]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/tee/optee/call.c
Merge tag 'sound-fix-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux.git] / drivers / tee / optee / call.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
16
17 struct optee_call_waiter {
18         struct list_head list_node;
19         struct completion c;
20 };
21
22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23                                struct optee_call_waiter *w)
24 {
25         /*
26          * We're preparing to make a call to secure world. In case we can't
27          * allocate a thread in secure world we'll end up waiting in
28          * optee_cq_wait_for_completion().
29          *
30          * Normally if there's no contention in secure world the call will
31          * complete and we can cleanup directly with optee_cq_wait_final().
32          */
33         mutex_lock(&cq->mutex);
34
35         /*
36          * We add ourselves to the queue, but we don't wait. This
37          * guarantees that we don't lose a completion if secure world
38          * returns busy and another thread just exited and try to complete
39          * someone.
40          */
41         init_completion(&w->c);
42         list_add_tail(&w->list_node, &cq->waiters);
43
44         mutex_unlock(&cq->mutex);
45 }
46
47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48                                          struct optee_call_waiter *w)
49 {
50         wait_for_completion(&w->c);
51
52         mutex_lock(&cq->mutex);
53
54         /* Move to end of list to get out of the way for other waiters */
55         list_del(&w->list_node);
56         reinit_completion(&w->c);
57         list_add_tail(&w->list_node, &cq->waiters);
58
59         mutex_unlock(&cq->mutex);
60 }
61
62 static void optee_cq_complete_one(struct optee_call_queue *cq)
63 {
64         struct optee_call_waiter *w;
65
66         list_for_each_entry(w, &cq->waiters, list_node) {
67                 if (!completion_done(&w->c)) {
68                         complete(&w->c);
69                         break;
70                 }
71         }
72 }
73
74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75                                 struct optee_call_waiter *w)
76 {
77         /*
78          * We're done with the call to secure world. The thread in secure
79          * world that was used for this call is now available for some
80          * other task to use.
81          */
82         mutex_lock(&cq->mutex);
83
84         /* Get out of the list */
85         list_del(&w->list_node);
86
87         /* Wake up one eventual waiting task */
88         optee_cq_complete_one(cq);
89
90         /*
91          * If we're completed we've got a completion from another task that
92          * was just done with its call to secure world. Since yet another
93          * thread now is available in secure world wake up another eventual
94          * waiting task.
95          */
96         if (completion_done(&w->c))
97                 optee_cq_complete_one(cq);
98
99         mutex_unlock(&cq->mutex);
100 }
101
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104                                           u32 session_id)
105 {
106         struct optee_session *sess;
107
108         list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109                 if (sess->session_id == session_id)
110                         return sess;
111
112         return NULL;
113 }
114
115 /**
116  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117  * @ctx:        calling context
118  * @parg:       physical address of message to pass to secure world
119  *
120  * Does and SMC to OP-TEE in secure world and handles eventual resulting
121  * Remote Procedure Calls (RPC) from OP-TEE.
122  *
123  * Returns return code from secure world, 0 is OK
124  */
125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
126 {
127         struct optee *optee = tee_get_drvdata(ctx->teedev);
128         struct optee_call_waiter w;
129         struct optee_rpc_param param = { };
130         struct optee_call_ctx call_ctx = { };
131         u32 ret;
132
133         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134         reg_pair_from_64(&param.a1, &param.a2, parg);
135         /* Initialize waiter */
136         optee_cq_wait_init(&optee->call_queue, &w);
137         while (true) {
138                 struct arm_smccc_res res;
139
140                 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141                                  param.a4, param.a5, param.a6, param.a7,
142                                  &res);
143
144                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145                         /*
146                          * Out of threads in secure world, wait for a thread
147                          * become available.
148                          */
149                         optee_cq_wait_for_completion(&optee->call_queue, &w);
150                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151                         might_sleep();
152                         param.a0 = res.a0;
153                         param.a1 = res.a1;
154                         param.a2 = res.a2;
155                         param.a3 = res.a3;
156                         optee_handle_rpc(ctx, &param, &call_ctx);
157                 } else {
158                         ret = res.a0;
159                         break;
160                 }
161         }
162
163         optee_rpc_finalize_call(&call_ctx);
164         /*
165          * We're done with our thread in secure world, if there's any
166          * thread waiters wake up one.
