]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/spi/spi.c
spi: tegra114: Use dma_request_chan() directly for channel request
[linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         /* spi controllers may cleanup for released devices */
51         if (spi->controller->cleanup)
52                 spi->controller->cleanup(spi);
53
54         spi_controller_put(spi->controller);
55         kfree(spi->driver_override);
56         kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62         const struct spi_device *spi = to_spi_device(dev);
63         int len;
64
65         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66         if (len != -ENODEV)
67                 return len;
68
69         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74                                      struct device_attribute *a,
75                                      const char *buf, size_t count)
76 {
77         struct spi_device *spi = to_spi_device(dev);
78         const char *end = memchr(buf, '\n', count);
79         const size_t len = end ? end - buf : count;
80         const char *driver_override, *old;
81
82         /* We need to keep extra room for a newline when displaying value */
83         if (len >= (PAGE_SIZE - 1))
84                 return -EINVAL;
85
86         driver_override = kstrndup(buf, len, GFP_KERNEL);
87         if (!driver_override)
88                 return -ENOMEM;
89
90         device_lock(dev);
91         old = spi->driver_override;
92         if (len) {
93                 spi->driver_override = driver_override;
94         } else {
95                 /* Empty string, disable driver override */
96                 spi->driver_override = NULL;
97                 kfree(driver_override);
98         }
99         device_unlock(dev);
100         kfree(old);
101
102         return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106                                     struct device_attribute *a, char *buf)
107 {
108         const struct spi_device *spi = to_spi_device(dev);
109         ssize_t len;
110
111         device_lock(dev);
112         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113         device_unlock(dev);
114         return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file)                               \
119 static ssize_t spi_controller_##field##_show(struct device *dev,        \
120                                              struct device_attribute *attr, \
121                                              char *buf)                 \
122 {                                                                       \
123         struct spi_controller *ctlr = container_of(dev,                 \
124                                          struct spi_controller, dev);   \
125         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
126 }                                                                       \
127 static struct device_attribute dev_attr_spi_controller_##field = {      \
128         .attr = { .name = file, .mode = 0444 },                         \
129         .show = spi_controller_##field##_show,                          \
130 };                                                                      \
131 static ssize_t spi_device_##field##_show(struct device *dev,            \
132                                          struct device_attribute *attr, \
133                                         char *buf)                      \
134 {                                                                       \
135         struct spi_device *spi = to_spi_device(dev);                    \
136         return spi_statistics_##field##_show(&spi->statistics, buf);    \
137 }                                                                       \
138 static struct device_attribute dev_attr_spi_device_##field = {          \
139         .attr = { .name = file, .mode = 0444 },                         \
140         .show = spi_device_##field##_show,                              \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145                                             char *buf)                  \
146 {                                                                       \
147         unsigned long flags;                                            \
148         ssize_t len;                                                    \
149         spin_lock_irqsave(&stat->lock, flags);                          \
150         len = sprintf(buf, format_string, stat->field);                 \
151         spin_unlock_irqrestore(&stat->lock, flags);                     \
152         return len;                                                     \
153 }                                                                       \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string)                       \
157         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
158                                  field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
174         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
175                                  "transfer_bytes_histo_" number,        \
176                                  transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198         &dev_attr_modalias.attr,
199         &dev_attr_driver_override.attr,
200         NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204         .attrs  = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208         &dev_attr_spi_device_messages.attr,
209         &dev_attr_spi_device_transfers.attr,
210         &dev_attr_spi_device_errors.attr,
211         &dev_attr_spi_device_timedout.attr,
212         &dev_attr_spi_device_spi_sync.attr,
213         &dev_attr_spi_device_spi_sync_immediate.attr,
214         &dev_attr_spi_device_spi_async.attr,
215         &dev_attr_spi_device_bytes.attr,
216         &dev_attr_spi_device_bytes_rx.attr,
217         &dev_attr_spi_device_bytes_tx.attr,
218         &dev_attr_spi_device_transfer_bytes_histo0.attr,
219         &dev_attr_spi_device_transfer_bytes_histo1.attr,
220         &dev_attr_spi_device_transfer_bytes_histo2.attr,
221         &dev_attr_spi_device_transfer_bytes_histo3.attr,
222         &dev_attr_spi_device_transfer_bytes_histo4.attr,
223         &dev_attr_spi_device_transfer_bytes_histo5.attr,
224         &dev_attr_spi_device_transfer_bytes_histo6.attr,
225         &dev_attr_spi_device_transfer_bytes_histo7.attr,
226         &dev_attr_spi_device_transfer_bytes_histo8.attr,
227         &dev_attr_spi_device_transfer_bytes_histo9.attr,
228         &dev_attr_spi_device_transfer_bytes_histo10.attr,
229         &dev_attr_spi_device_transfer_bytes_histo11.attr,
230         &dev_attr_spi_device_transfer_bytes_histo12.attr,
231         &dev_attr_spi_device_transfer_bytes_histo13.attr,
232         &dev_attr_spi_device_transfer_bytes_histo14.attr,
233         &dev_attr_spi_device_transfer_bytes_histo15.attr,
234         &dev_attr_spi_device_transfer_bytes_histo16.attr,
235         &dev_attr_spi_device_transfers_split_maxsize.attr,
236         NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240         .name  = "statistics",
241         .attrs  = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245         &spi_dev_group,
246         &spi_device_statistics_group,
247         NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251         &dev_attr_spi_controller_messages.attr,
252         &dev_attr_spi_controller_transfers.attr,
253         &dev_attr_spi_controller_errors.attr,
254         &dev_attr_spi_controller_timedout.attr,
255         &dev_attr_spi_controller_spi_sync.attr,
256         &dev_attr_spi_controller_spi_sync_immediate.attr,
257         &dev_attr_spi_controller_spi_async.attr,
258         &dev_attr_spi_controller_bytes.attr,
259         &dev_attr_spi_controller_bytes_rx.attr,
260         &dev_attr_spi_controller_bytes_tx.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278         &dev_attr_spi_controller_transfers_split_maxsize.attr,
279         NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283         .name  = "statistics",
284         .attrs  = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288         &spi_controller_statistics_group,
289         NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293                                        struct spi_transfer *xfer,
294                                        struct spi_controller *ctlr)
295 {
296         unsigned long flags;
297         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299         if (l2len < 0)
300                 l2len = 0;
301
302         spin_lock_irqsave(&stats->lock, flags);
303
304         stats->transfers++;
305         stats->transfer_bytes_histo[l2len]++;
306
307         stats->bytes += xfer->len;
308         if ((xfer->tx_buf) &&
309             (xfer->tx_buf != ctlr->dummy_tx))
310                 stats->bytes_tx += xfer->len;
311         if ((xfer->rx_buf) &&
312             (xfer->rx_buf != ctlr->dummy_rx))
313                 stats->bytes_rx += xfer->len;
314
315         spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324                                                 const struct spi_device *sdev)
325 {
326         while (id->name[0]) {
327                 if (!strcmp(sdev->modalias, id->name))
328                         return id;
329                 id++;
330         }
331         return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338         return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344         const struct spi_device *spi = to_spi_device(dev);
345         const struct spi_driver *sdrv = to_spi_driver(drv);
346
347         /* Check override first, and if set, only use the named driver */
348         if (spi->driver_override)
349                 return strcmp(spi->driver_override, drv->name) == 0;
350
351         /* Attempt an OF style match */
352         if (of_driver_match_device(dev, drv))
353                 return 1;
354
355         /* Then try ACPI */
356         if (acpi_driver_match_device(dev, drv))
357                 return 1;
358
359         if (sdrv->id_table)
360                 return !!spi_match_id(sdrv->id_table, spi);
361
362         return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367         const struct spi_device         *spi = to_spi_device(dev);
368         int rc;
369
370         rc = acpi_device_uevent_modalias(dev, env);
371         if (rc != -ENODEV)
372                 return rc;
373
374         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 struct bus_type spi_bus_type = {
378         .name           = "spi",
379         .dev_groups     = spi_dev_groups,
380         .match          = spi_match_device,
381         .uevent         = spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384
385
386 static int spi_drv_probe(struct device *dev)
387 {
388         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
389         struct spi_device               *spi = to_spi_device(dev);
390         int ret;
391
392         ret = of_clk_set_defaults(dev->of_node, false);
393         if (ret)
394                 return ret;
395
396         if (dev->of_node) {
397                 spi->irq = of_irq_get(dev->of_node, 0);
398                 if (spi->irq == -EPROBE_DEFER)
399                         return -EPROBE_DEFER;
400                 if (spi->irq < 0)
401                         spi->irq = 0;
402         }
403
404         ret = dev_pm_domain_attach(dev, true);
405         if (ret)
406                 return ret;
407
408         ret = sdrv->probe(spi);
409         if (ret)
410                 dev_pm_domain_detach(dev, true);
411
412         return ret;
413 }
414
415 static int spi_drv_remove(struct device *dev)
416 {
417         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
418         int ret;
419
420         ret = sdrv->remove(to_spi_device(dev));
421         dev_pm_domain_detach(dev, true);
422
423         return ret;
424 }
425
426 static void spi_drv_shutdown(struct device *dev)
427 {
428         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
429
430         sdrv->shutdown(to_spi_device(dev));
431 }
432
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443         sdrv->driver.owner = owner;
444         sdrv->driver.bus = &spi_bus_type;
445         if (sdrv->probe)
446                 sdrv->driver.probe = spi_drv_probe;
447         if (sdrv->remove)
448                 sdrv->driver.remove = spi_drv_remove;
449         if (sdrv->shutdown)
450                 sdrv->driver.shutdown = spi_drv_shutdown;
451         return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454
455 /*-------------------------------------------------------------------------*/
456
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462
463 struct boardinfo {
464         struct list_head        list;
465         struct spi_board_info   board_info;
466 };
467
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497         struct spi_device       *spi;
498
499         if (!spi_controller_get(ctlr))
500                 return NULL;
501
502         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503         if (!spi) {
504                 spi_controller_put(ctlr);
505                 return NULL;
506         }
507
508         spi->master = spi->controller = ctlr;
509         spi->dev.parent = &ctlr->dev;
510         spi->dev.bus = &spi_bus_type;
511         spi->dev.release = spidev_release;
512         spi->cs_gpio = -ENOENT;
513
514         spin_lock_init(&spi->statistics.lock);
515
516         device_initialize(&spi->dev);
517         return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525         if (adev) {
526                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527                 return;
528         }
529
530         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531                      spi->chip_select);
532 }
533
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536         struct spi_device *spi = to_spi_device(dev);
537         struct spi_device *new_spi = data;
538
539         if (spi->controller == new_spi->controller &&
540             spi->chip_select == new_spi->chip_select)
541                 return -EBUSY;
542         return 0;
543 }
544
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
554 int spi_add_device(struct spi_device *spi)
555 {
556         static DEFINE_MUTEX(spi_add_lock);
557         struct spi_controller *ctlr = spi->controller;
558         struct device *dev = ctlr->dev.parent;
559         int status;
560
561         /* Chipselects are numbered 0..max; validate. */
562         if (spi->chip_select >= ctlr->num_chipselect) {
563                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564                         ctlr->num_chipselect);
565                 return -EINVAL;
566         }
567
568         /* Set the bus ID string */
569         spi_dev_set_name(spi);
570
571         /* We need to make sure there's no other device with this
572          * chipselect **BEFORE** we call setup(), else we'll trash
573          * its configuration.  Lock against concurrent add() calls.
574          */
575         mutex_lock(&spi_add_lock);
576
577         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578         if (status) {
579                 dev_err(dev, "chipselect %d already in use\n",
580                                 spi->chip_select);
581                 goto done;
582         }
583
584         /* Descriptors take precedence */
585         if (ctlr->cs_gpiods)
586                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587         else if (ctlr->cs_gpios)
588                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589
590         /* Drivers may modify this initial i/o setup, but will
591          * normally rely on the device being setup.  Devices
592          * using SPI_CS_HIGH can't coexist well otherwise...
593          */
594         status = spi_setup(spi);
595         if (status < 0) {
596                 dev_err(dev, "can't setup %s, status %d\n",
597                                 dev_name(&spi->dev), status);
598                 goto done;
599         }
600
601         /* Device may be bound to an active driver when this returns */
602         status = device_add(&spi->dev);
603         if (status < 0)
604                 dev_err(dev, "can't add %s, status %d\n",
605                                 dev_name(&spi->dev), status);
606         else
607                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608
609 done:
610         mutex_unlock(&spi_add_lock);
611         return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630                                   struct spi_board_info *chip)
631 {
632         struct spi_device       *proxy;
633         int                     status;
634
635         /* NOTE:  caller did any chip->bus_num checks necessary.
636          *
637          * Also, unless we change the return value convention to use
638          * error-or-pointer (not NULL-or-pointer), troubleshootability
639          * suggests syslogged diagnostics are best here (ugh).
640          */
641
642         proxy = spi_alloc_device(ctlr);
643         if (!proxy)
644                 return NULL;
645
646         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
648         proxy->chip_select = chip->chip_select;
649         proxy->max_speed_hz = chip->max_speed_hz;
650         proxy->mode = chip->mode;
651         proxy->irq = chip->irq;
652         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653         proxy->dev.platform_data = (void *) chip->platform_data;
654         proxy->controller_data = chip->controller_data;
655         proxy->controller_state = NULL;
656
657         if (chip->properties) {
658                 status = device_add_properties(&proxy->dev, chip->properties);
659                 if (status) {
660                         dev_err(&ctlr->dev,
661                                 "failed to add properties to '%s': %d\n",
662                                 chip->modalias, status);
663                         goto err_dev_put;
664                 }
665         }
666
667         status = spi_add_device(proxy);
668         if (status < 0)
669                 goto err_remove_props;
670
671         return proxy;
672
673 err_remove_props:
674         if (chip->properties)
675                 device_remove_properties(&proxy->dev);
676 err_dev_put:
677         spi_dev_put(proxy);
678         return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691         if (!spi)
692                 return;
693
694         if (spi->dev.of_node) {
695                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696                 of_node_put(spi->dev.of_node);
697         }
698         if (ACPI_COMPANION(&spi->dev))
699                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700         device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705                                               struct spi_board_info *bi)
706 {
707         struct spi_device *dev;
708
709         if (ctlr->bus_num != bi->bus_num)
710                 return;
711
712         dev = spi_new_device(ctlr, bi);
713         if (!dev)
714                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715                         bi->modalias);
716 }
717
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742         struct boardinfo *bi;
743         int i;
744
745         if (!n)
746                 return 0;
747
748         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749         if (!bi)
750                 return -ENOMEM;
751
752         for (i = 0; i < n; i++, bi++, info++) {
753                 struct spi_controller *ctlr;
754
755                 memcpy(&bi->board_info, info, sizeof(*info));
756                 if (info->properties) {
757                         bi->board_info.properties =
758                                         property_entries_dup(info->properties);
759                         if (IS_ERR(bi->board_info.properties))
760                                 return PTR_ERR(bi->board_info.properties);
761                 }
762
763                 mutex_lock(&board_lock);
764                 list_add_tail(&bi->list, &board_list);
765                 list_for_each_entry(ctlr, &spi_controller_list, list)
766                         spi_match_controller_to_boardinfo(ctlr,
767                                                           &bi->board_info);
768                 mutex_unlock(&board_lock);
769         }
770
771         return 0;
772 }
773
774 /*-------------------------------------------------------------------------*/
775
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778         bool enable1 = enable;
779
780         if (!spi->controller->set_cs_timing) {
781                 if (enable1)
782                         spi_delay_exec(&spi->controller->cs_setup, NULL);
783                 else
784                         spi_delay_exec(&spi->controller->cs_hold, NULL);
785         }
786
787         if (spi->mode & SPI_CS_HIGH)
788                 enable = !enable;
789
790         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
791                 /*
792                  * Honour the SPI_NO_CS flag and invert the enable line, as
793                  * active low is default for SPI. Execution paths that handle
794                  * polarity inversion in gpiolib (such as device tree) will
795                  * enforce active high using the SPI_CS_HIGH resulting in a
796                  * double inversion through the code above.
