]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/usb/core/hcd.c
777036ae63674af94e845a78e0cf75e607f8ba68
[linux.git] / drivers / usb / core / hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/phy.h>
37 #include <linux/usb/otg.h>
38
39 #include "usb.h"
40 #include "phy.h"
41
42
43 /*-------------------------------------------------------------------------*/
44
45 /*
46  * USB Host Controller Driver framework
47  *
48  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
49  * HCD-specific behaviors/bugs.
50  *
51  * This does error checks, tracks devices and urbs, and delegates to a
52  * "hc_driver" only for code (and data) that really needs to know about
53  * hardware differences.  That includes root hub registers, i/o queues,
54  * and so on ... but as little else as possible.
55  *
56  * Shared code includes most of the "root hub" code (these are emulated,
57  * though each HC's hardware works differently) and PCI glue, plus request
58  * tracking overhead.  The HCD code should only block on spinlocks or on
59  * hardware handshaking; blocking on software events (such as other kernel
60  * threads releasing resources, or completing actions) is all generic.
61  *
62  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
63  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
64  * only by the hub driver ... and that neither should be seen or used by
65  * usb client device drivers.
66  *
67  * Contributors of ideas or unattributed patches include: David Brownell,
68  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
69  *
70  * HISTORY:
71  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
72  *              associated cleanup.  "usb_hcd" still != "usb_bus".
73  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
74  */
75
76 /*-------------------------------------------------------------------------*/
77
78 /* Keep track of which host controller drivers are loaded */
79 unsigned long usb_hcds_loaded;
80 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
81
82 /* host controllers we manage */
83 DEFINE_IDR (usb_bus_idr);
84 EXPORT_SYMBOL_GPL (usb_bus_idr);
85
86 /* used when allocating bus numbers */
87 #define USB_MAXBUS              64
88
89 /* used when updating list of hcds */
90 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
91 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
92
93 /* used for controlling access to virtual root hubs */
94 static DEFINE_SPINLOCK(hcd_root_hub_lock);
95
96 /* used when updating an endpoint's URB list */
97 static DEFINE_SPINLOCK(hcd_urb_list_lock);
98
99 /* used to protect against unlinking URBs after the device is gone */
100 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
101
102 /* wait queue for synchronous unlinks */
103 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
104
105 static inline int is_root_hub(struct usb_device *udev)
106 {
107         return (udev->parent == NULL);
108 }
109
110 /*-------------------------------------------------------------------------*/
111
112 /*
113  * Sharable chunks of root hub code.
114  */
115
116 /*-------------------------------------------------------------------------*/
117 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
118 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119
120 /* usb 3.1 root hub device descriptor */
121 static const u8 usb31_rh_dev_descriptor[18] = {
122         0x12,       /*  __u8  bLength; */
123         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
124         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
125
126         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
127         0x00,       /*  __u8  bDeviceSubClass; */
128         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
129         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
130
131         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
132         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
133         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
134
135         0x03,       /*  __u8  iManufacturer; */
136         0x02,       /*  __u8  iProduct; */
137         0x01,       /*  __u8  iSerialNumber; */
138         0x01        /*  __u8  bNumConfigurations; */
139 };
140
141 /* usb 3.0 root hub device descriptor */
142 static const u8 usb3_rh_dev_descriptor[18] = {
143         0x12,       /*  __u8  bLength; */
144         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
145         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
146
147         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
148         0x00,       /*  __u8  bDeviceSubClass; */
149         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
150         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
151
152         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
153         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
154         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
155
156         0x03,       /*  __u8  iManufacturer; */
157         0x02,       /*  __u8  iProduct; */
158         0x01,       /*  __u8  iSerialNumber; */
159         0x01        /*  __u8  bNumConfigurations; */
160 };
161
162 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
163 static const u8 usb25_rh_dev_descriptor[18] = {
164         0x12,       /*  __u8  bLength; */
165         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
166         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
167
168         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
169         0x00,       /*  __u8  bDeviceSubClass; */
170         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
171         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172
173         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
174         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
175         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
176
177         0x03,       /*  __u8  iManufacturer; */
178         0x02,       /*  __u8  iProduct; */
179         0x01,       /*  __u8  iSerialNumber; */
180         0x01        /*  __u8  bNumConfigurations; */
181 };
182
183 /* usb 2.0 root hub device descriptor */
184 static const u8 usb2_rh_dev_descriptor[18] = {
185         0x12,       /*  __u8  bLength; */
186         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
187         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
188
189         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
190         0x00,       /*  __u8  bDeviceSubClass; */
191         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
192         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
193
194         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
195         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
196         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
197
198         0x03,       /*  __u8  iManufacturer; */
199         0x02,       /*  __u8  iProduct; */
200         0x01,       /*  __u8  iSerialNumber; */
201         0x01        /*  __u8  bNumConfigurations; */
202 };
203
204 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205
206 /* usb 1.1 root hub device descriptor */
207 static const u8 usb11_rh_dev_descriptor[18] = {
208         0x12,       /*  __u8  bLength; */
209         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
210         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
211
212         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
213         0x00,       /*  __u8  bDeviceSubClass; */
214         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
215         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
216
217         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
218         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
219         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
220
221         0x03,       /*  __u8  iManufacturer; */
222         0x02,       /*  __u8  iProduct; */
223         0x01,       /*  __u8  iSerialNumber; */
224         0x01        /*  __u8  bNumConfigurations; */
225 };
226
227
228 /*-------------------------------------------------------------------------*/
229
230 /* Configuration descriptors for our root hubs */
231
232 static const u8 fs_rh_config_descriptor[] = {
233
234         /* one configuration */
235         0x09,       /*  __u8  bLength; */
236         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
237         0x19, 0x00, /*  __le16 wTotalLength; */
238         0x01,       /*  __u8  bNumInterfaces; (1) */
239         0x01,       /*  __u8  bConfigurationValue; */
240         0x00,       /*  __u8  iConfiguration; */
241         0xc0,       /*  __u8  bmAttributes;
242                                  Bit 7: must be set,
243                                      6: Self-powered,
244                                      5: Remote wakeup,
245                                      4..0: resvd */
246         0x00,       /*  __u8  MaxPower; */
247
248         /* USB 1.1:
249          * USB 2.0, single TT organization (mandatory):
250          *      one interface, protocol 0
251          *
252          * USB 2.0, multiple TT organization (optional):
253          *      two interfaces, protocols 1 (like single TT)
254          *      and 2 (multiple TT mode) ... config is
255          *      sometimes settable
256          *      NOT IMPLEMENTED
257          */
258
259         /* one interface */
260         0x09,       /*  __u8  if_bLength; */
261         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
262         0x00,       /*  __u8  if_bInterfaceNumber; */
263         0x00,       /*  __u8  if_bAlternateSetting; */
264         0x01,       /*  __u8  if_bNumEndpoints; */
265         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
266         0x00,       /*  __u8  if_bInterfaceSubClass; */
267         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
268         0x00,       /*  __u8  if_iInterface; */
269
270         /* one endpoint (status change endpoint) */
271         0x07,       /*  __u8  ep_bLength; */
272         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
273         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
274         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
275         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
276         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
277 };
278
279 static const u8 hs_rh_config_descriptor[] = {
280
281         /* one configuration */
282         0x09,       /*  __u8  bLength; */
283         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
284         0x19, 0x00, /*  __le16 wTotalLength; */
285         0x01,       /*  __u8  bNumInterfaces; (1) */
286         0x01,       /*  __u8  bConfigurationValue; */
287         0x00,       /*  __u8  iConfiguration; */
288         0xc0,       /*  __u8  bmAttributes;
289                                  Bit 7: must be set,
290                                      6: Self-powered,
291                                      5: Remote wakeup,
292                                      4..0: resvd */
293         0x00,       /*  __u8  MaxPower; */
294
295         /* USB 1.1:
296          * USB 2.0, single TT organization (mandatory):
297          *      one interface, protocol 0
298          *
299          * USB 2.0, multiple TT organization (optional):
300          *      two interfaces, protocols 1 (like single TT)
301          *      and 2 (multiple TT mode) ... config is
302          *      sometimes settable
303          *      NOT IMPLEMENTED
304          */
305
306         /* one interface */
307         0x09,       /*  __u8  if_bLength; */
308         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
309         0x00,       /*  __u8  if_bInterfaceNumber; */
310         0x00,       /*  __u8  if_bAlternateSetting; */
311         0x01,       /*  __u8  if_bNumEndpoints; */
312         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
313         0x00,       /*  __u8  if_bInterfaceSubClass; */
314         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
315         0x00,       /*  __u8  if_iInterface; */
316
317         /* one endpoint (status change endpoint) */
318         0x07,       /*  __u8  ep_bLength; */
319         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
320         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
321         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
322                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
323                      * see hub.c:hub_configure() for details. */
324         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
325         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
326 };
327
328 static const u8 ss_rh_config_descriptor[] = {
329         /* one configuration */
330         0x09,       /*  __u8  bLength; */
331         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
332         0x1f, 0x00, /*  __le16 wTotalLength; */
333         0x01,       /*  __u8  bNumInterfaces; (1) */
334         0x01,       /*  __u8  bConfigurationValue; */
335         0x00,       /*  __u8  iConfiguration; */
336         0xc0,       /*  __u8  bmAttributes;
337                                  Bit 7: must be set,
338                                      6: Self-powered,
339                                      5: Remote wakeup,
340                                      4..0: resvd */
341         0x00,       /*  __u8  MaxPower; */
342
343         /* one interface */
344         0x09,       /*  __u8  if_bLength; */
345         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
346         0x00,       /*  __u8  if_bInterfaceNumber; */
347         0x00,       /*  __u8  if_bAlternateSetting; */
348         0x01,       /*  __u8  if_bNumEndpoints; */
349         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
350         0x00,       /*  __u8  if_bInterfaceSubClass; */
351         0x00,       /*  __u8  if_bInterfaceProtocol; */
352         0x00,       /*  __u8  if_iInterface; */
353
354         /* one endpoint (status change endpoint) */
355         0x07,       /*  __u8  ep_bLength; */
356         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
357         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
358         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
359                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
360                      * see hub.c:hub_configure() for details. */
361         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
362         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
363
364         /* one SuperSpeed endpoint companion descriptor */
365         0x06,        /* __u8 ss_bLength */
366         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367                      /* Companion */
368         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
369         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
370         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
371 };
372
373 /* authorized_default behaviour:
374  * -1 is authorized for all devices except wireless (old behaviour)
375  * 0 is unauthorized for all devices
376  * 1 is authorized for all devices
377  */
378 static int authorized_default = -1;
379 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
380 MODULE_PARM_DESC(authorized_default,
381                 "Default USB device authorization: 0 is not authorized, 1 is "
382                 "authorized, -1 is authorized except for wireless USB (default, "
383                 "old behaviour");
384 /*-------------------------------------------------------------------------*/
385
386 /**
387  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
388  * @s: Null-terminated ASCII (actually ISO-8859-1) string
389  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
390  * @len: Length (in bytes; may be odd) of descriptor buffer.
391  *
392  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
393  * whichever is less.
394  *
395  * Note:
396  * USB String descriptors can contain at most 126 characters; input
397  * strings longer than that are truncated.
398  */
399 static unsigned
400 ascii2desc(char const *s, u8 *buf, unsigned len)
401 {
402         unsigned n, t = 2 + 2*strlen(s);
403
404         if (t > 254)
405                 t = 254;        /* Longest possible UTF string descriptor */
406         if (len > t)
407                 len = t;
408
409         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
410
411         n = len;
412         while (n--) {
413                 *buf++ = t;
414                 if (!n--)
415                         break;
416                 *buf++ = t >> 8;
417                 t = (unsigned char)*s++;
418         }
419         return len;
420 }
421
422 /**
423  * rh_string() - provides string descriptors for root hub
424  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
425  * @hcd: the host controller for this root hub
426  * @data: buffer for output packet
427  * @len: length of the provided buffer
428  *
429  * Produces either a manufacturer, product or serial number string for the
430  * virtual root hub device.
