]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/spi/spi-pxa2xx.c
Merge tag 'driver-core-5.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / spi / spi-pxa2xx.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30
31 #include "spi-pxa2xx.h"
32
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37
38 #define TIMOUT_DFLT             1000
39
40 /*
41  * for testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the pxa270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 dev man says all bits without really meaning the
45  * service and interrupt enables
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51                                 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
55                                 | QUARK_X1000_SSCR1_EFWR        \
56                                 | QUARK_X1000_SSCR1_RFT         \
57                                 | QUARK_X1000_SSCR1_TFT         \
58                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64                                 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT                   9
71 #define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
72
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76
77 struct lpss_config {
78         /* LPSS offset from drv_data->ioaddr */
79         unsigned offset;
80         /* Register offsets from drv_data->lpss_base or -1 */
81         int reg_general;
82         int reg_ssp;
83         int reg_cs_ctrl;
84         int reg_capabilities;
85         /* FIFO thresholds */
86         u32 rx_threshold;
87         u32 tx_threshold_lo;
88         u32 tx_threshold_hi;
89         /* Chip select control */
90         unsigned cs_sel_shift;
91         unsigned cs_sel_mask;
92         unsigned cs_num;
93         /* Quirks */
94         unsigned cs_clk_stays_gated : 1;
95 };
96
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99         {       /* LPSS_LPT_SSP */
100                 .offset = 0x800,
101                 .reg_general = 0x08,
102                 .reg_ssp = 0x0c,
103                 .reg_cs_ctrl = 0x18,
104                 .reg_capabilities = -1,
105                 .rx_threshold = 64,
106                 .tx_threshold_lo = 160,
107                 .tx_threshold_hi = 224,
108         },
109         {       /* LPSS_BYT_SSP */
110                 .offset = 0x400,
111                 .reg_general = 0x08,
112                 .reg_ssp = 0x0c,
113                 .reg_cs_ctrl = 0x18,
114                 .reg_capabilities = -1,
115                 .rx_threshold = 64,
116                 .tx_threshold_lo = 160,
117                 .tx_threshold_hi = 224,
118         },
119         {       /* LPSS_BSW_SSP */
120                 .offset = 0x400,
121                 .reg_general = 0x08,
122                 .reg_ssp = 0x0c,
123                 .reg_cs_ctrl = 0x18,
124                 .reg_capabilities = -1,
125                 .rx_threshold = 64,
126                 .tx_threshold_lo = 160,
127                 .tx_threshold_hi = 224,
128                 .cs_sel_shift = 2,
129                 .cs_sel_mask = 1 << 2,
130                 .cs_num = 2,
131         },
132         {       /* LPSS_SPT_SSP */
133                 .offset = 0x200,
134                 .reg_general = -1,
135                 .reg_ssp = 0x20,
136                 .reg_cs_ctrl = 0x24,
137                 .reg_capabilities = -1,
138                 .rx_threshold = 1,
139                 .tx_threshold_lo = 32,
140                 .tx_threshold_hi = 56,
141         },
142         {       /* LPSS_BXT_SSP */
143                 .offset = 0x200,
144                 .reg_general = -1,
145                 .reg_ssp = 0x20,
146                 .reg_cs_ctrl = 0x24,
147                 .reg_capabilities = 0xfc,
148                 .rx_threshold = 1,
149                 .tx_threshold_lo = 16,
150                 .tx_threshold_hi = 48,
151                 .cs_sel_shift = 8,
152                 .cs_sel_mask = 3 << 8,
153         },
154         {       /* LPSS_CNL_SSP */
155                 .offset = 0x200,
156                 .reg_general = -1,
157                 .reg_ssp = 0x20,
158                 .reg_cs_ctrl = 0x24,
159                 .reg_capabilities = 0xfc,
160                 .rx_threshold = 1,
161                 .tx_threshold_lo = 32,
162                 .tx_threshold_hi = 56,
163                 .cs_sel_shift = 8,
164                 .cs_sel_mask = 3 << 8,
165                 .cs_clk_stays_gated = true,
166         },
167 };
168
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172         return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177         switch (drv_data->ssp_type) {
178         case LPSS_LPT_SSP:
179         case LPSS_BYT_SSP:
180         case LPSS_BSW_SSP:
181         case LPSS_SPT_SSP:
182         case LPSS_BXT_SSP:
183         case LPSS_CNL_SSP:
184                 return true;
185         default:
186                 return false;
187         }
188 }
189
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192         return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
196 {
197         switch (drv_data->ssp_type) {
198         case QUARK_X1000_SSP:
199                 return QUARK_X1000_SSCR1_CHANGE_MASK;
200         case CE4100_SSP:
201                 return CE4100_SSCR1_CHANGE_MASK;
202         default:
203                 return SSCR1_CHANGE_MASK;
204         }
205 }
206
207 static u32
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
209 {
210         switch (drv_data->ssp_type) {
211         case QUARK_X1000_SSP:
212                 return RX_THRESH_QUARK_X1000_DFLT;
213         case CE4100_SSP:
214                 return RX_THRESH_CE4100_DFLT;
215         default:
216                 return RX_THRESH_DFLT;
217         }
218 }
219
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
221 {
222         u32 mask;
223
224         switch (drv_data->ssp_type) {
225         case QUARK_X1000_SSP:
226                 mask = QUARK_X1000_SSSR_TFL_MASK;
227                 break;
228         case CE4100_SSP:
229                 mask = CE4100_SSSR_TFL_MASK;
230                 break;
231         default:
232                 mask = SSSR_TFL_MASK;
233                 break;
234         }
235
236         return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
237 }
238
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
240                                      u32 *sccr1_reg)
241 {
242         u32 mask;
243
244         switch (drv_data->ssp_type) {
245         case QUARK_X1000_SSP:
246                 mask = QUARK_X1000_SSCR1_RFT;
247                 break;
248         case CE4100_SSP:
249                 mask = CE4100_SSCR1_RFT;
250                 break;
251         default:
252                 mask = SSCR1_RFT;
253                 break;
254         }
255         *sccr1_reg &= ~mask;
256 }
257
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259                                    u32 *sccr1_reg, u32 threshold)
260 {
261         switch (drv_data->ssp_type) {
262         case QUARK_X1000_SSP:
263                 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
264                 break;
265         case CE4100_SSP:
266                 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
267                 break;
268         default:
269                 *sccr1_reg |= SSCR1_RxTresh(threshold);
270                 break;
271         }
272 }
273
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275                                   u32 clk_div, u8 bits)
276 {
277         switch (drv_data->ssp_type) {
278         case QUARK_X1000_SSP:
279                 return clk_div
280                         | QUARK_X1000_SSCR0_Motorola
281                         | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
282                         | SSCR0_SSE;
283         default:
284                 return clk_div
285                         | SSCR0_Motorola
286                         | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
287                         | SSCR0_SSE
288                         | (bits > 16 ? SSCR0_EDSS : 0);
289         }
290 }
291
292 /*
293  * Read and write LPSS SSP private registers. Caller must first check that
294  * is_lpss_ssp() returns true before these can be called.
295  */
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
297 {
298         WARN_ON(!drv_data->lpss_base);
299         return readl(drv_data->lpss_base + offset);
300 }
301
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303                                   unsigned offset, u32 value)
304 {
305         WARN_ON(!drv_data->lpss_base);
306         writel(value, drv_data->lpss_base + offset);
307 }
308
309 /*
310  * lpss_ssp_setup - perform LPSS SSP specific setup
311  * @drv_data: pointer to the driver private data
312  *
313  * Perform LPSS SSP specific setup. This function must be called first if
314  * one is going to use LPSS SSP private registers.
