]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/spi/spi-fsl-dspi.c
Merge tag 'mfd-next-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux.git] / drivers / spi / spi-fsl-dspi.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
20
21 #define DRIVER_NAME                     "fsl-dspi"
22
23 #ifdef CONFIG_M5441x
24 #define DSPI_FIFO_SIZE                  16
25 #else
26 #define DSPI_FIFO_SIZE                  4
27 #endif
28 #define DSPI_DMA_BUFSIZE                (DSPI_FIFO_SIZE * 1024)
29
30 #define SPI_MCR                         0x00
31 #define SPI_MCR_MASTER                  BIT(31)
32 #define SPI_MCR_PCSIS                   (0x3F << 16)
33 #define SPI_MCR_CLR_TXF                 BIT(11)
34 #define SPI_MCR_CLR_RXF                 BIT(10)
35 #define SPI_MCR_XSPI                    BIT(3)
36
37 #define SPI_TCR                         0x08
38 #define SPI_TCR_GET_TCNT(x)             (((x) & GENMASK(31, 16)) >> 16)
39
40 #define SPI_CTAR(x)                     (0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x)                (((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL                   BIT(26)
43 #define SPI_CTAR_CPHA                   BIT(25)
44 #define SPI_CTAR_LSBFE                  BIT(24)
45 #define SPI_CTAR_PCSSCK(x)              (((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x)                (((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x)                 (((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x)                 (((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x)               (((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x)                 (((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x)                  (((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x)                  ((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS             0xf
54
55 #define SPI_CTAR0_SLAVE                 0x0c
56
57 #define SPI_SR                          0x2c
58 #define SPI_SR_TCFQF                    BIT(31)
59 #define SPI_SR_EOQF                     BIT(28)
60 #define SPI_SR_TFUF                     BIT(27)
61 #define SPI_SR_TFFF                     BIT(25)
62 #define SPI_SR_CMDTCF                   BIT(23)
63 #define SPI_SR_SPEF                     BIT(21)
64 #define SPI_SR_RFOF                     BIT(19)
65 #define SPI_SR_TFIWF                    BIT(18)
66 #define SPI_SR_RFDF                     BIT(17)
67 #define SPI_SR_CMDFFF                   BIT(16)
68 #define SPI_SR_CLEAR                    (SPI_SR_TCFQF | SPI_SR_EOQF | \
69                                         SPI_SR_TFUF | SPI_SR_TFFF | \
70                                         SPI_SR_CMDTCF | SPI_SR_SPEF | \
71                                         SPI_SR_RFOF | SPI_SR_TFIWF | \
72                                         SPI_SR_RFDF | SPI_SR_CMDFFF)
73
74 #define SPI_RSER_TFFFE                  BIT(25)
75 #define SPI_RSER_TFFFD                  BIT(24)
76 #define SPI_RSER_RFDFE                  BIT(17)
77 #define SPI_RSER_RFDFD                  BIT(16)
78
79 #define SPI_RSER                        0x30
80 #define SPI_RSER_TCFQE                  BIT(31)
81 #define SPI_RSER_EOQFE                  BIT(28)
82
83 #define SPI_PUSHR                       0x34
84 #define SPI_PUSHR_CMD_CONT              BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x)           (((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ               BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT             BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x)            (BIT(x) & GENMASK(5, 0))
89
90 #define SPI_PUSHR_SLAVE                 0x34
91
92 #define SPI_POPR                        0x38
93
94 #define SPI_TXFR0                       0x3c
95 #define SPI_TXFR1                       0x40
96 #define SPI_TXFR2                       0x44
97 #define SPI_TXFR3                       0x48
98 #define SPI_RXFR0                       0x7c
99 #define SPI_RXFR1                       0x80
100 #define SPI_RXFR2                       0x84
101 #define SPI_RXFR3                       0x88
102
103 #define SPI_CTARE(x)                    (0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x)              (((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x)               ((x) & 0x7ff)
106
107 #define SPI_SREX                        0x13c
108
109 #define SPI_FRAME_BITS(bits)            SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits)           SPI_CTARE_FMSZE(((bits) - 1) >> 4)
111
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD                       0x0
114 #define PUSHR_TX                        0x2
115
116 #define DMA_COMPLETION_TIMEOUT          msecs_to_jiffies(3000)
117
118 struct chip_data {
119         u32                     ctar_val;
120         u16                     void_write_data;
121 };
122
123 enum dspi_trans_mode {
124         DSPI_EOQ_MODE = 0,
125         DSPI_TCFQ_MODE,
126         DSPI_DMA_MODE,
127 };
128
129 struct fsl_dspi_devtype_data {
130         enum dspi_trans_mode    trans_mode;
131         u8                      max_clock_factor;
132         bool                    ptp_sts_supported;
133         bool                    xspi_mode;
134 };
135
136 static const struct fsl_dspi_devtype_data vf610_data = {
137         .trans_mode             = DSPI_DMA_MODE,
138         .max_clock_factor       = 2,
139 };
140
141 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
142         .trans_mode             = DSPI_TCFQ_MODE,
143         .max_clock_factor       = 8,
144         .ptp_sts_supported      = true,
145         .xspi_mode              = true,
146 };
147
148 static const struct fsl_dspi_devtype_data ls2085a_data = {
149         .trans_mode             = DSPI_TCFQ_MODE,
