]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/scsi_lib.c
Merge tag 'vfio-v5.4-rc1' of git://github.com/awilliam/linux-vfio
[linux.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69                                    unsigned char *sense_buffer)
70 {
71         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72                         sense_buffer);
73 }
74
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76         gfp_t gfp_mask, int numa_node)
77 {
78         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79                                      gfp_mask, numa_node);
80 }
81
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84         struct kmem_cache *cache;
85         int ret = 0;
86
87         mutex_lock(&scsi_sense_cache_mutex);
88         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89         if (cache)
90                 goto exit;
91
92         if (shost->unchecked_isa_dma) {
93                 scsi_sense_isadma_cache =
94                         kmem_cache_create("scsi_sense_cache(DMA)",
95                                 SCSI_SENSE_BUFFERSIZE, 0,
96                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97                 if (!scsi_sense_isadma_cache)
98                         ret = -ENOMEM;
99         } else {
100                 scsi_sense_cache =
101                         kmem_cache_create_usercopy("scsi_sense_cache",
102                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
104                 if (!scsi_sense_cache)
105                         ret = -ENOMEM;
106         }
107  exit:
108         mutex_unlock(&scsi_sense_cache_mutex);
109         return ret;
110 }
111
112 /*
113  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114  * not change behaviour from the previous unplug mechanism, experimentation
115  * may prove this needs changing.
116  */
117 #define SCSI_QUEUE_DELAY        3
118
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122         struct Scsi_Host *host = cmd->device->host;
123         struct scsi_device *device = cmd->device;
124         struct scsi_target *starget = scsi_target(device);
125
126         /*
127          * Set the appropriate busy bit for the device/host.
128          *
129          * If the host/device isn't busy, assume that something actually
130          * completed, and that we should be able to queue a command now.
131          *
132          * Note that the prior mid-layer assumption that any host could
133          * always queue at least one command is now broken.  The mid-layer
134          * will implement a user specifiable stall (see
135          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136          * if a command is requeued with no other commands outstanding
137          * either for the device or for the host.
138          */
139         switch (reason) {
140         case SCSI_MLQUEUE_HOST_BUSY:
141                 atomic_set(&host->host_blocked, host->max_host_blocked);
142                 break;
143         case SCSI_MLQUEUE_DEVICE_BUSY:
144         case SCSI_MLQUEUE_EH_RETRY:
145                 atomic_set(&device->device_blocked,
146                            device->max_device_blocked);
147                 break;
148         case SCSI_MLQUEUE_TARGET_BUSY:
149                 atomic_set(&starget->target_blocked,
150                            starget->max_target_blocked);
151                 break;
152         }
153 }
154
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157         if (cmd->request->rq_flags & RQF_DONTPREP) {
158                 cmd->request->rq_flags &= ~RQF_DONTPREP;
159                 scsi_mq_uninit_cmd(cmd);
160         } else {
161                 WARN_ON_ONCE(true);
162         }
163         blk_mq_requeue_request(cmd->request, true);
164 }
165
166 /**
167  * __scsi_queue_insert - private queue insertion
168  * @cmd: The SCSI command being requeued
169  * @reason:  The reason for the requeue
170  * @unbusy: Whether the queue should be unbusied
171  *
172  * This is a private queue insertion.  The public interface
173  * scsi_queue_insert() always assumes the queue should be unbusied
174  * because it's always called before the completion.  This function is
175  * for a requeue after completion, which should only occur in this
176  * file.
177  */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180         struct scsi_device *device = cmd->device;
181
182         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183                 "Inserting command %p into mlqueue\n", cmd));
184
185         scsi_set_blocked(cmd, reason);
186
187         /*
188          * Decrement the counters, since these commands are no longer
189          * active on the host/device.
190          */
191         if (unbusy)
192                 scsi_device_unbusy(device);
193
194         /*
195          * Requeue this command.  It will go before all other commands
196          * that are already in the queue. Schedule requeue work under
197          * lock such that the kblockd_schedule_work() call happens
198          * before blk_cleanup_queue() finishes.
199          */
200         cmd->result = 0;
201
202         blk_mq_requeue_request(cmd->request, true);
203 }
204
205 /*
206  * Function:    scsi_queue_insert()
207  *
208  * Purpose:     Insert a command in the midlevel queue.
209  *
210  * Arguments:   cmd    - command that we are adding to queue.
211  *              reason - why we are inserting command to queue.
212  *
213  * Lock status: Assumed that lock is not held upon entry.
214  *
215  * Returns:     Nothing.
216  *
217  * Notes:       We do this for one of two cases.  Either the host is busy
218  *              and it cannot accept any more commands for the time being,
219  *              or the device returned QUEUE_FULL and can accept no more
220  *              commands.
221  * Notes:       This could be called either from an interrupt context or a
222  *              normal process context.
223  */
224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
225 {
226         __scsi_queue_insert(cmd, reason, true);
227 }
228
229
230 /**
231  * __scsi_execute - insert request and wait for the result
232  * @sdev:       scsi device
233  * @cmd:        scsi command
234  * @data_direction: data direction
235  * @buffer:     data buffer
236  * @bufflen:    len of buffer
237  * @sense:      optional sense buffer
238  * @sshdr:      optional decoded sense header
239  * @timeout:    request timeout in seconds
240  * @retries:    number of times to retry request
241  * @flags:      flags for ->cmd_flags
242  * @rq_flags:   flags for ->rq_flags
243  * @resid:      optional residual length
244  *
245  * Returns the scsi_cmnd result field if a command was executed, or a negative
246  * Linux error code if we didn't get that far.
247  */
248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
249                  int data_direction, void *buffer, unsigned bufflen,
250                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
251                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
252                  int *resid)
253 {
254         struct request *req;
255         struct scsi_request *rq;
256         int ret = DRIVER_ERROR << 24;
257
258         req = blk_get_request(sdev->request_queue,
259                         data_direction == DMA_TO_DEVICE ?
260                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
261         if (IS_ERR(req))
262                 return ret;
263         rq = scsi_req(req);
264
265         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
266                                         buffer, bufflen, GFP_NOIO))
267                 goto out;
268
269         rq->cmd_len = COMMAND_SIZE(cmd[0]);
270         memcpy(rq->cmd, cmd, rq->cmd_len);
271         rq->retries = retries;
272         req->timeout = timeout;
273         req->cmd_flags |= flags;
274         req->rq_flags |= rq_flags | RQF_QUIET;
275
276         /*
277          * head injection *required* here otherwise quiesce won't work
278          */
279         blk_execute_rq(req->q, NULL, req, 1);
280
281         /*
282          * Some devices (USB mass-storage in particular) may transfer
283          * garbage data together with a residue indicating that the data
284          * is invalid.  Prevent the garbage from being misinterpreted
285          * and prevent security leaks by zeroing out the excess data.
286          */
287         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
288                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
289
290         if (resid)
291                 *resid = rq->resid_len;
292         if (sense && rq->sense_len)
293                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
294         if (sshdr)
295                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
296         ret = rq->result;
297  out:
298         blk_put_request(req);
299
300         return ret;
301 }
302 EXPORT_SYMBOL(__scsi_execute);
303
304 /*
305  * Function:    scsi_init_cmd_errh()
306  *
307  * Purpose:     Initialize cmd fields related to error handling.
308  *
309  * Arguments:   cmd     - command that is ready to be queued.
310  *
311  * Notes:       This function has the job of initializing a number of
312  *              fields related to error handling.   Typically this will
313  *              be called once for each command, as required.
314  */
315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
316 {
317         scsi_set_resid(cmd, 0);
318         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319         if (cmd->cmd_len == 0)
320                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322
323 /*
324  * Decrement the host_busy counter and wake up the error handler if necessary.
325  * Avoid as follows that the error handler is not woken up if shost->host_busy
326  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
327  * with an RCU read lock in this function to ensure that this function in its
328  * entirety either finishes before scsi_eh_scmd_add() increases the
329  * host_failed counter or that it notices the shost state change made by
330  * scsi_eh_scmd_add().
331  */
332 static void scsi_dec_host_busy(struct Scsi_Host *shost)
333 {
334         unsigned long flags;
335
336         rcu_read_lock();
337         atomic_dec(&shost->host_busy);
338         if (unlikely(scsi_host_in_recovery(shost))) {
339                 spin_lock_irqsave(shost->host_lock, flags);
340                 if (shost->host_failed || shost->host_eh_scheduled)
341                         scsi_eh_wakeup(shost);
342                 spin_unlock_irqrestore(shost->host_lock, flags);
343         }
344         rcu_read_unlock();
345 }
346
347 void scsi_device_unbusy(struct scsi_device *sdev)
348 {
349         struct Scsi_Host *shost = sdev->host;
350         struct scsi_target *starget = scsi_target(sdev);
351
352         scsi_dec_host_busy(shost);
353
354         if (starget->can_queue > 0)
355                 atomic_dec(&starget->target_busy);
356
357         atomic_dec(&sdev->device_busy);
358 }
359
360 static void scsi_kick_queue(struct request_queue *q)
361 {
362         blk_mq_run_hw_queues(q, false);
363 }
364
365 /*
366  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
367  * and call blk_run_queue for all the scsi_devices on the target -
368  * including current_sdev first.
369  *
370  * Called with *no* scsi locks held.
371  */
372 static void scsi_single_lun_run(struct scsi_device *current_sdev)
373 {
374         struct Scsi_Host *shost = current_sdev->host;
375         struct scsi_device *sdev, *tmp;
376         struct scsi_target *starget = scsi_target(current_sdev);
377         unsigned long flags;
378
379         spin_lock_irqsave(shost->host_lock, flags);
380         starget->starget_sdev_user = NULL;
381         spin_unlock_irqrestore(shost->host_lock, flags);
382
383         /*
384          * Call blk_run_queue for all LUNs on the target, starting with
385          * current_sdev. We race with others (to set starget_sdev_user),
386          * but in most cases, we will be first. Ideally, each LU on the
387          * target would get some limited time or requests on the target.
388          */
389         scsi_kick_queue(current_sdev->request_queue);
390
391         spin_lock_irqsave(shost->host_lock, flags);
392         if (starget->starget_sdev_user)
393                 goto out;
394         list_for_each_entry_safe(sdev, tmp, &starget->devices,
395                         same_target_siblings) {
396                 if (sdev == current_sdev)
397                         continue;
398                 if (scsi_device_get(sdev))
399                         continue;
400
401                 spin_unlock_irqrestore(shost->host_lock, flags);
402                 scsi_kick_queue(sdev->request_queue);
403                 spin_lock_irqsave(shost->host_lock, flags);
404         
405                 scsi_device_put(sdev);
406         }
407  out:
408         spin_unlock_irqrestore(shost->host_lock, flags);
409 }
410
411 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
412 {
413         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
414                 return true;
415         if (atomic_read(&sdev->device_blocked) > 0)
416                 return true;
417         return false;
418 }
419
420 static inline bool scsi_target_is_busy(struct scsi_target *starget)
421 {
422         if (starget->can_queue > 0) {
423                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
424                         return true;
425                 if (atomic_read(&starget->target_blocked) > 0)
426                         return true;
427         }
428         return false;
429 }
430
431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
432 {
433         if (shost->can_queue > 0 &&
434             atomic_read(&shost->host_busy) >= shost->can_queue)
435                 return true;
436         if (atomic_read(&shost->host_blocked) > 0)
437                 return true;
438         if (shost->host_self_blocked)
439                 return true;
440         return false;
441 }
442
443 static void scsi_starved_list_run(struct Scsi_Host *shost)
444 {
445         LIST_HEAD(starved_list);
446         struct scsi_device *sdev;
447         unsigned long flags;
448
449         spin_lock_irqsave(shost->host_lock, flags);
450         list_splice_init(&shost->starved_list, &starved_list);
451
452         while (!list_empty(&starved_list)) {
453                 struct request_queue *slq;
454
455                 /*
456                  * As long as shost is accepting commands and we have
457                  * starved queues, call blk_run_queue. scsi_request_fn
458                  * drops the queue_lock and can add us back to the
459                  * starved_list.