315  */
316 static void lpss_ssp_setup(struct driver_data *drv_data)
317 {
318         const struct lpss_config *config;
319         u32 value;
320
321         config = lpss_get_config(drv_data);
322         drv_data->lpss_base = drv_data->ioaddr + config->offset;
323
324         /* Enable software chip select control */
325         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326         value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327         value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
329
330         /* Enable multiblock DMA transfers */
331         if (drv_data->controller_info->enable_dma) {
332                 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
333
334                 if (config->reg_general >= 0) {
335                         value = __lpss_ssp_read_priv(drv_data,
336                                                      config->reg_general);
337                         value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338                         __lpss_ssp_write_priv(drv_data,
339                                               config->reg_general, value);
340                 }
341         }
342 }
343
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345                                const struct lpss_config *config)
346 {
347         struct driver_data *drv_data =
348                 spi_controller_get_devdata(spi->controller);
349         u32 value, cs;
350
351         if (!config->cs_sel_mask)
352                 return;
353
354         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
355
356         cs = spi->chip_select;
357         cs <<= config->cs_sel_shift;
358         if (cs != (value & config->cs_sel_mask)) {
359                 /*
360                  * When switching another chip select output active the
361                  * output must be selected first and wait 2 ssp_clk cycles
362                  * before changing state to active. Otherwise a short
363                  * glitch will occur on the previous chip select since
364                  * output select is latched but state control is not.
365                  */
366                 value &= ~config->cs_sel_mask;
367                 value |= cs;
368                 __lpss_ssp_write_priv(drv_data,
369                                       config->reg_cs_ctrl, value);
370                 ndelay(1000000000 /
371                        (drv_data->controller->max_speed_hz / 2));
372         }
373 }
374
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
376 {
377         struct driver_data *drv_data =
378                 spi_controller_get_devdata(spi->controller);
379         const struct lpss_config *config;
380         u32 value;
381
382         config = lpss_get_config(drv_data);
383
384         if (enable)
385                 lpss_ssp_select_cs(spi, config);
386
387         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
388         if (enable)
389                 value &= ~LPSS_CS_CONTROL_CS_HIGH;
390         else
391                 value |= LPSS_CS_CONTROL_CS_HIGH;
392         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
393         if (config->cs_clk_stays_gated) {
394                 u32 clkgate;
395
396                 /*
397                  * Changing CS alone when dynamic clock gating is on won't
398                  * actually flip CS at that time. This ruins SPI transfers
399                  * that specify delays, or have no data. Toggle the clock mode
400                  * to force on briefly to poke the CS pin to move.
401                  */
402                 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
403                 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
404                         LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
405
406                 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
407                 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
408         }
409 }
410
411 static void cs_assert(struct spi_device *spi)
412 {
413         struct chip_data *chip = spi_get_ctldata(spi);
414         struct driver_data *drv_data =
415                 spi_controller_get_devdata(spi->controller);
416
417         if (drv_data->ssp_type == CE4100_SSP) {
418                 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
419                 return;
420         }
421
422         if (chip->cs_control) {
423                 chip->cs_control(PXA2XX_CS_ASSERT);
424                 return;
425         }
426
427         if (chip->gpiod_cs) {
428                 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
429                 return;
430         }
431
432         if (is_lpss_ssp(drv_data))
433                 lpss_ssp_cs_control(spi, true);
434 }
435
436 static void cs_deassert(struct spi_device *spi)
437 {
438         struct chip_data *chip = spi_get_ctldata(spi);
439         struct driver_data *drv_data =
440                 spi_controller_get_devdata(spi->controller);
441         unsigned long timeout;
442
443         if (drv_data->ssp_type == CE4100_SSP)
444                 return;
445
446         /* Wait until SSP becomes idle before deasserting the CS */
447         timeout = jiffies + msecs_to_jiffies(10);
448         while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
449                !time_after(jiffies, timeout))
450                 cpu_relax();
451
452         if (chip->cs_control) {
453                 chip->cs_control(PXA2XX_CS_DEASSERT);
454                 return;
455         }
456
457         if (chip->gpiod_cs) {
458                 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
459                 return;
460         }
461
462         if (is_lpss_ssp(drv_data))
463                 lpss_ssp_cs_control(spi, false);
464 }
465
466 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
467 {
468         if (level)
469                 cs_deassert(spi);
470         else
471                 cs_assert(spi);
472 }
473
474 int pxa2xx_spi_flush(struct driver_data *drv_data)
475 {
476         unsigned long limit = loops_per_jiffy << 1;
477
478         do {
479                 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
480                         pxa2xx_spi_read(drv_data, SSDR);
481         } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
482         write_SSSR_CS(drv_data, SSSR_ROR);
483
484         return limit;
485 }
486
487 static void pxa2xx_spi_off(struct driver_data *drv_data)
488 {
489         /* On MMP, disabling SSE seems to corrupt the rx fifo */
490         if (drv_data->ssp_type == MMP2_SSP)
491                 return;
492
493         pxa2xx_spi_write(drv_data, SSCR0,
494                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
495 }
496
497 static int null_writer(struct driver_data *drv_data)
498 {
499         u8 n_bytes = drv_data->n_bytes;
500
501         if (pxa2xx_spi_txfifo_full(drv_data)
502                 || (drv_data->tx == drv_data->tx_end))
503                 return 0;
504
505         pxa2xx_spi_write(drv_data, SSDR, 0);
506         drv_data->tx += n_bytes;
507
508         return 1;
509 }
510
511 static int null_reader(struct driver_data *drv_data)
512 {
513         u8 n_bytes = drv_data->n_bytes;
514
515         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
516                && (drv_data->rx < drv_data->rx_end)) {
517                 pxa2xx_spi_read(drv_data, SSDR);
518                 drv_data->rx += n_bytes;
519         }
520
521         return drv_data->rx == drv_data->rx_end;
522 }
523
524 static int u8_writer(struct driver_data *drv_data)
525 {
526         if (pxa2xx_spi_txfifo_full(drv_data)
527                 || (drv_data->tx == drv_data->tx_end))
528                 return 0;
529
530         pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
531         ++drv_data->tx;
532
533         return 1;
534 }
535
536 static int u8_reader(struct driver_data *drv_data)
537 {
538         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
539                && (drv_data->rx < drv_data->rx_end)) {
540                 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
541                 ++drv_data->rx;
542         }
543
544         return drv_data->rx == drv_data->rx_end;
545 }
546
547 static int u16_writer(struct driver_data *drv_data)
548 {
549         if (pxa2xx_spi_txfifo_full(drv_data)
550                 || (drv_data->tx == drv_data->tx_end))
551                 return 0;
552
553         pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
554         drv_data->tx += 2;
555
556         return 1;
557 }
558
559 static int u16_reader(struct driver_data *drv_data)
560 {
561         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
562                && (drv_data->rx < drv_data->rx_end)) {
563                 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
564                 drv_data->rx += 2;
565         }
566
567         return drv_data->rx == drv_data->rx_end;
568 }