167          */
168         optee_cq_wait_final(&optee->call_queue, &w);
169
170         return ret;
171 }
172
173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
174                                    struct optee_msg_arg **msg_arg,
175                                    phys_addr_t *msg_parg)
176 {
177         int rc;
178         struct tee_shm *shm;
179         struct optee_msg_arg *ma;
180
181         shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
182                             TEE_SHM_MAPPED);
183         if (IS_ERR(shm))
184                 return shm;
185
186         ma = tee_shm_get_va(shm, 0);
187         if (IS_ERR(ma)) {
188                 rc = PTR_ERR(ma);
189                 goto out;
190         }
191
192         rc = tee_shm_get_pa(shm, 0, msg_parg);
193         if (rc)
194                 goto out;
195
196         memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
197         ma->num_params = num_params;
198         *msg_arg = ma;
199 out:
200         if (rc) {
201                 tee_shm_free(shm);
202                 return ERR_PTR(rc);
203         }
204
205         return shm;
206 }
207
208 int optee_open_session(struct tee_context *ctx,
209                        struct tee_ioctl_open_session_arg *arg,
210                        struct tee_param *param)
211 {
212         struct optee_context_data *ctxdata = ctx->data;
213         int rc;
214         struct tee_shm *shm;
215         struct optee_msg_arg *msg_arg;
216         phys_addr_t msg_parg;
217         struct optee_session *sess = NULL;
218
219         /* +2 for the meta parameters added below */
220         shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
221         if (IS_ERR(shm))
222                 return PTR_ERR(shm);
223
224         msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
225         msg_arg->cancel_id = arg->cancel_id;
226
227         /*
228          * Initialize and add the meta parameters needed when opening a
229          * session.
230          */
231         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
232                                   OPTEE_MSG_ATTR_META;
233         msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234                                   OPTEE_MSG_ATTR_META;
235         memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
236         memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
237         msg_arg->params[1].u.value.c = arg->clnt_login;
238
239         rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
240         if (rc)
241                 goto out;
242
243         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
244         if (!sess) {
245                 rc = -ENOMEM;
246                 goto out;
247         }
248
249         if (optee_do_call_with_arg(ctx, msg_parg)) {
250                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
251                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
252         }
253
254         if (msg_arg->ret == TEEC_SUCCESS) {
255                 /* A new session has been created, add it to the list. */
256                 sess->session_id = msg_arg->session;
257                 mutex_lock(&ctxdata->mutex);
258                 list_add(&sess->list_node, &ctxdata->sess_list);
259                 mutex_unlock(&ctxdata->mutex);
260         } else {
261                 kfree(sess);
262         }
263
264         if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
265                 arg->ret = TEEC_ERROR_COMMUNICATION;
266                 arg->ret_origin = TEEC_ORIGIN_COMMS;
267                 /* Close session again to avoid leakage */
268                 optee_close_session(ctx, msg_arg->session);
269         } else {
270                 arg->session = msg_arg->session;
271                 arg->ret = msg_arg->ret;
272                 arg->ret_origin = msg_arg->ret_origin;
273         }
274 out:
275         tee_shm_free(shm);
276
277         return rc;
278 }
279
280 int optee_close_session(struct tee_context *ctx, u32 session)
281 {
282         struct optee_context_data *ctxdata = ctx->data;
283         struct tee_shm *shm;
284         struct optee_msg_arg *msg_arg;
285         phys_addr_t msg_parg;
286         struct optee_session *sess;
287
288         /* Check that the session is valid and remove it from the list */
289         mutex_lock(&ctxdata->mutex);
290         sess = find_session(ctxdata, session);
291         if (sess)
292                 list_del(&sess->list_node);
293         mutex_unlock(&ctxdata->mutex);
294         if (!sess)
295                 return -EINVAL;
296         kfree(sess);
297
298         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
299         if (IS_ERR(shm))
300                 return PTR_ERR(shm);
301
302         msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
303         msg_arg->session = session;
304         optee_do_call_with_arg(ctx, msg_parg);
305
306         tee_shm_free(shm);
307         return 0;
308 }
309
310 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
311                       struct tee_param *param)
312 {
313         struct optee_context_data *ctxdata = ctx->data;
314         struct tee_shm *shm;
315         struct optee_msg_arg *msg_arg;
316         phys_addr_t msg_parg;
317         struct optee_session *sess;
318         int rc;
319
320         /* Check that the session is valid */
321         mutex_lock(&ctxdata->mutex);
322         sess = find_session(ctxdata, arg->session);
323         mutex_unlock(&ctxdata->mutex);
324         if (!sess)
325                 return -EINVAL;
326
327         shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
328         if (IS_ERR(shm))
329                 return PTR_ERR(shm);
330         msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
331         msg_arg->func = arg->func;
