638             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1639                 sdev_printk(KERN_ERR, cmd->device,
1640                             "timing out command, waited %lus\n",
1641                             wait_for/HZ);
1642                 disposition = SUCCESS;
1643         }
1644
1645         scsi_log_completion(cmd, disposition);
1646
1647         switch (disposition) {
1648                 case SUCCESS:
1649                         scsi_finish_command(cmd);
1650                         break;
1651                 case NEEDS_RETRY:
1652                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1653                         break;
1654                 case ADD_TO_MLQUEUE:
1655                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1656                         break;
1657                 default:
1658                         scsi_eh_scmd_add(cmd);
1659                         break;
1660         }
1661 }
1662
1663 /**
1664  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1665  * @cmd: command block we are dispatching.
1666  *
1667  * Return: nonzero return request was rejected and device's queue needs to be
1668  * plugged.
1669  */
1670 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1671 {
1672         struct Scsi_Host *host = cmd->device->host;
1673         int rtn = 0;
1674
1675         atomic_inc(&cmd->device->iorequest_cnt);
1676
1677         /* check if the device is still usable */
1678         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1679                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1680                  * returns an immediate error upwards, and signals
1681                  * that the device is no longer present */
1682                 cmd->result = DID_NO_CONNECT << 16;
1683                 goto done;
1684         }
1685
1686         /* Check to see if the scsi lld made this device blocked. */
1687         if (unlikely(scsi_device_blocked(cmd->device))) {
1688                 /*
1689                  * in blocked state, the command is just put back on
1690                  * the device queue.  The suspend state has already
1691                  * blocked the queue so future requests should not
1692                  * occur until the device transitions out of the
1693                  * suspend state.
1694                  */
1695                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696                         "queuecommand : device blocked\n"));
1697                 return SCSI_MLQUEUE_DEVICE_BUSY;
1698         }
1699
1700         /* Store the LUN value in cmnd, if needed. */
1701         if (cmd->device->lun_in_cdb)
1702                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1703                                (cmd->device->lun << 5 & 0xe0);
1704
1705         scsi_log_send(cmd);
1706
1707         /*
1708          * Before we queue this command, check if the command
1709          * length exceeds what the host adapter can handle.
1710          */
1711         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1712                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1713                                "queuecommand : command too long. "
1714                                "cdb_size=%d host->max_cmd_len=%d\n",
1715                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1716                 cmd->result = (DID_ABORT << 16);
1717                 goto done;
1718         }
1719
1720         if (unlikely(host->shost_state == SHOST_DEL)) {
1721                 cmd->result = (DID_NO_CONNECT << 16);
1722                 goto done;
1723
1724         }
1725
1726         trace_scsi_dispatch_cmd_start(cmd);
1727         rtn = host->hostt->queuecommand(host, cmd);
1728         if (rtn) {
1729                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1730                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1731                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1732                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1733
1734                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1735                         "queuecommand : request rejected\n"));
1736         }
1737
1738         return rtn;
1739  done:
1740         cmd->scsi_done(cmd);
1741         return 0;
1742 }
1743
1744 /**
1745  * scsi_done - Invoke completion on finished SCSI command.
1746  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1747  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1748  *
1749  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1750  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1751  * calls blk_complete_request() for further processing.
1752  *
1753  * This function is interrupt context safe.
1754  */
1755 static void scsi_done(struct scsi_cmnd *cmd)
1756 {
1757         trace_scsi_dispatch_cmd_done(cmd);
1758         blk_complete_request(cmd->request);
1759 }
1760
1761 /*
1762  * Function:    scsi_request_fn()
1763  *
1764  * Purpose:     Main strategy routine for SCSI.
1765  *
1766  * Arguments:   q       - Pointer to actual queue.
1767  *
1768  * Returns:     Nothing
1769  *
1770  * Lock status: request queue lock assumed to be held when called.
1771  *
1772  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1773  * protection for ZBC disks.
1774  */
1775 static void scsi_request_fn(struct request_queue *q)
1776         __releases(q->queue_lock)
1777         __acquires(q->queue_lock)
1778 {
1779         struct scsi_device *sdev = q->queuedata;
1780         struct Scsi_Host *shost;
1781         struct scsi_cmnd *cmd;
1782         struct request *req;
1783
1784         /*
1785          * To start with, we keep looping until the queue is empty, or until
1786          * the host is no longer able to accept any more requests.
1787          */
1788         shost = sdev->host;
1789         for (;;) {
1790                 int rtn;
1791                 /*
1792                  * get next queueable request.  We do this early to make sure
1793                  * that the request is fully prepared even if we cannot
1794                  * accept it.
1795                  */
1796                 req = blk_peek_request(q);
1797                 if (!req)
1798                         break;
1799
1800                 if (unlikely(!scsi_device_online(sdev))) {
1801                         sdev_printk(KERN_ERR, sdev,
1802                                     "rejecting I/O to offline device\n");
1803                         scsi_kill_request(req, q);
1804                         continue;
1805                 }
1806
1807                 if (!scsi_dev_queue_ready(q, sdev))
1808                         break;
1809
1810                 /*
1811                  * Remove the request from the request list.
1812                  */
1813                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1814                         blk_start_request(req);
1815
1816                 spin_unlock_irq(q->queue_lock);
1817                 cmd = blk_mq_rq_to_pdu(req);
1818                 if (cmd != req->special) {
1819                         printk(KERN_CRIT "impossible request in %s.\n"
1820                                          "please mail a stack trace to "
1821                                          "linux-scsi@vger.kernel.org\n",
1822                                          __func__);
1823                         blk_dump_rq_flags(req, "foo");
1824                         BUG();
1825                 }
1826
1827                 /*
1828                  * We hit this when the driver is using a host wide
1829                  * tag map. For device level tag maps the queue_depth check
1830                  * in the device ready fn would prevent us from trying
1831                  * to allocate a tag. Since the map is a shared host resource
1832                  * we add the dev to the starved list so it eventually gets
1833                  * a run when a tag is freed.
1834                  */
1835                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1836                         spin_lock_irq(shost->host_lock);
1837                         if (list_empty(&sdev->starved_entry))
1838                                 list_add_tail(&sdev->starved_entry,
1839                                               &shost->starved_list);
1840                         spin_unlock_irq(shost->host_lock);
1841                         goto not_ready;
1842                 }
1843
1844                 if (!scsi_target_queue_ready(shost, sdev))
1845                         goto not_ready;
1846
1847                 if (!scsi_host_queue_ready(q, shost, sdev))
1848                         goto host_not_ready;
1849         
1850                 if (sdev->simple_tags)
1851                         cmd->flags |= SCMD_TAGGED;
1852                 else
1853                         cmd->flags &= ~SCMD_TAGGED;
1854
1855                 /*
1856                  * Finally, initialize any error handling parameters, and set up
1857                  * the timers for timeouts.
1858                  */
1859                 scsi_init_cmd_errh(cmd);
1860
1861                 /*
1862                  * Dispatch the command to the low-level driver.
1863                  */
1864                 cmd->scsi_done = scsi_done;
1865                 rtn = scsi_dispatch_cmd(cmd);
1866                 if (rtn) {
1867                         scsi_queue_insert(cmd, rtn);
1868                         spin_lock_irq(q->queue_lock);
1869                         goto out_delay;
1870                 }
1871                 spin_lock_irq(q->queue_lock);
1872         }
1873
1874         return;
1875
1876  host_not_ready:
1877         if (scsi_target(sdev)->can_queue > 0)
1878                 atomic_dec(&scsi_target(sdev)->target_busy);
1879  not_ready:
1880         /*
1881          * lock q, handle tag, requeue req, and decrement device_busy. We
1882          * must return with queue_lock held.
