]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/scsi/sd.c
scsi: sd_zbc: Improve report zones error printout
[linux.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS       16
103 #else
104 #define SD_MINORS       0
105 #endif
106
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125
126 static DEFINE_IDA(sd_index_ida);
127
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136
137 static const char *sd_cache_types[] = {
138         "write through", "none", "write back",
139         "write back, no read (daft)"
140 };
141
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144         bool wc = false, fua = false;
145
146         if (sdkp->WCE) {
147                 wc = true;
148                 if (sdkp->DPOFUA)
149                         fua = true;
150         }
151
152         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157                  const char *buf, size_t count)
158 {
159         int ct, rcd, wce, sp;
160         struct scsi_disk *sdkp = to_scsi_disk(dev);
161         struct scsi_device *sdp = sdkp->device;
162         char buffer[64];
163         char *buffer_data;
164         struct scsi_mode_data data;
165         struct scsi_sense_hdr sshdr;
166         static const char temp[] = "temporary ";
167         int len;
168
169         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170                 /* no cache control on RBC devices; theoretically they
171                  * can do it, but there's probably so many exceptions
172                  * it's not worth the risk */
173                 return -EINVAL;
174
175         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176                 buf += sizeof(temp) - 1;
177                 sdkp->cache_override = 1;
178         } else {
179                 sdkp->cache_override = 0;
180         }
181
182         ct = sysfs_match_string(sd_cache_types, buf);
183         if (ct < 0)
184                 return -EINVAL;
185
186         rcd = ct & 0x01 ? 1 : 0;
187         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189         if (sdkp->cache_override) {
190                 sdkp->WCE = wce;
191                 sdkp->RCD = rcd;
192                 sd_set_flush_flag(sdkp);
193                 return count;
194         }
195
196         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197                             SD_MAX_RETRIES, &data, NULL))
198                 return -EINVAL;
199         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200                   data.block_descriptor_length);
201         buffer_data = buffer + data.header_length +
202                 data.block_descriptor_length;
203         buffer_data[2] &= ~0x05;
204         buffer_data[2] |= wce << 2 | rcd;
205         sp = buffer_data[0] & 0x80 ? 1 : 0;
206         buffer_data[0] &= ~0x80;
207
208         /*
209          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210          * received mode parameter buffer before doing MODE SELECT.
211          */
212         data.device_specific = 0;
213
214         if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215                              SD_MAX_RETRIES, &data, &sshdr)) {
216                 if (scsi_sense_valid(&sshdr))
217                         sd_print_sense_hdr(sdkp, &sshdr);
218                 return -EINVAL;
219         }
220         revalidate_disk(sdkp->disk);
221         return count;
222 }
223
224 static ssize_t
225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226                        char *buf)
227 {
228         struct scsi_disk *sdkp = to_scsi_disk(dev);
229         struct scsi_device *sdp = sdkp->device;
230
231         return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233
234 static ssize_t
235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236                         const char *buf, size_t count)
237 {
238         struct scsi_disk *sdkp = to_scsi_disk(dev);
239         struct scsi_device *sdp = sdkp->device;
240         bool v;
241
242         if (!capable(CAP_SYS_ADMIN))
243                 return -EACCES;
244
245         if (kstrtobool(buf, &v))
246                 return -EINVAL;
247
248         sdp->manage_start_stop = v;
249
250         return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253
254 static ssize_t
255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257         struct scsi_disk *sdkp = to_scsi_disk(dev);
258
259         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261
262 static ssize_t
263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264                     const char *buf, size_t count)
265 {
266         bool v;
267         struct scsi_disk *sdkp = to_scsi_disk(dev);
268         struct scsi_device *sdp = sdkp->device;
269
270         if (!capable(CAP_SYS_ADMIN))
271                 return -EACCES;
272
273         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274                 return -EINVAL;
275
276         if (kstrtobool(buf, &v))
277                 return -EINVAL;
278
279         sdp->allow_restart = v;
280
281         return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284
285 static ssize_t
286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288         struct scsi_disk *sdkp = to_scsi_disk(dev);
289         int ct = sdkp->RCD + 2*sdkp->WCE;
290
291         return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294
295 static ssize_t
296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298         struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300         return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303
304 static ssize_t
305 protection_type_show(struct device *dev, struct device_attribute *attr,
306                      char *buf)
307 {
308         struct scsi_disk *sdkp = to_scsi_disk(dev);
309
310         return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312
313 static ssize_t
314 protection_type_store(struct device *dev, struct device_attribute *attr,
315                       const char *buf, size_t count)
316 {
317         struct scsi_disk *sdkp = to_scsi_disk(dev);
318         unsigned int val;
319         int err;
320
321         if (!capable(CAP_SYS_ADMIN))
322                 return -EACCES;
323
324         err = kstrtouint(buf, 10, &val);
325
326         if (err)
327                 return err;
328
329         if (val <= T10_PI_TYPE3_PROTECTION)
330                 sdkp->protection_type = val;
331
332         return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335
336 static ssize_t
337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338                      char *buf)
339 {
340         struct scsi_disk *sdkp = to_scsi_disk(dev);
341         struct scsi_device *sdp = sdkp->device;
342         unsigned int dif, dix;
343
344         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346
347         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348                 dif = 0;
349                 dix = 1;
350         }
351
352         if (!dif && !dix)
353                 return sprintf(buf, "none\n");
354
355         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358
359 static ssize_t
360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362         struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364         return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367
368 static ssize_t
369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370                        char *buf)
371 {
372         struct scsi_disk *sdkp = to_scsi_disk(dev);
373
374         return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380         [SD_LBP_FULL]           = "full",
381         [SD_LBP_UNMAP]          = "unmap",
382         [SD_LBP_WS16]           = "writesame_16",
383         [SD_LBP_WS10]           = "writesame_10",
384         [SD_LBP_ZERO]           = "writesame_zero",
385         [SD_LBP_DISABLE]        = "disabled",
386 };
387
388 static ssize_t
389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390                        char *buf)
391 {
392         struct scsi_disk *sdkp = to_scsi_disk(dev);
393
394         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396
397 static ssize_t
398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399                         const char *buf, size_t count)
400 {
401         struct scsi_disk *sdkp = to_scsi_disk(dev);
402         struct scsi_device *sdp = sdkp->device;
403         int mode;
404
405         if (!capable(CAP_SYS_ADMIN))
406                 return -EACCES;
407
408         if (sd_is_zoned(sdkp)) {
409                 sd_config_discard(sdkp, SD_LBP_DISABLE);
410                 return count;
411         }
412
413         if (sdp->type != TYPE_DISK)
414                 return -EINVAL;
415
416         mode = sysfs_match_string(lbp_mode, buf);
417         if (mode < 0)
418                 return -EINVAL;
419
420         sd_config_discard(sdkp, mode);
421
422         return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428         [SD_ZERO_WRITE]         = "write",
429         [SD_ZERO_WS]            = "writesame",
430         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
431         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
432 };
433
434 static ssize_t
435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436                   char *buf)
437 {
438         struct scsi_disk *sdkp = to_scsi_disk(dev);
439
440         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442
443 static ssize_t
444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445                    const char *buf, size_t count)
446 {
447         struct scsi_disk *sdkp = to_scsi_disk(dev);
448         int mode;
449
450         if (!capable(CAP_SYS_ADMIN))
451                 return -EACCES;
452
453         mode = sysfs_match_string(zeroing_mode, buf);
454         if (mode < 0)
455                 return -EINVAL;
456
457         sdkp->zeroing_mode = mode;
458
459         return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462
463 static ssize_t
464 max_medium_access_timeouts_show(struct device *dev,
465                                 struct device_attribute *attr, char *buf)
466 {
467         struct scsi_disk *sdkp = to_scsi_disk(dev);
468
469         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471
472 static ssize_t
473 max_medium_access_timeouts_store(struct device *dev,
474                                  struct device_attribute *attr, const char *buf,
475                                  size_t count)
476 {
477         struct scsi_disk *sdkp = to_scsi_disk(dev);
478         int err;
479
480         if (!capable(CAP_SYS_ADMIN))
481                 return -EACCES;
482
483         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484
485         return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488
489 static ssize_t
490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491                            char *buf)
492 {
493         struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497
498 static ssize_t
499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500                             const char *buf, size_t count)
501 {
502         struct scsi_disk *sdkp = to_scsi_disk(dev);
503         struct scsi_device *sdp = sdkp->device;
504         unsigned long max;
505         int err;
506
507         if (!capable(CAP_SYS_ADMIN))
508                 return -EACCES;
509
510         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511                 return -EINVAL;
512
513         err = kstrtoul(buf, 10, &max);
514
515         if (err)
516                 return err;
517
518         if (max == 0)
519                 sdp->no_write_same = 1;
520         else if (max <= SD_MAX_WS16_BLOCKS) {
521                 sdp->no_write_same = 0;
522                 sdkp->max_ws_blocks = max;
523         }
524
525         sd_config_write_same(sdkp);
526
527         return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530
531 static struct attribute *sd_disk_attrs[] = {
532         &dev_attr_cache_type.attr,
533         &dev_attr_FUA.attr,
534         &dev_attr_allow_restart.attr,
535         &dev_attr_manage_start_stop.attr,
536         &dev_attr_protection_type.attr,
537         &dev_attr_protection_mode.attr,
538         &dev_attr_app_tag_own.attr,
539         &dev_attr_thin_provisioning.attr,
540         &dev_attr_provisioning_mode.attr,
541         &dev_attr_zeroing_mode.attr,
542         &dev_attr_max_write_same_blocks.attr,
543         &dev_attr_max_medium_access_timeouts.attr,
544         NULL,
545 };
546 ATTRIBUTE_GROUPS(sd_disk);
547
548 static struct class sd_disk_class = {
549         .name           = "scsi_disk",
550         .owner          = THIS_MODULE,
551         .dev_release    = scsi_disk_release,
552         .dev_groups     = sd_disk_groups,
553 };
554
555 static const struct dev_pm_ops sd_pm_ops = {
556         .suspend                = sd_suspend_system,
557         .resume                 = sd_resume,
558         .poweroff               = sd_suspend_system,
559         .restore                = sd_resume,
560         .runtime_suspend        = sd_suspend_runtime,
561         .runtime_resume         = sd_resume,
562 };
563
564 static struct scsi_driver sd_template = {
565         .gendrv = {
566                 .name           = "sd",
567                 .owner          = THIS_MODULE,
568                 .probe          = sd_probe,
569                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
570                 .remove         = sd_remove,
571                 .shutdown       = sd_shutdown,
572                 .pm             = &sd_pm_ops,
573         },
574         .rescan                 = sd_rescan,
575         .init_command           = sd_init_command,
576         .uninit_command         = sd_uninit_command,
577         .done                   = sd_done,
578         .eh_action              = sd_eh_action,
579         .eh_reset               = sd_eh_reset,
580 };
581
582 /*
583  * Dummy kobj_map->probe function.
584  * The default ->probe function will call modprobe, which is
585  * pointless as this module is already loaded.
586  */
587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
588 {
589         return NULL;
590 }
591
592 /*
593  * Device no to disk mapping:
594  * 
595  *       major         disc2     disc  p1
596  *   |............|.............|....|....| <- dev_t
597  *    31        20 19          8 7  4 3  0
598  * 
599  * Inside a major, we have 16k disks, however mapped non-
600  * contiguously. The first 16 disks are for major0, the next
601  * ones with major1, ... Disk 256 is for major0 again, disk 272 
602  * for major1, ... 
603  * As we stay compatible with our numbering scheme, we can reuse 
604  * the well-know SCSI majors 8, 65--71, 136--143.
605  */
606 static int sd_major(int major_idx)
607 {
608         switch (major_idx) {
609         case 0:
610                 return SCSI_DISK0_MAJOR;
611         case 1 ... 7:
612                 return SCSI_DISK1_MAJOR + major_idx - 1;
613         case 8 ... 15:
614                 return SCSI_DISK8_MAJOR + major_idx - 8;
615         default:
616                 BUG();
617                 return 0;       /* shut up gcc */
618         }
619 }
620
621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
622 {
623         struct scsi_disk *sdkp = NULL;
624
625         mutex_lock(&sd_ref_mutex);
626
627         if (disk->private_data) {
628                 sdkp = scsi_disk(disk);
629                 if (scsi_device_get(sdkp->device) == 0)
630                         get_device(&sdkp->dev);
631                 else
632                         sdkp = NULL;
633         }
634         mutex_unlock(&sd_ref_mutex);
635         return sdkp;
636 }
637
638 static void scsi_disk_put(struct scsi_disk *sdkp)
639 {
640         struct scsi_device *sdev = sdkp->device;
641
642         mutex_lock(&sd_ref_mutex);
643         put_device(&sdkp->dev);
644         scsi_device_put(sdev);
645         mutex_unlock(&sd_ref_mutex);
646 }
647
648 #ifdef CONFIG_BLK_SED_OPAL
649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
650                 size_t len, bool send)
651 {
652         struct scsi_device *sdev = data;
653         u8 cdb[12] = { 0, };
654         int ret;
655
656         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
657         cdb[1] = secp;
658         put_unaligned_be16(spsp, &cdb[2]);
659         put_unaligned_be32(len, &cdb[6]);
660
661         ret = scsi_execute_req(sdev, cdb,
662                         send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
663                         buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
664         return ret <= 0 ? ret : -EIO;
665 }
666 #endif /* CONFIG_BLK_SED_OPAL */
667
668 /*
669  * Look up the DIX operation based on whether the command is read or
670  * write and whether dix and dif are enabled.