460                  *
461                  * host_lock protects the starved_list and starved_entry.
462                  * scsi_request_fn must get the host_lock before checking
463                  * or modifying starved_list or starved_entry.
464                  */
465                 if (scsi_host_is_busy(shost))
466                         break;
467
468                 sdev = list_entry(starved_list.next,
469                                   struct scsi_device, starved_entry);
470                 list_del_init(&sdev->starved_entry);
471                 if (scsi_target_is_busy(scsi_target(sdev))) {
472                         list_move_tail(&sdev->starved_entry,
473                                        &shost->starved_list);
474                         continue;
475                 }
476
477                 /*
478                  * Once we drop the host lock, a racing scsi_remove_device()
479                  * call may remove the sdev from the starved list and destroy
480                  * it and the queue.  Mitigate by taking a reference to the
481                  * queue and never touching the sdev again after we drop the
482                  * host lock.  Note: if __scsi_remove_device() invokes
483                  * blk_cleanup_queue() before the queue is run from this
484                  * function then blk_run_queue() will return immediately since
485                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
486                  */
487                 slq = sdev->request_queue;
488                 if (!blk_get_queue(slq))
489                         continue;
490                 spin_unlock_irqrestore(shost->host_lock, flags);
491
492                 scsi_kick_queue(slq);
493                 blk_put_queue(slq);
494
495                 spin_lock_irqsave(shost->host_lock, flags);
496         }
497         /* put any unprocessed entries back */
498         list_splice(&starved_list, &shost->starved_list);
499         spin_unlock_irqrestore(shost->host_lock, flags);
500 }
501
502 /*
503  * Function:   scsi_run_queue()
504  *
505  * Purpose:    Select a proper request queue to serve next
506  *
507  * Arguments:  q       - last request's queue
508  *
509  * Returns:     Nothing
510  *
511  * Notes:      The previous command was completely finished, start
512  *             a new one if possible.
513  */
514 static void scsi_run_queue(struct request_queue *q)
515 {
516         struct scsi_device *sdev = q->queuedata;
517
518         if (scsi_target(sdev)->single_lun)
519                 scsi_single_lun_run(sdev);
520         if (!list_empty(&sdev->host->starved_list))
521                 scsi_starved_list_run(sdev->host);
522
523         blk_mq_run_hw_queues(q, false);
524 }
525
526 void scsi_requeue_run_queue(struct work_struct *work)
527 {
528         struct scsi_device *sdev;
529         struct request_queue *q;
530
531         sdev = container_of(work, struct scsi_device, requeue_work);
532         q = sdev->request_queue;
533         scsi_run_queue(q);
534 }
535
536 void scsi_run_host_queues(struct Scsi_Host *shost)
537 {
538         struct scsi_device *sdev;
539
540         shost_for_each_device(sdev, shost)
541                 scsi_run_queue(sdev->request_queue);
542 }
543
544 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
545 {
546         if (!blk_rq_is_passthrough(cmd->request)) {
547                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
548
549                 if (drv->uninit_command)
550                         drv->uninit_command(cmd);
551         }
552 }
553
554 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
555 {
556         if (cmd->sdb.table.nents)
557                 sg_free_table_chained(&cmd->sdb.table,
558                                 SCSI_INLINE_SG_CNT);
559         if (scsi_prot_sg_count(cmd))
560                 sg_free_table_chained(&cmd->prot_sdb->table,
561                                 SCSI_INLINE_PROT_SG_CNT);
562 }
563
564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
565 {
566         scsi_mq_free_sgtables(cmd);
567         scsi_uninit_cmd(cmd);
568         scsi_del_cmd_from_list(cmd);
569 }
570
571 /* Returns false when no more bytes to process, true if there are more */
572 static bool scsi_end_request(struct request *req, blk_status_t error,
573                 unsigned int bytes)
574 {
575         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
576         struct scsi_device *sdev = cmd->device;
577         struct request_queue *q = sdev->request_queue;
578
579         if (blk_update_request(req, error, bytes))
580                 return true;
581
582         if (blk_queue_add_random(q))
583                 add_disk_randomness(req->rq_disk);
584
585         if (!blk_rq_is_scsi(req)) {
586                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
587                 cmd->flags &= ~SCMD_INITIALIZED;
588         }
589
590         /*
591          * Calling rcu_barrier() is not necessary here because the
592          * SCSI error handler guarantees that the function called by
593          * call_rcu() has been called before scsi_end_request() is
594          * called.
595          */
596         destroy_rcu_head(&cmd->rcu);
597
598         /*
599          * In the MQ case the command gets freed by __blk_mq_end_request,
600          * so we have to do all cleanup that depends on it earlier.
601          *
602          * We also can't kick the queues from irq context, so we
603          * will have to defer it to a workqueue.
604          */
605         scsi_mq_uninit_cmd(cmd);
606
607         /*
608          * queue is still alive, so grab the ref for preventing it
609          * from being cleaned up during running queue.
610          */
611         percpu_ref_get(&q->q_usage_counter);
612
613         __blk_mq_end_request(req, error);
614
615         if (scsi_target(sdev)->single_lun ||
616             !list_empty(&sdev->host->starved_list))
617                 kblockd_schedule_work(&sdev->requeue_work);
618         else
619                 blk_mq_run_hw_queues(q, true);
620
621         percpu_ref_put(&q->q_usage_counter);
622         return false;
623 }
624
625 /**
626  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
627  * @cmd:        SCSI command
628  * @result:     scsi error code
629  *
630  * Translate a SCSI result code into a blk_status_t value. May reset the host
631  * byte of @cmd->result.
632  */
633 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
634 {
635         switch (host_byte(result)) {
636         case DID_OK:
637                 /*
638                  * Also check the other bytes than the status byte in result
639                  * to handle the case when a SCSI LLD sets result to
640                  * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
641                  */
642                 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
643                         return BLK_STS_OK;
644                 return BLK_STS_IOERR;
645         case DID_TRANSPORT_FAILFAST:
646                 return BLK_STS_TRANSPORT;
647         case DID_TARGET_FAILURE:
648                 set_host_byte(cmd, DID_OK);
649                 return BLK_STS_TARGET;
650         case DID_NEXUS_FAILURE:
651                 set_host_byte(cmd, DID_OK);
652                 return BLK_STS_NEXUS;
653         case DID_ALLOC_FAILURE:
654                 set_host_byte(cmd, DID_OK);
655                 return BLK_STS_NOSPC;
656         case DID_MEDIUM_ERROR:
657                 set_host_byte(cmd, DID_OK);
658                 return BLK_STS_MEDIUM;
659         default:
660                 return BLK_STS_IOERR;
661         }
662 }
663
664 /* Helper for scsi_io_completion() when "reprep" action required. */
665 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
666                                       struct request_queue *q)
667 {
668         /* A new command will be prepared and issued. */
669         scsi_mq_requeue_cmd(cmd);
670 }
671
672 /* Helper for scsi_io_completion() when special action required. */
673 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
674 {
675         struct request_queue *q = cmd->device->request_queue;
676         struct request *req = cmd->request;
677         int level = 0;
678         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
679               ACTION_DELAYED_RETRY} action;
680         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
681         struct scsi_sense_hdr sshdr;
682         bool sense_valid;
683         bool sense_current = true;      /* false implies "deferred sense" */
684         blk_status_t blk_stat;
685
686         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
687         if (sense_valid)
688                 sense_current = !scsi_sense_is_deferred(&sshdr);
689
690         blk_stat = scsi_result_to_blk_status(cmd, result);
691
692         if (host_byte(result) == DID_RESET) {
693                 /* Third party bus reset or reset for error recovery
694                  * reasons.  Just retry the command and see what
695                  * happens.
696                  */
697                 action = ACTION_RETRY;
698         } else if (sense_valid && sense_current) {
699                 switch (sshdr.sense_key) {
700                 case UNIT_ATTENTION:
701                         if (cmd->device->removable) {
702                                 /* Detected disc change.  Set a bit
703                                  * and quietly refuse further access.
704                                  */
705                                 cmd->device->changed = 1;
706                                 action = ACTION_FAIL;
707                         } else {
708                                 /* Must have been a power glitch, or a
709                                  * bus reset.  Could not have been a
710                                  * media change, so we just retry the
711                                  * command and see what happens.
712                                  */
713                                 action = ACTION_RETRY;
714                         }
715                         break;
716                 case ILLEGAL_REQUEST:
717                         /* If we had an ILLEGAL REQUEST returned, then
718                          * we may have performed an unsupported
719                          * command.  The only thing this should be
720                          * would be a ten byte read where only a six
721                          * byte read was supported.  Also, on a system
722                          * where READ CAPACITY failed, we may have
723                          * read past the end of the disk.
724                          */
725                         if ((cmd->device->use_10_for_rw &&
726                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
727                             (cmd->cmnd[0] == READ_10 ||
728                              cmd->cmnd[0] == WRITE_10)) {
729                                 /* This will issue a new 6-byte command. */
730                                 cmd->device->use_10_for_rw = 0;
731                                 action = ACTION_REPREP;
732                         } else if (sshdr.asc == 0x10) /* DIX */ {
733                                 action = ACTION_FAIL;
734                                 blk_stat = BLK_STS_PROTECTION;
735                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
736                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
737                                 action = ACTION_FAIL;
738                                 blk_stat = BLK_STS_TARGET;
739                         } else
740                                 action = ACTION_FAIL;
741                         break;
742                 case ABORTED_COMMAND:
743                         action = ACTION_FAIL;
744                         if (sshdr.asc == 0x10) /* DIF */
745                                 blk_stat = BLK_STS_PROTECTION;
746                         break;
747                 case NOT_READY:
748                         /* If the device is in the process of becoming
749                          * ready, or has a temporary blockage, retry.
750                          */
751                         if (sshdr.asc == 0x04) {
752                                 switch (sshdr.ascq) {
753                                 case 0x01: /* becoming ready */
754                                 case 0x04: /* format in progress */
755                                 case 0x05: /* rebuild in progress */
756                                 case 0x06: /* recalculation in progress */
757                                 case 0x07: /* operation in progress */
758                                 case 0x08: /* Long write in progress */
759                                 case 0x09: /* self test in progress */
760                                 case 0x14: /* space allocation in progress */
761                                 case 0x1a: /* start stop unit in progress */
762                                 case 0x1b: /* sanitize in progress */
763                                 case 0x1d: /* configuration in progress */
764                                 case 0x24: /* depopulation in progress */
765                                         action = ACTION_DELAYED_RETRY;
766                                         break;
767                                 default:
768                                         action = ACTION_FAIL;
769                                         break;
770                                 }
771                         } else
772                                 action = ACTION_FAIL;
773                         break;
774                 case VOLUME_OVERFLOW:
775                         /* See SSC3rXX or current. */
776                         action = ACTION_FAIL;
777                         break;
778                 default:
779                         action = ACTION_FAIL;
780                         break;
781                 }
782         } else
783                 action = ACTION_FAIL;
784
785         if (action != ACTION_FAIL &&
786             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
787                 action = ACTION_FAIL;
788
789         switch (action) {
790         case ACTION_FAIL:
791                 /* Give up and fail the remainder of the request */
792                 if (!(req->rq_flags & RQF_QUIET)) {
793                         static DEFINE_RATELIMIT_STATE(_rs,
794                                         DEFAULT_RATELIMIT_INTERVAL,
795                                         DEFAULT_RATELIMIT_BURST);
796
797                         if (unlikely(scsi_logging_level))
798                                 level =
799                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
800                                                     SCSI_LOG_MLCOMPLETE_BITS);
801
802                         /*
803                          * if logging is enabled the failure will be printed
804                          * in scsi_log_completion(), so avoid duplicate messages
805                          */
806                         if (!level && __ratelimit(&_rs)) {
807                                 scsi_print_result(cmd, NULL, FAILED);
808                                 if (driver_byte(result) == DRIVER_SENSE)
809                                         scsi_print_sense(cmd);
810                                 scsi_print_command(cmd);
811                         }
812                 }
813                 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
814                         return;
815                 /*FALLTHRU*/
816         case ACTION_REPREP:
817                 scsi_io_completion_reprep(cmd, q);
818                 break;
819         case ACTION_RETRY:
820                 /* Retry the same command immediately */
821                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
822                 break;
823         case ACTION_DELAYED_RETRY:
824                 /* Retry the same command after a delay */
825                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
826                 break;
827         }
828 }
829
830 /*
831  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
832  * new result that may suppress further error checking. Also modifies
833  * *blk_statp in some cases.