797                  */
798                 if (!(spi->mode & SPI_NO_CS)) {
799                         if (spi->cs_gpiod)
800                                 gpiod_set_value_cansleep(spi->cs_gpiod,
801                                                          !enable);
802                         else
803                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
804                 }
805                 /* Some SPI masters need both GPIO CS & slave_select */
806                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
807                     spi->controller->set_cs)
808                         spi->controller->set_cs(spi, !enable);
809         } else if (spi->controller->set_cs) {
810                 spi->controller->set_cs(spi, !enable);
811         }
812
813         if (!spi->controller->set_cs_timing) {
814                 if (!enable1)
815                         spi_delay_exec(&spi->controller->cs_inactive, NULL);
816         }
817 }
818
819 #ifdef CONFIG_HAS_DMA
820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
821                 struct sg_table *sgt, void *buf, size_t len,
822                 enum dma_data_direction dir)
823 {
824         const bool vmalloced_buf = is_vmalloc_addr(buf);
825         unsigned int max_seg_size = dma_get_max_seg_size(dev);
826 #ifdef CONFIG_HIGHMEM
827         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
828                                 (unsigned long)buf < (PKMAP_BASE +
829                                         (LAST_PKMAP * PAGE_SIZE)));
830 #else
831         const bool kmap_buf = false;
832 #endif
833         int desc_len;
834         int sgs;
835         struct page *vm_page;
836         struct scatterlist *sg;
837         void *sg_buf;
838         size_t min;
839         int i, ret;
840
841         if (vmalloced_buf || kmap_buf) {
842                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
843                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
844         } else if (virt_addr_valid(buf)) {
845                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
846                 sgs = DIV_ROUND_UP(len, desc_len);
847         } else {
848                 return -EINVAL;
849         }
850
851         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
852         if (ret != 0)
853                 return ret;
854
855         sg = &sgt->sgl[0];
856         for (i = 0; i < sgs; i++) {
857
858                 if (vmalloced_buf || kmap_buf) {
859                         /*
860                          * Next scatterlist entry size is the minimum between
861                          * the desc_len and the remaining buffer length that
862                          * fits in a page.
863                          */
864                         min = min_t(size_t, desc_len,
865                                     min_t(size_t, len,
866                                           PAGE_SIZE - offset_in_page(buf)));
867                         if (vmalloced_buf)
868                                 vm_page = vmalloc_to_page(buf);
869                         else
870                                 vm_page = kmap_to_page(buf);
871                         if (!vm_page) {
872                                 sg_free_table(sgt);
873                                 return -ENOMEM;
874                         }
875                         sg_set_page(sg, vm_page,
876                                     min, offset_in_page(buf));
877                 } else {
878                         min = min_t(size_t, len, desc_len);
879                         sg_buf = buf;
880                         sg_set_buf(sg, sg_buf, min);
881                 }
882
883                 buf += min;
884                 len -= min;
885                 sg = sg_next(sg);
886         }
887
888         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
889         if (!ret)
890                 ret = -ENOMEM;
891         if (ret < 0) {
892                 sg_free_table(sgt);
893                 return ret;
894         }
895
896         sgt->nents = ret;
897
898         return 0;
899 }
900
901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
902                    struct sg_table *sgt, enum dma_data_direction dir)
903 {
904         if (sgt->orig_nents) {
905                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
906                 sg_free_table(sgt);
907         }
908 }
909
910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
911 {
912         struct device *tx_dev, *rx_dev;
913         struct spi_transfer *xfer;
914         int ret;
915
916         if (!ctlr->can_dma)
917                 return 0;
918
919         if (ctlr->dma_tx)
920                 tx_dev = ctlr->dma_tx->device->dev;
921         else
922                 tx_dev = ctlr->dev.parent;
923
924         if (ctlr->dma_rx)
925                 rx_dev = ctlr->dma_rx->device->dev;
926         else
927                 rx_dev = ctlr->dev.parent;
928
929         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
931                         continue;
932
933                 if (xfer->tx_buf != NULL) {
934                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
935                                           (void *)xfer->tx_buf, xfer->len,
936                                           DMA_TO_DEVICE);
937                         if (ret != 0)
938                                 return ret;
939                 }
940
941                 if (xfer->rx_buf != NULL) {
942                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
943                                           xfer->rx_buf, xfer->len,
944                                           DMA_FROM_DEVICE);
945                         if (ret != 0) {
946                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
947                                               DMA_TO_DEVICE);
948                                 return ret;
949                         }
950                 }
951         }
952
953         ctlr->cur_msg_mapped = true;
954
955         return 0;
956 }
957
958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
959 {
960         struct spi_transfer *xfer;
961         struct device *tx_dev, *rx_dev;
962
963         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
964                 return 0;
965
966         if (ctlr->dma_tx)
967                 tx_dev = ctlr->dma_tx->device->dev;
968         else
969                 tx_dev = ctlr->dev.parent;
970
971         if (ctlr->dma_rx)
972                 rx_dev = ctlr->dma_rx->device->dev;
973         else
974                 rx_dev = ctlr->dev.parent;
975
976         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
977                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
978                         continue;
979
980                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
981                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
982         }
983
984         return 0;
985 }
986 #else /* !CONFIG_HAS_DMA */
987 static inline int __spi_map_msg(struct spi_controller *ctlr,
988                                 struct spi_message *msg)
989 {
990         return 0;
991 }
992
993 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
994                                   struct spi_message *msg)
995 {
996         return 0;
997 }
998 #endif /* !CONFIG_HAS_DMA */
999
1000 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1001                                 struct spi_message *msg)
1002 {
1003         struct spi_transfer *xfer;
1004
1005         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1006                 /*
1007                  * Restore the original value of tx_buf or rx_buf if they are
1008                  * NULL.
1009                  */
1010                 if (xfer->tx_buf == ctlr->dummy_tx)
1011                         xfer->tx_buf = NULL;
1012                 if (xfer->rx_buf == ctlr->dummy_rx)
1013                         xfer->rx_buf = NULL;
1014         }
1015
1016         return __spi_unmap_msg(ctlr, msg);
1017 }
1018
1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1020 {
1021         struct spi_transfer *xfer;
1022         void *tmp;
1023         unsigned int max_tx, max_rx;
1024
1025         if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1026                 max_tx = 0;
1027                 max_rx = 0;
1028
1029                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1031                             !xfer->tx_buf)
1032                                 max_tx = max(xfer->len, max_tx);
1033                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1034                             !xfer->rx_buf)
1035                                 max_rx = max(xfer->len, max_rx);
1036                 }
1037
1038                 if (max_tx) {
1039                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1040                                        GFP_KERNEL | GFP_DMA);
1041                         if (!tmp)
1042                                 return -ENOMEM;
1043                         ctlr->dummy_tx = tmp;
1044                         memset(tmp, 0, max_tx);
1045                 }
1046
1047                 if (max_rx) {
1048                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1049                                        GFP_KERNEL | GFP_DMA);
1050                         if (!tmp)
1051                                 return -ENOMEM;
1052                         ctlr->dummy_rx = tmp;
1053                 }
1054
1055                 if (max_tx || max_rx) {
1056                         list_for_each_entry(xfer, &msg->transfers,
1057                                             transfer_list) {
1058                                 if (!xfer->len)
1059                                         continue;
1060                                 if (!xfer->tx_buf)
1061                                         xfer->tx_buf = ctlr->dummy_tx;
1062                                 if (!xfer->rx_buf)
1063                                         xfer->rx_buf = ctlr->dummy_rx;
1064                         }
1065                 }
1066         }
1067
1068         return __spi_map_msg(ctlr, msg);
1069 }
1070
1071 static int spi_transfer_wait(struct spi_controller *ctlr,
1072                              struct spi_message *msg,
1073                              struct spi_transfer *xfer)
1074 {
1075         struct spi_statistics *statm = &ctlr->statistics;
1076         struct spi_statistics *stats = &msg->spi->statistics;
1077         unsigned long long ms = 1;
1078
1079         if (spi_controller_is_slave(ctlr)) {
1080                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1081                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1082                         return -EINTR;
1083                 }
1084         } else {
1085                 ms = 8LL * 1000LL * xfer->len;
1086                 do_div(ms, xfer->speed_hz);
1087                 ms += ms + 200; /* some tolerance */
1088
1089                 if (ms > UINT_MAX)
1090                         ms = UINT_MAX;
1091
1092                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1093                                                  msecs_to_jiffies(ms));
1094
1095                 if (ms == 0) {
1096                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1097                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1098                         dev_err(&msg->spi->dev,
1099                                 "SPI transfer timed out\n");
1100                         return -ETIMEDOUT;
1101                 }
1102         }
1103
1104         return 0;
1105 }
1106
1107 static void _spi_transfer_delay_ns(u32 ns)
1108 {
1109         if (!ns)
1110                 return;
1111         if (ns <= 1000) {
1112                 ndelay(ns);
1113         } else {
1114                 u32 us = DIV_ROUND_UP(ns, 1000);
1115
1116                 if (us <= 10)
1117                         udelay(us);
1118                 else
1119                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1120         }
1121 }
1122
1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1124 {
1125         u32 delay = _delay->value;
1126         u32 unit = _delay->unit;
1127         u32 hz;
1128
1129         if (!delay)
1130                 return 0;
1131
1132         switch (unit) {
1133         case SPI_DELAY_UNIT_USECS:
1134                 delay *= 1000;
1135                 break;
1136         case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1137                 break;
1138         case SPI_DELAY_UNIT_SCK:
1139                 /* clock cycles need to be obtained from spi_transfer */
1140                 if (!xfer)
1141                         return -EINVAL;
1142                 /* if there is no effective speed know, then approximate
1143                  * by underestimating with half the requested hz
1144                  */
1145                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1146                 if (!hz)
1147                         return -EINVAL;
1148                 delay *= DIV_ROUND_UP(1000000000, hz);
1149                 break;
1150         default:
1151                 return -EINVAL;
1152         }
1153
1154         return delay;
1155 }
1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1157
1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1159 {
1160         int delay;
1161
1162         if (!_delay)
1163                 return -EINVAL;
1164
1165         delay = spi_delay_to_ns(_delay, xfer);
1166         if (delay < 0)
1167                 return delay;
1168
1169         _spi_transfer_delay_ns(delay);
1170
1171         return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(spi_delay_exec);
1174
1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1176                                           struct spi_transfer *xfer)
1177 {
1178         u32 delay = xfer->cs_change_delay.value;
1179         u32 unit = xfer->cs_change_delay.unit;
1180         int ret;
1181
1182         /* return early on "fast" mode - for everything but USECS */
1183         if (!delay) {
1184                 if (unit == SPI_DELAY_UNIT_USECS)
1185                         _spi_transfer_delay_ns(10000);
1186                 return;
1187         }
1188
1189         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1190         if (ret) {
1191                 dev_err_once(&msg->spi->dev,
1192                              "Use of unsupported delay unit %i, using default of 10us\n",
1193                              unit);
1194                 _spi_transfer_delay_ns(10000);
1195         }
1196 }
1197
1198 /*
1199  * spi_transfer_one_message - Default implementation of transfer_one_message()
1200  *
1201  * This is a standard implementation of transfer_one_message() for
1202  * drivers which implement a transfer_one() operation.  It provides
1203  * standard handling of delays and chip select management.
1204  */
1205 static int spi_transfer_one_message(struct spi_controller *ctlr,
1206                                     struct spi_message *msg)
1207 {
1208         struct spi_transfer *xfer;
1209         bool keep_cs = false;
1210         int ret = 0;
1211         struct spi_statistics *statm = &ctlr->statistics;
1212         struct spi_statistics *stats = &msg->spi->statistics;
1213
1214         spi_set_cs(msg->spi, true);
1215
1216         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1217         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1218
1219         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220                 trace_spi_transfer_start(msg, xfer);
1221
1222                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1223                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1224
1225                 if (!ctlr->ptp_sts_supported) {
1226                         xfer->ptp_sts_word_pre = 0;
1227                         ptp_read_system_prets(xfer->ptp_sts);
1228                 }
1229
1230                 if (xfer->tx_buf || xfer->rx_buf) {
1231                         reinit_completion(&ctlr->xfer_completion);
1232
1233                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1234                         if (ret < 0) {
1235                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1236                                                                errors);
1237                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1238                                                                errors);
1239                                 dev_err(&msg->spi->dev,
1240                                         "SPI transfer failed: %d\n", ret);
1241                                 goto out;
1242                         }
1243
1244                         if (ret > 0) {
1245                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1246                                 if (ret < 0)
1247                                         msg->status = ret;
1248                         }
1249                 } else {
1250                         if (xfer->len)
1251                                 dev_err(&msg->spi->dev,
1252                                         "Bufferless transfer has length %u\n",
1253                                         xfer->len);
1254                 }
1255
1256                 if (!ctlr->ptp_sts_supported) {
1257                         ptp_read_system_postts(xfer->ptp_sts);
1258                         xfer->ptp_sts_word_post = xfer->len;
1259                 }
1260
1261                 trace_spi_transfer_stop(msg, xfer);
1262
1263                 if (msg->status != -EINPROGRESS)
1264                         goto out;
1265
1266                 spi_transfer_delay_exec(xfer);
1267
1268                 if (xfer->cs_change) {
1269                         if (list_is_last(&xfer->transfer_list,
1270                                          &msg->transfers)) {
1271                                 keep_cs = true;
1272                         } else {
1273                                 spi_set_cs(msg->spi, false);
1274                                 _spi_transfer_cs_change_delay(msg, xfer);
1275                                 spi_set_cs(msg->spi, true);
1276                         }
1277                 }
1278
1279                 msg->actual_length += xfer->len;
1280         }
1281
1282 out:
1283         if (ret != 0 || !keep_cs)
1284                 spi_set_cs(msg->spi, false);
1285
1286         if (msg->status == -EINPROGRESS)
1287                 msg->status = ret;
1288
1289         if (msg->status && ctlr->handle_err)
1290                 ctlr->handle_err(ctlr, msg);
1291
1292         spi_res_release(ctlr, msg);
1293
1294         spi_finalize_current_message(ctlr);
1295
1296         return ret;
1297 }
1298
1299 /**
1300  * spi_finalize_current_transfer - report completion of a transfer
1301  * @ctlr: the controller reporting completion
1302  *
1303  * Called by SPI drivers using the core transfer_one_message()
1304  * implementation to notify it that the current interrupt driven
1305  * transfer has finished and the next one may be scheduled.