1883          *
1884          * Decrementing device_busy without checking it is OK, as all such
1885          * cases (host limits or settings) should run the queue at some
1886          * later time.
1887          */
1888         spin_lock_irq(q->queue_lock);
1889         blk_requeue_request(q, req);
1890         atomic_dec(&sdev->device_busy);
1891 out_delay:
1892         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1893                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1894 }
1895
1896 static inline blk_status_t prep_to_mq(int ret)
1897 {
1898         switch (ret) {
1899         case BLKPREP_OK:
1900                 return BLK_STS_OK;
1901         case BLKPREP_DEFER:
1902                 return BLK_STS_RESOURCE;
1903         default:
1904                 return BLK_STS_IOERR;
1905         }
1906 }
1907
1908 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1909 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1910 {
1911         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1912                 sizeof(struct scatterlist);
1913 }
1914
1915 static int scsi_mq_prep_fn(struct request *req)
1916 {
1917         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1918         struct scsi_device *sdev = req->q->queuedata;
1919         struct Scsi_Host *shost = sdev->host;
1920         struct scatterlist *sg;
1921
1922         scsi_init_command(sdev, cmd);
1923
1924         req->special = cmd;
1925
1926         cmd->request = req;
1927
1928         cmd->tag = req->tag;
1929         cmd->prot_op = SCSI_PROT_NORMAL;
1930
1931         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1932         cmd->sdb.table.sgl = sg;
1933
1934         if (scsi_host_get_prot(shost)) {
1935                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1936
1937                 cmd->prot_sdb->table.sgl =
1938                         (struct scatterlist *)(cmd->prot_sdb + 1);
1939         }
1940
1941         if (blk_bidi_rq(req)) {
1942                 struct request *next_rq = req->next_rq;
1943                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1944
1945                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1946                 bidi_sdb->table.sgl =
1947                         (struct scatterlist *)(bidi_sdb + 1);
1948
1949                 next_rq->special = bidi_sdb;
1950         }
1951
1952         blk_mq_start_request(req);
1953
1954         return scsi_setup_cmnd(sdev, req);
1955 }
1956
1957 static void scsi_mq_done(struct scsi_cmnd *cmd)
1958 {
1959         trace_scsi_dispatch_cmd_done(cmd);
1960         blk_mq_complete_request(cmd->request);
1961 }
1962
1963 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1964 {
1965         struct request_queue *q = hctx->queue;
1966         struct scsi_device *sdev = q->queuedata;
1967
1968         atomic_dec(&sdev->device_busy);
1969         put_device(&sdev->sdev_gendev);
1970 }
1971
1972 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1973 {
1974         struct request_queue *q = hctx->queue;
1975         struct scsi_device *sdev = q->queuedata;
1976
1977         if (!get_device(&sdev->sdev_gendev))
1978                 goto out;
1979         if (!scsi_dev_queue_ready(q, sdev))
1980                 goto out_put_device;
1981
1982         return true;
1983
1984 out_put_device:
1985         put_device(&sdev->sdev_gendev);
1986 out:
1987         if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1988                 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1989         return false;
1990 }
1991
1992 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1993                          const struct blk_mq_queue_data *bd)
1994 {
1995         struct request *req = bd->rq;
1996         struct request_queue *q = req->q;
1997         struct scsi_device *sdev = q->queuedata;
1998         struct Scsi_Host *shost = sdev->host;
1999         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2000         blk_status_t ret;
2001         int reason;
2002
2003         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2004         if (ret != BLK_STS_OK)
2005                 goto out_put_budget;
2006
2007         ret = BLK_STS_RESOURCE;
2008         if (!scsi_target_queue_ready(shost, sdev))
2009                 goto out_put_budget;
2010         if (!scsi_host_queue_ready(q, shost, sdev))
2011                 goto out_dec_target_busy;
2012
2013         if (!(req->rq_flags & RQF_DONTPREP)) {
2014                 ret = prep_to_mq(scsi_mq_prep_fn(req));
2015                 if (ret != BLK_STS_OK)
2016                         goto out_dec_host_busy;
2017                 req->rq_flags |= RQF_DONTPREP;
2018         } else {
2019                 blk_mq_start_request(req);
2020         }
2021
2022         if (sdev->simple_tags)
2023                 cmd->flags |= SCMD_TAGGED;
2024         else
2025                 cmd->flags &= ~SCMD_TAGGED;
2026
2027         scsi_init_cmd_errh(cmd);
2028         cmd->scsi_done = scsi_mq_done;
2029
2030         reason = scsi_dispatch_cmd(cmd);
2031         if (reason) {
2032                 scsi_set_blocked(cmd, reason);
2033                 ret = BLK_STS_RESOURCE;
2034                 goto out_dec_host_busy;
2035         }
2036
2037         return BLK_STS_OK;
2038
2039 out_dec_host_busy:
2040         scsi_dec_host_busy(shost);
2041 out_dec_target_busy:
2042         if (scsi_target(sdev)->can_queue > 0)
2043                 atomic_dec(&scsi_target(sdev)->target_busy);
2044 out_put_budget:
2045         scsi_mq_put_budget(hctx);
2046         switch (ret) {
2047         case BLK_STS_OK:
2048                 break;
2049         case BLK_STS_RESOURCE:
2050                 if (atomic_read(&sdev->device_busy) ||
2051                     scsi_device_blocked(sdev))
2052                         ret = BLK_STS_DEV_RESOURCE;
2053                 break;
2054         default:
2055                 /*
2056                  * Make sure to release all allocated ressources when
2057                  * we hit an error, as we will never see this command
2058                  * again.
2059                  */
2060                 if (req->rq_flags & RQF_DONTPREP)
2061                         scsi_mq_uninit_cmd(cmd);
2062                 break;
2063         }
2064         return ret;
2065 }
2066
2067 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2068                 bool reserved)
2069 {
2070         if (reserved)
2071                 return BLK_EH_RESET_TIMER;
2072         return scsi_times_out(req);
2073 }
2074
2075 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2076                                 unsigned int hctx_idx, unsigned int numa_node)
2077 {
2078         struct Scsi_Host *shost = set->driver_data;
2079         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2080         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2081         struct scatterlist *sg;
2082
2083         if (unchecked_isa_dma)
2084                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2085         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2086                                                     GFP_KERNEL, numa_node);
2087         if (!cmd->sense_buffer)
2088                 return -ENOMEM;
2089         cmd->req.sense = cmd->sense_buffer;
2090
2091         if (scsi_host_get_prot(shost)) {
2092                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2093                         shost->hostt->cmd_size;
2094                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2095         }
2096
2097         return 0;
2098 }
2099
2100 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2101                                  unsigned int hctx_idx)
2102 {
2103         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2104
2105         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2106                                cmd->sense_buffer);
2107 }
2108
2109 static int scsi_map_queues(struct blk_mq_tag_set *set)
2110 {
2111         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2112
2113         if (shost->hostt->map_queues)
2114                 return shost->hostt->map_queues(shost);
2115         return blk_mq_map_queues(set);
2116 }
2117
2118 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2119 {
2120         struct device *host_dev;
2121         u64 bounce_limit = 0xffffffff;
2122
2123         if (shost->unchecked_isa_dma)
2124                 return BLK_BOUNCE_ISA;
2125         /*
2126          * Platforms with virtual-DMA translation
2127          * hardware have no practical limit.