431  *
432  * Return: The number of bytes filled in: the length of the descriptor or
433  * of the provided buffer, whichever is less.
434  */
435 static unsigned
436 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
437 {
438         char buf[100];
439         char const *s;
440         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
441
442         /* language ids */
443         switch (id) {
444         case 0:
445                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
446                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
447                 if (len > 4)
448                         len = 4;
449                 memcpy(data, langids, len);
450                 return len;
451         case 1:
452                 /* Serial number */
453                 s = hcd->self.bus_name;
454                 break;
455         case 2:
456                 /* Product name */
457                 s = hcd->product_desc;
458                 break;
459         case 3:
460                 /* Manufacturer */
461                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
462                         init_utsname()->release, hcd->driver->description);
463                 s = buf;
464                 break;
465         default:
466                 /* Can't happen; caller guarantees it */
467                 return 0;
468         }
469
470         return ascii2desc(s, data, len);
471 }
472
473
474 /* Root hub control transfers execute synchronously */
475 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
476 {
477         struct usb_ctrlrequest *cmd;
478         u16             typeReq, wValue, wIndex, wLength;
479         u8              *ubuf = urb->transfer_buffer;
480         unsigned        len = 0;
481         int             status;
482         u8              patch_wakeup = 0;
483         u8              patch_protocol = 0;
484         u16             tbuf_size;
485         u8              *tbuf = NULL;
486         const u8        *bufp;
487
488         might_sleep();
489
490         spin_lock_irq(&hcd_root_hub_lock);
491         status = usb_hcd_link_urb_to_ep(hcd, urb);
492         spin_unlock_irq(&hcd_root_hub_lock);
493         if (status)
494                 return status;
495         urb->hcpriv = hcd;      /* Indicate it's queued */
496
497         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
498         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
499         wValue   = le16_to_cpu (cmd->wValue);
500         wIndex   = le16_to_cpu (cmd->wIndex);
501         wLength  = le16_to_cpu (cmd->wLength);
502
503         if (wLength > urb->transfer_buffer_length)
504                 goto error;
505
506         /*
507          * tbuf should be at least as big as the
508          * USB hub descriptor.
509          */
510         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
511         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
512         if (!tbuf) {
513                 status = -ENOMEM;
514                 goto err_alloc;
515         }
516
517         bufp = tbuf;
518
519
520         urb->actual_length = 0;
521         switch (typeReq) {
522
523         /* DEVICE REQUESTS */
524
525         /* The root hub's remote wakeup enable bit is implemented using
526          * driver model wakeup flags.  If this system supports wakeup
527          * through USB, userspace may change the default "allow wakeup"
528          * policy through sysfs or these calls.
529          *
530          * Most root hubs support wakeup from downstream devices, for
531          * runtime power management (disabling USB clocks and reducing
532          * VBUS power usage).  However, not all of them do so; silicon,
533          * board, and BIOS bugs here are not uncommon, so these can't
534          * be treated quite like external hubs.
535          *
536          * Likewise, not all root hubs will pass wakeup events upstream,
537          * to wake up the whole system.  So don't assume root hub and
538          * controller capabilities are identical.
539          */
540
541         case DeviceRequest | USB_REQ_GET_STATUS:
542                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
543                                         << USB_DEVICE_REMOTE_WAKEUP)
544                                 | (1 << USB_DEVICE_SELF_POWERED);
545                 tbuf[1] = 0;
546                 len = 2;
547                 break;
548         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
549                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
550                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
551                 else
552                         goto error;
553                 break;
554         case DeviceOutRequest | USB_REQ_SET_FEATURE:
555                 if (device_can_wakeup(&hcd->self.root_hub->dev)
556                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
557                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
558                 else
559                         goto error;
560                 break;
561         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
562                 tbuf[0] = 1;
563                 len = 1;
564                         /* FALLTHROUGH */
565         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
566                 break;
567         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
568                 switch (wValue & 0xff00) {
569                 case USB_DT_DEVICE << 8:
570                         switch (hcd->speed) {
571                         case HCD_USB31:
572                                 bufp = usb31_rh_dev_descriptor;
573                                 break;
574                         case HCD_USB3:
575                                 bufp = usb3_rh_dev_descriptor;
576                                 break;
577                         case HCD_USB25:
578                                 bufp = usb25_rh_dev_descriptor;
579                                 break;
580                         case HCD_USB2:
581                                 bufp = usb2_rh_dev_descriptor;
582                                 break;
583                         case HCD_USB11:
584                                 bufp = usb11_rh_dev_descriptor;
585                                 break;
586                         default:
587                                 goto error;
588                         }
589                         len = 18;
590                         if (hcd->has_tt)
591                                 patch_protocol = 1;
592                         break;
593                 case USB_DT_CONFIG << 8:
594                         switch (hcd->speed) {
595                         case HCD_USB31:
596                         case HCD_USB3:
597                                 bufp = ss_rh_config_descriptor;
598                                 len = sizeof ss_rh_config_descriptor;
599                                 break;
600                         case HCD_USB25:
601                         case HCD_USB2:
602                                 bufp = hs_rh_config_descriptor;
603                                 len = sizeof hs_rh_config_descriptor;
604                                 break;
605                         case HCD_USB11:
606                                 bufp = fs_rh_config_descriptor;
607                                 len = sizeof fs_rh_config_descriptor;
608                                 break;
609                         default:
610                                 goto error;
611                         }
612                         if (device_can_wakeup(&hcd->self.root_hub->dev))
613                                 patch_wakeup = 1;
614                         break;
615                 case USB_DT_STRING << 8:
616                         if ((wValue & 0xff) < 4)
617                                 urb->actual_length = rh_string(wValue & 0xff,
618                                                 hcd, ubuf, wLength);
619                         else /* unsupported IDs --> "protocol stall" */
620                                 goto error;
621                         break;
622                 case USB_DT_BOS << 8:
623                         goto nongeneric;
624                 default:
625                         goto error;
626                 }
627                 break;
628         case DeviceRequest | USB_REQ_GET_INTERFACE:
629                 tbuf[0] = 0;
630                 len = 1;
631                         /* FALLTHROUGH */
632         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
633                 break;
634         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
635                 /* wValue == urb->dev->devaddr */
636                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
637                         wValue);
638                 break;
639
640         /* INTERFACE REQUESTS (no defined feature/status flags) */
641
642         /* ENDPOINT REQUESTS */
643
644         case EndpointRequest | USB_REQ_GET_STATUS:
645                 /* ENDPOINT_HALT flag */
646                 tbuf[0] = 0;
647                 tbuf[1] = 0;
648                 len = 2;
649                         /* FALLTHROUGH */
650         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
651         case EndpointOutRequest | USB_REQ_SET_FEATURE:
652                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
653                 break;
654
655         /* CLASS REQUESTS (and errors) */
656
657         default:
658 nongeneric:
659                 /* non-generic request */
660                 switch (typeReq) {
661                 case GetHubStatus:
662                         len = 4;
663                         break;
664                 case GetPortStatus:
665                         if (wValue == HUB_PORT_STATUS)
666                                 len = 4;
667                         else
668                                 /* other port status types return 8 bytes */
669                                 len = 8;
670                         break;
671                 case GetHubDescriptor:
672                         len = sizeof (struct usb_hub_descriptor);
673                         break;
674                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
675                         /* len is returned by hub_control */
676                         break;
677                 }
678                 status = hcd->driver->hub_control (hcd,
679                         typeReq, wValue, wIndex,
680                         tbuf, wLength);
681
682                 if (typeReq == GetHubDescriptor)
683                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
684                                 (struct usb_hub_descriptor *)tbuf);
685                 break;
686 error:
687                 /* "protocol stall" on error */
688                 status = -EPIPE;
689         }
690
691         if (status < 0) {
692                 len = 0;
693                 if (status != -EPIPE) {
694                         dev_dbg (hcd->self.controller,
695                                 "CTRL: TypeReq=0x%x val=0x%x "
696                                 "idx=0x%x len=%d ==> %d\n",
697                                 typeReq, wValue, wIndex,
698                                 wLength, status);
699                 }
700         } else if (status > 0) {
701                 /* hub_control may return the length of data copied. */
702                 len = status;
703                 status = 0;
704         }
705         if (len) {
706                 if (urb->transfer_buffer_length < len)
707                         len = urb->transfer_buffer_length;
708                 urb->actual_length = len;
709                 /* always USB_DIR_IN, toward host */
710                 memcpy (ubuf, bufp, len);
711
712                 /* report whether RH hardware supports remote wakeup */
713                 if (patch_wakeup &&
714                                 len > offsetof (struct usb_config_descriptor,
715                                                 bmAttributes))
716                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
717                                 |= USB_CONFIG_ATT_WAKEUP;
718
719                 /* report whether RH hardware has an integrated TT */
720                 if (patch_protocol &&
721                                 len > offsetof(struct usb_device_descriptor,
722                                                 bDeviceProtocol))
723                         ((struct usb_device_descriptor *) ubuf)->
724                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
725         }
726
727         kfree(tbuf);
728  err_alloc:
729
730         /* any errors get returned through the urb completion */
731         spin_lock_irq(&hcd_root_hub_lock);
732         usb_hcd_unlink_urb_from_ep(hcd, urb);
733         usb_hcd_giveback_urb(hcd, urb, status);
734         spin_unlock_irq(&hcd_root_hub_lock);
735         return 0;
736 }
737
738 /*-------------------------------------------------------------------------*/
739
740 /*
741  * Root Hub interrupt transfers are polled using a timer if the
742  * driver requests it; otherwise the driver is responsible for
743  * calling usb_hcd_poll_rh_status() when an event occurs.
744  *
745  * Completions are called in_interrupt(), but they may or may not
746  * be in_irq().
747  */
748 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
749 {
750         struct urb      *urb;
751         int             length;
752         unsigned long   flags;
753         char            buffer[6];      /* Any root hubs with > 31 ports? */
754
755         if (unlikely(!hcd->rh_pollable))
756                 return;
757         if (!hcd->uses_new_polling && !hcd->status_urb)
758                 return;
759
760         length = hcd->driver->hub_status_data(hcd, buffer);
761         if (length > 0) {
762
763                 /* try to complete the status urb */
764                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
765                 urb = hcd->status_urb;
766                 if (urb) {
767                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
768                         hcd->status_urb = NULL;
769                         urb->actual_length = length;
770                         memcpy(urb->transfer_buffer, buffer, length);
771
772                         usb_hcd_unlink_urb_from_ep(hcd, urb);
773                         usb_hcd_giveback_urb(hcd, urb, 0);
774                 } else {
775                         length = 0;
776                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
777                 }
778                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
779         }
780
781         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
782          * exceed that limit if HZ is 100. The math is more clunky than
783          * maybe expected, this is to make sure that all timers for USB devices
784          * fire at the same time to give the CPU a break in between */
785         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
786                         (length == 0 && hcd->status_urb != NULL))
787                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
788 }
789 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
790
791 /* timer callback */
792 static void rh_timer_func (struct timer_list *t)
793 {
794         struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
795
796         usb_hcd_poll_rh_status(_hcd);
797 }
798
799 /*-------------------------------------------------------------------------*/
800
801 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
802 {
803         int             retval;
804         unsigned long   flags;
805         unsigned        len = 1 + (urb->dev->maxchild / 8);
806
807         spin_lock_irqsave (&hcd_root_hub_lock, flags);
808         if (hcd->status_urb || urb->transfer_buffer_length < len) {
809                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
810                 retval = -EINVAL;
811                 goto done;
812         }
813
814         retval = usb_hcd_link_urb_to_ep(hcd, urb);
815         if (retval)
816                 goto done;
817
818         hcd->status_urb = urb;
819         urb->hcpriv = hcd;      /* indicate it's queued */
820         if (!hcd->uses_new_polling)
821                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
822
823         /* If a status change has already occurred, report it ASAP */
824         else if (HCD_POLL_PENDING(hcd))
825                 mod_timer(&hcd->rh_timer, jiffies);
826         retval = 0;
827  done:
828         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
829         return retval;
830 }
831
832 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
833 {
834         if (usb_endpoint_xfer_int(&urb->ep->desc))
835                 return rh_queue_status (hcd, urb);
836         if (usb_endpoint_xfer_control(&urb->ep->desc))
837                 return rh_call_control (hcd, urb);
838         return -EINVAL;
839 }
840
841 /*-------------------------------------------------------------------------*/
842
843 /* Unlinks of root-hub control URBs are legal, but they don't do anything
844  * since these URBs always execute synchronously.