332         msg_arg->session = arg->session;
333         msg_arg->cancel_id = arg->cancel_id;
334
335         rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
336         if (rc)
337                 goto out;
338
339         if (optee_do_call_with_arg(ctx, msg_parg)) {
340                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
341                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
342         }
343
344         if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
345                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
346                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
347         }
348
349         arg->ret = msg_arg->ret;
350         arg->ret_origin = msg_arg->ret_origin;
351 out:
352         tee_shm_free(shm);
353         return rc;
354 }
355
356 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
357 {
358         struct optee_context_data *ctxdata = ctx->data;
359         struct tee_shm *shm;
360         struct optee_msg_arg *msg_arg;
361         phys_addr_t msg_parg;
362         struct optee_session *sess;
363
364         /* Check that the session is valid */
365         mutex_lock(&ctxdata->mutex);
366         sess = find_session(ctxdata, session);
367         mutex_unlock(&ctxdata->mutex);
368         if (!sess)
369                 return -EINVAL;
370
371         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
372         if (IS_ERR(shm))
373                 return PTR_ERR(shm);
374
375         msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
376         msg_arg->session = session;
377         msg_arg->cancel_id = cancel_id;
378         optee_do_call_with_arg(ctx, msg_parg);
379
380         tee_shm_free(shm);
381         return 0;
382 }
383
384 /**
385  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
386  *                            in OP-TEE
387  * @optee:      main service struct
388  */
389 void optee_enable_shm_cache(struct optee *optee)
390 {
391         struct optee_call_waiter w;
392
393         /* We need to retry until secure world isn't busy. */
394         optee_cq_wait_init(&optee->call_queue, &w);
395         while (true) {
396                 struct arm_smccc_res res;
397
398                 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
399                                  0, &res);
400                 if (res.a0 == OPTEE_SMC_RETURN_OK)
401                         break;
402                 optee_cq_wait_for_completion(&optee->call_queue, &w);
403         }
404         optee_cq_wait_final(&optee->call_queue, &w);
405 }
406
407 /**
408  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
409  *                            in OP-TEE
410  * @optee:      main service struct
411  */
412 void optee_disable_shm_cache(struct optee *optee)
413 {
414         struct optee_call_waiter w;
415
416         /* We need to retry until secure world isn't busy. */
417         optee_cq_wait_init(&optee->call_queue, &w);
418         while (true) {
419                 union {
420                         struct arm_smccc_res smccc;
421                         struct optee_smc_disable_shm_cache_result result;
422                 } res;
423
424                 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
425                                  0, &res.smccc);
426                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
427                         break; /* All shm's freed */
428                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
429                         struct tee_shm *shm;
430
431                         shm = reg_pair_to_ptr(res.result.shm_upper32,
432                                               res.result.shm_lower32);
433                         tee_shm_free(shm);
434                 } else {
435                         optee_cq_wait_for_completion(&optee->call_queue, &w);
436                 }
437         }
438         optee_cq_wait_final(&optee->call_queue, &w);
439 }
440
441 #define PAGELIST_ENTRIES_PER_PAGE                               \
442         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
443
444 /**
445  * optee_fill_pages_list() - write list of user pages to given shared
446  * buffer.
447  *
448  * @dst: page-aligned buffer where list of pages will be stored
449  * @pages: array of pages that represents shared buffer
450  * @num_pages: number of entries in @pages
451  * @page_offset: offset of user buffer from page start
452  *
453  * @dst should be big enough to hold list of user page addresses and
454  *      links to the next pages of buffer
455  */
456 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
457                            size_t page_offset)
458 {
459         int n = 0;
460         phys_addr_t optee_page;
461         /*
462          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
463          * for details.
464          */
465         struct {
466                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
467                 u64 next_page_data;
468         } *pages_data;
469
470         /*
471          * Currently OP-TEE uses 4k page size and it does not looks
472          * like this will change in the future.  On other hand, there are
473          * no know ARM architectures with page size < 4k.
474          * Thus the next built assert looks redundant. But the following
475          * code heavily relies on this assumption, so it is better be
476          * safe than sorry.
477          */
478         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
479
480         pages_data = (void *)dst;
481         /*
482          * If linux page is bigger than 4k, and user buffer offset is
483          * larger than 4k/8k/12k/etc this will skip first 4k pages,
484          * because they bear no value data for OP-TEE.
