]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/spi/spi-fsl-dspi.c
spi: spi-fsl-dspi: Implement the PTP system timestamping for TCFQ mode
[linux.git] / drivers / spi / spi-fsl-dspi.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
20
21 #define DRIVER_NAME                     "fsl-dspi"
22
23 #ifdef CONFIG_M5441x
24 #define DSPI_FIFO_SIZE                  16
25 #else
26 #define DSPI_FIFO_SIZE                  4
27 #endif
28 #define DSPI_DMA_BUFSIZE                (DSPI_FIFO_SIZE * 1024)
29
30 #define SPI_MCR                         0x00
31 #define SPI_MCR_MASTER                  BIT(31)
32 #define SPI_MCR_PCSIS                   (0x3F << 16)
33 #define SPI_MCR_CLR_TXF                 BIT(11)
34 #define SPI_MCR_CLR_RXF                 BIT(10)
35 #define SPI_MCR_XSPI                    BIT(3)
36
37 #define SPI_TCR                         0x08
38 #define SPI_TCR_GET_TCNT(x)             (((x) & GENMASK(31, 16)) >> 16)
39
40 #define SPI_CTAR(x)                     (0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x)                (((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL                   BIT(26)
43 #define SPI_CTAR_CPHA                   BIT(25)
44 #define SPI_CTAR_LSBFE                  BIT(24)
45 #define SPI_CTAR_PCSSCK(x)              (((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x)                (((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x)                 (((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x)                 (((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x)               (((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x)                 (((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x)                  (((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x)                  ((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS             0xf
54
55 #define SPI_CTAR0_SLAVE                 0x0c
56
57 #define SPI_SR                          0x2c
58 #define SPI_SR_TCFQF                    BIT(31)
59 #define SPI_SR_EOQF                     BIT(28)
60 #define SPI_SR_TFUF                     BIT(27)
61 #define SPI_SR_TFFF                     BIT(25)
62 #define SPI_SR_CMDTCF                   BIT(23)
63 #define SPI_SR_SPEF                     BIT(21)
64 #define SPI_SR_RFOF                     BIT(19)
65 #define SPI_SR_TFIWF                    BIT(18)
66 #define SPI_SR_RFDF                     BIT(17)
67 #define SPI_SR_CMDFFF                   BIT(16)
68 #define SPI_SR_CLEAR                    (SPI_SR_TCFQF | SPI_SR_EOQF | \
69                                         SPI_SR_TFUF | SPI_SR_TFFF | \
70                                         SPI_SR_CMDTCF | SPI_SR_SPEF | \
71                                         SPI_SR_RFOF | SPI_SR_TFIWF | \
72                                         SPI_SR_RFDF | SPI_SR_CMDFFF)
73
74 #define SPI_RSER_TFFFE                  BIT(25)
75 #define SPI_RSER_TFFFD                  BIT(24)
76 #define SPI_RSER_RFDFE                  BIT(17)
77 #define SPI_RSER_RFDFD                  BIT(16)
78
79 #define SPI_RSER                        0x30
80 #define SPI_RSER_TCFQE                  BIT(31)
81 #define SPI_RSER_EOQFE                  BIT(28)
82
83 #define SPI_PUSHR                       0x34
84 #define SPI_PUSHR_CMD_CONT              BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x)           (((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ               BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT             BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x)            (BIT(x) & GENMASK(5, 0))
89
90 #define SPI_PUSHR_SLAVE                 0x34
91
92 #define SPI_POPR                        0x38
93
94 #define SPI_TXFR0                       0x3c
95 #define SPI_TXFR1                       0x40
96 #define SPI_TXFR2                       0x44
97 #define SPI_TXFR3                       0x48
98 #define SPI_RXFR0                       0x7c
99 #define SPI_RXFR1                       0x80
100 #define SPI_RXFR2                       0x84
101 #define SPI_RXFR3                       0x88
102
103 #define SPI_CTARE(x)                    (0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x)              (((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x)               ((x) & 0x7ff)
106
107 #define SPI_SREX                        0x13c
108
109 #define SPI_FRAME_BITS(bits)            SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits)           SPI_CTARE_FMSZE(((bits) - 1) >> 4)
111
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD                       0x0
114 #define PUSHR_TX                        0x2
115
116 #define DMA_COMPLETION_TIMEOUT          msecs_to_jiffies(3000)
117
118 struct chip_data {
119         u32                     ctar_val;
120         u16                     void_write_data;
121 };
122
123 enum dspi_trans_mode {
124         DSPI_EOQ_MODE = 0,
125         DSPI_TCFQ_MODE,
126         DSPI_DMA_MODE,
127 };
128
129 struct fsl_dspi_devtype_data {
130         enum dspi_trans_mode    trans_mode;
131         u8                      max_clock_factor;
132         bool                    ptp_sts_supported;
133         bool                    xspi_mode;
134 };
135
136 static const struct fsl_dspi_devtype_data vf610_data = {
137         .trans_mode             = DSPI_DMA_MODE,
138         .max_clock_factor       = 2,
139 };
140
141 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
142         .trans_mode             = DSPI_TCFQ_MODE,
143         .max_clock_factor       = 8,
144         .ptp_sts_supported      = true,
145         .xspi_mode              = true,
146 };
147
148 static const struct fsl_dspi_devtype_data ls2085a_data = {
149         .trans_mode             = DSPI_TCFQ_MODE,
150         .max_clock_factor       = 8,
151         .ptp_sts_supported      = true,