845  */
846 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
847 {
848         unsigned long   flags;
849         int             rc;
850
851         spin_lock_irqsave(&hcd_root_hub_lock, flags);
852         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
853         if (rc)
854                 goto done;
855
856         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
857                 ;       /* Do nothing */
858
859         } else {                                /* Status URB */
860                 if (!hcd->uses_new_polling)
861                         del_timer (&hcd->rh_timer);
862                 if (urb == hcd->status_urb) {
863                         hcd->status_urb = NULL;
864                         usb_hcd_unlink_urb_from_ep(hcd, urb);
865                         usb_hcd_giveback_urb(hcd, urb, status);
866                 }
867         }
868  done:
869         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
870         return rc;
871 }
872
873
874
875 /*
876  * Show & store the current value of authorized_default
877  */
878 static ssize_t authorized_default_show(struct device *dev,
879                                        struct device_attribute *attr, char *buf)
880 {
881         struct usb_device *rh_usb_dev = to_usb_device(dev);
882         struct usb_bus *usb_bus = rh_usb_dev->bus;
883         struct usb_hcd *hcd;
884
885         hcd = bus_to_hcd(usb_bus);
886         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
887 }
888
889 static ssize_t authorized_default_store(struct device *dev,
890                                         struct device_attribute *attr,
891                                         const char *buf, size_t size)
892 {
893         ssize_t result;
894         unsigned val;
895         struct usb_device *rh_usb_dev = to_usb_device(dev);
896         struct usb_bus *usb_bus = rh_usb_dev->bus;
897         struct usb_hcd *hcd;
898
899         hcd = bus_to_hcd(usb_bus);
900         result = sscanf(buf, "%u\n", &val);
901         if (result == 1) {
902                 if (val)
903                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
904                 else
905                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
906
907                 result = size;
908         } else {
909                 result = -EINVAL;
910         }
911         return result;
912 }
913 static DEVICE_ATTR_RW(authorized_default);
914
915 /*
916  * interface_authorized_default_show - show default authorization status
917  * for USB interfaces
918  *
919  * note: interface_authorized_default is the default value
920  *       for initializing the authorized attribute of interfaces
921  */
922 static ssize_t interface_authorized_default_show(struct device *dev,
923                 struct device_attribute *attr, char *buf)
924 {
925         struct usb_device *usb_dev = to_usb_device(dev);
926         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
927
928         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
929 }
930
931 /*
932  * interface_authorized_default_store - store default authorization status
933  * for USB interfaces
934  *
935  * note: interface_authorized_default is the default value
936  *       for initializing the authorized attribute of interfaces
937  */
938 static ssize_t interface_authorized_default_store(struct device *dev,
939                 struct device_attribute *attr, const char *buf, size_t count)
940 {
941         struct usb_device *usb_dev = to_usb_device(dev);
942         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
943         int rc = count;
944         bool val;
945
946         if (strtobool(buf, &val) != 0)
947                 return -EINVAL;
948
949         if (val)
950                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
951         else
952                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
953
954         return rc;
955 }
956 static DEVICE_ATTR_RW(interface_authorized_default);
957
958 /* Group all the USB bus attributes */
959 static struct attribute *usb_bus_attrs[] = {
960                 &dev_attr_authorized_default.attr,
961                 &dev_attr_interface_authorized_default.attr,
962                 NULL,
963 };
964
965 static const struct attribute_group usb_bus_attr_group = {
966         .name = NULL,   /* we want them in the same directory */
967         .attrs = usb_bus_attrs,
968 };
969
970
971
972 /*-------------------------------------------------------------------------*/
973
974 /**
975  * usb_bus_init - shared initialization code
976  * @bus: the bus structure being initialized
977  *
978  * This code is used to initialize a usb_bus structure, memory for which is
979  * separately managed.
980  */
981 static void usb_bus_init (struct usb_bus *bus)
982 {
983         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
984
985         bus->devnum_next = 1;
986
987         bus->root_hub = NULL;
988         bus->busnum = -1;
989         bus->bandwidth_allocated = 0;
990         bus->bandwidth_int_reqs  = 0;
991         bus->bandwidth_isoc_reqs = 0;
992         mutex_init(&bus->devnum_next_mutex);
993 }
994
995 /*-------------------------------------------------------------------------*/
996
997 /**
998  * usb_register_bus - registers the USB host controller with the usb core
999  * @bus: pointer to the bus to register
1000  * Context: !in_interrupt()
1001  *
1002  * Assigns a bus number, and links the controller into usbcore data
1003  * structures so that it can be seen by scanning the bus list.
1004  *
1005  * Return: 0 if successful. A negative error code otherwise.
1006  */
1007 static int usb_register_bus(struct usb_bus *bus)
1008 {
1009         int result = -E2BIG;
1010         int busnum;
1011
1012         mutex_lock(&usb_bus_idr_lock);
1013         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1014         if (busnum < 0) {
1015                 pr_err("%s: failed to get bus number\n", usbcore_name);
1016                 goto error_find_busnum;
1017         }
1018         bus->busnum = busnum;
1019         mutex_unlock(&usb_bus_idr_lock);
1020
1021         usb_notify_add_bus(bus);
1022
1023         dev_info (bus->controller, "new USB bus registered, assigned bus "
1024                   "number %d\n", bus->busnum);
1025         return 0;
1026
1027 error_find_busnum:
1028         mutex_unlock(&usb_bus_idr_lock);
1029         return result;
1030 }
1031
1032 /**
1033  * usb_deregister_bus - deregisters the USB host controller
1034  * @bus: pointer to the bus to deregister
1035  * Context: !in_interrupt()
1036  *
1037  * Recycles the bus number, and unlinks the controller from usbcore data
1038  * structures so that it won't be seen by scanning the bus list.
1039  */
1040 static void usb_deregister_bus (struct usb_bus *bus)
1041 {
1042         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1043
1044         /*
1045          * NOTE: make sure that all the devices are removed by the
1046          * controller code, as well as having it call this when cleaning
1047          * itself up
1048          */
1049         mutex_lock(&usb_bus_idr_lock);
1050         idr_remove(&usb_bus_idr, bus->busnum);
1051         mutex_unlock(&usb_bus_idr_lock);
1052
1053         usb_notify_remove_bus(bus);
1054 }
1055
1056 /**
1057  * register_root_hub - called by usb_add_hcd() to register a root hub
1058  * @hcd: host controller for this root hub
1059  *
1060  * This function registers the root hub with the USB subsystem.  It sets up
1061  * the device properly in the device tree and then calls usb_new_device()
1062  * to register the usb device.  It also assigns the root hub's USB address
1063  * (always 1).
1064  *
1065  * Return: 0 if successful. A negative error code otherwise.
1066  */
1067 static int register_root_hub(struct usb_hcd *hcd)
1068 {
1069         struct device *parent_dev = hcd->self.controller;
1070         struct usb_device *usb_dev = hcd->self.root_hub;
1071         const int devnum = 1;
1072         int retval;
1073
1074         usb_dev->devnum = devnum;
1075         usb_dev->bus->devnum_next = devnum + 1;
1076         memset (&usb_dev->bus->devmap.devicemap, 0,
1077                         sizeof usb_dev->bus->devmap.devicemap);
1078         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1079         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1080
1081         mutex_lock(&usb_bus_idr_lock);
1082
1083         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1084         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1085         if (retval != sizeof usb_dev->descriptor) {
1086                 mutex_unlock(&usb_bus_idr_lock);
1087                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1088                                 dev_name(&usb_dev->dev), retval);
1089                 return (retval < 0) ? retval : -EMSGSIZE;
1090         }
1091
1092         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1093                 retval = usb_get_bos_descriptor(usb_dev);
1094                 if (!retval) {
1095                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1096                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1097                         mutex_unlock(&usb_bus_idr_lock);
1098                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1099                                         dev_name(&usb_dev->dev), retval);
1100                         return retval;
1101                 }
1102         }
1103
1104         retval = usb_new_device (usb_dev);
1105         if (retval) {
1106                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1107                                 dev_name(&usb_dev->dev), retval);
1108         } else {
1109                 spin_lock_irq (&hcd_root_hub_lock);
1110                 hcd->rh_registered = 1;
1111                 spin_unlock_irq (&hcd_root_hub_lock);
1112
1113                 /* Did the HC die before the root hub was registered? */
1114                 if (HCD_DEAD(hcd))
1115                         usb_hc_died (hcd);      /* This time clean up */
1116         }
1117         mutex_unlock(&usb_bus_idr_lock);
1118
1119         return retval;
1120 }
1121
1122 /*
1123  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1124  * @bus: the bus which the root hub belongs to
1125  * @portnum: the port which is being resumed
1126  *
1127  * HCDs should call this function when they know that a resume signal is
1128  * being sent to a root-hub port.  The root hub will be prevented from
1129  * going into autosuspend until usb_hcd_end_port_resume() is called.
1130  *
1131  * The bus's private lock must be held by the caller.
1132  */
1133 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1134 {
1135         unsigned bit = 1 << portnum;
1136
1137         if (!(bus->resuming_ports & bit)) {
1138                 bus->resuming_ports |= bit;
1139                 pm_runtime_get_noresume(&bus->root_hub->dev);
1140         }
1141 }
1142 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1143
1144 /*
1145  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1146  * @bus: the bus which the root hub belongs to
1147  * @portnum: the port which is being resumed
1148  *
1149  * HCDs should call this function when they know that a resume signal has
1150  * stopped being sent to a root-hub port.  The root hub will be allowed to
1151  * autosuspend again.
1152  *
1153  * The bus's private lock must be held by the caller.
1154  */
1155 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1156 {
1157         unsigned bit = 1 << portnum;
1158
1159         if (bus->resuming_ports & bit) {
1160                 bus->resuming_ports &= ~bit;
1161                 pm_runtime_put_noidle(&bus->root_hub->dev);
1162         }
1163 }
1164 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1165
1166 /*-------------------------------------------------------------------------*/
1167
1168 /**
1169  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1170  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1171  * @is_input: true iff the transaction sends data to the host
1172  * @isoc: true for isochronous transactions, false for interrupt ones
1173  * @bytecount: how many bytes in the transaction.
1174  *
1175  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1176  *
1177  * Note:
1178  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1179  * scheduled in software, this function is only used for such scheduling.
1180  */
1181 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1182 {
1183         unsigned long   tmp;
1184
1185         switch (speed) {
1186         case USB_SPEED_LOW:     /* INTR only */
1187                 if (is_input) {
1188                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1189                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1190                 } else {
1191                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1192                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1193                 }
1194         case USB_SPEED_FULL:    /* ISOC or INTR */
1195                 if (isoc) {
1196                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1198                 } else {
1199                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200                         return 9107L + BW_HOST_DELAY + tmp;
1201                 }
1202         case USB_SPEED_HIGH:    /* ISOC or INTR */
1203                 /* FIXME adjust for input vs output */
1204                 if (isoc)
1205                         tmp = HS_NSECS_ISO (bytecount);
1206                 else
1207                         tmp = HS_NSECS (bytecount);
1208                 return tmp;
1209         default:
1210                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1211                 return -1;
1212         }
1213 }
1214 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1215
1216
1217 /*-------------------------------------------------------------------------*/
1218
1219 /*
1220  * Generic HC operations.
1221  */
1222
1223 /*-------------------------------------------------------------------------*/
1224
1225 /**
1226  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1227  * @hcd: host controller to which @urb was submitted
1228  * @urb: URB being submitted
1229  *
1230  * Host controller drivers should call this routine in their enqueue()
1231  * method.  The HCD's private spinlock must be held and interrupts must
1232  * be disabled.  The actions carried out here are required for URB
1233  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1234  *
1235  * Return: 0 for no error, otherwise a negative error code (in which case
1236  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1237  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1238  * the private spinlock and returning.