569
570 static int u32_writer(struct driver_data *drv_data)
571 {
572         if (pxa2xx_spi_txfifo_full(drv_data)
573                 || (drv_data->tx == drv_data->tx_end))
574                 return 0;
575
576         pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
577         drv_data->tx += 4;
578
579         return 1;
580 }
581
582 static int u32_reader(struct driver_data *drv_data)
583 {
584         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
585                && (drv_data->rx < drv_data->rx_end)) {
586                 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
587                 drv_data->rx += 4;
588         }
589
590         return drv_data->rx == drv_data->rx_end;
591 }
592
593 static void reset_sccr1(struct driver_data *drv_data)
594 {
595         struct chip_data *chip =
596                 spi_get_ctldata(drv_data->controller->cur_msg->spi);
597         u32 sccr1_reg;
598
599         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
600         switch (drv_data->ssp_type) {
601         case QUARK_X1000_SSP:
602                 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
603                 break;
604         case CE4100_SSP:
605                 sccr1_reg &= ~CE4100_SSCR1_RFT;
606                 break;
607         default:
608                 sccr1_reg &= ~SSCR1_RFT;
609                 break;
610         }
611         sccr1_reg |= chip->threshold;
612         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
613 }
614
615 static void int_error_stop(struct driver_data *drv_data, const char* msg)
616 {
617         /* Stop and reset SSP */
618         write_SSSR_CS(drv_data, drv_data->clear_sr);
619         reset_sccr1(drv_data);
620         if (!pxa25x_ssp_comp(drv_data))
621                 pxa2xx_spi_write(drv_data, SSTO, 0);
622         pxa2xx_spi_flush(drv_data);
623         pxa2xx_spi_off(drv_data);
624
625         dev_err(&drv_data->pdev->dev, "%s\n", msg);
626
627         drv_data->controller->cur_msg->status = -EIO;
628         spi_finalize_current_transfer(drv_data->controller);
629 }
630
631 static void int_transfer_complete(struct driver_data *drv_data)
632 {
633         /* Clear and disable interrupts */
634         write_SSSR_CS(drv_data, drv_data->clear_sr);
635         reset_sccr1(drv_data);
636         if (!pxa25x_ssp_comp(drv_data))
637                 pxa2xx_spi_write(drv_data, SSTO, 0);
638
639         spi_finalize_current_transfer(drv_data->controller);
640 }
641
642 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
643 {
644         u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
645                        drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
646
647         u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
648
649         if (irq_status & SSSR_ROR) {
650                 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
651                 return IRQ_HANDLED;
652         }
653
654         if (irq_status & SSSR_TUR) {
655                 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
656                 return IRQ_HANDLED;
657         }
658
659         if (irq_status & SSSR_TINT) {
660                 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
661                 if (drv_data->read(drv_data)) {
662                         int_transfer_complete(drv_data);
663                         return IRQ_HANDLED;
664                 }
665         }
666
667         /* Drain rx fifo, Fill tx fifo and prevent overruns */
668         do {
669                 if (drv_data->read(drv_data)) {
670                         int_transfer_complete(drv_data);
671                         return IRQ_HANDLED;
672                 }
673         } while (drv_data->write(drv_data));
674
675         if (drv_data->read(drv_data)) {
676                 int_transfer_complete(drv_data);
677                 return IRQ_HANDLED;
678         }
679
680         if (drv_data->tx == drv_data->tx_end) {
681                 u32 bytes_left;
682                 u32 sccr1_reg;
683
684                 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
685                 sccr1_reg &= ~SSCR1_TIE;
686
687                 /*
688                  * PXA25x_SSP has no timeout, set up rx threshould for the
689                  * remaining RX bytes.
690                  */
691                 if (pxa25x_ssp_comp(drv_data)) {
692                         u32 rx_thre;
693
694                         pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
695
696                         bytes_left = drv_data->rx_end - drv_data->rx;
697                         switch (drv_data->n_bytes) {
698                         case 4:
699                                 bytes_left >>= 2;
700                                 break;
701                         case 2:
702                                 bytes_left >>= 1;
703                                 break;
704                         }
705
706                         rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
707                         if (rx_thre > bytes_left)
708                                 rx_thre = bytes_left;
709
710                         pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
711                 }
712                 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
713         }
714
715         /* We did something */
716         return IRQ_HANDLED;
717 }
718
719 static void handle_bad_msg(struct driver_data *drv_data)
720 {
721         pxa2xx_spi_off(drv_data);
722         pxa2xx_spi_write(drv_data, SSCR1,
723                          pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
724         if (!pxa25x_ssp_comp(drv_data))
725                 pxa2xx_spi_write(drv_data, SSTO, 0);
726         write_SSSR_CS(drv_data, drv_data->clear_sr);
727
728         dev_err(&drv_data->pdev->dev,
729                 "bad message state in interrupt handler\n");
730 }
731
732 static irqreturn_t ssp_int(int irq, void *dev_id)
733 {
734         struct driver_data *drv_data = dev_id;
735         u32 sccr1_reg;
736         u32 mask = drv_data->mask_sr;
737         u32 status;
738
739         /*
740          * The IRQ might be shared with other peripherals so we must first
741          * check that are we RPM suspended or not. If we are we assume that
742          * the IRQ was not for us (we shouldn't be RPM suspended when the
743          * interrupt is enabled).
744          */
745         if (pm_runtime_suspended(&drv_data->pdev->dev))
746                 return IRQ_NONE;
747
748         /*
749          * If the device is not yet in RPM suspended state and we get an
750          * interrupt that is meant for another device, check if status bits
751          * are all set to one. That means that the device is already
752          * powered off.
753          */
754         status = pxa2xx_spi_read(drv_data, SSSR);
755         if (status == ~0)
756                 return IRQ_NONE;
757
758         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
759
760         /* Ignore possible writes if we don't need to write */
761         if (!(sccr1_reg & SSCR1_TIE))
762                 mask &= ~SSSR_TFS;
763
764         /* Ignore RX timeout interrupt if it is disabled */
765         if (!(sccr1_reg & SSCR1_TINTE))
766                 mask &= ~SSSR_TINT;
767
768         if (!(status & mask))
769                 return IRQ_NONE;
770
771         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
772         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
773
774         if (!drv_data->controller->cur_msg) {
775                 handle_bad_msg(drv_data);
776                 /* Never fail */
777                 return IRQ_HANDLED;
778         }
779
780         return drv_data->transfer_handler(drv_data);
781 }
782
783 /*
784  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
785  * input frequency by fractions of 2^24. It also has a divider by 5.
786  *
787  * There are formulas to get baud rate value for given input frequency and
788  * divider parameters, such as DDS_CLK_RATE and SCR:
789  *
790  * Fsys = 200MHz
791  *
792  * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
793  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
794  *
795  * DDS_CLK_RATE either 2^n or 2^n / 5.
796  * SCR is in range 0 .. 255
797  *
798  * Divisor = 5^i * 2^j * 2 * k
799  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
800  *       j = [0, 23]     j = 0 iff i = 1
801  *       k = [1, 256]
802  * Special case: j = 0, i = 1: Divisor = 2 / 5
803  *
804  * Accordingly to the specification the recommended values for DDS_CLK_RATE
805  * are:
806  *      Case 1:         2^n, n = [0, 23]
807  *      Case 2:         2^24 * 2 / 5 (0x666666)
808  *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
809  *
810  * In all cases the lowest possible value is better.
811  *
812  * The function calculates parameters for all cases and chooses the one closest
813  * to the asked baud rate.