152 };
153
154 static const struct fsl_dspi_devtype_data coldfire_data = {
155         .trans_mode             = DSPI_EOQ_MODE,
156         .max_clock_factor       = 8,
157 };
158
159 struct fsl_dspi_dma {
160         /* Length of transfer in words of DSPI_FIFO_SIZE */
161         u32                                     curr_xfer_len;
162
163         u32                                     *tx_dma_buf;
164         struct dma_chan                         *chan_tx;
165         dma_addr_t                              tx_dma_phys;
166         struct completion                       cmd_tx_complete;
167         struct dma_async_tx_descriptor          *tx_desc;
168
169         u32                                     *rx_dma_buf;
170         struct dma_chan                         *chan_rx;
171         dma_addr_t                              rx_dma_phys;
172         struct completion                       cmd_rx_complete;
173         struct dma_async_tx_descriptor          *rx_desc;
174 };
175
176 struct fsl_dspi {
177         struct spi_controller                   *ctlr;
178         struct platform_device                  *pdev;
179
180         struct regmap                           *regmap;
181         struct regmap                           *regmap_pushr;
182         int                                     irq;
183         struct clk                              *clk;
184
185         struct spi_transfer                     *cur_transfer;
186         struct spi_message                      *cur_msg;
187         struct chip_data                        *cur_chip;
188         size_t                                  len;
189         const void                              *tx;
190         void                                    *rx;
191         void                                    *rx_end;
192         u16                                     void_write_data;
193         u16                                     tx_cmd;
194         u8                                      bits_per_word;
195         u8                                      bytes_per_word;
196         const struct fsl_dspi_devtype_data      *devtype_data;
197
198         wait_queue_head_t                       waitq;
199         u32                                     waitflags;
200
201         struct fsl_dspi_dma                     *dma;
202 };
203
204 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
205 {
206         u32 txdata = 0;
207
208         if (dspi->tx) {
209                 if (dspi->bytes_per_word == 1)
210                         txdata = *(u8 *)dspi->tx;
211                 else if (dspi->bytes_per_word == 2)
212                         txdata = *(u16 *)dspi->tx;
213                 else  /* dspi->bytes_per_word == 4 */
214                         txdata = *(u32 *)dspi->tx;
215                 dspi->tx += dspi->bytes_per_word;
216         }
217         dspi->len -= dspi->bytes_per_word;
218         return txdata;
219 }
220
221 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
222 {
223         u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
224
225         if (spi_controller_is_slave(dspi->ctlr))
226                 return data;
227
228         if (dspi->len > 0)
229                 cmd |= SPI_PUSHR_CMD_CONT;
230         return cmd << 16 | data;
231 }
232
233 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
234 {
235         if (!dspi->rx)
236                 return;
237
238         /* Mask off undefined bits */
239         rxdata &= (1 << dspi->bits_per_word) - 1;
240
241         if (dspi->bytes_per_word == 1)
242                 *(u8 *)dspi->rx = rxdata;
243         else if (dspi->bytes_per_word == 2)
244                 *(u16 *)dspi->rx = rxdata;
245         else /* dspi->bytes_per_word == 4 */
246                 *(u32 *)dspi->rx = rxdata;
247         dspi->rx += dspi->bytes_per_word;
248 }
249
250 static void dspi_tx_dma_callback(void *arg)
251 {
252         struct fsl_dspi *dspi = arg;
253         struct fsl_dspi_dma *dma = dspi->dma;
254
255         complete(&dma->cmd_tx_complete);
256 }
257
258 static void dspi_rx_dma_callback(void *arg)
259 {
260         struct fsl_dspi *dspi = arg;
261         struct fsl_dspi_dma *dma = dspi->dma;
262         int i;
263
264         if (dspi->rx) {
265                 for (i = 0; i < dma->curr_xfer_len; i++)
266                         dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
267         }
268
269         complete(&dma->cmd_rx_complete);
270 }
271
272 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
273 {
274         struct device *dev = &dspi->pdev->dev;
275         struct fsl_dspi_dma *dma = dspi->dma;
276         int time_left;
277         int i;
278
279         for (i = 0; i < dma->curr_xfer_len; i++)
280                 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
281
282         dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
283                                         dma->tx_dma_phys,
284                                         dma->curr_xfer_len *
285                                         DMA_SLAVE_BUSWIDTH_4_BYTES,
286                                         DMA_MEM_TO_DEV,
287                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
288         if (!dma->tx_desc) {
289                 dev_err(dev, "Not able to get desc for DMA xfer\n");
290                 return -EIO;
291         }
292
293         dma->tx_desc->callback = dspi_tx_dma_callback;
294         dma->tx_desc->callback_param = dspi;
295         if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
296                 dev_err(dev, "DMA submit failed\n");
297                 return -EINVAL;
298         }
299
300         dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
301                                         dma->rx_dma_phys,
302                                         dma->curr_xfer_len *