1239  */
1240 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1241 {
1242         int             rc = 0;
1243
1244         spin_lock(&hcd_urb_list_lock);
1245
1246         /* Check that the URB isn't being killed */
1247         if (unlikely(atomic_read(&urb->reject))) {
1248                 rc = -EPERM;
1249                 goto done;
1250         }
1251
1252         if (unlikely(!urb->ep->enabled)) {
1253                 rc = -ENOENT;
1254                 goto done;
1255         }
1256
1257         if (unlikely(!urb->dev->can_submit)) {
1258                 rc = -EHOSTUNREACH;
1259                 goto done;
1260         }
1261
1262         /*
1263          * Check the host controller's state and add the URB to the
1264          * endpoint's queue.
1265          */
1266         if (HCD_RH_RUNNING(hcd)) {
1267                 urb->unlinked = 0;
1268                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1269         } else {
1270                 rc = -ESHUTDOWN;
1271                 goto done;
1272         }
1273  done:
1274         spin_unlock(&hcd_urb_list_lock);
1275         return rc;
1276 }
1277 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1278
1279 /**
1280  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1281  * @hcd: host controller to which @urb was submitted
1282  * @urb: URB being checked for unlinkability
1283  * @status: error code to store in @urb if the unlink succeeds
1284  *
1285  * Host controller drivers should call this routine in their dequeue()
1286  * method.  The HCD's private spinlock must be held and interrupts must
1287  * be disabled.  The actions carried out here are required for making
1288  * sure than an unlink is valid.
1289  *
1290  * Return: 0 for no error, otherwise a negative error code (in which case
1291  * the dequeue() method must fail).  The possible error codes are:
1292  *
1293  *      -EIDRM: @urb was not submitted or has already completed.
1294  *              The completion function may not have been called yet.
1295  *
1296  *      -EBUSY: @urb has already been unlinked.
1297  */
1298 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1299                 int status)
1300 {
1301         struct list_head        *tmp;
1302
1303         /* insist the urb is still queued */
1304         list_for_each(tmp, &urb->ep->urb_list) {
1305                 if (tmp == &urb->urb_list)
1306                         break;
1307         }
1308         if (tmp != &urb->urb_list)
1309                 return -EIDRM;
1310
1311         /* Any status except -EINPROGRESS means something already started to
1312          * unlink this URB from the hardware.  So there's no more work to do.
1313          */
1314         if (urb->unlinked)
1315                 return -EBUSY;
1316         urb->unlinked = status;
1317         return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1320
1321 /**
1322  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1323  * @hcd: host controller to which @urb was submitted
1324  * @urb: URB being unlinked
1325  *
1326  * Host controller drivers should call this routine before calling
1327  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1328  * interrupts must be disabled.  The actions carried out here are required
1329  * for URB completion.
1330  */
1331 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1332 {
1333         /* clear all state linking urb to this dev (and hcd) */
1334         spin_lock(&hcd_urb_list_lock);
1335         list_del_init(&urb->urb_list);
1336         spin_unlock(&hcd_urb_list_lock);
1337 }
1338 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1339
1340 /*
1341  * Some usb host controllers can only perform dma using a small SRAM area.
1342  * The usb core itself is however optimized for host controllers that can dma
1343  * using regular system memory - like pci devices doing bus mastering.
1344  *
1345  * To support host controllers with limited dma capabilities we provide dma
1346  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1347  * For this to work properly the host controller code must first use the
1348  * function dma_declare_coherent_memory() to point out which memory area
1349  * that should be used for dma allocations.
1350  *
1351  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1352  * dma using dma_alloc_coherent() which in turn allocates from the memory
1353  * area pointed out with dma_declare_coherent_memory().
1354  *
1355  * So, to summarize...
1356  *
1357  * - We need "local" memory, canonical example being
1358  *   a small SRAM on a discrete controller being the
1359  *   only memory that the controller can read ...
1360  *   (a) "normal" kernel memory is no good, and
1361  *   (b) there's not enough to share
1362  *
1363  * - The only *portable* hook for such stuff in the
1364  *   DMA framework is dma_declare_coherent_memory()
1365  *
1366  * - So we use that, even though the primary requirement
1367  *   is that the memory be "local" (hence addressable
1368  *   by that device), not "coherent".
1369  *
1370  */
1371
1372 static int hcd_alloc_coherent(struct usb_bus *bus,
1373                               gfp_t mem_flags, dma_addr_t *dma_handle,
1374                               void **vaddr_handle, size_t size,
1375                               enum dma_data_direction dir)
1376 {
1377         unsigned char *vaddr;
1378
1379         if (*vaddr_handle == NULL) {
1380                 WARN_ON_ONCE(1);
1381                 return -EFAULT;
1382         }
1383
1384         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1385                                  mem_flags, dma_handle);
1386         if (!vaddr)
1387                 return -ENOMEM;
1388
1389         /*
1390          * Store the virtual address of the buffer at the end
1391          * of the allocated dma buffer. The size of the buffer
1392          * may be uneven so use unaligned functions instead
1393          * of just rounding up. It makes sense to optimize for
1394          * memory footprint over access speed since the amount
1395          * of memory available for dma may be limited.
1396          */
1397         put_unaligned((unsigned long)*vaddr_handle,
1398                       (unsigned long *)(vaddr + size));
1399
1400         if (dir == DMA_TO_DEVICE)
1401                 memcpy(vaddr, *vaddr_handle, size);
1402
1403         *vaddr_handle = vaddr;
1404         return 0;
1405 }
1406
1407 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1408                               void **vaddr_handle, size_t size,
1409                               enum dma_data_direction dir)
1410 {
1411         unsigned char *vaddr = *vaddr_handle;
1412
1413         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1414
1415         if (dir == DMA_FROM_DEVICE)
1416                 memcpy(vaddr, *vaddr_handle, size);
1417
1418         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1419
1420         *vaddr_handle = vaddr;
1421         *dma_handle = 0;
1422 }
1423
1424 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1425 {
1426         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1427             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1428                 dma_unmap_single(hcd->self.sysdev,
1429                                 urb->setup_dma,
1430                                 sizeof(struct usb_ctrlrequest),
1431                                 DMA_TO_DEVICE);
1432         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1433                 hcd_free_coherent(urb->dev->bus,
1434                                 &urb->setup_dma,
1435                                 (void **) &urb->setup_packet,
1436                                 sizeof(struct usb_ctrlrequest),
1437                                 DMA_TO_DEVICE);
1438
1439         /* Make it safe to call this routine more than once */
1440         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1441 }
1442 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1443
1444 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445 {
1446         if (hcd->driver->unmap_urb_for_dma)
1447                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1448         else
1449                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1450 }
1451
1452 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1453 {
1454         enum dma_data_direction dir;
1455
1456         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1457
1458         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1459         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1460             (urb->transfer_flags & URB_DMA_MAP_SG))
1461                 dma_unmap_sg(hcd->self.sysdev,
1462                                 urb->sg,
1463                                 urb->num_sgs,
1464                                 dir);
1465         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1467                 dma_unmap_page(hcd->self.sysdev,
1468                                 urb->transfer_dma,
1469                                 urb->transfer_buffer_length,
1470                                 dir);
1471         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1473                 dma_unmap_single(hcd->self.sysdev,
1474                                 urb->transfer_dma,
1475                                 urb->transfer_buffer_length,
1476                                 dir);
1477         else if (urb->transfer_flags & URB_MAP_LOCAL)
1478                 hcd_free_coherent(urb->dev->bus,
1479                                 &urb->transfer_dma,
1480                                 &urb->transfer_buffer,
1481                                 urb->transfer_buffer_length,
1482                                 dir);
1483
1484         /* Make it safe to call this routine more than once */
1485         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1486                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1487 }
1488 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1489
1490 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1491                            gfp_t mem_flags)
1492 {
1493         if (hcd->driver->map_urb_for_dma)
1494                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1495         else
1496                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1497 }
1498
1499 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1500                             gfp_t mem_flags)
1501 {
1502         enum dma_data_direction dir;
1503         int ret = 0;
1504
1505         /* Map the URB's buffers for DMA access.
1506          * Lower level HCD code should use *_dma exclusively,
1507          * unless it uses pio or talks to another transport,
1508          * or uses the provided scatter gather list for bulk.
1509          */
1510
1511         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1512                 if (hcd->self.uses_pio_for_control)
1513                         return ret;
1514                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1515                         if (is_vmalloc_addr(urb->setup_packet)) {
1516                                 WARN_ONCE(1, "setup packet is not dma capable\n");
1517                                 return -EAGAIN;
1518                         } else if (object_is_on_stack(urb->setup_packet)) {
1519                                 WARN_ONCE(1, "setup packet is on stack\n");
1520                                 return -EAGAIN;
1521                         }
1522
1523                         urb->setup_dma = dma_map_single(
1524                                         hcd->self.sysdev,
1525                                         urb->setup_packet,
1526                                         sizeof(struct usb_ctrlrequest),
1527                                         DMA_TO_DEVICE);
1528                         if (dma_mapping_error(hcd->self.sysdev,
1529                                                 urb->setup_dma))
1530                                 return -EAGAIN;
1531                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1532                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1533                         ret = hcd_alloc_coherent(
1534                                         urb->dev->bus, mem_flags,
1535                                         &urb->setup_dma,
1536                                         (void **)&urb->setup_packet,
1537                                         sizeof(struct usb_ctrlrequest),
1538                                         DMA_TO_DEVICE);
1539                         if (ret)
1540                                 return ret;
1541                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1542                 }
1543         }
1544
1545         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1546         if (urb->transfer_buffer_length != 0
1547             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1548                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1549                         if (urb->num_sgs) {
1550                                 int n;
1551
1552                                 /* We don't support sg for isoc transfers ! */
1553                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1554                                         WARN_ON(1);
1555                                         return -EINVAL;
1556                                 }
1557
1558                                 n = dma_map_sg(
1559                                                 hcd->self.sysdev,
1560                                                 urb->sg,
1561                                                 urb->num_sgs,
1562                                                 dir);
1563                                 if (n <= 0)
1564                                         ret = -EAGAIN;
1565                                 else
1566                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1567                                 urb->num_mapped_sgs = n;
1568                                 if (n != urb->num_sgs)
1569                                         urb->transfer_flags |=
1570                                                         URB_DMA_SG_COMBINED;
1571                         } else if (urb->sg) {
1572                                 struct scatterlist *sg = urb->sg;
1573                                 urb->transfer_dma = dma_map_page(
1574                                                 hcd->self.sysdev,
1575                                                 sg_page(sg),
1576                                                 sg->offset,
1577                                                 urb->transfer_buffer_length,
1578                                                 dir);
1579                                 if (dma_mapping_error(hcd->self.sysdev,
1580                                                 urb->transfer_dma))
1581                                         ret = -EAGAIN;
1582                                 else
1583                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1584                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1585                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1586                                 ret = -EAGAIN;
1587                         } else if (object_is_on_stack(urb->transfer_buffer)) {
1588                                 WARN_ONCE(1, "transfer buffer is on stack\n");
1589                                 ret = -EAGAIN;
1590                         } else {
1591                                 urb->transfer_dma = dma_map_single(
1592                                                 hcd->self.sysdev,
1593                                                 urb->transfer_buffer,
1594                                                 urb->transfer_buffer_length,
1595                                                 dir);
1596                                 if (dma_mapping_error(hcd->self.sysdev,
1597                                                 urb->transfer_dma))
1598                                         ret = -EAGAIN;
1599                                 else
1600                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601                         }
1602                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1603                         ret = hcd_alloc_coherent(
1604                                         urb->dev->bus, mem_flags,
1605                                         &urb->transfer_dma,
1606                                         &urb->transfer_buffer,
1607                                         urb->transfer_buffer_length,
1608                                         dir);
1609                         if (ret == 0)
1610                                 urb->transfer_flags |= URB_MAP_LOCAL;
1611                 }
1612                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1613                                 URB_SETUP_MAP_LOCAL)))
1614                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1615         }
1616         return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619
1620 /*-------------------------------------------------------------------------*/
1621
1622 /* may be called in any context with a valid urb->dev usecount
1623  * caller surrenders "ownership" of urb
1624  * expects usb_submit_urb() to have sanity checked and conditioned all
1625  * inputs in the urb
1626  */
1627 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628 {
1629         int                     status;
1630         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1631
1632         /* increment urb's reference count as part of giving it to the HCD
1633          * (which will control it).  HCD guarantees that it either returns
1634          * an error or calls giveback(), but not both.