834  */
835 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
836                                         blk_status_t *blk_statp)
837 {
838         bool sense_valid;
839         bool sense_current = true;      /* false implies "deferred sense" */
840         struct request *req = cmd->request;
841         struct scsi_sense_hdr sshdr;
842
843         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
844         if (sense_valid)
845                 sense_current = !scsi_sense_is_deferred(&sshdr);
846
847         if (blk_rq_is_passthrough(req)) {
848                 if (sense_valid) {
849                         /*
850                          * SG_IO wants current and deferred errors
851                          */
852                         scsi_req(req)->sense_len =
853                                 min(8 + cmd->sense_buffer[7],
854                                     SCSI_SENSE_BUFFERSIZE);
855                 }
856                 if (sense_current)
857                         *blk_statp = scsi_result_to_blk_status(cmd, result);
858         } else if (blk_rq_bytes(req) == 0 && sense_current) {
859                 /*
860                  * Flush commands do not transfers any data, and thus cannot use
861                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
862                  * This sets *blk_statp explicitly for the problem case.
863                  */
864                 *blk_statp = scsi_result_to_blk_status(cmd, result);
865         }
866         /*
867          * Recovered errors need reporting, but they're always treated as
868          * success, so fiddle the result code here.  For passthrough requests
869          * we already took a copy of the original into sreq->result which
870          * is what gets returned to the user
871          */
872         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
873                 bool do_print = true;
874                 /*
875                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
876                  * skip print since caller wants ATA registers. Only occurs
877                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
878                  */
879                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
880                         do_print = false;
881                 else if (req->rq_flags & RQF_QUIET)
882                         do_print = false;
883                 if (do_print)
884                         scsi_print_sense(cmd);
885                 result = 0;
886                 /* for passthrough, *blk_statp may be set */
887                 *blk_statp = BLK_STS_OK;
888         }
889         /*
890          * Another corner case: the SCSI status byte is non-zero but 'good'.
891          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
892          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
893          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
894          * intermediate statuses (both obsolete in SAM-4) as good.
895          */
896         if (status_byte(result) && scsi_status_is_good(result)) {
897                 result = 0;
898                 *blk_statp = BLK_STS_OK;
899         }
900         return result;
901 }
902
903 /*
904  * Function:    scsi_io_completion()
905  *
906  * Purpose:     Completion processing for block device I/O requests.
907  *
908  * Arguments:   cmd   - command that is finished.
909  *
910  * Lock status: Assumed that no lock is held upon entry.
911  *
912  * Returns:     Nothing
913  *
914  * Notes:       We will finish off the specified number of sectors.  If we
915  *              are done, the command block will be released and the queue
916  *              function will be goosed.  If we are not done then we have to
917  *              figure out what to do next:
918  *
919  *              a) We can call scsi_requeue_command().  The request
920  *                 will be unprepared and put back on the queue.  Then
921  *                 a new command will be created for it.  This should
922  *                 be used if we made forward progress, or if we want
923  *                 to switch from READ(10) to READ(6) for example.
924  *
925  *              b) We can call __scsi_queue_insert().  The request will
926  *                 be put back on the queue and retried using the same
927  *                 command as before, possibly after a delay.
928  *
929  *              c) We can call scsi_end_request() with blk_stat other than
930  *                 BLK_STS_OK, to fail the remainder of the request.
931  */
932 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
933 {
934         int result = cmd->result;
935         struct request_queue *q = cmd->device->request_queue;
936         struct request *req = cmd->request;
937         blk_status_t blk_stat = BLK_STS_OK;
938
939         if (unlikely(result))   /* a nz result may or may not be an error */
940                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
941
942         if (unlikely(blk_rq_is_passthrough(req))) {
943                 /*
944                  * scsi_result_to_blk_status may have reset the host_byte
945                  */
946                 scsi_req(req)->result = cmd->result;
947         }
948
949         /*
950          * Next deal with any sectors which we were able to correctly
951          * handle.
952          */
953         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
954                 "%u sectors total, %d bytes done.\n",
955                 blk_rq_sectors(req), good_bytes));
956
957         /*
958          * Next deal with any sectors which we were able to correctly
959          * handle. Failed, zero length commands always need to drop down
960          * to retry code. Fast path should return in this block.
961          */
962         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
963                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
964                         return; /* no bytes remaining */
965         }
966
967         /* Kill remainder if no retries. */
968         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
969                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
970                         WARN_ONCE(true,
971                             "Bytes remaining after failed, no-retry command");
972                 return;
973         }
974
975         /*
976          * If there had been no error, but we have leftover bytes in the
977          * requeues just queue the command up again.
978          */
979         if (likely(result == 0))
980                 scsi_io_completion_reprep(cmd, q);
981         else
982                 scsi_io_completion_action(cmd, result);
983 }
984
985 static blk_status_t scsi_init_sgtable(struct request *req,
986                 struct scsi_data_buffer *sdb)
987 {
988         int count;
989
990         /*
991          * If sg table allocation fails, requeue request later.
992          */
993         if (unlikely(sg_alloc_table_chained(&sdb->table,
994                         blk_rq_nr_phys_segments(req), sdb->table.sgl,
995                         SCSI_INLINE_SG_CNT)))
996                 return BLK_STS_RESOURCE;
997
998         /* 
999          * Next, walk the list, and fill in the addresses and sizes of
1000          * each segment.
1001          */
1002         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1003         BUG_ON(count > sdb->table.nents);
1004         sdb->table.nents = count;
1005         sdb->length = blk_rq_payload_bytes(req);
1006         return BLK_STS_OK;
1007 }
1008
1009 /*
1010  * Function:    scsi_init_io()
1011  *
1012  * Purpose:     SCSI I/O initialize function.
1013  *
1014  * Arguments:   cmd   - Command descriptor we wish to initialize
1015  *
1016  * Returns:     BLK_STS_OK on success
1017  *              BLK_STS_RESOURCE if the failure is retryable
1018  *              BLK_STS_IOERR if the failure is fatal
1019  */
1020 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1021 {
1022         struct request *rq = cmd->request;
1023         blk_status_t ret;
1024
1025         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1026                 return BLK_STS_IOERR;
1027
1028         ret = scsi_init_sgtable(rq, &cmd->sdb);
1029         if (ret)
1030                 return ret;
1031
1032         if (blk_integrity_rq(rq)) {
1033                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034                 int ivecs, count;
1035
1036                 if (WARN_ON_ONCE(!prot_sdb)) {
1037                         /*
1038                          * This can happen if someone (e.g. multipath)
1039                          * queues a command to a device on an adapter
1040                          * that does not support DIX.
1041                          */
1042                         ret = BLK_STS_IOERR;
1043                         goto out_free_sgtables;
1044                 }
1045
1046                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049                                 prot_sdb->table.sgl,
1050                                 SCSI_INLINE_PROT_SG_CNT)) {
1051                         ret = BLK_STS_RESOURCE;
1052                         goto out_free_sgtables;
1053                 }
1054
1055                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056                                                 prot_sdb->table.sgl);
1057                 BUG_ON(count > ivecs);
1058                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060                 cmd->prot_sdb = prot_sdb;
1061                 cmd->prot_sdb->table.nents = count;
1062         }
1063
1064         return BLK_STS_OK;
1065 out_free_sgtables:
1066         scsi_mq_free_sgtables(cmd);
1067         return ret;
1068 }
1069 EXPORT_SYMBOL(scsi_init_io);
1070
1071 /**
1072  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073  * @rq: Request associated with the SCSI command to be initialized.
1074  *
1075  * This function initializes the members of struct scsi_cmnd that must be
1076  * initialized before request processing starts and that won't be
1077  * reinitialized if a SCSI command is requeued.
1078  *
1079  * Called from inside blk_get_request() for pass-through requests and from
1080  * inside scsi_init_command() for filesystem requests.
1081  */
1082 static void scsi_initialize_rq(struct request *rq)
1083 {
1084         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086         scsi_req_init(&cmd->req);
1087         init_rcu_head(&cmd->rcu);
1088         cmd->jiffies_at_alloc = jiffies;
1089         cmd->retries = 0;
1090 }
1091
1092 /*
1093  * Only called when the request isn't completed by SCSI, and not freed by
1094  * SCSI
1095  */
1096 static void scsi_cleanup_rq(struct request *rq)
1097 {
1098         if (rq->rq_flags & RQF_DONTPREP) {
1099                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100                 rq->rq_flags &= ~RQF_DONTPREP;
1101         }
1102 }
1103
1104 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1105 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1106 {
1107         struct scsi_device *sdev = cmd->device;
1108         struct Scsi_Host *shost = sdev->host;
1109         unsigned long flags;
1110
1111         if (shost->use_cmd_list) {
1112                 spin_lock_irqsave(&sdev->list_lock, flags);
1113                 list_add_tail(&cmd->list, &sdev->cmd_list);
1114                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1115         }
1116 }
1117
1118 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1119 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1120 {
1121         struct scsi_device *sdev = cmd->device;
1122         struct Scsi_Host *shost = sdev->host;
1123         unsigned long flags;
1124
1125         if (shost->use_cmd_list) {
1126                 spin_lock_irqsave(&sdev->list_lock, flags);
1127                 BUG_ON(list_empty(&cmd->list));
1128                 list_del_init(&cmd->list);
1129                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1130         }
1131 }
1132
1133 /* Called after a request has been started. */
1134 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135 {
1136         void *buf = cmd->sense_buffer;
1137         void *prot = cmd->prot_sdb;
1138         struct request *rq = blk_mq_rq_from_pdu(cmd);
1139         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140         unsigned long jiffies_at_alloc;
1141         int retries;
1142
1143         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1144                 flags |= SCMD_INITIALIZED;
1145                 scsi_initialize_rq(rq);
1146         }
1147
1148         jiffies_at_alloc = cmd->jiffies_at_alloc;
1149         retries = cmd->retries;
1150         /* zero out the cmd, except for the embedded scsi_request */
1151         memset((char *)cmd + sizeof(cmd->req), 0,
1152                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1153
1154         cmd->device = dev;
1155         cmd->sense_buffer = buf;
1156         cmd->prot_sdb = prot;
1157         cmd->flags = flags;
1158         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1159         cmd->jiffies_at_alloc = jiffies_at_alloc;
1160         cmd->retries = retries;
1161
1162         scsi_add_cmd_to_list(cmd);
1163 }
1164
1165 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1166                 struct request *req)
1167 {
1168         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1169
1170         /*
1171          * Passthrough requests may transfer data, in which case they must
1172          * a bio attached to them.  Or they might contain a SCSI command
1173          * that does not transfer data, in which case they may optionally
1174          * submit a request without an attached bio.