303                                         DMA_SLAVE_BUSWIDTH_4_BYTES,
304                                         DMA_DEV_TO_MEM,
305                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306         if (!dma->rx_desc) {
307                 dev_err(dev, "Not able to get desc for DMA xfer\n");
308                 return -EIO;
309         }
310
311         dma->rx_desc->callback = dspi_rx_dma_callback;
312         dma->rx_desc->callback_param = dspi;
313         if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
314                 dev_err(dev, "DMA submit failed\n");
315                 return -EINVAL;
316         }
317
318         reinit_completion(&dspi->dma->cmd_rx_complete);
319         reinit_completion(&dspi->dma->cmd_tx_complete);
320
321         dma_async_issue_pending(dma->chan_rx);
322         dma_async_issue_pending(dma->chan_tx);
323
324         if (spi_controller_is_slave(dspi->ctlr)) {
325                 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
326                 return 0;
327         }
328
329         time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
330                                                 DMA_COMPLETION_TIMEOUT);
331         if (time_left == 0) {
332                 dev_err(dev, "DMA tx timeout\n");
333                 dmaengine_terminate_all(dma->chan_tx);
334                 dmaengine_terminate_all(dma->chan_rx);
335                 return -ETIMEDOUT;
336         }
337
338         time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
339                                                 DMA_COMPLETION_TIMEOUT);
340         if (time_left == 0) {
341                 dev_err(dev, "DMA rx timeout\n");
342                 dmaengine_terminate_all(dma->chan_tx);
343                 dmaengine_terminate_all(dma->chan_rx);
344                 return -ETIMEDOUT;
345         }
346
347         return 0;
348 }
349
350 static int dspi_dma_xfer(struct fsl_dspi *dspi)
351 {
352         struct spi_message *message = dspi->cur_msg;
353         struct device *dev = &dspi->pdev->dev;
354         struct fsl_dspi_dma *dma = dspi->dma;
355         int curr_remaining_bytes;
356         int bytes_per_buffer;
357         int ret = 0;
358
359         curr_remaining_bytes = dspi->len;
360         bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
361         while (curr_remaining_bytes) {
362                 /* Check if current transfer fits the DMA buffer */
363                 dma->curr_xfer_len = curr_remaining_bytes
364                         / dspi->bytes_per_word;
365                 if (dma->curr_xfer_len > bytes_per_buffer)
366                         dma->curr_xfer_len = bytes_per_buffer;
367
368                 ret = dspi_next_xfer_dma_submit(dspi);
369                 if (ret) {
370                         dev_err(dev, "DMA transfer failed\n");
371                         goto exit;
372
373                 } else {
374                         const int len =
375                                 dma->curr_xfer_len * dspi->bytes_per_word;
376                         curr_remaining_bytes -= len;
377                         message->actual_length += len;
378                         if (curr_remaining_bytes < 0)
379                                 curr_remaining_bytes = 0;
380                 }
381         }
382
383 exit:
384         return ret;
385 }
386
387 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
388 {
389         struct device *dev = &dspi->pdev->dev;
390         struct dma_slave_config cfg;
391         struct fsl_dspi_dma *dma;
392         int ret;
393
394         dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
395         if (!dma)
396                 return -ENOMEM;
397
398         dma->chan_rx = dma_request_slave_channel(dev, "rx");
399         if (!dma->chan_rx) {
400                 dev_err(dev, "rx dma channel not available\n");
401                 ret = -ENODEV;
402                 return ret;
403         }
404
405         dma->chan_tx = dma_request_slave_channel(dev, "tx");
406         if (!dma->chan_tx) {
407                 dev_err(dev, "tx dma channel not available\n");
408                 ret = -ENODEV;
409                 goto err_tx_channel;
410         }
411
412         dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
413                                              &dma->tx_dma_phys, GFP_KERNEL);
414         if (!dma->tx_dma_buf) {
415                 ret = -ENOMEM;
416                 goto err_tx_dma_buf;
417         }
418
419         dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
420                                              &dma->rx_dma_phys, GFP_KERNEL);
421         if (!dma->rx_dma_buf) {
422                 ret = -ENOMEM;
423                 goto err_rx_dma_buf;
424         }
425
426         cfg.src_addr = phy_addr + SPI_POPR;
427         cfg.dst_addr = phy_addr + SPI_PUSHR;
428         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
429         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
430         cfg.src_maxburst = 1;
431         cfg.dst_maxburst = 1;
432
433         cfg.direction = DMA_DEV_TO_MEM;
434         ret = dmaengine_slave_config(dma->chan_rx, &cfg);
435         if (ret) {
436                 dev_err(dev, "can't configure rx dma channel\n");
437                 ret = -EINVAL;
438                 goto err_slave_config;
439         }
440
441         cfg.direction = DMA_MEM_TO_DEV;
442         ret = dmaengine_slave_config(dma->chan_tx, &cfg);
443         if (ret) {
444                 dev_err(dev, "can't configure tx dma channel\n");
445                 ret = -EINVAL;
446                 goto err_slave_config;
447         }
448
449         dspi->dma = dma;
450         init_completion(&dma->cmd_tx_complete);
451         init_completion(&dma->cmd_rx_complete);
452