814  */
815 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
816 {
817         unsigned long xtal = 200000000;
818         unsigned long fref = xtal / 2;          /* mandatory division by 2,
819                                                    see (2) */
820                                                 /* case 3 */
821         unsigned long fref1 = fref / 2;         /* case 1 */
822         unsigned long fref2 = fref * 2 / 5;     /* case 2 */
823         unsigned long scale;
824         unsigned long q, q1, q2;
825         long r, r1, r2;
826         u32 mul;
827
828         /* Case 1 */
829
830         /* Set initial value for DDS_CLK_RATE */
831         mul = (1 << 24) >> 1;
832
833         /* Calculate initial quot */
834         q1 = DIV_ROUND_UP(fref1, rate);
835
836         /* Scale q1 if it's too big */
837         if (q1 > 256) {
838                 /* Scale q1 to range [1, 512] */
839                 scale = fls_long(q1 - 1);
840                 if (scale > 9) {
841                         q1 >>= scale - 9;
842                         mul >>= scale - 9;
843                 }
844
845                 /* Round the result if we have a remainder */
846                 q1 += q1 & 1;
847         }
848
849         /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
850         scale = __ffs(q1);
851         q1 >>= scale;
852         mul >>= scale;
853
854         /* Get the remainder */
855         r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
856
857         /* Case 2 */
858
859         q2 = DIV_ROUND_UP(fref2, rate);
860         r2 = abs(fref2 / q2 - rate);
861
862         /*
863          * Choose the best between two: less remainder we have the better. We
864          * can't go case 2 if q2 is greater than 256 since SCR register can
865          * hold only values 0 .. 255.
866          */
867         if (r2 >= r1 || q2 > 256) {
868                 /* case 1 is better */
869                 r = r1;
870                 q = q1;
871         } else {
872                 /* case 2 is better */
873                 r = r2;
874                 q = q2;
875                 mul = (1 << 24) * 2 / 5;
876         }
877
878         /* Check case 3 only if the divisor is big enough */
879         if (fref / rate >= 80) {
880                 u64 fssp;
881                 u32 m;
882
883                 /* Calculate initial quot */
884                 q1 = DIV_ROUND_UP(fref, rate);
885                 m = (1 << 24) / q1;
886
887                 /* Get the remainder */
888                 fssp = (u64)fref * m;
889                 do_div(fssp, 1 << 24);
890                 r1 = abs(fssp - rate);
891
892                 /* Choose this one if it suits better */
893                 if (r1 < r) {
894                         /* case 3 is better */
895                         q = 1;
896                         mul = m;
897                 }
898         }
899
900         *dds = mul;
901         return q - 1;
902 }
903
904 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
905 {
906         unsigned long ssp_clk = drv_data->controller->max_speed_hz;
907         const struct ssp_device *ssp = drv_data->ssp;
908
909         rate = min_t(int, ssp_clk, rate);
910
911         /*
912          * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
913          * that the SSP transmission rate can be greater than the device rate
914          */
915         if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
916                 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
917         else
918                 return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
919 }
920
921 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
922                                            int rate)
923 {
924         struct chip_data *chip =
925                 spi_get_ctldata(drv_data->controller->cur_msg->spi);
926         unsigned int clk_div;
927
928         switch (drv_data->ssp_type) {
929         case QUARK_X1000_SSP:
930                 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
931                 break;
932         default:
933                 clk_div = ssp_get_clk_div(drv_data, rate);
934                 break;
935         }
936         return clk_div << 8;
937 }
938
939 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
940                                struct spi_device *spi,
941                                struct spi_transfer *xfer)
942 {
943         struct chip_data *chip = spi_get_ctldata(spi);
944
945         return chip->enable_dma &&
946                xfer->len <= MAX_DMA_LEN &&
947                xfer->len >= chip->dma_burst_size;
948 }
949
950 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
951                                    struct spi_device *spi,
952                                    struct spi_transfer *transfer)
953 {
954         struct driver_data *drv_data = spi_controller_get_devdata(controller);
955         struct spi_message *message = controller->cur_msg;
956         struct chip_data *chip = spi_get_ctldata(spi);
957         u32 dma_thresh = chip->dma_threshold;
958         u32 dma_burst = chip->dma_burst_size;
959         u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
960         u32 clk_div;
961         u8 bits;
962         u32 speed;
963         u32 cr0;
964         u32 cr1;
965         int err;
966         int dma_mapped;
967
968         /* Check if we can DMA this transfer */
969         if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
970
971                 /* reject already-mapped transfers; PIO won't always work */
972                 if (message->is_dma_mapped
973                                 || transfer->rx_dma || transfer->tx_dma) {
974                         dev_err(&spi->dev,
975                                 "Mapped transfer length of %u is greater than %d\n",
976                                 transfer->len, MAX_DMA_LEN);
977                         return -EINVAL;
978                 }
979
980                 /* warn ... we force this to PIO mode */
981                 dev_warn_ratelimited(&spi->dev,
982                                      "DMA disabled for transfer length %ld greater than %d\n",
983                                      (long)transfer->len, MAX_DMA_LEN);
984         }
985
986         /* Setup the transfer state based on the type of transfer */
987         if (pxa2xx_spi_flush(drv_data) == 0) {
988                 dev_err(&spi->dev, "Flush failed\n");
989                 return -EIO;
990         }
991         drv_data->n_bytes = chip->n_bytes;
992         drv_data->tx = (void *)transfer->tx_buf;
993         drv_data->tx_end = drv_data->tx + transfer->len;
994         drv_data->rx = transfer->rx_buf;
995         drv_data->rx_end = drv_data->rx + transfer->len;
996         drv_data->write = drv_data->tx ? chip->write : null_writer;
997         drv_data->read = drv_data->rx ? chip->read : null_reader;
998
999         /* Change speed and bit per word on a per transfer */
1000         bits = transfer->bits_per_word;
1001         speed = transfer->speed_hz;
1002
1003         clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1004
1005         if (bits <= 8) {
1006                 drv_data->n_bytes = 1;
1007                 drv_data->read = drv_data->read != null_reader ?
1008                                         u8_reader : null_reader;
1009                 drv_data->write = drv_data->write != null_writer ?
1010                                         u8_writer : null_writer;
1011         } else if (bits <= 16) {
1012                 drv_data->n_bytes = 2;
1013                 drv_data->read = drv_data->read != null_reader ?
1014                                         u16_reader : null_reader;
1015                 drv_data->write = drv_data->write != null_writer ?
1016                                         u16_writer : null_writer;
1017         } else if (bits <= 32) {
1018                 drv_data->n_bytes = 4;
1019                 drv_data->read = drv_data->read != null_reader ?
1020                                         u32_reader : null_reader;
1021                 drv_data->write = drv_data->write != null_writer ?