150         .max_clock_factor       = 8,
151         .ptp_sts_supported      = true,
152 };
153
154 static const struct fsl_dspi_devtype_data coldfire_data = {
155         .trans_mode             = DSPI_EOQ_MODE,
156         .max_clock_factor       = 8,
157 };
158
159 struct fsl_dspi_dma {
160         /* Length of transfer in words of DSPI_FIFO_SIZE */
161         u32                                     curr_xfer_len;
162
163         u32                                     *tx_dma_buf;
164         struct dma_chan                         *chan_tx;
165         dma_addr_t                              tx_dma_phys;
166         struct completion                       cmd_tx_complete;
167         struct dma_async_tx_descriptor          *tx_desc;
168
169         u32                                     *rx_dma_buf;
170         struct dma_chan                         *chan_rx;
171         dma_addr_t                              rx_dma_phys;
172         struct completion                       cmd_rx_complete;
173         struct dma_async_tx_descriptor          *rx_desc;
174 };
175
176 struct fsl_dspi {
177         struct spi_controller                   *ctlr;
178         struct platform_device                  *pdev;
179
180         struct regmap                           *regmap;
181         struct regmap                           *regmap_pushr;
182         int                                     irq;
183         struct clk                              *clk;
184
185         struct spi_transfer                     *cur_transfer;
186         struct spi_message                      *cur_msg;
187         struct chip_data                        *cur_chip;
188         size_t                                  progress;
189         size_t                                  len;
190         const void                              *tx;
191         void                                    *rx;
192         void                                    *rx_end;
193         u16                                     void_write_data;
194         u16                                     tx_cmd;
195         u8                                      bits_per_word;
196         u8                                      bytes_per_word;
197         const struct fsl_dspi_devtype_data      *devtype_data;
198
199         wait_queue_head_t                       waitq;
200         u32                                     waitflags;
201
202         struct fsl_dspi_dma                     *dma;
203 };
204
205 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
206 {
207         u32 txdata = 0;
208
209         if (dspi->tx) {
210                 if (dspi->bytes_per_word == 1)
211                         txdata = *(u8 *)dspi->tx;
212                 else if (dspi->bytes_per_word == 2)
213                         txdata = *(u16 *)dspi->tx;
214                 else  /* dspi->bytes_per_word == 4 */
215                         txdata = *(u32 *)dspi->tx;
216                 dspi->tx += dspi->bytes_per_word;
217         }
218         dspi->len -= dspi->bytes_per_word;
219         return txdata;
220 }
221
222 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
223 {
224         u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
225
226         if (spi_controller_is_slave(dspi->ctlr))
227                 return data;
228
229         if (dspi->len > 0)
230                 cmd |= SPI_PUSHR_CMD_CONT;
231         return cmd << 16 | data;
232 }
233
234 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
235 {
236         if (!dspi->rx)
237                 return;
238
239         /* Mask off undefined bits */
240         rxdata &= (1 << dspi->bits_per_word) - 1;
241
242         if (dspi->bytes_per_word == 1)
243                 *(u8 *)dspi->rx = rxdata;
244         else if (dspi->bytes_per_word == 2)
245                 *(u16 *)dspi->rx = rxdata;
246         else /* dspi->bytes_per_word == 4 */
247                 *(u32 *)dspi->rx = rxdata;
248         dspi->rx += dspi->bytes_per_word;
249 }
250
251 static void dspi_tx_dma_callback(void *arg)
252 {
253         struct fsl_dspi *dspi = arg;
254         struct fsl_dspi_dma *dma = dspi->dma;
255
256         complete(&dma->cmd_tx_complete);
257 }
258
259 static void dspi_rx_dma_callback(void *arg)
260 {
261         struct fsl_dspi *dspi = arg;
262         struct fsl_dspi_dma *dma = dspi->dma;
263         int i;
264
265         if (dspi->rx) {
266                 for (i = 0; i < dma->curr_xfer_len; i++)
267                         dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
268         }
269
270         complete(&dma->cmd_rx_complete);
271 }
272
273 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
274 {
275         struct device *dev = &dspi->pdev->dev;
276         struct fsl_dspi_dma *dma = dspi->dma;
277         int time_left;
278         int i;
279
280         for (i = 0; i < dma->curr_xfer_len; i++)
281                 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
282
283         dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
284                                         dma->tx_dma_phys,
285                                         dma->curr_xfer_len *
286                                         DMA_SLAVE_BUSWIDTH_4_BYTES,
287                                         DMA_MEM_TO_DEV,
288                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
289         if (!dma->tx_desc) {
290                 dev_err(dev, "Not able to get desc for DMA xfer\n");
291                 return -EIO;
292         }
293
294         dma->tx_desc->callback = dspi_tx_dma_callback;
295         dma->tx_desc->callback_param = dspi;
296         if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
297                 dev_err(dev, "DMA submit failed\n");
298                 return -EINVAL;