453         return 0;
454
455 err_slave_config:
456         dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
457                         dma->rx_dma_buf, dma->rx_dma_phys);
458 err_rx_dma_buf:
459         dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
460                         dma->tx_dma_buf, dma->tx_dma_phys);
461 err_tx_dma_buf:
462         dma_release_channel(dma->chan_tx);
463 err_tx_channel:
464         dma_release_channel(dma->chan_rx);
465
466         devm_kfree(dev, dma);
467         dspi->dma = NULL;
468
469         return ret;
470 }
471
472 static void dspi_release_dma(struct fsl_dspi *dspi)
473 {
474         struct fsl_dspi_dma *dma = dspi->dma;
475         struct device *dev = &dspi->pdev->dev;
476
477         if (!dma)
478                 return;
479
480         if (dma->chan_tx) {
481                 dma_unmap_single(dev, dma->tx_dma_phys,
482                                  DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
483                 dma_release_channel(dma->chan_tx);
484         }
485
486         if (dma->chan_rx) {
487                 dma_unmap_single(dev, dma->rx_dma_phys,
488                                  DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
489                 dma_release_channel(dma->chan_rx);
490         }
491 }
492
493 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
494                            unsigned long clkrate)
495 {
496         /* Valid baud rate pre-scaler values */
497         int pbr_tbl[4] = {2, 3, 5, 7};
498         int brs[16] = { 2,      4,      6,      8,
499                         16,     32,     64,     128,
500                         256,    512,    1024,   2048,
501                         4096,   8192,   16384,  32768 };
502         int scale_needed, scale, minscale = INT_MAX;
503         int i, j;
504
505         scale_needed = clkrate / speed_hz;
506         if (clkrate % speed_hz)
507                 scale_needed++;
508
509         for (i = 0; i < ARRAY_SIZE(brs); i++)
510                 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
511                         scale = brs[i] * pbr_tbl[j];
512                         if (scale >= scale_needed) {
513                                 if (scale < minscale) {
514                                         minscale = scale;
515                                         *br = i;
516                                         *pbr = j;
517                                 }
518                                 break;
519                         }
520                 }
521
522         if (minscale == INT_MAX) {
523                 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
524                         speed_hz, clkrate);
525                 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
526                 *br =  ARRAY_SIZE(brs) - 1;
527         }
528 }
529
530 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
531                            unsigned long clkrate)
532 {
533         int scale_needed, scale, minscale = INT_MAX;
534         int pscale_tbl[4] = {1, 3, 5, 7};
535         u32 remainder;
536         int i, j;
537
538         scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
539                                    &remainder);
540         if (remainder)
541                 scale_needed++;
542
543         for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
544                 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
545                         scale = pscale_tbl[i] * (2 << j);
546                         if (scale >= scale_needed) {
547                                 if (scale < minscale) {
548                                         minscale = scale;
549                                         *psc = i;
550                                         *sc = j;
551                                 }
552                                 break;
553                         }
554                 }
555
556         if (minscale == INT_MAX) {
557                 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
558                         delay_ns, clkrate);
559                 *psc = ARRAY_SIZE(pscale_tbl) - 1;
560                 *sc = SPI_CTAR_SCALE_BITS;
561         }
562 }
563
564 static void fifo_write(struct fsl_dspi *dspi)
565 {
566         regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
567 }
568
569 static void cmd_fifo_write(struct fsl_dspi *dspi)
570 {
571         u16 cmd = dspi->tx_cmd;
572
573         if (dspi->len > 0)
574                 cmd |= SPI_PUSHR_CMD_CONT;
575         regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
576 }
577
578 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
579 {
580         regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
581 }
582
583 static void dspi_tcfq_write(struct fsl_dspi *dspi)
584 {
585         /* Clear transfer count */
586         dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
587
588         if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
589                 /* Write two TX FIFO entries first, and then the corresponding
590                  * CMD FIFO entry.
591                  */
592                 u32 data = dspi_pop_tx(dspi);
593
594                 if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE) {
595                         /* LSB */
596                         tx_fifo_write(dspi, data & 0xFFFF);
597                         tx_fifo_write(dspi, data >> 16);
598                 } else {
599                         /* MSB */
600                         tx_fifo_write(dspi, data >> 16);
601                         tx_fifo_write(dspi, data & 0xFFFF);
602                 }
603                 cmd_fifo_write(dspi);
604         } else {
605                 /* Write one entry to both TX FIFO and CMD FIFO
606                  * simultaneously.