1022                                         u32_writer : null_writer;
1023         }
1024         /*
1025          * if bits/word is changed in dma mode, then must check the
1026          * thresholds and burst also
1027          */
1028         if (chip->enable_dma) {
1029                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1030                                                 spi,
1031                                                 bits, &dma_burst,
1032                                                 &dma_thresh))
1033                         dev_warn_ratelimited(&spi->dev,
1034                                              "DMA burst size reduced to match bits_per_word\n");
1035         }
1036
1037         dma_mapped = controller->can_dma &&
1038                      controller->can_dma(controller, spi, transfer) &&
1039                      controller->cur_msg_mapped;
1040         if (dma_mapped) {
1041
1042                 /* Ensure we have the correct interrupt handler */
1043                 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1044
1045                 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1046                 if (err)
1047                         return err;
1048
1049                 /* Clear status and start DMA engine */
1050                 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1051                 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1052
1053                 pxa2xx_spi_dma_start(drv_data);
1054         } else {
1055                 /* Ensure we have the correct interrupt handler */
1056                 drv_data->transfer_handler = interrupt_transfer;
1057
1058                 /* Clear status  */
1059                 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1060                 write_SSSR_CS(drv_data, drv_data->clear_sr);
1061         }
1062
1063         /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1064         cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1065         if (!pxa25x_ssp_comp(drv_data))
1066                 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1067                         controller->max_speed_hz
1068                                 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1069                         dma_mapped ? "DMA" : "PIO");
1070         else
1071                 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1072                         controller->max_speed_hz / 2
1073                                 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1074                         dma_mapped ? "DMA" : "PIO");
1075
1076         if (is_lpss_ssp(drv_data)) {
1077                 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1078                     != chip->lpss_rx_threshold)
1079                         pxa2xx_spi_write(drv_data, SSIRF,
1080                                          chip->lpss_rx_threshold);
1081                 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1082                     != chip->lpss_tx_threshold)
1083                         pxa2xx_spi_write(drv_data, SSITF,
1084                                          chip->lpss_tx_threshold);
1085         }
1086
1087         if (is_quark_x1000_ssp(drv_data) &&
1088             (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1089                 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1090
1091         /* see if we need to reload the config registers */
1092         if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1093             || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1094             != (cr1 & change_mask)) {
1095                 /* stop the SSP, and update the other bits */
1096                 if (drv_data->ssp_type != MMP2_SSP)
1097                         pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1098                 if (!pxa25x_ssp_comp(drv_data))
1099                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1100                 /* first set CR1 without interrupt and service enables */
1101                 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1102                 /* restart the SSP */
1103                 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1104
1105         } else {
1106                 if (!pxa25x_ssp_comp(drv_data))
1107                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1108         }
1109
1110         if (drv_data->ssp_type == MMP2_SSP) {
1111                 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1112                                         & SSSR_TFL_MASK) >> 8;
1113
1114                 if (tx_level) {
1115                         /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1116                         dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1117                                                                 tx_level);
1118                         if (tx_level > transfer->len)
1119                                 tx_level = transfer->len;
1120                         drv_data->tx += tx_level;
1121                 }
1122         }
1123
1124         if (spi_controller_is_slave(controller)) {
1125                 while (drv_data->write(drv_data))
1126                         ;
1127                 if (drv_data->gpiod_ready) {
1128                         gpiod_set_value(drv_data->gpiod_ready, 1);
1129                         udelay(1);
1130                         gpiod_set_value(drv_data->gpiod_ready, 0);
1131                 }
1132         }
1133
1134         /*
1135          * Release the data by enabling service requests and interrupts,
1136          * without changing any mode bits
1137          */
1138         pxa2xx_spi_write(drv_data, SSCR1, cr1);
1139
1140         return 1;
1141 }
1142
1143 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1144 {
1145         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1146
1147         /* Stop and reset SSP */
1148         write_SSSR_CS(drv_data, drv_data->clear_sr);
1149         reset_sccr1(drv_data);
1150         if (!pxa25x_ssp_comp(drv_data))
1151                 pxa2xx_spi_write(drv_data, SSTO, 0);
1152         pxa2xx_spi_flush(drv_data);
1153         pxa2xx_spi_off(drv_data);
1154
1155         dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1156
1157         drv_data->controller->cur_msg->status = -EINTR;
1158         spi_finalize_current_transfer(drv_data->controller);
1159
1160         return 0;
1161 }
1162
1163 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1164                                  struct spi_message *msg)
1165 {
1166         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1167
1168         /* Disable the SSP */
1169         pxa2xx_spi_off(drv_data);
1170         /* Clear and disable interrupts and service requests */
1171         write_SSSR_CS(drv_data, drv_data->clear_sr);
1172         pxa2xx_spi_write(drv_data, SSCR1,
1173                          pxa2xx_spi_read(drv_data, SSCR1)
1174                          & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1175         if (!pxa25x_ssp_comp(drv_data))
1176                 pxa2xx_spi_write(drv_data, SSTO, 0);
1177
1178         /*
1179          * Stop the DMA if running. Note DMA callback handler may have unset
1180          * the dma_running already, which is fine as stopping is not needed
1181          * then but we shouldn't rely this flag for anything else than
1182          * stopping. For instance to differentiate between PIO and DMA
1183          * transfers.
1184          */
1185         if (atomic_read(&drv_data->dma_running))
1186                 pxa2xx_spi_dma_stop(drv_data);
1187 }
1188
1189 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1190 {
1191         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1192
1193         /* Disable the SSP now */
1194         pxa2xx_spi_off(drv_data);
1195
1196         return 0;
1197 }
1198
1199 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1200                     struct pxa2xx_spi_chip *chip_info)
1201 {
1202         struct driver_data *drv_data =
1203                 spi_controller_get_devdata(spi->controller);
1204         struct gpio_desc *gpiod;
1205         int err = 0;
1206
1207         if (chip == NULL)
1208                 return 0;
1209
1210         if (drv_data->cs_gpiods) {
1211                 gpiod = drv_data->cs_gpiods[spi->chip_select];
1212                 if (gpiod) {
1213                         chip->gpiod_cs = gpiod;
1214                         chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1215                         gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1216                 }
1217
1218                 return 0;
1219         }
1220
1221         if (chip_info == NULL)
1222                 return 0;
1223
1224         /* NOTE: setup() can be called multiple times, possibly with
1225          * different chip_info, release previously requested GPIO
1226          */
1227         if (chip->gpiod_cs) {
1228                 gpiod_put(chip->gpiod_cs);
1229                 chip->gpiod_cs = NULL;
1230         }
1231
1232         /* If (*cs_control) is provided, ignore GPIO chip select */
1233         if (chip_info->cs_control) {
1234                 chip->cs_control = chip_info->cs_control;
1235                 return 0;
1236         }
1237
1238         if (gpio_is_valid(chip_info->gpio_cs)) {
1239                 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1240                 if (err) {
1241                         dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1242                                 chip_info->gpio_cs);
1243                         return err;
1244                 }
1245
1246                 gpiod = gpio_to_desc(chip_info->gpio_cs);
1247                 chip->gpiod_cs = gpiod;
1248                 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1249
1250                 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1251         }
1252
1253         return err;
1254 }
1255
1256 static int setup(struct spi_device *spi)
1257 {
1258         struct pxa2xx_spi_chip *chip_info;
1259         struct chip_data *chip;
1260         const struct lpss_config *config;
1261         struct driver_data *drv_data =
1262                 spi_controller_get_devdata(spi->controller);
1263         uint tx_thres, tx_hi_thres, rx_thres;
1264
1265         switch (drv_data->ssp_type) {
1266         case QUARK_X1000_SSP:
1267                 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1268                 tx_hi_thres = 0;
1269                 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1270                 break;
1271         case CE4100_SSP:
1272                 tx_thres = TX_THRESH_CE4100_DFLT;
1273                 tx_hi_thres = 0;
1274                 rx_thres = RX_THRESH_CE4100_DFLT;
1275                 break;
1276         case LPSS_LPT_SSP:
1277         case LPSS_BYT_SSP:
1278         case LPSS_BSW_SSP:
1279         case LPSS_SPT_SSP:
1280         case LPSS_BXT_SSP:
1281         case LPSS_CNL_SSP:
1282                 config = lpss_get_config(drv_data);
1283                 tx_thres = config->tx_threshold_lo;
1284                 tx_hi_thres = config->tx_threshold_hi;
1285                 rx_thres = config->rx_threshold;
1286                 break;
1287         default:
1288                 tx_hi_thres = 0;
1289                 if (spi_controller_is_slave(drv_data->controller)) {
1290                         tx_thres = 1;
1291                         rx_thres = 2;
1292                 } else {
1293                         tx_thres = TX_THRESH_DFLT;
1294                         rx_thres = RX_THRESH_DFLT;
1295                 }
1296                 break;
1297         }
1298
1299         /* Only alloc on first setup */
1300         chip = spi_get_ctldata(spi);
1301         if (!chip) {
1302                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1303                 if (!chip)
1304                         return -ENOMEM;
1305
1306                 if (drv_data->ssp_type == CE4100_SSP) {
1307                         if (spi->chip_select > 4) {
1308                                 dev_err(&spi->dev,
1309                                         "failed setup: cs number must not be > 4.\n");
1310                                 kfree(chip);
1311                                 return -EINVAL;
1312                         }
1313
1314                         chip->frm = spi->chip_select;
1315                 }
1316                 chip->enable_dma = drv_data->controller_info->enable_dma;
1317                 chip->timeout = TIMOUT_DFLT;
1318         }
1319
1320         /* protocol drivers may change the chip settings, so...