2128          */
2129         if (!PCI_DMA_BUS_IS_PHYS)
2130                 return BLK_BOUNCE_ANY;
2131
2132         host_dev = scsi_get_device(shost);
2133         if (host_dev && host_dev->dma_mask)
2134                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2135
2136         return bounce_limit;
2137 }
2138
2139 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2140 {
2141         struct device *dev = shost->dma_dev;
2142
2143         queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2144
2145         /*
2146          * this limit is imposed by hardware restrictions
2147          */
2148         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2149                                         SG_MAX_SEGMENTS));
2150
2151         if (scsi_host_prot_dma(shost)) {
2152                 shost->sg_prot_tablesize =
2153                         min_not_zero(shost->sg_prot_tablesize,
2154                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2155                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2156                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2157         }
2158
2159         blk_queue_max_hw_sectors(q, shost->max_sectors);
2160         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2161         blk_queue_segment_boundary(q, shost->dma_boundary);
2162         dma_set_seg_boundary(dev, shost->dma_boundary);
2163
2164         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2165
2166         if (!shost->use_clustering)
2167                 q->limits.cluster = 0;
2168
2169         /*
2170          * Set a reasonable default alignment:  The larger of 32-byte (dword),
2171          * which is a common minimum for HBAs, and the minimum DMA alignment,
2172          * which is set by the platform.
2173          *
2174          * Devices that require a bigger alignment can increase it later.
2175          */
2176         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2177 }
2178 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2179
2180 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2181                             gfp_t gfp)
2182 {
2183         struct Scsi_Host *shost = q->rq_alloc_data;
2184         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2185         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2186
2187         memset(cmd, 0, sizeof(*cmd));
2188
2189         if (unchecked_isa_dma)
2190                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2191         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2192                                                     NUMA_NO_NODE);
2193         if (!cmd->sense_buffer)
2194                 goto fail;
2195         cmd->req.sense = cmd->sense_buffer;
2196
2197         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2198                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2199                 if (!cmd->prot_sdb)
2200                         goto fail_free_sense;
2201         }
2202
2203         return 0;
2204
2205 fail_free_sense:
2206         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2207 fail:
2208         return -ENOMEM;
2209 }
2210
2211 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2212 {
2213         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2214
2215         if (cmd->prot_sdb)
2216                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2217         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2218                                cmd->sense_buffer);
2219 }
2220
2221 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2222 {
2223         struct Scsi_Host *shost = sdev->host;
2224         struct request_queue *q;
2225
2226         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2227         if (!q)
2228                 return NULL;
2229         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2230         q->rq_alloc_data = shost;
2231         q->request_fn = scsi_request_fn;
2232         q->init_rq_fn = scsi_old_init_rq;
2233         q->exit_rq_fn = scsi_old_exit_rq;
2234         q->initialize_rq_fn = scsi_initialize_rq;
2235
2236         if (blk_init_allocated_queue(q) < 0) {
2237                 blk_cleanup_queue(q);
2238                 return NULL;
2239         }
2240
2241         __scsi_init_queue(shost, q);
2242         blk_queue_prep_rq(q, scsi_prep_fn);
2243         blk_queue_unprep_rq(q, scsi_unprep_fn);
2244         blk_queue_softirq_done(q, scsi_softirq_done);
2245         blk_queue_rq_timed_out(q, scsi_times_out);
2246         blk_queue_lld_busy(q, scsi_lld_busy);
2247         return q;
2248 }
2249
2250 static const struct blk_mq_ops scsi_mq_ops = {
2251         .get_budget     = scsi_mq_get_budget,
2252         .put_budget     = scsi_mq_put_budget,
2253         .queue_rq       = scsi_queue_rq,
2254         .complete       = scsi_softirq_done,
2255         .timeout        = scsi_timeout,
2256 #ifdef CONFIG_BLK_DEBUG_FS
2257         .show_rq        = scsi_show_rq,
2258 #endif
2259         .init_request   = scsi_mq_init_request,
2260         .exit_request   = scsi_mq_exit_request,
2261         .initialize_rq_fn = scsi_initialize_rq,
2262         .map_queues     = scsi_map_queues,
2263 };
2264
2265 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2266 {
2267         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2268         if (IS_ERR(sdev->request_queue))
2269                 return NULL;
2270
2271         sdev->request_queue->queuedata = sdev;
2272         __scsi_init_queue(sdev->host, sdev->request_queue);
2273         return sdev->request_queue;
2274 }
2275
2276 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2277 {
2278         unsigned int cmd_size, sgl_size;
2279
2280         sgl_size = scsi_mq_sgl_size(shost);
2281         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2282         if (scsi_host_get_prot(shost))
2283                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2284
2285         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2286         shost->tag_set.ops = &scsi_mq_ops;
2287         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2288         shost->tag_set.queue_depth = shost->can_queue;
2289         shost->tag_set.cmd_size = cmd_size;
2290         shost->tag_set.numa_node = NUMA_NO_NODE;
2291         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2292         shost->tag_set.flags |=
2293                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2294         shost->tag_set.driver_data = shost;
2295
2296         return blk_mq_alloc_tag_set(&shost->tag_set);
2297 }
2298
2299 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2300 {
2301         blk_mq_free_tag_set(&shost->tag_set);
2302 }
2303
2304 /**
2305  * scsi_device_from_queue - return sdev associated with a request_queue
2306  * @q: The request queue to return the sdev from
2307  *
2308  * Return the sdev associated with a request queue or NULL if the
2309  * request_queue does not reference a SCSI device.
2310  */
2311 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2312 {
2313         struct scsi_device *sdev = NULL;
2314
2315         if (q->mq_ops) {
2316                 if (q->mq_ops == &scsi_mq_ops)
2317                         sdev = q->queuedata;
2318         } else if (q->request_fn == scsi_request_fn)
2319                 sdev = q->queuedata;
2320         if (!sdev || !get_device(&sdev->sdev_gendev))
2321                 sdev = NULL;
2322
2323         return sdev;
2324 }
2325 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2326
2327 /*
2328  * Function:    scsi_block_requests()
2329  *
2330  * Purpose:     Utility function used by low-level drivers to prevent further
2331  *              commands from being queued to the device.
2332  *
2333  * Arguments:   shost       - Host in question
2334  *
2335  * Returns:     Nothing
2336  *
2337  * Lock status: No locks are assumed held.
2338  *
2339  * Notes:       There is no timer nor any other means by which the requests
2340  *              get unblocked other than the low-level driver calling
2341  *              scsi_unblock_requests().
2342  */
2343 void scsi_block_requests(struct Scsi_Host *shost)
2344 {
2345         shost->host_self_blocked = 1;
2346 }
2347 EXPORT_SYMBOL(scsi_block_requests);
2348
2349 /*
2350  * Function:    scsi_unblock_requests()
2351  *
2352  * Purpose:     Utility function used by low-level drivers to allow further
2353  *              commands from being queued to the device.
2354  *
2355  * Arguments:   shost       - Host in question
2356  *
2357  * Returns:     Nothing
2358  *
2359  * Lock status: No locks are assumed held.
2360  *
2361  * Notes:       There is no timer nor any other means by which the requests
2362  *              get unblocked other than the low-level driver calling
2363  *              scsi_unblock_requests().
2364  *
2365  *              This is done as an API function so that changes to the
2366  *              internals of the scsi mid-layer won't require wholesale
2367  *              changes to drivers that use this feature.