299         }
300
301         dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
302                                         dma->rx_dma_phys,
303                                         dma->curr_xfer_len *
304                                         DMA_SLAVE_BUSWIDTH_4_BYTES,
305                                         DMA_DEV_TO_MEM,
306                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
307         if (!dma->rx_desc) {
308                 dev_err(dev, "Not able to get desc for DMA xfer\n");
309                 return -EIO;
310         }
311
312         dma->rx_desc->callback = dspi_rx_dma_callback;
313         dma->rx_desc->callback_param = dspi;
314         if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
315                 dev_err(dev, "DMA submit failed\n");
316                 return -EINVAL;
317         }
318
319         reinit_completion(&dspi->dma->cmd_rx_complete);
320         reinit_completion(&dspi->dma->cmd_tx_complete);
321
322         dma_async_issue_pending(dma->chan_rx);
323         dma_async_issue_pending(dma->chan_tx);
324
325         if (spi_controller_is_slave(dspi->ctlr)) {
326                 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
327                 return 0;
328         }
329
330         time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
331                                                 DMA_COMPLETION_TIMEOUT);
332         if (time_left == 0) {
333                 dev_err(dev, "DMA tx timeout\n");
334                 dmaengine_terminate_all(dma->chan_tx);
335                 dmaengine_terminate_all(dma->chan_rx);
336                 return -ETIMEDOUT;
337         }
338
339         time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
340                                                 DMA_COMPLETION_TIMEOUT);
341         if (time_left == 0) {
342                 dev_err(dev, "DMA rx timeout\n");
343                 dmaengine_terminate_all(dma->chan_tx);
344                 dmaengine_terminate_all(dma->chan_rx);
345                 return -ETIMEDOUT;
346         }
347
348         return 0;
349 }
350
351 static int dspi_dma_xfer(struct fsl_dspi *dspi)
352 {
353         struct spi_message *message = dspi->cur_msg;
354         struct device *dev = &dspi->pdev->dev;
355         struct fsl_dspi_dma *dma = dspi->dma;
356         int curr_remaining_bytes;
357         int bytes_per_buffer;
358         int ret = 0;
359
360         curr_remaining_bytes = dspi->len;
361         bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
362         while (curr_remaining_bytes) {
363                 /* Check if current transfer fits the DMA buffer */
364                 dma->curr_xfer_len = curr_remaining_bytes
365                         / dspi->bytes_per_word;
366                 if (dma->curr_xfer_len > bytes_per_buffer)
367                         dma->curr_xfer_len = bytes_per_buffer;
368
369                 ret = dspi_next_xfer_dma_submit(dspi);
370                 if (ret) {
371                         dev_err(dev, "DMA transfer failed\n");
372                         goto exit;
373
374                 } else {
375                         const int len =
376                                 dma->curr_xfer_len * dspi->bytes_per_word;
377                         curr_remaining_bytes -= len;
378                         message->actual_length += len;
379                         if (curr_remaining_bytes < 0)
380                                 curr_remaining_bytes = 0;
381                 }
382         }
383
384 exit:
385         return ret;
386 }
387
388 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
389 {
390         struct device *dev = &dspi->pdev->dev;
391         struct dma_slave_config cfg;
392         struct fsl_dspi_dma *dma;
393         int ret;
394
395         dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
396         if (!dma)
397                 return -ENOMEM;
398
399         dma->chan_rx = dma_request_chan(dev, "rx");
400         if (IS_ERR(dma->chan_rx)) {
401                 dev_err(dev, "rx dma channel not available\n");
402                 ret = PTR_ERR(dma->chan_rx);
403                 return ret;
404         }
405
406         dma->chan_tx = dma_request_chan(dev, "tx");
407         if (IS_ERR(dma->chan_tx)) {
408                 dev_err(dev, "tx dma channel not available\n");
409                 ret = PTR_ERR(dma->chan_tx);
410                 goto err_tx_channel;
411         }
412
413         dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
414                                              &dma->tx_dma_phys, GFP_KERNEL);
415         if (!dma->tx_dma_buf) {
416                 ret = -ENOMEM;
417                 goto err_tx_dma_buf;
418         }
419
420         dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
421                                              &dma->rx_dma_phys, GFP_KERNEL);
422         if (!dma->rx_dma_buf) {
423                 ret = -ENOMEM;
424                 goto err_rx_dma_buf;
425         }
426
427         cfg.src_addr = phy_addr + SPI_POPR;
428         cfg.dst_addr = phy_addr + SPI_PUSHR;
429         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
430         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
431         cfg.src_maxburst = 1;
432         cfg.dst_maxburst = 1;
433
434         cfg.direction = DMA_DEV_TO_MEM;
435         ret = dmaengine_slave_config(dma->chan_rx, &cfg);
436         if (ret) {
437                 dev_err(dev, "can't configure rx dma channel\n");
438                 ret = -EINVAL;
439                 goto err_slave_config;
440         }
441
442         cfg.direction = DMA_MEM_TO_DEV;
443         ret = dmaengine_slave_config(dma->chan_tx, &cfg);
444         if (ret) {