607                  */
608                 fifo_write(dspi);
609         }
610 }
611
612 static u32 fifo_read(struct fsl_dspi *dspi)
613 {
614         u32 rxdata = 0;
615
616         regmap_read(dspi->regmap, SPI_POPR, &rxdata);
617         return rxdata;
618 }
619
620 static void dspi_tcfq_read(struct fsl_dspi *dspi)
621 {
622         dspi_push_rx(dspi, fifo_read(dspi));
623 }
624
625 static void dspi_eoq_write(struct fsl_dspi *dspi)
626 {
627         int fifo_size = DSPI_FIFO_SIZE;
628         u16 xfer_cmd = dspi->tx_cmd;
629
630         /* Fill TX FIFO with as many transfers as possible */
631         while (dspi->len && fifo_size--) {
632                 dspi->tx_cmd = xfer_cmd;
633                 /* Request EOQF for last transfer in FIFO */
634                 if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
635                         dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
636                 /* Clear transfer count for first transfer in FIFO */
637                 if (fifo_size == (DSPI_FIFO_SIZE - 1))
638                         dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
639                 /* Write combined TX FIFO and CMD FIFO entry */
640                 fifo_write(dspi);
641         }
642 }
643
644 static void dspi_eoq_read(struct fsl_dspi *dspi)
645 {
646         int fifo_size = DSPI_FIFO_SIZE;
647
648         /* Read one FIFO entry and push to rx buffer */
649         while ((dspi->rx < dspi->rx_end) && fifo_size--)
650                 dspi_push_rx(dspi, fifo_read(dspi));
651 }
652
653 static int dspi_rxtx(struct fsl_dspi *dspi)
654 {
655         struct spi_message *msg = dspi->cur_msg;
656         enum dspi_trans_mode trans_mode;
657         u16 spi_tcnt;
658         u32 spi_tcr;
659
660         spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
661                                 dspi->tx - dspi->bytes_per_word, !dspi->irq);
662
663         /* Get transfer counter (in number of SPI transfers). It was
664          * reset to 0 when transfer(s) were started.
665          */
666         regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
667         spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
668         /* Update total number of bytes that were transferred */
669         msg->actual_length += spi_tcnt * dspi->bytes_per_word;
670
671         trans_mode = dspi->devtype_data->trans_mode;
672         if (trans_mode == DSPI_EOQ_MODE)
673                 dspi_eoq_read(dspi);
674         else if (trans_mode == DSPI_TCFQ_MODE)
675                 dspi_tcfq_read(dspi);
676
677         if (!dspi->len)
678                 /* Success! */
679                 return 0;
680
681         spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
682                                dspi->tx, !dspi->irq);
683
684         if (trans_mode == DSPI_EOQ_MODE)
685                 dspi_eoq_write(dspi);
686         else if (trans_mode == DSPI_TCFQ_MODE)
687                 dspi_tcfq_write(dspi);
688
689         return -EINPROGRESS;
690 }
691
692 static int dspi_poll(struct fsl_dspi *dspi)
693 {
694         int tries = 1000;
695         u32 spi_sr;
696
697         do {
698                 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
699                 regmap_write(dspi->regmap, SPI_SR, spi_sr);
700
701                 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
702                         break;
703         } while (--tries);
704
705         if (!tries)
706                 return -ETIMEDOUT;
707
708         return dspi_rxtx(dspi);
709 }
710
711 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
712 {
713         struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
714         u32 spi_sr;
715
716         regmap_read(dspi->regmap, SPI_SR, &spi_sr);
717         regmap_write(dspi->regmap, SPI_SR, spi_sr);
718
719         if (!(spi_sr & SPI_SR_EOQF))
720                 return IRQ_NONE;
721
722         if (dspi_rxtx(dspi) == 0) {
723                 dspi->waitflags = 1;
724                 wake_up_interruptible(&dspi->waitq);
725         }
726
727         return IRQ_HANDLED;
728 }
729
730 static int dspi_transfer_one_message(struct spi_controller *ctlr,
731                                      struct spi_message *message)
732 {
733         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
734         struct spi_device *spi = message->spi;
735         enum dspi_trans_mode trans_mode;
736         struct spi_transfer *transfer;
737         int status = 0;
738
739         message->actual_length = 0;
740
741         list_for_each_entry(transfer, &message->transfers, transfer_list) {
742                 dspi->cur_transfer = transfer;
743                 dspi->cur_msg = message;
744                 dspi->cur_chip = spi_get_ctldata(spi);
745                 /* Prepare command word for CMD FIFO */
746                 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
747                                SPI_PUSHR_CMD_PCS(spi->chip_select);
748                 if (list_is_last(&dspi->cur_transfer->transfer_list,
749                                  &dspi->cur_msg->transfers)) {
750                         /* Leave PCS activated after last transfer when
751                          * cs_change is set.
752                          */
753                         if (transfer->cs_change)
754                                 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
755                 } else {
756                         /* Keep PCS active between transfers in same message
757                          * when cs_change is not set, and de-activate PCS
758                          * between transfers in the same message when
759                          * cs_change is set.