1321          * if chip_info exists, use it */
1322         chip_info = spi->controller_data;
1323
1324         /* chip_info isn't always needed */
1325         chip->cr1 = 0;
1326         if (chip_info) {
1327                 if (chip_info->timeout)
1328                         chip->timeout = chip_info->timeout;
1329                 if (chip_info->tx_threshold)
1330                         tx_thres = chip_info->tx_threshold;
1331                 if (chip_info->tx_hi_threshold)
1332                         tx_hi_thres = chip_info->tx_hi_threshold;
1333                 if (chip_info->rx_threshold)
1334                         rx_thres = chip_info->rx_threshold;
1335                 chip->dma_threshold = 0;
1336                 if (chip_info->enable_loopback)
1337                         chip->cr1 = SSCR1_LBM;
1338         }
1339         if (spi_controller_is_slave(drv_data->controller)) {
1340                 chip->cr1 |= SSCR1_SCFR;
1341                 chip->cr1 |= SSCR1_SCLKDIR;
1342                 chip->cr1 |= SSCR1_SFRMDIR;
1343                 chip->cr1 |= SSCR1_SPH;
1344         }
1345
1346         chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1347         chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1348                                 | SSITF_TxHiThresh(tx_hi_thres);
1349
1350         /* set dma burst and threshold outside of chip_info path so that if
1351          * chip_info goes away after setting chip->enable_dma, the
1352          * burst and threshold can still respond to changes in bits_per_word */
1353         if (chip->enable_dma) {
1354                 /* set up legal burst and threshold for dma */
1355                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1356                                                 spi->bits_per_word,
1357                                                 &chip->dma_burst_size,
1358                                                 &chip->dma_threshold)) {
1359                         dev_warn(&spi->dev,
1360                                  "in setup: DMA burst size reduced to match bits_per_word\n");
1361                 }
1362                 dev_dbg(&spi->dev,
1363                         "in setup: DMA burst size set to %u\n",
1364                         chip->dma_burst_size);
1365         }
1366
1367         switch (drv_data->ssp_type) {
1368         case QUARK_X1000_SSP:
1369                 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1370                                    & QUARK_X1000_SSCR1_RFT)
1371                                    | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1372                                    & QUARK_X1000_SSCR1_TFT);
1373                 break;
1374         case CE4100_SSP:
1375                 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1376                         (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1377                 break;
1378         default:
1379                 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1380                         (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1381                 break;
1382         }
1383
1384         chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1385         chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1386                         | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1387
1388         if (spi->mode & SPI_LOOP)
1389                 chip->cr1 |= SSCR1_LBM;
1390
1391         if (spi->bits_per_word <= 8) {
1392                 chip->n_bytes = 1;
1393                 chip->read = u8_reader;
1394                 chip->write = u8_writer;
1395         } else if (spi->bits_per_word <= 16) {
1396                 chip->n_bytes = 2;
1397                 chip->read = u16_reader;
1398                 chip->write = u16_writer;
1399         } else if (spi->bits_per_word <= 32) {
1400                 chip->n_bytes = 4;
1401                 chip->read = u32_reader;
1402                 chip->write = u32_writer;
1403         }
1404
1405         spi_set_ctldata(spi, chip);
1406
1407         if (drv_data->ssp_type == CE4100_SSP)
1408                 return 0;
1409
1410         return setup_cs(spi, chip, chip_info);
1411 }
1412
1413 static void cleanup(struct spi_device *spi)
1414 {
1415         struct chip_data *chip = spi_get_ctldata(spi);
1416         struct driver_data *drv_data =
1417                 spi_controller_get_devdata(spi->controller);
1418
1419         if (!chip)
1420                 return;
1421
1422         if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1423             chip->gpiod_cs)
1424                 gpiod_put(chip->gpiod_cs);
1425
1426         kfree(chip);
1427 }
1428
1429 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1430         { "INT33C0", LPSS_LPT_SSP },
1431         { "INT33C1", LPSS_LPT_SSP },
1432         { "INT3430", LPSS_LPT_SSP },
1433         { "INT3431", LPSS_LPT_SSP },
1434         { "80860F0E", LPSS_BYT_SSP },
1435         { "8086228E", LPSS_BSW_SSP },
1436         { },
1437 };
1438 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1439
1440 /*
1441  * PCI IDs of compound devices that integrate both host controller and private
1442  * integrated DMA engine. Please note these are not used in module
1443  * autoloading and probing in this module but matching the LPSS SSP type.
1444  */
1445 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1446         /* SPT-LP */
1447         { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1448         { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1449         /* SPT-H */
1450         { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1451         { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1452         /* KBL-H */
1453         { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1454         { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1455         /* CML-V */
1456         { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1457         { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1458         /* BXT A-Step */
1459         { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1460         { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1461         { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1462         /* BXT B-Step */
1463         { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1464         { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1465         { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1466         /* GLK */
1467         { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1468         { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1469         { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1470         /* ICL-LP */
1471         { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1472         { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1473         { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1474         /* EHL */
1475         { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1476         { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1477         { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1478         /* JSL */
1479         { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1480         { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1481         { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1482         /* APL */
1483         { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1484         { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1485         { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1486         /* CNL-LP */
1487         { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1488         { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1489         { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1490         /* CNL-H */
1491         { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1492         { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1493         { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1494         /* CML-LP */
1495         { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1496         { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1497         { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1498         /* CML-H */
1499         { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1500         { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1501         { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1502         /* TGL-LP */
1503         { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1504         { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1505         { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1506         { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1507         { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1508         { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1509         { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1510         { },
1511 };
1512
1513 static const struct of_device_id pxa2xx_spi_of_match[] = {
1514         { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1515         {},
1516 };
1517 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1518
1519 #ifdef CONFIG_ACPI
1520
1521 static int pxa2xx_spi_get_port_id(struct device *dev)
1522 {
1523         struct acpi_device *adev;
1524         unsigned int devid;
1525         int port_id = -1;
1526
1527         adev = ACPI_COMPANION(dev);
1528         if (adev && adev->pnp.unique_id &&
1529             !kstrtouint(adev->pnp.unique_id, 0, &devid))
1530                 port_id = devid;
1531         return port_id;
1532 }
1533
1534 #else /* !CONFIG_ACPI */
1535
1536 static int pxa2xx_spi_get_port_id(struct device *dev)
1537 {
1538         return -1;
1539 }
1540
1541 #endif /* CONFIG_ACPI */
1542
1543
1544 #ifdef CONFIG_PCI
1545
1546 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1547 {
1548         return param == chan->device->dev;
1549 }
1550
1551 #endif /* CONFIG_PCI */
1552
1553 static struct pxa2xx_spi_controller *
1554 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1555 {
1556         struct pxa2xx_spi_controller *pdata;
1557         struct ssp_device *ssp;
1558         struct resource *res;
1559         struct device *parent = pdev->dev.parent;
1560         struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1561         const struct pci_device_id *pcidev_id = NULL;
1562         enum pxa_ssp_type type;
1563         const void *match;
1564
1565         if (pcidev)
1566                 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1567
1568         match = device_get_match_data(&pdev->dev);
1569         if (match)
1570                 type = (enum pxa_ssp_type)match;
1571         else if (pcidev_id)
1572                 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1573         else
1574                 return NULL;
1575
1576         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1577         if (!pdata)
1578                 return NULL;
1579
1580         ssp = &pdata->ssp;
1581
1582         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1583         ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1584         if (IS_ERR(ssp->mmio_base))
1585                 return NULL;
1586
1587         ssp->phys_base = res->start;
1588
1589 #ifdef CONFIG_PCI
1590         if (pcidev_id) {
1591                 pdata->tx_param = parent;
1592                 pdata->rx_param = parent;
1593                 pdata->dma_filter = pxa2xx_spi_idma_filter;
1594         }
1595 #endif
1596
1597         ssp->clk = devm_clk_get(&pdev->dev, NULL);
1598         if (IS_ERR(ssp->clk))
1599                 return NULL;
1600
1601         ssp->irq = platform_get_irq(pdev, 0);
1602         if (ssp->irq < 0)
1603                 return NULL;
1604
1605         ssp->type = type;
1606         ssp->dev = &pdev->dev;
1607         ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1608
1609         pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1610         pdata->num_chipselect = 1;
1611         pdata->enable_dma = true;
1612         pdata->dma_burst_size = 1;
1613
1614         return pdata;
1615 }
1616
1617 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1618                                       unsigned int cs)
1619 {
1620         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1621
1622         if (has_acpi_companion(&drv_data->pdev->dev)) {
1623                 switch (drv_data->ssp_type) {
1624                 /*
1625                  * For Atoms the ACPI DeviceSelection used by the Windows
1626                  * driver starts from 1 instead of 0 so translate it here
1627                  * to match what Linux expects.