671  */
672 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
673 {
674         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
675         static const unsigned int ops[] = {     /* wrt dix dif */
676                 SCSI_PROT_NORMAL,               /*  0   0   0  */
677                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
678                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
679                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
680                 SCSI_PROT_NORMAL,               /*  1   0   0  */
681                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
682                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
683                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
684         };
685
686         return ops[write << 2 | dix << 1 | dif];
687 }
688
689 /*
690  * Returns a mask of the protection flags that are valid for a given DIX
691  * operation.
692  */
693 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
694 {
695         static const unsigned int flag_mask[] = {
696                 [SCSI_PROT_NORMAL]              = 0,
697
698                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
699                                                   SCSI_PROT_GUARD_CHECK |
700                                                   SCSI_PROT_REF_CHECK |
701                                                   SCSI_PROT_REF_INCREMENT,
702
703                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
704                                                   SCSI_PROT_IP_CHECKSUM,
705
706                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
707                                                   SCSI_PROT_GUARD_CHECK |
708                                                   SCSI_PROT_REF_CHECK |
709                                                   SCSI_PROT_REF_INCREMENT |
710                                                   SCSI_PROT_IP_CHECKSUM,
711
712                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
713                                                   SCSI_PROT_REF_INCREMENT,
714
715                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
716                                                   SCSI_PROT_REF_CHECK |
717                                                   SCSI_PROT_REF_INCREMENT |
718                                                   SCSI_PROT_IP_CHECKSUM,
719
720                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
721                                                   SCSI_PROT_GUARD_CHECK |
722                                                   SCSI_PROT_REF_CHECK |
723                                                   SCSI_PROT_REF_INCREMENT |
724                                                   SCSI_PROT_IP_CHECKSUM,
725         };
726
727         return flag_mask[prot_op];
728 }
729
730 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
731                                            unsigned int dix, unsigned int dif)
732 {
733         struct bio *bio = scmd->request->bio;
734         unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
735         unsigned int protect = 0;
736
737         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
738                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
739                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
740
741                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
742                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
743         }
744
745         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
746                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
747
748                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
749                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
750         }
751
752         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
753                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
754
755                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
756                         protect = 3 << 5;       /* Disable target PI checking */
757                 else
758                         protect = 1 << 5;       /* Enable target PI checking */
759         }
760
761         scsi_set_prot_op(scmd, prot_op);
762         scsi_set_prot_type(scmd, dif);
763         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
764
765         return protect;
766 }
767
768 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
769 {
770         struct request_queue *q = sdkp->disk->queue;
771         unsigned int logical_block_size = sdkp->device->sector_size;
772         unsigned int max_blocks = 0;
773
774         q->limits.discard_alignment =
775                 sdkp->unmap_alignment * logical_block_size;
776         q->limits.discard_granularity =
777                 max(sdkp->physical_block_size,
778                     sdkp->unmap_granularity * logical_block_size);
779         sdkp->provisioning_mode = mode;
780
781         switch (mode) {
782
783         case SD_LBP_FULL:
784         case SD_LBP_DISABLE:
785                 blk_queue_max_discard_sectors(q, 0);
786                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
787                 return;
788
789         case SD_LBP_UNMAP:
790                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
791                                           (u32)SD_MAX_WS16_BLOCKS);
792                 break;
793
794         case SD_LBP_WS16:
795                 if (sdkp->device->unmap_limit_for_ws)
796                         max_blocks = sdkp->max_unmap_blocks;
797                 else
798                         max_blocks = sdkp->max_ws_blocks;
799
800                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
801                 break;
802
803         case SD_LBP_WS10:
804                 if (sdkp->device->unmap_limit_for_ws)
805                         max_blocks = sdkp->max_unmap_blocks;
806                 else
807                         max_blocks = sdkp->max_ws_blocks;
808
809                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
810                 break;
811
812         case SD_LBP_ZERO:
813                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
814                                           (u32)SD_MAX_WS10_BLOCKS);
815                 break;
816         }
817
818         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
819         blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
820 }
821
822 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
823 {
824         struct scsi_device *sdp = cmd->device;
825         struct request *rq = cmd->request;
826         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
827         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
828         unsigned int data_len = 24;
829         char *buf;
830
831         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
832         if (!rq->special_vec.bv_page)
833                 return BLK_STS_RESOURCE;
834         clear_highpage(rq->special_vec.bv_page);
835         rq->special_vec.bv_offset = 0;
836         rq->special_vec.bv_len = data_len;
837         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
838
839         cmd->cmd_len = 10;
840         cmd->cmnd[0] = UNMAP;
841         cmd->cmnd[8] = 24;
842
843         buf = page_address(rq->special_vec.bv_page);
844         put_unaligned_be16(6 + 16, &buf[0]);
845         put_unaligned_be16(16, &buf[2]);
846         put_unaligned_be64(lba, &buf[8]);
847         put_unaligned_be32(nr_blocks, &buf[16]);
848
849         cmd->allowed = SD_MAX_RETRIES;
850         cmd->transfersize = data_len;
851         rq->timeout = SD_TIMEOUT;
852
853         return scsi_init_io(cmd);
854 }
855
856 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
857                 bool unmap)
858 {
859         struct scsi_device *sdp = cmd->device;
860         struct request *rq = cmd->request;
861         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
862         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
863         u32 data_len = sdp->sector_size;
864
865         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
866         if (!rq->special_vec.bv_page)
867                 return BLK_STS_RESOURCE;
868         clear_highpage(rq->special_vec.bv_page);
869         rq->special_vec.bv_offset = 0;
870         rq->special_vec.bv_len = data_len;
871         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
872
873         cmd->cmd_len = 16;
874         cmd->cmnd[0] = WRITE_SAME_16;
875         if (unmap)
876                 cmd->cmnd[1] = 0x8; /* UNMAP */
877         put_unaligned_be64(lba, &cmd->cmnd[2]);
878         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
879
880         cmd->allowed = SD_MAX_RETRIES;
881         cmd->transfersize = data_len;
882         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
883
884         return scsi_init_io(cmd);
885 }
886
887 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
888                 bool unmap)
889 {
890         struct scsi_device *sdp = cmd->device;
891         struct request *rq = cmd->request;
892         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
893         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
894         u32 data_len = sdp->sector_size;
895
896         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
897         if (!rq->special_vec.bv_page)
898                 return BLK_STS_RESOURCE;
899         clear_highpage(rq->special_vec.bv_page);
900         rq->special_vec.bv_offset = 0;
901         rq->special_vec.bv_len = data_len;
902         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
903
904         cmd->cmd_len = 10;
905         cmd->cmnd[0] = WRITE_SAME;
906         if (unmap)
907                 cmd->cmnd[1] = 0x8; /* UNMAP */
908         put_unaligned_be32(lba, &cmd->cmnd[2]);
909         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
910
911         cmd->allowed = SD_MAX_RETRIES;
912         cmd->transfersize = data_len;
913         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
914
915         return scsi_init_io(cmd);
916 }
917
918 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
919 {
920         struct request *rq = cmd->request;
921         struct scsi_device *sdp = cmd->device;
922         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
923         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
924         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
925
926         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
927                 switch (sdkp->zeroing_mode) {
928                 case SD_ZERO_WS16_UNMAP:
929                         return sd_setup_write_same16_cmnd(cmd, true);
930                 case SD_ZERO_WS10_UNMAP:
931                         return sd_setup_write_same10_cmnd(cmd, true);
932                 }
933         }
934
935         if (sdp->no_write_same)
936                 return BLK_STS_TARGET;
937
938         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
939                 return sd_setup_write_same16_cmnd(cmd, false);
940
941         return sd_setup_write_same10_cmnd(cmd, false);
942 }
943
944 static void sd_config_write_same(struct scsi_disk *sdkp)
945 {
946         struct request_queue *q = sdkp->disk->queue;
947         unsigned int logical_block_size = sdkp->device->sector_size;
948
949         if (sdkp->device->no_write_same) {
950                 sdkp->max_ws_blocks = 0;
951                 goto out;
952         }
953
954         /* Some devices can not handle block counts above 0xffff despite
955          * supporting WRITE SAME(16). Consequently we default to 64k
956          * blocks per I/O unless the device explicitly advertises a
957          * bigger limit.
958          */
959         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
960                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
961                                                    (u32)SD_MAX_WS16_BLOCKS);
962         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
963                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
964                                                    (u32)SD_MAX_WS10_BLOCKS);
965         else {
966                 sdkp->device->no_write_same = 1;
967                 sdkp->max_ws_blocks = 0;
968         }
969
970         if (sdkp->lbprz && sdkp->lbpws)
971                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
972         else if (sdkp->lbprz && sdkp->lbpws10)
973                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
974         else if (sdkp->max_ws_blocks)
975                 sdkp->zeroing_mode = SD_ZERO_WS;
976         else
977                 sdkp->zeroing_mode = SD_ZERO_WRITE;
978
979         if (sdkp->max_ws_blocks &&
980             sdkp->physical_block_size > logical_block_size) {
981                 /*
982                  * Reporting a maximum number of blocks that is not aligned
983                  * on the device physical size would cause a large write same
984                  * request to be split into physically unaligned chunks by
985                  * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
986                  * even if the caller of these functions took care to align the
987                  * large request. So make sure the maximum reported is aligned
988                  * to the device physical block size. This is only an optional
989                  * optimization for regular disks, but this is mandatory to
990                  * avoid failure of large write same requests directed at
991                  * sequential write required zones of host-managed ZBC disks.
992                  */
993                 sdkp->max_ws_blocks =
994                         round_down(sdkp->max_ws_blocks,
995                                    bytes_to_logical(sdkp->device,
996                                                     sdkp->physical_block_size));
997         }
998
999 out:
1000         blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1001                                          (logical_block_size >> 9));
1002         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1003                                          (logical_block_size >> 9));
1004 }
1005
1006 /**
1007  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1008  * @cmd: command to prepare
1009  *
1010  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1011  * the preference indicated by the target device.
1012  **/
1013 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1014 {
1015         struct request *rq = cmd->request;
1016         struct scsi_device *sdp = cmd->device;
1017         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1018         struct bio *bio = rq->bio;
1019         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1020         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1021         blk_status_t ret;
1022
1023         if (sdkp->device->no_write_same)
1024                 return BLK_STS_TARGET;
1025
1026         BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1027
1028         rq->timeout = SD_WRITE_SAME_TIMEOUT;
1029
1030         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1031                 cmd->cmd_len = 16;
1032                 cmd->cmnd[0] = WRITE_SAME_16;
1033                 put_unaligned_be64(lba, &cmd->cmnd[2]);
1034                 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1035         } else {
1036                 cmd->cmd_len = 10;
1037                 cmd->cmnd[0] = WRITE_SAME;
1038                 put_unaligned_be32(lba, &cmd->cmnd[2]);
1039                 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1040         }
1041
1042         cmd->transfersize = sdp->sector_size;
1043         cmd->allowed = SD_MAX_RETRIES;
1044
1045         /*
1046          * For WRITE SAME the data transferred via the DATA OUT buffer is
1047          * different from the amount of data actually written to the target.
1048          *
1049          * We set up __data_len to the amount of data transferred via the
1050          * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1051          * to transfer a single sector of data first, but then reset it to
1052          * the amount of data to be written right after so that the I/O path
1053          * knows how much to actually write.
1054          */
1055         rq->__data_len = sdp->sector_size;
1056         ret = scsi_init_io(cmd);
1057         rq->__data_len = blk_rq_bytes(rq);
1058
1059         return ret;
1060 }
1061
1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063 {
1064         struct request *rq = cmd->request;
1065
1066         /* flush requests don't perform I/O, zero the S/G table */
1067         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068
1069         cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1070         cmd->cmd_len = 10;
1071         cmd->transfersize = 0;
1072         cmd->allowed = SD_MAX_RETRIES;
1073
1074         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1075         return BLK_STS_OK;
1076 }
1077
1078 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1079                                        sector_t lba, unsigned int nr_blocks,
1080                                        unsigned char flags)
1081 {
1082         cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1083         if (unlikely(cmd->cmnd == NULL))
1084                 return BLK_STS_RESOURCE;
1085
1086         cmd->cmd_len = SD_EXT_CDB_SIZE;
1087         memset(cmd->cmnd, 0, cmd->cmd_len);
1088
1089         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1090         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1091         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1092         cmd->cmnd[10] = flags;
1093         put_unaligned_be64(lba, &cmd->cmnd[12]);
1094         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096
1097         return BLK_STS_OK;
1098 }
1099
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101                                        sector_t lba, unsigned int nr_blocks,
1102                                        unsigned char flags)
1103 {
1104         cmd->cmd_len  = 16;
1105         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106         cmd->cmnd[1]  = flags;
1107         cmd->cmnd[14] = 0;
1108         cmd->cmnd[15] = 0;
1109         put_unaligned_be64(lba, &cmd->cmnd[2]);
1110         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111
1112         return BLK_STS_OK;
1113 }
1114
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116                                        sector_t lba, unsigned int nr_blocks,
1117                                        unsigned char flags)
1118 {
1119         cmd->cmd_len = 10;
1120         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121         cmd->cmnd[1] = flags;
1122         cmd->cmnd[6] = 0;
1123         cmd->cmnd[9] = 0;
1124         put_unaligned_be32(lba, &cmd->cmnd[2]);
1125         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126
1127         return BLK_STS_OK;
1128 }
1129
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131                                       sector_t lba, unsigned int nr_blocks,
1132                                       unsigned char flags)
1133 {
1134         /* Avoid that 0 blocks gets translated into 256 blocks. */
1135         if (WARN_ON_ONCE(nr_blocks == 0))
1136                 return BLK_STS_IOERR;
1137
1138         if (unlikely(flags & 0x8)) {
1139                 /*
1140                  * This happens only if this drive failed 10byte rw
1141                  * command with ILLEGAL_REQUEST during operation and
1142                  * thus turned off use_10_for_rw.