1635          */
1636         usb_get_urb(urb);
1637         atomic_inc(&urb->use_count);
1638         atomic_inc(&urb->dev->urbnum);
1639         usbmon_urb_submit(&hcd->self, urb);
1640
1641         /* NOTE requirements on root-hub callers (usbfs and the hub
1642          * driver, for now):  URBs' urb->transfer_buffer must be
1643          * valid and usb_buffer_{sync,unmap}() not be needed, since
1644          * they could clobber root hub response data.  Also, control
1645          * URBs must be submitted in process context with interrupts
1646          * enabled.
1647          */
1648
1649         if (is_root_hub(urb->dev)) {
1650                 status = rh_urb_enqueue(hcd, urb);
1651         } else {
1652                 status = map_urb_for_dma(hcd, urb, mem_flags);
1653                 if (likely(status == 0)) {
1654                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1655                         if (unlikely(status))
1656                                 unmap_urb_for_dma(hcd, urb);
1657                 }
1658         }
1659
1660         if (unlikely(status)) {
1661                 usbmon_urb_submit_error(&hcd->self, urb, status);
1662                 urb->hcpriv = NULL;
1663                 INIT_LIST_HEAD(&urb->urb_list);
1664                 atomic_dec(&urb->use_count);
1665                 atomic_dec(&urb->dev->urbnum);
1666                 if (atomic_read(&urb->reject))
1667                         wake_up(&usb_kill_urb_queue);
1668                 usb_put_urb(urb);
1669         }
1670         return status;
1671 }
1672
1673 /*-------------------------------------------------------------------------*/
1674
1675 /* this makes the hcd giveback() the urb more quickly, by kicking it
1676  * off hardware queues (which may take a while) and returning it as
1677  * soon as practical.  we've already set up the urb's return status,
1678  * but we can't know if the callback completed already.
1679  */
1680 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681 {
1682         int             value;
1683
1684         if (is_root_hub(urb->dev))
1685                 value = usb_rh_urb_dequeue(hcd, urb, status);
1686         else {
1687
1688                 /* The only reason an HCD might fail this call is if
1689                  * it has not yet fully queued the urb to begin with.
1690                  * Such failures should be harmless. */
1691                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1692         }
1693         return value;
1694 }
1695
1696 /*
1697  * called in any context
1698  *
1699  * caller guarantees urb won't be recycled till both unlink()
1700  * and the urb's completion function return
1701  */
1702 int usb_hcd_unlink_urb (struct urb *urb, int status)
1703 {
1704         struct usb_hcd          *hcd;
1705         struct usb_device       *udev = urb->dev;
1706         int                     retval = -EIDRM;
1707         unsigned long           flags;
1708
1709         /* Prevent the device and bus from going away while
1710          * the unlink is carried out.  If they are already gone
1711          * then urb->use_count must be 0, since disconnected
1712          * devices can't have any active URBs.
1713          */
1714         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1715         if (atomic_read(&urb->use_count) > 0) {
1716                 retval = 0;
1717                 usb_get_dev(udev);
1718         }
1719         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1720         if (retval == 0) {
1721                 hcd = bus_to_hcd(urb->dev->bus);
1722                 retval = unlink1(hcd, urb, status);
1723                 if (retval == 0)
1724                         retval = -EINPROGRESS;
1725                 else if (retval != -EIDRM && retval != -EBUSY)
1726                         dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1727                                         urb, retval);
1728                 usb_put_dev(udev);
1729         }
1730         return retval;
1731 }
1732
1733 /*-------------------------------------------------------------------------*/
1734
1735 static void __usb_hcd_giveback_urb(struct urb *urb)
1736 {
1737         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1738         struct usb_anchor *anchor = urb->anchor;
1739         int status = urb->unlinked;
1740         unsigned long flags;
1741
1742         urb->hcpriv = NULL;
1743         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1744             urb->actual_length < urb->transfer_buffer_length &&
1745             !status))
1746                 status = -EREMOTEIO;
1747
1748         unmap_urb_for_dma(hcd, urb);
1749         usbmon_urb_complete(&hcd->self, urb, status);
1750         usb_anchor_suspend_wakeups(anchor);
1751         usb_unanchor_urb(urb);
1752         if (likely(status == 0))
1753                 usb_led_activity(USB_LED_EVENT_HOST);
1754
1755         /* pass ownership to the completion handler */
1756         urb->status = status;
1757
1758         /*
1759          * We disable local IRQs here avoid possible deadlock because
1760          * drivers may call spin_lock() to hold lock which might be
1761          * acquired in one hard interrupt handler.
1762          *
1763          * The local_irq_save()/local_irq_restore() around complete()
1764          * will be removed if current USB drivers have been cleaned up
1765          * and no one may trigger the above deadlock situation when
1766          * running complete() in tasklet.
1767          */
1768         local_irq_save(flags);
1769         urb->complete(urb);
1770         local_irq_restore(flags);
1771
1772         usb_anchor_resume_wakeups(anchor);
1773         atomic_dec(&urb->use_count);
1774         if (unlikely(atomic_read(&urb->reject)))
1775                 wake_up(&usb_kill_urb_queue);
1776         usb_put_urb(urb);
1777 }
1778
1779 static void usb_giveback_urb_bh(unsigned long param)
1780 {
1781         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1782         struct list_head local_list;
1783
1784         spin_lock_irq(&bh->lock);
1785         bh->running = true;
1786  restart:
1787         list_replace_init(&bh->head, &local_list);
1788         spin_unlock_irq(&bh->lock);
1789
1790         while (!list_empty(&local_list)) {
1791                 struct urb *urb;
1792
1793                 urb = list_entry(local_list.next, struct urb, urb_list);
1794                 list_del_init(&urb->urb_list);
1795                 bh->completing_ep = urb->ep;
1796                 __usb_hcd_giveback_urb(urb);
1797                 bh->completing_ep = NULL;
1798         }
1799
1800         /* check if there are new URBs to giveback */
1801         spin_lock_irq(&bh->lock);
1802         if (!list_empty(&bh->head))
1803                 goto restart;
1804         bh->running = false;
1805         spin_unlock_irq(&bh->lock);
1806 }
1807
1808 /**
1809  * usb_hcd_giveback_urb - return URB from HCD to device driver
1810  * @hcd: host controller returning the URB
1811  * @urb: urb being returned to the USB device driver.
1812  * @status: completion status code for the URB.
1813  * Context: in_interrupt()
1814  *
1815  * This hands the URB from HCD to its USB device driver, using its
1816  * completion function.  The HCD has freed all per-urb resources
1817  * (and is done using urb->hcpriv).  It also released all HCD locks;
1818  * the device driver won't cause problems if it frees, modifies,
1819  * or resubmits this URB.
1820  *
1821  * If @urb was unlinked, the value of @status will be overridden by
1822  * @urb->unlinked.  Erroneous short transfers are detected in case
1823  * the HCD hasn't checked for them.
1824  */
1825 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826 {
1827         struct giveback_urb_bh *bh;
1828         bool running, high_prio_bh;
1829
1830         /* pass status to tasklet via unlinked */
1831         if (likely(!urb->unlinked))
1832                 urb->unlinked = status;
1833
1834         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1835                 __usb_hcd_giveback_urb(urb);
1836                 return;
1837         }
1838
1839         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1840                 bh = &hcd->high_prio_bh;
1841                 high_prio_bh = true;
1842         } else {
1843                 bh = &hcd->low_prio_bh;
1844                 high_prio_bh = false;
1845         }
1846
1847         spin_lock(&bh->lock);
1848         list_add_tail(&urb->urb_list, &bh->head);
1849         running = bh->running;
1850         spin_unlock(&bh->lock);
1851
1852         if (running)
1853                 ;
1854         else if (high_prio_bh)
1855                 tasklet_hi_schedule(&bh->bh);
1856         else
1857                 tasklet_schedule(&bh->bh);
1858 }
1859 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860
1861 /*-------------------------------------------------------------------------*/
1862
1863 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1864  * queue to drain completely.  The caller must first insure that no more
1865  * URBs can be submitted for this endpoint.
1866  */
1867 void usb_hcd_flush_endpoint(struct usb_device *udev,
1868                 struct usb_host_endpoint *ep)
1869 {
1870         struct usb_hcd          *hcd;
1871         struct urb              *urb;
1872
1873         if (!ep)
1874                 return;
1875         might_sleep();
1876         hcd = bus_to_hcd(udev->bus);
1877
1878         /* No more submits can occur */
1879         spin_lock_irq(&hcd_urb_list_lock);
1880 rescan:
1881         list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1882                 int     is_in;
1883
1884                 if (urb->unlinked)
1885                         continue;
1886                 usb_get_urb (urb);
1887                 is_in = usb_urb_dir_in(urb);
1888                 spin_unlock(&hcd_urb_list_lock);
1889
1890                 /* kick hcd */
1891                 unlink1(hcd, urb, -ESHUTDOWN);
1892                 dev_dbg (hcd->self.controller,
1893                         "shutdown urb %pK ep%d%s%s\n",
1894                         urb, usb_endpoint_num(&ep->desc),
1895                         is_in ? "in" : "out",
1896                         ({      char *s;
1897
1898                                  switch (usb_endpoint_type(&ep->desc)) {
1899                                  case USB_ENDPOINT_XFER_CONTROL:
1900                                         s = ""; break;
1901                                  case USB_ENDPOINT_XFER_BULK:
1902                                         s = "-bulk"; break;
1903                                  case USB_ENDPOINT_XFER_INT:
1904                                         s = "-intr"; break;
1905                                  default:
1906                                         s = "-iso"; break;
1907                                 };
1908                                 s;
1909                         }));
1910                 usb_put_urb (urb);
1911
1912                 /* list contents may have changed */
1913                 spin_lock(&hcd_urb_list_lock);
1914                 goto rescan;
1915         }
1916         spin_unlock_irq(&hcd_urb_list_lock);
1917
1918         /* Wait until the endpoint queue is completely empty */
1919         while (!list_empty (&ep->urb_list)) {
1920                 spin_lock_irq(&hcd_urb_list_lock);
1921
1922                 /* The list may have changed while we acquired the spinlock */
1923                 urb = NULL;
1924                 if (!list_empty (&ep->urb_list)) {
1925                         urb = list_entry (ep->urb_list.prev, struct urb,
1926                                         urb_list);
1927                         usb_get_urb (urb);
1928                 }
1929                 spin_unlock_irq(&hcd_urb_list_lock);
1930
1931                 if (urb) {
1932                         usb_kill_urb (urb);
1933                         usb_put_urb (urb);
1934                 }
1935         }
1936 }
1937
1938 /**
1939  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940  *                              the bus bandwidth
1941  * @udev: target &usb_device
1942  * @new_config: new configuration to install
1943  * @cur_alt: the current alternate interface setting
1944  * @new_alt: alternate interface setting that is being installed
1945  *
1946  * To change configurations, pass in the new configuration in new_config,
1947  * and pass NULL for cur_alt and new_alt.
1948  *
1949  * To reset a device's configuration (put the device in the ADDRESSED state),
1950  * pass in NULL for new_config, cur_alt, and new_alt.
1951  *
1952  * To change alternate interface settings, pass in NULL for new_config,
1953  * pass in the current alternate interface setting in cur_alt,
1954  * and pass in the new alternate interface setting in new_alt.
1955  *
1956  * Return: An error if the requested bandwidth change exceeds the
1957  * bus bandwidth or host controller internal resources.