445                 dev_err(dev, "can't configure tx dma channel\n");
446                 ret = -EINVAL;
447                 goto err_slave_config;
448         }
449
450         dspi->dma = dma;
451         init_completion(&dma->cmd_tx_complete);
452         init_completion(&dma->cmd_rx_complete);
453
454         return 0;
455
456 err_slave_config:
457         dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
458                         dma->rx_dma_buf, dma->rx_dma_phys);
459 err_rx_dma_buf:
460         dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
461                         dma->tx_dma_buf, dma->tx_dma_phys);
462 err_tx_dma_buf:
463         dma_release_channel(dma->chan_tx);
464 err_tx_channel:
465         dma_release_channel(dma->chan_rx);
466
467         devm_kfree(dev, dma);
468         dspi->dma = NULL;
469
470         return ret;
471 }
472
473 static void dspi_release_dma(struct fsl_dspi *dspi)
474 {
475         struct fsl_dspi_dma *dma = dspi->dma;
476         struct device *dev = &dspi->pdev->dev;
477
478         if (!dma)
479                 return;
480
481         if (dma->chan_tx) {
482                 dma_unmap_single(dev, dma->tx_dma_phys,
483                                  DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
484                 dma_release_channel(dma->chan_tx);
485         }
486
487         if (dma->chan_rx) {
488                 dma_unmap_single(dev, dma->rx_dma_phys,
489                                  DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
490                 dma_release_channel(dma->chan_rx);
491         }
492 }
493
494 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
495                            unsigned long clkrate)
496 {
497         /* Valid baud rate pre-scaler values */
498         int pbr_tbl[4] = {2, 3, 5, 7};
499         int brs[16] = { 2,      4,      6,      8,
500                         16,     32,     64,     128,
501                         256,    512,    1024,   2048,
502                         4096,   8192,   16384,  32768 };
503         int scale_needed, scale, minscale = INT_MAX;
504         int i, j;
505
506         scale_needed = clkrate / speed_hz;
507         if (clkrate % speed_hz)
508                 scale_needed++;
509
510         for (i = 0; i < ARRAY_SIZE(brs); i++)
511                 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
512                         scale = brs[i] * pbr_tbl[j];
513                         if (scale >= scale_needed) {
514                                 if (scale < minscale) {
515                                         minscale = scale;
516                                         *br = i;
517                                         *pbr = j;
518                                 }
519                                 break;
520                         }
521                 }
522
523         if (minscale == INT_MAX) {
524                 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
525                         speed_hz, clkrate);
526                 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
527                 *br =  ARRAY_SIZE(brs) - 1;
528         }
529 }
530
531 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
532                            unsigned long clkrate)
533 {
534         int scale_needed, scale, minscale = INT_MAX;
535         int pscale_tbl[4] = {1, 3, 5, 7};
536         u32 remainder;
537         int i, j;
538
539         scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
540                                    &remainder);
541         if (remainder)
542                 scale_needed++;
543
544         for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
545                 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
546                         scale = pscale_tbl[i] * (2 << j);
547                         if (scale >= scale_needed) {
548                                 if (scale < minscale) {
549                                         minscale = scale;
550                                         *psc = i;
551                                         *sc = j;
552                                 }
553                                 break;
554                         }
555                 }
556
557         if (minscale == INT_MAX) {
558                 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
559                         delay_ns, clkrate);
560                 *psc = ARRAY_SIZE(pscale_tbl) - 1;
561                 *sc = SPI_CTAR_SCALE_BITS;
562         }
563 }
564
565 static void fifo_write(struct fsl_dspi *dspi)
566 {
567         regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
568 }
569
570 static void cmd_fifo_write(struct fsl_dspi *dspi)
571 {
572         u16 cmd = dspi->tx_cmd;
573
574         if (dspi->len > 0)
575                 cmd |= SPI_PUSHR_CMD_CONT;
576         regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
577 }
578
579 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
580 {
581         regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
582 }
583
584 static void dspi_tcfq_write(struct fsl_dspi *dspi)
585 {
586         /* Clear transfer count */
587         dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
588
589         if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
590                 /* Write the CMD FIFO entry first, and then the two
591                  * corresponding TX FIFO entries.
592                  */
593                 u32 data = dspi_pop_tx(dspi);
594
595                 cmd_fifo_write(dspi);
596                 tx_fifo_write(dspi, data & 0xFFFF);
597                 tx_fifo_write(dspi, data >> 16);
598         } else {
599                 /* Write one entry to both TX FIFO and CMD FIFO
600                  * simultaneously.