1628                  */
1629                 case LPSS_BYT_SSP:
1630                 case LPSS_BSW_SSP:
1631                         return cs - 1;
1632
1633                 default:
1634                         break;
1635                 }
1636         }
1637
1638         return cs;
1639 }
1640
1641 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1642 {
1643         return MAX_DMA_LEN;
1644 }
1645
1646 static int pxa2xx_spi_probe(struct platform_device *pdev)
1647 {
1648         struct device *dev = &pdev->dev;
1649         struct pxa2xx_spi_controller *platform_info;
1650         struct spi_controller *controller;
1651         struct driver_data *drv_data;
1652         struct ssp_device *ssp;
1653         const struct lpss_config *config;
1654         int status, count;
1655         u32 tmp;
1656
1657         platform_info = dev_get_platdata(dev);
1658         if (!platform_info) {
1659                 platform_info = pxa2xx_spi_init_pdata(pdev);
1660                 if (!platform_info) {
1661                         dev_err(&pdev->dev, "missing platform data\n");
1662                         return -ENODEV;
1663                 }
1664         }
1665
1666         ssp = pxa_ssp_request(pdev->id, pdev->name);
1667         if (!ssp)
1668                 ssp = &platform_info->ssp;
1669
1670         if (!ssp->mmio_base) {
1671                 dev_err(&pdev->dev, "failed to get ssp\n");
1672                 return -ENODEV;
1673         }
1674
1675         if (platform_info->is_slave)
1676                 controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1677         else
1678                 controller = spi_alloc_master(dev, sizeof(struct driver_data));
1679
1680         if (!controller) {
1681                 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1682                 pxa_ssp_free(ssp);
1683                 return -ENOMEM;
1684         }
1685         drv_data = spi_controller_get_devdata(controller);
1686         drv_data->controller = controller;
1687         drv_data->controller_info = platform_info;
1688         drv_data->pdev = pdev;
1689         drv_data->ssp = ssp;
1690
1691         controller->dev.of_node = pdev->dev.of_node;
1692         /* the spi->mode bits understood by this driver: */
1693         controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1694
1695         controller->bus_num = ssp->port_id;
1696         controller->dma_alignment = DMA_ALIGNMENT;
1697         controller->cleanup = cleanup;
1698         controller->setup = setup;
1699         controller->set_cs = pxa2xx_spi_set_cs;
1700         controller->transfer_one = pxa2xx_spi_transfer_one;
1701         controller->slave_abort = pxa2xx_spi_slave_abort;
1702         controller->handle_err = pxa2xx_spi_handle_err;
1703         controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1704         controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1705         controller->auto_runtime_pm = true;
1706         controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1707
1708         drv_data->ssp_type = ssp->type;
1709
1710         drv_data->ioaddr = ssp->mmio_base;
1711         drv_data->ssdr_physical = ssp->phys_base + SSDR;
1712         if (pxa25x_ssp_comp(drv_data)) {
1713                 switch (drv_data->ssp_type) {
1714                 case QUARK_X1000_SSP:
1715                         controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1716                         break;
1717                 default:
1718                         controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1719                         break;
1720                 }
1721
1722                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1723                 drv_data->dma_cr1 = 0;
1724                 drv_data->clear_sr = SSSR_ROR;
1725                 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1726         } else {
1727                 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1728                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1729                 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1730                 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1731                 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1732                                                 | SSSR_ROR | SSSR_TUR;
1733         }
1734
1735         status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1736                         drv_data);
1737         if (status < 0) {
1738                 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1739                 goto out_error_controller_alloc;
1740         }
1741
1742         /* Setup DMA if requested */
1743         if (platform_info->enable_dma) {
1744                 status = pxa2xx_spi_dma_setup(drv_data);
1745                 if (status) {
1746                         dev_warn(dev, "no DMA channels available, using PIO\n");
1747                         platform_info->enable_dma = false;
1748                 } else {
1749                         controller->can_dma = pxa2xx_spi_can_dma;
1750                         controller->max_dma_len = MAX_DMA_LEN;
1751                         controller->max_transfer_size =
1752                                 pxa2xx_spi_max_dma_transfer_size;
1753                 }
1754         }
1755
1756         /* Enable SOC clock */
1757         status = clk_prepare_enable(ssp->clk);
1758         if (status)
1759                 goto out_error_dma_irq_alloc;
1760
1761         controller->max_speed_hz = clk_get_rate(ssp->clk);
1762         /*
1763          * Set minimum speed for all other platforms than Intel Quark which is
1764          * able do under 1 Hz transfers.