1958  */
1959 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1960                 struct usb_host_config *new_config,
1961                 struct usb_host_interface *cur_alt,
1962                 struct usb_host_interface *new_alt)
1963 {
1964         int num_intfs, i, j;
1965         struct usb_host_interface *alt = NULL;
1966         int ret = 0;
1967         struct usb_hcd *hcd;
1968         struct usb_host_endpoint *ep;
1969
1970         hcd = bus_to_hcd(udev->bus);
1971         if (!hcd->driver->check_bandwidth)
1972                 return 0;
1973
1974         /* Configuration is being removed - set configuration 0 */
1975         if (!new_config && !cur_alt) {
1976                 for (i = 1; i < 16; ++i) {
1977                         ep = udev->ep_out[i];
1978                         if (ep)
1979                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1980                         ep = udev->ep_in[i];
1981                         if (ep)
1982                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1983                 }
1984                 hcd->driver->check_bandwidth(hcd, udev);
1985                 return 0;
1986         }
1987         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1988          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1989          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1990          * ok to exclude it.
1991          */
1992         if (new_config) {
1993                 num_intfs = new_config->desc.bNumInterfaces;
1994                 /* Remove endpoints (except endpoint 0, which is always on the
1995                  * schedule) from the old config from the schedule
1996                  */
1997                 for (i = 1; i < 16; ++i) {
1998                         ep = udev->ep_out[i];
1999                         if (ep) {
2000                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001                                 if (ret < 0)
2002                                         goto reset;
2003                         }
2004                         ep = udev->ep_in[i];
2005                         if (ep) {
2006                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2007                                 if (ret < 0)
2008                                         goto reset;
2009                         }
2010                 }
2011                 for (i = 0; i < num_intfs; ++i) {
2012                         struct usb_host_interface *first_alt;
2013                         int iface_num;
2014
2015                         first_alt = &new_config->intf_cache[i]->altsetting[0];
2016                         iface_num = first_alt->desc.bInterfaceNumber;
2017                         /* Set up endpoints for alternate interface setting 0 */
2018                         alt = usb_find_alt_setting(new_config, iface_num, 0);
2019                         if (!alt)
2020                                 /* No alt setting 0? Pick the first setting. */
2021                                 alt = first_alt;
2022
2023                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2024                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2025                                 if (ret < 0)
2026                                         goto reset;
2027                         }
2028                 }
2029         }
2030         if (cur_alt && new_alt) {
2031                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2032                                 cur_alt->desc.bInterfaceNumber);
2033
2034                 if (!iface)
2035                         return -EINVAL;
2036                 if (iface->resetting_device) {
2037                         /*
2038                          * The USB core just reset the device, so the xHCI host
2039                          * and the device will think alt setting 0 is installed.
2040                          * However, the USB core will pass in the alternate
2041                          * setting installed before the reset as cur_alt.  Dig
2042                          * out the alternate setting 0 structure, or the first
2043                          * alternate setting if a broken device doesn't have alt
2044                          * setting 0.
2045                          */
2046                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2047                         if (!cur_alt)
2048                                 cur_alt = &iface->altsetting[0];
2049                 }
2050
2051                 /* Drop all the endpoints in the current alt setting */
2052                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2053                         ret = hcd->driver->drop_endpoint(hcd, udev,
2054                                         &cur_alt->endpoint[i]);
2055                         if (ret < 0)
2056                                 goto reset;
2057                 }
2058                 /* Add all the endpoints in the new alt setting */
2059                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2060                         ret = hcd->driver->add_endpoint(hcd, udev,
2061                                         &new_alt->endpoint[i]);
2062                         if (ret < 0)
2063                                 goto reset;
2064                 }
2065         }
2066         ret = hcd->driver->check_bandwidth(hcd, udev);
2067 reset:
2068         if (ret < 0)
2069                 hcd->driver->reset_bandwidth(hcd, udev);
2070         return ret;
2071 }
2072
2073 /* Disables the endpoint: synchronizes with the hcd to make sure all
2074  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2075  * have been called previously.  Use for set_configuration, set_interface,
2076  * driver removal, physical disconnect.
2077  *
2078  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2079  * type, maxpacket size, toggle, halt status, and scheduling.
2080  */
2081 void usb_hcd_disable_endpoint(struct usb_device *udev,
2082                 struct usb_host_endpoint *ep)
2083 {
2084         struct usb_hcd          *hcd;
2085
2086         might_sleep();
2087         hcd = bus_to_hcd(udev->bus);
2088         if (hcd->driver->endpoint_disable)
2089                 hcd->driver->endpoint_disable(hcd, ep);
2090 }
2091
2092 /**
2093  * usb_hcd_reset_endpoint - reset host endpoint state
2094  * @udev: USB device.
2095  * @ep:   the endpoint to reset.
2096  *
2097  * Resets any host endpoint state such as the toggle bit, sequence
2098  * number and current window.
2099  */
2100 void usb_hcd_reset_endpoint(struct usb_device *udev,
2101                             struct usb_host_endpoint *ep)
2102 {
2103         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104
2105         if (hcd->driver->endpoint_reset)
2106                 hcd->driver->endpoint_reset(hcd, ep);
2107         else {
2108                 int epnum = usb_endpoint_num(&ep->desc);
2109                 int is_out = usb_endpoint_dir_out(&ep->desc);
2110                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2111
2112                 usb_settoggle(udev, epnum, is_out, 0);
2113                 if (is_control)
2114                         usb_settoggle(udev, epnum, !is_out, 0);
2115         }
2116 }
2117
2118 /**
2119  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2120  * @interface:          alternate setting that includes all endpoints.
2121  * @eps:                array of endpoints that need streams.
2122  * @num_eps:            number of endpoints in the array.
2123  * @num_streams:        number of streams to allocate.
2124  * @mem_flags:          flags hcd should use to allocate memory.
2125  *
2126  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2127  * Drivers may queue multiple transfers to different stream IDs, which may
2128  * complete in a different order than they were queued.
2129  *
2130  * Return: On success, the number of allocated streams. On failure, a negative
2131  * error code.
2132  */
2133 int usb_alloc_streams(struct usb_interface *interface,
2134                 struct usb_host_endpoint **eps, unsigned int num_eps,
2135                 unsigned int num_streams, gfp_t mem_flags)
2136 {
2137         struct usb_hcd *hcd;
2138         struct usb_device *dev;
2139         int i, ret;
2140
2141         dev = interface_to_usbdev(interface);
2142         hcd = bus_to_hcd(dev->bus);
2143         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2144                 return -EINVAL;
2145         if (dev->speed < USB_SPEED_SUPER)
2146                 return -EINVAL;
2147         if (dev->state < USB_STATE_CONFIGURED)
2148                 return -ENODEV;
2149
2150         for (i = 0; i < num_eps; i++) {
2151                 /* Streams only apply to bulk endpoints. */
2152                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2153                         return -EINVAL;
2154                 /* Re-alloc is not allowed */
2155                 if (eps[i]->streams)
2156                         return -EINVAL;
2157         }
2158
2159         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2160                         num_streams, mem_flags);
2161         if (ret < 0)
2162                 return ret;
2163
2164         for (i = 0; i < num_eps; i++)
2165                 eps[i]->streams = ret;
2166
2167         return ret;
2168 }
2169 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2170
2171 /**
2172  * usb_free_streams - free bulk endpoint stream IDs.
2173  * @interface:  alternate setting that includes all endpoints.
2174  * @eps:        array of endpoints to remove streams from.
2175  * @num_eps:    number of endpoints in the array.
2176  * @mem_flags:  flags hcd should use to allocate memory.
2177  *
2178  * Reverts a group of bulk endpoints back to not using stream IDs.
2179  * Can fail if we are given bad arguments, or HCD is broken.
2180  *
2181  * Return: 0 on success. On failure, a negative error code.
2182  */
2183 int usb_free_streams(struct usb_interface *interface,
2184                 struct usb_host_endpoint **eps, unsigned int num_eps,
2185                 gfp_t mem_flags)
2186 {
2187         struct usb_hcd *hcd;
2188         struct usb_device *dev;
2189         int i, ret;
2190
2191         dev = interface_to_usbdev(interface);
2192         hcd = bus_to_hcd(dev->bus);
2193         if (dev->speed < USB_SPEED_SUPER)
2194                 return -EINVAL;
2195
2196         /* Double-free is not allowed */
2197         for (i = 0; i < num_eps; i++)
2198                 if (!eps[i] || !eps[i]->streams)
2199                         return -EINVAL;
2200
2201         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202         if (ret < 0)
2203                 return ret;
2204
2205         for (i = 0; i < num_eps; i++)
2206                 eps[i]->streams = 0;
2207
2208         return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(usb_free_streams);
2211
2212 /* Protect against drivers that try to unlink URBs after the device
2213  * is gone, by waiting until all unlinks for @udev are finished.
2214  * Since we don't currently track URBs by device, simply wait until
2215  * nothing is running in the locked region of usb_hcd_unlink_urb().
2216  */
2217 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218 {
2219         spin_lock_irq(&hcd_urb_unlink_lock);
2220         spin_unlock_irq(&hcd_urb_unlink_lock);
2221 }
2222
2223 /*-------------------------------------------------------------------------*/
2224
2225 /* called in any context */
2226 int usb_hcd_get_frame_number (struct usb_device *udev)
2227 {
2228         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2229
2230         if (!HCD_RH_RUNNING(hcd))
2231                 return -ESHUTDOWN;
2232         return hcd->driver->get_frame_number (hcd);
2233 }
2234
2235 /*-------------------------------------------------------------------------*/
2236
2237 #ifdef  CONFIG_PM
2238
2239 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240 {
2241         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2242         int             status;
2243         int             old_state = hcd->state;
2244
2245         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2246                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2247                         rhdev->do_remote_wakeup);
2248         if (HCD_DEAD(hcd)) {
2249                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250                 return 0;
2251         }
2252
2253         if (!hcd->driver->bus_suspend) {
2254                 status = -ENOENT;
2255         } else {
2256                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2257                 hcd->state = HC_STATE_QUIESCING;
2258                 status = hcd->driver->bus_suspend(hcd);
2259         }
2260         if (status == 0) {
2261                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2262                 hcd->state = HC_STATE_SUSPENDED;
2263
2264                 if (!PMSG_IS_AUTO(msg))
2265                         usb_phy_roothub_power_off(hcd->phy_roothub);
2266
2267                 /* Did we race with a root-hub wakeup event? */
2268                 if (rhdev->do_remote_wakeup) {
2269                         char    buffer[6];
2270
2271                         status = hcd->driver->hub_status_data(hcd, buffer);
2272                         if (status != 0) {
2273                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2274                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2275                                 status = -EBUSY;
2276                         }
2277                 }
2278         } else {
2279                 spin_lock_irq(&hcd_root_hub_lock);
2280                 if (!HCD_DEAD(hcd)) {
2281                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2282                         hcd->state = old_state;
2283                 }
2284                 spin_unlock_irq(&hcd_root_hub_lock);
2285                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2286                                 "suspend", status);
2287         }
2288         return status;
2289 }
2290
2291 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2292 {
2293         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2294         int             status;
2295         int             old_state = hcd->state;
2296
2297         dev_dbg(&rhdev->dev, "usb %sresume\n",
2298                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2299         if (HCD_DEAD(hcd)) {
2300                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2301                 return 0;
2302         }
2303
2304         if (!PMSG_IS_AUTO(msg)) {
2305                 status = usb_phy_roothub_power_on(hcd->phy_roothub);
2306                 if (status)
2307                         return status;
2308         }
2309
2310         if (!hcd->driver->bus_resume)
2311                 return -ENOENT;
2312         if (HCD_RH_RUNNING(hcd))
2313                 return 0;
2314
2315         hcd->state = HC_STATE_RESUMING;
2316         status = hcd->driver->bus_resume(hcd);
2317         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2318         if (status == 0) {
2319                 struct usb_device *udev;
2320                 int port1;
2321
2322                 spin_lock_irq(&hcd_root_hub_lock);
2323                 if (!HCD_DEAD(hcd)) {
2324                         usb_set_device_state(rhdev, rhdev->actconfig
2325                                         ? USB_STATE_CONFIGURED
2326                                         : USB_STATE_ADDRESS);
2327                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2328                         hcd->state = HC_STATE_RUNNING;
2329                 }
2330                 spin_unlock_irq(&hcd_root_hub_lock);
2331
2332                 /*
2333                  * Check whether any of the enabled ports on the root hub are
2334                  * unsuspended.  If they are then a TRSMRCY delay is needed
2335                  * (this is what the USB-2 spec calls a "global resume").