1143                  */
1144                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145                 return BLK_STS_IOERR;
1146         }
1147
1148         cmd->cmd_len = 6;
1149         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151         cmd->cmnd[2] = (lba >> 8) & 0xff;
1152         cmd->cmnd[3] = lba & 0xff;
1153         cmd->cmnd[4] = nr_blocks;
1154         cmd->cmnd[5] = 0;
1155
1156         return BLK_STS_OK;
1157 }
1158
1159 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1160 {
1161         struct request *rq = cmd->request;
1162         struct scsi_device *sdp = cmd->device;
1163         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1164         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1165         sector_t threshold;
1166         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1167         bool dif, dix;
1168         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1169         bool write = rq_data_dir(rq) == WRITE;
1170         unsigned char protect, fua;
1171         blk_status_t ret;
1172
1173         ret = scsi_init_io(cmd);
1174         if (ret != BLK_STS_OK)
1175                 return ret;
1176
1177         if (!scsi_device_online(sdp) || sdp->changed) {
1178                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1179                 return BLK_STS_IOERR;
1180         }
1181
1182         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1183                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1184                 return BLK_STS_IOERR;
1185         }
1186
1187         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1188                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1189                 return BLK_STS_IOERR;
1190         }
1191
1192         /*
1193          * Some SD card readers can't handle accesses which touch the
1194          * last one or two logical blocks. Split accesses as needed.
1195          */
1196         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1197
1198         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1199                 if (lba < threshold) {
1200                         /* Access up to the threshold but not beyond */
1201                         nr_blocks = threshold - lba;
1202                 } else {
1203                         /* Access only a single logical block */
1204                         nr_blocks = 1;
1205                 }
1206         }
1207
1208         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1209         dix = scsi_prot_sg_count(cmd);
1210         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1211
1212         if (dif || dix)
1213                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1214         else
1215                 protect = 0;
1216
1217         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1218                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1219                                          protect | fua);
1220         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1221                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1222                                          protect | fua);
1223         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1224                    sdp->use_10_for_rw || protect) {
1225                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1226                                          protect | fua);
1227         } else {
1228                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1229                                         protect | fua);
1230         }
1231
1232         if (unlikely(ret != BLK_STS_OK))
1233                 return ret;
1234
1235         /*
1236          * We shouldn't disconnect in the middle of a sector, so with a dumb
1237          * host adapter, it's safe to assume that we can at least transfer
1238          * this many bytes between each connect / disconnect.
1239          */
1240         cmd->transfersize = sdp->sector_size;
1241         cmd->underflow = nr_blocks << 9;
1242         cmd->allowed = SD_MAX_RETRIES;
1243         cmd->sdb.length = nr_blocks * sdp->sector_size;
1244
1245         SCSI_LOG_HLQUEUE(1,
1246                          scmd_printk(KERN_INFO, cmd,
1247                                      "%s: block=%llu, count=%d\n", __func__,
1248                                      (unsigned long long)blk_rq_pos(rq),
1249                                      blk_rq_sectors(rq)));
1250         SCSI_LOG_HLQUEUE(2,
1251                          scmd_printk(KERN_INFO, cmd,
1252                                      "%s %d/%u 512 byte blocks.\n",
1253                                      write ? "writing" : "reading", nr_blocks,
1254                                      blk_rq_sectors(rq)));
1255
1256         /*
1257          * This indicates that the command is ready from our end to be
1258          * queued.
1259          */
1260         return BLK_STS_OK;
1261 }
1262
1263 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1264 {
1265         struct request *rq = cmd->request;
1266
1267         switch (req_op(rq)) {
1268         case REQ_OP_DISCARD:
1269                 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1270                 case SD_LBP_UNMAP:
1271                         return sd_setup_unmap_cmnd(cmd);
1272                 case SD_LBP_WS16:
1273                         return sd_setup_write_same16_cmnd(cmd, true);
1274                 case SD_LBP_WS10:
1275                         return sd_setup_write_same10_cmnd(cmd, true);
1276                 case SD_LBP_ZERO:
1277                         return sd_setup_write_same10_cmnd(cmd, false);
1278                 default:
1279                         return BLK_STS_TARGET;
1280                 }
1281         case REQ_OP_WRITE_ZEROES:
1282                 return sd_setup_write_zeroes_cmnd(cmd);
1283         case REQ_OP_WRITE_SAME:
1284                 return sd_setup_write_same_cmnd(cmd);
1285         case REQ_OP_FLUSH:
1286                 return sd_setup_flush_cmnd(cmd);
1287         case REQ_OP_READ:
1288         case REQ_OP_WRITE:
1289                 return sd_setup_read_write_cmnd(cmd);
1290         case REQ_OP_ZONE_RESET:
1291                 return sd_zbc_setup_reset_cmnd(cmd, false);
1292         case REQ_OP_ZONE_RESET_ALL:
1293                 return sd_zbc_setup_reset_cmnd(cmd, true);
1294         default:
1295                 WARN_ON_ONCE(1);
1296                 return BLK_STS_NOTSUPP;
1297         }
1298 }
1299
1300 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1301 {
1302         struct request *rq = SCpnt->request;
1303         u8 *cmnd;
1304
1305         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1306                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1307
1308         if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1309                 cmnd = SCpnt->cmnd;
1310                 SCpnt->cmnd = NULL;
1311                 SCpnt->cmd_len = 0;
1312                 mempool_free(cmnd, sd_cdb_pool);
1313         }
1314 }
1315
1316 /**
1317  *      sd_open - open a scsi disk device
1318  *      @bdev: Block device of the scsi disk to open
1319  *      @mode: FMODE_* mask
1320  *
1321  *      Returns 0 if successful. Returns a negated errno value in case 
1322  *      of error.
1323  *
1324  *      Note: This can be called from a user context (e.g. fsck(1) )
1325  *      or from within the kernel (e.g. as a result of a mount(1) ).
1326  *      In the latter case @inode and @filp carry an abridged amount
1327  *      of information as noted above.
1328  *
1329  *      Locking: called with bdev->bd_mutex held.
1330  **/
1331 static int sd_open(struct block_device *bdev, fmode_t mode)
1332 {
1333         struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1334         struct scsi_device *sdev;
1335         int retval;
1336
1337         if (!sdkp)
1338                 return -ENXIO;
1339
1340         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1341
1342         sdev = sdkp->device;
1343
1344         /*
1345          * If the device is in error recovery, wait until it is done.
1346          * If the device is offline, then disallow any access to it.
1347          */
1348         retval = -ENXIO;
1349         if (!scsi_block_when_processing_errors(sdev))
1350                 goto error_out;
1351
1352         if (sdev->removable || sdkp->write_prot)
1353                 check_disk_change(bdev);
1354
1355         /*
1356          * If the drive is empty, just let the open fail.
1357          */
1358         retval = -ENOMEDIUM;
1359         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1360                 goto error_out;
1361
1362         /*
1363          * If the device has the write protect tab set, have the open fail
1364          * if the user expects to be able to write to the thing.
1365          */
1366         retval = -EROFS;
1367         if (sdkp->write_prot && (mode & FMODE_WRITE))
1368                 goto error_out;
1369
1370         /*
1371          * It is possible that the disk changing stuff resulted in
1372          * the device being taken offline.  If this is the case,
1373          * report this to the user, and don't pretend that the
1374          * open actually succeeded.
1375          */
1376         retval = -ENXIO;
1377         if (!scsi_device_online(sdev))
1378                 goto error_out;
1379
1380         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1381                 if (scsi_block_when_processing_errors(sdev))
1382                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1383         }
1384
1385         return 0;
1386
1387 error_out:
1388         scsi_disk_put(sdkp);
1389         return retval;  
1390 }
1391
1392 /**
1393  *      sd_release - invoked when the (last) close(2) is called on this
1394  *      scsi disk.
1395  *      @disk: disk to release
1396  *      @mode: FMODE_* mask
1397  *
1398  *      Returns 0. 
1399  *
1400  *      Note: may block (uninterruptible) if error recovery is underway
1401  *      on this disk.
1402  *
1403  *      Locking: called with bdev->bd_mutex held.
1404  **/
1405 static void sd_release(struct gendisk *disk, fmode_t mode)
1406 {
1407         struct scsi_disk *sdkp = scsi_disk(disk);
1408         struct scsi_device *sdev = sdkp->device;
1409
1410         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1411
1412         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1413                 if (scsi_block_when_processing_errors(sdev))
1414                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1415         }
1416
1417         scsi_disk_put(sdkp);
1418 }
1419
1420 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1421 {
1422         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1423         struct scsi_device *sdp = sdkp->device;
1424         struct Scsi_Host *host = sdp->host;
1425         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1426         int diskinfo[4];
1427
1428         /* default to most commonly used values */
1429         diskinfo[0] = 0x40;     /* 1 << 6 */
1430         diskinfo[1] = 0x20;     /* 1 << 5 */
1431         diskinfo[2] = capacity >> 11;
1432
1433         /* override with calculated, extended default, or driver values */
1434         if (host->hostt->bios_param)
1435                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1436         else
1437                 scsicam_bios_param(bdev, capacity, diskinfo);
1438
1439         geo->heads = diskinfo[0];
1440         geo->sectors = diskinfo[1];
1441         geo->cylinders = diskinfo[2];
1442         return 0;
1443 }
1444
1445 /**
1446  *      sd_ioctl - process an ioctl
1447  *      @bdev: target block device
1448  *      @mode: FMODE_* mask
1449  *      @cmd: ioctl command number
1450  *      @arg: this is third argument given to ioctl(2) system call.
1451  *      Often contains a pointer.
1452  *
1453  *      Returns 0 if successful (some ioctls return positive numbers on
1454  *      success as well). Returns a negated errno value in case of error.
1455  *
1456  *      Note: most ioctls are forward onto the block subsystem or further
1457  *      down in the scsi subsystem.
1458  **/
1459 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1460                     unsigned int cmd, unsigned long arg)
1461 {
1462         struct gendisk *disk = bdev->bd_disk;
1463         struct scsi_disk *sdkp = scsi_disk(disk);
1464         struct scsi_device *sdp = sdkp->device;
1465         void __user *p = (void __user *)arg;
1466         int error;
1467     
1468         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1469                                     "cmd=0x%x\n", disk->disk_name, cmd));
1470
1471         error = scsi_verify_blk_ioctl(bdev, cmd);
1472         if (error < 0)
1473                 return error;
1474
1475         /*
1476          * If we are in the middle of error recovery, don't let anyone
1477          * else try and use this device.  Also, if error recovery fails, it
1478          * may try and take the device offline, in which case all further
1479          * access to the device is prohibited.
1480          */
1481         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1482                         (mode & FMODE_NDELAY) != 0);
1483         if (error)
1484                 goto out;
1485
1486         if (is_sed_ioctl(cmd))
1487                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1488
1489         /*
1490          * Send SCSI addressing ioctls directly to mid level, send other
1491          * ioctls to block level and then onto mid level if they can't be
1492          * resolved.
1493          */
1494         switch (cmd) {
1495                 case SCSI_IOCTL_GET_IDLUN:
1496                 case SCSI_IOCTL_GET_BUS_NUMBER:
1497                         error = scsi_ioctl(sdp, cmd, p);
1498                         break;
1499                 default:
1500                         error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1501                         if (error != -ENOTTY)
1502                                 break;
1503                         error = scsi_ioctl(sdp, cmd, p);
1504                         break;
1505         }
1506 out:
1507         return error;
1508 }
1509
1510 static void set_media_not_present(struct scsi_disk *sdkp)
1511 {
1512         if (sdkp->media_present)
1513                 sdkp->device->changed = 1;
1514
1515         if (sdkp->device->removable) {
1516                 sdkp->media_present = 0;
1517                 sdkp->capacity = 0;
1518         }
1519 }
1520
1521 static int media_not_present(struct scsi_disk *sdkp,
1522                              struct scsi_sense_hdr *sshdr)
1523 {
1524         if (!scsi_sense_valid(sshdr))
1525                 return 0;
1526
1527         /* not invoked for commands that could return deferred errors */
1528         switch (sshdr->sense_key) {
1529         case UNIT_ATTENTION:
1530         case NOT_READY:
1531                 /* medium not present */
1532                 if (sshdr->asc == 0x3A) {
1533                         set_media_not_present(sdkp);
1534                         return 1;
1535                 }
1536         }
1537         return 0;
1538 }
1539
1540 /**
1541  *      sd_check_events - check media events
1542  *      @disk: kernel device descriptor
1543  *      @clearing: disk events currently being cleared
1544  *
1545  *      Returns mask of DISK_EVENT_*.
1546  *
1547  *      Note: this function is invoked from the block subsystem.
1548  **/
1549 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1550 {
1551         struct scsi_disk *sdkp = scsi_disk_get(disk);
1552         struct scsi_device *sdp;
1553         int retval;
1554
1555         if (!sdkp)
1556                 return 0;
1557
1558         sdp = sdkp->device;
1559         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1560
1561         /*
1562          * If the device is offline, don't send any commands - just pretend as
1563          * if the command failed.  If the device ever comes back online, we
1564          * can deal with it then.  It is only because of unrecoverable errors
1565          * that we would ever take a device offline in the first place.