1306  */
1307 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1308 {
1309         complete(&ctlr->xfer_completion);
1310 }
1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1312
1313 /**
1314  * __spi_pump_messages - function which processes spi message queue
1315  * @ctlr: controller to process queue for
1316  * @in_kthread: true if we are in the context of the message pump thread
1317  *
1318  * This function checks if there is any spi message in the queue that
1319  * needs processing and if so call out to the driver to initialize hardware
1320  * and transfer each message.
1321  *
1322  * Note that it is called both from the kthread itself and also from
1323  * inside spi_sync(); the queue extraction handling at the top of the
1324  * function should deal with this safely.
1325  */
1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1327 {
1328         struct spi_transfer *xfer;
1329         struct spi_message *msg;
1330         bool was_busy = false;
1331         unsigned long flags;
1332         int ret;
1333
1334         /* Lock queue */
1335         spin_lock_irqsave(&ctlr->queue_lock, flags);
1336
1337         /* Make sure we are not already running a message */
1338         if (ctlr->cur_msg) {
1339                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1340                 return;
1341         }
1342
1343         /* If another context is idling the device then defer */
1344         if (ctlr->idling) {
1345                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1346                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1347                 return;
1348         }
1349
1350         /* Check if the queue is idle */
1351         if (list_empty(&ctlr->queue) || !ctlr->running) {
1352                 if (!ctlr->busy) {
1353                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1354                         return;
1355                 }
1356
1357                 /* Only do teardown in the thread */
1358                 if (!in_kthread) {
1359                         kthread_queue_work(&ctlr->kworker,
1360                                            &ctlr->pump_messages);
1361                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1362                         return;
1363                 }
1364
1365                 ctlr->busy = false;
1366                 ctlr->idling = true;
1367                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1368
1369                 kfree(ctlr->dummy_rx);
1370                 ctlr->dummy_rx = NULL;
1371                 kfree(ctlr->dummy_tx);
1372                 ctlr->dummy_tx = NULL;
1373                 if (ctlr->unprepare_transfer_hardware &&
1374                     ctlr->unprepare_transfer_hardware(ctlr))
1375                         dev_err(&ctlr->dev,
1376                                 "failed to unprepare transfer hardware\n");
1377                 if (ctlr->auto_runtime_pm) {
1378                         pm_runtime_mark_last_busy(ctlr->dev.parent);
1379                         pm_runtime_put_autosuspend(ctlr->dev.parent);
1380                 }
1381                 trace_spi_controller_idle(ctlr);
1382
1383                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1384                 ctlr->idling = false;
1385                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1386                 return;
1387         }
1388
1389         /* Extract head of queue */
1390         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1391         ctlr->cur_msg = msg;
1392
1393         list_del_init(&msg->queue);
1394         if (ctlr->busy)
1395                 was_busy = true;
1396         else
1397                 ctlr->busy = true;
1398         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1399
1400         mutex_lock(&ctlr->io_mutex);
1401
1402         if (!was_busy && ctlr->auto_runtime_pm) {
1403                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1404                 if (ret < 0) {
1405                         pm_runtime_put_noidle(ctlr->dev.parent);
1406                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1407                                 ret);
1408                         mutex_unlock(&ctlr->io_mutex);
1409                         return;
1410                 }
1411         }
1412
1413         if (!was_busy)
1414                 trace_spi_controller_busy(ctlr);
1415
1416         if (!was_busy && ctlr->prepare_transfer_hardware) {
1417                 ret = ctlr->prepare_transfer_hardware(ctlr);
1418                 if (ret) {
1419                         dev_err(&ctlr->dev,
1420                                 "failed to prepare transfer hardware: %d\n",
1421                                 ret);
1422
1423                         if (ctlr->auto_runtime_pm)
1424                                 pm_runtime_put(ctlr->dev.parent);
1425
1426                         msg->status = ret;
1427                         spi_finalize_current_message(ctlr);
1428
1429                         mutex_unlock(&ctlr->io_mutex);
1430                         return;
1431                 }
1432         }
1433
1434         trace_spi_message_start(msg);
1435
1436         if (ctlr->prepare_message) {
1437                 ret = ctlr->prepare_message(ctlr, msg);
1438                 if (ret) {
1439                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1440                                 ret);
1441                         msg->status = ret;
1442                         spi_finalize_current_message(ctlr);
1443                         goto out;
1444                 }
1445                 ctlr->cur_msg_prepared = true;
1446         }
1447
1448         ret = spi_map_msg(ctlr, msg);
1449         if (ret) {
1450                 msg->status = ret;
1451                 spi_finalize_current_message(ctlr);
1452                 goto out;
1453         }
1454
1455         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1456                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1457                         xfer->ptp_sts_word_pre = 0;
1458                         ptp_read_system_prets(xfer->ptp_sts);
1459                 }
1460         }
1461
1462         ret = ctlr->transfer_one_message(ctlr, msg);
1463         if (ret) {
1464                 dev_err(&ctlr->dev,
1465                         "failed to transfer one message from queue\n");
1466                 goto out;
1467         }
1468
1469 out:
1470         mutex_unlock(&ctlr->io_mutex);
1471
1472         /* Prod the scheduler in case transfer_one() was busy waiting */
1473         if (!ret)
1474                 cond_resched();
1475 }
1476
1477 /**
1478  * spi_pump_messages - kthread work function which processes spi message queue
1479  * @work: pointer to kthread work struct contained in the controller struct
1480  */
1481 static void spi_pump_messages(struct kthread_work *work)
1482 {
1483         struct spi_controller *ctlr =
1484                 container_of(work, struct spi_controller, pump_messages);
1485
1486         __spi_pump_messages(ctlr, true);
1487 }
1488
1489 /**
1490  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1491  *                          TX timestamp for the requested byte from the SPI
1492  *                          transfer. The frequency with which this function
1493  *                          must be called (once per word, once for the whole
1494  *                          transfer, once per batch of words etc) is arbitrary
1495  *                          as long as the @tx buffer offset is greater than or
1496  *                          equal to the requested byte at the time of the
1497  *                          call. The timestamp is only taken once, at the
1498  *                          first such call. It is assumed that the driver
1499  *                          advances its @tx buffer pointer monotonically.
1500  * @ctlr: Pointer to the spi_controller structure of the driver
1501  * @xfer: Pointer to the transfer being timestamped
1502  * @tx: Pointer to the current word within the xfer->tx_buf that the driver is
1503  *      preparing to transmit right now.
1504  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505  *            transfer, for less jitter in time measurement. Only compatible
1506  *            with PIO drivers. If true, must follow up with
1507  *            spi_take_timestamp_post or otherwise system will crash.
1508  *            WARNING: for fully predictable results, the CPU frequency must
1509  *            also be under control (governor).
1510  */
1511 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1512                             struct spi_transfer *xfer,
1513                             const void *tx, bool irqs_off)
1514 {
1515         u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8);
1516
1517         if (!xfer->ptp_sts)
1518                 return;
1519
1520         if (xfer->timestamped_pre)
1521                 return;
1522
1523         if (tx < (xfer->tx_buf + xfer->ptp_sts_word_pre * bytes_per_word))
1524                 return;
1525
1526         /* Capture the resolution of the timestamp */
1527         xfer->ptp_sts_word_pre = (tx - xfer->tx_buf) / bytes_per_word;
1528
1529         xfer->timestamped_pre = true;
1530
1531         if (irqs_off) {
1532                 local_irq_save(ctlr->irq_flags);
1533                 preempt_disable();
1534         }
1535
1536         ptp_read_system_prets(xfer->ptp_sts);
1537 }
1538 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1539
1540 /**
1541  * spi_take_timestamp_post - helper for drivers to collect the end of the
1542  *                           TX timestamp for the requested byte from the SPI
1543  *                           transfer. Can be called with an arbitrary
1544  *                           frequency: only the first call where @tx exceeds
1545  *                           or is equal to the requested word will be
1546  *                           timestamped.
1547  * @ctlr: Pointer to the spi_controller structure of the driver
1548  * @xfer: Pointer to the transfer being timestamped
1549  * @tx: Pointer to the current word within the xfer->tx_buf that the driver has
1550  *      just transmitted.
1551  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1552  */
1553 void spi_take_timestamp_post(struct spi_controller *ctlr,
1554                              struct spi_transfer *xfer,
1555                              const void *tx, bool irqs_off)
1556 {
1557         u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8);
1558
1559         if (!xfer->ptp_sts)
1560                 return;
1561
1562         if (xfer->timestamped_post)
1563                 return;
1564
1565         if (tx < (xfer->tx_buf + xfer->ptp_sts_word_post * bytes_per_word))
1566                 return;
1567
1568         ptp_read_system_postts(xfer->ptp_sts);
1569
1570         if (irqs_off) {
1571                 local_irq_restore(ctlr->irq_flags);
1572                 preempt_enable();
1573         }
1574
1575         /* Capture the resolution of the timestamp */
1576         xfer->ptp_sts_word_post = (tx - xfer->tx_buf) / bytes_per_word;
1577
1578         xfer->timestamped_post = true;
1579 }
1580 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1581
1582 /**
1583  * spi_set_thread_rt - set the controller to pump at realtime priority
1584  * @ctlr: controller to boost priority of
1585  *
1586  * This can be called because the controller requested realtime priority
1587  * (by setting the ->rt value before calling spi_register_controller()) or
1588  * because a device on the bus said that its transfers needed realtime
1589  * priority.
1590  *
1591  * NOTE: at the moment if any device on a bus says it needs realtime then
1592  * the thread will be at realtime priority for all transfers on that
1593  * controller.  If this eventually becomes a problem we may see if we can
1594  * find a way to boost the priority only temporarily during relevant
1595  * transfers.
1596  */
1597 static void spi_set_thread_rt(struct spi_controller *ctlr)
1598 {
1599         struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1600
1601         dev_info(&ctlr->dev,
1602                 "will run message pump with realtime priority\n");
1603         sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1604 }
1605
1606 static int spi_init_queue(struct spi_controller *ctlr)
1607 {
1608         ctlr->running = false;
1609         ctlr->busy = false;
1610
1611         kthread_init_worker(&ctlr->kworker);
1612         ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1613                                          "%s", dev_name(&ctlr->dev));
1614         if (IS_ERR(ctlr->kworker_task)) {
1615                 dev_err(&ctlr->dev, "failed to create message pump task\n");
1616                 return PTR_ERR(ctlr->kworker_task);
1617         }
1618         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1619
1620         /*
1621          * Controller config will indicate if this controller should run the
1622          * message pump with high (realtime) priority to reduce the transfer
1623          * latency on the bus by minimising the delay between a transfer
1624          * request and the scheduling of the message pump thread. Without this
1625          * setting the message pump thread will remain at default priority.
1626          */
1627         if (ctlr->rt)
1628                 spi_set_thread_rt(ctlr);
1629
1630         return 0;
1631 }
1632
1633 /**
1634  * spi_get_next_queued_message() - called by driver to check for queued
1635  * messages
1636  * @ctlr: the controller to check for queued messages
1637  *
1638  * If there are more messages in the queue, the next message is returned from
1639  * this call.
1640  *
1641  * Return: the next message in the queue, else NULL if the queue is empty.
1642  */
1643 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1644 {
1645         struct spi_message *next;
1646         unsigned long flags;
1647
1648         /* get a pointer to the next message, if any */
1649         spin_lock_irqsave(&ctlr->queue_lock, flags);
1650         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1651                                         queue);
1652         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1653
1654         return next;
1655 }
1656 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1657
1658 /**
1659  * spi_finalize_current_message() - the current message is complete
1660  * @ctlr: the controller to return the message to
1661  *
1662  * Called by the driver to notify the core that the message in the front of the
1663  * queue is complete and can be removed from the queue.
1664  */
1665 void spi_finalize_current_message(struct spi_controller *ctlr)
1666 {
1667         struct spi_transfer *xfer;
1668         struct spi_message *mesg;
1669         unsigned long flags;
1670         int ret;
1671
1672         spin_lock_irqsave(&ctlr->queue_lock, flags);
1673         mesg = ctlr->cur_msg;
1674         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1675
1676         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1677                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1678                         ptp_read_system_postts(xfer->ptp_sts);
1679                         xfer->ptp_sts_word_post = xfer->len;
1680                 }
1681         }
1682
1683         spi_unmap_msg(ctlr, mesg);
1684
1685         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1686                 ret = ctlr->unprepare_message(ctlr, mesg);
1687                 if (ret) {
1688                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1689                                 ret);
1690                 }
1691         }
1692
1693         spin_lock_irqsave(&ctlr->queue_lock, flags);
1694         ctlr->cur_msg = NULL;
1695         ctlr->cur_msg_prepared = false;
1696         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1697         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1698
1699         trace_spi_message_done(mesg);
1700
1701         mesg->state = NULL;
1702         if (mesg->complete)
1703                 mesg->complete(mesg->context);
1704 }
1705 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1706
1707 static int spi_start_queue(struct spi_controller *ctlr)
1708 {
1709         unsigned long flags;
1710
1711         spin_lock_irqsave(&ctlr->queue_lock, flags);
1712
1713         if (ctlr->running || ctlr->busy) {
1714                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1715                 return -EBUSY;
1716         }
1717
1718         ctlr->running = true;
1719         ctlr->cur_msg = NULL;
1720         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1721
1722         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1723
1724         return 0;
1725 }
1726
1727 static int spi_stop_queue(struct spi_controller *ctlr)
1728 {
1729         unsigned long flags;
1730         unsigned limit = 500;
1731         int ret = 0;
1732
1733         spin_lock_irqsave(&ctlr->queue_lock, flags);
1734
1735         /*
1736          * This is a bit lame, but is optimized for the common execution path.