601                  */
602                 fifo_write(dspi);
603         }
604 }
605
606 static u32 fifo_read(struct fsl_dspi *dspi)
607 {
608         u32 rxdata = 0;
609
610         regmap_read(dspi->regmap, SPI_POPR, &rxdata);
611         return rxdata;
612 }
613
614 static void dspi_tcfq_read(struct fsl_dspi *dspi)
615 {
616         dspi_push_rx(dspi, fifo_read(dspi));
617 }
618
619 static void dspi_eoq_write(struct fsl_dspi *dspi)
620 {
621         int fifo_size = DSPI_FIFO_SIZE;
622         u16 xfer_cmd = dspi->tx_cmd;
623
624         /* Fill TX FIFO with as many transfers as possible */
625         while (dspi->len && fifo_size--) {
626                 dspi->tx_cmd = xfer_cmd;
627                 /* Request EOQF for last transfer in FIFO */
628                 if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
629                         dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
630                 /* Clear transfer count for first transfer in FIFO */
631                 if (fifo_size == (DSPI_FIFO_SIZE - 1))
632                         dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
633                 /* Write combined TX FIFO and CMD FIFO entry */
634                 fifo_write(dspi);
635         }
636 }
637
638 static void dspi_eoq_read(struct fsl_dspi *dspi)
639 {
640         int fifo_size = DSPI_FIFO_SIZE;
641
642         /* Read one FIFO entry and push to rx buffer */
643         while ((dspi->rx < dspi->rx_end) && fifo_size--)
644                 dspi_push_rx(dspi, fifo_read(dspi));
645 }
646
647 static int dspi_rxtx(struct fsl_dspi *dspi)
648 {
649         struct spi_message *msg = dspi->cur_msg;
650         enum dspi_trans_mode trans_mode;
651         u16 spi_tcnt;
652         u32 spi_tcr;
653
654         spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
655                                 dspi->progress, !dspi->irq);
656
657         /* Get transfer counter (in number of SPI transfers). It was
658          * reset to 0 when transfer(s) were started.
659          */
660         regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
661         spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
662         /* Update total number of bytes that were transferred */
663         msg->actual_length += spi_tcnt * dspi->bytes_per_word;
664         dspi->progress += spi_tcnt;
665
666         trans_mode = dspi->devtype_data->trans_mode;
667         if (trans_mode == DSPI_EOQ_MODE)
668                 dspi_eoq_read(dspi);
669         else if (trans_mode == DSPI_TCFQ_MODE)
670                 dspi_tcfq_read(dspi);
671
672         if (!dspi->len)
673                 /* Success! */
674                 return 0;
675
676         spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
677                                dspi->progress, !dspi->irq);
678
679         if (trans_mode == DSPI_EOQ_MODE)
680                 dspi_eoq_write(dspi);
681         else if (trans_mode == DSPI_TCFQ_MODE)
682                 dspi_tcfq_write(dspi);
683
684         return -EINPROGRESS;
685 }
686
687 static int dspi_poll(struct fsl_dspi *dspi)
688 {
689         int tries = 1000;
690         u32 spi_sr;
691
692         do {
693                 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
694                 regmap_write(dspi->regmap, SPI_SR, spi_sr);
695
696                 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
697                         break;
698         } while (--tries);
699
700         if (!tries)
701                 return -ETIMEDOUT;
702
703         return dspi_rxtx(dspi);
704 }
705
706 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
707 {
708         struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
709         u32 spi_sr;
710
711         regmap_read(dspi->regmap, SPI_SR, &spi_sr);
712         regmap_write(dspi->regmap, SPI_SR, spi_sr);
713
714         if (!(spi_sr & SPI_SR_EOQF))
715                 return IRQ_NONE;
716
717         if (dspi_rxtx(dspi) == 0) {
718                 dspi->waitflags = 1;
719                 wake_up_interruptible(&dspi->waitq);
720         }
721
722         return IRQ_HANDLED;
723 }
724
725 static int dspi_transfer_one_message(struct spi_controller *ctlr,
726                                      struct spi_message *message)
727 {
728         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
729         struct spi_device *spi = message->spi;
730         enum dspi_trans_mode trans_mode;
731         struct spi_transfer *transfer;
732         int status = 0;
733
734         message->actual_length = 0;
735
736         list_for_each_entry(transfer, &message->transfers, transfer_list) {
737                 dspi->cur_transfer = transfer;
738                 dspi->cur_msg = message;
739                 dspi->cur_chip = spi_get_ctldata(spi);
740                 /* Prepare command word for CMD FIFO */
741                 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
742                                SPI_PUSHR_CMD_PCS(spi->chip_select);
743                 if (list_is_last(&dspi->cur_transfer->transfer_list,
744                                  &dspi->cur_msg->transfers)) {
745                         /* Leave PCS activated after last transfer when
746                          * cs_change is set.
747                          */
748                         if (transfer->cs_change)
749                                 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
750                 } else {
751                         /* Keep PCS active between transfers in same message
752                          * when cs_change is not set, and de-activate PCS
753                          * between transfers in the same message when
754                          * cs_change is set.