760                          */
761                         if (!transfer->cs_change)
762                                 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
763                 }
764
765                 dspi->void_write_data = dspi->cur_chip->void_write_data;
766
767                 dspi->tx = transfer->tx_buf;
768                 dspi->rx = transfer->rx_buf;
769                 dspi->rx_end = dspi->rx + transfer->len;
770                 dspi->len = transfer->len;
771                 /* Validated transfer specific frame size (defaults applied) */
772                 dspi->bits_per_word = transfer->bits_per_word;
773                 if (transfer->bits_per_word <= 8)
774                         dspi->bytes_per_word = 1;
775                 else if (transfer->bits_per_word <= 16)
776                         dspi->bytes_per_word = 2;
777                 else
778                         dspi->bytes_per_word = 4;
779
780                 regmap_update_bits(dspi->regmap, SPI_MCR,
781                                    SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
782                                    SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
783                 regmap_write(dspi->regmap, SPI_CTAR(0),
784                              dspi->cur_chip->ctar_val |
785                              SPI_FRAME_BITS(transfer->bits_per_word));
786                 if (dspi->devtype_data->xspi_mode)
787                         regmap_write(dspi->regmap, SPI_CTARE(0),
788                                      SPI_FRAME_EBITS(transfer->bits_per_word) |
789                                      SPI_CTARE_DTCP(1));
790
791                 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
792                                        dspi->tx, !dspi->irq);
793
794                 trans_mode = dspi->devtype_data->trans_mode;
795                 switch (trans_mode) {
796                 case DSPI_EOQ_MODE:
797                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
798                         dspi_eoq_write(dspi);
799                         break;
800                 case DSPI_TCFQ_MODE:
801                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
802                         dspi_tcfq_write(dspi);
803                         break;
804                 case DSPI_DMA_MODE:
805                         regmap_write(dspi->regmap, SPI_RSER,
806                                      SPI_RSER_TFFFE | SPI_RSER_TFFFD |
807                                      SPI_RSER_RFDFE | SPI_RSER_RFDFD);
808                         status = dspi_dma_xfer(dspi);
809                         break;
810                 default:
811                         dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
812                                 trans_mode);
813                         status = -EINVAL;
814                         goto out;
815                 }
816
817                 if (!dspi->irq) {
818                         do {
819                                 status = dspi_poll(dspi);
820                         } while (status == -EINPROGRESS);
821                 } else if (trans_mode != DSPI_DMA_MODE) {
822                         status = wait_event_interruptible(dspi->waitq,
823                                                           dspi->waitflags);
824                         dspi->waitflags = 0;
825                 }
826                 if (status)
827                         dev_err(&dspi->pdev->dev,
828                                 "Waiting for transfer to complete failed!\n");
829
830                 if (transfer->delay_usecs)
831                         udelay(transfer->delay_usecs);
832         }
833
834 out:
835         message->status = status;
836         spi_finalize_current_message(ctlr);
837
838         return status;
839 }
840
841 static int dspi_setup(struct spi_device *spi)
842 {
843         struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
844         unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
845         u32 cs_sck_delay = 0, sck_cs_delay = 0;
846         struct fsl_dspi_platform_data *pdata;
847         unsigned char pasc = 0, asc = 0;
848         struct chip_data *chip;
849         unsigned long clkrate;
850
851         /* Only alloc on first setup */
852         chip = spi_get_ctldata(spi);
853         if (chip == NULL) {
854                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
855                 if (!chip)
856                         return -ENOMEM;
857         }
858
859         pdata = dev_get_platdata(&dspi->pdev->dev);
860
861         if (!pdata) {
862                 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
863                                      &cs_sck_delay);
864
865                 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
866                                      &sck_cs_delay);
867         } else {
868                 cs_sck_delay = pdata->cs_sck_delay;
869                 sck_cs_delay = pdata->sck_cs_delay;
870         }
871
872         chip->void_write_data = 0;
873
874         clkrate = clk_get_rate(dspi->clk);
875         hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
876
877         /* Set PCS to SCK delay scale values */
878         ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
879
880         /* Set After SCK delay scale values */
881         ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
882
883         chip->ctar_val = 0;
884         if (spi->mode & SPI_CPOL)
885                 chip->ctar_val |= SPI_CTAR_CPOL;
886         if (spi->mode & SPI_CPHA)
887                 chip->ctar_val |= SPI_CTAR_CPHA;
888
889         if (!spi_controller_is_slave(dspi->ctlr)) {
890                 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
891                                   SPI_CTAR_CSSCK(cssck) |
892                                   SPI_CTAR_PASC(pasc) |
893                                   SPI_CTAR_ASC(asc) |
894                                   SPI_CTAR_PBR(pbr) |
895                                   SPI_CTAR_BR(br);