1737          * A wait_queue on the ctlr->busy could be used, but then the common
1738          * execution path (pump_messages) would be required to call wake_up or
1739          * friends on every SPI message. Do this instead.
1740          */
1741         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1742                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1743                 usleep_range(10000, 11000);
1744                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1745         }
1746
1747         if (!list_empty(&ctlr->queue) || ctlr->busy)
1748                 ret = -EBUSY;
1749         else
1750                 ctlr->running = false;
1751
1752         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1753
1754         if (ret) {
1755                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1756                 return ret;
1757         }
1758         return ret;
1759 }
1760
1761 static int spi_destroy_queue(struct spi_controller *ctlr)
1762 {
1763         int ret;
1764
1765         ret = spi_stop_queue(ctlr);
1766
1767         /*
1768          * kthread_flush_worker will block until all work is done.
1769          * If the reason that stop_queue timed out is that the work will never
1770          * finish, then it does no good to call flush/stop thread, so
1771          * return anyway.
1772          */
1773         if (ret) {
1774                 dev_err(&ctlr->dev, "problem destroying queue\n");
1775                 return ret;
1776         }
1777
1778         kthread_flush_worker(&ctlr->kworker);
1779         kthread_stop(ctlr->kworker_task);
1780
1781         return 0;
1782 }
1783
1784 static int __spi_queued_transfer(struct spi_device *spi,
1785                                  struct spi_message *msg,
1786                                  bool need_pump)
1787 {
1788         struct spi_controller *ctlr = spi->controller;
1789         unsigned long flags;
1790
1791         spin_lock_irqsave(&ctlr->queue_lock, flags);
1792
1793         if (!ctlr->running) {
1794                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1795                 return -ESHUTDOWN;
1796         }
1797         msg->actual_length = 0;
1798         msg->status = -EINPROGRESS;
1799
1800         list_add_tail(&msg->queue, &ctlr->queue);
1801         if (!ctlr->busy && need_pump)
1802                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1803
1804         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1805         return 0;
1806 }
1807
1808 /**
1809  * spi_queued_transfer - transfer function for queued transfers
1810  * @spi: spi device which is requesting transfer
1811  * @msg: spi message which is to handled is queued to driver queue
1812  *
1813  * Return: zero on success, else a negative error code.
1814  */
1815 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1816 {
1817         return __spi_queued_transfer(spi, msg, true);
1818 }
1819
1820 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1821 {
1822         int ret;
1823
1824         ctlr->transfer = spi_queued_transfer;
1825         if (!ctlr->transfer_one_message)
1826                 ctlr->transfer_one_message = spi_transfer_one_message;
1827
1828         /* Initialize and start queue */
1829         ret = spi_init_queue(ctlr);
1830         if (ret) {
1831                 dev_err(&ctlr->dev, "problem initializing queue\n");
1832                 goto err_init_queue;
1833         }
1834         ctlr->queued = true;
1835         ret = spi_start_queue(ctlr);
1836         if (ret) {
1837                 dev_err(&ctlr->dev, "problem starting queue\n");
1838                 goto err_start_queue;
1839         }
1840
1841         return 0;
1842
1843 err_start_queue:
1844         spi_destroy_queue(ctlr);
1845 err_init_queue:
1846         return ret;
1847 }
1848
1849 /**
1850  * spi_flush_queue - Send all pending messages in the queue from the callers'
1851  *                   context
1852  * @ctlr: controller to process queue for
1853  *
1854  * This should be used when one wants to ensure all pending messages have been
1855  * sent before doing something. Is used by the spi-mem code to make sure SPI
1856  * memory operations do not preempt regular SPI transfers that have been queued
1857  * before the spi-mem operation.
1858  */
1859 void spi_flush_queue(struct spi_controller *ctlr)
1860 {
1861         if (ctlr->transfer == spi_queued_transfer)
1862                 __spi_pump_messages(ctlr, false);
1863 }
1864
1865 /*-------------------------------------------------------------------------*/
1866
1867 #if defined(CONFIG_OF)
1868 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1869                            struct device_node *nc)
1870 {
1871         u32 value;
1872         int rc;
1873
1874         /* Mode (clock phase/polarity/etc.) */
1875         if (of_property_read_bool(nc, "spi-cpha"))
1876                 spi->mode |= SPI_CPHA;
1877         if (of_property_read_bool(nc, "spi-cpol"))
1878                 spi->mode |= SPI_CPOL;
1879         if (of_property_read_bool(nc, "spi-3wire"))
1880                 spi->mode |= SPI_3WIRE;
1881         if (of_property_read_bool(nc, "spi-lsb-first"))
1882                 spi->mode |= SPI_LSB_FIRST;
1883
1884         /*
1885          * For descriptors associated with the device, polarity inversion is
1886          * handled in the gpiolib, so all chip selects are "active high" in
1887          * the logical sense, the gpiolib will invert the line if need be.
1888          */
1889         if (ctlr->use_gpio_descriptors)
1890                 spi->mode |= SPI_CS_HIGH;
1891         else if (of_property_read_bool(nc, "spi-cs-high"))
1892                 spi->mode |= SPI_CS_HIGH;
1893
1894         /* Device DUAL/QUAD mode */
1895         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1896                 switch (value) {
1897                 case 1:
1898                         break;
1899                 case 2:
1900                         spi->mode |= SPI_TX_DUAL;
1901                         break;
1902                 case 4:
1903                         spi->mode |= SPI_TX_QUAD;
1904                         break;
1905                 case 8:
1906                         spi->mode |= SPI_TX_OCTAL;
1907                         break;
1908                 default:
1909                         dev_warn(&ctlr->dev,
1910                                 "spi-tx-bus-width %d not supported\n",
1911                                 value);
1912                         break;
1913                 }
1914         }
1915
1916         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1917                 switch (value) {
1918                 case 1:
1919                         break;
1920                 case 2:
1921                         spi->mode |= SPI_RX_DUAL;
1922                         break;
1923                 case 4:
1924                         spi->mode |= SPI_RX_QUAD;
1925                         break;
1926                 case 8:
1927                         spi->mode |= SPI_RX_OCTAL;
1928                         break;
1929                 default:
1930                         dev_warn(&ctlr->dev,
1931                                 "spi-rx-bus-width %d not supported\n",
1932                                 value);
1933                         break;
1934                 }
1935         }
1936
1937         if (spi_controller_is_slave(ctlr)) {
1938                 if (!of_node_name_eq(nc, "slave")) {
1939                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1940                                 nc);
1941                         return -EINVAL;
1942                 }
1943                 return 0;
1944         }
1945
1946         /* Device address */
1947         rc = of_property_read_u32(nc, "reg", &value);
1948         if (rc) {
1949                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1950                         nc, rc);
1951                 return rc;
1952         }
1953         spi->chip_select = value;
1954
1955         /* Device speed */
1956         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1957         if (rc) {
1958                 dev_err(&ctlr->dev,
1959                         "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1960                 return rc;
1961         }
1962         spi->max_speed_hz = value;
1963
1964         return 0;
1965 }
1966
1967 static struct spi_device *
1968 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1969 {
1970         struct spi_device *spi;
1971         int rc;
1972
1973         /* Alloc an spi_device */
1974         spi = spi_alloc_device(ctlr);
1975         if (!spi) {
1976                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1977                 rc = -ENOMEM;
1978                 goto err_out;
1979         }
1980
1981         /* Select device driver */
1982         rc = of_modalias_node(nc, spi->modalias,
1983                                 sizeof(spi->modalias));
1984         if (rc < 0) {
1985                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1986                 goto err_out;
1987         }
1988
1989         rc = of_spi_parse_dt(ctlr, spi, nc);
1990         if (rc)
1991                 goto err_out;
1992
1993         /* Store a pointer to the node in the device structure */
1994         of_node_get(nc);
1995         spi->dev.of_node = nc;
1996
1997         /* Register the new device */
1998         rc = spi_add_device(spi);
1999         if (rc) {
2000                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2001                 goto err_of_node_put;
2002         }
2003
2004         return spi;
2005
2006 err_of_node_put:
2007         of_node_put(nc);
2008 err_out:
2009         spi_dev_put(spi);
2010         return ERR_PTR(rc);
2011 }
2012
2013 /**
2014  * of_register_spi_devices() - Register child devices onto the SPI bus
2015  * @ctlr:       Pointer to spi_controller device
2016  *
2017  * Registers an spi_device for each child node of controller node which
2018  * represents a valid SPI slave.
2019  */
2020 static void of_register_spi_devices(struct spi_controller *ctlr)
2021 {
2022         struct spi_device *spi;
2023         struct device_node *nc;
2024
2025         if (!ctlr->dev.of_node)
2026                 return;
2027
2028         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2029                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2030                         continue;
2031                 spi = of_register_spi_device(ctlr, nc);
2032                 if (IS_ERR(spi)) {
2033                         dev_warn(&ctlr->dev,
2034                                  "Failed to create SPI device for %pOF\n", nc);
2035                         of_node_clear_flag(nc, OF_POPULATED);
2036                 }
2037         }
2038 }
2039 #else
2040 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2041 #endif
2042
2043 #ifdef CONFIG_ACPI
2044 struct acpi_spi_lookup {
2045         struct spi_controller   *ctlr;
2046         u32                     max_speed_hz;
2047         u32                     mode;
2048         int                     irq;
2049         u8                      bits_per_word;
2050         u8                      chip_select;
2051 };
2052
2053 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2054                                             struct acpi_spi_lookup *lookup)
2055 {
2056         const union acpi_object *obj;
2057
2058         if (!x86_apple_machine)
2059                 return;
2060
2061         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2062             && obj->buffer.length >= 4)
2063                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2064
2065         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2066             && obj->buffer.length == 8)
2067                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2068
2069         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2070             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2071                 lookup->mode |= SPI_LSB_FIRST;
2072
2073         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2074             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2075                 lookup->mode |= SPI_CPOL;
2076
2077         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2078             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2079                 lookup->mode |= SPI_CPHA;
2080 }
2081
2082 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2083 {
2084         struct acpi_spi_lookup *lookup = data;
2085         struct spi_controller *ctlr = lookup->ctlr;
2086
2087         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2088                 struct acpi_resource_spi_serialbus *sb;
2089                 acpi_handle parent_handle;
2090                 acpi_status status;
2091
2092                 sb = &ares->data.spi_serial_bus;
2093                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2094
2095                         status = acpi_get_handle(NULL,
2096                                                  sb->resource_source.string_ptr,
2097                                                  &parent_handle);
2098
2099                         if (ACPI_FAILURE(status) ||
2100                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2101                                 return -ENODEV;
2102
2103                         /*
2104                          * ACPI DeviceSelection numbering is handled by the
2105                          * host controller driver in Windows and can vary
2106                          * from driver to driver. In Linux we always expect
2107                          * 0 .. max - 1 so we need to ask the driver to
2108                          * translate between the two schemes.