2368  */
2369 void scsi_unblock_requests(struct Scsi_Host *shost)
2370 {
2371         shost->host_self_blocked = 0;
2372         scsi_run_host_queues(shost);
2373 }
2374 EXPORT_SYMBOL(scsi_unblock_requests);
2375
2376 int __init scsi_init_queue(void)
2377 {
2378         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2379                                            sizeof(struct scsi_data_buffer),
2380                                            0, 0, NULL);
2381         if (!scsi_sdb_cache) {
2382                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2383                 return -ENOMEM;
2384         }
2385
2386         return 0;
2387 }
2388
2389 void scsi_exit_queue(void)
2390 {
2391         kmem_cache_destroy(scsi_sense_cache);
2392         kmem_cache_destroy(scsi_sense_isadma_cache);
2393         kmem_cache_destroy(scsi_sdb_cache);
2394 }
2395
2396 /**
2397  *      scsi_mode_select - issue a mode select
2398  *      @sdev:  SCSI device to be queried
2399  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2400  *      @sp:    Save page bit (0 == don't save, 1 == save)
2401  *      @modepage: mode page being requested
2402  *      @buffer: request buffer (may not be smaller than eight bytes)
2403  *      @len:   length of request buffer.
2404  *      @timeout: command timeout
2405  *      @retries: number of retries before failing
2406  *      @data: returns a structure abstracting the mode header data
2407  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2408  *              must be SCSI_SENSE_BUFFERSIZE big.
2409  *
2410  *      Returns zero if successful; negative error number or scsi
2411  *      status on error
2412  *
2413  */
2414 int
2415 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2416                  unsigned char *buffer, int len, int timeout, int retries,
2417                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2418 {
2419         unsigned char cmd[10];
2420         unsigned char *real_buffer;
2421         int ret;
2422
2423         memset(cmd, 0, sizeof(cmd));
2424         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2425
2426         if (sdev->use_10_for_ms) {
2427                 if (len > 65535)
2428                         return -EINVAL;
2429                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2430                 if (!real_buffer)
2431                         return -ENOMEM;
2432                 memcpy(real_buffer + 8, buffer, len);
2433                 len += 8;
2434                 real_buffer[0] = 0;
2435                 real_buffer[1] = 0;
2436                 real_buffer[2] = data->medium_type;
2437                 real_buffer[3] = data->device_specific;
2438                 real_buffer[4] = data->longlba ? 0x01 : 0;
2439                 real_buffer[5] = 0;
2440                 real_buffer[6] = data->block_descriptor_length >> 8;
2441                 real_buffer[7] = data->block_descriptor_length;
2442
2443                 cmd[0] = MODE_SELECT_10;
2444                 cmd[7] = len >> 8;
2445                 cmd[8] = len;
2446         } else {
2447                 if (len > 255 || data->block_descriptor_length > 255 ||
2448                     data->longlba)
2449                         return -EINVAL;
2450
2451                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2452                 if (!real_buffer)
2453                         return -ENOMEM;
2454                 memcpy(real_buffer + 4, buffer, len);
2455                 len += 4;
2456                 real_buffer[0] = 0;
2457                 real_buffer[1] = data->medium_type;
2458                 real_buffer[2] = data->device_specific;
2459                 real_buffer[3] = data->block_descriptor_length;
2460                 
2461
2462                 cmd[0] = MODE_SELECT;
2463                 cmd[4] = len;
2464         }
2465
2466         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2467                                sshdr, timeout, retries, NULL);
2468         kfree(real_buffer);
2469         return ret;
2470 }
2471 EXPORT_SYMBOL_GPL(scsi_mode_select);
2472
2473 /**
2474  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2475  *      @sdev:  SCSI device to be queried
2476  *      @dbd:   set if mode sense will allow block descriptors to be returned
2477  *      @modepage: mode page being requested
2478  *      @buffer: request buffer (may not be smaller than eight bytes)
2479  *      @len:   length of request buffer.
2480  *      @timeout: command timeout
2481  *      @retries: number of retries before failing
2482  *      @data: returns a structure abstracting the mode header data
2483  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2484  *              must be SCSI_SENSE_BUFFERSIZE big.
2485  *
2486  *      Returns zero if unsuccessful, or the header offset (either 4
2487  *      or 8 depending on whether a six or ten byte command was
2488  *      issued) if successful.
2489  */
2490 int
2491 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2492                   unsigned char *buffer, int len, int timeout, int retries,
2493                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2494 {
2495         unsigned char cmd[12];
2496         int use_10_for_ms;
2497         int header_length;
2498         int result, retry_count = retries;
2499         struct scsi_sense_hdr my_sshdr;
2500
2501         memset(data, 0, sizeof(*data));
2502         memset(&cmd[0], 0, 12);
2503         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2504         cmd[2] = modepage;
2505
2506         /* caller might not be interested in sense, but we need it */
2507         if (!sshdr)
2508                 sshdr = &my_sshdr;
2509
2510  retry:
2511         use_10_for_ms = sdev->use_10_for_ms;
2512
2513         if (use_10_for_ms) {
2514                 if (len < 8)
2515                         len = 8;
2516
2517                 cmd[0] = MODE_SENSE_10;
2518                 cmd[8] = len;
2519                 header_length = 8;
2520         } else {
2521                 if (len < 4)
2522                         len = 4;
2523
2524                 cmd[0] = MODE_SENSE;
2525                 cmd[4] = len;
2526                 header_length = 4;
2527         }
2528
2529         memset(buffer, 0, len);
2530
2531         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2532                                   sshdr, timeout, retries, NULL);
2533
2534         /* This code looks awful: what it's doing is making sure an
2535          * ILLEGAL REQUEST sense return identifies the actual command
2536          * byte as the problem.  MODE_SENSE commands can return
2537          * ILLEGAL REQUEST if the code page isn't supported */
2538
2539         if (use_10_for_ms && !scsi_status_is_good(result) &&
2540             (driver_byte(result) & DRIVER_SENSE)) {
2541                 if (scsi_sense_valid(sshdr)) {
2542                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2543                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2544                                 /* 
2545                                  * Invalid command operation code
2546                                  */
2547                                 sdev->use_10_for_ms = 0;
2548                                 goto retry;
2549                         }
2550                 }
2551         }
2552
2553         if(scsi_status_is_good(result)) {
2554                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2555                              (modepage == 6 || modepage == 8))) {
2556                         /* Initio breakage? */
2557                         header_length = 0;
2558                         data->length = 13;
2559                         data->medium_type = 0;
2560                         data->device_specific = 0;
2561                         data->longlba = 0;
2562                         data->block_descriptor_length = 0;
2563                 } else if(use_10_for_ms) {
2564                         data->length = buffer[0]*256 + buffer[1] + 2;
2565                         data->medium_type = buffer[2];
2566                         data->device_specific = buffer[3];
2567                         data->longlba = buffer[4] & 0x01;
2568                         data->block_descriptor_length = buffer[6]*256
2569                                 + buffer[7];
2570                 } else {
2571                         data->length = buffer[0] + 1;
2572                         data->medium_type = buffer[1];
2573                         data->device_specific = buffer[2];
2574                         data->block_descriptor_length = buffer[3];
2575                 }
2576                 data->header_length = header_length;
2577         } else if ((status_byte(result) == CHECK_CONDITION) &&
2578                    scsi_sense_valid(sshdr) &&
2579                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2580                 retry_count--;
2581                 goto retry;
2582         }
2583
2584         return result;
2585 }
2586 EXPORT_SYMBOL(scsi_mode_sense);
2587
2588 /**
2589  *      scsi_test_unit_ready - test if unit is ready
2590  *      @sdev:  scsi device to change the state of.