1566          */
1567         if (!scsi_device_online(sdp)) {
1568                 set_media_not_present(sdkp);
1569                 goto out;
1570         }
1571
1572         /*
1573          * Using TEST_UNIT_READY enables differentiation between drive with
1574          * no cartridge loaded - NOT READY, drive with changed cartridge -
1575          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1576          *
1577          * Drives that auto spin down. eg iomega jaz 1G, will be started
1578          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1579          * sd_revalidate() is called.
1580          */
1581         if (scsi_block_when_processing_errors(sdp)) {
1582                 struct scsi_sense_hdr sshdr = { 0, };
1583
1584                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1585                                               &sshdr);
1586
1587                 /* failed to execute TUR, assume media not present */
1588                 if (host_byte(retval)) {
1589                         set_media_not_present(sdkp);
1590                         goto out;
1591                 }
1592
1593                 if (media_not_present(sdkp, &sshdr))
1594                         goto out;
1595         }
1596
1597         /*
1598          * For removable scsi disk we have to recognise the presence
1599          * of a disk in the drive.
1600          */
1601         if (!sdkp->media_present)
1602                 sdp->changed = 1;
1603         sdkp->media_present = 1;
1604 out:
1605         /*
1606          * sdp->changed is set under the following conditions:
1607          *
1608          *      Medium present state has changed in either direction.
1609          *      Device has indicated UNIT_ATTENTION.
1610          */
1611         retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1612         sdp->changed = 0;
1613         scsi_disk_put(sdkp);
1614         return retval;
1615 }
1616
1617 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1618 {
1619         int retries, res;
1620         struct scsi_device *sdp = sdkp->device;
1621         const int timeout = sdp->request_queue->rq_timeout
1622                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1623         struct scsi_sense_hdr my_sshdr;
1624
1625         if (!scsi_device_online(sdp))
1626                 return -ENODEV;
1627
1628         /* caller might not be interested in sense, but we need it */
1629         if (!sshdr)
1630                 sshdr = &my_sshdr;
1631
1632         for (retries = 3; retries > 0; --retries) {
1633                 unsigned char cmd[10] = { 0 };
1634
1635                 cmd[0] = SYNCHRONIZE_CACHE;
1636                 /*
1637                  * Leave the rest of the command zero to indicate
1638                  * flush everything.
1639                  */
1640                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1641                                 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1642                 if (res == 0)
1643                         break;
1644         }
1645
1646         if (res) {
1647                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1648
1649                 if (driver_byte(res) == DRIVER_SENSE)
1650                         sd_print_sense_hdr(sdkp, sshdr);
1651
1652                 /* we need to evaluate the error return  */
1653                 if (scsi_sense_valid(sshdr) &&
1654                         (sshdr->asc == 0x3a ||  /* medium not present */
1655                          sshdr->asc == 0x20 ||  /* invalid command */
1656                          (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))  /* drive is password locked */
1657                                 /* this is no error here */
1658                                 return 0;
1659
1660                 switch (host_byte(res)) {
1661                 /* ignore errors due to racing a disconnection */
1662                 case DID_BAD_TARGET:
1663                 case DID_NO_CONNECT:
1664                         return 0;
1665                 /* signal the upper layer it might try again */
1666                 case DID_BUS_BUSY:
1667                 case DID_IMM_RETRY:
1668                 case DID_REQUEUE:
1669                 case DID_SOFT_ERROR:
1670                         return -EBUSY;
1671                 default:
1672                         return -EIO;
1673                 }
1674         }
1675         return 0;
1676 }
1677
1678 static void sd_rescan(struct device *dev)
1679 {
1680         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1681
1682         revalidate_disk(sdkp->disk);
1683 }
1684
1685
1686 #ifdef CONFIG_COMPAT
1687 /* 
1688  * This gets directly called from VFS. When the ioctl 
1689  * is not recognized we go back to the other translation paths. 
1690  */
1691 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1692                            unsigned int cmd, unsigned long arg)
1693 {
1694         struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1695         int error;
1696
1697         error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1698                         (mode & FMODE_NDELAY) != 0);
1699         if (error)
1700                 return error;
1701                
1702         /* 
1703          * Let the static ioctl translation table take care of it.
1704          */
1705         if (!sdev->host->hostt->compat_ioctl)
1706                 return -ENOIOCTLCMD; 
1707         return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1708 }
1709 #endif
1710
1711 static char sd_pr_type(enum pr_type type)
1712 {
1713         switch (type) {
1714         case PR_WRITE_EXCLUSIVE:
1715                 return 0x01;
1716         case PR_EXCLUSIVE_ACCESS:
1717                 return 0x03;
1718         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1719                 return 0x05;
1720         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1721                 return 0x06;
1722         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1723                 return 0x07;
1724         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1725                 return 0x08;
1726         default:
1727                 return 0;
1728         }
1729 };
1730
1731 static int sd_pr_command(struct block_device *bdev, u8 sa,
1732                 u64 key, u64 sa_key, u8 type, u8 flags)
1733 {
1734         struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1735         struct scsi_sense_hdr sshdr;
1736         int result;
1737         u8 cmd[16] = { 0, };
1738         u8 data[24] = { 0, };
1739
1740         cmd[0] = PERSISTENT_RESERVE_OUT;
1741         cmd[1] = sa;
1742         cmd[2] = type;
1743         put_unaligned_be32(sizeof(data), &cmd[5]);
1744
1745         put_unaligned_be64(key, &data[0]);
1746         put_unaligned_be64(sa_key, &data[8]);
1747         data[20] = flags;
1748
1749         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1750                         &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1751
1752         if (driver_byte(result) == DRIVER_SENSE &&
1753             scsi_sense_valid(&sshdr)) {
1754                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1755                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1756         }
1757
1758         return result;
1759 }
1760
1761 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1762                 u32 flags)
1763 {
1764         if (flags & ~PR_FL_IGNORE_KEY)
1765                 return -EOPNOTSUPP;
1766         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1767                         old_key, new_key, 0,
1768                         (1 << 0) /* APTPL */);
1769 }
1770
1771 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1772                 u32 flags)
1773 {
1774         if (flags)
1775                 return -EOPNOTSUPP;
1776         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1777 }
1778
1779 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1780 {
1781         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1782 }
1783
1784 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1785                 enum pr_type type, bool abort)
1786 {
1787         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1788                              sd_pr_type(type), 0);
1789 }
1790
1791 static int sd_pr_clear(struct block_device *bdev, u64 key)
1792 {
1793         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1794 }
1795
1796 static const struct pr_ops sd_pr_ops = {
1797         .pr_register    = sd_pr_register,
1798         .pr_reserve     = sd_pr_reserve,
1799         .pr_release     = sd_pr_release,
1800         .pr_preempt     = sd_pr_preempt,
1801         .pr_clear       = sd_pr_clear,
1802 };
1803
1804 static const struct block_device_operations sd_fops = {
1805         .owner                  = THIS_MODULE,
1806         .open                   = sd_open,
1807         .release                = sd_release,
1808         .ioctl                  = sd_ioctl,
1809         .getgeo                 = sd_getgeo,
1810 #ifdef CONFIG_COMPAT
1811         .compat_ioctl           = sd_compat_ioctl,
1812 #endif
1813         .check_events           = sd_check_events,
1814         .revalidate_disk        = sd_revalidate_disk,
1815         .unlock_native_capacity = sd_unlock_native_capacity,
1816         .report_zones           = sd_zbc_report_zones,
1817         .pr_ops                 = &sd_pr_ops,
1818 };
1819
1820 /**
1821  *      sd_eh_reset - reset error handling callback
1822  *      @scmd:          sd-issued command that has failed
1823  *
1824  *      This function is called by the SCSI midlayer before starting
1825  *      SCSI EH. When counting medium access failures we have to be
1826  *      careful to register it only only once per device and SCSI EH run;
1827  *      there might be several timed out commands which will cause the
1828  *      'max_medium_access_timeouts' counter to trigger after the first
1829  *      SCSI EH run already and set the device to offline.
1830  *      So this function resets the internal counter before starting SCSI EH.
1831  **/
1832 static void sd_eh_reset(struct scsi_cmnd *scmd)
1833 {
1834         struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1835
1836         /* New SCSI EH run, reset gate variable */
1837         sdkp->ignore_medium_access_errors = false;
1838 }
1839
1840 /**
1841  *      sd_eh_action - error handling callback
1842  *      @scmd:          sd-issued command that has failed
1843  *      @eh_disp:       The recovery disposition suggested by the midlayer
1844  *
1845  *      This function is called by the SCSI midlayer upon completion of an
1846  *      error test command (currently TEST UNIT READY). The result of sending
1847  *      the eh command is passed in eh_disp.  We're looking for devices that
1848  *      fail medium access commands but are OK with non access commands like
1849  *      test unit ready (so wrongly see the device as having a successful
1850  *      recovery)
1851  **/
1852 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1853 {
1854         struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1855         struct scsi_device *sdev = scmd->device;
1856
1857         if (!scsi_device_online(sdev) ||
1858             !scsi_medium_access_command(scmd) ||
1859             host_byte(scmd->result) != DID_TIME_OUT ||
1860             eh_disp != SUCCESS)
1861                 return eh_disp;
1862
1863         /*
1864          * The device has timed out executing a medium access command.
1865          * However, the TEST UNIT READY command sent during error
1866          * handling completed successfully. Either the device is in the
1867          * process of recovering or has it suffered an internal failure
1868          * that prevents access to the storage medium.
1869          */
1870         if (!sdkp->ignore_medium_access_errors) {
1871                 sdkp->medium_access_timed_out++;
1872                 sdkp->ignore_medium_access_errors = true;
1873         }
1874
1875         /*
1876          * If the device keeps failing read/write commands but TEST UNIT
1877          * READY always completes successfully we assume that medium
1878          * access is no longer possible and take the device offline.
1879          */
1880         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1881                 scmd_printk(KERN_ERR, scmd,
1882                             "Medium access timeout failure. Offlining disk!\n");
1883                 mutex_lock(&sdev->state_mutex);
1884                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1885                 mutex_unlock(&sdev->state_mutex);
1886
1887                 return SUCCESS;
1888         }
1889
1890         return eh_disp;
1891 }
1892
1893 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1894 {
1895         struct request *req = scmd->request;
1896         struct scsi_device *sdev = scmd->device;
1897         unsigned int transferred, good_bytes;
1898         u64 start_lba, end_lba, bad_lba;
1899
1900         /*
1901          * Some commands have a payload smaller than the device logical
1902          * block size (e.g. INQUIRY on a 4K disk).
1903          */
1904         if (scsi_bufflen(scmd) <= sdev->sector_size)
1905                 return 0;
1906
1907         /* Check if we have a 'bad_lba' information */
1908         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1909                                      SCSI_SENSE_BUFFERSIZE,
1910                                      &bad_lba))
1911                 return 0;
1912
1913         /*
1914          * If the bad lba was reported incorrectly, we have no idea where
1915          * the error is.
1916          */
1917         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1918         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1919         if (bad_lba < start_lba || bad_lba >= end_lba)
1920                 return 0;
1921
1922         /*
1923          * resid is optional but mostly filled in.  When it's unused,
1924          * its value is zero, so we assume the whole buffer transferred
1925          */
1926         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1927
1928         /* This computation should always be done in terms of the
1929          * resolution of the device's medium.
1930          */
1931         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1932
1933         return min(good_bytes, transferred);
1934 }
1935
1936 /**
1937  *      sd_done - bottom half handler: called when the lower level
1938  *      driver has completed (successfully or otherwise) a scsi command.
1939  *      @SCpnt: mid-level's per command structure.
1940  *
1941  *      Note: potentially run from within an ISR. Must not block.
1942  **/
1943 static int sd_done(struct scsi_cmnd *SCpnt)
1944 {
1945         int result = SCpnt->result;
1946         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1947         unsigned int sector_size = SCpnt->device->sector_size;
1948         unsigned int resid;
1949         struct scsi_sense_hdr sshdr;
1950         struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1951         struct request *req = SCpnt->request;
1952         int sense_valid = 0;
1953         int sense_deferred = 0;
1954
1955         switch (req_op(req)) {
1956         case REQ_OP_DISCARD:
1957         case REQ_OP_WRITE_ZEROES:
1958         case REQ_OP_WRITE_SAME:
1959         case REQ_OP_ZONE_RESET:
1960         case REQ_OP_ZONE_RESET_ALL:
1961                 if (!result) {
1962                         good_bytes = blk_rq_bytes(req);
1963                         scsi_set_resid(SCpnt, 0);
1964                 } else {
1965                         good_bytes = 0;
1966                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
1967                 }
1968                 break;
1969         default:
1970                 /*
1971                  * In case of bogus fw or device, we could end up having
1972                  * an unaligned partial completion. Check this here and force
1973                  * alignment.