2109                          */
2110                         if (ctlr->fw_translate_cs) {
2111                                 int cs = ctlr->fw_translate_cs(ctlr,
2112                                                 sb->device_selection);
2113                                 if (cs < 0)
2114                                         return cs;
2115                                 lookup->chip_select = cs;
2116                         } else {
2117                                 lookup->chip_select = sb->device_selection;
2118                         }
2119
2120                         lookup->max_speed_hz = sb->connection_speed;
2121
2122                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2123                                 lookup->mode |= SPI_CPHA;
2124                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2125                                 lookup->mode |= SPI_CPOL;
2126                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2127                                 lookup->mode |= SPI_CS_HIGH;
2128                 }
2129         } else if (lookup->irq < 0) {
2130                 struct resource r;
2131
2132                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2133                         lookup->irq = r.start;
2134         }
2135
2136         /* Always tell the ACPI core to skip this resource */
2137         return 1;
2138 }
2139
2140 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2141                                             struct acpi_device *adev)
2142 {
2143         acpi_handle parent_handle = NULL;
2144         struct list_head resource_list;
2145         struct acpi_spi_lookup lookup = {};
2146         struct spi_device *spi;
2147         int ret;
2148
2149         if (acpi_bus_get_status(adev) || !adev->status.present ||
2150             acpi_device_enumerated(adev))
2151                 return AE_OK;
2152
2153         lookup.ctlr             = ctlr;
2154         lookup.irq              = -1;
2155
2156         INIT_LIST_HEAD(&resource_list);
2157         ret = acpi_dev_get_resources(adev, &resource_list,
2158                                      acpi_spi_add_resource, &lookup);
2159         acpi_dev_free_resource_list(&resource_list);
2160
2161         if (ret < 0)
2162                 /* found SPI in _CRS but it points to another controller */
2163                 return AE_OK;
2164
2165         if (!lookup.max_speed_hz &&
2166             !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2167             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2168                 /* Apple does not use _CRS but nested devices for SPI slaves */
2169                 acpi_spi_parse_apple_properties(adev, &lookup);
2170         }
2171
2172         if (!lookup.max_speed_hz)
2173                 return AE_OK;
2174
2175         spi = spi_alloc_device(ctlr);
2176         if (!spi) {
2177                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2178                         dev_name(&adev->dev));
2179                 return AE_NO_MEMORY;
2180         }
2181
2182         ACPI_COMPANION_SET(&spi->dev, adev);
2183         spi->max_speed_hz       = lookup.max_speed_hz;
2184         spi->mode               = lookup.mode;
2185         spi->irq                = lookup.irq;
2186         spi->bits_per_word      = lookup.bits_per_word;
2187         spi->chip_select        = lookup.chip_select;
2188
2189         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2190                           sizeof(spi->modalias));
2191
2192         if (spi->irq < 0)
2193                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2194
2195         acpi_device_set_enumerated(adev);
2196
2197         adev->power.flags.ignore_parent = true;
2198         if (spi_add_device(spi)) {
2199                 adev->power.flags.ignore_parent = false;
2200                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2201                         dev_name(&adev->dev));
2202                 spi_dev_put(spi);
2203         }
2204
2205         return AE_OK;
2206 }
2207
2208 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2209                                        void *data, void **return_value)
2210 {
2211         struct spi_controller *ctlr = data;
2212         struct acpi_device *adev;
2213
2214         if (acpi_bus_get_device(handle, &adev))
2215                 return AE_OK;
2216
2217         return acpi_register_spi_device(ctlr, adev);
2218 }
2219
2220 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2221
2222 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2223 {
2224         acpi_status status;
2225         acpi_handle handle;
2226
2227         handle = ACPI_HANDLE(ctlr->dev.parent);
2228         if (!handle)
2229                 return;
2230
2231         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2232                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2233                                      acpi_spi_add_device, NULL, ctlr, NULL);
2234         if (ACPI_FAILURE(status))
2235                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2236 }
2237 #else
2238 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2239 #endif /* CONFIG_ACPI */
2240
2241 static void spi_controller_release(struct device *dev)
2242 {
2243         struct spi_controller *ctlr;
2244
2245         ctlr = container_of(dev, struct spi_controller, dev);
2246         kfree(ctlr);
2247 }
2248
2249 static struct class spi_master_class = {
2250         .name           = "spi_master",
2251         .owner          = THIS_MODULE,
2252         .dev_release    = spi_controller_release,
2253         .dev_groups     = spi_master_groups,
2254 };
2255
2256 #ifdef CONFIG_SPI_SLAVE
2257 /**
2258  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2259  *                   controller
2260  * @spi: device used for the current transfer
2261  */
2262 int spi_slave_abort(struct spi_device *spi)
2263 {
2264         struct spi_controller *ctlr = spi->controller;
2265
2266         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2267                 return ctlr->slave_abort(ctlr);
2268
2269         return -ENOTSUPP;
2270 }
2271 EXPORT_SYMBOL_GPL(spi_slave_abort);
2272
2273 static int match_true(struct device *dev, void *data)
2274 {
2275         return 1;
2276 }
2277
2278 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2279                           char *buf)
2280 {
2281         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2282                                                    dev);
2283         struct device *child;
2284
2285         child = device_find_child(&ctlr->dev, NULL, match_true);
2286         return sprintf(buf, "%s\n",
2287                        child ? to_spi_device(child)->modalias : NULL);
2288 }
2289
2290 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2291                            const char *buf, size_t count)
2292 {
2293         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2294                                                    dev);
2295         struct spi_device *spi;
2296         struct device *child;
2297         char name[32];
2298         int rc;
2299
2300         rc = sscanf(buf, "%31s", name);
2301         if (rc != 1 || !name[0])
2302                 return -EINVAL;
2303
2304         child = device_find_child(&ctlr->dev, NULL, match_true);
2305         if (child) {
2306                 /* Remove registered slave */
2307                 device_unregister(child);
2308                 put_device(child);
2309         }
2310
2311         if (strcmp(name, "(null)")) {
2312                 /* Register new slave */
2313                 spi = spi_alloc_device(ctlr);
2314                 if (!spi)
2315                         return -ENOMEM;
2316
2317                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2318
2319                 rc = spi_add_device(spi);
2320                 if (rc) {
2321                         spi_dev_put(spi);
2322                         return rc;
2323                 }
2324         }
2325
2326         return count;
2327 }
2328
2329 static DEVICE_ATTR_RW(slave);
2330
2331 static struct attribute *spi_slave_attrs[] = {
2332         &dev_attr_slave.attr,
2333         NULL,
2334 };
2335
2336 static const struct attribute_group spi_slave_group = {
2337         .attrs = spi_slave_attrs,
2338 };
2339
2340 static const struct attribute_group *spi_slave_groups[] = {
2341         &spi_controller_statistics_group,
2342         &spi_slave_group,
2343         NULL,
2344 };
2345
2346 static struct class spi_slave_class = {
2347         .name           = "spi_slave",
2348         .owner          = THIS_MODULE,
2349         .dev_release    = spi_controller_release,
2350         .dev_groups     = spi_slave_groups,
2351 };
2352 #else
2353 extern struct class spi_slave_class;    /* dummy */
2354 #endif
2355
2356 /**
2357  * __spi_alloc_controller - allocate an SPI master or slave controller
2358  * @dev: the controller, possibly using the platform_bus
2359  * @size: how much zeroed driver-private data to allocate; the pointer to this
2360  *      memory is in the driver_data field of the returned device, accessible
2361  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2362  *      drivers granting DMA access to portions of their private data need to
2363  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2364  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2365  *      slave (true) controller
2366  * Context: can sleep
2367  *
2368  * This call is used only by SPI controller drivers, which are the
2369  * only ones directly touching chip registers.  It's how they allocate
2370  * an spi_controller structure, prior to calling spi_register_controller().
2371  *
2372  * This must be called from context that can sleep.
2373  *
2374  * The caller is responsible for assigning the bus number and initializing the
2375  * controller's methods before calling spi_register_controller(); and (after
2376  * errors adding the device) calling spi_controller_put() to prevent a memory
2377  * leak.
2378  *
2379  * Return: the SPI controller structure on success, else NULL.
2380  */
2381 struct spi_controller *__spi_alloc_controller(struct device *dev,
2382                                               unsigned int size, bool slave)
2383 {
2384         struct spi_controller   *ctlr;
2385         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2386
2387         if (!dev)
2388                 return NULL;
2389
2390         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2391         if (!ctlr)
2392                 return NULL;
2393
2394         device_initialize(&ctlr->dev);
2395         ctlr->bus_num = -1;
2396         ctlr->num_chipselect = 1;
2397         ctlr->slave = slave;
2398         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2399                 ctlr->dev.class = &spi_slave_class;
2400         else
2401                 ctlr->dev.class = &spi_master_class;
2402         ctlr->dev.parent = dev;
2403         pm_suspend_ignore_children(&ctlr->dev, true);
2404         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2405
2406         return ctlr;
2407 }
2408 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2409
2410 #ifdef CONFIG_OF
2411 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2412 {
2413         int nb, i, *cs;
2414         struct device_node *np = ctlr->dev.of_node;
2415
2416         if (!np)
2417                 return 0;
2418
2419         nb = of_gpio_named_count(np, "cs-gpios");
2420         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2421
2422         /* Return error only for an incorrectly formed cs-gpios property */
2423         if (nb == 0 || nb == -ENOENT)
2424                 return 0;
2425         else if (nb < 0)
2426                 return nb;
2427
2428         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2429                           GFP_KERNEL);
2430         ctlr->cs_gpios = cs;
2431
2432         if (!ctlr->cs_gpios)
2433                 return -ENOMEM;
2434
2435         for (i = 0; i < ctlr->num_chipselect; i++)
2436                 cs[i] = -ENOENT;
2437
2438         for (i = 0; i < nb; i++)
2439                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2440
2441         return 0;
2442 }
2443 #else
2444 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2445 {
2446         return 0;
2447 }
2448 #endif
2449
2450 /**
2451  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2452  * @ctlr: The SPI master to grab GPIO descriptors for
2453  */
2454 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2455 {
2456         int nb, i;
2457         struct gpio_desc **cs;
2458         struct device *dev = &ctlr->dev;
2459
2460         nb = gpiod_count(dev, "cs");
2461         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2462
2463         /* No GPIOs at all is fine, else return the error */
2464         if (nb == 0 || nb == -ENOENT)
2465                 return 0;
2466         else if (nb < 0)
2467                 return nb;
2468
2469         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2470                           GFP_KERNEL);
2471         if (!cs)
2472                 return -ENOMEM;
2473         ctlr->cs_gpiods = cs;
2474
2475         for (i = 0; i < nb; i++) {
2476                 /*
2477                  * Most chipselects are active low, the inverted
2478                  * semantics are handled by special quirks in gpiolib,
2479                  * so initializing them GPIOD_OUT_LOW here means
2480                  * "unasserted", in most cases this will drive the physical
2481                  * line high.
2482                  */
2483                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2484                                                       GPIOD_OUT_LOW);
2485                 if (IS_ERR(cs[i]))
2486                         return PTR_ERR(cs[i]);
2487
2488                 if (cs[i]) {
2489                         /*
2490                          * If we find a CS GPIO, name it after the device and
2491                          * chip select line.
2492                          */
2493                         char *gpioname;
2494
2495                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2496                                                   dev_name(dev), i);
2497                         if (!gpioname)
2498                                 return -ENOMEM;
2499                         gpiod_set_consumer_name(cs[i], gpioname);
2500                 }
2501         }
2502
2503         return 0;
2504 }
2505
2506 static int spi_controller_check_ops(struct spi_controller *ctlr)
2507 {
2508         /*
2509          * The controller may implement only the high-level SPI-memory like
2510          * operations if it does not support regular SPI transfers, and this is
2511          * valid use case.
2512          * If ->mem_ops is NULL, we request that at least one of the
2513          * ->transfer_xxx() method be implemented.
2514          */
2515         if (ctlr->mem_ops) {
2516                 if (!ctlr->mem_ops->exec_op)
2517                         return -EINVAL;
2518         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2519                    !ctlr->transfer_one_message) {
2520                 return -EINVAL;
2521         }
2522
2523         return 0;
2524 }
2525
2526 /**
2527  * spi_register_controller - register SPI master or slave controller
2528  * @ctlr: initialized master, originally from spi_alloc_master() or
2529  *      spi_alloc_slave()
2530  * Context: can sleep
2531  *
2532  * SPI controllers connect to their drivers using some non-SPI bus,
2533  * such as the platform bus.  The final stage of probe() in that code
2534  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2535  *
2536  * SPI controllers use board specific (often SOC specific) bus numbers,
2537  * and board-specific addressing for SPI devices combines those numbers
2538  * with chip select numbers.  Since SPI does not directly support dynamic
2539  * device identification, boards need configuration tables telling which
2540  * chip is at which address.
2541  *
2542  * This must be called from context that can sleep.  It returns zero on
2543  * success, else a negative error code (dropping the controller's refcount).
2544  * After a successful return, the caller is responsible for calling
2545  * spi_unregister_controller().
2546  *
2547  * Return: zero on success, else a negative error code.
2548  */
2549 int spi_register_controller(struct spi_controller *ctlr)
2550 {
2551         struct device           *dev = ctlr->dev.parent;
2552         struct boardinfo        *bi;
2553         int                     status;
2554         int                     id, first_dynamic;
2555
2556         if (!dev)
2557                 return -ENODEV;
2558
2559         /*
2560          * Make sure all necessary hooks are implemented before registering
2561          * the SPI controller.
2562          */
2563         status = spi_controller_check_ops(ctlr);
2564         if (status)
2565                 return status;
2566
2567         if (ctlr->bus_num >= 0) {
2568                 /* devices with a fixed bus num must check-in with the num */
2569                 mutex_lock(&board_lock);
2570                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2571                         ctlr->bus_num + 1, GFP_KERNEL);
2572                 mutex_unlock(&board_lock);
2573                 if (WARN(id < 0, "couldn't get idr"))
2574                         return id == -ENOSPC ? -EBUSY : id;
2575                 ctlr->bus_num = id;
2576         } else if (ctlr->dev.of_node) {
2577                 /* allocate dynamic bus number using Linux idr */
2578                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2579                 if (id >= 0) {
2580                         ctlr->bus_num = id;
2581                         mutex_lock(&board_lock);
2582                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2583                                        ctlr->bus_num + 1, GFP_KERNEL);
2584                         mutex_unlock(&board_lock);
2585                         if (WARN(id < 0, "couldn't get idr"))
2586                                 return id == -ENOSPC ? -EBUSY : id;
2587                 }
2588         }
2589         if (ctlr->bus_num < 0) {
2590                 first_dynamic = of_alias_get_highest_id("spi");
2591                 if (first_dynamic < 0)
2592                         first_dynamic = 0;
2593                 else
2594                         first_dynamic++;
2595
2596                 mutex_lock(&board_lock);
2597                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2598                                0, GFP_KERNEL);
2599                 mutex_unlock(&board_lock);
2600                 if (WARN(id < 0, "couldn't get idr"))
2601                         return id;
2602                 ctlr->bus_num = id;
2603         }
2604         INIT_LIST_HEAD(&ctlr->queue);
2605         spin_lock_init(&ctlr->queue_lock);
2606         spin_lock_init(&ctlr->bus_lock_spinlock);
2607         mutex_init(&ctlr->bus_lock_mutex);
2608         mutex_init(&ctlr->io_mutex);
2609         ctlr->bus_lock_flag = 0;
2610         init_completion(&ctlr->xfer_completion);
2611         if (!ctlr->max_dma_len)
2612                 ctlr->max_dma_len = INT_MAX;
2613
2614         /* register the device, then userspace will see it.
2615          * registration fails if the bus ID is in use.
2616          */
2617         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2618
2619         if (!spi_controller_is_slave(ctlr)) {
2620                 if (ctlr->use_gpio_descriptors) {
2621                         status = spi_get_gpio_descs(ctlr);
2622                         if (status)
2623                                 return status;
2624                         /*
2625                          * A controller using GPIO descriptors always
2626                          * supports SPI_CS_HIGH if need be.
2627                          */
2628                         ctlr->mode_bits |= SPI_CS_HIGH;
2629                 } else {
2630                         /* Legacy code path for GPIOs from DT */
2631                         status = of_spi_get_gpio_numbers(ctlr);
2632                         if (status)
2633                                 return status;
2634                 }
2635         }
2636
2637         /*
2638          * Even if it's just one always-selected device, there must
2639          * be at least one chipselect.
2640          */
2641         if (!ctlr->num_chipselect)
2642                 return -EINVAL;
2643
2644         status = device_add(&ctlr->dev);
2645         if (status < 0) {
2646                 /* free bus id */
2647                 mutex_lock(&board_lock);
2648                 idr_remove(&spi_master_idr, ctlr->bus_num);
2649                 mutex_unlock(&board_lock);
2650                 goto done;
2651         }
2652         dev_dbg(dev, "registered %s %s\n",
2653                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2654                         dev_name(&ctlr->dev));
2655
2656         /*
2657          * If we're using a queued driver, start the queue. Note that we don't
2658          * need the queueing logic if the driver is only supporting high-level
2659          * memory operations.
2660          */
2661         if (ctlr->transfer) {
2662                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2663         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2664                 status = spi_controller_initialize_queue(ctlr);
2665                 if (status) {
2666                         device_del(&ctlr->dev);
2667                         /* free bus id */
2668                         mutex_lock(&board_lock);
2669                         idr_remove(&spi_master_idr, ctlr->bus_num);
2670                         mutex_unlock(&board_lock);
2671                         goto done;
2672                 }
2673         }
2674         /* add statistics */
2675         spin_lock_init(&ctlr->statistics.lock);
2676
2677         mutex_lock(&board_lock);
2678         list_add_tail(&ctlr->list, &spi_controller_list);
2679         list_for_each_entry(bi, &board_list, list)
2680                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2681         mutex_unlock(&board_lock);
2682
2683         /* Register devices from the device tree and ACPI */
2684         of_register_spi_devices(ctlr);
2685         acpi_register_spi_devices(ctlr);
2686 done:
2687         return status;
2688 }
2689 EXPORT_SYMBOL_GPL(spi_register_controller);
2690
2691 static void devm_spi_unregister(struct device *dev, void *res)
2692 {
2693         spi_unregister_controller(*(struct spi_controller **)res);
2694 }
2695
2696 /**
2697  * devm_spi_register_controller - register managed SPI master or slave
2698  *      controller
2699  * @dev:    device managing SPI controller
2700  * @ctlr: initialized controller, originally from spi_alloc_master() or
2701  *      spi_alloc_slave()
2702  * Context: can sleep
2703  *
2704  * Register a SPI device as with spi_register_controller() which will
2705  * automatically be unregistered and freed.