2591  *      @timeout: command timeout
2592  *      @retries: number of retries before failing
2593  *      @sshdr: outpout pointer for decoded sense information.
2594  *
2595  *      Returns zero if unsuccessful or an error if TUR failed.  For
2596  *      removable media, UNIT_ATTENTION sets ->changed flag.
2597  **/
2598 int
2599 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2600                      struct scsi_sense_hdr *sshdr)
2601 {
2602         char cmd[] = {
2603                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2604         };
2605         int result;
2606
2607         /* try to eat the UNIT_ATTENTION if there are enough retries */
2608         do {
2609                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2610                                           timeout, retries, NULL);
2611                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2612                     sshdr->sense_key == UNIT_ATTENTION)
2613                         sdev->changed = 1;
2614         } while (scsi_sense_valid(sshdr) &&
2615                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2616
2617         return result;
2618 }
2619 EXPORT_SYMBOL(scsi_test_unit_ready);
2620
2621 /**
2622  *      scsi_device_set_state - Take the given device through the device state model.
2623  *      @sdev:  scsi device to change the state of.
2624  *      @state: state to change to.
2625  *
2626  *      Returns zero if successful or an error if the requested
2627  *      transition is illegal.
2628  */
2629 int
2630 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2631 {
2632         enum scsi_device_state oldstate = sdev->sdev_state;
2633
2634         if (state == oldstate)
2635                 return 0;
2636
2637         switch (state) {
2638         case SDEV_CREATED:
2639                 switch (oldstate) {
2640                 case SDEV_CREATED_BLOCK:
2641                         break;
2642                 default:
2643                         goto illegal;
2644                 }
2645                 break;
2646                         
2647         case SDEV_RUNNING:
2648                 switch (oldstate) {
2649                 case SDEV_CREATED:
2650                 case SDEV_OFFLINE:
2651                 case SDEV_TRANSPORT_OFFLINE:
2652                 case SDEV_QUIESCE:
2653                 case SDEV_BLOCK:
2654                         break;
2655                 default:
2656                         goto illegal;
2657                 }
2658                 break;
2659
2660         case SDEV_QUIESCE:
2661                 switch (oldstate) {
2662                 case SDEV_RUNNING:
2663                 case SDEV_OFFLINE:
2664                 case SDEV_TRANSPORT_OFFLINE:
2665                         break;
2666                 default:
2667                         goto illegal;
2668                 }
2669                 break;
2670
2671         case SDEV_OFFLINE:
2672         case SDEV_TRANSPORT_OFFLINE:
2673                 switch (oldstate) {
2674                 case SDEV_CREATED:
2675                 case SDEV_RUNNING:
2676                 case SDEV_QUIESCE:
2677                 case SDEV_BLOCK:
2678                         break;
2679                 default:
2680                         goto illegal;
2681                 }
2682                 break;
2683
2684         case SDEV_BLOCK:
2685                 switch (oldstate) {
2686                 case SDEV_RUNNING:
2687                 case SDEV_CREATED_BLOCK:
2688                         break;
2689                 default:
2690                         goto illegal;
2691                 }
2692                 break;
2693
2694         case SDEV_CREATED_BLOCK:
2695                 switch (oldstate) {
2696                 case SDEV_CREATED:
2697                         break;
2698                 default:
2699                         goto illegal;
2700                 }
2701                 break;
2702
2703         case SDEV_CANCEL:
2704                 switch (oldstate) {
2705                 case SDEV_CREATED:
2706                 case SDEV_RUNNING:
2707                 case SDEV_QUIESCE:
2708                 case SDEV_OFFLINE:
2709                 case SDEV_TRANSPORT_OFFLINE:
2710                         break;
2711                 default:
2712                         goto illegal;
2713                 }
2714                 break;
2715
2716         case SDEV_DEL:
2717                 switch (oldstate) {
2718                 case SDEV_CREATED:
2719                 case SDEV_RUNNING:
2720                 case SDEV_OFFLINE:
2721                 case SDEV_TRANSPORT_OFFLINE:
2722                 case SDEV_CANCEL:
2723                 case SDEV_BLOCK:
2724                 case SDEV_CREATED_BLOCK:
2725                         break;
2726                 default:
2727                         goto illegal;
2728                 }
2729                 break;
2730
2731         }
2732         sdev->sdev_state = state;
2733         return 0;
2734
2735  illegal:
2736         SCSI_LOG_ERROR_RECOVERY(1,
2737                                 sdev_printk(KERN_ERR, sdev,
2738                                             "Illegal state transition %s->%s",
2739                                             scsi_device_state_name(oldstate),
2740                                             scsi_device_state_name(state))
2741                                 );
2742         return -EINVAL;
2743 }
2744 EXPORT_SYMBOL(scsi_device_set_state);
2745
2746 /**
2747  *      sdev_evt_emit - emit a single SCSI device uevent
2748  *      @sdev: associated SCSI device
2749  *      @evt: event to emit
2750  *
2751  *      Send a single uevent (scsi_event) to the associated scsi_device.
2752  */
2753 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2754 {
2755         int idx = 0;
2756         char *envp[3];
2757
2758         switch (evt->evt_type) {
2759         case SDEV_EVT_MEDIA_CHANGE:
2760                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2761                 break;
2762         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2763                 scsi_rescan_device(&sdev->sdev_gendev);
2764                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2765                 break;
2766         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2767                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2768                 break;
2769         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2770                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2771                 break;
2772         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2773                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2774                 break;
2775         case SDEV_EVT_LUN_CHANGE_REPORTED:
2776                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2777                 break;
2778         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2779                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2780                 break;
2781         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2782                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2783                 break;
2784         default:
2785                 /* do nothing */
2786                 break;
2787         }
2788
2789         envp[idx++] = NULL;
2790
2791         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2792 }
2793
2794 /**
2795  *      sdev_evt_thread - send a uevent for each scsi event
2796  *      @work: work struct for scsi_device
2797  *
2798  *      Dispatch queued events to their associated scsi_device kobjects
2799  *      as uevents.
2800  */
2801 void scsi_evt_thread(struct work_struct *work)
2802 {
2803         struct scsi_device *sdev;
2804         enum scsi_device_event evt_type;
2805         LIST_HEAD(event_list);
2806
2807         sdev = container_of(work, struct scsi_device, event_work);
2808
2809         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2810                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2811                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2812
2813         while (1) {
2814                 struct scsi_event *evt;
2815                 struct list_head *this, *tmp;
2816                 unsigned long flags;
2817
2818                 spin_lock_irqsave(&sdev->list_lock, flags);
2819                 list_splice_init(&sdev->event_list, &event_list);
2820                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2821
2822                 if (list_empty(&event_list))
2823                         break;
2824
2825                 list_for_each_safe(this, tmp, &event_list) {
2826                         evt = list_entry(this, struct scsi_event, node);
2827                         list_del(&evt->node);
2828                         scsi_evt_emit(sdev, evt);
2829                         kfree(evt);
2830                 }
2831         }
2832 }
2833
2834 /**
2835  *      sdev_evt_send - send asserted event to uevent thread
2836  *      @sdev: scsi_device event occurred on
2837  *      @evt: event to send
2838  *
2839  *      Assert scsi device event asynchronously.