485          */
486         optee_page = page_to_phys(*pages) +
487                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
488
489         while (true) {
490                 pages_data->pages_list[n++] = optee_page;
491
492                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
493                         pages_data->next_page_data =
494                                 virt_to_phys(pages_data + 1);
495                         pages_data++;
496                         n = 0;
497                 }
498
499                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
500                 if (!(optee_page & ~PAGE_MASK)) {
501                         if (!--num_pages)
502                                 break;
503                         pages++;
504                         optee_page = page_to_phys(*pages);
505                 }
506         }
507 }
508
509 /*
510  * The final entry in each pagelist page is a pointer to the next
511  * pagelist page.
512  */
513 static size_t get_pages_list_size(size_t num_entries)
514 {
515         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
516
517         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
518 }
519
520 u64 *optee_allocate_pages_list(size_t num_entries)
521 {
522         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
523 }
524
525 void optee_free_pages_list(void *list, size_t num_entries)
526 {
527         free_pages_exact(list, get_pages_list_size(num_entries));
528 }
529
530 static bool is_normal_memory(pgprot_t p)
531 {
532 #if defined(CONFIG_ARM)
533         return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
534 #elif defined(CONFIG_ARM64)
535         return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
536 #else
537 #error "Unuspported architecture"
538 #endif
539 }
540
541 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
542 {
543         while (vma && is_normal_memory(vma->vm_page_prot)) {
544                 if (vma->vm_end >= end)
545                         return 0;
546                 vma = vma->vm_next;
547         }
548
549         return -EINVAL;
550 }
551
552 static int check_mem_type(unsigned long start, size_t num_pages)
553 {
554         struct mm_struct *mm = current->mm;
555         int rc;
556
557         /*
558          * Allow kernel address to register with OP-TEE as kernel
559          * pages are configured as normal memory only.
560          */
561         if (virt_addr_valid(start))
562                 return 0;
563
564         down_read(&mm->mmap_sem);
565         rc = __check_mem_type(find_vma(mm, start),
566                               start + num_pages * PAGE_SIZE);
567         up_read(&mm->mmap_sem);
568
569         return rc;
570 }
571
572 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
573                        struct page **pages, size_t num_pages,
574                        unsigned long start)
575 {
576         struct tee_shm *shm_arg = NULL;
577         struct optee_msg_arg *msg_arg;
578         u64 *pages_list;
579         phys_addr_t msg_parg;
580         int rc;
581
582         if (!num_pages)
583                 return -EINVAL;
584
585         rc = check_mem_type(start, num_pages);
586         if (rc)
587                 return rc;
588
589         pages_list = optee_allocate_pages_list(num_pages);
590         if (!pages_list)
591                 return -ENOMEM;
592
593         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
594         if (IS_ERR(shm_arg)) {
595                 rc = PTR_ERR(shm_arg);
596                 goto out;
597         }
598
599         optee_fill_pages_list(pages_list, pages, num_pages,
600                               tee_shm_get_page_offset(shm));
601
602         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
603         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
604                                 OPTEE_MSG_ATTR_NONCONTIG;
605         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
606         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
607         /*
608          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
609          * store buffer offset from 4k page, as described in OP-TEE ABI.
610          */
611         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
612           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
613
614         if (optee_do_call_with_arg(ctx, msg_parg) ||
615             msg_arg->ret != TEEC_SUCCESS)
616                 rc = -EINVAL;
617
618         tee_shm_free(shm_arg);
619 out:
620         optee_free_pages_list(pages_list, num_pages);
621         return rc;
622 }
623
624 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
625 {
626         struct tee_shm *shm_arg;
627         struct optee_msg_arg *msg_arg;
628         phys_addr_t msg_parg;
629         int rc = 0;
630
631         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
632         if (IS_ERR(shm_arg))
633                 return PTR_ERR(shm_arg);
634
635         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
636
637         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
638         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
639
640         if (optee_do_call_with_arg(ctx, msg_parg) ||
641             msg_arg->ret != TEEC_SUCCESS)
642                 rc = -EINVAL;
643         tee_shm_free(shm_arg);
644         return rc;
645 }
646
647 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
648                             struct page **pages, size_t num_pages,
649                             unsigned long start)
650 {
651         /*
652          * We don't want to register supplicant memory in OP-TEE.
653          * Instead information about it will be passed in RPC code.
654          */
655         return check_mem_type(start, num_pages);
656 }
657
658 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
659 {
660         return 0;
661 }