2706  *
2707  * Return: zero on success, else a negative error code.
2708  */
2709 int devm_spi_register_controller(struct device *dev,
2710                                  struct spi_controller *ctlr)
2711 {
2712         struct spi_controller **ptr;
2713         int ret;
2714
2715         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2716         if (!ptr)
2717                 return -ENOMEM;
2718
2719         ret = spi_register_controller(ctlr);
2720         if (!ret) {
2721                 *ptr = ctlr;
2722                 devres_add(dev, ptr);
2723         } else {
2724                 devres_free(ptr);
2725         }
2726
2727         return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2730
2731 static int __unregister(struct device *dev, void *null)
2732 {
2733         spi_unregister_device(to_spi_device(dev));
2734         return 0;
2735 }
2736
2737 /**
2738  * spi_unregister_controller - unregister SPI master or slave controller
2739  * @ctlr: the controller being unregistered
2740  * Context: can sleep
2741  *
2742  * This call is used only by SPI controller drivers, which are the
2743  * only ones directly touching chip registers.
2744  *
2745  * This must be called from context that can sleep.
2746  *
2747  * Note that this function also drops a reference to the controller.
2748  */
2749 void spi_unregister_controller(struct spi_controller *ctlr)
2750 {
2751         struct spi_controller *found;
2752         int id = ctlr->bus_num;
2753
2754         /* First make sure that this controller was ever added */
2755         mutex_lock(&board_lock);
2756         found = idr_find(&spi_master_idr, id);
2757         mutex_unlock(&board_lock);
2758         if (ctlr->queued) {
2759                 if (spi_destroy_queue(ctlr))
2760                         dev_err(&ctlr->dev, "queue remove failed\n");
2761         }
2762         mutex_lock(&board_lock);
2763         list_del(&ctlr->list);
2764         mutex_unlock(&board_lock);
2765
2766         device_for_each_child(&ctlr->dev, NULL, __unregister);
2767         device_unregister(&ctlr->dev);
2768         /* free bus id */
2769         mutex_lock(&board_lock);
2770         if (found == ctlr)
2771                 idr_remove(&spi_master_idr, id);
2772         mutex_unlock(&board_lock);
2773 }
2774 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2775
2776 int spi_controller_suspend(struct spi_controller *ctlr)
2777 {
2778         int ret;
2779
2780         /* Basically no-ops for non-queued controllers */
2781         if (!ctlr->queued)
2782                 return 0;
2783
2784         ret = spi_stop_queue(ctlr);
2785         if (ret)
2786                 dev_err(&ctlr->dev, "queue stop failed\n");
2787
2788         return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2791
2792 int spi_controller_resume(struct spi_controller *ctlr)
2793 {
2794         int ret;
2795
2796         if (!ctlr->queued)
2797                 return 0;
2798
2799         ret = spi_start_queue(ctlr);
2800         if (ret)
2801                 dev_err(&ctlr->dev, "queue restart failed\n");
2802
2803         return ret;
2804 }
2805 EXPORT_SYMBOL_GPL(spi_controller_resume);
2806
2807 static int __spi_controller_match(struct device *dev, const void *data)
2808 {
2809         struct spi_controller *ctlr;
2810         const u16 *bus_num = data;
2811
2812         ctlr = container_of(dev, struct spi_controller, dev);
2813         return ctlr->bus_num == *bus_num;
2814 }
2815
2816 /**
2817  * spi_busnum_to_master - look up master associated with bus_num
2818  * @bus_num: the master's bus number
2819  * Context: can sleep
2820  *
2821  * This call may be used with devices that are registered after
2822  * arch init time.  It returns a refcounted pointer to the relevant
2823  * spi_controller (which the caller must release), or NULL if there is
2824  * no such master registered.
2825  *
2826  * Return: the SPI master structure on success, else NULL.
2827  */
2828 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2829 {
2830         struct device           *dev;
2831         struct spi_controller   *ctlr = NULL;
2832
2833         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2834                                 __spi_controller_match);
2835         if (dev)
2836                 ctlr = container_of(dev, struct spi_controller, dev);
2837         /* reference got in class_find_device */
2838         return ctlr;
2839 }
2840 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2841
2842 /*-------------------------------------------------------------------------*/
2843
2844 /* Core methods for SPI resource management */
2845
2846 /**
2847  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2848  *                 during the processing of a spi_message while using
2849  *                 spi_transfer_one
2850  * @spi:     the spi device for which we allocate memory
2851  * @release: the release code to execute for this resource
2852  * @size:    size to alloc and return
2853  * @gfp:     GFP allocation flags
2854  *
2855  * Return: the pointer to the allocated data
2856  *
2857  * This may get enhanced in the future to allocate from a memory pool
2858  * of the @spi_device or @spi_controller to avoid repeated allocations.
2859  */
2860 void *spi_res_alloc(struct spi_device *spi,
2861                     spi_res_release_t release,
2862                     size_t size, gfp_t gfp)
2863 {
2864         struct spi_res *sres;
2865
2866         sres = kzalloc(sizeof(*sres) + size, gfp);
2867         if (!sres)
2868                 return NULL;
2869
2870         INIT_LIST_HEAD(&sres->entry);
2871         sres->release = release;
2872
2873         return sres->data;
2874 }
2875 EXPORT_SYMBOL_GPL(spi_res_alloc);
2876
2877 /**
2878  * spi_res_free - free an spi resource
2879  * @res: pointer to the custom data of a resource
2880  *
2881  */
2882 void spi_res_free(void *res)
2883 {
2884         struct spi_res *sres = container_of(res, struct spi_res, data);
2885
2886         if (!res)
2887                 return;
2888
2889         WARN_ON(!list_empty(&sres->entry));
2890         kfree(sres);
2891 }
2892 EXPORT_SYMBOL_GPL(spi_res_free);
2893
2894 /**
2895  * spi_res_add - add a spi_res to the spi_message
2896  * @message: the spi message
2897  * @res:     the spi_resource
2898  */
2899 void spi_res_add(struct spi_message *message, void *res)
2900 {
2901         struct spi_res *sres = container_of(res, struct spi_res, data);
2902
2903         WARN_ON(!list_empty(&sres->entry));
2904         list_add_tail(&sres->entry, &message->resources);
2905 }
2906 EXPORT_SYMBOL_GPL(spi_res_add);
2907
2908 /**
2909  * spi_res_release - release all spi resources for this message
2910  * @ctlr:  the @spi_controller
2911  * @message: the @spi_message
2912  */
2913 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2914 {
2915         struct spi_res *res, *tmp;
2916
2917         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2918                 if (res->release)
2919                         res->release(ctlr, message, res->data);
2920
2921                 list_del(&res->entry);
2922
2923                 kfree(res);
2924         }
2925 }
2926 EXPORT_SYMBOL_GPL(spi_res_release);
2927
2928 /*-------------------------------------------------------------------------*/
2929
2930 /* Core methods for spi_message alterations */
2931
2932 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2933                                             struct spi_message *msg,
2934                                             void *res)
2935 {
2936         struct spi_replaced_transfers *rxfer = res;
2937         size_t i;
2938
2939         /* call extra callback if requested */
2940         if (rxfer->release)
2941                 rxfer->release(ctlr, msg, res);
2942
2943         /* insert replaced transfers back into the message */
2944         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2945
2946         /* remove the formerly inserted entries */
2947         for (i = 0; i < rxfer->inserted; i++)
2948                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2949 }
2950
2951 /**
2952  * spi_replace_transfers - replace transfers with several transfers
2953  *                         and register change with spi_message.resources
2954  * @msg:           the spi_message we work upon
2955  * @xfer_first:    the first spi_transfer we want to replace
2956  * @remove:        number of transfers to remove
2957  * @insert:        the number of transfers we want to insert instead
2958  * @release:       extra release code necessary in some circumstances
2959  * @extradatasize: extra data to allocate (with alignment guarantees
2960  *                 of struct @spi_transfer)
2961  * @gfp:           gfp flags
2962  *
2963  * Returns: pointer to @spi_replaced_transfers,
2964  *          PTR_ERR(...) in case of errors.
2965  */
2966 struct spi_replaced_transfers *spi_replace_transfers(
2967         struct spi_message *msg,
2968         struct spi_transfer *xfer_first,
2969         size_t remove,
2970         size_t insert,
2971         spi_replaced_release_t release,
2972         size_t extradatasize,
2973         gfp_t gfp)
2974 {
2975         struct spi_replaced_transfers *rxfer;
2976         struct spi_transfer *xfer;
2977         size_t i;
2978
2979         /* allocate the structure using spi_res */
2980         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2981                               struct_size(rxfer, inserted_transfers, insert)
2982                               + extradatasize,
2983                               gfp);
2984         if (!rxfer)
2985                 return ERR_PTR(-ENOMEM);
2986
2987         /* the release code to invoke before running the generic release */
2988         rxfer->release = release;
2989
2990         /* assign extradata */
2991         if (extradatasize)
2992                 rxfer->extradata =
2993                         &rxfer->inserted_transfers[insert];
2994
2995         /* init the replaced_transfers list */
2996         INIT_LIST_HEAD(&rxfer->replaced_transfers);
2997
2998         /* assign the list_entry after which we should reinsert
2999          * the @replaced_transfers - it may be spi_message.messages!
3000          */
3001         rxfer->replaced_after = xfer_first->transfer_list.prev;
3002
3003         /* remove the requested number of transfers */
3004         for (i = 0; i < remove; i++) {
3005                 /* if the entry after replaced_after it is msg->transfers
3006                  * then we have been requested to remove more transfers
3007                  * than are in the list
3008                  */
3009                 if (rxfer->replaced_after->next == &msg->transfers) {
3010                         dev_err(&msg->spi->dev,
3011                                 "requested to remove more spi_transfers than are available\n");
3012                         /* insert replaced transfers back into the message */
3013                         list_splice(&rxfer->replaced_transfers,
3014                                     rxfer->replaced_after);
3015
3016                         /* free the spi_replace_transfer structure */
3017                         spi_res_free(rxfer);
3018
3019                         /* and return with an error */
3020                         return ERR_PTR(-EINVAL);
3021                 }
3022
3023                 /* remove the entry after replaced_after from list of
3024                  * transfers and add it to list of replaced_transfers
3025                  */
3026                 list_move_tail(rxfer->replaced_after->next,
3027                                &rxfer->replaced_transfers);
3028         }
3029
3030         /* create copy of the given xfer with identical settings
3031          * based on the first transfer to get removed
3032          */
3033         for (i = 0; i < insert; i++) {
3034                 /* we need to run in reverse order */
3035                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3036
3037                 /* copy all spi_transfer data */
3038                 memcpy(xfer, xfer_first, sizeof(*xfer));
3039
3040                 /* add to list */
3041                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3042
3043                 /* clear cs_change and delay for all but the last */
3044                 if (i) {
3045                         xfer->cs_change = false;
3046                         xfer->delay_usecs = 0;
3047                         xfer->delay.value = 0;
3048                 }
3049         }
3050
3051         /* set up inserted */
3052         rxfer->inserted = insert;
3053
3054         /* and register it with spi_res/spi_message */
3055         spi_res_add(msg, rxfer);
3056
3057         return rxfer;
3058 }
3059 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3060
3061 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3062                                         struct spi_message *msg,
3063                                         struct spi_transfer **xferp,
3064                                         size_t maxsize,
3065                                         gfp_t gfp)
3066 {
3067         struct spi_transfer *xfer = *xferp, *xfers;
3068         struct spi_replaced_transfers *srt;
3069         size_t offset;
3070         size_t count, i;
3071
3072         /* calculate how many we have to replace */
3073         count = DIV_ROUND_UP(xfer->len, maxsize);
3074
3075         /* create replacement */
3076         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3077         if (IS_ERR(srt))
3078                 return PTR_ERR(srt);
3079         xfers = srt->inserted_transfers;
3080
3081         /* now handle each of those newly inserted spi_transfers
3082          * note that the replacements spi_transfers all are preset
3083          * to the same values as *xferp, so tx_buf, rx_buf and len
3084          * are all identical (as well as most others)
3085          * so we just have to fix up len and the pointers.
3086          *
3087          * this also includes support for the depreciated
3088          * spi_message.is_dma_mapped interface
3089          */
3090
3091         /* the first transfer just needs the length modified, so we
3092          * run it outside the loop
3093          */
3094         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3095
3096         /* all the others need rx_buf/tx_buf also set */
3097         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3098                 /* update rx_buf, tx_buf and dma */
3099                 if (xfers[i].rx_buf)
3100                         xfers[i].rx_buf += offset;
3101                 if (xfers[i].rx_dma)
3102                         xfers[i].rx_dma += offset;
3103                 if (xfers[i].tx_buf)
3104                         xfers[i].tx_buf += offset;
3105                 if (xfers[i].tx_dma)
3106                         xfers[i].tx_dma += offset;
3107
3108                 /* update length */
3109                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3110         }
3111
3112         /* we set up xferp to the last entry we have inserted,
3113          * so that we skip those already split transfers
3114          */
3115         *xferp = &xfers[count - 1];
3116
3117         /* increment statistics counters */
3118         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3119                                        transfers_split_maxsize);
3120         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3121                                        transfers_split_maxsize);
3122
3123         return 0;
3124 }
3125
3126 /**
3127  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3128  *                              when an individual transfer exceeds a
3129  *                              certain size
3130  * @ctlr:    the @spi_controller for this transfer
3131  * @msg:   the @spi_message to transform
3132  * @maxsize:  the maximum when to apply this
3133  * @gfp: GFP allocation flags
3134  *
3135  * Return: status of transformation
3136  */
3137 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3138                                 struct spi_message *msg,
3139                                 size_t maxsize,
3140                                 gfp_t gfp)
3141 {
3142         struct spi_transfer *xfer;
3143         int ret;
3144
3145         /* iterate over the transfer_list,
3146          * but note that xfer is advanced to the last transfer inserted
3147          * to avoid checking sizes again unnecessarily (also xfer does
3148          * potentiall belong to a different list by the time the
3149          * replacement has happened
3150          */
3151         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3152                 if (xfer->len > maxsize) {
3153                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3154                                                            maxsize, gfp);
3155                         if (ret)
3156                                 return ret;
3157                 }
3158         }
3159
3160         return 0;
3161 }
3162 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3163
3164 /*-------------------------------------------------------------------------*/
3165
3166 /* Core methods for SPI controller protocol drivers.  Some of the
3167  * other core methods are currently defined as inline functions.