2840  */
2841 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2842 {
2843         unsigned long flags;
2844
2845 #if 0
2846         /* FIXME: currently this check eliminates all media change events
2847          * for polled devices.  Need to update to discriminate between AN
2848          * and polled events */
2849         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2850                 kfree(evt);
2851                 return;
2852         }
2853 #endif
2854
2855         spin_lock_irqsave(&sdev->list_lock, flags);
2856         list_add_tail(&evt->node, &sdev->event_list);
2857         schedule_work(&sdev->event_work);
2858         spin_unlock_irqrestore(&sdev->list_lock, flags);
2859 }
2860 EXPORT_SYMBOL_GPL(sdev_evt_send);
2861
2862 /**
2863  *      sdev_evt_alloc - allocate a new scsi event
2864  *      @evt_type: type of event to allocate
2865  *      @gfpflags: GFP flags for allocation
2866  *
2867  *      Allocates and returns a new scsi_event.
2868  */
2869 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2870                                   gfp_t gfpflags)
2871 {
2872         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2873         if (!evt)
2874                 return NULL;
2875
2876         evt->evt_type = evt_type;
2877         INIT_LIST_HEAD(&evt->node);
2878
2879         /* evt_type-specific initialization, if any */
2880         switch (evt_type) {
2881         case SDEV_EVT_MEDIA_CHANGE:
2882         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2883         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2884         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2885         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2886         case SDEV_EVT_LUN_CHANGE_REPORTED:
2887         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2888         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2889         default:
2890                 /* do nothing */
2891                 break;
2892         }
2893
2894         return evt;
2895 }
2896 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2897
2898 /**
2899  *      sdev_evt_send_simple - send asserted event to uevent thread
2900  *      @sdev: scsi_device event occurred on
2901  *      @evt_type: type of event to send
2902  *      @gfpflags: GFP flags for allocation
2903  *
2904  *      Assert scsi device event asynchronously, given an event type.
2905  */
2906 void sdev_evt_send_simple(struct scsi_device *sdev,
2907                           enum scsi_device_event evt_type, gfp_t gfpflags)
2908 {
2909         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2910         if (!evt) {
2911                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2912                             evt_type);
2913                 return;
2914         }
2915
2916         sdev_evt_send(sdev, evt);
2917 }
2918 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2919
2920 /**
2921  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2922  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2923  */
2924 static int scsi_request_fn_active(struct scsi_device *sdev)
2925 {
2926         struct request_queue *q = sdev->request_queue;
2927         int request_fn_active;
2928
2929         WARN_ON_ONCE(sdev->host->use_blk_mq);
2930
2931         spin_lock_irq(q->queue_lock);
2932         request_fn_active = q->request_fn_active;
2933         spin_unlock_irq(q->queue_lock);
2934
2935         return request_fn_active;
2936 }
2937
2938 /**
2939  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2940  * @sdev: SCSI device pointer.
2941  *
2942  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2943  * invoked from scsi_request_fn() have finished.
2944  */
2945 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2946 {
2947         WARN_ON_ONCE(sdev->host->use_blk_mq);
2948
2949         while (scsi_request_fn_active(sdev))
2950                 msleep(20);
2951 }
2952
2953 /**
2954  *      scsi_device_quiesce - Block user issued commands.
2955  *      @sdev:  scsi device to quiesce.
2956  *
2957  *      This works by trying to transition to the SDEV_QUIESCE state
2958  *      (which must be a legal transition).  When the device is in this
2959  *      state, only special requests will be accepted, all others will
2960  *      be deferred.  Since special requests may also be requeued requests,
2961  *      a successful return doesn't guarantee the device will be 
2962  *      totally quiescent.
2963  *
2964  *      Must be called with user context, may sleep.
2965  *
2966  *      Returns zero if unsuccessful or an error if not.
2967  */
2968 int
2969 scsi_device_quiesce(struct scsi_device *sdev)
2970 {
2971         struct request_queue *q = sdev->request_queue;
2972         int err;
2973
2974         /*
2975          * It is allowed to call scsi_device_quiesce() multiple times from
2976          * the same context but concurrent scsi_device_quiesce() calls are
2977          * not allowed.
2978          */
2979         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2980
2981         blk_set_preempt_only(q);
2982
2983         blk_mq_freeze_queue(q);
2984         /*
2985          * Ensure that the effect of blk_set_preempt_only() will be visible
2986          * for percpu_ref_tryget() callers that occur after the queue
2987          * unfreeze even if the queue was already frozen before this function
2988          * was called. See also https://lwn.net/Articles/573497/.
2989          */
2990         synchronize_rcu();
2991         blk_mq_unfreeze_queue(q);
2992
2993         mutex_lock(&sdev->state_mutex);
2994         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2995         if (err == 0)
2996                 sdev->quiesced_by = current;
2997         else
2998                 blk_clear_preempt_only(q);
2999         mutex_unlock(&sdev->state_mutex);
3000
3001         return err;
3002 }
3003 EXPORT_SYMBOL(scsi_device_quiesce);
3004
3005 /**
3006  *      scsi_device_resume - Restart user issued commands to a quiesced device.
3007  *      @sdev:  scsi device to resume.
3008  *
3009  *      Moves the device from quiesced back to running and restarts the
3010  *      queues.
3011  *
3012  *      Must be called with user context, may sleep.
3013  */
3014 void scsi_device_resume(struct scsi_device *sdev)
3015 {
3016         /* check if the device state was mutated prior to resume, and if
3017          * so assume the state is being managed elsewhere (for example
3018          * device deleted during suspend)
3019          */
3020         mutex_lock(&sdev->state_mutex);
3021         WARN_ON_ONCE(!sdev->quiesced_by);
3022         sdev->quiesced_by = NULL;
3023         blk_clear_preempt_only(sdev->request_queue);
3024         if (sdev->sdev_state == SDEV_QUIESCE)
3025                 scsi_device_set_state(sdev, SDEV_RUNNING);
3026         mutex_unlock(&sdev->state_mutex);
3027 }
3028 EXPORT_SYMBOL(scsi_device_resume);
3029
3030 static void
3031 device_quiesce_fn(struct scsi_device *sdev, void *data)
3032 {
3033         scsi_device_quiesce(sdev);
3034 }
3035
3036 void
3037 scsi_target_quiesce(struct scsi_target *starget)
3038 {
3039         starget_for_each_device(starget, NULL, device_quiesce_fn);
3040 }
3041 EXPORT_SYMBOL(scsi_target_quiesce);
3042
3043 static void
3044 device_resume_fn(struct scsi_device *sdev, void *data)
3045 {
3046         scsi_device_resume(sdev);
3047 }
3048
3049 void
3050 scsi_target_resume(struct scsi_target *starget)
3051 {
3052         starget_for_each_device(starget, NULL, device_resume_fn);
3053 }
3054 EXPORT_SYMBOL(scsi_target_resume);
3055
3056 /**
3057  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3058  * @sdev: device to block
3059  *
3060  * Pause SCSI command processing on the specified device. Does not sleep.
3061  *
3062  * Returns zero if successful or a negative error code upon failure.
3063  *
3064  * Notes:
3065  * This routine transitions the device to the SDEV_BLOCK state (which must be
3066  * a legal transition). When the device is in this state, command processing
3067  * is paused until the device leaves the SDEV_BLOCK state. See also
3068  * scsi_internal_device_unblock_nowait().
3069  */
3070 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3071 {
3072         struct request_queue *q = sdev->request_queue;
3073         unsigned long flags;
3074         int err = 0;
3075
3076         err = scsi_device_set_state(sdev, SDEV_BLOCK);
3077         if (err) {
3078                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3079
3080                 if (err)
3081                         return err;
3082         }
3083
3084         /* 
3085          * The device has transitioned to SDEV_BLOCK.  Stop the
3086          * block layer from calling the midlayer with this device's
3087          * request queue. 