896
897                 if (spi->mode & SPI_LSB_FIRST)
898                         chip->ctar_val |= SPI_CTAR_LSBFE;
899         }
900
901         spi_set_ctldata(spi, chip);
902
903         return 0;
904 }
905
906 static void dspi_cleanup(struct spi_device *spi)
907 {
908         struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
909
910         dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
911                 spi->controller->bus_num, spi->chip_select);
912
913         kfree(chip);
914 }
915
916 static const struct of_device_id fsl_dspi_dt_ids[] = {
917         { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
918         { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
919         { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
920         { /* sentinel */ }
921 };
922 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
923
924 #ifdef CONFIG_PM_SLEEP
925 static int dspi_suspend(struct device *dev)
926 {
927         struct spi_controller *ctlr = dev_get_drvdata(dev);
928         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
929
930         spi_controller_suspend(ctlr);
931         clk_disable_unprepare(dspi->clk);
932
933         pinctrl_pm_select_sleep_state(dev);
934
935         return 0;
936 }
937
938 static int dspi_resume(struct device *dev)
939 {
940         struct spi_controller *ctlr = dev_get_drvdata(dev);
941         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
942         int ret;
943
944         pinctrl_pm_select_default_state(dev);
945
946         ret = clk_prepare_enable(dspi->clk);
947         if (ret)
948                 return ret;
949         spi_controller_resume(ctlr);
950
951         return 0;
952 }
953 #endif /* CONFIG_PM_SLEEP */
954
955 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
956
957 static const struct regmap_range dspi_volatile_ranges[] = {
958         regmap_reg_range(SPI_MCR, SPI_TCR),
959         regmap_reg_range(SPI_SR, SPI_SR),
960         regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
961 };
962
963 static const struct regmap_access_table dspi_volatile_table = {
964         .yes_ranges     = dspi_volatile_ranges,
965         .n_yes_ranges   = ARRAY_SIZE(dspi_volatile_ranges),
966 };
967
968 static const struct regmap_config dspi_regmap_config = {
969         .reg_bits       = 32,
970         .val_bits       = 32,
971         .reg_stride     = 4,
972         .max_register   = 0x88,
973         .volatile_table = &dspi_volatile_table,
974 };
975
976 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
977         regmap_reg_range(SPI_MCR, SPI_TCR),
978         regmap_reg_range(SPI_SR, SPI_SR),
979         regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
980         regmap_reg_range(SPI_SREX, SPI_SREX),
981 };
982
983 static const struct regmap_access_table dspi_xspi_volatile_table = {
984         .yes_ranges     = dspi_xspi_volatile_ranges,
985         .n_yes_ranges   = ARRAY_SIZE(dspi_xspi_volatile_ranges),
986 };
987
988 static const struct regmap_config dspi_xspi_regmap_config[] = {
989         {
990                 .reg_bits       = 32,
991                 .val_bits       = 32,
992                 .reg_stride     = 4,
993                 .max_register   = 0x13c,
994                 .volatile_table = &dspi_xspi_volatile_table,
995         },
996         {
997                 .name           = "pushr",
998                 .reg_bits       = 16,
999                 .val_bits       = 16,
1000                 .reg_stride     = 2,
1001                 .max_register   = 0x2,
1002         },
1003 };
1004
1005 static void dspi_init(struct fsl_dspi *dspi)
1006 {
1007         unsigned int mcr = SPI_MCR_PCSIS;
1008
1009         if (dspi->devtype_data->xspi_mode)
1010                 mcr |= SPI_MCR_XSPI;
1011         if (!spi_controller_is_slave(dspi->ctlr))
1012                 mcr |= SPI_MCR_MASTER;
1013
1014         regmap_write(dspi->regmap, SPI_MCR, mcr);
1015         regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1016         if (dspi->devtype_data->xspi_mode)
1017                 regmap_write(dspi->regmap, SPI_CTARE(0),
1018                              SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1019 }
1020
1021 static int dspi_slave_abort(struct spi_master *master)
1022 {
1023         struct fsl_dspi *dspi = spi_master_get_devdata(master);
1024
1025         /*
1026          * Terminate all pending DMA transactions for the SPI working
1027          * in SLAVE mode.
1028          */
1029         dmaengine_terminate_sync(dspi->dma->chan_rx);
1030         dmaengine_terminate_sync(dspi->dma->chan_tx);
1031
1032         /* Clear the internal DSPI RX and TX FIFO buffers */
1033         regmap_update_bits(dspi->regmap, SPI_MCR,
1034                            SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1035                            SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1036
1037         return 0;
1038 }
1039
1040 static int dspi_probe(struct platform_device *pdev)
1041 {
1042         struct device_node *np = pdev->dev.of_node;
1043         const struct regmap_config *regmap_config;
1044         struct fsl_dspi_platform_data *pdata;
1045         struct spi_controller *ctlr;
1046         int ret, cs_num, bus_num;
1047         struct fsl_dspi *dspi;
1048         struct resource *res;
1049         void __iomem *base;
1050
1051         ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1052         if (!ctlr)
1053                 return -ENOMEM;
1054
1055         dspi = spi_controller_get_devdata(ctlr);
1056         dspi->pdev = pdev;
1057         dspi->ctlr = ctlr;
1058
1059         ctlr->setup = dspi_setup;
1060         ctlr->transfer_one_message = dspi_transfer_one_message;
1061         ctlr->dev.of_node = pdev->dev.of_node;
1062
1063         ctlr->cleanup = dspi_cleanup;
1064         ctlr->slave_abort = dspi_slave_abort;
1065         ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1066
1067         pdata = dev_get_platdata(&pdev->dev);
1068         if (pdata) {
1069                 ctlr->num_chipselect = pdata->cs_num;