3168  */
3169
3170 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3171                                         u8 bits_per_word)
3172 {
3173         if (ctlr->bits_per_word_mask) {
3174                 /* Only 32 bits fit in the mask */
3175                 if (bits_per_word > 32)
3176                         return -EINVAL;
3177                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3178                         return -EINVAL;
3179         }
3180
3181         return 0;
3182 }
3183
3184 /**
3185  * spi_setup - setup SPI mode and clock rate
3186  * @spi: the device whose settings are being modified
3187  * Context: can sleep, and no requests are queued to the device
3188  *
3189  * SPI protocol drivers may need to update the transfer mode if the
3190  * device doesn't work with its default.  They may likewise need
3191  * to update clock rates or word sizes from initial values.  This function
3192  * changes those settings, and must be called from a context that can sleep.
3193  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3194  * effect the next time the device is selected and data is transferred to
3195  * or from it.  When this function returns, the spi device is deselected.
3196  *
3197  * Note that this call will fail if the protocol driver specifies an option
3198  * that the underlying controller or its driver does not support.  For
3199  * example, not all hardware supports wire transfers using nine bit words,
3200  * LSB-first wire encoding, or active-high chipselects.
3201  *
3202  * Return: zero on success, else a negative error code.
3203  */
3204 int spi_setup(struct spi_device *spi)
3205 {
3206         unsigned        bad_bits, ugly_bits;
3207         int             status;
3208
3209         /* check mode to prevent that DUAL and QUAD set at the same time
3210          */
3211         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3212                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3213                 dev_err(&spi->dev,
3214                 "setup: can not select dual and quad at the same time\n");
3215                 return -EINVAL;
3216         }
3217         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3218          */
3219         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3220                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3221                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3222                 return -EINVAL;
3223         /* help drivers fail *cleanly* when they need options
3224          * that aren't supported with their current controller
3225          * SPI_CS_WORD has a fallback software implementation,
3226          * so it is ignored here.
3227          */
3228         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3229         /* nothing prevents from working with active-high CS in case if it
3230          * is driven by GPIO.
3231          */
3232         if (gpio_is_valid(spi->cs_gpio))
3233                 bad_bits &= ~SPI_CS_HIGH;
3234         ugly_bits = bad_bits &
3235                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3236                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3237         if (ugly_bits) {
3238                 dev_warn(&spi->dev,
3239                          "setup: ignoring unsupported mode bits %x\n",
3240                          ugly_bits);
3241                 spi->mode &= ~ugly_bits;
3242                 bad_bits &= ~ugly_bits;
3243         }
3244         if (bad_bits) {
3245                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3246                         bad_bits);
3247                 return -EINVAL;
3248         }
3249
3250         if (!spi->bits_per_word)
3251                 spi->bits_per_word = 8;
3252
3253         status = __spi_validate_bits_per_word(spi->controller,
3254                                               spi->bits_per_word);
3255         if (status)
3256                 return status;
3257
3258         if (!spi->max_speed_hz)
3259                 spi->max_speed_hz = spi->controller->max_speed_hz;
3260
3261         if (spi->controller->setup)
3262                 status = spi->controller->setup(spi);
3263
3264         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3265                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3266                 if (status < 0) {
3267                         pm_runtime_put_noidle(spi->controller->dev.parent);
3268                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3269                                 status);
3270                         return status;
3271                 }
3272
3273                 /*
3274                  * We do not want to return positive value from pm_runtime_get,
3275                  * there are many instances of devices calling spi_setup() and
3276                  * checking for a non-zero return value instead of a negative
3277                  * return value.
3278                  */
3279                 status = 0;
3280
3281                 spi_set_cs(spi, false);
3282                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3283                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3284         } else {
3285                 spi_set_cs(spi, false);
3286         }
3287
3288         if (spi->rt && !spi->controller->rt) {
3289                 spi->controller->rt = true;
3290                 spi_set_thread_rt(spi->controller);
3291         }
3292
3293         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3294                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3295                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3296                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3297                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3298                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3299                         spi->bits_per_word, spi->max_speed_hz,
3300                         status);
3301
3302         return status;
3303 }
3304 EXPORT_SYMBOL_GPL(spi_setup);
3305
3306 /**
3307  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3308  * @spi: the device that requires specific CS timing configuration
3309  * @setup: CS setup time specified via @spi_delay
3310  * @hold: CS hold time specified via @spi_delay
3311  * @inactive: CS inactive delay between transfers specified via @spi_delay
3312  *
3313  * Return: zero on success, else a negative error code.
3314  */
3315 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3316                       struct spi_delay *hold, struct spi_delay *inactive)
3317 {
3318         size_t len;
3319
3320         if (spi->controller->set_cs_timing)
3321                 return spi->controller->set_cs_timing(spi, setup, hold,
3322                                                       inactive);
3323
3324         if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3325             (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3326             (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3327                 dev_err(&spi->dev,
3328                         "Clock-cycle delays for CS not supported in SW mode\n");
3329                 return -ENOTSUPP;
3330         }
3331
3332         len = sizeof(struct spi_delay);
3333
3334         /* copy delays to controller */
3335         if (setup)
3336                 memcpy(&spi->controller->cs_setup, setup, len);
3337         else
3338                 memset(&spi->controller->cs_setup, 0, len);
3339
3340         if (hold)
3341                 memcpy(&spi->controller->cs_hold, hold, len);
3342         else
3343                 memset(&spi->controller->cs_hold, 0, len);
3344
3345         if (inactive)
3346                 memcpy(&spi->controller->cs_inactive, inactive, len);
3347         else
3348                 memset(&spi->controller->cs_inactive, 0, len);
3349
3350         return 0;
3351 }
3352 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3353
3354 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3355                                        struct spi_device *spi)
3356 {
3357         int delay1, delay2;
3358
3359         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3360         if (delay1 < 0)
3361                 return delay1;
3362
3363         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3364         if (delay2 < 0)
3365                 return delay2;
3366
3367         if (delay1 < delay2)
3368                 memcpy(&xfer->word_delay, &spi->word_delay,
3369                        sizeof(xfer->word_delay));
3370
3371         return 0;
3372 }
3373
3374 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3375 {
3376         struct spi_controller *ctlr = spi->controller;
3377         struct spi_transfer *xfer;
3378         int w_size;
3379
3380         if (list_empty(&message->transfers))
3381                 return -EINVAL;
3382
3383         /* If an SPI controller does not support toggling the CS line on each
3384          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3385          * for the CS line, we can emulate the CS-per-word hardware function by
3386          * splitting transfers into one-word transfers and ensuring that
3387          * cs_change is set for each transfer.
3388          */
3389         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3390                                           spi->cs_gpiod ||
3391                                           gpio_is_valid(spi->cs_gpio))) {
3392                 size_t maxsize;
3393                 int ret;
3394
3395                 maxsize = (spi->bits_per_word + 7) / 8;
3396
3397                 /* spi_split_transfers_maxsize() requires message->spi */
3398                 message->spi = spi;
3399
3400                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3401                                                   GFP_KERNEL);
3402                 if (ret)
3403                         return ret;
3404
3405                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3406                         /* don't change cs_change on the last entry in the list */
3407                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3408                                 break;
3409                         xfer->cs_change = 1;
3410                 }
3411         }
3412
3413         /* Half-duplex links include original MicroWire, and ones with
3414          * only one data pin like SPI_3WIRE (switches direction) or where
3415          * either MOSI or MISO is missing.  They can also be caused by
3416          * software limitations.
3417          */
3418         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3419             (spi->mode & SPI_3WIRE)) {
3420                 unsigned flags = ctlr->flags;
3421
3422                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3423                         if (xfer->rx_buf && xfer->tx_buf)
3424                                 return -EINVAL;
3425                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3426                                 return -EINVAL;
3427                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3428                                 return -EINVAL;
3429                 }
3430         }
3431
3432         /**
3433          * Set transfer bits_per_word and max speed as spi device default if
3434          * it is not set for this transfer.
3435          * Set transfer tx_nbits and rx_nbits as single transfer default
3436          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3437          * Ensure transfer word_delay is at least as long as that required by
3438          * device itself.
3439          */
3440         message->frame_length = 0;
3441         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3442                 xfer->effective_speed_hz = 0;
3443                 message->frame_length += xfer->len;
3444                 if (!xfer->bits_per_word)
3445                         xfer->bits_per_word = spi->bits_per_word;
3446
3447                 if (!xfer->speed_hz)
3448                         xfer->speed_hz = spi->max_speed_hz;
3449
3450                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3451                         xfer->speed_hz = ctlr->max_speed_hz;
3452
3453                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3454                         return -EINVAL;
3455
3456                 /*
3457                  * SPI transfer length should be multiple of SPI word size
3458                  * where SPI word size should be power-of-two multiple
3459                  */
3460                 if (xfer->bits_per_word <= 8)
3461                         w_size = 1;
3462                 else if (xfer->bits_per_word <= 16)
3463                         w_size = 2;
3464                 else
3465                         w_size = 4;
3466
3467                 /* No partial transfers accepted */
3468                 if (xfer->len % w_size)
3469                         return -EINVAL;
3470
3471                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3472                     xfer->speed_hz < ctlr->min_speed_hz)
3473                         return -EINVAL;
3474
3475                 if (xfer->tx_buf && !xfer->tx_nbits)
3476                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3477                 if (xfer->rx_buf && !xfer->rx_nbits)
3478                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3479                 /* check transfer tx/rx_nbits:
3480                  * 1. check the value matches one of single, dual and quad
3481                  * 2. check tx/rx_nbits match the mode in spi_device
3482                  */
3483                 if (xfer->tx_buf) {
3484                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3485                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3486                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3487                                 return -EINVAL;
3488                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3489                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3490                                 return -EINVAL;
3491                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3492                                 !(spi->mode & SPI_TX_QUAD))
3493                                 return -EINVAL;
3494                 }
3495                 /* check transfer rx_nbits */
3496                 if (xfer->rx_buf) {
3497                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3498                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3499                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3500                                 return -EINVAL;
3501                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3502                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3503                                 return -EINVAL;
3504                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3505                                 !(spi->mode & SPI_RX_QUAD))
3506                                 return -EINVAL;
3507                 }
3508
3509                 if (_spi_xfer_word_delay_update(xfer, spi))
3510                         return -EINVAL;
3511         }
3512
3513         message->status = -EINPROGRESS;
3514
3515         return 0;
3516 }
3517
3518 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3519 {
3520         struct spi_controller *ctlr = spi->controller;
3521         struct spi_transfer *xfer;
3522
3523         /*
3524          * Some controllers do not support doing regular SPI transfers. Return
3525          * ENOTSUPP when this is the case.
3526          */
3527         if (!ctlr->transfer)
3528                 return -ENOTSUPP;
3529
3530         message->spi = spi;
3531
3532         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3533         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3534
3535         trace_spi_message_submit(message);
3536
3537         if (!ctlr->ptp_sts_supported) {
3538                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3539                         xfer->ptp_sts_word_pre = 0;
3540                         ptp_read_system_prets(xfer->ptp_sts);
3541                 }
3542         }
3543
3544         return ctlr->transfer(spi, message);
3545 }
3546
3547 /**
3548  * spi_async - asynchronous SPI transfer
3549  * @spi: device with which data will be exchanged
3550  * @message: describes the data transfers, including completion callback
3551  * Context: any (irqs may be blocked, etc)
3552  *
3553  * This call may be used in_irq and other contexts which can't sleep,
3554  * as well as from task contexts which can sleep.
3555  *
3556  * The completion callback is invoked in a context which can't sleep.
3557  * Before that invocation, the value of message->status is undefined.
3558  * When the callback is issued, message->status holds either zero (to
3559  * indicate complete success) or a negative error code.  After that
3560  * callback returns, the driver which issued the transfer request may
3561  * deallocate the associated memory; it's no longer in use by any SPI
3562  * core or controller driver code.
3563  *
3564  * Note that although all messages to a spi_device are handled in
3565  * FIFO order, messages may go to different devices in other orders.
3566  * Some device might be higher priority, or have various "hard" access
3567  * time requirements, for example.
3568  *
3569  * On detection of any fault during the transfer, processing of
3570  * the entire message is aborted, and the device is deselected.
3571  * Until returning from the associated message completion callback,
3572  * no other spi_message queued to that device will be processed.
3573  * (This rule applies equally to all the synchronous transfer calls,
3574  * which are wrappers around this core asynchronous primitive.)
3575  *
3576  * Return: zero on success, else a negative error code.
3577  */
3578 int spi_async(struct spi_device *spi, struct spi_message *message)
3579 {
3580         struct spi_controller *ctlr = spi->controller;
3581         int ret;
3582         unsigned long flags;
3583
3584         ret = __spi_validate(spi, message);
3585         if (ret != 0)
3586                 return ret;
3587
3588         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3589
3590         if (ctlr->bus_lock_flag)
3591                 ret = -EBUSY;
3592         else
3593                 ret = __spi_async(spi, message);
3594
3595         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3596
3597         return ret;
3598 }
3599 EXPORT_SYMBOL_GPL(spi_async);
3600
3601 /**
3602  * spi_async_locked - version of spi_async with exclusive bus usage
3603  * @spi: device with which data will be exchanged
3604  * @message: describes the data transfers, including completion callback
3605  * Context: any (irqs may be blocked, etc)
3606  *
3607  * This call may be used in_irq and other contexts which can't sleep,
3608  * as well as from task contexts which can sleep.
3609  *
3610  * The completion callback is invoked in a context which can't sleep.
3611  * Before that invocation, the value of message->status is undefined.
3612  * When the callback is issued, message->status holds either zero (to
3613  * indicate complete success) or a negative error code.  After that
3614  * callback returns, the driver which issued the transfer request may
3615  * deallocate the associated memory; it's no longer in use by any SPI
3616  * core or controller driver code.
3617  *
3618  * Note that although all messages to a spi_device are handled in
3619  * FIFO order, messages may go to different devices in other orders.
3620  * Some device might be higher priority, or have various "hard" access
3621  * time requirements, for example.
3622  *
3623  * On detection of any fault during the transfer, processing of
3624  * the entire message is aborted, and the device is deselected.