3088          */
3089         if (q->mq_ops) {
3090                 blk_mq_quiesce_queue_nowait(q);
3091         } else {
3092                 spin_lock_irqsave(q->queue_lock, flags);
3093                 blk_stop_queue(q);
3094                 spin_unlock_irqrestore(q->queue_lock, flags);
3095         }
3096
3097         return 0;
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3100
3101 /**
3102  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3103  * @sdev: device to block
3104  *
3105  * Pause SCSI command processing on the specified device and wait until all
3106  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3107  *
3108  * Returns zero if successful or a negative error code upon failure.
3109  *
3110  * Note:
3111  * This routine transitions the device to the SDEV_BLOCK state (which must be
3112  * a legal transition). When the device is in this state, command processing
3113  * is paused until the device leaves the SDEV_BLOCK state. See also
3114  * scsi_internal_device_unblock().
3115  *
3116  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3117  * scsi_internal_device_block() has blocked a SCSI device and also
3118  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3119  */
3120 static int scsi_internal_device_block(struct scsi_device *sdev)
3121 {
3122         struct request_queue *q = sdev->request_queue;
3123         int err;
3124
3125         mutex_lock(&sdev->state_mutex);
3126         err = scsi_internal_device_block_nowait(sdev);
3127         if (err == 0) {
3128                 if (q->mq_ops)
3129                         blk_mq_quiesce_queue(q);
3130                 else
3131                         scsi_wait_for_queuecommand(sdev);
3132         }
3133         mutex_unlock(&sdev->state_mutex);
3134
3135         return err;
3136 }
3137  
3138 void scsi_start_queue(struct scsi_device *sdev)
3139 {
3140         struct request_queue *q = sdev->request_queue;
3141         unsigned long flags;
3142
3143         if (q->mq_ops) {
3144                 blk_mq_unquiesce_queue(q);
3145         } else {
3146                 spin_lock_irqsave(q->queue_lock, flags);
3147                 blk_start_queue(q);
3148                 spin_unlock_irqrestore(q->queue_lock, flags);
3149         }
3150 }
3151
3152 /**
3153  * scsi_internal_device_unblock_nowait - resume a device after a block request
3154  * @sdev:       device to resume
3155  * @new_state:  state to set the device to after unblocking
3156  *
3157  * Restart the device queue for a previously suspended SCSI device. Does not
3158  * sleep.
3159  *
3160  * Returns zero if successful or a negative error code upon failure.
3161  *
3162  * Notes:
3163  * This routine transitions the device to the SDEV_RUNNING state or to one of
3164  * the offline states (which must be a legal transition) allowing the midlayer
3165  * to goose the queue for this device.
3166  */
3167 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3168                                         enum scsi_device_state new_state)
3169 {
3170         /*
3171          * Try to transition the scsi device to SDEV_RUNNING or one of the
3172          * offlined states and goose the device queue if successful.
3173          */
3174         switch (sdev->sdev_state) {
3175         case SDEV_BLOCK:
3176         case SDEV_TRANSPORT_OFFLINE:
3177                 sdev->sdev_state = new_state;
3178                 break;
3179         case SDEV_CREATED_BLOCK:
3180                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3181                     new_state == SDEV_OFFLINE)
3182                         sdev->sdev_state = new_state;
3183                 else
3184                         sdev->sdev_state = SDEV_CREATED;
3185                 break;
3186         case SDEV_CANCEL:
3187         case SDEV_OFFLINE:
3188                 break;
3189         default:
3190                 return -EINVAL;
3191         }
3192         scsi_start_queue(sdev);
3193
3194         return 0;
3195 }
3196 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3197
3198 /**
3199  * scsi_internal_device_unblock - resume a device after a block request
3200  * @sdev:       device to resume
3201  * @new_state:  state to set the device to after unblocking
3202  *
3203  * Restart the device queue for a previously suspended SCSI device. May sleep.
3204  *
3205  * Returns zero if successful or a negative error code upon failure.
3206  *
3207  * Notes:
3208  * This routine transitions the device to the SDEV_RUNNING state or to one of
3209  * the offline states (which must be a legal transition) allowing the midlayer
3210  * to goose the queue for this device.
3211  */
3212 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3213                                         enum scsi_device_state new_state)
3214 {
3215         int ret;
3216
3217         mutex_lock(&sdev->state_mutex);
3218         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3219         mutex_unlock(&sdev->state_mutex);
3220
3221         return ret;
3222 }
3223
3224 static void
3225 device_block(struct scsi_device *sdev, void *data)
3226 {
3227         scsi_internal_device_block(sdev);
3228 }
3229
3230 static int
3231 target_block(struct device *dev, void *data)
3232 {
3233         if (scsi_is_target_device(dev))
3234                 starget_for_each_device(to_scsi_target(dev), NULL,
3235                                         device_block);
3236         return 0;
3237 }
3238
3239 void
3240 scsi_target_block(struct device *dev)
3241 {
3242         if (scsi_is_target_device(dev))
3243                 starget_for_each_device(to_scsi_target(dev), NULL,
3244                                         device_block);
3245         else
3246                 device_for_each_child(dev, NULL, target_block);
3247 }
3248 EXPORT_SYMBOL_GPL(scsi_target_block);
3249
3250 static void
3251 device_unblock(struct scsi_device *sdev, void *data)
3252 {
3253         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3254 }
3255
3256 static int
3257 target_unblock(struct device *dev, void *data)
3258 {
3259         if (scsi_is_target_device(dev))
3260                 starget_for_each_device(to_scsi_target(dev), data,
3261                                         device_unblock);
3262         return 0;
3263 }
3264
3265 void
3266 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3267 {
3268         if (scsi_is_target_device(dev))
3269                 starget_for_each_device(to_scsi_target(dev), &new_state,
3270                                         device_unblock);
3271         else
3272                 device_for_each_child(dev, &new_state, target_unblock);
3273 }
3274 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3275
3276 /**
3277  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3278  * @sgl:        scatter-gather list
3279  * @sg_count:   number of segments in sg
3280  * @offset:     offset in bytes into sg, on return offset into the mapped area
3281  * @len:        bytes to map, on return number of bytes mapped
3282  *
3283  * Returns virtual address of the start of the mapped page
3284  */
3285 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3286                           size_t *offset, size_t *len)
3287 {
3288         int i;
3289         size_t sg_len = 0, len_complete = 0;
3290         struct scatterlist *sg;
3291         struct page *page;
3292
3293         WARN_ON(!irqs_disabled());
3294
3295         for_each_sg(sgl, sg, sg_count, i) {
3296                 len_complete = sg_len; /* Complete sg-entries */
3297                 sg_len += sg->length;
3298                 if (sg_len > *offset)
3299                         break;
3300         }
3301
3302         if (unlikely(i == sg_count)) {
3303                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3304                         "elements %d\n",
3305                        __func__, sg_len, *offset, sg_count);
3306                 WARN_ON(1);
3307                 return NULL;
3308         }
3309
3310         /* Offset starting from the beginning of first page in this sg-entry */
3311         *offset = *offset - len_complete + sg->offset;
3312
3313         /* Assumption: contiguous pages can be accessed as "page + i" */
3314         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3315         *offset &= ~PAGE_MASK;
3316
3317         /* Bytes in this sg-entry from *offset to the end of the page */
3318         sg_len = PAGE_SIZE - *offset;
3319         if (*len > sg_len)
3320                 *len = sg_len;
3321
3322         return kmap_atomic(page);
3323 }
3324 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3325
3326 /**
3327  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3328  * @virt:       virtual address to be unmapped
3329  */
3330 void scsi_kunmap_atomic_sg(void *virt)
3331 {
3332         kunmap_atomic(virt);
3333 }
3334 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3335
3336 void sdev_disable_disk_events(struct scsi_device *sdev)
3337 {
3338         atomic_inc(&sdev->disk_events_disable_depth);
3339 }
3340 EXPORT_SYMBOL(sdev_disable_disk_events);
3341
3342 void sdev_enable_disk_events(struct scsi_device *sdev)
3343 {
3344         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3345                 return;
3346         atomic_dec(&sdev->disk_events_disable_depth);
3347 }
3348 EXPORT_SYMBOL(sdev_enable_disk_events);
3349
3350 /**
3351  * scsi_vpd_lun_id - return a unique device identification
3352  * @sdev: SCSI device
3353  * @id:   buffer for the identification
3354  * @id_len:  length of the buffer
3355  *
3356  * Copies a unique device identification into @id based
3357  * on the information in the VPD page 0x83 of the device.