1175          */
1176         if (req->bio) {
1177                 blk_status_t ret = scsi_init_io(cmd);
1178                 if (unlikely(ret != BLK_STS_OK))
1179                         return ret;
1180         } else {
1181                 BUG_ON(blk_rq_bytes(req));
1182
1183                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1184         }
1185
1186         cmd->cmd_len = scsi_req(req)->cmd_len;
1187         cmd->cmnd = scsi_req(req)->cmd;
1188         cmd->transfersize = blk_rq_bytes(req);
1189         cmd->allowed = scsi_req(req)->retries;
1190         return BLK_STS_OK;
1191 }
1192
1193 /*
1194  * Setup a normal block command.  These are simple request from filesystems
1195  * that still need to be translated to SCSI CDBs from the ULD.
1196  */
1197 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1198                 struct request *req)
1199 {
1200         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1201
1202         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1203                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1204                 if (ret != BLK_STS_OK)
1205                         return ret;
1206         }
1207
1208         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1209         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1210         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1211 }
1212
1213 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1214                 struct request *req)
1215 {
1216         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1217
1218         if (!blk_rq_bytes(req))
1219                 cmd->sc_data_direction = DMA_NONE;
1220         else if (rq_data_dir(req) == WRITE)
1221                 cmd->sc_data_direction = DMA_TO_DEVICE;
1222         else
1223                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1224
1225         if (blk_rq_is_scsi(req))
1226                 return scsi_setup_scsi_cmnd(sdev, req);
1227         else
1228                 return scsi_setup_fs_cmnd(sdev, req);
1229 }
1230
1231 static blk_status_t
1232 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1233 {
1234         switch (sdev->sdev_state) {
1235         case SDEV_OFFLINE:
1236         case SDEV_TRANSPORT_OFFLINE:
1237                 /*
1238                  * If the device is offline we refuse to process any
1239                  * commands.  The device must be brought online
1240                  * before trying any recovery commands.
1241                  */
1242                 sdev_printk(KERN_ERR, sdev,
1243                             "rejecting I/O to offline device\n");
1244                 return BLK_STS_IOERR;
1245         case SDEV_DEL:
1246                 /*
1247                  * If the device is fully deleted, we refuse to
1248                  * process any commands as well.
1249                  */
1250                 sdev_printk(KERN_ERR, sdev,
1251                             "rejecting I/O to dead device\n");
1252                 return BLK_STS_IOERR;
1253         case SDEV_BLOCK:
1254         case SDEV_CREATED_BLOCK:
1255                 return BLK_STS_RESOURCE;
1256         case SDEV_QUIESCE:
1257                 /*
1258                  * If the devices is blocked we defer normal commands.
1259                  */
1260                 if (req && !(req->rq_flags & RQF_PREEMPT))
1261                         return BLK_STS_RESOURCE;
1262                 return BLK_STS_OK;
1263         default:
1264                 /*
1265                  * For any other not fully online state we only allow
1266                  * special commands.  In particular any user initiated
1267                  * command is not allowed.
1268                  */
1269                 if (req && !(req->rq_flags & RQF_PREEMPT))
1270                         return BLK_STS_IOERR;
1271                 return BLK_STS_OK;
1272         }
1273 }
1274
1275 /*
1276  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1277  * return 0.
1278  *
1279  * Called with the queue_lock held.
1280  */
1281 static inline int scsi_dev_queue_ready(struct request_queue *q,
1282                                   struct scsi_device *sdev)
1283 {
1284         unsigned int busy;
1285
1286         busy = atomic_inc_return(&sdev->device_busy) - 1;
1287         if (atomic_read(&sdev->device_blocked)) {
1288                 if (busy)
1289                         goto out_dec;
1290
1291                 /*
1292                  * unblock after device_blocked iterates to zero
1293                  */
1294                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1295                         goto out_dec;
1296                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1297                                    "unblocking device at zero depth\n"));
1298         }
1299
1300         if (busy >= sdev->queue_depth)
1301                 goto out_dec;
1302
1303         return 1;
1304 out_dec:
1305         atomic_dec(&sdev->device_busy);
1306         return 0;
1307 }
1308
1309 /*
1310  * scsi_target_queue_ready: checks if there we can send commands to target
1311  * @sdev: scsi device on starget to check.
1312  */
1313 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1314                                            struct scsi_device *sdev)
1315 {
1316         struct scsi_target *starget = scsi_target(sdev);
1317         unsigned int busy;
1318
1319         if (starget->single_lun) {
1320                 spin_lock_irq(shost->host_lock);
1321                 if (starget->starget_sdev_user &&
1322                     starget->starget_sdev_user != sdev) {
1323                         spin_unlock_irq(shost->host_lock);
1324                         return 0;
1325                 }
1326                 starget->starget_sdev_user = sdev;
1327                 spin_unlock_irq(shost->host_lock);
1328         }
1329
1330         if (starget->can_queue <= 0)
1331                 return 1;
1332
1333         busy = atomic_inc_return(&starget->target_busy) - 1;
1334         if (atomic_read(&starget->target_blocked) > 0) {
1335                 if (busy)
1336                         goto starved;
1337
1338                 /*
1339                  * unblock after target_blocked iterates to zero
1340                  */
1341                 if (atomic_dec_return(&starget->target_blocked) > 0)
1342                         goto out_dec;
1343
1344                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1345                                  "unblocking target at zero depth\n"));
1346         }
1347
1348         if (busy >= starget->can_queue)
1349                 goto starved;
1350
1351         return 1;
1352
1353 starved:
1354         spin_lock_irq(shost->host_lock);
1355         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1356         spin_unlock_irq(shost->host_lock);
1357 out_dec:
1358         if (starget->can_queue > 0)
1359                 atomic_dec(&starget->target_busy);
1360         return 0;
1361 }
1362
1363 /*
1364  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1365  * return 0. We must end up running the queue again whenever 0 is
1366  * returned, else IO can hang.
1367  */
1368 static inline int scsi_host_queue_ready(struct request_queue *q,
1369                                    struct Scsi_Host *shost,
1370                                    struct scsi_device *sdev)
1371 {
1372         unsigned int busy;
1373
1374         if (scsi_host_in_recovery(shost))
1375                 return 0;
1376
1377         busy = atomic_inc_return(&shost->host_busy) - 1;
1378         if (atomic_read(&shost->host_blocked) > 0) {
1379                 if (busy)
1380                         goto starved;
1381
1382                 /*
1383                  * unblock after host_blocked iterates to zero
1384                  */
1385                 if (atomic_dec_return(&shost->host_blocked) > 0)
1386                         goto out_dec;
1387
1388                 SCSI_LOG_MLQUEUE(3,
1389                         shost_printk(KERN_INFO, shost,
1390                                      "unblocking host at zero depth\n"));
1391         }
1392
1393         if (shost->can_queue > 0 && busy >= shost->can_queue)
1394                 goto starved;
1395         if (shost->host_self_blocked)
1396                 goto starved;
1397
1398         /* We're OK to process the command, so we can't be starved */
1399         if (!list_empty(&sdev->starved_entry)) {
1400                 spin_lock_irq(shost->host_lock);
1401                 if (!list_empty(&sdev->starved_entry))
1402                         list_del_init(&sdev->starved_entry);
1403                 spin_unlock_irq(shost->host_lock);
1404         }
1405
1406         return 1;
1407
1408 starved:
1409         spin_lock_irq(shost->host_lock);
1410         if (list_empty(&sdev->starved_entry))
1411                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1412         spin_unlock_irq(shost->host_lock);
1413 out_dec:
1414         scsi_dec_host_busy(shost);
1415         return 0;
1416 }
1417
1418 /*
1419  * Busy state exporting function for request stacking drivers.
1420  *
1421  * For efficiency, no lock is taken to check the busy state of
1422  * shost/starget/sdev, since the returned value is not guaranteed and
1423  * may be changed after request stacking drivers call the function,
1424  * regardless of taking lock or not.
1425  *
1426  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1427  * needs to return 'not busy'. Otherwise, request stacking drivers
1428  * may hold requests forever.
1429  */
1430 static bool scsi_mq_lld_busy(struct request_queue *q)
1431 {
1432         struct scsi_device *sdev = q->queuedata;
1433         struct Scsi_Host *shost;
1434
1435         if (blk_queue_dying(q))
1436                 return false;
1437
1438         shost = sdev->host;
1439
1440         /*
1441          * Ignore host/starget busy state.
1442          * Since block layer does not have a concept of fairness across
1443          * multiple queues, congestion of host/starget needs to be handled
1444          * in SCSI layer.
1445          */
1446         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1447                 return true;
1448
1449         return false;
1450 }
1451
1452 static void scsi_softirq_done(struct request *rq)
1453 {
1454         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1455         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1456         int disposition;
1457
1458         INIT_LIST_HEAD(&cmd->eh_entry);
1459
1460         atomic_inc(&cmd->device->iodone_cnt);
1461         if (cmd->result)
1462                 atomic_inc(&cmd->device->ioerr_cnt);
1463
1464         disposition = scsi_decide_disposition(cmd);
1465         if (disposition != SUCCESS &&
1466             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1467                 scmd_printk(KERN_ERR, cmd,
1468                             "timing out command, waited %lus\n",
1469                             wait_for/HZ);
1470                 disposition = SUCCESS;
1471         }
1472
1473         scsi_log_completion(cmd, disposition);
1474
1475         switch (disposition) {
1476                 case SUCCESS:
1477                         scsi_finish_command(cmd);
1478                         break;
1479                 case NEEDS_RETRY:
1480                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1481                         break;
1482                 case ADD_TO_MLQUEUE:
1483                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1484                         break;
1485                 default:
1486                         scsi_eh_scmd_add(cmd);
1487                         break;
1488         }
1489 }
1490
1491 /**
1492  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1493  * @cmd: command block we are dispatching.
1494  *
1495  * Return: nonzero return request was rejected and device's queue needs to be
1496  * plugged.
1497  */
1498 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1499 {
1500         struct Scsi_Host *host = cmd->device->host;
1501         int rtn = 0;
1502
1503         atomic_inc(&cmd->device->iorequest_cnt);
1504
1505         /* check if the device is still usable */
1506         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1507                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1508                  * returns an immediate error upwards, and signals
1509                  * that the device is no longer present */
1510                 cmd->result = DID_NO_CONNECT << 16;
1511                 goto done;
1512         }
1513
1514         /* Check to see if the scsi lld made this device blocked. */
1515         if (unlikely(scsi_device_blocked(cmd->device))) {
1516                 /*
1517                  * in blocked state, the command is just put back on
1518                  * the device queue.  The suspend state has already
1519                  * blocked the queue so future requests should not
1520                  * occur until the device transitions out of the
1521                  * suspend state.
1522                  */
1523                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524                         "queuecommand : device blocked\n"));
1525                 return SCSI_MLQUEUE_DEVICE_BUSY;
1526         }
1527
1528         /* Store the LUN value in cmnd, if needed. */
1529         if (cmd->device->lun_in_cdb)
1530                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1531                                (cmd->device->lun << 5 & 0xe0);
1532
1533         scsi_log_send(cmd);
1534
1535         /*
1536          * Before we queue this command, check if the command
1537          * length exceeds what the host adapter can handle.