1974                  */
1975                 resid = scsi_get_resid(SCpnt);
1976                 if (resid & (sector_size - 1)) {
1977                         sd_printk(KERN_INFO, sdkp,
1978                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1979                                 resid, sector_size);
1980                         scsi_print_command(SCpnt);
1981                         resid = min(scsi_bufflen(SCpnt),
1982                                     round_up(resid, sector_size));
1983                         scsi_set_resid(SCpnt, resid);
1984                 }
1985         }
1986
1987         if (result) {
1988                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1989                 if (sense_valid)
1990                         sense_deferred = scsi_sense_is_deferred(&sshdr);
1991         }
1992         sdkp->medium_access_timed_out = 0;
1993
1994         if (driver_byte(result) != DRIVER_SENSE &&
1995             (!sense_valid || sense_deferred))
1996                 goto out;
1997
1998         switch (sshdr.sense_key) {
1999         case HARDWARE_ERROR:
2000         case MEDIUM_ERROR:
2001                 good_bytes = sd_completed_bytes(SCpnt);
2002                 break;
2003         case RECOVERED_ERROR:
2004                 good_bytes = scsi_bufflen(SCpnt);
2005                 break;
2006         case NO_SENSE:
2007                 /* This indicates a false check condition, so ignore it.  An
2008                  * unknown amount of data was transferred so treat it as an
2009                  * error.
2010                  */
2011                 SCpnt->result = 0;
2012                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2013                 break;
2014         case ABORTED_COMMAND:
2015                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2016                         good_bytes = sd_completed_bytes(SCpnt);
2017                 break;
2018         case ILLEGAL_REQUEST:
2019                 switch (sshdr.asc) {
2020                 case 0x10:      /* DIX: Host detected corruption */
2021                         good_bytes = sd_completed_bytes(SCpnt);
2022                         break;
2023                 case 0x20:      /* INVALID COMMAND OPCODE */
2024                 case 0x24:      /* INVALID FIELD IN CDB */
2025                         switch (SCpnt->cmnd[0]) {
2026                         case UNMAP:
2027                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2028                                 break;
2029                         case WRITE_SAME_16:
2030                         case WRITE_SAME:
2031                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2032                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2033                                 } else {
2034                                         sdkp->device->no_write_same = 1;
2035                                         sd_config_write_same(sdkp);
2036                                         req->rq_flags |= RQF_QUIET;
2037                                 }
2038                                 break;
2039                         }
2040                 }
2041                 break;
2042         default:
2043                 break;
2044         }
2045
2046  out:
2047         if (sd_is_zoned(sdkp))
2048                 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2049
2050         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2051                                            "sd_done: completed %d of %d bytes\n",
2052                                            good_bytes, scsi_bufflen(SCpnt)));
2053
2054         return good_bytes;
2055 }
2056
2057 /*
2058  * spinup disk - called only in sd_revalidate_disk()
2059  */
2060 static void
2061 sd_spinup_disk(struct scsi_disk *sdkp)
2062 {
2063         unsigned char cmd[10];
2064         unsigned long spintime_expire = 0;
2065         int retries, spintime;
2066         unsigned int the_result;
2067         struct scsi_sense_hdr sshdr;
2068         int sense_valid = 0;
2069
2070         spintime = 0;
2071
2072         /* Spin up drives, as required.  Only do this at boot time */
2073         /* Spinup needs to be done for module loads too. */
2074         do {
2075                 retries = 0;
2076
2077                 do {
2078                         cmd[0] = TEST_UNIT_READY;
2079                         memset((void *) &cmd[1], 0, 9);
2080
2081                         the_result = scsi_execute_req(sdkp->device, cmd,
2082                                                       DMA_NONE, NULL, 0,
2083                                                       &sshdr, SD_TIMEOUT,
2084                                                       SD_MAX_RETRIES, NULL);
2085
2086                         /*
2087                          * If the drive has indicated to us that it
2088                          * doesn't have any media in it, don't bother
2089                          * with any more polling.
2090                          */
2091                         if (media_not_present(sdkp, &sshdr))
2092                                 return;
2093
2094                         if (the_result)
2095                                 sense_valid = scsi_sense_valid(&sshdr);
2096                         retries++;
2097                 } while (retries < 3 && 
2098                          (!scsi_status_is_good(the_result) ||
2099                           ((driver_byte(the_result) == DRIVER_SENSE) &&
2100                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2101
2102                 if (driver_byte(the_result) != DRIVER_SENSE) {
2103                         /* no sense, TUR either succeeded or failed
2104                          * with a status error */
2105                         if(!spintime && !scsi_status_is_good(the_result)) {
2106                                 sd_print_result(sdkp, "Test Unit Ready failed",
2107                                                 the_result);
2108                         }
2109                         break;
2110                 }
2111
2112                 /*
2113                  * The device does not want the automatic start to be issued.
2114                  */
2115                 if (sdkp->device->no_start_on_add)
2116                         break;
2117
2118                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2119                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2120                                 break;  /* manual intervention required */
2121                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2122                                 break;  /* standby */
2123                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2124                                 break;  /* unavailable */
2125                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2126                                 break;  /* sanitize in progress */
2127                         /*
2128                          * Issue command to spin up drive when not ready
2129                          */
2130                         if (!spintime) {
2131                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2132                                 cmd[0] = START_STOP;
2133                                 cmd[1] = 1;     /* Return immediately */
2134                                 memset((void *) &cmd[2], 0, 8);
2135                                 cmd[4] = 1;     /* Start spin cycle */
2136                                 if (sdkp->device->start_stop_pwr_cond)
2137                                         cmd[4] |= 1 << 4;
2138                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2139                                                  NULL, 0, &sshdr,
2140                                                  SD_TIMEOUT, SD_MAX_RETRIES,
2141                                                  NULL);
2142                                 spintime_expire = jiffies + 100 * HZ;
2143                                 spintime = 1;
2144                         }
2145                         /* Wait 1 second for next try */
2146                         msleep(1000);
2147                         printk(KERN_CONT ".");
2148
2149                 /*
2150                  * Wait for USB flash devices with slow firmware.
2151                  * Yes, this sense key/ASC combination shouldn't
2152                  * occur here.  It's characteristic of these devices.
2153                  */
2154                 } else if (sense_valid &&
2155                                 sshdr.sense_key == UNIT_ATTENTION &&
2156                                 sshdr.asc == 0x28) {
2157                         if (!spintime) {
2158                                 spintime_expire = jiffies + 5 * HZ;
2159                                 spintime = 1;
2160                         }
2161                         /* Wait 1 second for next try */
2162                         msleep(1000);
2163                 } else {
2164                         /* we don't understand the sense code, so it's
2165                          * probably pointless to loop */
2166                         if(!spintime) {
2167                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2168                                 sd_print_sense_hdr(sdkp, &sshdr);
2169                         }
2170                         break;
2171                 }
2172                                 
2173         } while (spintime && time_before_eq(jiffies, spintime_expire));
2174
2175         if (spintime) {
2176                 if (scsi_status_is_good(the_result))
2177                         printk(KERN_CONT "ready\n");
2178                 else
2179                         printk(KERN_CONT "not responding...\n");
2180         }
2181 }
2182
2183 /*
2184  * Determine whether disk supports Data Integrity Field.
2185  */
2186 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2187 {
2188         struct scsi_device *sdp = sdkp->device;
2189         u8 type;
2190         int ret = 0;
2191
2192         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2193                 return ret;
2194
2195         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2196
2197         if (type > T10_PI_TYPE3_PROTECTION)
2198                 ret = -ENODEV;
2199         else if (scsi_host_dif_capable(sdp->host, type))
2200                 ret = 1;
2201
2202         if (sdkp->first_scan || type != sdkp->protection_type)
2203                 switch (ret) {
2204                 case -ENODEV:
2205                         sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2206                                   " protection type %u. Disabling disk!\n",
2207                                   type);
2208                         break;
2209                 case 1:
2210                         sd_printk(KERN_NOTICE, sdkp,
2211                                   "Enabling DIF Type %u protection\n", type);
2212                         break;
2213                 case 0:
2214                         sd_printk(KERN_NOTICE, sdkp,
2215                                   "Disabling DIF Type %u protection\n", type);
2216                         break;
2217                 }
2218
2219         sdkp->protection_type = type;
2220
2221         return ret;
2222 }
2223
2224 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2225                         struct scsi_sense_hdr *sshdr, int sense_valid,
2226                         int the_result)
2227 {
2228         if (driver_byte(the_result) == DRIVER_SENSE)
2229                 sd_print_sense_hdr(sdkp, sshdr);
2230         else
2231                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2232
2233         /*
2234          * Set dirty bit for removable devices if not ready -
2235          * sometimes drives will not report this properly.
2236          */
2237         if (sdp->removable &&
2238             sense_valid && sshdr->sense_key == NOT_READY)
2239                 set_media_not_present(sdkp);
2240
2241         /*
2242          * We used to set media_present to 0 here to indicate no media
2243          * in the drive, but some drives fail read capacity even with
2244          * media present, so we can't do that.
2245          */
2246         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2247 }
2248
2249 #define RC16_LEN 32
2250 #if RC16_LEN > SD_BUF_SIZE
2251 #error RC16_LEN must not be more than SD_BUF_SIZE
2252 #endif
2253
2254 #define READ_CAPACITY_RETRIES_ON_RESET  10
2255
2256 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2257                                                 unsigned char *buffer)
2258 {
2259         unsigned char cmd[16];
2260         struct scsi_sense_hdr sshdr;
2261         int sense_valid = 0;
2262         int the_result;
2263         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2264         unsigned int alignment;
2265         unsigned long long lba;
2266         unsigned sector_size;
2267
2268         if (sdp->no_read_capacity_16)
2269                 return -EINVAL;
2270
2271         do {
2272                 memset(cmd, 0, 16);
2273                 cmd[0] = SERVICE_ACTION_IN_16;
2274                 cmd[1] = SAI_READ_CAPACITY_16;
2275                 cmd[13] = RC16_LEN;
2276                 memset(buffer, 0, RC16_LEN);
2277
2278                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2279                                         buffer, RC16_LEN, &sshdr,
2280                                         SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2281
2282                 if (media_not_present(sdkp, &sshdr))
2283                         return -ENODEV;
2284
2285                 if (the_result) {
2286                         sense_valid = scsi_sense_valid(&sshdr);
2287                         if (sense_valid &&
2288                             sshdr.sense_key == ILLEGAL_REQUEST &&
2289                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2290                             sshdr.ascq == 0x00)
2291                                 /* Invalid Command Operation Code or
2292                                  * Invalid Field in CDB, just retry
2293                                  * silently with RC10 */
2294                                 return -EINVAL;
2295                         if (sense_valid &&
2296                             sshdr.sense_key == UNIT_ATTENTION &&
2297                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2298                                 /* Device reset might occur several times,
2299                                  * give it one more chance */
2300                                 if (--reset_retries > 0)
2301                                         continue;
2302                 }
2303                 retries--;
2304
2305         } while (the_result && retries);
2306
2307         if (the_result) {
2308                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2309                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2310                 return -EINVAL;
2311         }
2312
2313         sector_size = get_unaligned_be32(&buffer[8]);
2314         lba = get_unaligned_be64(&buffer[0]);
2315
2316         if (sd_read_protection_type(sdkp, buffer) < 0) {
2317                 sdkp->capacity = 0;
2318                 return -ENODEV;
2319         }
2320
2321         /* Logical blocks per physical block exponent */
2322         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2323
2324         /* RC basis */
2325         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2326
2327         /* Lowest aligned logical block */
2328         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2329         blk_queue_alignment_offset(sdp->request_queue, alignment);
2330         if (alignment && sdkp->first_scan)
2331                 sd_printk(KERN_NOTICE, sdkp,
2332                           "physical block alignment offset: %u\n", alignment);
2333
2334         if (buffer[14] & 0x80) { /* LBPME */
2335                 sdkp->lbpme = 1;
2336
2337                 if (buffer[14] & 0x40) /* LBPRZ */
2338                         sdkp->lbprz = 1;
2339
2340                 sd_config_discard(sdkp, SD_LBP_WS16);
2341         }
2342
2343         sdkp->capacity = lba + 1;
2344         return sector_size;
2345 }
2346
2347 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2348                                                 unsigned char *buffer)
2349 {
2350         unsigned char cmd[16];
2351         struct scsi_sense_hdr sshdr;
2352         int sense_valid = 0;
2353         int the_result;
2354         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2355         sector_t lba;
2356         unsigned sector_size;
2357
2358         do {
2359                 cmd[0] = READ_CAPACITY;
2360                 memset(&cmd[1], 0, 9);
2361                 memset(buffer, 0, 8);
2362
2363                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2364                                         buffer, 8, &sshdr,
2365                                         SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2366
2367                 if (media_not_present(sdkp, &sshdr))
2368                         return -ENODEV;
2369
2370                 if (the_result) {
2371                         sense_valid = scsi_sense_valid(&sshdr);
2372                         if (sense_valid &&
2373                             sshdr.sense_key == UNIT_ATTENTION &&
2374                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2375                                 /* Device reset might occur several times,
2376                                  * give it one more chance */
2377                                 if (--reset_retries > 0)
2378                                         continue;
2379                 }
2380                 retries--;
2381
2382         } while (the_result && retries);
2383
2384         if (the_result) {
2385                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2386                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2387                 return -EINVAL;
2388         }
2389
2390         sector_size = get_unaligned_be32(&buffer[4]);
2391         lba = get_unaligned_be32(&buffer[0]);
2392
2393         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2394                 /* Some buggy (usb cardreader) devices return an lba of
2395                    0xffffffff when the want to report a size of 0 (with
2396                    which they really mean no media is present) */
2397                 sdkp->capacity = 0;
2398                 sdkp->physical_block_size = sector_size;
2399                 return sector_size;
2400         }
2401
2402         sdkp->capacity = lba + 1;
2403         sdkp->physical_block_size = sector_size;
2404         return sector_size;
2405 }
2406
2407 static int sd_try_rc16_first(struct scsi_device *sdp)
2408 {
2409         if (sdp->host->max_cmd_len < 16)
2410                 return 0;
2411         if (sdp->try_rc_10_first)
2412                 return 0;
2413         if (sdp->scsi_level > SCSI_SPC_2)
2414                 return 1;
2415         if (scsi_device_protection(sdp))
2416                 return 1;
2417         return 0;
2418 }
2419
2420 /*
2421  * read disk capacity
2422  */
2423 static void
2424 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2425 {
2426         int sector_size;
2427         struct scsi_device *sdp = sdkp->device;
2428
2429         if (sd_try_rc16_first(sdp)) {
2430                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2431                 if (sector_size == -EOVERFLOW)
2432                         goto got_data;
2433                 if (sector_size == -ENODEV)
2434                         return;
2435                 if (sector_size < 0)
2436                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2437                 if (sector_size < 0)
2438                         return;
2439         } else {
2440                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2441                 if (sector_size == -EOVERFLOW)
2442                         goto got_data;
2443                 if (sector_size < 0)
2444                         return;
2445                 if ((sizeof(sdkp->capacity) > 4) &&
2446                     (sdkp->capacity > 0xffffffffULL)) {
2447                         int old_sector_size = sector_size;
2448                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2449                                         "Trying to use READ CAPACITY(16).\n");
2450                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2451                         if (sector_size < 0) {
2452                                 sd_printk(KERN_NOTICE, sdkp,
2453                                         "Using 0xffffffff as device size\n");
2454                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2455                                 sector_size = old_sector_size;
2456                                 goto got_data;
2457                         }
2458                         /* Remember that READ CAPACITY(16) succeeded */
2459                         sdp->try_rc_10_first = 0;
2460                 }
2461         }
2462
2463         /* Some devices are known to return the total number of blocks,
2464          * not the highest block number.  Some devices have versions
2465          * which do this and others which do not.  Some devices we might
2466          * suspect of doing this but we don't know for certain.