2336                  * Otherwise we can skip the delay.
2337                  */
2338                 usb_hub_for_each_child(rhdev, port1, udev) {
2339                         if (udev->state != USB_STATE_NOTATTACHED &&
2340                                         !udev->port_is_suspended) {
2341                                 usleep_range(10000, 11000);     /* TRSMRCY */
2342                                 break;
2343                         }
2344                 }
2345         } else {
2346                 hcd->state = old_state;
2347                 usb_phy_roothub_power_off(hcd->phy_roothub);
2348                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2349                                 "resume", status);
2350                 if (status != -ESHUTDOWN)
2351                         usb_hc_died(hcd);
2352         }
2353         return status;
2354 }
2355
2356 /* Workqueue routine for root-hub remote wakeup */
2357 static void hcd_resume_work(struct work_struct *work)
2358 {
2359         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2360         struct usb_device *udev = hcd->self.root_hub;
2361
2362         usb_remote_wakeup(udev);
2363 }
2364
2365 /**
2366  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2367  * @hcd: host controller for this root hub
2368  *
2369  * The USB host controller calls this function when its root hub is
2370  * suspended (with the remote wakeup feature enabled) and a remote
2371  * wakeup request is received.  The routine submits a workqueue request
2372  * to resume the root hub (that is, manage its downstream ports again).
2373  */
2374 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2375 {
2376         unsigned long flags;
2377
2378         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2379         if (hcd->rh_registered) {
2380                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2381                 queue_work(pm_wq, &hcd->wakeup_work);
2382         }
2383         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2384 }
2385 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2386
2387 #endif  /* CONFIG_PM */
2388
2389 /*-------------------------------------------------------------------------*/
2390
2391 #ifdef  CONFIG_USB_OTG
2392
2393 /**
2394  * usb_bus_start_enum - start immediate enumeration (for OTG)
2395  * @bus: the bus (must use hcd framework)
2396  * @port_num: 1-based number of port; usually bus->otg_port
2397  * Context: in_interrupt()
2398  *
2399  * Starts enumeration, with an immediate reset followed later by
2400  * hub_wq identifying and possibly configuring the device.
2401  * This is needed by OTG controller drivers, where it helps meet
2402  * HNP protocol timing requirements for starting a port reset.
2403  *
2404  * Return: 0 if successful.
2405  */
2406 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2407 {
2408         struct usb_hcd          *hcd;
2409         int                     status = -EOPNOTSUPP;
2410
2411         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2412          * boards with root hubs hooked up to internal devices (instead of
2413          * just the OTG port) may need more attention to resetting...
2414          */
2415         hcd = bus_to_hcd(bus);
2416         if (port_num && hcd->driver->start_port_reset)
2417                 status = hcd->driver->start_port_reset(hcd, port_num);
2418
2419         /* allocate hub_wq shortly after (first) root port reset finishes;
2420          * it may issue others, until at least 50 msecs have passed.
2421          */
2422         if (status == 0)
2423                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2424         return status;
2425 }
2426 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2427
2428 #endif
2429
2430 /*-------------------------------------------------------------------------*/
2431
2432 /**
2433  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2434  * @irq: the IRQ being raised
2435  * @__hcd: pointer to the HCD whose IRQ is being signaled
2436  *
2437  * If the controller isn't HALTed, calls the driver's irq handler.
2438  * Checks whether the controller is now dead.
2439  *
2440  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2441  */
2442 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2443 {
2444         struct usb_hcd          *hcd = __hcd;
2445         irqreturn_t             rc;
2446
2447         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2448                 rc = IRQ_NONE;
2449         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2450                 rc = IRQ_NONE;
2451         else
2452                 rc = IRQ_HANDLED;
2453
2454         return rc;
2455 }
2456 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2457
2458 /*-------------------------------------------------------------------------*/
2459
2460 /**
2461  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2462  * @hcd: pointer to the HCD representing the controller
2463  *
2464  * This is called by bus glue to report a USB host controller that died
2465  * while operations may still have been pending.  It's called automatically
2466  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2467  *
2468  * Only call this function with the primary HCD.
2469  */
2470 void usb_hc_died (struct usb_hcd *hcd)
2471 {
2472         unsigned long flags;
2473
2474         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2475
2476         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2477         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2478         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2479         if (hcd->rh_registered) {
2480                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2481
2482                 /* make hub_wq clean up old urbs and devices */
2483                 usb_set_device_state (hcd->self.root_hub,
2484                                 USB_STATE_NOTATTACHED);
2485                 usb_kick_hub_wq(hcd->self.root_hub);
2486         }
2487         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2488                 hcd = hcd->shared_hcd;
2489                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2490                 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2491                 if (hcd->rh_registered) {
2492                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2493
2494                         /* make hub_wq clean up old urbs and devices */
2495                         usb_set_device_state(hcd->self.root_hub,
2496                                         USB_STATE_NOTATTACHED);
2497                         usb_kick_hub_wq(hcd->self.root_hub);
2498                 }
2499         }
2500         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2501         /* Make sure that the other roothub is also deallocated. */
2502 }
2503 EXPORT_SYMBOL_GPL (usb_hc_died);
2504
2505 /*-------------------------------------------------------------------------*/
2506
2507 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2508 {
2509
2510         spin_lock_init(&bh->lock);
2511         INIT_LIST_HEAD(&bh->head);
2512         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2513 }
2514
2515 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2516                 struct device *sysdev, struct device *dev, const char *bus_name,
2517                 struct usb_hcd *primary_hcd)
2518 {
2519         struct usb_hcd *hcd;
2520
2521         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2522         if (!hcd)
2523                 return NULL;
2524         if (primary_hcd == NULL) {
2525                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2526                                 GFP_KERNEL);
2527                 if (!hcd->address0_mutex) {
2528                         kfree(hcd);
2529                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2530                         return NULL;
2531                 }
2532                 mutex_init(hcd->address0_mutex);
2533                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2534                                 GFP_KERNEL);
2535                 if (!hcd->bandwidth_mutex) {
2536                         kfree(hcd->address0_mutex);
2537                         kfree(hcd);
2538                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2539                         return NULL;
2540                 }
2541                 mutex_init(hcd->bandwidth_mutex);
2542                 dev_set_drvdata(dev, hcd);
2543         } else {
2544                 mutex_lock(&usb_port_peer_mutex);
2545                 hcd->address0_mutex = primary_hcd->address0_mutex;
2546                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2547                 hcd->primary_hcd = primary_hcd;
2548                 primary_hcd->primary_hcd = primary_hcd;
2549                 hcd->shared_hcd = primary_hcd;
2550                 primary_hcd->shared_hcd = hcd;
2551                 mutex_unlock(&usb_port_peer_mutex);
2552         }
2553
2554         kref_init(&hcd->kref);
2555
2556         usb_bus_init(&hcd->self);
2557         hcd->self.controller = dev;
2558         hcd->self.sysdev = sysdev;
2559         hcd->self.bus_name = bus_name;
2560         hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2561
2562         timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2563 #ifdef CONFIG_PM
2564         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2565 #endif
2566
2567         hcd->driver = driver;
2568         hcd->speed = driver->flags & HCD_MASK;
2569         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2570                         "USB Host Controller";
2571         return hcd;
2572 }
2573 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2574
2575 /**
2576  * usb_create_shared_hcd - create and initialize an HCD structure
2577  * @driver: HC driver that will use this hcd
2578  * @dev: device for this HC, stored in hcd->self.controller
2579  * @bus_name: value to store in hcd->self.bus_name
2580  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2581  *              PCI device.  Only allocate certain resources for the primary HCD
2582  * Context: !in_interrupt()
2583  *
2584  * Allocate a struct usb_hcd, with extra space at the end for the
2585  * HC driver's private data.  Initialize the generic members of the
2586  * hcd structure.
2587  *
2588  * Return: On success, a pointer to the created and initialized HCD structure.
2589  * On failure (e.g. if memory is unavailable), %NULL.
2590  */
2591 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2592                 struct device *dev, const char *bus_name,
2593                 struct usb_hcd *primary_hcd)
2594 {
2595         return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2596 }
2597 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2598
2599 /**
2600  * usb_create_hcd - create and initialize an HCD structure
2601  * @driver: HC driver that will use this hcd
2602  * @dev: device for this HC, stored in hcd->self.controller
2603  * @bus_name: value to store in hcd->self.bus_name
2604  * Context: !in_interrupt()
2605  *
2606  * Allocate a struct usb_hcd, with extra space at the end for the
2607  * HC driver's private data.  Initialize the generic members of the
2608  * hcd structure.
2609  *
2610  * Return: On success, a pointer to the created and initialized HCD
2611  * structure. On failure (e.g. if memory is unavailable), %NULL.
2612  */
2613 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2614                 struct device *dev, const char *bus_name)
2615 {
2616         return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2617 }
2618 EXPORT_SYMBOL_GPL(usb_create_hcd);
2619
2620 /*
2621  * Roothubs that share one PCI device must also share the bandwidth mutex.
2622  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2623  * deallocated.
2624  *
2625  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2626  * freed.  When hcd_release() is called for either hcd in a peer set,
2627  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2628  */
2629 static void hcd_release(struct kref *kref)
2630 {
2631         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2632
2633         mutex_lock(&usb_port_peer_mutex);
2634         if (hcd->shared_hcd) {
2635                 struct usb_hcd *peer = hcd->shared_hcd;
2636
2637                 peer->shared_hcd = NULL;
2638                 peer->primary_hcd = NULL;
2639         } else {
2640                 kfree(hcd->address0_mutex);
2641                 kfree(hcd->bandwidth_mutex);
2642         }
2643         mutex_unlock(&usb_port_peer_mutex);
2644         kfree(hcd);
2645 }
2646
2647 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2648 {
2649         if (hcd)
2650                 kref_get (&hcd->kref);
2651         return hcd;
2652 }
2653 EXPORT_SYMBOL_GPL(usb_get_hcd);
2654
2655 void usb_put_hcd (struct usb_hcd *hcd)
2656 {
2657         if (hcd)
2658                 kref_put (&hcd->kref, hcd_release);
2659 }
2660 EXPORT_SYMBOL_GPL(usb_put_hcd);
2661
2662 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2663 {
2664         if (!hcd->primary_hcd)
2665                 return 1;
2666         return hcd == hcd->primary_hcd;
2667 }
2668 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2669
2670 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2671 {
2672         if (!hcd->driver->find_raw_port_number)
2673                 return port1;
2674
2675         return hcd->driver->find_raw_port_number(hcd, port1);
2676 }
2677
2678 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2679                 unsigned int irqnum, unsigned long irqflags)
2680 {
2681         int retval;
2682
2683         if (hcd->driver->irq) {
2684
2685                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2686                                 hcd->driver->description, hcd->self.busnum);
2687                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2688                                 hcd->irq_descr, hcd);
2689                 if (retval != 0) {
2690                         dev_err(hcd->self.controller,
2691                                         "request interrupt %d failed\n",
2692                                         irqnum);
2693                         return retval;
2694                 }
2695                 hcd->irq = irqnum;
2696                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2697                                 (hcd->driver->flags & HCD_MEMORY) ?
2698                                         "io mem" : "io base",
2699                                         (unsigned long long)hcd->rsrc_start);
2700         } else {
2701                 hcd->irq = 0;
2702                 if (hcd->rsrc_start)
2703                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2704                                         (hcd->driver->flags & HCD_MEMORY) ?