1070                 ctlr->bus_num = pdata->bus_num;
1071
1072                 dspi->devtype_data = &coldfire_data;
1073         } else {
1074
1075                 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1076                 if (ret < 0) {
1077                         dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1078                         goto out_ctlr_put;
1079                 }
1080                 ctlr->num_chipselect = cs_num;
1081
1082                 ret = of_property_read_u32(np, "bus-num", &bus_num);
1083                 if (ret < 0) {
1084                         dev_err(&pdev->dev, "can't get bus-num\n");
1085                         goto out_ctlr_put;
1086                 }
1087                 ctlr->bus_num = bus_num;
1088
1089                 if (of_property_read_bool(np, "spi-slave"))
1090                         ctlr->slave = true;
1091
1092                 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1093                 if (!dspi->devtype_data) {
1094                         dev_err(&pdev->dev, "can't get devtype_data\n");
1095                         ret = -EFAULT;
1096                         goto out_ctlr_put;
1097                 }
1098         }
1099
1100         if (dspi->devtype_data->xspi_mode)
1101                 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1102         else
1103                 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1104
1105         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1106         base = devm_ioremap_resource(&pdev->dev, res);
1107         if (IS_ERR(base)) {
1108                 ret = PTR_ERR(base);
1109                 goto out_ctlr_put;
1110         }
1111
1112         if (dspi->devtype_data->xspi_mode)
1113                 regmap_config = &dspi_xspi_regmap_config[0];
1114         else
1115                 regmap_config = &dspi_regmap_config;
1116         dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1117         if (IS_ERR(dspi->regmap)) {
1118                 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1119                                 PTR_ERR(dspi->regmap));
1120                 ret = PTR_ERR(dspi->regmap);
1121                 goto out_ctlr_put;
1122         }
1123
1124         if (dspi->devtype_data->xspi_mode) {
1125                 dspi->regmap_pushr = devm_regmap_init_mmio(
1126                         &pdev->dev, base + SPI_PUSHR,
1127                         &dspi_xspi_regmap_config[1]);
1128                 if (IS_ERR(dspi->regmap_pushr)) {
1129                         dev_err(&pdev->dev,
1130                                 "failed to init pushr regmap: %ld\n",
1131                                 PTR_ERR(dspi->regmap_pushr));
1132                         ret = PTR_ERR(dspi->regmap_pushr);
1133                         goto out_ctlr_put;
1134                 }
1135         }
1136
1137         dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1138         if (IS_ERR(dspi->clk)) {
1139                 ret = PTR_ERR(dspi->clk);
1140                 dev_err(&pdev->dev, "unable to get clock\n");
1141                 goto out_ctlr_put;
1142         }
1143         ret = clk_prepare_enable(dspi->clk);
1144         if (ret)
1145                 goto out_ctlr_put;
1146
1147         dspi_init(dspi);
1148
1149         if (dspi->devtype_data->trans_mode == DSPI_TCFQ_MODE)
1150                 goto poll_mode;
1151
1152         dspi->irq = platform_get_irq(pdev, 0);
1153         if (dspi->irq <= 0) {
1154                 dev_info(&pdev->dev,
1155                          "can't get platform irq, using poll mode\n");
1156                 dspi->irq = 0;
1157                 goto poll_mode;
1158         }
1159
1160         ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1161                                IRQF_SHARED, pdev->name, dspi);
1162         if (ret < 0) {
1163                 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1164                 goto out_clk_put;
1165         }
1166
1167         init_waitqueue_head(&dspi->waitq);
1168
1169 poll_mode:
1170
1171         if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1172                 ret = dspi_request_dma(dspi, res->start);
1173                 if (ret < 0) {
1174                         dev_err(&pdev->dev, "can't get dma channels\n");
1175                         goto out_clk_put;
1176                 }
1177         }
1178
1179         ctlr->max_speed_hz =
1180                 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1181
1182         ctlr->ptp_sts_supported = dspi->devtype_data->ptp_sts_supported;
1183
1184         platform_set_drvdata(pdev, ctlr);
1185
1186         ret = spi_register_controller(ctlr);
1187         if (ret != 0) {
1188                 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1189                 goto out_clk_put;
1190         }
1191
1192         return ret;
1193
1194 out_clk_put:
1195         clk_disable_unprepare(dspi->clk);
1196 out_ctlr_put:
1197         spi_controller_put(ctlr);
1198
1199         return ret;
1200 }
1201
1202 static int dspi_remove(struct platform_device *pdev)
1203 {
1204         struct spi_controller *ctlr = platform_get_drvdata(pdev);
1205         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1206
1207         /* Disconnect from the SPI framework */
1208         dspi_release_dma(dspi);
1209         clk_disable_unprepare(dspi->clk);
1210         spi_unregister_controller(dspi->ctlr);
1211
1212         return 0;
1213 }
1214
1215 static struct platform_driver fsl_dspi_driver = {
1216         .driver.name            = DRIVER_NAME,
1217         .driver.of_match_table  = fsl_dspi_dt_ids,
1218         .driver.owner           = THIS_MODULE,
1219         .driver.pm              = &dspi_pm,
1220         .probe                  = dspi_probe,
1221         .remove                 = dspi_remove,
1222 };
1223 module_platform_driver(fsl_dspi_driver);
1224
1225 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1226 MODULE_LICENSE("GPL");
1227 MODULE_ALIAS("platform:" DRIVER_NAME);