1765          */
1766         if (!pxa25x_ssp_comp(drv_data))
1767                 controller->min_speed_hz =
1768                         DIV_ROUND_UP(controller->max_speed_hz, 4096);
1769         else if (!is_quark_x1000_ssp(drv_data))
1770                 controller->min_speed_hz =
1771                         DIV_ROUND_UP(controller->max_speed_hz, 512);
1772
1773         /* Load default SSP configuration */
1774         pxa2xx_spi_write(drv_data, SSCR0, 0);
1775         switch (drv_data->ssp_type) {
1776         case QUARK_X1000_SSP:
1777                 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1778                       QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1779                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1780
1781                 /* using the Motorola SPI protocol and use 8 bit frame */
1782                 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1783                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1784                 break;
1785         case CE4100_SSP:
1786                 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1787                       CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1788                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1789                 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1790                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1791                 break;
1792         default:
1793
1794                 if (spi_controller_is_slave(controller)) {
1795                         tmp = SSCR1_SCFR |
1796                               SSCR1_SCLKDIR |
1797                               SSCR1_SFRMDIR |
1798                               SSCR1_RxTresh(2) |
1799                               SSCR1_TxTresh(1) |
1800                               SSCR1_SPH;
1801                 } else {
1802                         tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1803                               SSCR1_TxTresh(TX_THRESH_DFLT);
1804                 }
1805                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1806                 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1807                 if (!spi_controller_is_slave(controller))
1808                         tmp |= SSCR0_SCR(2);
1809                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1810                 break;
1811         }
1812
1813         if (!pxa25x_ssp_comp(drv_data))
1814                 pxa2xx_spi_write(drv_data, SSTO, 0);
1815
1816         if (!is_quark_x1000_ssp(drv_data))
1817                 pxa2xx_spi_write(drv_data, SSPSP, 0);
1818
1819         if (is_lpss_ssp(drv_data)) {
1820                 lpss_ssp_setup(drv_data);
1821                 config = lpss_get_config(drv_data);
1822                 if (config->reg_capabilities >= 0) {
1823                         tmp = __lpss_ssp_read_priv(drv_data,
1824                                                    config->reg_capabilities);
1825                         tmp &= LPSS_CAPS_CS_EN_MASK;
1826                         tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1827                         platform_info->num_chipselect = ffz(tmp);
1828                 } else if (config->cs_num) {
1829                         platform_info->num_chipselect = config->cs_num;
1830                 }
1831         }
1832         controller->num_chipselect = platform_info->num_chipselect;
1833
1834         count = gpiod_count(&pdev->dev, "cs");
1835         if (count > 0) {
1836                 int i;
1837
1838                 controller->num_chipselect = max_t(int, count,
1839                         controller->num_chipselect);
1840
1841                 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1842                         controller->num_chipselect, sizeof(struct gpio_desc *),
1843                         GFP_KERNEL);
1844                 if (!drv_data->cs_gpiods) {
1845                         status = -ENOMEM;
1846                         goto out_error_clock_enabled;
1847                 }
1848
1849                 for (i = 0; i < controller->num_chipselect; i++) {
1850                         struct gpio_desc *gpiod;
1851
1852                         gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1853                         if (IS_ERR(gpiod)) {
1854                                 /* Means use native chip select */
1855                                 if (PTR_ERR(gpiod) == -ENOENT)
1856                                         continue;
1857
1858                                 status = PTR_ERR(gpiod);
1859                                 goto out_error_clock_enabled;
1860                         } else {
1861                                 drv_data->cs_gpiods[i] = gpiod;
1862                         }
1863                 }
1864         }
1865
1866         if (platform_info->is_slave) {
1867                 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1868                                                 "ready", GPIOD_OUT_LOW);
1869                 if (IS_ERR(drv_data->gpiod_ready)) {
1870                         status = PTR_ERR(drv_data->gpiod_ready);
1871                         goto out_error_clock_enabled;
1872                 }
1873         }
1874
1875         pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1876         pm_runtime_use_autosuspend(&pdev->dev);
1877         pm_runtime_set_active(&pdev->dev);
1878         pm_runtime_enable(&pdev->dev);
1879
1880         /* Register with the SPI framework */
1881         platform_set_drvdata(pdev, drv_data);
1882         status = devm_spi_register_controller(&pdev->dev, controller);
1883         if (status != 0) {
1884                 dev_err(&pdev->dev, "problem registering spi controller\n");
1885                 goto out_error_pm_runtime_enabled;
1886         }
1887
1888         return status;
1889
1890 out_error_pm_runtime_enabled:
1891         pm_runtime_put_noidle(&pdev->dev);
1892         pm_runtime_disable(&pdev->dev);
1893
1894 out_error_clock_enabled:
1895         clk_disable_unprepare(ssp->clk);
1896
1897 out_error_dma_irq_alloc:
1898         pxa2xx_spi_dma_release(drv_data);
1899         free_irq(ssp->irq, drv_data);
1900
1901 out_error_controller_alloc:
1902         spi_controller_put(controller);
1903         pxa_ssp_free(ssp);
1904         return status;
1905 }
1906
1907 static int pxa2xx_spi_remove(struct platform_device *pdev)
1908 {
1909         struct driver_data *drv_data = platform_get_drvdata(pdev);
1910         struct ssp_device *ssp;
1911
1912         if (!drv_data)
1913                 return 0;
1914         ssp = drv_data->ssp;
1915
1916         pm_runtime_get_sync(&pdev->dev);
1917
1918         /* Disable the SSP at the peripheral and SOC level */
1919         pxa2xx_spi_write(drv_data, SSCR0, 0);
1920         clk_disable_unprepare(ssp->clk);
1921
1922         /* Release DMA */
1923         if (drv_data->controller_info->enable_dma)
1924                 pxa2xx_spi_dma_release(drv_data);
1925
1926         pm_runtime_put_noidle(&pdev->dev);
1927         pm_runtime_disable(&pdev->dev);
1928
1929         /* Release IRQ */
1930         free_irq(ssp->irq, drv_data);
1931
1932         /* Release SSP */
1933         pxa_ssp_free(ssp);
1934
1935         return 0;
1936 }
1937
1938 #ifdef CONFIG_PM_SLEEP
1939 static int pxa2xx_spi_suspend(struct device *dev)
1940 {
1941         struct driver_data *drv_data = dev_get_drvdata(dev);
1942         struct ssp_device *ssp = drv_data->ssp;
1943         int status;
1944
1945         status = spi_controller_suspend(drv_data->controller);
1946         if (status != 0)
1947                 return status;
1948         pxa2xx_spi_write(drv_data, SSCR0, 0);
1949
1950         if (!pm_runtime_suspended(dev))
1951                 clk_disable_unprepare(ssp->clk);
1952
1953         return 0;
1954 }
1955
1956 static int pxa2xx_spi_resume(struct device *dev)
1957 {
1958         struct driver_data *drv_data = dev_get_drvdata(dev);
1959         struct ssp_device *ssp = drv_data->ssp;
1960         int status;
1961
1962         /* Enable the SSP clock */
1963         if (!pm_runtime_suspended(dev)) {
1964                 status = clk_prepare_enable(ssp->clk);
1965                 if (status)
1966                         return status;
1967         }
1968
1969         /* Start the queue running */
1970         return spi_controller_resume(drv_data->controller);
1971 }
1972 #endif
1973
1974 #ifdef CONFIG_PM
1975 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1976 {
1977         struct driver_data *drv_data = dev_get_drvdata(dev);
1978
1979         clk_disable_unprepare(drv_data->ssp->clk);
1980         return 0;
1981 }
1982
1983 static int pxa2xx_spi_runtime_resume(struct device *dev)
1984 {
1985         struct driver_data *drv_data = dev_get_drvdata(dev);
1986         int status;
1987
1988         status = clk_prepare_enable(drv_data->ssp->clk);
1989         return status;
1990 }
1991 #endif
1992
1993 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1994         SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1995         SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1996                            pxa2xx_spi_runtime_resume, NULL)
1997 };
1998
1999 static struct platform_driver driver = {
2000         .driver = {
2001                 .name   = "pxa2xx-spi",
2002                 .pm     = &pxa2xx_spi_pm_ops,
2003                 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2004                 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2005         },
2006         .probe = pxa2xx_spi_probe,
2007         .remove = pxa2xx_spi_remove,
2008 };
2009
2010 static int __init pxa2xx_spi_init(void)
2011 {
2012         return platform_driver_register(&driver);
2013 }
2014 subsys_initcall(pxa2xx_spi_init);
2015
2016 static void __exit pxa2xx_spi_exit(void)
2017 {
2018         platform_driver_unregister(&driver);
2019 }
2020 module_exit(pxa2xx_spi_exit);
2021
2022 MODULE_SOFTDEP("pre: dw_dmac");