2467          *
2468          * If we know the reported capacity is wrong, decrement it.  If
2469          * we can only guess, then assume the number of blocks is even
2470          * (usually true but not always) and err on the side of lowering
2471          * the capacity.
2472          */
2473         if (sdp->fix_capacity ||
2474             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2475                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2476                                 "from its reported value: %llu\n",
2477                                 (unsigned long long) sdkp->capacity);
2478                 --sdkp->capacity;
2479         }
2480
2481 got_data:
2482         if (sector_size == 0) {
2483                 sector_size = 512;
2484                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2485                           "assuming 512.\n");
2486         }
2487
2488         if (sector_size != 512 &&
2489             sector_size != 1024 &&
2490             sector_size != 2048 &&
2491             sector_size != 4096) {
2492                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2493                           sector_size);
2494                 /*
2495                  * The user might want to re-format the drive with
2496                  * a supported sectorsize.  Once this happens, it
2497                  * would be relatively trivial to set the thing up.
2498                  * For this reason, we leave the thing in the table.
2499                  */
2500                 sdkp->capacity = 0;
2501                 /*
2502                  * set a bogus sector size so the normal read/write
2503                  * logic in the block layer will eventually refuse any
2504                  * request on this device without tripping over power
2505                  * of two sector size assumptions
2506                  */
2507                 sector_size = 512;
2508         }
2509         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2510         blk_queue_physical_block_size(sdp->request_queue,
2511                                       sdkp->physical_block_size);
2512         sdkp->device->sector_size = sector_size;
2513
2514         if (sdkp->capacity > 0xffffffff)
2515                 sdp->use_16_for_rw = 1;
2516
2517 }
2518
2519 /*
2520  * Print disk capacity
2521  */
2522 static void
2523 sd_print_capacity(struct scsi_disk *sdkp,
2524                   sector_t old_capacity)
2525 {
2526         int sector_size = sdkp->device->sector_size;
2527         char cap_str_2[10], cap_str_10[10];
2528
2529         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2530                 return;
2531
2532         string_get_size(sdkp->capacity, sector_size,
2533                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2534         string_get_size(sdkp->capacity, sector_size,
2535                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2536
2537         sd_printk(KERN_NOTICE, sdkp,
2538                   "%llu %d-byte logical blocks: (%s/%s)\n",
2539                   (unsigned long long)sdkp->capacity,
2540                   sector_size, cap_str_10, cap_str_2);
2541
2542         if (sdkp->physical_block_size != sector_size)
2543                 sd_printk(KERN_NOTICE, sdkp,
2544                           "%u-byte physical blocks\n",
2545                           sdkp->physical_block_size);
2546
2547         sd_zbc_print_zones(sdkp);
2548 }
2549
2550 /* called with buffer of length 512 */
2551 static inline int
2552 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2553                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2554                  struct scsi_sense_hdr *sshdr)
2555 {
2556         return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2557                                SD_TIMEOUT, SD_MAX_RETRIES, data,
2558                                sshdr);
2559 }
2560
2561 /*
2562  * read write protect setting, if possible - called only in sd_revalidate_disk()
2563  * called with buffer of length SD_BUF_SIZE
2564  */
2565 static void
2566 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2567 {
2568         int res;
2569         struct scsi_device *sdp = sdkp->device;
2570         struct scsi_mode_data data;
2571         int old_wp = sdkp->write_prot;
2572
2573         set_disk_ro(sdkp->disk, 0);
2574         if (sdp->skip_ms_page_3f) {
2575                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2576                 return;
2577         }
2578
2579         if (sdp->use_192_bytes_for_3f) {
2580                 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2581         } else {
2582                 /*
2583                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2584                  * We have to start carefully: some devices hang if we ask
2585                  * for more than is available.
2586                  */
2587                 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2588
2589                 /*
2590                  * Second attempt: ask for page 0 When only page 0 is
2591                  * implemented, a request for page 3F may return Sense Key
2592                  * 5: Illegal Request, Sense Code 24: Invalid field in
2593                  * CDB.
2594                  */
2595                 if (!scsi_status_is_good(res))
2596                         res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2597
2598                 /*
2599                  * Third attempt: ask 255 bytes, as we did earlier.
2600                  */
2601                 if (!scsi_status_is_good(res))
2602                         res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2603                                                &data, NULL);
2604         }
2605
2606         if (!scsi_status_is_good(res)) {
2607                 sd_first_printk(KERN_WARNING, sdkp,
2608                           "Test WP failed, assume Write Enabled\n");
2609         } else {
2610                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2611                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2612                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2613                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2614                                   sdkp->write_prot ? "on" : "off");
2615                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2616                 }
2617         }
2618 }
2619
2620 /*
2621  * sd_read_cache_type - called only from sd_revalidate_disk()
2622  * called with buffer of length SD_BUF_SIZE
2623  */
2624 static void
2625 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2626 {
2627         int len = 0, res;
2628         struct scsi_device *sdp = sdkp->device;
2629
2630         int dbd;
2631         int modepage;
2632         int first_len;
2633         struct scsi_mode_data data;
2634         struct scsi_sense_hdr sshdr;
2635         int old_wce = sdkp->WCE;
2636         int old_rcd = sdkp->RCD;
2637         int old_dpofua = sdkp->DPOFUA;
2638
2639
2640         if (sdkp->cache_override)
2641                 return;
2642
2643         first_len = 4;
2644         if (sdp->skip_ms_page_8) {
2645                 if (sdp->type == TYPE_RBC)
2646                         goto defaults;
2647                 else {
2648                         if (sdp->skip_ms_page_3f)
2649                                 goto defaults;
2650                         modepage = 0x3F;
2651                         if (sdp->use_192_bytes_for_3f)
2652                                 first_len = 192;
2653                         dbd = 0;
2654                 }
2655         } else if (sdp->type == TYPE_RBC) {
2656                 modepage = 6;
2657                 dbd = 8;
2658         } else {
2659                 modepage = 8;
2660                 dbd = 0;
2661         }
2662
2663         /* cautiously ask */
2664         res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2665                         &data, &sshdr);
2666
2667         if (!scsi_status_is_good(res))
2668                 goto bad_sense;
2669
2670         if (!data.header_length) {
2671                 modepage = 6;
2672                 first_len = 0;
2673                 sd_first_printk(KERN_ERR, sdkp,
2674                                 "Missing header in MODE_SENSE response\n");
2675         }
2676
2677         /* that went OK, now ask for the proper length */
2678         len = data.length;
2679
2680         /*
2681          * We're only interested in the first three bytes, actually.
2682          * But the data cache page is defined for the first 20.
2683          */
2684         if (len < 3)
2685                 goto bad_sense;
2686         else if (len > SD_BUF_SIZE) {
2687                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2688                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2689                 len = SD_BUF_SIZE;
2690         }
2691         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2692                 len = 192;
2693
2694         /* Get the data */
2695         if (len > first_len)
2696                 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2697                                 &data, &sshdr);
2698
2699         if (scsi_status_is_good(res)) {
2700                 int offset = data.header_length + data.block_descriptor_length;
2701
2702                 while (offset < len) {
2703                         u8 page_code = buffer[offset] & 0x3F;
2704                         u8 spf       = buffer[offset] & 0x40;
2705
2706                         if (page_code == 8 || page_code == 6) {
2707                                 /* We're interested only in the first 3 bytes.
2708                                  */
2709                                 if (len - offset <= 2) {
2710                                         sd_first_printk(KERN_ERR, sdkp,
2711                                                 "Incomplete mode parameter "
2712                                                         "data\n");
2713                                         goto defaults;
2714                                 } else {
2715                                         modepage = page_code;
2716                                         goto Page_found;
2717                                 }
2718                         } else {
2719                                 /* Go to the next page */
2720                                 if (spf && len - offset > 3)
2721                                         offset += 4 + (buffer[offset+2] << 8) +
2722                                                 buffer[offset+3];
2723                                 else if (!spf && len - offset > 1)
2724                                         offset += 2 + buffer[offset+1];
2725                                 else {
2726                                         sd_first_printk(KERN_ERR, sdkp,
2727                                                         "Incomplete mode "
2728                                                         "parameter data\n");
2729                                         goto defaults;
2730                                 }
2731                         }
2732                 }
2733
2734                 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2735                 goto defaults;
2736
2737         Page_found:
2738                 if (modepage == 8) {
2739                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2740                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2741                 } else {
2742                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2743                         sdkp->RCD = 0;
2744                 }
2745
2746                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2747                 if (sdp->broken_fua) {
2748                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2749                         sdkp->DPOFUA = 0;
2750                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2751                            !sdkp->device->use_16_for_rw) {
2752                         sd_first_printk(KERN_NOTICE, sdkp,
2753                                   "Uses READ/WRITE(6), disabling FUA\n");
2754                         sdkp->DPOFUA = 0;
2755                 }
2756
2757                 /* No cache flush allowed for write protected devices */
2758                 if (sdkp->WCE && sdkp->write_prot)
2759                         sdkp->WCE = 0;
2760
2761                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2762                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2763                         sd_printk(KERN_NOTICE, sdkp,
2764                                   "Write cache: %s, read cache: %s, %s\n",
2765                                   sdkp->WCE ? "enabled" : "disabled",
2766                                   sdkp->RCD ? "disabled" : "enabled",
2767                                   sdkp->DPOFUA ? "supports DPO and FUA"
2768                                   : "doesn't support DPO or FUA");
2769
2770                 return;
2771         }
2772
2773 bad_sense:
2774         if (scsi_sense_valid(&sshdr) &&
2775             sshdr.sense_key == ILLEGAL_REQUEST &&
2776             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2777                 /* Invalid field in CDB */
2778                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2779         else
2780                 sd_first_printk(KERN_ERR, sdkp,
2781                                 "Asking for cache data failed\n");
2782
2783 defaults:
2784         if (sdp->wce_default_on) {
2785                 sd_first_printk(KERN_NOTICE, sdkp,
2786                                 "Assuming drive cache: write back\n");
2787                 sdkp->WCE = 1;
2788         } else {
2789                 sd_first_printk(KERN_ERR, sdkp,
2790                                 "Assuming drive cache: write through\n");
2791                 sdkp->WCE = 0;
2792         }
2793         sdkp->RCD = 0;
2794         sdkp->DPOFUA = 0;
2795 }
2796
2797 /*
2798  * The ATO bit indicates whether the DIF application tag is available
2799  * for use by the operating system.