755                          */
756                         if (!transfer->cs_change)
757                                 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
758                 }
759
760                 dspi->void_write_data = dspi->cur_chip->void_write_data;
761
762                 dspi->tx = transfer->tx_buf;
763                 dspi->rx = transfer->rx_buf;
764                 dspi->rx_end = dspi->rx + transfer->len;
765                 dspi->len = transfer->len;
766                 dspi->progress = 0;
767                 /* Validated transfer specific frame size (defaults applied) */
768                 dspi->bits_per_word = transfer->bits_per_word;
769                 if (transfer->bits_per_word <= 8)
770                         dspi->bytes_per_word = 1;
771                 else if (transfer->bits_per_word <= 16)
772                         dspi->bytes_per_word = 2;
773                 else
774                         dspi->bytes_per_word = 4;
775
776                 regmap_update_bits(dspi->regmap, SPI_MCR,
777                                    SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
778                                    SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
779                 regmap_write(dspi->regmap, SPI_CTAR(0),
780                              dspi->cur_chip->ctar_val |
781                              SPI_FRAME_BITS(transfer->bits_per_word));
782                 if (dspi->devtype_data->xspi_mode)
783                         regmap_write(dspi->regmap, SPI_CTARE(0),
784                                      SPI_FRAME_EBITS(transfer->bits_per_word) |
785                                      SPI_CTARE_DTCP(1));
786
787                 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
788                                        dspi->progress, !dspi->irq);
789
790                 trans_mode = dspi->devtype_data->trans_mode;
791                 switch (trans_mode) {
792                 case DSPI_EOQ_MODE:
793                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
794                         dspi_eoq_write(dspi);
795                         break;
796                 case DSPI_TCFQ_MODE:
797                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
798                         dspi_tcfq_write(dspi);
799                         break;
800                 case DSPI_DMA_MODE:
801                         regmap_write(dspi->regmap, SPI_RSER,
802                                      SPI_RSER_TFFFE | SPI_RSER_TFFFD |
803                                      SPI_RSER_RFDFE | SPI_RSER_RFDFD);
804                         status = dspi_dma_xfer(dspi);
805                         break;
806                 default:
807                         dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
808                                 trans_mode);
809                         status = -EINVAL;
810                         goto out;
811                 }
812
813                 if (!dspi->irq) {
814                         do {
815                                 status = dspi_poll(dspi);
816                         } while (status == -EINPROGRESS);
817                 } else if (trans_mode != DSPI_DMA_MODE) {
818                         status = wait_event_interruptible(dspi->waitq,
819                                                           dspi->waitflags);
820                         dspi->waitflags = 0;
821                 }
822                 if (status)
823                         dev_err(&dspi->pdev->dev,
824                                 "Waiting for transfer to complete failed!\n");
825
826                 spi_transfer_delay_exec(transfer);
827         }
828
829 out:
830         message->status = status;
831         spi_finalize_current_message(ctlr);
832
833         return status;
834 }
835
836 static int dspi_setup(struct spi_device *spi)
837 {
838         struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
839         unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
840         u32 cs_sck_delay = 0, sck_cs_delay = 0;
841         struct fsl_dspi_platform_data *pdata;
842         unsigned char pasc = 0, asc = 0;
843         struct chip_data *chip;
844         unsigned long clkrate;
845
846         /* Only alloc on first setup */
847         chip = spi_get_ctldata(spi);
848         if (chip == NULL) {
849                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
850                 if (!chip)
851                         return -ENOMEM;
852         }
853
854         pdata = dev_get_platdata(&dspi->pdev->dev);
855
856         if (!pdata) {
857                 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
858                                      &cs_sck_delay);
859
860                 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
861                                      &sck_cs_delay);
862         } else {
863                 cs_sck_delay = pdata->cs_sck_delay;
864                 sck_cs_delay = pdata->sck_cs_delay;
865         }
866
867         chip->void_write_data = 0;
868
869         clkrate = clk_get_rate(dspi->clk);
870         hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
871
872         /* Set PCS to SCK delay scale values */
873         ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
874
875         /* Set After SCK delay scale values */
876         ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
877
878         chip->ctar_val = 0;
879         if (spi->mode & SPI_CPOL)
880                 chip->ctar_val |= SPI_CTAR_CPOL;
881         if (spi->mode & SPI_CPHA)
882                 chip->ctar_val |= SPI_CTAR_CPHA;
883
884         if (!spi_controller_is_slave(dspi->ctlr)) {
885                 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
886                                   SPI_CTAR_CSSCK(cssck) |
887                                   SPI_CTAR_PASC(pasc) |
888                                   SPI_CTAR_ASC(asc) |
889                                   SPI_CTAR_PBR(pbr) |
890                                   SPI_CTAR_BR(br);