1538          */
1539         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1540                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1541                                "queuecommand : command too long. "
1542                                "cdb_size=%d host->max_cmd_len=%d\n",
1543                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1544                 cmd->result = (DID_ABORT << 16);
1545                 goto done;
1546         }
1547
1548         if (unlikely(host->shost_state == SHOST_DEL)) {
1549                 cmd->result = (DID_NO_CONNECT << 16);
1550                 goto done;
1551
1552         }
1553
1554         trace_scsi_dispatch_cmd_start(cmd);
1555         rtn = host->hostt->queuecommand(host, cmd);
1556         if (rtn) {
1557                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1558                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1559                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1560                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1561
1562                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1563                         "queuecommand : request rejected\n"));
1564         }
1565
1566         return rtn;
1567  done:
1568         cmd->scsi_done(cmd);
1569         return 0;
1570 }
1571
1572 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1573 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1574 {
1575         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1576                 sizeof(struct scatterlist);
1577 }
1578
1579 static blk_status_t scsi_mq_prep_fn(struct request *req)
1580 {
1581         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1582         struct scsi_device *sdev = req->q->queuedata;
1583         struct Scsi_Host *shost = sdev->host;
1584         struct scatterlist *sg;
1585
1586         scsi_init_command(sdev, cmd);
1587
1588         cmd->request = req;
1589         cmd->tag = req->tag;
1590         cmd->prot_op = SCSI_PROT_NORMAL;
1591
1592         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1593         cmd->sdb.table.sgl = sg;
1594
1595         if (scsi_host_get_prot(shost)) {
1596                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1597
1598                 cmd->prot_sdb->table.sgl =
1599                         (struct scatterlist *)(cmd->prot_sdb + 1);
1600         }
1601
1602         blk_mq_start_request(req);
1603
1604         return scsi_setup_cmnd(sdev, req);
1605 }
1606
1607 static void scsi_mq_done(struct scsi_cmnd *cmd)
1608 {
1609         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1610                 return;
1611         trace_scsi_dispatch_cmd_done(cmd);
1612
1613         /*
1614          * If the block layer didn't complete the request due to a timeout
1615          * injection, scsi must clear its internal completed state so that the
1616          * timeout handler will see it needs to escalate its own error
1617          * recovery.
1618          */
1619         if (unlikely(!blk_mq_complete_request(cmd->request)))
1620                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1621 }
1622
1623 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1624 {
1625         struct request_queue *q = hctx->queue;
1626         struct scsi_device *sdev = q->queuedata;
1627
1628         atomic_dec(&sdev->device_busy);
1629 }
1630
1631 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1632 {
1633         struct request_queue *q = hctx->queue;
1634         struct scsi_device *sdev = q->queuedata;
1635
1636         if (scsi_dev_queue_ready(q, sdev))
1637                 return true;
1638
1639         if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1640                 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1641         return false;
1642 }
1643
1644 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645                          const struct blk_mq_queue_data *bd)
1646 {
1647         struct request *req = bd->rq;
1648         struct request_queue *q = req->q;
1649         struct scsi_device *sdev = q->queuedata;
1650         struct Scsi_Host *shost = sdev->host;
1651         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652         blk_status_t ret;
1653         int reason;
1654
1655         /*
1656          * If the device is not in running state we will reject some or all
1657          * commands.
1658          */
1659         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660                 ret = scsi_prep_state_check(sdev, req);
1661                 if (ret != BLK_STS_OK)
1662                         goto out_put_budget;
1663         }
1664
1665         ret = BLK_STS_RESOURCE;
1666         if (!scsi_target_queue_ready(shost, sdev))
1667                 goto out_put_budget;
1668         if (!scsi_host_queue_ready(q, shost, sdev))
1669                 goto out_dec_target_busy;
1670
1671         if (!(req->rq_flags & RQF_DONTPREP)) {
1672                 ret = scsi_mq_prep_fn(req);
1673                 if (ret != BLK_STS_OK)
1674                         goto out_dec_host_busy;
1675                 req->rq_flags |= RQF_DONTPREP;
1676         } else {
1677                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678                 blk_mq_start_request(req);
1679         }
1680
1681         if (sdev->simple_tags)
1682                 cmd->flags |= SCMD_TAGGED;
1683         else
1684                 cmd->flags &= ~SCMD_TAGGED;
1685
1686         scsi_init_cmd_errh(cmd);
1687         cmd->scsi_done = scsi_mq_done;
1688
1689         reason = scsi_dispatch_cmd(cmd);
1690         if (reason) {
1691                 scsi_set_blocked(cmd, reason);
1692                 ret = BLK_STS_RESOURCE;
1693                 goto out_dec_host_busy;
1694         }
1695
1696         return BLK_STS_OK;
1697
1698 out_dec_host_busy:
1699         scsi_dec_host_busy(shost);
1700 out_dec_target_busy:
1701         if (scsi_target(sdev)->can_queue > 0)
1702                 atomic_dec(&scsi_target(sdev)->target_busy);
1703 out_put_budget:
1704         scsi_mq_put_budget(hctx);
1705         switch (ret) {
1706         case BLK_STS_OK:
1707                 break;
1708         case BLK_STS_RESOURCE:
1709                 if (atomic_read(&sdev->device_busy) ||
1710                     scsi_device_blocked(sdev))
1711                         ret = BLK_STS_DEV_RESOURCE;
1712                 break;
1713         default:
1714                 if (unlikely(!scsi_device_online(sdev)))
1715                         scsi_req(req)->result = DID_NO_CONNECT << 16;
1716                 else
1717                         scsi_req(req)->result = DID_ERROR << 16;
1718                 /*
1719                  * Make sure to release all allocated resources when
1720                  * we hit an error, as we will never see this command
1721                  * again.
1722                  */
1723                 if (req->rq_flags & RQF_DONTPREP)
1724                         scsi_mq_uninit_cmd(cmd);
1725                 break;
1726         }
1727         return ret;
1728 }
1729
1730 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1731                 bool reserved)
1732 {
1733         if (reserved)
1734                 return BLK_EH_RESET_TIMER;
1735         return scsi_times_out(req);
1736 }
1737
1738 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1739                                 unsigned int hctx_idx, unsigned int numa_node)
1740 {
1741         struct Scsi_Host *shost = set->driver_data;
1742         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1743         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1744         struct scatterlist *sg;
1745
1746         if (unchecked_isa_dma)
1747                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1748         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1749                                                     GFP_KERNEL, numa_node);
1750         if (!cmd->sense_buffer)
1751                 return -ENOMEM;
1752         cmd->req.sense = cmd->sense_buffer;
1753
1754         if (scsi_host_get_prot(shost)) {
1755                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1756                         shost->hostt->cmd_size;
1757                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1758         }
1759
1760         return 0;
1761 }
1762
1763 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1764                                  unsigned int hctx_idx)
1765 {
1766         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1767
1768         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1769                                cmd->sense_buffer);
1770 }
1771
1772 static int scsi_map_queues(struct blk_mq_tag_set *set)
1773 {
1774         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1775
1776         if (shost->hostt->map_queues)
1777                 return shost->hostt->map_queues(shost);
1778         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1779 }
1780
1781 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1782 {
1783         struct device *dev = shost->dma_dev;
1784
1785         /*
1786          * this limit is imposed by hardware restrictions
1787          */
1788         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1789                                         SG_MAX_SEGMENTS));
1790
1791         if (scsi_host_prot_dma(shost)) {
1792                 shost->sg_prot_tablesize =
1793                         min_not_zero(shost->sg_prot_tablesize,
1794                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1795                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1796                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1797         }
1798
1799         if (dev->dma_mask) {
1800                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1801                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1802         }
1803         blk_queue_max_hw_sectors(q, shost->max_sectors);
1804         if (shost->unchecked_isa_dma)
1805                 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1806         blk_queue_segment_boundary(q, shost->dma_boundary);
1807         dma_set_seg_boundary(dev, shost->dma_boundary);
1808
1809         blk_queue_max_segment_size(q, shost->max_segment_size);
1810         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1811         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1812
1813         /*
1814          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1815          * which is a common minimum for HBAs, and the minimum DMA alignment,
1816          * which is set by the platform.
1817          *
1818          * Devices that require a bigger alignment can increase it later.
1819          */
1820         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1821 }
1822 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1823
1824 static const struct blk_mq_ops scsi_mq_ops = {
1825         .get_budget     = scsi_mq_get_budget,
1826         .put_budget     = scsi_mq_put_budget,
1827         .queue_rq       = scsi_queue_rq,
1828         .complete       = scsi_softirq_done,
1829         .timeout        = scsi_timeout,
1830 #ifdef CONFIG_BLK_DEBUG_FS
1831         .show_rq        = scsi_show_rq,
1832 #endif
1833         .init_request   = scsi_mq_init_request,
1834         .exit_request   = scsi_mq_exit_request,
1835         .initialize_rq_fn = scsi_initialize_rq,
1836         .cleanup_rq     = scsi_cleanup_rq,
1837         .busy           = scsi_mq_lld_busy,
1838         .map_queues     = scsi_map_queues,
1839 };
1840
1841 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1842 {
1843         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1844         if (IS_ERR(sdev->request_queue))
1845                 return NULL;
1846
1847         sdev->request_queue->queuedata = sdev;
1848         __scsi_init_queue(sdev->host, sdev->request_queue);
1849         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1850         return sdev->request_queue;
1851 }
1852
1853 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1854 {
1855         unsigned int cmd_size, sgl_size;
1856
1857         sgl_size = scsi_mq_inline_sgl_size(shost);
1858         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1859         if (scsi_host_get_prot(shost))
1860                 cmd_size += sizeof(struct scsi_data_buffer) +
1861                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1862
1863         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1864         shost->tag_set.ops = &scsi_mq_ops;
1865         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1866         shost->tag_set.queue_depth = shost->can_queue;
1867         shost->tag_set.cmd_size = cmd_size;
1868         shost->tag_set.numa_node = NUMA_NO_NODE;
1869         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1870         shost->tag_set.flags |=
1871                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1872         shost->tag_set.driver_data = shost;
1873
1874         return blk_mq_alloc_tag_set(&shost->tag_set);
1875 }
1876
1877 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1878 {
1879         blk_mq_free_tag_set(&shost->tag_set);
1880 }
1881
1882 /**
1883  * scsi_device_from_queue - return sdev associated with a request_queue
1884  * @q: The request queue to return the sdev from
1885  *
1886  * Return the sdev associated with a request queue or NULL if the
1887  * request_queue does not reference a SCSI device.
1888  */
1889 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1890 {
1891         struct scsi_device *sdev = NULL;
1892
1893         if (q->mq_ops == &scsi_mq_ops)
1894                 sdev = q->queuedata;
1895         if (!sdev || !get_device(&sdev->sdev_gendev))
1896                 sdev = NULL;
1897
1898         return sdev;
1899 }
1900 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1901
1902 /*
1903  * Function:    scsi_block_requests()
1904  *
1905  * Purpose:     Utility function used by low-level drivers to prevent further
1906  *              commands from being queued to the device.
1907  *
1908  * Arguments:   shost       - Host in question
1909  *
1910  * Returns:     Nothing
1911  *
1912  * Lock status: No locks are assumed held.
1913  *
1914  * Notes:       There is no timer nor any other means by which the requests
1915  *              get unblocked other than the low-level driver calling
1916  *              scsi_unblock_requests().
1917  */
1918 void scsi_block_requests(struct Scsi_Host *shost)
1919 {
1920         shost->host_self_blocked = 1;
1921 }
1922 EXPORT_SYMBOL(scsi_block_requests);
1923
1924 /*
1925  * Function:    scsi_unblock_requests()
1926  *
1927  * Purpose:     Utility function used by low-level drivers to allow further
1928  *              commands from being queued to the device.
1929  *
1930  * Arguments:   shost       - Host in question
1931  *
1932  * Returns:     Nothing
1933  *
1934  * Lock status: No locks are assumed held.
1935  *
1936  * Notes:       There is no timer nor any other means by which the requests
1937  *              get unblocked other than the low-level driver calling
1938  *              scsi_unblock_requests().
1939  *
1940  *              This is done as an API function so that changes to the
1941  *              internals of the scsi mid-layer won't require wholesale
1942  *              changes to drivers that use this feature.