2800  */
2801 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2802 {
2803         int res, offset;
2804         struct scsi_device *sdp = sdkp->device;
2805         struct scsi_mode_data data;
2806         struct scsi_sense_hdr sshdr;
2807
2808         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2809                 return;
2810
2811         if (sdkp->protection_type == 0)
2812                 return;
2813
2814         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2815                               SD_MAX_RETRIES, &data, &sshdr);
2816
2817         if (!scsi_status_is_good(res) || !data.header_length ||
2818             data.length < 6) {
2819                 sd_first_printk(KERN_WARNING, sdkp,
2820                           "getting Control mode page failed, assume no ATO\n");
2821
2822                 if (scsi_sense_valid(&sshdr))
2823                         sd_print_sense_hdr(sdkp, &sshdr);
2824
2825                 return;
2826         }
2827
2828         offset = data.header_length + data.block_descriptor_length;
2829
2830         if ((buffer[offset] & 0x3f) != 0x0a) {
2831                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2832                 return;
2833         }
2834
2835         if ((buffer[offset + 5] & 0x80) == 0)
2836                 return;
2837
2838         sdkp->ATO = 1;
2839
2840         return;
2841 }
2842
2843 /**
2844  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2845  * @sdkp: disk to query
2846  */
2847 static void sd_read_block_limits(struct scsi_disk *sdkp)
2848 {
2849         unsigned int sector_sz = sdkp->device->sector_size;
2850         const int vpd_len = 64;
2851         unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2852
2853         if (!buffer ||
2854             /* Block Limits VPD */
2855             scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2856                 goto out;
2857
2858         blk_queue_io_min(sdkp->disk->queue,
2859                          get_unaligned_be16(&buffer[6]) * sector_sz);
2860
2861         sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2862         sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2863
2864         if (buffer[3] == 0x3c) {
2865                 unsigned int lba_count, desc_count;
2866
2867                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2868
2869                 if (!sdkp->lbpme)
2870                         goto out;
2871
2872                 lba_count = get_unaligned_be32(&buffer[20]);
2873                 desc_count = get_unaligned_be32(&buffer[24]);
2874
2875                 if (lba_count && desc_count)
2876                         sdkp->max_unmap_blocks = lba_count;
2877
2878                 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2879
2880                 if (buffer[32] & 0x80)
2881                         sdkp->unmap_alignment =
2882                                 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2883
2884                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2885
2886                         if (sdkp->max_unmap_blocks)
2887                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2888                         else
2889                                 sd_config_discard(sdkp, SD_LBP_WS16);
2890
2891                 } else {        /* LBP VPD page tells us what to use */
2892                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2893                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2894                         else if (sdkp->lbpws)
2895                                 sd_config_discard(sdkp, SD_LBP_WS16);
2896                         else if (sdkp->lbpws10)
2897                                 sd_config_discard(sdkp, SD_LBP_WS10);
2898                         else
2899                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2900                 }
2901         }
2902
2903  out:
2904         kfree(buffer);
2905 }
2906
2907 /**
2908  * sd_read_block_characteristics - Query block dev. characteristics
2909  * @sdkp: disk to query
2910  */
2911 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2912 {
2913         struct request_queue *q = sdkp->disk->queue;
2914         unsigned char *buffer;
2915         u16 rot;
2916         const int vpd_len = 64;
2917
2918         buffer = kmalloc(vpd_len, GFP_KERNEL);
2919
2920         if (!buffer ||
2921             /* Block Device Characteristics VPD */
2922             scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2923                 goto out;
2924
2925         rot = get_unaligned_be16(&buffer[4]);
2926
2927         if (rot == 1) {
2928                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2929                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2930         }
2931
2932         if (sdkp->device->type == TYPE_ZBC) {
2933                 /* Host-managed */
2934                 q->limits.zoned = BLK_ZONED_HM;
2935         } else {
2936                 sdkp->zoned = (buffer[8] >> 4) & 3;
2937                 if (sdkp->zoned == 1)
2938                         /* Host-aware */
2939                         q->limits.zoned = BLK_ZONED_HA;
2940                 else
2941                         /*
2942                          * Treat drive-managed devices as
2943                          * regular block devices.
2944                          */
2945                         q->limits.zoned = BLK_ZONED_NONE;
2946         }
2947         if (blk_queue_is_zoned(q) && sdkp->first_scan)
2948                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2949                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2950
2951  out:
2952         kfree(buffer);
2953 }
2954
2955 /**
2956  * sd_read_block_provisioning - Query provisioning VPD page
2957  * @sdkp: disk to query
2958  */
2959 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2960 {
2961         unsigned char *buffer;
2962         const int vpd_len = 8;
2963
2964         if (sdkp->lbpme == 0)
2965                 return;
2966
2967         buffer = kmalloc(vpd_len, GFP_KERNEL);
2968
2969         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2970                 goto out;
2971
2972         sdkp->lbpvpd    = 1;
2973         sdkp->lbpu      = (buffer[5] >> 7) & 1; /* UNMAP */
2974         sdkp->lbpws     = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2975         sdkp->lbpws10   = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2976
2977  out:
2978         kfree(buffer);
2979 }
2980
2981 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2982 {
2983         struct scsi_device *sdev = sdkp->device;
2984
2985         if (sdev->host->no_write_same) {
2986                 sdev->no_write_same = 1;
2987
2988                 return;
2989         }
2990
2991         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2992                 /* too large values might cause issues with arcmsr */
2993                 int vpd_buf_len = 64;
2994
2995                 sdev->no_report_opcodes = 1;
2996
2997                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2998                  * CODES is unsupported and the device has an ATA
2999                  * Information VPD page (SAT).
3000                  */
3001                 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3002                         sdev->no_write_same = 1;
3003         }
3004
3005         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3006                 sdkp->ws16 = 1;
3007
3008         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3009                 sdkp->ws10 = 1;
3010 }
3011
3012 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3013 {
3014         struct scsi_device *sdev = sdkp->device;
3015
3016         if (!sdev->security_supported)
3017                 return;
3018
3019         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3020                         SECURITY_PROTOCOL_IN) == 1 &&
3021             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3022                         SECURITY_PROTOCOL_OUT) == 1)
3023                 sdkp->security = 1;
3024 }
3025
3026 /*
3027  * Determine the device's preferred I/O size for reads and writes
3028  * unless the reported value is unreasonably small, large, not a
3029  * multiple of the physical block size, or simply garbage.
3030  */
3031 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3032                                       unsigned int dev_max)
3033 {
3034         struct scsi_device *sdp = sdkp->device;
3035         unsigned int opt_xfer_bytes =
3036                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3037
3038         if (sdkp->opt_xfer_blocks == 0)
3039                 return false;
3040
3041         if (sdkp->opt_xfer_blocks > dev_max) {
3042                 sd_first_printk(KERN_WARNING, sdkp,
3043                                 "Optimal transfer size %u logical blocks " \
3044                                 "> dev_max (%u logical blocks)\n",
3045                                 sdkp->opt_xfer_blocks, dev_max);
3046                 return false;
3047         }
3048
3049         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3050                 sd_first_printk(KERN_WARNING, sdkp,
3051                                 "Optimal transfer size %u logical blocks " \
3052                                 "> sd driver limit (%u logical blocks)\n",
3053                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3054                 return false;
3055         }
3056
3057         if (opt_xfer_bytes < PAGE_SIZE) {
3058                 sd_first_printk(KERN_WARNING, sdkp,
3059                                 "Optimal transfer size %u bytes < " \
3060                                 "PAGE_SIZE (%u bytes)\n",
3061                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3062                 return false;
3063         }
3064
3065         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3066                 sd_first_printk(KERN_WARNING, sdkp,
3067                                 "Optimal transfer size %u bytes not a " \
3068                                 "multiple of physical block size (%u bytes)\n",
3069                                 opt_xfer_bytes, sdkp->physical_block_size);
3070                 return false;
3071         }
3072
3073         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3074                         opt_xfer_bytes);
3075         return true;
3076 }
3077
3078 /**
3079  *      sd_revalidate_disk - called the first time a new disk is seen,
3080  *      performs disk spin up, read_capacity, etc.
3081  *      @disk: struct gendisk we care about
3082  **/
3083 static int sd_revalidate_disk(struct gendisk *disk)
3084 {
3085         struct scsi_disk *sdkp = scsi_disk(disk);
3086         struct scsi_device *sdp = sdkp->device;
3087         struct request_queue *q = sdkp->disk->queue;
3088         sector_t old_capacity = sdkp->capacity;
3089         unsigned char *buffer;
3090         unsigned int dev_max, rw_max;
3091
3092         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3093                                       "sd_revalidate_disk\n"));
3094
3095         /*
3096          * If the device is offline, don't try and read capacity or any
3097          * of the other niceties.
3098          */
3099         if (!scsi_device_online(sdp))
3100                 goto out;
3101
3102         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3103         if (!buffer) {
3104                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3105                           "allocation failure.\n");
3106                 goto out;
3107         }
3108
3109         sd_spinup_disk(sdkp);
3110
3111         /*
3112          * Without media there is no reason to ask; moreover, some devices
3113          * react badly if we do.
3114          */
3115         if (sdkp->media_present) {
3116                 sd_read_capacity(sdkp, buffer);
3117
3118                 /*
3119                  * set the default to rotational.  All non-rotational devices
3120                  * support the block characteristics VPD page, which will
3121                  * cause this to be updated correctly and any device which
3122                  * doesn't support it should be treated as rotational.
3123                  */
3124                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3125                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3126
3127                 if (scsi_device_supports_vpd(sdp)) {
3128                         sd_read_block_provisioning(sdkp);
3129                         sd_read_block_limits(sdkp);
3130                         sd_read_block_characteristics(sdkp);
3131                         sd_zbc_read_zones(sdkp, buffer);
3132                 }
3133
3134                 sd_print_capacity(sdkp, old_capacity);
3135
3136                 sd_read_write_protect_flag(sdkp, buffer);
3137                 sd_read_cache_type(sdkp, buffer);
3138                 sd_read_app_tag_own(sdkp, buffer);
3139                 sd_read_write_same(sdkp, buffer);
3140                 sd_read_security(sdkp, buffer);
3141         }
3142
3143         /*
3144          * We now have all cache related info, determine how we deal
3145          * with flush requests.
3146          */
3147         sd_set_flush_flag(sdkp);
3148
3149         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3150         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3151
3152         /* Some devices report a maximum block count for READ/WRITE requests. */
3153         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3154         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3155
3156         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3157                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3158                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3159         } else
3160                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3161                                       (sector_t)BLK_DEF_MAX_SECTORS);
3162
3163         /* Do not exceed controller limit */
3164         rw_max = min(rw_max, queue_max_hw_sectors(q));
3165
3166         /*
3167          * Only update max_sectors if previously unset or if the current value
3168          * exceeds the capabilities of the hardware.
3169          */
3170         if (sdkp->first_scan ||
3171             q->limits.max_sectors > q->limits.max_dev_sectors ||
3172             q->limits.max_sectors > q->limits.max_hw_sectors)
3173                 q->limits.max_sectors = rw_max;
3174
3175         sdkp->first_scan = 0;
3176
3177         set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3178         sd_config_write_same(sdkp);
3179         kfree(buffer);
3180
3181  out:
3182         return 0;
3183 }
3184
3185 /**
3186  *      sd_unlock_native_capacity - unlock native capacity
3187  *      @disk: struct gendisk to set capacity for
3188  *
3189  *      Block layer calls this function if it detects that partitions
3190  *      on @disk reach beyond the end of the device.  If the SCSI host
3191  *      implements ->unlock_native_capacity() method, it's invoked to
3192  *      give it a chance to adjust the device capacity.
3193  *
3194  *      CONTEXT:
3195  *      Defined by block layer.  Might sleep.
3196  */
3197 static void sd_unlock_native_capacity(struct gendisk *disk)
3198 {
3199         struct scsi_device *sdev = scsi_disk(disk)->device;
3200
3201         if (sdev->host->hostt->unlock_native_capacity)
3202                 sdev->host->hostt->unlock_native_capacity(sdev);
3203 }
3204
3205 /**
3206  *      sd_format_disk_name - format disk name
3207  *      @prefix: name prefix - ie. "sd" for SCSI disks
3208  *      @index: index of the disk to format name for
3209  *      @buf: output buffer
3210  *      @buflen: length of the output buffer
3211  *
3212  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3213  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3214  *      which is followed by sdaaa.
3215  *
3216  *      This is basically 26 base counting with one extra 'nil' entry
3217  *      at the beginning from the second digit on and can be
3218  *      determined using similar method as 26 base conversion with the
3219  *      index shifted -1 after each digit is computed.
3220  *
3221  *      CONTEXT:
3222  *      Don't care.
3223  *
3224  *      RETURNS:
3225  *      0 on success, -errno on failure.
3226  */
3227 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3228 {
3229         const int base = 'z' - 'a' + 1;
3230         char *begin = buf + strlen(prefix);
3231         char *end = buf + buflen;
3232         char *p;
3233         int unit;
3234
3235         p = end - 1;
3236         *p = '\0';
3237         unit = base;
3238         do {
3239                 if (p == begin)
3240                         return -EINVAL;
3241                 *--p = 'a' + (index % unit);
3242                 index = (index / unit) - 1;
3243         } while (index >= 0);
3244
3245         memmove(begin, p, end - p);
3246         memcpy(buf, prefix, strlen(prefix));
3247
3248         return 0;
3249 }
3250
3251 /**
3252  *      sd_probe - called during driver initialization and whenever a
3253  *      new scsi device is attached to the system. It is called once
3254  *      for each scsi device (not just disks) present.
3255  *      @dev: pointer to device object
3256  *
3257  *      Returns 0 if successful (or not interested in this scsi device 
3258  *      (e.g. scanner)); 1 when there is an error.
3259  *
3260  *      Note: this function is invoked from the scsi mid-level.
3261  *      This function sets up the mapping between a given 
3262  *      <host,channel,id,lun> (found in sdp) and new device name 
3263  *      (e.g. /dev/sda). More precisely it is the block device major 
3264  *      and minor number that is chosen here.
3265  *
3266  *      Assume sd_probe is not re-entrant (for time being)
3267  *      Also think about sd_probe() and sd_remove() running coincidentally.