3625  * Until returning from the associated message completion callback,
3626  * no other spi_message queued to that device will be processed.
3627  * (This rule applies equally to all the synchronous transfer calls,
3628  * which are wrappers around this core asynchronous primitive.)
3629  *
3630  * Return: zero on success, else a negative error code.
3631  */
3632 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3633 {
3634         struct spi_controller *ctlr = spi->controller;
3635         int ret;
3636         unsigned long flags;
3637
3638         ret = __spi_validate(spi, message);
3639         if (ret != 0)
3640                 return ret;
3641
3642         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3643
3644         ret = __spi_async(spi, message);
3645
3646         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3647
3648         return ret;
3649
3650 }
3651 EXPORT_SYMBOL_GPL(spi_async_locked);
3652
3653 /*-------------------------------------------------------------------------*/
3654
3655 /* Utility methods for SPI protocol drivers, layered on
3656  * top of the core.  Some other utility methods are defined as
3657  * inline functions.
3658  */
3659
3660 static void spi_complete(void *arg)
3661 {
3662         complete(arg);
3663 }
3664
3665 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3666 {
3667         DECLARE_COMPLETION_ONSTACK(done);
3668         int status;
3669         struct spi_controller *ctlr = spi->controller;
3670         unsigned long flags;
3671
3672         status = __spi_validate(spi, message);
3673         if (status != 0)
3674                 return status;
3675
3676         message->complete = spi_complete;
3677         message->context = &done;
3678         message->spi = spi;
3679
3680         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3681         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3682
3683         /* If we're not using the legacy transfer method then we will
3684          * try to transfer in the calling context so special case.
3685          * This code would be less tricky if we could remove the
3686          * support for driver implemented message queues.
3687          */
3688         if (ctlr->transfer == spi_queued_transfer) {
3689                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3690
3691                 trace_spi_message_submit(message);
3692
3693                 status = __spi_queued_transfer(spi, message, false);
3694
3695                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3696         } else {
3697                 status = spi_async_locked(spi, message);
3698         }
3699
3700         if (status == 0) {
3701                 /* Push out the messages in the calling context if we
3702                  * can.
3703                  */
3704                 if (ctlr->transfer == spi_queued_transfer) {
3705                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3706                                                        spi_sync_immediate);
3707                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3708                                                        spi_sync_immediate);
3709                         __spi_pump_messages(ctlr, false);
3710                 }
3711
3712                 wait_for_completion(&done);
3713                 status = message->status;
3714         }
3715         message->context = NULL;
3716         return status;
3717 }
3718
3719 /**
3720  * spi_sync - blocking/synchronous SPI data transfers
3721  * @spi: device with which data will be exchanged
3722  * @message: describes the data transfers
3723  * Context: can sleep
3724  *
3725  * This call may only be used from a context that may sleep.  The sleep
3726  * is non-interruptible, and has no timeout.  Low-overhead controller
3727  * drivers may DMA directly into and out of the message buffers.
3728  *
3729  * Note that the SPI device's chip select is active during the message,
3730  * and then is normally disabled between messages.  Drivers for some
3731  * frequently-used devices may want to minimize costs of selecting a chip,
3732  * by leaving it selected in anticipation that the next message will go
3733  * to the same chip.  (That may increase power usage.)
3734  *
3735  * Also, the caller is guaranteeing that the memory associated with the
3736  * message will not be freed before this call returns.
3737  *
3738  * Return: zero on success, else a negative error code.
3739  */
3740 int spi_sync(struct spi_device *spi, struct spi_message *message)
3741 {
3742         int ret;
3743
3744         mutex_lock(&spi->controller->bus_lock_mutex);
3745         ret = __spi_sync(spi, message);
3746         mutex_unlock(&spi->controller->bus_lock_mutex);
3747
3748         return ret;
3749 }
3750 EXPORT_SYMBOL_GPL(spi_sync);
3751
3752 /**
3753  * spi_sync_locked - version of spi_sync with exclusive bus usage
3754  * @spi: device with which data will be exchanged
3755  * @message: describes the data transfers
3756  * Context: can sleep
3757  *
3758  * This call may only be used from a context that may sleep.  The sleep
3759  * is non-interruptible, and has no timeout.  Low-overhead controller
3760  * drivers may DMA directly into and out of the message buffers.
3761  *
3762  * This call should be used by drivers that require exclusive access to the
3763  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3764  * be released by a spi_bus_unlock call when the exclusive access is over.
3765  *
3766  * Return: zero on success, else a negative error code.
3767  */
3768 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3769 {
3770         return __spi_sync(spi, message);
3771 }
3772 EXPORT_SYMBOL_GPL(spi_sync_locked);
3773
3774 /**
3775  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3776  * @ctlr: SPI bus master that should be locked for exclusive bus access
3777  * Context: can sleep
3778  *
3779  * This call may only be used from a context that may sleep.  The sleep
3780  * is non-interruptible, and has no timeout.
3781  *
3782  * This call should be used by drivers that require exclusive access to the
3783  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3784  * exclusive access is over. Data transfer must be done by spi_sync_locked
3785  * and spi_async_locked calls when the SPI bus lock is held.
3786  *
3787  * Return: always zero.
3788  */
3789 int spi_bus_lock(struct spi_controller *ctlr)
3790 {
3791         unsigned long flags;
3792
3793         mutex_lock(&ctlr->bus_lock_mutex);
3794
3795         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3796         ctlr->bus_lock_flag = 1;
3797         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3798
3799         /* mutex remains locked until spi_bus_unlock is called */
3800
3801         return 0;
3802 }
3803 EXPORT_SYMBOL_GPL(spi_bus_lock);
3804
3805 /**
3806  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3807  * @ctlr: SPI bus master that was locked for exclusive bus access
3808  * Context: can sleep
3809  *
3810  * This call may only be used from a context that may sleep.  The sleep
3811  * is non-interruptible, and has no timeout.
3812  *
3813  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3814  * call.
3815  *
3816  * Return: always zero.
3817  */
3818 int spi_bus_unlock(struct spi_controller *ctlr)
3819 {
3820         ctlr->bus_lock_flag = 0;
3821
3822         mutex_unlock(&ctlr->bus_lock_mutex);
3823
3824         return 0;
3825 }
3826 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3827
3828 /* portable code must never pass more than 32 bytes */
3829 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3830
3831 static u8       *buf;
3832
3833 /**
3834  * spi_write_then_read - SPI synchronous write followed by read
3835  * @spi: device with which data will be exchanged
3836  * @txbuf: data to be written (need not be dma-safe)
3837  * @n_tx: size of txbuf, in bytes
3838  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3839  * @n_rx: size of rxbuf, in bytes
3840  * Context: can sleep
3841  *
3842  * This performs a half duplex MicroWire style transaction with the
3843  * device, sending txbuf and then reading rxbuf.  The return value
3844  * is zero for success, else a negative errno status code.
3845  * This call may only be used from a context that may sleep.
3846  *
3847  * Parameters to this routine are always copied using a small buffer;
3848  * portable code should never use this for more than 32 bytes.
3849  * Performance-sensitive or bulk transfer code should instead use
3850  * spi_{async,sync}() calls with dma-safe buffers.
3851  *
3852  * Return: zero on success, else a negative error code.
3853  */
3854 int spi_write_then_read(struct spi_device *spi,
3855                 const void *txbuf, unsigned n_tx,
3856                 void *rxbuf, unsigned n_rx)
3857 {
3858         static DEFINE_MUTEX(lock);
3859
3860         int                     status;
3861         struct spi_message      message;
3862         struct spi_transfer     x[2];
3863         u8                      *local_buf;
3864
3865         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3866          * copying here, (as a pure convenience thing), but we can
3867          * keep heap costs out of the hot path unless someone else is
3868          * using the pre-allocated buffer or the transfer is too large.
3869          */
3870         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3871                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3872                                     GFP_KERNEL | GFP_DMA);
3873                 if (!local_buf)
3874                         return -ENOMEM;
3875         } else {
3876                 local_buf = buf;
3877         }
3878
3879         spi_message_init(&message);
3880         memset(x, 0, sizeof(x));
3881         if (n_tx) {
3882                 x[0].len = n_tx;
3883                 spi_message_add_tail(&x[0], &message);
3884         }
3885         if (n_rx) {
3886                 x[1].len = n_rx;
3887                 spi_message_add_tail(&x[1], &message);
3888         }
3889
3890         memcpy(local_buf, txbuf, n_tx);
3891         x[0].tx_buf = local_buf;
3892         x[1].rx_buf = local_buf + n_tx;
3893
3894         /* do the i/o */
3895         status = spi_sync(spi, &message);
3896         if (status == 0)
3897                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3898
3899         if (x[0].tx_buf == buf)
3900                 mutex_unlock(&lock);
3901         else
3902                 kfree(local_buf);
3903
3904         return status;
3905 }
3906 EXPORT_SYMBOL_GPL(spi_write_then_read);
3907
3908 /*-------------------------------------------------------------------------*/
3909
3910 #if IS_ENABLED(CONFIG_OF)
3911 /* must call put_device() when done with returned spi_device device */
3912 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3913 {
3914         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3915
3916         return dev ? to_spi_device(dev) : NULL;
3917 }
3918 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3919 #endif /* IS_ENABLED(CONFIG_OF) */
3920
3921 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3922 /* the spi controllers are not using spi_bus, so we find it with another way */
3923 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3924 {
3925         struct device *dev;
3926
3927         dev = class_find_device_by_of_node(&spi_master_class, node);
3928         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3929                 dev = class_find_device_by_of_node(&spi_slave_class, node);
3930         if (!dev)
3931                 return NULL;
3932
3933         /* reference got in class_find_device */
3934         return container_of(dev, struct spi_controller, dev);
3935 }
3936
3937 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3938                          void *arg)
3939 {
3940         struct of_reconfig_data *rd = arg;
3941         struct spi_controller *ctlr;
3942         struct spi_device *spi;
3943
3944         switch (of_reconfig_get_state_change(action, arg)) {
3945         case OF_RECONFIG_CHANGE_ADD:
3946                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3947                 if (ctlr == NULL)
3948                         return NOTIFY_OK;       /* not for us */
3949
3950                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3951                         put_device(&ctlr->dev);
3952                         return NOTIFY_OK;
3953                 }
3954
3955                 spi = of_register_spi_device(ctlr, rd->dn);
3956                 put_device(&ctlr->dev);
3957
3958                 if (IS_ERR(spi)) {
3959                         pr_err("%s: failed to create for '%pOF'\n",
3960                                         __func__, rd->dn);
3961                         of_node_clear_flag(rd->dn, OF_POPULATED);
3962                         return notifier_from_errno(PTR_ERR(spi));
3963                 }
3964                 break;
3965
3966         case OF_RECONFIG_CHANGE_REMOVE:
3967                 /* already depopulated? */
3968                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3969                         return NOTIFY_OK;
3970
3971                 /* find our device by node */
3972                 spi = of_find_spi_device_by_node(rd->dn);
3973                 if (spi == NULL)
3974                         return NOTIFY_OK;       /* no? not meant for us */
3975
3976                 /* unregister takes one ref away */
3977                 spi_unregister_device(spi);
3978
3979                 /* and put the reference of the find */
3980                 put_device(&spi->dev);
3981                 break;
3982         }
3983
3984         return NOTIFY_OK;
3985 }
3986
3987 static struct notifier_block spi_of_notifier = {
3988         .notifier_call = of_spi_notify,
3989 };
3990 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3991 extern struct notifier_block spi_of_notifier;
3992 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3993
3994 #if IS_ENABLED(CONFIG_ACPI)
3995 static int spi_acpi_controller_match(struct device *dev, const void *data)
3996 {
3997         return ACPI_COMPANION(dev->parent) == data;
3998 }
3999
4000 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4001 {
4002         struct device *dev;
4003
4004         dev = class_find_device(&spi_master_class, NULL, adev,
4005                                 spi_acpi_controller_match);
4006         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4007                 dev = class_find_device(&spi_slave_class, NULL, adev,
4008                                         spi_acpi_controller_match);
4009         if (!dev)
4010                 return NULL;
4011
4012         return container_of(dev, struct spi_controller, dev);
4013 }
4014
4015 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4016 {
4017         struct device *dev;
4018
4019         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4020         return dev ? to_spi_device(dev) : NULL;
4021 }
4022
4023 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4024                            void *arg)
4025 {
4026         struct acpi_device *adev = arg;
4027         struct spi_controller *ctlr;
4028         struct spi_device *spi;
4029
4030         switch (value) {
4031         case ACPI_RECONFIG_DEVICE_ADD:
4032                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4033                 if (!ctlr)
4034                         break;
4035
4036                 acpi_register_spi_device(ctlr, adev);
4037                 put_device(&ctlr->dev);
4038                 break;
4039         case ACPI_RECONFIG_DEVICE_REMOVE:
4040                 if (!acpi_device_enumerated(adev))
4041                         break;
4042
4043                 spi = acpi_spi_find_device_by_adev(adev);
4044                 if (!spi)
4045                         break;
4046
4047                 spi_unregister_device(spi);
4048                 put_device(&spi->dev);
4049                 break;
4050         }
4051
4052         return NOTIFY_OK;
4053 }
4054
4055 static struct notifier_block spi_acpi_notifier = {
4056         .notifier_call = acpi_spi_notify,
4057 };
4058 #else
4059 extern struct notifier_block spi_acpi_notifier;
4060 #endif
4061
4062 static int __init spi_init(void)
4063 {
4064         int     status;
4065
4066         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4067         if (!buf) {
4068                 status = -ENOMEM;
4069                 goto err0;
4070         }
4071
4072         status = bus_register(&spi_bus_type);
4073         if (status < 0)
4074                 goto err1;
4075
4076         status = class_register(&spi_master_class);
4077         if (status < 0)
4078                 goto err2;
4079
4080         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4081                 status = class_register(&spi_slave_class);
4082                 if (status < 0)
4083                         goto err3;
4084         }
4085
4086         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4087                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4088         if (IS_ENABLED(CONFIG_ACPI))
4089                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4090
4091         return 0;
4092
4093 err3:
4094         class_unregister(&spi_master_class);
4095 err2:
4096         bus_unregister(&spi_bus_type);
4097 err1:
4098         kfree(buf);
4099         buf = NULL;
4100 err0:
4101         return status;
4102 }
4103
4104 /* board_info is normally registered in arch_initcall(),
4105  * but even essential drivers wait till later
4106  *
4107  * REVISIT only boardinfo really needs static linking. the rest (device and
4108  * driver registration) _could_ be dynamically linked (modular) ... costs
4109  * include needing to have boardinfo data structures be much more public.
4110  */
4111 postcore_initcall(spi_init);