1943  */
1944 void scsi_unblock_requests(struct Scsi_Host *shost)
1945 {
1946         shost->host_self_blocked = 0;
1947         scsi_run_host_queues(shost);
1948 }
1949 EXPORT_SYMBOL(scsi_unblock_requests);
1950
1951 int __init scsi_init_queue(void)
1952 {
1953         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1954                                            sizeof(struct scsi_data_buffer),
1955                                            0, 0, NULL);
1956         if (!scsi_sdb_cache) {
1957                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1958                 return -ENOMEM;
1959         }
1960
1961         return 0;
1962 }
1963
1964 void scsi_exit_queue(void)
1965 {
1966         kmem_cache_destroy(scsi_sense_cache);
1967         kmem_cache_destroy(scsi_sense_isadma_cache);
1968         kmem_cache_destroy(scsi_sdb_cache);
1969 }
1970
1971 /**
1972  *      scsi_mode_select - issue a mode select
1973  *      @sdev:  SCSI device to be queried
1974  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1975  *      @sp:    Save page bit (0 == don't save, 1 == save)
1976  *      @modepage: mode page being requested
1977  *      @buffer: request buffer (may not be smaller than eight bytes)
1978  *      @len:   length of request buffer.
1979  *      @timeout: command timeout
1980  *      @retries: number of retries before failing
1981  *      @data: returns a structure abstracting the mode header data
1982  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1983  *              must be SCSI_SENSE_BUFFERSIZE big.
1984  *
1985  *      Returns zero if successful; negative error number or scsi
1986  *      status on error
1987  *
1988  */
1989 int
1990 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1991                  unsigned char *buffer, int len, int timeout, int retries,
1992                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1993 {
1994         unsigned char cmd[10];
1995         unsigned char *real_buffer;
1996         int ret;
1997
1998         memset(cmd, 0, sizeof(cmd));
1999         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2000
2001         if (sdev->use_10_for_ms) {
2002                 if (len > 65535)
2003                         return -EINVAL;
2004                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2005                 if (!real_buffer)
2006                         return -ENOMEM;
2007                 memcpy(real_buffer + 8, buffer, len);
2008                 len += 8;
2009                 real_buffer[0] = 0;
2010                 real_buffer[1] = 0;
2011                 real_buffer[2] = data->medium_type;
2012                 real_buffer[3] = data->device_specific;
2013                 real_buffer[4] = data->longlba ? 0x01 : 0;
2014                 real_buffer[5] = 0;
2015                 real_buffer[6] = data->block_descriptor_length >> 8;
2016                 real_buffer[7] = data->block_descriptor_length;
2017
2018                 cmd[0] = MODE_SELECT_10;
2019                 cmd[7] = len >> 8;
2020                 cmd[8] = len;
2021         } else {
2022                 if (len > 255 || data->block_descriptor_length > 255 ||
2023                     data->longlba)
2024                         return -EINVAL;
2025
2026                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2027                 if (!real_buffer)
2028                         return -ENOMEM;
2029                 memcpy(real_buffer + 4, buffer, len);
2030                 len += 4;
2031                 real_buffer[0] = 0;
2032                 real_buffer[1] = data->medium_type;
2033                 real_buffer[2] = data->device_specific;
2034                 real_buffer[3] = data->block_descriptor_length;
2035                 
2036
2037                 cmd[0] = MODE_SELECT;
2038                 cmd[4] = len;
2039         }
2040
2041         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2042                                sshdr, timeout, retries, NULL);
2043         kfree(real_buffer);
2044         return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(scsi_mode_select);
2047
2048 /**
2049  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2050  *      @sdev:  SCSI device to be queried
2051  *      @dbd:   set if mode sense will allow block descriptors to be returned
2052  *      @modepage: mode page being requested
2053  *      @buffer: request buffer (may not be smaller than eight bytes)
2054  *      @len:   length of request buffer.
2055  *      @timeout: command timeout
2056  *      @retries: number of retries before failing
2057  *      @data: returns a structure abstracting the mode header data
2058  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2059  *              must be SCSI_SENSE_BUFFERSIZE big.
2060  *
2061  *      Returns zero if unsuccessful, or the header offset (either 4
2062  *      or 8 depending on whether a six or ten byte command was
2063  *      issued) if successful.
2064  */
2065 int
2066 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2067                   unsigned char *buffer, int len, int timeout, int retries,
2068                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2069 {
2070         unsigned char cmd[12];
2071         int use_10_for_ms;
2072         int header_length;
2073         int result, retry_count = retries;
2074         struct scsi_sense_hdr my_sshdr;
2075
2076         memset(data, 0, sizeof(*data));
2077         memset(&cmd[0], 0, 12);
2078         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2079         cmd[2] = modepage;
2080
2081         /* caller might not be interested in sense, but we need it */
2082         if (!sshdr)
2083                 sshdr = &my_sshdr;
2084
2085  retry:
2086         use_10_for_ms = sdev->use_10_for_ms;
2087
2088         if (use_10_for_ms) {
2089                 if (len < 8)
2090                         len = 8;
2091
2092                 cmd[0] = MODE_SENSE_10;
2093                 cmd[8] = len;
2094                 header_length = 8;
2095         } else {
2096                 if (len < 4)
2097                         len = 4;
2098
2099                 cmd[0] = MODE_SENSE;
2100                 cmd[4] = len;
2101                 header_length = 4;
2102         }
2103
2104         memset(buffer, 0, len);
2105
2106         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2107                                   sshdr, timeout, retries, NULL);
2108
2109         /* This code looks awful: what it's doing is making sure an
2110          * ILLEGAL REQUEST sense return identifies the actual command
2111          * byte as the problem.  MODE_SENSE commands can return
2112          * ILLEGAL REQUEST if the code page isn't supported */
2113
2114         if (use_10_for_ms && !scsi_status_is_good(result) &&
2115             driver_byte(result) == DRIVER_SENSE) {
2116                 if (scsi_sense_valid(sshdr)) {
2117                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2118                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2119                                 /* 
2120                                  * Invalid command operation code
2121                                  */
2122                                 sdev->use_10_for_ms = 0;
2123                                 goto retry;
2124                         }
2125                 }
2126         }
2127
2128         if(scsi_status_is_good(result)) {
2129                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2130                              (modepage == 6 || modepage == 8))) {
2131                         /* Initio breakage? */
2132                         header_length = 0;
2133                         data->length = 13;
2134                         data->medium_type = 0;
2135                         data->device_specific = 0;
2136                         data->longlba = 0;
2137                         data->block_descriptor_length = 0;
2138                 } else if(use_10_for_ms) {
2139                         data->length = buffer[0]*256 + buffer[1] + 2;
2140                         data->medium_type = buffer[2];
2141                         data->device_specific = buffer[3];
2142                         data->longlba = buffer[4] & 0x01;
2143                         data->block_descriptor_length = buffer[6]*256
2144                                 + buffer[7];
2145                 } else {
2146                         data->length = buffer[0] + 1;
2147                         data->medium_type = buffer[1];
2148                         data->device_specific = buffer[2];
2149                         data->block_descriptor_length = buffer[3];
2150                 }
2151                 data->header_length = header_length;
2152         } else if ((status_byte(result) == CHECK_CONDITION) &&
2153                    scsi_sense_valid(sshdr) &&
2154                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2155                 retry_count--;
2156                 goto retry;
2157         }
2158
2159         return result;
2160 }
2161 EXPORT_SYMBOL(scsi_mode_sense);
2162
2163 /**
2164  *      scsi_test_unit_ready - test if unit is ready
2165  *      @sdev:  scsi device to change the state of.
2166  *      @timeout: command timeout
2167  *      @retries: number of retries before failing
2168  *      @sshdr: outpout pointer for decoded sense information.
2169  *
2170  *      Returns zero if unsuccessful or an error if TUR failed.  For
2171  *      removable media, UNIT_ATTENTION sets ->changed flag.
2172  **/
2173 int
2174 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2175                      struct scsi_sense_hdr *sshdr)
2176 {
2177         char cmd[] = {
2178                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2179         };
2180         int result;
2181
2182         /* try to eat the UNIT_ATTENTION if there are enough retries */
2183         do {
2184                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2185                                           timeout, 1, NULL);
2186                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2187                     sshdr->sense_key == UNIT_ATTENTION)
2188                         sdev->changed = 1;
2189         } while (scsi_sense_valid(sshdr) &&
2190                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2191
2192         return result;
2193 }
2194 EXPORT_SYMBOL(scsi_test_unit_ready);
2195
2196 /**
2197  *      scsi_device_set_state - Take the given device through the device state model.
2198  *      @sdev:  scsi device to change the state of.
2199  *      @state: state to change to.
2200  *
2201  *      Returns zero if successful or an error if the requested
2202  *      transition is illegal.
2203  */
2204 int
2205 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2206 {
2207         enum scsi_device_state oldstate = sdev->sdev_state;
2208
2209         if (state == oldstate)
2210                 return 0;
2211
2212         switch (state) {
2213         case SDEV_CREATED:
2214                 switch (oldstate) {
2215                 case SDEV_CREATED_BLOCK:
2216                         break;
2217                 default:
2218                         goto illegal;
2219                 }
2220                 break;
2221                         
2222         case SDEV_RUNNING:
2223                 switch (oldstate) {
2224                 case SDEV_CREATED:
2225                 case SDEV_OFFLINE:
2226                 case SDEV_TRANSPORT_OFFLINE:
2227                 case SDEV_QUIESCE:
2228                 case SDEV_BLOCK:
2229                         break;
2230                 default:
2231                         goto illegal;
2232                 }
2233                 break;
2234
2235         case SDEV_QUIESCE:
2236                 switch (oldstate) {
2237                 case SDEV_RUNNING:
2238                 case SDEV_OFFLINE:
2239                 case SDEV_TRANSPORT_OFFLINE:
2240                         break;
2241                 default:
2242                         goto illegal;
2243                 }
2244                 break;
2245
2246         case SDEV_OFFLINE:
2247         case SDEV_TRANSPORT_OFFLINE:
2248                 switch (oldstate) {
2249                 case SDEV_CREATED:
2250                 case SDEV_RUNNING:
2251                 case SDEV_QUIESCE:
2252                 case SDEV_BLOCK:
2253                         break;
2254                 default:
2255                         goto illegal;
2256                 }
2257                 break;
2258
2259         case SDEV_BLOCK:
2260                 switch (oldstate) {
2261                 case SDEV_RUNNING:
2262                 case SDEV_CREATED_BLOCK:
2263                 case SDEV_OFFLINE:
2264                         break;
2265                 default:
2266                         goto illegal;
2267                 }
2268                 break;
2269
2270         case SDEV_CREATED_BLOCK:
2271                 switch (oldstate) {
2272                 case SDEV_CREATED:
2273                         break;
2274                 default:
2275                         goto illegal;
2276                 }
2277                 break;
2278
2279         case SDEV_CANCEL:
2280                 switch (oldstate) {
2281                 case SDEV_CREATED:
2282                 case SDEV_RUNNING:
2283                 case SDEV_QUIESCE:
2284                 case SDEV_OFFLINE:
2285                 case SDEV_TRANSPORT_OFFLINE:
2286                         break;
2287                 default:
2288                         goto illegal;
2289                 }
2290                 break;
2291
2292         case SDEV_DEL:
2293                 switch (oldstate) {
2294                 case SDEV_CREATED:
2295                 case SDEV_RUNNING:
2296                 case SDEV_OFFLINE:
2297                 case SDEV_TRANSPORT_OFFLINE:
2298                 case SDEV_CANCEL:
2299                 case SDEV_BLOCK:
2300                 case SDEV_CREATED_BLOCK:
2301                         break;
2302                 default:
2303                         goto illegal;
2304                 }
2305                 break;
2306
2307         }
2308         sdev->sdev_state = state;
2309         return 0;
2310
2311  illegal:
2312         SCSI_LOG_ERROR_RECOVERY(1,
2313                                 sdev_printk(KERN_ERR, sdev,
2314                                             "Illegal state transition %s->%s",
2315                                             scsi_device_state_name(oldstate),
2316                                             scsi_device_state_name(state))
2317                                 );
2318         return -EINVAL;
2319 }
2320 EXPORT_SYMBOL(scsi_device_set_state);
2321
2322 /**
2323  *      sdev_evt_emit - emit a single SCSI device uevent
2324  *      @sdev: associated SCSI device
2325  *      @evt: event to emit
2326  *
2327  *      Send a single uevent (scsi_event) to the associated scsi_device.