891
892                 if (spi->mode & SPI_LSB_FIRST)
893                         chip->ctar_val |= SPI_CTAR_LSBFE;
894         }
895
896         spi_set_ctldata(spi, chip);
897
898         return 0;
899 }
900
901 static void dspi_cleanup(struct spi_device *spi)
902 {
903         struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
904
905         dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
906                 spi->controller->bus_num, spi->chip_select);
907
908         kfree(chip);
909 }
910
911 static const struct of_device_id fsl_dspi_dt_ids[] = {
912         { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
913         { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
914         { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
915         { /* sentinel */ }
916 };
917 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
918
919 #ifdef CONFIG_PM_SLEEP
920 static int dspi_suspend(struct device *dev)
921 {
922         struct spi_controller *ctlr = dev_get_drvdata(dev);
923         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
924
925         spi_controller_suspend(ctlr);
926         clk_disable_unprepare(dspi->clk);
927
928         pinctrl_pm_select_sleep_state(dev);
929
930         return 0;
931 }
932
933 static int dspi_resume(struct device *dev)
934 {
935         struct spi_controller *ctlr = dev_get_drvdata(dev);
936         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
937         int ret;
938
939         pinctrl_pm_select_default_state(dev);
940
941         ret = clk_prepare_enable(dspi->clk);
942         if (ret)
943                 return ret;
944         spi_controller_resume(ctlr);
945
946         return 0;
947 }
948 #endif /* CONFIG_PM_SLEEP */
949
950 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
951
952 static const struct regmap_range dspi_volatile_ranges[] = {
953         regmap_reg_range(SPI_MCR, SPI_TCR),
954         regmap_reg_range(SPI_SR, SPI_SR),
955         regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
956 };
957
958 static const struct regmap_access_table dspi_volatile_table = {
959         .yes_ranges     = dspi_volatile_ranges,
960         .n_yes_ranges   = ARRAY_SIZE(dspi_volatile_ranges),
961 };
962
963 static const struct regmap_config dspi_regmap_config = {
964         .reg_bits       = 32,
965         .val_bits       = 32,
966         .reg_stride     = 4,
967         .max_register   = 0x88,
968         .volatile_table = &dspi_volatile_table,
969 };
970
971 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
972         regmap_reg_range(SPI_MCR, SPI_TCR),
973         regmap_reg_range(SPI_SR, SPI_SR),
974         regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
975         regmap_reg_range(SPI_SREX, SPI_SREX),
976 };
977
978 static const struct regmap_access_table dspi_xspi_volatile_table = {
979         .yes_ranges     = dspi_xspi_volatile_ranges,
980         .n_yes_ranges   = ARRAY_SIZE(dspi_xspi_volatile_ranges),
981 };
982
983 static const struct regmap_config dspi_xspi_regmap_config[] = {
984         {
985                 .reg_bits       = 32,
986                 .val_bits       = 32,
987                 .reg_stride     = 4,
988                 .max_register   = 0x13c,
989                 .volatile_table = &dspi_xspi_volatile_table,
990         },
991         {
992                 .name           = "pushr",
993                 .reg_bits       = 16,
994                 .val_bits       = 16,
995                 .reg_stride     = 2,
996                 .max_register   = 0x2,
997         },
998 };
999
1000 static void dspi_init(struct fsl_dspi *dspi)
1001 {
1002         unsigned int mcr = SPI_MCR_PCSIS;
1003
1004         if (dspi->devtype_data->xspi_mode)
1005                 mcr |= SPI_MCR_XSPI;
1006         if (!spi_controller_is_slave(dspi->ctlr))
1007                 mcr |= SPI_MCR_MASTER;
1008
1009         regmap_write(dspi->regmap, SPI_MCR, mcr);
1010         regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1011         if (dspi->devtype_data->xspi_mode)
1012                 regmap_write(dspi->regmap, SPI_CTARE(0),
1013                              SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1014 }
1015
1016 static int dspi_slave_abort(struct spi_master *master)
1017 {
1018         struct fsl_dspi *dspi = spi_master_get_devdata(master);
1019
1020         /*
1021          * Terminate all pending DMA transactions for the SPI working
1022          * in SLAVE mode.
1023          */
1024         dmaengine_terminate_sync(dspi->dma->chan_rx);
1025         dmaengine_terminate_sync(dspi->dma->chan_tx);
1026
1027         /* Clear the internal DSPI RX and TX FIFO buffers */
1028         regmap_update_bits(dspi->regmap, SPI_MCR,
1029                            SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1030                            SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1031
1032         return 0;
1033 }
1034
1035 static int dspi_probe(struct platform_device *pdev)
1036 {
1037         struct device_node *np = pdev->dev.of_node;
1038         const struct regmap_config *regmap_config;
1039         struct fsl_dspi_platform_data *pdata;
1040         struct spi_controller *ctlr;
1041         int ret, cs_num, bus_num;
1042         struct fsl_dspi *dspi;
1043         struct resource *res;
1044         void __iomem *base;
1045
1046         ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1047         if (!ctlr)
1048                 return -ENOMEM;
1049
1050         dspi = spi_controller_get_devdata(ctlr);
1051         dspi->pdev = pdev;
1052         dspi->ctlr = ctlr;
1053
1054         ctlr->setup = dspi_setup;
1055         ctlr->transfer_one_message = dspi_transfer_one_message;
1056         ctlr->dev.of_node = pdev->dev.of_node;
1057
1058         ctlr->cleanup = dspi_cleanup;
1059         ctlr->slave_abort = dspi_slave_abort;
1060         ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1061
1062         pdata = dev_get_platdata(&pdev->dev);
1063         if (pdata) {
1064                 ctlr->num_chipselect = pdata->cs_num;