3358  * The string will be formatted as a SCSI name string.
3359  *
3360  * Returns the length of the identification or error on failure.
3361  * If the identifier is longer than the supplied buffer the actual
3362  * identifier length is returned and the buffer is not zero-padded.
3363  */
3364 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3365 {
3366         u8 cur_id_type = 0xff;
3367         u8 cur_id_size = 0;
3368         const unsigned char *d, *cur_id_str;
3369         const struct scsi_vpd *vpd_pg83;
3370         int id_size = -EINVAL;
3371
3372         rcu_read_lock();
3373         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3374         if (!vpd_pg83) {
3375                 rcu_read_unlock();
3376                 return -ENXIO;
3377         }
3378
3379         /*
3380          * Look for the correct descriptor.
3381          * Order of preference for lun descriptor:
3382          * - SCSI name string
3383          * - NAA IEEE Registered Extended
3384          * - EUI-64 based 16-byte
3385          * - EUI-64 based 12-byte
3386          * - NAA IEEE Registered
3387          * - NAA IEEE Extended
3388          * - T10 Vendor ID
3389          * as longer descriptors reduce the likelyhood
3390          * of identification clashes.
3391          */
3392
3393         /* The id string must be at least 20 bytes + terminating NULL byte */
3394         if (id_len < 21) {
3395                 rcu_read_unlock();
3396                 return -EINVAL;
3397         }
3398
3399         memset(id, 0, id_len);
3400         d = vpd_pg83->data + 4;
3401         while (d < vpd_pg83->data + vpd_pg83->len) {
3402                 /* Skip designators not referring to the LUN */
3403                 if ((d[1] & 0x30) != 0x00)
3404                         goto next_desig;
3405
3406                 switch (d[1] & 0xf) {
3407                 case 0x1:
3408                         /* T10 Vendor ID */
3409                         if (cur_id_size > d[3])
3410                                 break;
3411                         /* Prefer anything */
3412                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3413                                 break;
3414                         cur_id_size = d[3];
3415                         if (cur_id_size + 4 > id_len)
3416                                 cur_id_size = id_len - 4;
3417                         cur_id_str = d + 4;
3418                         cur_id_type = d[1] & 0xf;
3419                         id_size = snprintf(id, id_len, "t10.%*pE",
3420                                            cur_id_size, cur_id_str);
3421                         break;
3422                 case 0x2:
3423                         /* EUI-64 */
3424                         if (cur_id_size > d[3])
3425                                 break;
3426                         /* Prefer NAA IEEE Registered Extended */
3427                         if (cur_id_type == 0x3 &&
3428                             cur_id_size == d[3])
3429                                 break;
3430                         cur_id_size = d[3];
3431                         cur_id_str = d + 4;
3432                         cur_id_type = d[1] & 0xf;
3433                         switch (cur_id_size) {
3434                         case 8:
3435                                 id_size = snprintf(id, id_len,
3436                                                    "eui.%8phN",
3437                                                    cur_id_str);
3438                                 break;
3439                         case 12:
3440                                 id_size = snprintf(id, id_len,
3441                                                    "eui.%12phN",
3442                                                    cur_id_str);
3443                                 break;
3444                         case 16:
3445                                 id_size = snprintf(id, id_len,
3446                                                    "eui.%16phN",
3447                                                    cur_id_str);
3448                                 break;
3449                         default:
3450                                 cur_id_size = 0;
3451                                 break;
3452                         }
3453                         break;
3454                 case 0x3:
3455                         /* NAA */
3456                         if (cur_id_size > d[3])
3457                                 break;
3458                         cur_id_size = d[3];
3459                         cur_id_str = d + 4;
3460                         cur_id_type = d[1] & 0xf;
3461                         switch (cur_id_size) {
3462                         case 8:
3463                                 id_size = snprintf(id, id_len,
3464                                                    "naa.%8phN",
3465                                                    cur_id_str);
3466                                 break;
3467                         case 16:
3468                                 id_size = snprintf(id, id_len,
3469                                                    "naa.%16phN",
3470                                                    cur_id_str);
3471                                 break;
3472                         default:
3473                                 cur_id_size = 0;
3474                                 break;
3475                         }
3476                         break;
3477                 case 0x8:
3478                         /* SCSI name string */
3479                         if (cur_id_size + 4 > d[3])
3480                                 break;
3481                         /* Prefer others for truncated descriptor */
3482                         if (cur_id_size && d[3] > id_len)
3483                                 break;
3484                         cur_id_size = id_size = d[3];
3485                         cur_id_str = d + 4;
3486                         cur_id_type = d[1] & 0xf;
3487                         if (cur_id_size >= id_len)
3488                                 cur_id_size = id_len - 1;
3489                         memcpy(id, cur_id_str, cur_id_size);
3490                         /* Decrease priority for truncated descriptor */
3491                         if (cur_id_size != id_size)
3492                                 cur_id_size = 6;
3493                         break;
3494                 default:
3495                         break;
3496                 }
3497 next_desig:
3498                 d += d[3] + 4;
3499         }
3500         rcu_read_unlock();
3501
3502         return id_size;
3503 }
3504 EXPORT_SYMBOL(scsi_vpd_lun_id);
3505
3506 /*
3507  * scsi_vpd_tpg_id - return a target port group identifier
3508  * @sdev: SCSI device
3509  *
3510  * Returns the Target Port Group identifier from the information
3511  * froom VPD page 0x83 of the device.
3512  *
3513  * Returns the identifier or error on failure.
3514  */
3515 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3516 {
3517         const unsigned char *d;
3518         const struct scsi_vpd *vpd_pg83;
3519         int group_id = -EAGAIN, rel_port = -1;
3520
3521         rcu_read_lock();
3522         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3523         if (!vpd_pg83) {
3524                 rcu_read_unlock();
3525                 return -ENXIO;
3526         }
3527
3528         d = vpd_pg83->data + 4;
3529         while (d < vpd_pg83->data + vpd_pg83->len) {
3530                 switch (d[1] & 0xf) {
3531                 case 0x4:
3532                         /* Relative target port */
3533                         rel_port = get_unaligned_be16(&d[6]);
3534                         break;
3535                 case 0x5:
3536                         /* Target port group */
3537                         group_id = get_unaligned_be16(&d[6]);
3538                         break;
3539                 default:
3540                         break;
3541                 }
3542                 d += d[3] + 4;
3543         }
3544         rcu_read_unlock();
3545
3546         if (group_id >= 0 && rel_id && rel_port != -1)
3547                 *rel_id = rel_port;
3548
3549         return group_id;
3550 }
3551 EXPORT_SYMBOL(scsi_vpd_tpg_id);