2328  */
2329 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2330 {
2331         int idx = 0;
2332         char *envp[3];
2333
2334         switch (evt->evt_type) {
2335         case SDEV_EVT_MEDIA_CHANGE:
2336                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2337                 break;
2338         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2339                 scsi_rescan_device(&sdev->sdev_gendev);
2340                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2341                 break;
2342         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2343                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2344                 break;
2345         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2346                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2347                 break;
2348         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2349                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2350                 break;
2351         case SDEV_EVT_LUN_CHANGE_REPORTED:
2352                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2353                 break;
2354         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2355                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2356                 break;
2357         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2358                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2359                 break;
2360         default:
2361                 /* do nothing */
2362                 break;
2363         }
2364
2365         envp[idx++] = NULL;
2366
2367         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2368 }
2369
2370 /**
2371  *      sdev_evt_thread - send a uevent for each scsi event
2372  *      @work: work struct for scsi_device
2373  *
2374  *      Dispatch queued events to their associated scsi_device kobjects
2375  *      as uevents.
2376  */
2377 void scsi_evt_thread(struct work_struct *work)
2378 {
2379         struct scsi_device *sdev;
2380         enum scsi_device_event evt_type;
2381         LIST_HEAD(event_list);
2382
2383         sdev = container_of(work, struct scsi_device, event_work);
2384
2385         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2386                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2387                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2388
2389         while (1) {
2390                 struct scsi_event *evt;
2391                 struct list_head *this, *tmp;
2392                 unsigned long flags;
2393
2394                 spin_lock_irqsave(&sdev->list_lock, flags);
2395                 list_splice_init(&sdev->event_list, &event_list);
2396                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2397
2398                 if (list_empty(&event_list))
2399                         break;
2400
2401                 list_for_each_safe(this, tmp, &event_list) {
2402                         evt = list_entry(this, struct scsi_event, node);
2403                         list_del(&evt->node);
2404                         scsi_evt_emit(sdev, evt);
2405                         kfree(evt);
2406                 }
2407         }
2408 }
2409
2410 /**
2411  *      sdev_evt_send - send asserted event to uevent thread
2412  *      @sdev: scsi_device event occurred on
2413  *      @evt: event to send
2414  *
2415  *      Assert scsi device event asynchronously.
2416  */
2417 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2418 {
2419         unsigned long flags;
2420
2421 #if 0
2422         /* FIXME: currently this check eliminates all media change events
2423          * for polled devices.  Need to update to discriminate between AN
2424          * and polled events */
2425         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2426                 kfree(evt);
2427                 return;
2428         }
2429 #endif
2430
2431         spin_lock_irqsave(&sdev->list_lock, flags);
2432         list_add_tail(&evt->node, &sdev->event_list);
2433         schedule_work(&sdev->event_work);
2434         spin_unlock_irqrestore(&sdev->list_lock, flags);
2435 }
2436 EXPORT_SYMBOL_GPL(sdev_evt_send);
2437
2438 /**
2439  *      sdev_evt_alloc - allocate a new scsi event
2440  *      @evt_type: type of event to allocate
2441  *      @gfpflags: GFP flags for allocation
2442  *
2443  *      Allocates and returns a new scsi_event.
2444  */
2445 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2446                                   gfp_t gfpflags)
2447 {
2448         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2449         if (!evt)
2450                 return NULL;
2451
2452         evt->evt_type = evt_type;
2453         INIT_LIST_HEAD(&evt->node);
2454
2455         /* evt_type-specific initialization, if any */
2456         switch (evt_type) {
2457         case SDEV_EVT_MEDIA_CHANGE:
2458         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2459         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2460         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2461         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2462         case SDEV_EVT_LUN_CHANGE_REPORTED:
2463         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2464         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2465         default:
2466                 /* do nothing */
2467                 break;
2468         }
2469
2470         return evt;
2471 }
2472 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2473
2474 /**
2475  *      sdev_evt_send_simple - send asserted event to uevent thread
2476  *      @sdev: scsi_device event occurred on
2477  *      @evt_type: type of event to send
2478  *      @gfpflags: GFP flags for allocation
2479  *
2480  *      Assert scsi device event asynchronously, given an event type.
2481  */
2482 void sdev_evt_send_simple(struct scsi_device *sdev,
2483                           enum scsi_device_event evt_type, gfp_t gfpflags)
2484 {
2485         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2486         if (!evt) {
2487                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2488                             evt_type);
2489                 return;
2490         }
2491
2492         sdev_evt_send(sdev, evt);
2493 }
2494 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2495
2496 /**
2497  *      scsi_device_quiesce - Block user issued commands.
2498  *      @sdev:  scsi device to quiesce.
2499  *
2500  *      This works by trying to transition to the SDEV_QUIESCE state
2501  *      (which must be a legal transition).  When the device is in this
2502  *      state, only special requests will be accepted, all others will
2503  *      be deferred.  Since special requests may also be requeued requests,
2504  *      a successful return doesn't guarantee the device will be 
2505  *      totally quiescent.
2506  *
2507  *      Must be called with user context, may sleep.
2508  *
2509  *      Returns zero if unsuccessful or an error if not.
2510  */
2511 int
2512 scsi_device_quiesce(struct scsi_device *sdev)
2513 {
2514         struct request_queue *q = sdev->request_queue;
2515         int err;
2516
2517         /*
2518          * It is allowed to call scsi_device_quiesce() multiple times from
2519          * the same context but concurrent scsi_device_quiesce() calls are
2520          * not allowed.
2521          */
2522         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2523
2524         if (sdev->quiesced_by == current)
2525                 return 0;
2526
2527         blk_set_pm_only(q);
2528
2529         blk_mq_freeze_queue(q);
2530         /*
2531          * Ensure that the effect of blk_set_pm_only() will be visible
2532          * for percpu_ref_tryget() callers that occur after the queue
2533          * unfreeze even if the queue was already frozen before this function
2534          * was called. See also https://lwn.net/Articles/573497/.
2535          */
2536         synchronize_rcu();
2537         blk_mq_unfreeze_queue(q);
2538
2539         mutex_lock(&sdev->state_mutex);
2540         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2541         if (err == 0)
2542                 sdev->quiesced_by = current;
2543         else
2544                 blk_clear_pm_only(q);
2545         mutex_unlock(&sdev->state_mutex);
2546
2547         return err;
2548 }
2549 EXPORT_SYMBOL(scsi_device_quiesce);
2550
2551 /**
2552  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2553  *      @sdev:  scsi device to resume.
2554  *
2555  *      Moves the device from quiesced back to running and restarts the
2556  *      queues.
2557  *
2558  *      Must be called with user context, may sleep.
2559  */
2560 void scsi_device_resume(struct scsi_device *sdev)
2561 {
2562         /* check if the device state was mutated prior to resume, and if
2563          * so assume the state is being managed elsewhere (for example
2564          * device deleted during suspend)
2565          */
2566         mutex_lock(&sdev->state_mutex);
2567         if (sdev->quiesced_by) {
2568                 sdev->quiesced_by = NULL;
2569                 blk_clear_pm_only(sdev->request_queue);
2570         }
2571         if (sdev->sdev_state == SDEV_QUIESCE)
2572                 scsi_device_set_state(sdev, SDEV_RUNNING);
2573         mutex_unlock(&sdev->state_mutex);
2574 }
2575 EXPORT_SYMBOL(scsi_device_resume);
2576
2577 static void
2578 device_quiesce_fn(struct scsi_device *sdev, void *data)
2579 {
2580         scsi_device_quiesce(sdev);
2581 }
2582
2583 void
2584 scsi_target_quiesce(struct scsi_target *starget)
2585 {
2586         starget_for_each_device(starget, NULL, device_quiesce_fn);
2587 }
2588 EXPORT_SYMBOL(scsi_target_quiesce);
2589
2590 static void
2591 device_resume_fn(struct scsi_device *sdev, void *data)
2592 {
2593         scsi_device_resume(sdev);
2594 }
2595
2596 void
2597 scsi_target_resume(struct scsi_target *starget)
2598 {
2599         starget_for_each_device(starget, NULL, device_resume_fn);
2600 }
2601 EXPORT_SYMBOL(scsi_target_resume);
2602
2603 /**
2604  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2605  * @sdev: device to block
2606  *
2607  * Pause SCSI command processing on the specified device. Does not sleep.
2608  *
2609  * Returns zero if successful or a negative error code upon failure.
2610  *
2611  * Notes:
2612  * This routine transitions the device to the SDEV_BLOCK state (which must be
2613  * a legal transition). When the device is in this state, command processing
2614  * is paused until the device leaves the SDEV_BLOCK state. See also
2615  * scsi_internal_device_unblock_nowait().
2616  */
2617 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2618 {
2619         struct request_queue *q = sdev->request_queue;
2620         int err = 0;
2621
2622         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2623         if (err) {
2624                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2625
2626                 if (err)
2627                         return err;
2628         }
2629
2630         /* 
2631          * The device has transitioned to SDEV_BLOCK.  Stop the
2632          * block layer from calling the midlayer with this device's
2633          * request queue. 
2634          */
2635         blk_mq_quiesce_queue_nowait(q);
2636         return 0;
2637 }
2638 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2639
2640 /**
2641  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2642  * @sdev: device to block
2643  *
2644  * Pause SCSI command processing on the specified device and wait until all
2645  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2646  *
2647  * Returns zero if successful or a negative error code upon failure.
2648  *
2649  * Note:
2650  * This routine transitions the device to the SDEV_BLOCK state (which must be
2651  * a legal transition). When the device is in this state, command processing
2652  * is paused until the device leaves the SDEV_BLOCK state. See also
2653  * scsi_internal_device_unblock().
2654  */
2655 static int scsi_internal_device_block(struct scsi_device *sdev)
2656 {
2657         struct request_queue *q = sdev->request_queue;
2658         int err;
2659
2660         mutex_lock(&sdev->state_mutex);
2661         err = scsi_internal_device_block_nowait(sdev);
2662         if (err == 0)
2663                 blk_mq_quiesce_queue(q);
2664         mutex_unlock(&sdev->state_mutex);
2665
2666         return err;
2667 }
2668  
2669 void scsi_start_queue(struct scsi_device *sdev)
2670 {
2671         struct request_queue *q = sdev->request_queue;
2672
2673         blk_mq_unquiesce_queue(q);
2674 }
2675
2676 /**
2677  * scsi_internal_device_unblock_nowait - resume a device after a block request
2678  * @sdev:       device to resume
2679  * @new_state:  state to set the device to after unblocking
2680  *
2681  * Restart the device queue for a previously suspended SCSI device. Does not
2682  * sleep.
2683  *
2684  * Returns zero if successful or a negative error code upon failure.
2685  *
2686  * Notes:
2687  * This routine transitions the device to the SDEV_RUNNING state or to one of
2688  * the offline states (which must be a legal transition) allowing the midlayer
2689  * to goose the queue for this device.
2690  */
2691 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2692                                         enum scsi_device_state new_state)
2693 {
2694         /*
2695          * Try to transition the scsi device to SDEV_RUNNING or one of the
2696          * offlined states and goose the device queue if successful.