1065                 ctlr->bus_num = pdata->bus_num;
1066
1067                 dspi->devtype_data = &coldfire_data;
1068         } else {
1069
1070                 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1071                 if (ret < 0) {
1072                         dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1073                         goto out_ctlr_put;
1074                 }
1075                 ctlr->num_chipselect = cs_num;
1076
1077                 ret = of_property_read_u32(np, "bus-num", &bus_num);
1078                 if (ret < 0) {
1079                         dev_err(&pdev->dev, "can't get bus-num\n");
1080                         goto out_ctlr_put;
1081                 }
1082                 ctlr->bus_num = bus_num;
1083
1084                 if (of_property_read_bool(np, "spi-slave"))
1085                         ctlr->slave = true;
1086
1087                 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1088                 if (!dspi->devtype_data) {
1089                         dev_err(&pdev->dev, "can't get devtype_data\n");
1090                         ret = -EFAULT;
1091                         goto out_ctlr_put;
1092                 }
1093         }
1094
1095         if (dspi->devtype_data->xspi_mode)
1096                 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1097         else
1098                 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1099
1100         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1101         base = devm_ioremap_resource(&pdev->dev, res);
1102         if (IS_ERR(base)) {
1103                 ret = PTR_ERR(base);
1104                 goto out_ctlr_put;
1105         }
1106
1107         if (dspi->devtype_data->xspi_mode)
1108                 regmap_config = &dspi_xspi_regmap_config[0];
1109         else
1110                 regmap_config = &dspi_regmap_config;
1111         dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1112         if (IS_ERR(dspi->regmap)) {
1113                 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1114                                 PTR_ERR(dspi->regmap));
1115                 ret = PTR_ERR(dspi->regmap);
1116                 goto out_ctlr_put;
1117         }
1118
1119         if (dspi->devtype_data->xspi_mode) {
1120                 dspi->regmap_pushr = devm_regmap_init_mmio(
1121                         &pdev->dev, base + SPI_PUSHR,
1122                         &dspi_xspi_regmap_config[1]);
1123                 if (IS_ERR(dspi->regmap_pushr)) {
1124                         dev_err(&pdev->dev,
1125                                 "failed to init pushr regmap: %ld\n",
1126                                 PTR_ERR(dspi->regmap_pushr));
1127                         ret = PTR_ERR(dspi->regmap_pushr);
1128                         goto out_ctlr_put;
1129                 }
1130         }
1131
1132         dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1133         if (IS_ERR(dspi->clk)) {
1134                 ret = PTR_ERR(dspi->clk);
1135                 dev_err(&pdev->dev, "unable to get clock\n");
1136                 goto out_ctlr_put;
1137         }
1138         ret = clk_prepare_enable(dspi->clk);
1139         if (ret)
1140                 goto out_ctlr_put;
1141
1142         dspi_init(dspi);
1143
1144         if (dspi->devtype_data->trans_mode == DSPI_TCFQ_MODE)
1145                 goto poll_mode;
1146
1147         dspi->irq = platform_get_irq(pdev, 0);
1148         if (dspi->irq <= 0) {
1149                 dev_info(&pdev->dev,
1150                          "can't get platform irq, using poll mode\n");
1151                 dspi->irq = 0;
1152                 goto poll_mode;
1153         }
1154
1155         ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1156                                IRQF_SHARED, pdev->name, dspi);
1157         if (ret < 0) {
1158                 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1159                 goto out_clk_put;
1160         }
1161
1162         init_waitqueue_head(&dspi->waitq);
1163
1164 poll_mode:
1165
1166         if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1167                 ret = dspi_request_dma(dspi, res->start);
1168                 if (ret < 0) {
1169                         dev_err(&pdev->dev, "can't get dma channels\n");
1170                         goto out_clk_put;
1171                 }
1172         }
1173
1174         ctlr->max_speed_hz =
1175                 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1176
1177         ctlr->ptp_sts_supported = dspi->devtype_data->ptp_sts_supported;
1178
1179         platform_set_drvdata(pdev, ctlr);
1180
1181         ret = spi_register_controller(ctlr);
1182         if (ret != 0) {
1183                 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1184                 goto out_clk_put;
1185         }
1186
1187         return ret;
1188
1189 out_clk_put:
1190         clk_disable_unprepare(dspi->clk);
1191 out_ctlr_put:
1192         spi_controller_put(ctlr);
1193
1194         return ret;
1195 }
1196
1197 static int dspi_remove(struct platform_device *pdev)
1198 {
1199         struct spi_controller *ctlr = platform_get_drvdata(pdev);
1200         struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1201
1202         /* Disconnect from the SPI framework */
1203         dspi_release_dma(dspi);
1204         clk_disable_unprepare(dspi->clk);
1205         spi_unregister_controller(dspi->ctlr);
1206
1207         return 0;
1208 }
1209
1210 static struct platform_driver fsl_dspi_driver = {
1211         .driver.name            = DRIVER_NAME,
1212         .driver.of_match_table  = fsl_dspi_dt_ids,
1213         .driver.owner           = THIS_MODULE,
1214         .driver.pm              = &dspi_pm,
1215         .probe                  = dspi_probe,
1216         .remove                 = dspi_remove,
1217 };
1218 module_platform_driver(fsl_dspi_driver);
1219
1220 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1221 MODULE_LICENSE("GPL");
1222 MODULE_ALIAS("platform:" DRIVER_NAME);