3268  **/
3269 static int sd_probe(struct device *dev)
3270 {
3271         struct scsi_device *sdp = to_scsi_device(dev);
3272         struct scsi_disk *sdkp;
3273         struct gendisk *gd;
3274         int index;
3275         int error;
3276
3277         scsi_autopm_get_device(sdp);
3278         error = -ENODEV;
3279         if (sdp->type != TYPE_DISK &&
3280             sdp->type != TYPE_ZBC &&
3281             sdp->type != TYPE_MOD &&
3282             sdp->type != TYPE_RBC)
3283                 goto out;
3284
3285 #ifndef CONFIG_BLK_DEV_ZONED
3286         if (sdp->type == TYPE_ZBC)
3287                 goto out;
3288 #endif
3289         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3290                                         "sd_probe\n"));
3291
3292         error = -ENOMEM;
3293         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3294         if (!sdkp)
3295                 goto out;
3296
3297         gd = alloc_disk(SD_MINORS);
3298         if (!gd)
3299                 goto out_free;
3300
3301         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3302         if (index < 0) {
3303                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3304                 goto out_put;
3305         }
3306
3307         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3308         if (error) {
3309                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3310                 goto out_free_index;
3311         }
3312
3313         sdkp->device = sdp;
3314         sdkp->driver = &sd_template;
3315         sdkp->disk = gd;
3316         sdkp->index = index;
3317         atomic_set(&sdkp->openers, 0);
3318         atomic_set(&sdkp->device->ioerr_cnt, 0);
3319
3320         if (!sdp->request_queue->rq_timeout) {
3321                 if (sdp->type != TYPE_MOD)
3322                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3323                 else
3324                         blk_queue_rq_timeout(sdp->request_queue,
3325                                              SD_MOD_TIMEOUT);
3326         }
3327
3328         device_initialize(&sdkp->dev);
3329         sdkp->dev.parent = dev;
3330         sdkp->dev.class = &sd_disk_class;
3331         dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3332
3333         error = device_add(&sdkp->dev);
3334         if (error)
3335                 goto out_free_index;
3336
3337         get_device(dev);
3338         dev_set_drvdata(dev, sdkp);
3339
3340         gd->major = sd_major((index & 0xf0) >> 4);
3341         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3342
3343         gd->fops = &sd_fops;
3344         gd->private_data = &sdkp->driver;
3345         gd->queue = sdkp->device->request_queue;
3346
3347         /* defaults, until the device tells us otherwise */
3348         sdp->sector_size = 512;
3349         sdkp->capacity = 0;
3350         sdkp->media_present = 1;
3351         sdkp->write_prot = 0;
3352         sdkp->cache_override = 0;
3353         sdkp->WCE = 0;
3354         sdkp->RCD = 0;
3355         sdkp->ATO = 0;
3356         sdkp->first_scan = 1;
3357         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3358
3359         sd_revalidate_disk(gd);
3360
3361         gd->flags = GENHD_FL_EXT_DEVT;
3362         if (sdp->removable) {
3363                 gd->flags |= GENHD_FL_REMOVABLE;
3364                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3365                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3366         }
3367
3368         blk_pm_runtime_init(sdp->request_queue, dev);
3369         if (sdp->rpm_autosuspend) {
3370                 pm_runtime_set_autosuspend_delay(dev,
3371                         sdp->host->hostt->rpm_autosuspend_delay);
3372         }
3373         device_add_disk(dev, gd, NULL);
3374         if (sdkp->capacity)
3375                 sd_dif_config_host(sdkp);
3376
3377         sd_revalidate_disk(gd);
3378
3379         if (sdkp->security) {
3380                 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3381                 if (sdkp->opal_dev)
3382                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3383         }
3384
3385         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3386                   sdp->removable ? "removable " : "");
3387         scsi_autopm_put_device(sdp);
3388
3389         return 0;
3390
3391  out_free_index:
3392         ida_free(&sd_index_ida, index);
3393  out_put:
3394         put_disk(gd);
3395  out_free:
3396         kfree(sdkp);
3397  out:
3398         scsi_autopm_put_device(sdp);
3399         return error;
3400 }
3401
3402 /**
3403  *      sd_remove - called whenever a scsi disk (previously recognized by
3404  *      sd_probe) is detached from the system. It is called (potentially
3405  *      multiple times) during sd module unload.
3406  *      @dev: pointer to device object
3407  *
3408  *      Note: this function is invoked from the scsi mid-level.
3409  *      This function potentially frees up a device name (e.g. /dev/sdc)
3410  *      that could be re-used by a subsequent sd_probe().
3411  *      This function is not called when the built-in sd driver is "exit-ed".
3412  **/
3413 static int sd_remove(struct device *dev)
3414 {
3415         struct scsi_disk *sdkp;
3416         dev_t devt;
3417
3418         sdkp = dev_get_drvdata(dev);
3419         devt = disk_devt(sdkp->disk);
3420         scsi_autopm_get_device(sdkp->device);
3421
3422         async_synchronize_full_domain(&scsi_sd_pm_domain);
3423         device_del(&sdkp->dev);
3424         del_gendisk(sdkp->disk);
3425         sd_shutdown(dev);
3426
3427         free_opal_dev(sdkp->opal_dev);
3428
3429         blk_register_region(devt, SD_MINORS, NULL,
3430                             sd_default_probe, NULL, NULL);
3431
3432         mutex_lock(&sd_ref_mutex);
3433         dev_set_drvdata(dev, NULL);
3434         put_device(&sdkp->dev);
3435         mutex_unlock(&sd_ref_mutex);
3436
3437         return 0;
3438 }
3439
3440 /**
3441  *      scsi_disk_release - Called to free the scsi_disk structure
3442  *      @dev: pointer to embedded class device
3443  *
3444  *      sd_ref_mutex must be held entering this routine.  Because it is
3445  *      called on last put, you should always use the scsi_disk_get()
3446  *      scsi_disk_put() helpers which manipulate the semaphore directly
3447  *      and never do a direct put_device.
3448  **/
3449 static void scsi_disk_release(struct device *dev)
3450 {
3451         struct scsi_disk *sdkp = to_scsi_disk(dev);
3452         struct gendisk *disk = sdkp->disk;
3453         struct request_queue *q = disk->queue;
3454
3455         ida_free(&sd_index_ida, sdkp->index);
3456
3457         /*
3458          * Wait until all requests that are in progress have completed.
3459          * This is necessary to avoid that e.g. scsi_end_request() crashes
3460          * due to clearing the disk->private_data pointer. Wait from inside
3461          * scsi_disk_release() instead of from sd_release() to avoid that
3462          * freezing and unfreezing the request queue affects user space I/O
3463          * in case multiple processes open a /dev/sd... node concurrently.
3464          */
3465         blk_mq_freeze_queue(q);
3466         blk_mq_unfreeze_queue(q);
3467
3468         disk->private_data = NULL;
3469         put_disk(disk);
3470         put_device(&sdkp->device->sdev_gendev);
3471
3472         kfree(sdkp);
3473 }
3474
3475 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3476 {
3477         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3478         struct scsi_sense_hdr sshdr;
3479         struct scsi_device *sdp = sdkp->device;
3480         int res;
3481
3482         if (start)
3483                 cmd[4] |= 1;    /* START */
3484
3485         if (sdp->start_stop_pwr_cond)
3486                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3487
3488         if (!scsi_device_online(sdp))
3489                 return -ENODEV;
3490
3491         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3492                         SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3493         if (res) {
3494                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3495                 if (driver_byte(res) == DRIVER_SENSE)
3496                         sd_print_sense_hdr(sdkp, &sshdr);
3497                 if (scsi_sense_valid(&sshdr) &&
3498                         /* 0x3a is medium not present */
3499                         sshdr.asc == 0x3a)
3500                         res = 0;
3501         }
3502
3503         /* SCSI error codes must not go to the generic layer */
3504         if (res)
3505                 return -EIO;
3506
3507         return 0;
3508 }
3509
3510 /*
3511  * Send a SYNCHRONIZE CACHE instruction down to the device through
3512  * the normal SCSI command structure.  Wait for the command to
3513  * complete.
3514  */
3515 static void sd_shutdown(struct device *dev)
3516 {
3517         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3518
3519         if (!sdkp)
3520                 return;         /* this can happen */
3521
3522         if (pm_runtime_suspended(dev))
3523                 return;
3524
3525         if (sdkp->WCE && sdkp->media_present) {
3526                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3527                 sd_sync_cache(sdkp, NULL);
3528         }
3529
3530         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3531                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3532                 sd_start_stop_device(sdkp, 0);
3533         }
3534 }
3535
3536 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3537 {
3538         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3539         struct scsi_sense_hdr sshdr;
3540         int ret = 0;
3541
3542         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3543                 return 0;
3544
3545         if (sdkp->WCE && sdkp->media_present) {
3546                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3547                 ret = sd_sync_cache(sdkp, &sshdr);
3548
3549                 if (ret) {
3550                         /* ignore OFFLINE device */
3551                         if (ret == -ENODEV)
3552                                 return 0;
3553
3554                         if (!scsi_sense_valid(&sshdr) ||
3555                             sshdr.sense_key != ILLEGAL_REQUEST)
3556                                 return ret;
3557
3558                         /*
3559                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3560                          * doesn't support sync. There's not much to do and
3561                          * suspend shouldn't fail.
3562                          */
3563                         ret = 0;
3564                 }
3565         }
3566
3567         if (sdkp->device->manage_start_stop) {
3568                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3569                 /* an error is not worth aborting a system sleep */
3570                 ret = sd_start_stop_device(sdkp, 0);
3571                 if (ignore_stop_errors)
3572                         ret = 0;
3573         }
3574
3575         return ret;
3576 }
3577
3578 static int sd_suspend_system(struct device *dev)
3579 {
3580         return sd_suspend_common(dev, true);
3581 }
3582
3583 static int sd_suspend_runtime(struct device *dev)
3584 {
3585         return sd_suspend_common(dev, false);
3586 }
3587
3588 static int sd_resume(struct device *dev)
3589 {
3590         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3591         int ret;
3592
3593         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3594                 return 0;
3595
3596         if (!sdkp->device->manage_start_stop)
3597                 return 0;
3598
3599         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3600         ret = sd_start_stop_device(sdkp, 1);
3601         if (!ret)
3602                 opal_unlock_from_suspend(sdkp->opal_dev);
3603         return ret;
3604 }
3605
3606 /**
3607  *      init_sd - entry point for this driver (both when built in or when
3608  *      a module).
3609  *
3610  *      Note: this function registers this driver with the scsi mid-level.
3611  **/
3612 static int __init init_sd(void)
3613 {
3614         int majors = 0, i, err;
3615
3616         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3617
3618         for (i = 0; i < SD_MAJORS; i++) {
3619                 if (register_blkdev(sd_major(i), "sd") != 0)
3620                         continue;
3621                 majors++;
3622                 blk_register_region(sd_major(i), SD_MINORS, NULL,
3623                                     sd_default_probe, NULL, NULL);
3624         }
3625
3626         if (!majors)
3627                 return -ENODEV;
3628
3629         err = class_register(&sd_disk_class);
3630         if (err)
3631                 goto err_out;
3632
3633         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3634                                          0, 0, NULL);
3635         if (!sd_cdb_cache) {
3636                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3637                 err = -ENOMEM;
3638                 goto err_out_class;
3639         }
3640
3641         sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3642         if (!sd_cdb_pool) {
3643                 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3644                 err = -ENOMEM;
3645                 goto err_out_cache;
3646         }
3647
3648         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3649         if (!sd_page_pool) {
3650                 printk(KERN_ERR "sd: can't init discard page pool\n");
3651                 err = -ENOMEM;
3652                 goto err_out_ppool;
3653         }
3654
3655         err = scsi_register_driver(&sd_template.gendrv);
3656         if (err)
3657                 goto err_out_driver;
3658
3659         return 0;
3660
3661 err_out_driver:
3662         mempool_destroy(sd_page_pool);
3663
3664 err_out_ppool:
3665         mempool_destroy(sd_cdb_pool);
3666
3667 err_out_cache:
3668         kmem_cache_destroy(sd_cdb_cache);
3669
3670 err_out_class:
3671         class_unregister(&sd_disk_class);
3672 err_out:
3673         for (i = 0; i < SD_MAJORS; i++)
3674                 unregister_blkdev(sd_major(i), "sd");
3675         return err;
3676 }
3677
3678 /**
3679  *      exit_sd - exit point for this driver (when it is a module).
3680  *
3681  *      Note: this function unregisters this driver from the scsi mid-level.
3682  **/
3683 static void __exit exit_sd(void)
3684 {
3685         int i;
3686
3687         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3688
3689         scsi_unregister_driver(&sd_template.gendrv);
3690         mempool_destroy(sd_cdb_pool);
3691         mempool_destroy(sd_page_pool);
3692         kmem_cache_destroy(sd_cdb_cache);
3693
3694         class_unregister(&sd_disk_class);
3695
3696         for (i = 0; i < SD_MAJORS; i++) {
3697                 blk_unregister_region(sd_major(i), SD_MINORS);
3698                 unregister_blkdev(sd_major(i), "sd");
3699         }
3700 }
3701
3702 module_init(init_sd);
3703 module_exit(exit_sd);
3704
3705 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3706 {
3707         scsi_print_sense_hdr(sdkp->device,
3708                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3709 }
3710
3711 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3712 {
3713         const char *hb_string = scsi_hostbyte_string(result);
3714         const char *db_string = scsi_driverbyte_string(result);
3715
3716         if (hb_string || db_string)
3717                 sd_printk(KERN_INFO, sdkp,
3718                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3719                           hb_string ? hb_string : "invalid",
3720                           db_string ? db_string : "invalid");
3721         else
3722                 sd_printk(KERN_INFO, sdkp,
3723                           "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3724                           msg, host_byte(result), driver_byte(result));
3725 }