2697          */
2698         switch (sdev->sdev_state) {
2699         case SDEV_BLOCK:
2700         case SDEV_TRANSPORT_OFFLINE:
2701                 sdev->sdev_state = new_state;
2702                 break;
2703         case SDEV_CREATED_BLOCK:
2704                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2705                     new_state == SDEV_OFFLINE)
2706                         sdev->sdev_state = new_state;
2707                 else
2708                         sdev->sdev_state = SDEV_CREATED;
2709                 break;
2710         case SDEV_CANCEL:
2711         case SDEV_OFFLINE:
2712                 break;
2713         default:
2714                 return -EINVAL;
2715         }
2716         scsi_start_queue(sdev);
2717
2718         return 0;
2719 }
2720 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2721
2722 /**
2723  * scsi_internal_device_unblock - resume a device after a block request
2724  * @sdev:       device to resume
2725  * @new_state:  state to set the device to after unblocking
2726  *
2727  * Restart the device queue for a previously suspended SCSI device. May sleep.
2728  *
2729  * Returns zero if successful or a negative error code upon failure.
2730  *
2731  * Notes:
2732  * This routine transitions the device to the SDEV_RUNNING state or to one of
2733  * the offline states (which must be a legal transition) allowing the midlayer
2734  * to goose the queue for this device.
2735  */
2736 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2737                                         enum scsi_device_state new_state)
2738 {
2739         int ret;
2740
2741         mutex_lock(&sdev->state_mutex);
2742         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2743         mutex_unlock(&sdev->state_mutex);
2744
2745         return ret;
2746 }
2747
2748 static void
2749 device_block(struct scsi_device *sdev, void *data)
2750 {
2751         scsi_internal_device_block(sdev);
2752 }
2753
2754 static int
2755 target_block(struct device *dev, void *data)
2756 {
2757         if (scsi_is_target_device(dev))
2758                 starget_for_each_device(to_scsi_target(dev), NULL,
2759                                         device_block);
2760         return 0;
2761 }
2762
2763 void
2764 scsi_target_block(struct device *dev)
2765 {
2766         if (scsi_is_target_device(dev))
2767                 starget_for_each_device(to_scsi_target(dev), NULL,
2768                                         device_block);
2769         else
2770                 device_for_each_child(dev, NULL, target_block);
2771 }
2772 EXPORT_SYMBOL_GPL(scsi_target_block);
2773
2774 static void
2775 device_unblock(struct scsi_device *sdev, void *data)
2776 {
2777         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2778 }
2779
2780 static int
2781 target_unblock(struct device *dev, void *data)
2782 {
2783         if (scsi_is_target_device(dev))
2784                 starget_for_each_device(to_scsi_target(dev), data,
2785                                         device_unblock);
2786         return 0;
2787 }
2788
2789 void
2790 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2791 {
2792         if (scsi_is_target_device(dev))
2793                 starget_for_each_device(to_scsi_target(dev), &new_state,
2794                                         device_unblock);
2795         else
2796                 device_for_each_child(dev, &new_state, target_unblock);
2797 }
2798 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2799
2800 /**
2801  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2802  * @sgl:        scatter-gather list
2803  * @sg_count:   number of segments in sg
2804  * @offset:     offset in bytes into sg, on return offset into the mapped area
2805  * @len:        bytes to map, on return number of bytes mapped
2806  *
2807  * Returns virtual address of the start of the mapped page
2808  */
2809 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2810                           size_t *offset, size_t *len)
2811 {
2812         int i;
2813         size_t sg_len = 0, len_complete = 0;
2814         struct scatterlist *sg;
2815         struct page *page;
2816
2817         WARN_ON(!irqs_disabled());
2818
2819         for_each_sg(sgl, sg, sg_count, i) {
2820                 len_complete = sg_len; /* Complete sg-entries */
2821                 sg_len += sg->length;
2822                 if (sg_len > *offset)
2823                         break;
2824         }
2825
2826         if (unlikely(i == sg_count)) {
2827                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2828                         "elements %d\n",
2829                        __func__, sg_len, *offset, sg_count);
2830                 WARN_ON(1);
2831                 return NULL;
2832         }
2833
2834         /* Offset starting from the beginning of first page in this sg-entry */
2835         *offset = *offset - len_complete + sg->offset;
2836
2837         /* Assumption: contiguous pages can be accessed as "page + i" */
2838         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2839         *offset &= ~PAGE_MASK;
2840
2841         /* Bytes in this sg-entry from *offset to the end of the page */
2842         sg_len = PAGE_SIZE - *offset;
2843         if (*len > sg_len)
2844                 *len = sg_len;
2845
2846         return kmap_atomic(page);
2847 }
2848 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2849
2850 /**
2851  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2852  * @virt:       virtual address to be unmapped
2853  */
2854 void scsi_kunmap_atomic_sg(void *virt)
2855 {
2856         kunmap_atomic(virt);
2857 }
2858 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2859
2860 void sdev_disable_disk_events(struct scsi_device *sdev)
2861 {
2862         atomic_inc(&sdev->disk_events_disable_depth);
2863 }
2864 EXPORT_SYMBOL(sdev_disable_disk_events);
2865
2866 void sdev_enable_disk_events(struct scsi_device *sdev)
2867 {
2868         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2869                 return;
2870         atomic_dec(&sdev->disk_events_disable_depth);
2871 }
2872 EXPORT_SYMBOL(sdev_enable_disk_events);
2873
2874 /**
2875  * scsi_vpd_lun_id - return a unique device identification
2876  * @sdev: SCSI device
2877  * @id:   buffer for the identification
2878  * @id_len:  length of the buffer
2879  *
2880  * Copies a unique device identification into @id based
2881  * on the information in the VPD page 0x83 of the device.
2882  * The string will be formatted as a SCSI name string.
2883  *
2884  * Returns the length of the identification or error on failure.
2885  * If the identifier is longer than the supplied buffer the actual
2886  * identifier length is returned and the buffer is not zero-padded.
2887  */
2888 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2889 {
2890         u8 cur_id_type = 0xff;
2891         u8 cur_id_size = 0;
2892         const unsigned char *d, *cur_id_str;
2893         const struct scsi_vpd *vpd_pg83;
2894         int id_size = -EINVAL;
2895
2896         rcu_read_lock();
2897         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2898         if (!vpd_pg83) {
2899                 rcu_read_unlock();
2900                 return -ENXIO;
2901         }
2902
2903         /*
2904          * Look for the correct descriptor.
2905          * Order of preference for lun descriptor:
2906          * - SCSI name string
2907          * - NAA IEEE Registered Extended
2908          * - EUI-64 based 16-byte
2909          * - EUI-64 based 12-byte
2910          * - NAA IEEE Registered
2911          * - NAA IEEE Extended
2912          * - T10 Vendor ID
2913          * as longer descriptors reduce the likelyhood
2914          * of identification clashes.
2915          */
2916
2917         /* The id string must be at least 20 bytes + terminating NULL byte */
2918         if (id_len < 21) {
2919                 rcu_read_unlock();
2920                 return -EINVAL;
2921         }
2922
2923         memset(id, 0, id_len);
2924         d = vpd_pg83->data + 4;
2925         while (d < vpd_pg83->data + vpd_pg83->len) {
2926                 /* Skip designators not referring to the LUN */
2927                 if ((d[1] & 0x30) != 0x00)
2928                         goto next_desig;
2929
2930                 switch (d[1] & 0xf) {
2931                 case 0x1:
2932                         /* T10 Vendor ID */
2933                         if (cur_id_size > d[3])
2934                                 break;
2935                         /* Prefer anything */
2936                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
2937                                 break;
2938                         cur_id_size = d[3];
2939                         if (cur_id_size + 4 > id_len)
2940                                 cur_id_size = id_len - 4;
2941                         cur_id_str = d + 4;
2942                         cur_id_type = d[1] & 0xf;
2943                         id_size = snprintf(id, id_len, "t10.%*pE",
2944                                            cur_id_size, cur_id_str);
2945                         break;
2946                 case 0x2:
2947                         /* EUI-64 */
2948                         if (cur_id_size > d[3])
2949                                 break;
2950                         /* Prefer NAA IEEE Registered Extended */
2951                         if (cur_id_type == 0x3 &&
2952                             cur_id_size == d[3])
2953                                 break;
2954                         cur_id_size = d[3];
2955                         cur_id_str = d + 4;
2956                         cur_id_type = d[1] & 0xf;
2957                         switch (cur_id_size) {
2958                         case 8:
2959                                 id_size = snprintf(id, id_len,
2960                                                    "eui.%8phN",
2961                                                    cur_id_str);
2962                                 break;
2963                         case 12:
2964                                 id_size = snprintf(id, id_len,
2965                                                    "eui.%12phN",
2966                                                    cur_id_str);
2967                                 break;
2968                         case 16:
2969                                 id_size = snprintf(id, id_len,
2970                                                    "eui.%16phN",
2971                                                    cur_id_str);
2972                                 break;
2973                         default:
2974                                 cur_id_size = 0;
2975                                 break;
2976                         }
2977                         break;
2978                 case 0x3:
2979                         /* NAA */
2980                         if (cur_id_size > d[3])
2981                                 break;
2982                         cur_id_size = d[3];
2983                         cur_id_str = d + 4;
2984                         cur_id_type = d[1] & 0xf;
2985                         switch (cur_id_size) {
2986                         case 8:
2987                                 id_size = snprintf(id, id_len,
2988                                                    "naa.%8phN",
2989                                                    cur_id_str);
2990                                 break;
2991                         case 16:
2992                                 id_size = snprintf(id, id_len,
2993                                                    "naa.%16phN",
2994                                                    cur_id_str);
2995                                 break;
2996                         default:
2997                                 cur_id_size = 0;
2998                                 break;
2999                         }
3000                         break;
3001                 case 0x8:
3002                         /* SCSI name string */
3003                         if (cur_id_size + 4 > d[3])
3004                                 break;
3005                         /* Prefer others for truncated descriptor */
3006                         if (cur_id_size && d[3] > id_len)
3007                                 break;
3008                         cur_id_size = id_size = d[3];
3009                         cur_id_str = d + 4;
3010                         cur_id_type = d[1] & 0xf;
3011                         if (cur_id_size >= id_len)
3012                                 cur_id_size = id_len - 1;
3013                         memcpy(id, cur_id_str, cur_id_size);
3014                         /* Decrease priority for truncated descriptor */
3015                         if (cur_id_size != id_size)
3016                                 cur_id_size = 6;
3017                         break;
3018                 default:
3019                         break;
3020                 }
3021 next_desig:
3022                 d += d[3] + 4;
3023         }
3024         rcu_read_unlock();
3025
3026         return id_size;
3027 }
3028 EXPORT_SYMBOL(scsi_vpd_lun_id);
3029
3030 /*
3031  * scsi_vpd_tpg_id - return a target port group identifier
3032  * @sdev: SCSI device
3033  *
3034  * Returns the Target Port Group identifier from the information
3035  * froom VPD page 0x83 of the device.
3036  *
3037  * Returns the identifier or error on failure.
3038  */
3039 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3040 {
3041         const unsigned char *d;
3042         const struct scsi_vpd *vpd_pg83;
3043         int group_id = -EAGAIN, rel_port = -1;
3044
3045         rcu_read_lock();
3046         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3047         if (!vpd_pg83) {
3048                 rcu_read_unlock();
3049                 return -ENXIO;
3050         }
3051
3052         d = vpd_pg83->data + 4;
3053         while (d < vpd_pg83->data + vpd_pg83->len) {
3054                 switch (d[1] & 0xf) {
3055                 case 0x4:
3056                         /* Relative target port */
3057                         rel_port = get_unaligned_be16(&d[6]);
3058                         break;
3059                 case 0x5:
3060                         /* Target port group */
3061                         group_id = get_unaligned_be16(&d[6]);
3062                         break;
3063                 default:
3064                         break;
3065                 }
3066                 d += d[3] + 4;
3067         }
3068         rcu_read_unlock();
3069
3070         if (group_id >= 0 && rel_id && rel_port != -1)
3071                 *rel_id = rel_port;
3072
3073         return group_id;
3074 }
3075 EXPORT_SYMBOL(scsi_vpd_tpg_id);