2705                                         "io mem" : "io base",
2706                                         (unsigned long long)hcd->rsrc_start);
2707         }
2708         return 0;
2709 }
2710
2711 /*
2712  * Before we free this root hub, flush in-flight peering attempts
2713  * and disable peer lookups
2714  */
2715 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2716 {
2717         struct usb_device *rhdev;
2718
2719         mutex_lock(&usb_port_peer_mutex);
2720         rhdev = hcd->self.root_hub;
2721         hcd->self.root_hub = NULL;
2722         mutex_unlock(&usb_port_peer_mutex);
2723         usb_put_dev(rhdev);
2724 }
2725
2726 /**
2727  * usb_add_hcd - finish generic HCD structure initialization and register
2728  * @hcd: the usb_hcd structure to initialize
2729  * @irqnum: Interrupt line to allocate
2730  * @irqflags: Interrupt type flags
2731  *
2732  * Finish the remaining parts of generic HCD initialization: allocate the
2733  * buffers of consistent memory, register the bus, request the IRQ line,
2734  * and call the driver's reset() and start() routines.
2735  */
2736 int usb_add_hcd(struct usb_hcd *hcd,
2737                 unsigned int irqnum, unsigned long irqflags)
2738 {
2739         int retval;
2740         struct usb_device *rhdev;
2741
2742         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->skip_phy_initialization) {
2743                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2744
2745                 if (IS_ERR(phy)) {
2746                         retval = PTR_ERR(phy);
2747                         if (retval == -EPROBE_DEFER)
2748                                 return retval;
2749                 } else {
2750                         retval = usb_phy_init(phy);
2751                         if (retval) {
2752                                 usb_put_phy(phy);
2753                                 return retval;
2754                         }
2755                         hcd->usb_phy = phy;
2756                         hcd->remove_phy = 1;
2757                 }
2758         }
2759
2760         if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2761                 hcd->phy_roothub = usb_phy_roothub_init(hcd->self.sysdev);
2762                 if (IS_ERR(hcd->phy_roothub)) {
2763                         retval = PTR_ERR(hcd->phy_roothub);
2764                         goto err_phy_roothub_init;
2765                 }
2766
2767                 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2768                 if (retval)
2769                         goto err_usb_phy_roothub_power_on;
2770         }
2771
2772         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2773
2774         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2775         if (authorized_default < 0 || authorized_default > 1) {
2776                 if (hcd->wireless)
2777                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2778                 else
2779                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2780         } else {
2781                 if (authorized_default)
2782                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2783                 else
2784                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785         }
2786         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2787
2788         /* per default all interfaces are authorized */
2789         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2790
2791         /* HC is in reset state, but accessible.  Now do the one-time init,
2792          * bottom up so that hcds can customize the root hubs before hub_wq
2793          * starts talking to them.  (Note, bus id is assigned early too.)
2794          */
2795         retval = hcd_buffer_create(hcd);
2796         if (retval != 0) {
2797                 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2798                 goto err_create_buf;
2799         }
2800
2801         retval = usb_register_bus(&hcd->self);
2802         if (retval < 0)
2803                 goto err_register_bus;
2804
2805         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2806         if (rhdev == NULL) {
2807                 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2808                 retval = -ENOMEM;
2809                 goto err_allocate_root_hub;
2810         }
2811         mutex_lock(&usb_port_peer_mutex);
2812         hcd->self.root_hub = rhdev;
2813         mutex_unlock(&usb_port_peer_mutex);
2814
2815         switch (hcd->speed) {
2816         case HCD_USB11:
2817                 rhdev->speed = USB_SPEED_FULL;
2818                 break;
2819         case HCD_USB2:
2820                 rhdev->speed = USB_SPEED_HIGH;
2821                 break;
2822         case HCD_USB25:
2823                 rhdev->speed = USB_SPEED_WIRELESS;
2824                 break;
2825         case HCD_USB3:
2826                 rhdev->speed = USB_SPEED_SUPER;
2827                 break;
2828         case HCD_USB31:
2829                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2830                 break;
2831         default:
2832                 retval = -EINVAL;
2833                 goto err_set_rh_speed;
2834         }
2835
2836         /* wakeup flag init defaults to "everything works" for root hubs,
2837          * but drivers can override it in reset() if needed, along with
2838          * recording the overall controller's system wakeup capability.
2839          */
2840         device_set_wakeup_capable(&rhdev->dev, 1);
2841
2842         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2843          * registered.  But since the controller can die at any time,
2844          * let's initialize the flag before touching the hardware.
2845          */
2846         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2847
2848         /* "reset" is misnamed; its role is now one-time init. the controller
2849          * should already have been reset (and boot firmware kicked off etc).
2850          */
2851         if (hcd->driver->reset) {
2852                 retval = hcd->driver->reset(hcd);
2853                 if (retval < 0) {
2854                         dev_err(hcd->self.controller, "can't setup: %d\n",
2855                                         retval);
2856                         goto err_hcd_driver_setup;
2857                 }
2858         }
2859         hcd->rh_pollable = 1;
2860
2861         /* NOTE: root hub and controller capabilities may not be the same */
2862         if (device_can_wakeup(hcd->self.controller)
2863                         && device_can_wakeup(&hcd->self.root_hub->dev))
2864                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2865
2866         /* initialize tasklets */
2867         init_giveback_urb_bh(&hcd->high_prio_bh);
2868         init_giveback_urb_bh(&hcd->low_prio_bh);
2869
2870         /* enable irqs just before we start the controller,
2871          * if the BIOS provides legacy PCI irqs.
2872          */
2873         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2874                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2875                 if (retval)
2876                         goto err_request_irq;
2877         }
2878
2879         hcd->state = HC_STATE_RUNNING;
2880         retval = hcd->driver->start(hcd);
2881         if (retval < 0) {
2882                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2883                 goto err_hcd_driver_start;
2884         }
2885
2886         /* starting here, usbcore will pay attention to this root hub */
2887         retval = register_root_hub(hcd);
2888         if (retval != 0)
2889                 goto err_register_root_hub;
2890
2891         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2892         if (retval < 0) {
2893                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2894                        retval);
2895                 goto error_create_attr_group;
2896         }
2897         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2898                 usb_hcd_poll_rh_status(hcd);
2899
2900         return retval;
2901
2902 error_create_attr_group:
2903         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2904         if (HC_IS_RUNNING(hcd->state))
2905                 hcd->state = HC_STATE_QUIESCING;
2906         spin_lock_irq(&hcd_root_hub_lock);
2907         hcd->rh_registered = 0;
2908         spin_unlock_irq(&hcd_root_hub_lock);
2909
2910 #ifdef CONFIG_PM
2911         cancel_work_sync(&hcd->wakeup_work);
2912 #endif
2913         mutex_lock(&usb_bus_idr_lock);
2914         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2915         mutex_unlock(&usb_bus_idr_lock);
2916 err_register_root_hub:
2917         hcd->rh_pollable = 0;
2918         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2919         del_timer_sync(&hcd->rh_timer);
2920         hcd->driver->stop(hcd);
2921         hcd->state = HC_STATE_HALT;
2922         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2923         del_timer_sync(&hcd->rh_timer);
2924 err_hcd_driver_start:
2925         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2926                 free_irq(irqnum, hcd);
2927 err_request_irq:
2928 err_hcd_driver_setup:
2929 err_set_rh_speed:
2930         usb_put_invalidate_rhdev(hcd);
2931 err_allocate_root_hub:
2932         usb_deregister_bus(&hcd->self);
2933 err_register_bus:
2934         hcd_buffer_destroy(hcd);
2935 err_create_buf:
2936         usb_phy_roothub_power_off(hcd->phy_roothub);
2937 err_usb_phy_roothub_power_on:
2938         usb_phy_roothub_exit(hcd->phy_roothub);
2939 err_phy_roothub_init:
2940         if (hcd->remove_phy && hcd->usb_phy) {
2941                 usb_phy_shutdown(hcd->usb_phy);
2942                 usb_put_phy(hcd->usb_phy);
2943                 hcd->usb_phy = NULL;
2944         }
2945         return retval;
2946 }
2947 EXPORT_SYMBOL_GPL(usb_add_hcd);
2948
2949 /**
2950  * usb_remove_hcd - shutdown processing for generic HCDs
2951  * @hcd: the usb_hcd structure to remove
2952  * Context: !in_interrupt()
2953  *
2954  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2955  * invoking the HCD's stop() method.
2956  */
2957 void usb_remove_hcd(struct usb_hcd *hcd)
2958 {
2959         struct usb_device *rhdev = hcd->self.root_hub;
2960
2961         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2962
2963         usb_get_dev(rhdev);
2964         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2965
2966         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2967         if (HC_IS_RUNNING (hcd->state))
2968                 hcd->state = HC_STATE_QUIESCING;
2969
2970         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2971         spin_lock_irq (&hcd_root_hub_lock);
2972         hcd->rh_registered = 0;
2973         spin_unlock_irq (&hcd_root_hub_lock);
2974
2975 #ifdef CONFIG_PM
2976         cancel_work_sync(&hcd->wakeup_work);
2977 #endif
2978
2979         mutex_lock(&usb_bus_idr_lock);
2980         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2981         mutex_unlock(&usb_bus_idr_lock);
2982
2983         /*
2984          * tasklet_kill() isn't needed here because:
2985          * - driver's disconnect() called from usb_disconnect() should
2986          *   make sure its URBs are completed during the disconnect()
2987          *   callback
2988          *
2989          * - it is too late to run complete() here since driver may have
2990          *   been removed already now
2991          */
2992
2993         /* Prevent any more root-hub status calls from the timer.
2994          * The HCD might still restart the timer (if a port status change
2995          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2996          * the hub_status_data() callback.
2997          */
2998         hcd->rh_pollable = 0;
2999         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3000         del_timer_sync(&hcd->rh_timer);
3001
3002         hcd->driver->stop(hcd);
3003         hcd->state = HC_STATE_HALT;
3004
3005         /* In case the HCD restarted the timer, stop it again. */
3006         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3007         del_timer_sync(&hcd->rh_timer);
3008
3009         if (usb_hcd_is_primary_hcd(hcd)) {
3010                 if (hcd->irq > 0)
3011                         free_irq(hcd->irq, hcd);
3012         }
3013
3014         usb_deregister_bus(&hcd->self);
3015         hcd_buffer_destroy(hcd);
3016
3017         usb_phy_roothub_power_off(hcd->phy_roothub);
3018         usb_phy_roothub_exit(hcd->phy_roothub);
3019
3020         if (hcd->remove_phy && hcd->usb_phy) {
3021                 usb_phy_shutdown(hcd->usb_phy);
3022                 usb_put_phy(hcd->usb_phy);
3023                 hcd->usb_phy = NULL;
3024         }
3025
3026         usb_put_invalidate_rhdev(hcd);
3027         hcd->flags = 0;
3028 }
3029 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3030
3031 void
3032 usb_hcd_platform_shutdown(struct platform_device *dev)
3033 {
3034         struct usb_hcd *hcd = platform_get_drvdata(dev);
3035
3036         if (hcd->driver->shutdown)
3037                 hcd->driver->shutdown(hcd);
3038 }
3039 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3040
3041 /*-------------------------------------------------------------------------*/
3042
3043 #if IS_ENABLED(CONFIG_USB_MON)
3044
3045 const struct usb_mon_operations *mon_ops;
3046
3047 /*
3048  * The registration is unlocked.
3049  * We do it this way because we do not want to lock in hot paths.
3050  *
3051  * Notice that the code is minimally error-proof. Because usbmon needs
3052  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3053  */
3054
3055 int usb_mon_register(const struct usb_mon_operations *ops)
3056 {
3057
3058         if (mon_ops)
3059                 return -EBUSY;
3060
3061         mon_ops = ops;
3062         mb();
3063         return 0;
3064 }
3065 EXPORT_SYMBOL_GPL (usb_mon_register);
3066
3067 void usb_mon_deregister (void)
3068 {
3069
3070         if (mon_ops == NULL) {
3071                 printk(KERN_ERR "USB: monitor was not registered\n");
3072                 return;
3073         }
3074         mon_ops = NULL;
3075         mb();
3076 }
3077 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3078
3079 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */