]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/usb/host/xhci.c
Merge tag 'rdma-rc-2017-07-26' of git://git.kernel.org/pub/scm/linux/kernel/git/leon...
[linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (ret) {
117                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118                 return ret;
119         }
120         xhci->xhc_state |= XHCI_STATE_HALTED;
121         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170
171         if (state == ~(u32)0) {
172                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173                 return -ENODEV;
174         }
175
176         if ((state & STS_HALT) == 0) {
177                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178                 return 0;
179         }
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182         command = readl(&xhci->op_regs->command);
183         command |= CMD_RESET;
184         writel(command, &xhci->op_regs->command);
185
186         /* Existing Intel xHCI controllers require a delay of 1 mS,
187          * after setting the CMD_RESET bit, and before accessing any
188          * HC registers. This allows the HC to complete the
189          * reset operation and be ready for HC register access.
190          * Without this delay, the subsequent HC register access,
191          * may result in a system hang very rarely.
192          */
193         if (xhci->quirks & XHCI_INTEL_HOST)
194                 udelay(1000);
195
196         ret = xhci_handshake(&xhci->op_regs->command,
197                         CMD_RESET, 0, 10 * 1000 * 1000);
198         if (ret)
199                 return ret;
200
201         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202                          "Wait for controller to be ready for doorbell rings");
203         /*
204          * xHCI cannot write to any doorbells or operational registers other
205          * than status until the "Controller Not Ready" flag is cleared.
206          */
207         ret = xhci_handshake(&xhci->op_regs->status,
208                         STS_CNR, 0, 10 * 1000 * 1000);
209
210         for (i = 0; i < 2; i++) {
211                 xhci->bus_state[i].port_c_suspend = 0;
212                 xhci->bus_state[i].suspended_ports = 0;
213                 xhci->bus_state[i].resuming_ports = 0;
214         }
215
216         return ret;
217 }
218
219
220 #ifdef CONFIG_USB_PCI
221 /*
222  * Set up MSI
223  */
224 static int xhci_setup_msi(struct xhci_hcd *xhci)
225 {
226         int ret;
227         /*
228          * TODO:Check with MSI Soc for sysdev
229          */
230         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
231
232         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
233         if (ret < 0) {
234                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235                                 "failed to allocate MSI entry");
236                 return ret;
237         }
238
239         ret = request_irq(pdev->irq, xhci_msi_irq,
240                                 0, "xhci_hcd", xhci_to_hcd(xhci));
241         if (ret) {
242                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
243                                 "disable MSI interrupt");
244                 pci_free_irq_vectors(pdev);
245         }
246
247         return ret;
248 }
249
250 /*
251  * Set up MSI-X
252  */
253 static int xhci_setup_msix(struct xhci_hcd *xhci)
254 {
255         int i, ret = 0;
256         struct usb_hcd *hcd = xhci_to_hcd(xhci);
257         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
258
259         /*
260          * calculate number of msi-x vectors supported.
261          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
262          *   with max number of interrupters based on the xhci HCSPARAMS1.
263          * - num_online_cpus: maximum msi-x vectors per CPUs core.
264          *   Add additional 1 vector to ensure always available interrupt.
265          */
266         xhci->msix_count = min(num_online_cpus() + 1,
267                                 HCS_MAX_INTRS(xhci->hcs_params1));
268
269         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
270                         PCI_IRQ_MSIX);
271         if (ret < 0) {
272                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
273                                 "Failed to enable MSI-X");
274                 return ret;
275         }
276
277         for (i = 0; i < xhci->msix_count; i++) {
278                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
279                                 "xhci_hcd", xhci_to_hcd(xhci));
280                 if (ret)
281                         goto disable_msix;
282         }
283
284         hcd->msix_enabled = 1;
285         return ret;
286
287 disable_msix:
288         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
289         while (--i >= 0)
290                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
291         pci_free_irq_vectors(pdev);
292         return ret;
293 }
294
295 /* Free any IRQs and disable MSI-X */
296 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
297 {
298         struct usb_hcd *hcd = xhci_to_hcd(xhci);
299         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
300
301         if (xhci->quirks & XHCI_PLAT)
302                 return;
303
304         /* return if using legacy interrupt */
305         if (hcd->irq > 0)
306                 return;
307
308         if (hcd->msix_enabled) {
309                 int i;
310
311                 for (i = 0; i < xhci->msix_count; i++)
312                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
313         } else {
314                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
315         }
316
317         pci_free_irq_vectors(pdev);
318         hcd->msix_enabled = 0;
319 }
320
321 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323         struct usb_hcd *hcd = xhci_to_hcd(xhci);
324
325         if (hcd->msix_enabled) {
326                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327                 int i;
328
329                 for (i = 0; i < xhci->msix_count; i++)
330                         synchronize_irq(pci_irq_vector(pdev, i));
331         }
332 }
333
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337         struct pci_dev  *pdev;
338         int ret;
339
340         /* The xhci platform device has set up IRQs through usb_add_hcd. */
341         if (xhci->quirks & XHCI_PLAT)
342                 return 0;
343
344         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345         /*
346          * Some Fresco Logic host controllers advertise MSI, but fail to
347          * generate interrupts.  Don't even try to enable MSI.
348          */
349         if (xhci->quirks & XHCI_BROKEN_MSI)
350                 goto legacy_irq;
351
352         /* unregister the legacy interrupt */
353         if (hcd->irq)
354                 free_irq(hcd->irq, hcd);
355         hcd->irq = 0;
356
357         ret = xhci_setup_msix(xhci);
358         if (ret)
359                 /* fall back to msi*/
360                 ret = xhci_setup_msi(xhci);
361
362         if (!ret) {
363                 hcd->msi_enabled = 1;
364                 return 0;
365         }
366
367         if (!pdev->irq) {
368                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
369                 return -EINVAL;
370         }
371
372  legacy_irq:
373         if (!strlen(hcd->irq_descr))
374                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
375                          hcd->driver->description, hcd->self.busnum);
376
377         /* fall back to legacy interrupt*/
378         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
379                         hcd->irq_descr, hcd);
380         if (ret) {
381                 xhci_err(xhci, "request interrupt %d failed\n",
382                                 pdev->irq);
383                 return ret;
384         }
385         hcd->irq = pdev->irq;
386         return 0;
387 }
388
389 #else
390
391 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
392 {
393         return 0;
394 }
395
396 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
397 {
398 }
399
400 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
401 {
402 }
403
404 #endif
405
406 static void compliance_mode_recovery(unsigned long arg)
407 {
408         struct xhci_hcd *xhci;
409         struct usb_hcd *hcd;
410         u32 temp;
411         int i;
412
413         xhci = (struct xhci_hcd *)arg;
414
415         for (i = 0; i < xhci->num_usb3_ports; i++) {
416                 temp = readl(xhci->usb3_ports[i]);
417                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
418                         /*
419                          * Compliance Mode Detected. Letting USB Core
420                          * handle the Warm Reset
421                          */
422                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
423                                         "Compliance mode detected->port %d",
424                                         i + 1);
425                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426                                         "Attempting compliance mode recovery");
427                         hcd = xhci->shared_hcd;
428
429                         if (hcd->state == HC_STATE_SUSPENDED)
430                                 usb_hcd_resume_root_hub(hcd);
431
432                         usb_hcd_poll_rh_status(hcd);
433                 }
434         }
435
436         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
437                 mod_timer(&xhci->comp_mode_recovery_timer,
438                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
439 }
440
441 /*
442  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
443  * that causes ports behind that hardware to enter compliance mode sometimes.
444  * The quirk creates a timer that polls every 2 seconds the link state of
445  * each host controller's port and recovers it by issuing a Warm reset
446  * if Compliance mode is detected, otherwise the port will become "dead" (no
447  * device connections or disconnections will be detected anymore). Becasue no
448  * status event is generated when entering compliance mode (per xhci spec),
449  * this quirk is needed on systems that have the failing hardware installed.
450  */
451 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
452 {
453         xhci->port_status_u0 = 0;
454         setup_timer(&xhci->comp_mode_recovery_timer,
455                     compliance_mode_recovery, (unsigned long)xhci);
456         xhci->comp_mode_recovery_timer.expires = jiffies +
457                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
458
459         add_timer(&xhci->comp_mode_recovery_timer);
460         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                         "Compliance mode recovery timer initialized");
462 }
463
464 /*
465  * This function identifies the systems that have installed the SN65LVPE502CP
466  * USB3.0 re-driver and that need the Compliance Mode Quirk.
467  * Systems:
468  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
469  */
470 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
471 {
472         const char *dmi_product_name, *dmi_sys_vendor;
473
474         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
475         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
476         if (!dmi_product_name || !dmi_sys_vendor)
477                 return false;
478
479         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
480                 return false;
481
482         if (strstr(dmi_product_name, "Z420") ||
483                         strstr(dmi_product_name, "Z620") ||
484                         strstr(dmi_product_name, "Z820") ||
485                         strstr(dmi_product_name, "Z1 Workstation"))
486                 return true;
487
488         return false;
489 }
490
491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
492 {
493         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
494 }
495
496
497 /*
498  * Initialize memory for HCD and xHC (one-time init).
499  *
500  * Program the PAGESIZE register, initialize the device context array, create
501  * device contexts (?), set up a command ring segment (or two?), create event
502  * ring (one for now).
503  */
504 static int xhci_init(struct usb_hcd *hcd)
505 {
506         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507         int retval = 0;
508
509         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
510         spin_lock_init(&xhci->lock);
511         if (xhci->hci_version == 0x95 && link_quirk) {
512                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
513                                 "QUIRK: Not clearing Link TRB chain bits.");
514                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
515         } else {
516                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
517                                 "xHCI doesn't need link TRB QUIRK");
518         }
519         retval = xhci_mem_init(xhci, GFP_KERNEL);
520         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
521
522         /* Initializing Compliance Mode Recovery Data If Needed */
523         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
524                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
525                 compliance_mode_recovery_timer_init(xhci);
526         }
527
528         return retval;
529 }
530
531 /*-------------------------------------------------------------------------*/
532
533
534 static int xhci_run_finished(struct xhci_hcd *xhci)
535 {
536         if (xhci_start(xhci)) {
537                 xhci_halt(xhci);
538                 return -ENODEV;
539         }
540         xhci->shared_hcd->state = HC_STATE_RUNNING;
541         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
542
543         if (xhci->quirks & XHCI_NEC_HOST)
544                 xhci_ring_cmd_db(xhci);
545
546         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547                         "Finished xhci_run for USB3 roothub");
548         return 0;
549 }
550
551 /*
552  * Start the HC after it was halted.
553  *
554  * This function is called by the USB core when the HC driver is added.
555  * Its opposite is xhci_stop().
556  *
557  * xhci_init() must be called once before this function can be called.
558  * Reset the HC, enable device slot contexts, program DCBAAP, and
559  * set command ring pointer and event ring pointer.
560  *
561  * Setup MSI-X vectors and enable interrupts.
562  */
563 int xhci_run(struct usb_hcd *hcd)
564 {
565         u32 temp;
566         u64 temp_64;
567         int ret;
568         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
569
570         /* Start the xHCI host controller running only after the USB 2.0 roothub
571          * is setup.
572          */
573
574         hcd->uses_new_polling = 1;
575         if (!usb_hcd_is_primary_hcd(hcd))
576                 return xhci_run_finished(xhci);
577
578         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
579
580         ret = xhci_try_enable_msi(hcd);
581         if (ret)
582                 return ret;
583
584         xhci_dbg_cmd_ptrs(xhci);
585
586         xhci_dbg(xhci, "ERST memory map follows:\n");
587         xhci_dbg_erst(xhci, &xhci->erst);
588         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
589         temp_64 &= ~ERST_PTR_MASK;
590         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
592
593         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594                         "// Set the interrupt modulation register");
595         temp = readl(&xhci->ir_set->irq_control);
596         temp &= ~ER_IRQ_INTERVAL_MASK;
597         /*
598          * the increment interval is 8 times as much as that defined
599          * in xHCI spec on MTK's controller
600          */
601         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
602         writel(temp, &xhci->ir_set->irq_control);
603
604         /* Set the HCD state before we enable the irqs */
605         temp = readl(&xhci->op_regs->command);
606         temp |= (CMD_EIE);
607         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608                         "// Enable interrupts, cmd = 0x%x.", temp);
609         writel(temp, &xhci->op_regs->command);
610
611         temp = readl(&xhci->ir_set->irq_pending);
612         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
614                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
615         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
616         xhci_print_ir_set(xhci, 0);
617
618         if (xhci->quirks & XHCI_NEC_HOST) {
619                 struct xhci_command *command;
620
621                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
622                 if (!command)
623                         return -ENOMEM;
624
625                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
626                                 TRB_TYPE(TRB_NEC_GET_FW));
627         }
628         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629                         "Finished xhci_run for USB2 roothub");
630         return 0;
631 }
632 EXPORT_SYMBOL_GPL(xhci_run);
633
634 /*
635  * Stop xHCI driver.
636  *
637  * This function is called by the USB core when the HC driver is removed.
638  * Its opposite is xhci_run().
639  *
640  * Disable device contexts, disable IRQs, and quiesce the HC.
641  * Reset the HC, finish any completed transactions, and cleanup memory.
642  */
643 static void xhci_stop(struct usb_hcd *hcd)
644 {
645         u32 temp;
646         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647
648         mutex_lock(&xhci->mutex);
649
650         /* Only halt host and free memory after both hcds are removed */
651         if (!usb_hcd_is_primary_hcd(hcd)) {
652                 /* usb core will free this hcd shortly, unset pointer */
653                 xhci->shared_hcd = NULL;
654                 mutex_unlock(&xhci->mutex);
655                 return;
656         }
657
658         spin_lock_irq(&xhci->lock);
659         xhci->xhc_state |= XHCI_STATE_HALTED;
660         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
661         xhci_halt(xhci);
662         xhci_reset(xhci);
663         spin_unlock_irq(&xhci->lock);
664
665         xhci_cleanup_msix(xhci);
666
667         /* Deleting Compliance Mode Recovery Timer */
668         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
669                         (!(xhci_all_ports_seen_u0(xhci)))) {
670                 del_timer_sync(&xhci->comp_mode_recovery_timer);
671                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
672                                 "%s: compliance mode recovery timer deleted",
673                                 __func__);
674         }
675
676         if (xhci->quirks & XHCI_AMD_PLL_FIX)
677                 usb_amd_dev_put();
678
679         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680                         "// Disabling event ring interrupts");
681         temp = readl(&xhci->op_regs->status);
682         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
683         temp = readl(&xhci->ir_set->irq_pending);
684         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
685         xhci_print_ir_set(xhci, 0);
686
687         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
688         xhci_mem_cleanup(xhci);
689         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
690                         "xhci_stop completed - status = %x",
691                         readl(&xhci->op_regs->status));
692         mutex_unlock(&xhci->mutex);
693 }
694
695 /*
696  * Shutdown HC (not bus-specific)
697  *
698  * This is called when the machine is rebooting or halting.  We assume that the
699  * machine will be powered off, and the HC's internal state will be reset.
700  * Don't bother to free memory.
701  *
702  * This will only ever be called with the main usb_hcd (the USB3 roothub).
703  */
704 static void xhci_shutdown(struct usb_hcd *hcd)
705 {
706         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
707
708         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
709                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
710
711         spin_lock_irq(&xhci->lock);
712         xhci_halt(xhci);
713         /* Workaround for spurious wakeups at shutdown with HSW */
714         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
715                 xhci_reset(xhci);
716         spin_unlock_irq(&xhci->lock);
717
718         xhci_cleanup_msix(xhci);
719
720         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
721                         "xhci_shutdown completed - status = %x",
722                         readl(&xhci->op_regs->status));
723
724         /* Yet another workaround for spurious wakeups at shutdown with HSW */
725         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
726                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
727 }
728
729 #ifdef CONFIG_PM
730 static void xhci_save_registers(struct xhci_hcd *xhci)
731 {
732         xhci->s3.command = readl(&xhci->op_regs->command);
733         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
734         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
735         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
736         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
737         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
738         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
739         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
740         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
741 }
742
743 static void xhci_restore_registers(struct xhci_hcd *xhci)
744 {
745         writel(xhci->s3.command, &xhci->op_regs->command);
746         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
747         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
748         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
749         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
750         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
751         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
752         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
753         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
754 }
755
756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757 {
758         u64     val_64;
759
760         /* step 2: initialize command ring buffer */
761         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764                                       xhci->cmd_ring->dequeue) &
765                  (u64) ~CMD_RING_RSVD_BITS) |
766                 xhci->cmd_ring->cycle_state;
767         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768                         "// Setting command ring address to 0x%llx",
769                         (long unsigned long) val_64);
770         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771 }
772
773 /*
774  * The whole command ring must be cleared to zero when we suspend the host.
775  *
776  * The host doesn't save the command ring pointer in the suspend well, so we
777  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
778  * aligned, because of the reserved bits in the command ring dequeue pointer
779  * register.  Therefore, we can't just set the dequeue pointer back in the
780  * middle of the ring (TRBs are 16-byte aligned).
781  */
782 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783 {
784         struct xhci_ring *ring;
785         struct xhci_segment *seg;
786
787         ring = xhci->cmd_ring;
788         seg = ring->deq_seg;
789         do {
790                 memset(seg->trbs, 0,
791                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793                         cpu_to_le32(~TRB_CYCLE);
794                 seg = seg->next;
795         } while (seg != ring->deq_seg);
796
797         /* Reset the software enqueue and dequeue pointers */
798         ring->deq_seg = ring->first_seg;
799         ring->dequeue = ring->first_seg->trbs;
800         ring->enq_seg = ring->deq_seg;
801         ring->enqueue = ring->dequeue;
802
803         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
804         /*
805          * Ring is now zeroed, so the HW should look for change of ownership
806          * when the cycle bit is set to 1.
807          */
808         ring->cycle_state = 1;
809
810         /*
811          * Reset the hardware dequeue pointer.
812          * Yes, this will need to be re-written after resume, but we're paranoid
813          * and want to make sure the hardware doesn't access bogus memory
814          * because, say, the BIOS or an SMI started the host without changing
815          * the command ring pointers.
816          */
817         xhci_set_cmd_ring_deq(xhci);
818 }
819
820 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
821 {
822         int port_index;
823         __le32 __iomem **port_array;
824         unsigned long flags;
825         u32 t1, t2;
826
827         spin_lock_irqsave(&xhci->lock, flags);
828
829         /* disable usb3 ports Wake bits */
830         port_index = xhci->num_usb3_ports;
831         port_array = xhci->usb3_ports;
832         while (port_index--) {
833                 t1 = readl(port_array[port_index]);
834                 t1 = xhci_port_state_to_neutral(t1);
835                 t2 = t1 & ~PORT_WAKE_BITS;
836                 if (t1 != t2)
837                         writel(t2, port_array[port_index]);
838         }
839
840         /* disable usb2 ports Wake bits */
841         port_index = xhci->num_usb2_ports;
842         port_array = xhci->usb2_ports;
843         while (port_index--) {
844                 t1 = readl(port_array[port_index]);
845                 t1 = xhci_port_state_to_neutral(t1);
846                 t2 = t1 & ~PORT_WAKE_BITS;
847                 if (t1 != t2)
848                         writel(t2, port_array[port_index]);
849         }
850
851         spin_unlock_irqrestore(&xhci->lock, flags);
852 }
853
854 /*
855  * Stop HC (not bus-specific)
856  *
857  * This is called when the machine transition into S3/S4 mode.
858  *
859  */
860 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
861 {
862         int                     rc = 0;
863         unsigned int            delay = XHCI_MAX_HALT_USEC;
864         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
865         u32                     command;
866
867         if (!hcd->state)
868                 return 0;
869
870         if (hcd->state != HC_STATE_SUSPENDED ||
871                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
872                 return -EINVAL;
873
874         /* Clear root port wake on bits if wakeup not allowed. */
875         if (!do_wakeup)
876                 xhci_disable_port_wake_on_bits(xhci);
877
878         /* Don't poll the roothubs on bus suspend. */
879         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
880         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
881         del_timer_sync(&hcd->rh_timer);
882         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
883         del_timer_sync(&xhci->shared_hcd->rh_timer);
884
885         spin_lock_irq(&xhci->lock);
886         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
887         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
888         /* step 1: stop endpoint */
889         /* skipped assuming that port suspend has done */
890
891         /* step 2: clear Run/Stop bit */
892         command = readl(&xhci->op_regs->command);
893         command &= ~CMD_RUN;
894         writel(command, &xhci->op_regs->command);
895
896         /* Some chips from Fresco Logic need an extraordinary delay */
897         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
898
899         if (xhci_handshake(&xhci->op_regs->status,
900                       STS_HALT, STS_HALT, delay)) {
901                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
902                 spin_unlock_irq(&xhci->lock);
903                 return -ETIMEDOUT;
904         }
905         xhci_clear_command_ring(xhci);
906
907         /* step 3: save registers */
908         xhci_save_registers(xhci);
909
910         /* step 4: set CSS flag */
911         command = readl(&xhci->op_regs->command);
912         command |= CMD_CSS;
913         writel(command, &xhci->op_regs->command);
914         if (xhci_handshake(&xhci->op_regs->status,
915                                 STS_SAVE, 0, 10 * 1000)) {
916                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
917                 spin_unlock_irq(&xhci->lock);
918                 return -ETIMEDOUT;
919         }
920         spin_unlock_irq(&xhci->lock);
921
922         /*
923          * Deleting Compliance Mode Recovery Timer because the xHCI Host
924          * is about to be suspended.
925          */
926         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
927                         (!(xhci_all_ports_seen_u0(xhci)))) {
928                 del_timer_sync(&xhci->comp_mode_recovery_timer);
929                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
930                                 "%s: compliance mode recovery timer deleted",
931                                 __func__);
932         }
933
934         /* step 5: remove core well power */
935         /* synchronize irq when using MSI-X */
936         xhci_msix_sync_irqs(xhci);
937
938         return rc;
939 }
940 EXPORT_SYMBOL_GPL(xhci_suspend);
941
942 /*
943  * start xHC (not bus-specific)
944  *
945  * This is called when the machine transition from S3/S4 mode.
946  *
947  */
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
949 {
950         u32                     command, temp = 0, status;
951         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
952         struct usb_hcd          *secondary_hcd;
953         int                     retval = 0;
954         bool                    comp_timer_running = false;
955
956         if (!hcd->state)
957                 return 0;
958
959         /* Wait a bit if either of the roothubs need to settle from the
960          * transition into bus suspend.
961          */
962         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
963                         time_before(jiffies,
964                                 xhci->bus_state[1].next_statechange))
965                 msleep(100);
966
967         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
968         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
969
970         spin_lock_irq(&xhci->lock);
971         if (xhci->quirks & XHCI_RESET_ON_RESUME)
972                 hibernated = true;
973
974         if (!hibernated) {
975                 /* step 1: restore register */
976                 xhci_restore_registers(xhci);
977                 /* step 2: initialize command ring buffer */
978                 xhci_set_cmd_ring_deq(xhci);
979                 /* step 3: restore state and start state*/
980                 /* step 3: set CRS flag */
981                 command = readl(&xhci->op_regs->command);
982                 command |= CMD_CRS;
983                 writel(command, &xhci->op_regs->command);
984                 if (xhci_handshake(&xhci->op_regs->status,
985                               STS_RESTORE, 0, 10 * 1000)) {
986                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
987                         spin_unlock_irq(&xhci->lock);
988                         return -ETIMEDOUT;
989                 }
990                 temp = readl(&xhci->op_regs->status);
991         }
992
993         /* If restore operation fails, re-initialize the HC during resume */
994         if ((temp & STS_SRE) || hibernated) {
995
996                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
997                                 !(xhci_all_ports_seen_u0(xhci))) {
998                         del_timer_sync(&xhci->comp_mode_recovery_timer);
999                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1000                                 "Compliance Mode Recovery Timer deleted!");
1001                 }
1002
1003                 /* Let the USB core know _both_ roothubs lost power. */
1004                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1005                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1006
1007                 xhci_dbg(xhci, "Stop HCD\n");
1008                 xhci_halt(xhci);
1009                 xhci_reset(xhci);
1010                 spin_unlock_irq(&xhci->lock);
1011                 xhci_cleanup_msix(xhci);
1012
1013                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1014                 temp = readl(&xhci->op_regs->status);
1015                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1016                 temp = readl(&xhci->ir_set->irq_pending);
1017                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1018                 xhci_print_ir_set(xhci, 0);
1019
1020                 xhci_dbg(xhci, "cleaning up memory\n");
1021                 xhci_mem_cleanup(xhci);
1022                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1023                             readl(&xhci->op_regs->status));
1024
1025                 /* USB core calls the PCI reinit and start functions twice:
1026                  * first with the primary HCD, and then with the secondary HCD.
1027                  * If we don't do the same, the host will never be started.
1028                  */
1029                 if (!usb_hcd_is_primary_hcd(hcd))
1030                         secondary_hcd = hcd;
1031                 else
1032                         secondary_hcd = xhci->shared_hcd;
1033
1034                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1035                 retval = xhci_init(hcd->primary_hcd);
1036                 if (retval)
1037                         return retval;
1038                 comp_timer_running = true;
1039
1040                 xhci_dbg(xhci, "Start the primary HCD\n");
1041                 retval = xhci_run(hcd->primary_hcd);
1042                 if (!retval) {
1043                         xhci_dbg(xhci, "Start the secondary HCD\n");
1044                         retval = xhci_run(secondary_hcd);
1045                 }
1046                 hcd->state = HC_STATE_SUSPENDED;
1047                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1048                 goto done;
1049         }
1050
1051         /* step 4: set Run/Stop bit */
1052         command = readl(&xhci->op_regs->command);
1053         command |= CMD_RUN;
1054         writel(command, &xhci->op_regs->command);
1055         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1056                   0, 250 * 1000);
1057
1058         /* step 5: walk topology and initialize portsc,
1059          * portpmsc and portli
1060          */
1061         /* this is done in bus_resume */
1062
1063         /* step 6: restart each of the previously
1064          * Running endpoints by ringing their doorbells
1065          */
1066
1067         spin_unlock_irq(&xhci->lock);
1068
1069  done:
1070         if (retval == 0) {
1071                 /* Resume root hubs only when have pending events. */
1072                 status = readl(&xhci->op_regs->status);
1073                 if (status & STS_EINT) {
1074                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1075                         usb_hcd_resume_root_hub(hcd);
1076                 }
1077         }
1078
1079         /*
1080          * If system is subject to the Quirk, Compliance Mode Timer needs to
1081          * be re-initialized Always after a system resume. Ports are subject
1082          * to suffer the Compliance Mode issue again. It doesn't matter if
1083          * ports have entered previously to U0 before system's suspension.
1084          */
1085         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086                 compliance_mode_recovery_timer_init(xhci);
1087
1088         /* Re-enable port polling. */
1089         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1090         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1091         usb_hcd_poll_rh_status(xhci->shared_hcd);
1092         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093         usb_hcd_poll_rh_status(hcd);
1094
1095         return retval;
1096 }
1097 EXPORT_SYMBOL_GPL(xhci_resume);
1098 #endif  /* CONFIG_PM */
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /**
1103  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1104  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1105  * value to right shift 1 for the bitmask.
1106  *
1107  * Index  = (epnum * 2) + direction - 1,
1108  * where direction = 0 for OUT, 1 for IN.
1109  * For control endpoints, the IN index is used (OUT index is unused), so
1110  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1111  */
1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1113 {
1114         unsigned int index;
1115         if (usb_endpoint_xfer_control(desc))
1116                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1117         else
1118                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1119                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1120         return index;
1121 }
1122
1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1124  * address from the XHCI endpoint index.
1125  */
1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1127 {
1128         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1129         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1130         return direction | number;
1131 }
1132
1133 /* Find the flag for this endpoint (for use in the control context).  Use the
1134  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1135  * bit 1, etc.
1136  */
1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1138 {
1139         return 1 << (xhci_get_endpoint_index(desc) + 1);
1140 }
1141
1142 /* Find the flag for this endpoint (for use in the control context).  Use the
1143  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1144  * bit 1, etc.
1145  */
1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1147 {
1148         return 1 << (ep_index + 1);
1149 }
1150
1151 /* Compute the last valid endpoint context index.  Basically, this is the
1152  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1153  * we find the most significant bit set in the added contexts flags.
1154  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1155  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1156  */
1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1158 {
1159         return fls(added_ctxs) - 1;
1160 }
1161
1162 /* Returns 1 if the arguments are OK;
1163  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1164  */
1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1166                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1167                 const char *func) {
1168         struct xhci_hcd *xhci;
1169         struct xhci_virt_device *virt_dev;
1170
1171         if (!hcd || (check_ep && !ep) || !udev) {
1172                 pr_debug("xHCI %s called with invalid args\n", func);
1173                 return -EINVAL;
1174         }
1175         if (!udev->parent) {
1176                 pr_debug("xHCI %s called for root hub\n", func);
1177                 return 0;
1178         }
1179
1180         xhci = hcd_to_xhci(hcd);
1181         if (check_virt_dev) {
1182                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1183                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1184                                         func);
1185                         return -EINVAL;
1186                 }
1187
1188                 virt_dev = xhci->devs[udev->slot_id];
1189                 if (virt_dev->udev != udev) {
1190                         xhci_dbg(xhci, "xHCI %s called with udev and "
1191                                           "virt_dev does not match\n", func);
1192                         return -EINVAL;
1193                 }
1194         }
1195
1196         if (xhci->xhc_state & XHCI_STATE_HALTED)
1197                 return -ENODEV;
1198
1199         return 1;
1200 }
1201
1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1203                 struct usb_device *udev, struct xhci_command *command,
1204                 bool ctx_change, bool must_succeed);
1205
1206 /*
1207  * Full speed devices may have a max packet size greater than 8 bytes, but the
1208  * USB core doesn't know that until it reads the first 8 bytes of the
1209  * descriptor.  If the usb_device's max packet size changes after that point,
1210  * we need to issue an evaluate context command and wait on it.
1211  */
1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1213                 unsigned int ep_index, struct urb *urb)
1214 {
1215         struct xhci_container_ctx *out_ctx;
1216         struct xhci_input_control_ctx *ctrl_ctx;
1217         struct xhci_ep_ctx *ep_ctx;
1218         struct xhci_command *command;
1219         int max_packet_size;
1220         int hw_max_packet_size;
1221         int ret = 0;
1222
1223         out_ctx = xhci->devs[slot_id]->out_ctx;
1224         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1225         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1226         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1227         if (hw_max_packet_size != max_packet_size) {
1228                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1229                                 "Max Packet Size for ep 0 changed.");
1230                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1231                                 "Max packet size in usb_device = %d",
1232                                 max_packet_size);
1233                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234                                 "Max packet size in xHCI HW = %d",
1235                                 hw_max_packet_size);
1236                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237                                 "Issuing evaluate context command.");
1238
1239                 /* Set up the input context flags for the command */
1240                 /* FIXME: This won't work if a non-default control endpoint
1241                  * changes max packet sizes.
1242                  */
1243
1244                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1245                 if (!command)
1246                         return -ENOMEM;
1247
1248                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1249                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1250                 if (!ctrl_ctx) {
1251                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1252                                         __func__);
1253                         ret = -ENOMEM;
1254                         goto command_cleanup;
1255                 }
1256                 /* Set up the modified control endpoint 0 */
1257                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1258                                 xhci->devs[slot_id]->out_ctx, ep_index);
1259
1260                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1261                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1262                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1263
1264                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1265                 ctrl_ctx->drop_flags = 0;
1266
1267                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1268                                 true, false);
1269
1270                 /* Clean up the input context for later use by bandwidth
1271                  * functions.
1272                  */
1273                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1274 command_cleanup:
1275                 kfree(command->completion);
1276                 kfree(command);
1277         }
1278         return ret;
1279 }
1280
1281 /*
1282  * non-error returns are a promise to giveback() the urb later
1283  * we drop ownership so next owner (or urb unlink) can get it
1284  */
1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1286 {
1287         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1288         unsigned long flags;
1289         int ret = 0;
1290         unsigned int slot_id, ep_index, ep_state;
1291         struct urb_priv *urb_priv;
1292         int num_tds;
1293
1294         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1295                                         true, true, __func__) <= 0)
1296                 return -EINVAL;
1297
1298         slot_id = urb->dev->slot_id;
1299         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1300
1301         if (!HCD_HW_ACCESSIBLE(hcd)) {
1302                 if (!in_interrupt())
1303                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1304                 return -ESHUTDOWN;
1305         }
1306
1307         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1308                 num_tds = urb->number_of_packets;
1309         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1310             urb->transfer_buffer_length > 0 &&
1311             urb->transfer_flags & URB_ZERO_PACKET &&
1312             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1313                 num_tds = 2;
1314         else
1315                 num_tds = 1;
1316
1317         urb_priv = kzalloc(sizeof(struct urb_priv) +
1318                            num_tds * sizeof(struct xhci_td), mem_flags);
1319         if (!urb_priv)
1320                 return -ENOMEM;
1321
1322         urb_priv->num_tds = num_tds;
1323         urb_priv->num_tds_done = 0;
1324         urb->hcpriv = urb_priv;
1325
1326         trace_xhci_urb_enqueue(urb);
1327
1328         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329                 /* Check to see if the max packet size for the default control
1330                  * endpoint changed during FS device enumeration
1331                  */
1332                 if (urb->dev->speed == USB_SPEED_FULL) {
1333                         ret = xhci_check_maxpacket(xhci, slot_id,
1334                                         ep_index, urb);
1335                         if (ret < 0) {
1336                                 xhci_urb_free_priv(urb_priv);
1337                                 urb->hcpriv = NULL;
1338                                 return ret;
1339                         }
1340                 }
1341         }
1342
1343         spin_lock_irqsave(&xhci->lock, flags);
1344
1345         if (xhci->xhc_state & XHCI_STATE_DYING) {
1346                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1347                          urb->ep->desc.bEndpointAddress, urb);
1348                 ret = -ESHUTDOWN;
1349                 goto free_priv;
1350         }
1351
1352         switch (usb_endpoint_type(&urb->ep->desc)) {
1353
1354         case USB_ENDPOINT_XFER_CONTROL:
1355                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1356                                          slot_id, ep_index);
1357                 break;
1358         case USB_ENDPOINT_XFER_BULK:
1359                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1360                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1361                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362                                   ep_state);
1363                         ret = -EINVAL;
1364                         break;
1365                 }
1366                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367                                          slot_id, ep_index);
1368                 break;
1369
1370
1371         case USB_ENDPOINT_XFER_INT:
1372                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1373                                 slot_id, ep_index);
1374                 break;
1375
1376         case USB_ENDPOINT_XFER_ISOC:
1377                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1378                                 slot_id, ep_index);
1379         }
1380
1381         if (ret) {
1382 free_priv:
1383                 xhci_urb_free_priv(urb_priv);
1384                 urb->hcpriv = NULL;
1385         }
1386         spin_unlock_irqrestore(&xhci->lock, flags);
1387         return ret;
1388 }
1389
1390 /*
1391  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1392  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1393  * should pick up where it left off in the TD, unless a Set Transfer Ring
1394  * Dequeue Pointer is issued.
1395  *
1396  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1397  * the ring.  Since the ring is a contiguous structure, they can't be physically
1398  * removed.  Instead, there are two options:
1399  *
1400  *  1) If the HC is in the middle of processing the URB to be canceled, we
1401  *     simply move the ring's dequeue pointer past those TRBs using the Set
1402  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1403  *     when drivers timeout on the last submitted URB and attempt to cancel.
1404  *
1405  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1406  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1407  *     HC will need to invalidate the any TRBs it has cached after the stop
1408  *     endpoint command, as noted in the xHCI 0.95 errata.
1409  *
1410  *  3) The TD may have completed by the time the Stop Endpoint Command
1411  *     completes, so software needs to handle that case too.
1412  *
1413  * This function should protect against the TD enqueueing code ringing the
1414  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1415  * It also needs to account for multiple cancellations on happening at the same
1416  * time for the same endpoint.
1417  *
1418  * Note that this function can be called in any context, or so says
1419  * usb_hcd_unlink_urb()
1420  */
1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1422 {
1423         unsigned long flags;
1424         int ret, i;
1425         u32 temp;
1426         struct xhci_hcd *xhci;
1427         struct urb_priv *urb_priv;
1428         struct xhci_td *td;
1429         unsigned int ep_index;
1430         struct xhci_ring *ep_ring;
1431         struct xhci_virt_ep *ep;
1432         struct xhci_command *command;
1433         struct xhci_virt_device *vdev;
1434
1435         xhci = hcd_to_xhci(hcd);
1436         spin_lock_irqsave(&xhci->lock, flags);
1437
1438         trace_xhci_urb_dequeue(urb);
1439
1440         /* Make sure the URB hasn't completed or been unlinked already */
1441         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1442         if (ret)
1443                 goto done;
1444
1445         /* give back URB now if we can't queue it for cancel */
1446         vdev = xhci->devs[urb->dev->slot_id];
1447         urb_priv = urb->hcpriv;
1448         if (!vdev || !urb_priv)
1449                 goto err_giveback;
1450
1451         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1452         ep = &vdev->eps[ep_index];
1453         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1454         if (!ep || !ep_ring)
1455                 goto err_giveback;
1456
1457         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1458         temp = readl(&xhci->op_regs->status);
1459         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1460                 xhci_hc_died(xhci);
1461                 goto done;
1462         }
1463
1464         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1465                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1466                                 "HC halted, freeing TD manually.");
1467                 for (i = urb_priv->num_tds_done;
1468                      i < urb_priv->num_tds;
1469                      i++) {
1470                         td = &urb_priv->td[i];
1471                         if (!list_empty(&td->td_list))
1472                                 list_del_init(&td->td_list);
1473                         if (!list_empty(&td->cancelled_td_list))
1474                                 list_del_init(&td->cancelled_td_list);
1475                 }
1476                 goto err_giveback;
1477         }
1478
1479         i = urb_priv->num_tds_done;
1480         if (i < urb_priv->num_tds)
1481                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1482                                 "Cancel URB %p, dev %s, ep 0x%x, "
1483                                 "starting at offset 0x%llx",
1484                                 urb, urb->dev->devpath,
1485                                 urb->ep->desc.bEndpointAddress,
1486                                 (unsigned long long) xhci_trb_virt_to_dma(
1487                                         urb_priv->td[i].start_seg,
1488                                         urb_priv->td[i].first_trb));
1489
1490         for (; i < urb_priv->num_tds; i++) {
1491                 td = &urb_priv->td[i];
1492                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1493         }
1494
1495         /* Queue a stop endpoint command, but only if this is
1496          * the first cancellation to be handled.
1497          */
1498         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1499                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1500                 if (!command) {
1501                         ret = -ENOMEM;
1502                         goto done;
1503                 }
1504                 ep->ep_state |= EP_STOP_CMD_PENDING;
1505                 ep->stop_cmd_timer.expires = jiffies +
1506                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1507                 add_timer(&ep->stop_cmd_timer);
1508                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1509                                          ep_index, 0);
1510                 xhci_ring_cmd_db(xhci);
1511         }
1512 done:
1513         spin_unlock_irqrestore(&xhci->lock, flags);
1514         return ret;
1515
1516 err_giveback:
1517         if (urb_priv)
1518                 xhci_urb_free_priv(urb_priv);
1519         usb_hcd_unlink_urb_from_ep(hcd, urb);
1520         spin_unlock_irqrestore(&xhci->lock, flags);
1521         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1522         return ret;
1523 }
1524
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526  * Only one call to this function is allowed per endpoint before
1527  * check_bandwidth() or reset_bandwidth() must be called.
1528  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529  * add the endpoint to the schedule with possibly new parameters denoted by a
1530  * different endpoint descriptor in usb_host_endpoint.
1531  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532  * not allowed.
1533  *
1534  * The USB core will not allow URBs to be queued to an endpoint that is being
1535  * disabled, so there's no need for mutual exclusion to protect
1536  * the xhci->devs[slot_id] structure.
1537  */
1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539                 struct usb_host_endpoint *ep)
1540 {
1541         struct xhci_hcd *xhci;
1542         struct xhci_container_ctx *in_ctx, *out_ctx;
1543         struct xhci_input_control_ctx *ctrl_ctx;
1544         unsigned int ep_index;
1545         struct xhci_ep_ctx *ep_ctx;
1546         u32 drop_flag;
1547         u32 new_add_flags, new_drop_flags;
1548         int ret;
1549
1550         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1551         if (ret <= 0)
1552                 return ret;
1553         xhci = hcd_to_xhci(hcd);
1554         if (xhci->xhc_state & XHCI_STATE_DYING)
1555                 return -ENODEV;
1556
1557         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1558         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1559         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1560                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1561                                 __func__, drop_flag);
1562                 return 0;
1563         }
1564
1565         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1566         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1567         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1568         if (!ctrl_ctx) {
1569                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570                                 __func__);
1571                 return 0;
1572         }
1573
1574         ep_index = xhci_get_endpoint_index(&ep->desc);
1575         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576         /* If the HC already knows the endpoint is disabled,
1577          * or the HCD has noted it is disabled, ignore this request
1578          */
1579         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1580             le32_to_cpu(ctrl_ctx->drop_flags) &
1581             xhci_get_endpoint_flag(&ep->desc)) {
1582                 /* Do not warn when called after a usb_device_reset */
1583                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1584                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585                                   __func__, ep);
1586                 return 0;
1587         }
1588
1589         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591
1592         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594
1595         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1596
1597         if (xhci->quirks & XHCI_MTK_HOST)
1598                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1599
1600         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1601                         (unsigned int) ep->desc.bEndpointAddress,
1602                         udev->slot_id,
1603                         (unsigned int) new_drop_flags,
1604                         (unsigned int) new_add_flags);
1605         return 0;
1606 }
1607
1608 /* Add an endpoint to a new possible bandwidth configuration for this device.
1609  * Only one call to this function is allowed per endpoint before
1610  * check_bandwidth() or reset_bandwidth() must be called.
1611  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1612  * add the endpoint to the schedule with possibly new parameters denoted by a
1613  * different endpoint descriptor in usb_host_endpoint.
1614  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1615  * not allowed.
1616  *
1617  * The USB core will not allow URBs to be queued to an endpoint until the
1618  * configuration or alt setting is installed in the device, so there's no need
1619  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1620  */
1621 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1622                 struct usb_host_endpoint *ep)
1623 {
1624         struct xhci_hcd *xhci;
1625         struct xhci_container_ctx *in_ctx;
1626         unsigned int ep_index;
1627         struct xhci_input_control_ctx *ctrl_ctx;
1628         u32 added_ctxs;
1629         u32 new_add_flags, new_drop_flags;
1630         struct xhci_virt_device *virt_dev;
1631         int ret = 0;
1632
1633         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1634         if (ret <= 0) {
1635                 /* So we won't queue a reset ep command for a root hub */
1636                 ep->hcpriv = NULL;
1637                 return ret;
1638         }
1639         xhci = hcd_to_xhci(hcd);
1640         if (xhci->xhc_state & XHCI_STATE_DYING)
1641                 return -ENODEV;
1642
1643         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1644         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1645                 /* FIXME when we have to issue an evaluate endpoint command to
1646                  * deal with ep0 max packet size changing once we get the
1647                  * descriptors
1648                  */
1649                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1650                                 __func__, added_ctxs);
1651                 return 0;
1652         }
1653
1654         virt_dev = xhci->devs[udev->slot_id];
1655         in_ctx = virt_dev->in_ctx;
1656         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1657         if (!ctrl_ctx) {
1658                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1659                                 __func__);
1660                 return 0;
1661         }
1662
1663         ep_index = xhci_get_endpoint_index(&ep->desc);
1664         /* If this endpoint is already in use, and the upper layers are trying
1665          * to add it again without dropping it, reject the addition.
1666          */
1667         if (virt_dev->eps[ep_index].ring &&
1668                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1669                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1670                                 "without dropping it.\n",
1671                                 (unsigned int) ep->desc.bEndpointAddress);
1672                 return -EINVAL;
1673         }
1674
1675         /* If the HCD has already noted the endpoint is enabled,
1676          * ignore this request.
1677          */
1678         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1679                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1680                                 __func__, ep);
1681                 return 0;
1682         }
1683
1684         /*
1685          * Configuration and alternate setting changes must be done in
1686          * process context, not interrupt context (or so documenation
1687          * for usb_set_interface() and usb_set_configuration() claim).
1688          */
1689         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1690                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1691                                 __func__, ep->desc.bEndpointAddress);
1692                 return -ENOMEM;
1693         }
1694
1695         if (xhci->quirks & XHCI_MTK_HOST) {
1696                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1697                 if (ret < 0) {
1698                         xhci_free_endpoint_ring(xhci, virt_dev, ep_index);
1699                         return ret;
1700                 }
1701         }
1702
1703         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1704         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1705
1706         /* If xhci_endpoint_disable() was called for this endpoint, but the
1707          * xHC hasn't been notified yet through the check_bandwidth() call,
1708          * this re-adds a new state for the endpoint from the new endpoint
1709          * descriptors.  We must drop and re-add this endpoint, so we leave the
1710          * drop flags alone.
1711          */
1712         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1713
1714         /* Store the usb_device pointer for later use */
1715         ep->hcpriv = udev;
1716
1717         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1718                         (unsigned int) ep->desc.bEndpointAddress,
1719                         udev->slot_id,
1720                         (unsigned int) new_drop_flags,
1721                         (unsigned int) new_add_flags);
1722         return 0;
1723 }
1724
1725 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1726 {
1727         struct xhci_input_control_ctx *ctrl_ctx;
1728         struct xhci_ep_ctx *ep_ctx;
1729         struct xhci_slot_ctx *slot_ctx;
1730         int i;
1731
1732         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1733         if (!ctrl_ctx) {
1734                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1735                                 __func__);
1736                 return;
1737         }
1738
1739         /* When a device's add flag and drop flag are zero, any subsequent
1740          * configure endpoint command will leave that endpoint's state
1741          * untouched.  Make sure we don't leave any old state in the input
1742          * endpoint contexts.
1743          */
1744         ctrl_ctx->drop_flags = 0;
1745         ctrl_ctx->add_flags = 0;
1746         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1747         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1748         /* Endpoint 0 is always valid */
1749         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1750         for (i = 1; i < 31; i++) {
1751                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1752                 ep_ctx->ep_info = 0;
1753                 ep_ctx->ep_info2 = 0;
1754                 ep_ctx->deq = 0;
1755                 ep_ctx->tx_info = 0;
1756         }
1757 }
1758
1759 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1760                 struct usb_device *udev, u32 *cmd_status)
1761 {
1762         int ret;
1763
1764         switch (*cmd_status) {
1765         case COMP_COMMAND_ABORTED:
1766         case COMP_COMMAND_RING_STOPPED:
1767                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1768                 ret = -ETIME;
1769                 break;
1770         case COMP_RESOURCE_ERROR:
1771                 dev_warn(&udev->dev,
1772                          "Not enough host controller resources for new device state.\n");
1773                 ret = -ENOMEM;
1774                 /* FIXME: can we allocate more resources for the HC? */
1775                 break;
1776         case COMP_BANDWIDTH_ERROR:
1777         case COMP_SECONDARY_BANDWIDTH_ERROR:
1778                 dev_warn(&udev->dev,
1779                          "Not enough bandwidth for new device state.\n");
1780                 ret = -ENOSPC;
1781                 /* FIXME: can we go back to the old state? */
1782                 break;
1783         case COMP_TRB_ERROR:
1784                 /* the HCD set up something wrong */
1785                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1786                                 "add flag = 1, "
1787                                 "and endpoint is not disabled.\n");
1788                 ret = -EINVAL;
1789                 break;
1790         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1791                 dev_warn(&udev->dev,
1792                          "ERROR: Incompatible device for endpoint configure command.\n");
1793                 ret = -ENODEV;
1794                 break;
1795         case COMP_SUCCESS:
1796                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1797                                 "Successful Endpoint Configure command");
1798                 ret = 0;
1799                 break;
1800         default:
1801                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1802                                 *cmd_status);
1803                 ret = -EINVAL;
1804                 break;
1805         }
1806         return ret;
1807 }
1808
1809 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1810                 struct usb_device *udev, u32 *cmd_status)
1811 {
1812         int ret;
1813
1814         switch (*cmd_status) {
1815         case COMP_COMMAND_ABORTED:
1816         case COMP_COMMAND_RING_STOPPED:
1817                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1818                 ret = -ETIME;
1819                 break;
1820         case COMP_PARAMETER_ERROR:
1821                 dev_warn(&udev->dev,
1822                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1823                 ret = -EINVAL;
1824                 break;
1825         case COMP_SLOT_NOT_ENABLED_ERROR:
1826                 dev_warn(&udev->dev,
1827                         "WARN: slot not enabled for evaluate context command.\n");
1828                 ret = -EINVAL;
1829                 break;
1830         case COMP_CONTEXT_STATE_ERROR:
1831                 dev_warn(&udev->dev,
1832                         "WARN: invalid context state for evaluate context command.\n");
1833                 ret = -EINVAL;
1834                 break;
1835         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1836                 dev_warn(&udev->dev,
1837                         "ERROR: Incompatible device for evaluate context command.\n");
1838                 ret = -ENODEV;
1839                 break;
1840         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1841                 /* Max Exit Latency too large error */
1842                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1843                 ret = -EINVAL;
1844                 break;
1845         case COMP_SUCCESS:
1846                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1847                                 "Successful evaluate context command");
1848                 ret = 0;
1849                 break;
1850         default:
1851                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1852                         *cmd_status);
1853                 ret = -EINVAL;
1854                 break;
1855         }
1856         return ret;
1857 }
1858
1859 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1860                 struct xhci_input_control_ctx *ctrl_ctx)
1861 {
1862         u32 valid_add_flags;
1863         u32 valid_drop_flags;
1864
1865         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1866          * (bit 1).  The default control endpoint is added during the Address
1867          * Device command and is never removed until the slot is disabled.
1868          */
1869         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1870         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1871
1872         /* Use hweight32 to count the number of ones in the add flags, or
1873          * number of endpoints added.  Don't count endpoints that are changed
1874          * (both added and dropped).
1875          */
1876         return hweight32(valid_add_flags) -
1877                 hweight32(valid_add_flags & valid_drop_flags);
1878 }
1879
1880 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1881                 struct xhci_input_control_ctx *ctrl_ctx)
1882 {
1883         u32 valid_add_flags;
1884         u32 valid_drop_flags;
1885
1886         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1887         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1888
1889         return hweight32(valid_drop_flags) -
1890                 hweight32(valid_add_flags & valid_drop_flags);
1891 }
1892
1893 /*
1894  * We need to reserve the new number of endpoints before the configure endpoint
1895  * command completes.  We can't subtract the dropped endpoints from the number
1896  * of active endpoints until the command completes because we can oversubscribe
1897  * the host in this case:
1898  *
1899  *  - the first configure endpoint command drops more endpoints than it adds
1900  *  - a second configure endpoint command that adds more endpoints is queued
1901  *  - the first configure endpoint command fails, so the config is unchanged
1902  *  - the second command may succeed, even though there isn't enough resources
1903  *
1904  * Must be called with xhci->lock held.
1905  */
1906 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1907                 struct xhci_input_control_ctx *ctrl_ctx)
1908 {
1909         u32 added_eps;
1910
1911         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1912         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1913                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1914                                 "Not enough ep ctxs: "
1915                                 "%u active, need to add %u, limit is %u.",
1916                                 xhci->num_active_eps, added_eps,
1917                                 xhci->limit_active_eps);
1918                 return -ENOMEM;
1919         }
1920         xhci->num_active_eps += added_eps;
1921         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1922                         "Adding %u ep ctxs, %u now active.", added_eps,
1923                         xhci->num_active_eps);
1924         return 0;
1925 }
1926
1927 /*
1928  * The configure endpoint was failed by the xHC for some other reason, so we
1929  * need to revert the resources that failed configuration would have used.
1930  *
1931  * Must be called with xhci->lock held.
1932  */
1933 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1934                 struct xhci_input_control_ctx *ctrl_ctx)
1935 {
1936         u32 num_failed_eps;
1937
1938         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1939         xhci->num_active_eps -= num_failed_eps;
1940         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1941                         "Removing %u failed ep ctxs, %u now active.",
1942                         num_failed_eps,
1943                         xhci->num_active_eps);
1944 }
1945
1946 /*
1947  * Now that the command has completed, clean up the active endpoint count by
1948  * subtracting out the endpoints that were dropped (but not changed).
1949  *
1950  * Must be called with xhci->lock held.
1951  */
1952 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1953                 struct xhci_input_control_ctx *ctrl_ctx)
1954 {
1955         u32 num_dropped_eps;
1956
1957         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1958         xhci->num_active_eps -= num_dropped_eps;
1959         if (num_dropped_eps)
1960                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1961                                 "Removing %u dropped ep ctxs, %u now active.",
1962                                 num_dropped_eps,
1963                                 xhci->num_active_eps);
1964 }
1965
1966 static unsigned int xhci_get_block_size(struct usb_device *udev)
1967 {
1968         switch (udev->speed) {
1969         case USB_SPEED_LOW:
1970         case USB_SPEED_FULL:
1971                 return FS_BLOCK;
1972         case USB_SPEED_HIGH:
1973                 return HS_BLOCK;
1974         case USB_SPEED_SUPER:
1975         case USB_SPEED_SUPER_PLUS:
1976                 return SS_BLOCK;
1977         case USB_SPEED_UNKNOWN:
1978         case USB_SPEED_WIRELESS:
1979         default:
1980                 /* Should never happen */
1981                 return 1;
1982         }
1983 }
1984
1985 static unsigned int
1986 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1987 {
1988         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1989                 return LS_OVERHEAD;
1990         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1991                 return FS_OVERHEAD;
1992         return HS_OVERHEAD;
1993 }
1994
1995 /* If we are changing a LS/FS device under a HS hub,
1996  * make sure (if we are activating a new TT) that the HS bus has enough
1997  * bandwidth for this new TT.
1998  */
1999 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2000                 struct xhci_virt_device *virt_dev,
2001                 int old_active_eps)
2002 {
2003         struct xhci_interval_bw_table *bw_table;
2004         struct xhci_tt_bw_info *tt_info;
2005
2006         /* Find the bandwidth table for the root port this TT is attached to. */
2007         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2008         tt_info = virt_dev->tt_info;
2009         /* If this TT already had active endpoints, the bandwidth for this TT
2010          * has already been added.  Removing all periodic endpoints (and thus
2011          * making the TT enactive) will only decrease the bandwidth used.
2012          */
2013         if (old_active_eps)
2014                 return 0;
2015         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2016                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2017                         return -ENOMEM;
2018                 return 0;
2019         }
2020         /* Not sure why we would have no new active endpoints...
2021          *
2022          * Maybe because of an Evaluate Context change for a hub update or a
2023          * control endpoint 0 max packet size change?
2024          * FIXME: skip the bandwidth calculation in that case.
2025          */
2026         return 0;
2027 }
2028
2029 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2030                 struct xhci_virt_device *virt_dev)
2031 {
2032         unsigned int bw_reserved;
2033
2034         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2035         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2036                 return -ENOMEM;
2037
2038         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2039         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2040                 return -ENOMEM;
2041
2042         return 0;
2043 }
2044
2045 /*
2046  * This algorithm is a very conservative estimate of the worst-case scheduling
2047  * scenario for any one interval.  The hardware dynamically schedules the
2048  * packets, so we can't tell which microframe could be the limiting factor in
2049  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2050  *
2051  * Obviously, we can't solve an NP complete problem to find the minimum worst
2052  * case scenario.  Instead, we come up with an estimate that is no less than
2053  * the worst case bandwidth used for any one microframe, but may be an
2054  * over-estimate.
2055  *
2056  * We walk the requirements for each endpoint by interval, starting with the
2057  * smallest interval, and place packets in the schedule where there is only one
2058  * possible way to schedule packets for that interval.  In order to simplify
2059  * this algorithm, we record the largest max packet size for each interval, and
2060  * assume all packets will be that size.
2061  *
2062  * For interval 0, we obviously must schedule all packets for each interval.
2063  * The bandwidth for interval 0 is just the amount of data to be transmitted
2064  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2065  * the number of packets).
2066  *
2067  * For interval 1, we have two possible microframes to schedule those packets
2068  * in.  For this algorithm, if we can schedule the same number of packets for
2069  * each possible scheduling opportunity (each microframe), we will do so.  The
2070  * remaining number of packets will be saved to be transmitted in the gaps in
2071  * the next interval's scheduling sequence.
2072  *
2073  * As we move those remaining packets to be scheduled with interval 2 packets,
2074  * we have to double the number of remaining packets to transmit.  This is
2075  * because the intervals are actually powers of 2, and we would be transmitting
2076  * the previous interval's packets twice in this interval.  We also have to be
2077  * sure that when we look at the largest max packet size for this interval, we
2078  * also look at the largest max packet size for the remaining packets and take
2079  * the greater of the two.
2080  *
2081  * The algorithm continues to evenly distribute packets in each scheduling
2082  * opportunity, and push the remaining packets out, until we get to the last
2083  * interval.  Then those packets and their associated overhead are just added
2084  * to the bandwidth used.
2085  */
2086 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2087                 struct xhci_virt_device *virt_dev,
2088                 int old_active_eps)
2089 {
2090         unsigned int bw_reserved;
2091         unsigned int max_bandwidth;
2092         unsigned int bw_used;
2093         unsigned int block_size;
2094         struct xhci_interval_bw_table *bw_table;
2095         unsigned int packet_size = 0;
2096         unsigned int overhead = 0;
2097         unsigned int packets_transmitted = 0;
2098         unsigned int packets_remaining = 0;
2099         unsigned int i;
2100
2101         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2102                 return xhci_check_ss_bw(xhci, virt_dev);
2103
2104         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2105                 max_bandwidth = HS_BW_LIMIT;
2106                 /* Convert percent of bus BW reserved to blocks reserved */
2107                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2108         } else {
2109                 max_bandwidth = FS_BW_LIMIT;
2110                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2111         }
2112
2113         bw_table = virt_dev->bw_table;
2114         /* We need to translate the max packet size and max ESIT payloads into
2115          * the units the hardware uses.
2116          */
2117         block_size = xhci_get_block_size(virt_dev->udev);
2118
2119         /* If we are manipulating a LS/FS device under a HS hub, double check
2120          * that the HS bus has enough bandwidth if we are activing a new TT.
2121          */
2122         if (virt_dev->tt_info) {
2123                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2124                                 "Recalculating BW for rootport %u",
2125                                 virt_dev->real_port);
2126                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2127                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2128                                         "newly activated TT.\n");
2129                         return -ENOMEM;
2130                 }
2131                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132                                 "Recalculating BW for TT slot %u port %u",
2133                                 virt_dev->tt_info->slot_id,
2134                                 virt_dev->tt_info->ttport);
2135         } else {
2136                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137                                 "Recalculating BW for rootport %u",
2138                                 virt_dev->real_port);
2139         }
2140
2141         /* Add in how much bandwidth will be used for interval zero, or the
2142          * rounded max ESIT payload + number of packets * largest overhead.
2143          */
2144         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2145                 bw_table->interval_bw[0].num_packets *
2146                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2147
2148         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2149                 unsigned int bw_added;
2150                 unsigned int largest_mps;
2151                 unsigned int interval_overhead;
2152
2153                 /*
2154                  * How many packets could we transmit in this interval?
2155                  * If packets didn't fit in the previous interval, we will need
2156                  * to transmit that many packets twice within this interval.
2157                  */
2158                 packets_remaining = 2 * packets_remaining +
2159                         bw_table->interval_bw[i].num_packets;
2160
2161                 /* Find the largest max packet size of this or the previous
2162                  * interval.
2163                  */
2164                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2165                         largest_mps = 0;
2166                 else {
2167                         struct xhci_virt_ep *virt_ep;
2168                         struct list_head *ep_entry;
2169
2170                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2171                         virt_ep = list_entry(ep_entry,
2172                                         struct xhci_virt_ep, bw_endpoint_list);
2173                         /* Convert to blocks, rounding up */
2174                         largest_mps = DIV_ROUND_UP(
2175                                         virt_ep->bw_info.max_packet_size,
2176                                         block_size);
2177                 }
2178                 if (largest_mps > packet_size)
2179                         packet_size = largest_mps;
2180
2181                 /* Use the larger overhead of this or the previous interval. */
2182                 interval_overhead = xhci_get_largest_overhead(
2183                                 &bw_table->interval_bw[i]);
2184                 if (interval_overhead > overhead)
2185                         overhead = interval_overhead;
2186
2187                 /* How many packets can we evenly distribute across
2188                  * (1 << (i + 1)) possible scheduling opportunities?
2189                  */
2190                 packets_transmitted = packets_remaining >> (i + 1);
2191
2192                 /* Add in the bandwidth used for those scheduled packets */
2193                 bw_added = packets_transmitted * (overhead + packet_size);
2194
2195                 /* How many packets do we have remaining to transmit? */
2196                 packets_remaining = packets_remaining % (1 << (i + 1));
2197
2198                 /* What largest max packet size should those packets have? */
2199                 /* If we've transmitted all packets, don't carry over the
2200                  * largest packet size.
2201                  */
2202                 if (packets_remaining == 0) {
2203                         packet_size = 0;
2204                         overhead = 0;
2205                 } else if (packets_transmitted > 0) {
2206                         /* Otherwise if we do have remaining packets, and we've
2207                          * scheduled some packets in this interval, take the
2208                          * largest max packet size from endpoints with this
2209                          * interval.
2210                          */
2211                         packet_size = largest_mps;
2212                         overhead = interval_overhead;
2213                 }
2214                 /* Otherwise carry over packet_size and overhead from the last
2215                  * time we had a remainder.
2216                  */
2217                 bw_used += bw_added;
2218                 if (bw_used > max_bandwidth) {
2219                         xhci_warn(xhci, "Not enough bandwidth. "
2220                                         "Proposed: %u, Max: %u\n",
2221                                 bw_used, max_bandwidth);
2222                         return -ENOMEM;
2223                 }
2224         }
2225         /*
2226          * Ok, we know we have some packets left over after even-handedly
2227          * scheduling interval 15.  We don't know which microframes they will
2228          * fit into, so we over-schedule and say they will be scheduled every
2229          * microframe.
2230          */
2231         if (packets_remaining > 0)
2232                 bw_used += overhead + packet_size;
2233
2234         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2235                 unsigned int port_index = virt_dev->real_port - 1;
2236
2237                 /* OK, we're manipulating a HS device attached to a
2238                  * root port bandwidth domain.  Include the number of active TTs
2239                  * in the bandwidth used.
2240                  */
2241                 bw_used += TT_HS_OVERHEAD *
2242                         xhci->rh_bw[port_index].num_active_tts;
2243         }
2244
2245         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2247                 "Available: %u " "percent",
2248                 bw_used, max_bandwidth, bw_reserved,
2249                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2250                 max_bandwidth);
2251
2252         bw_used += bw_reserved;
2253         if (bw_used > max_bandwidth) {
2254                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2255                                 bw_used, max_bandwidth);
2256                 return -ENOMEM;
2257         }
2258
2259         bw_table->bw_used = bw_used;
2260         return 0;
2261 }
2262
2263 static bool xhci_is_async_ep(unsigned int ep_type)
2264 {
2265         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2266                                         ep_type != ISOC_IN_EP &&
2267                                         ep_type != INT_IN_EP);
2268 }
2269
2270 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2271 {
2272         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2273 }
2274
2275 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2276 {
2277         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2278
2279         if (ep_bw->ep_interval == 0)
2280                 return SS_OVERHEAD_BURST +
2281                         (ep_bw->mult * ep_bw->num_packets *
2282                                         (SS_OVERHEAD + mps));
2283         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2284                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2285                                 1 << ep_bw->ep_interval);
2286
2287 }
2288
2289 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2290                 struct xhci_bw_info *ep_bw,
2291                 struct xhci_interval_bw_table *bw_table,
2292                 struct usb_device *udev,
2293                 struct xhci_virt_ep *virt_ep,
2294                 struct xhci_tt_bw_info *tt_info)
2295 {
2296         struct xhci_interval_bw *interval_bw;
2297         int normalized_interval;
2298
2299         if (xhci_is_async_ep(ep_bw->type))
2300                 return;
2301
2302         if (udev->speed >= USB_SPEED_SUPER) {
2303                 if (xhci_is_sync_in_ep(ep_bw->type))
2304                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2305                                 xhci_get_ss_bw_consumed(ep_bw);
2306                 else
2307                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2308                                 xhci_get_ss_bw_consumed(ep_bw);
2309                 return;
2310         }
2311
2312         /* SuperSpeed endpoints never get added to intervals in the table, so
2313          * this check is only valid for HS/FS/LS devices.
2314          */
2315         if (list_empty(&virt_ep->bw_endpoint_list))
2316                 return;
2317         /* For LS/FS devices, we need to translate the interval expressed in
2318          * microframes to frames.
2319          */
2320         if (udev->speed == USB_SPEED_HIGH)
2321                 normalized_interval = ep_bw->ep_interval;
2322         else
2323                 normalized_interval = ep_bw->ep_interval - 3;
2324
2325         if (normalized_interval == 0)
2326                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2327         interval_bw = &bw_table->interval_bw[normalized_interval];
2328         interval_bw->num_packets -= ep_bw->num_packets;
2329         switch (udev->speed) {
2330         case USB_SPEED_LOW:
2331                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2332                 break;
2333         case USB_SPEED_FULL:
2334                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2335                 break;
2336         case USB_SPEED_HIGH:
2337                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2338                 break;
2339         case USB_SPEED_SUPER:
2340         case USB_SPEED_SUPER_PLUS:
2341         case USB_SPEED_UNKNOWN:
2342         case USB_SPEED_WIRELESS:
2343                 /* Should never happen because only LS/FS/HS endpoints will get
2344                  * added to the endpoint list.
2345                  */
2346                 return;
2347         }
2348         if (tt_info)
2349                 tt_info->active_eps -= 1;
2350         list_del_init(&virt_ep->bw_endpoint_list);
2351 }
2352
2353 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2354                 struct xhci_bw_info *ep_bw,
2355                 struct xhci_interval_bw_table *bw_table,
2356                 struct usb_device *udev,
2357                 struct xhci_virt_ep *virt_ep,
2358                 struct xhci_tt_bw_info *tt_info)
2359 {
2360         struct xhci_interval_bw *interval_bw;
2361         struct xhci_virt_ep *smaller_ep;
2362         int normalized_interval;
2363
2364         if (xhci_is_async_ep(ep_bw->type))
2365                 return;
2366
2367         if (udev->speed == USB_SPEED_SUPER) {
2368                 if (xhci_is_sync_in_ep(ep_bw->type))
2369                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2370                                 xhci_get_ss_bw_consumed(ep_bw);
2371                 else
2372                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2373                                 xhci_get_ss_bw_consumed(ep_bw);
2374                 return;
2375         }
2376
2377         /* For LS/FS devices, we need to translate the interval expressed in
2378          * microframes to frames.
2379          */
2380         if (udev->speed == USB_SPEED_HIGH)
2381                 normalized_interval = ep_bw->ep_interval;
2382         else
2383                 normalized_interval = ep_bw->ep_interval - 3;
2384
2385         if (normalized_interval == 0)
2386                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2387         interval_bw = &bw_table->interval_bw[normalized_interval];
2388         interval_bw->num_packets += ep_bw->num_packets;
2389         switch (udev->speed) {
2390         case USB_SPEED_LOW:
2391                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2392                 break;
2393         case USB_SPEED_FULL:
2394                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2395                 break;
2396         case USB_SPEED_HIGH:
2397                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2398                 break;
2399         case USB_SPEED_SUPER:
2400         case USB_SPEED_SUPER_PLUS:
2401         case USB_SPEED_UNKNOWN:
2402         case USB_SPEED_WIRELESS:
2403                 /* Should never happen because only LS/FS/HS endpoints will get
2404                  * added to the endpoint list.
2405                  */
2406                 return;
2407         }
2408
2409         if (tt_info)
2410                 tt_info->active_eps += 1;
2411         /* Insert the endpoint into the list, largest max packet size first. */
2412         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2413                         bw_endpoint_list) {
2414                 if (ep_bw->max_packet_size >=
2415                                 smaller_ep->bw_info.max_packet_size) {
2416                         /* Add the new ep before the smaller endpoint */
2417                         list_add_tail(&virt_ep->bw_endpoint_list,
2418                                         &smaller_ep->bw_endpoint_list);
2419                         return;
2420                 }
2421         }
2422         /* Add the new endpoint at the end of the list. */
2423         list_add_tail(&virt_ep->bw_endpoint_list,
2424                         &interval_bw->endpoints);
2425 }
2426
2427 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2428                 struct xhci_virt_device *virt_dev,
2429                 int old_active_eps)
2430 {
2431         struct xhci_root_port_bw_info *rh_bw_info;
2432         if (!virt_dev->tt_info)
2433                 return;
2434
2435         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2436         if (old_active_eps == 0 &&
2437                                 virt_dev->tt_info->active_eps != 0) {
2438                 rh_bw_info->num_active_tts += 1;
2439                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2440         } else if (old_active_eps != 0 &&
2441                                 virt_dev->tt_info->active_eps == 0) {
2442                 rh_bw_info->num_active_tts -= 1;
2443                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2444         }
2445 }
2446
2447 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2448                 struct xhci_virt_device *virt_dev,
2449                 struct xhci_container_ctx *in_ctx)
2450 {
2451         struct xhci_bw_info ep_bw_info[31];
2452         int i;
2453         struct xhci_input_control_ctx *ctrl_ctx;
2454         int old_active_eps = 0;
2455
2456         if (virt_dev->tt_info)
2457                 old_active_eps = virt_dev->tt_info->active_eps;
2458
2459         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2460         if (!ctrl_ctx) {
2461                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2462                                 __func__);
2463                 return -ENOMEM;
2464         }
2465
2466         for (i = 0; i < 31; i++) {
2467                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2468                         continue;
2469
2470                 /* Make a copy of the BW info in case we need to revert this */
2471                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2472                                 sizeof(ep_bw_info[i]));
2473                 /* Drop the endpoint from the interval table if the endpoint is
2474                  * being dropped or changed.
2475                  */
2476                 if (EP_IS_DROPPED(ctrl_ctx, i))
2477                         xhci_drop_ep_from_interval_table(xhci,
2478                                         &virt_dev->eps[i].bw_info,
2479                                         virt_dev->bw_table,
2480                                         virt_dev->udev,
2481                                         &virt_dev->eps[i],
2482                                         virt_dev->tt_info);
2483         }
2484         /* Overwrite the information stored in the endpoints' bw_info */
2485         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2486         for (i = 0; i < 31; i++) {
2487                 /* Add any changed or added endpoints to the interval table */
2488                 if (EP_IS_ADDED(ctrl_ctx, i))
2489                         xhci_add_ep_to_interval_table(xhci,
2490                                         &virt_dev->eps[i].bw_info,
2491                                         virt_dev->bw_table,
2492                                         virt_dev->udev,
2493                                         &virt_dev->eps[i],
2494                                         virt_dev->tt_info);
2495         }
2496
2497         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2498                 /* Ok, this fits in the bandwidth we have.
2499                  * Update the number of active TTs.
2500                  */
2501                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2502                 return 0;
2503         }
2504
2505         /* We don't have enough bandwidth for this, revert the stored info. */
2506         for (i = 0; i < 31; i++) {
2507                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2508                         continue;
2509
2510                 /* Drop the new copies of any added or changed endpoints from
2511                  * the interval table.
2512                  */
2513                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2514                         xhci_drop_ep_from_interval_table(xhci,
2515                                         &virt_dev->eps[i].bw_info,
2516                                         virt_dev->bw_table,
2517                                         virt_dev->udev,
2518                                         &virt_dev->eps[i],
2519                                         virt_dev->tt_info);
2520                 }
2521                 /* Revert the endpoint back to its old information */
2522                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2523                                 sizeof(ep_bw_info[i]));
2524                 /* Add any changed or dropped endpoints back into the table */
2525                 if (EP_IS_DROPPED(ctrl_ctx, i))
2526                         xhci_add_ep_to_interval_table(xhci,
2527                                         &virt_dev->eps[i].bw_info,
2528                                         virt_dev->bw_table,
2529                                         virt_dev->udev,
2530                                         &virt_dev->eps[i],
2531                                         virt_dev->tt_info);
2532         }
2533         return -ENOMEM;
2534 }
2535
2536
2537 /* Issue a configure endpoint command or evaluate context command
2538  * and wait for it to finish.
2539  */
2540 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2541                 struct usb_device *udev,
2542                 struct xhci_command *command,
2543                 bool ctx_change, bool must_succeed)
2544 {
2545         int ret;
2546         unsigned long flags;
2547         struct xhci_input_control_ctx *ctrl_ctx;
2548         struct xhci_virt_device *virt_dev;
2549
2550         if (!command)
2551                 return -EINVAL;
2552
2553         spin_lock_irqsave(&xhci->lock, flags);
2554
2555         if (xhci->xhc_state & XHCI_STATE_DYING) {
2556                 spin_unlock_irqrestore(&xhci->lock, flags);
2557                 return -ESHUTDOWN;
2558         }
2559
2560         virt_dev = xhci->devs[udev->slot_id];
2561
2562         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2563         if (!ctrl_ctx) {
2564                 spin_unlock_irqrestore(&xhci->lock, flags);
2565                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2566                                 __func__);
2567                 return -ENOMEM;
2568         }
2569
2570         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2571                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2572                 spin_unlock_irqrestore(&xhci->lock, flags);
2573                 xhci_warn(xhci, "Not enough host resources, "
2574                                 "active endpoint contexts = %u\n",
2575                                 xhci->num_active_eps);
2576                 return -ENOMEM;
2577         }
2578         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2579             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2580                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2581                         xhci_free_host_resources(xhci, ctrl_ctx);
2582                 spin_unlock_irqrestore(&xhci->lock, flags);
2583                 xhci_warn(xhci, "Not enough bandwidth\n");
2584                 return -ENOMEM;
2585         }
2586
2587         if (!ctx_change)
2588                 ret = xhci_queue_configure_endpoint(xhci, command,
2589                                 command->in_ctx->dma,
2590                                 udev->slot_id, must_succeed);
2591         else
2592                 ret = xhci_queue_evaluate_context(xhci, command,
2593                                 command->in_ctx->dma,
2594                                 udev->slot_id, must_succeed);
2595         if (ret < 0) {
2596                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2597                         xhci_free_host_resources(xhci, ctrl_ctx);
2598                 spin_unlock_irqrestore(&xhci->lock, flags);
2599                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2600                                 "FIXME allocate a new ring segment");
2601                 return -ENOMEM;
2602         }
2603         xhci_ring_cmd_db(xhci);
2604         spin_unlock_irqrestore(&xhci->lock, flags);
2605
2606         /* Wait for the configure endpoint command to complete */
2607         wait_for_completion(command->completion);
2608
2609         if (!ctx_change)
2610                 ret = xhci_configure_endpoint_result(xhci, udev,
2611                                                      &command->status);
2612         else
2613                 ret = xhci_evaluate_context_result(xhci, udev,
2614                                                    &command->status);
2615
2616         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2617                 spin_lock_irqsave(&xhci->lock, flags);
2618                 /* If the command failed, remove the reserved resources.
2619                  * Otherwise, clean up the estimate to include dropped eps.
2620                  */
2621                 if (ret)
2622                         xhci_free_host_resources(xhci, ctrl_ctx);
2623                 else
2624                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2625                 spin_unlock_irqrestore(&xhci->lock, flags);
2626         }
2627         return ret;
2628 }
2629
2630 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2631         struct xhci_virt_device *vdev, int i)
2632 {
2633         struct xhci_virt_ep *ep = &vdev->eps[i];
2634
2635         if (ep->ep_state & EP_HAS_STREAMS) {
2636                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2637                                 xhci_get_endpoint_address(i));
2638                 xhci_free_stream_info(xhci, ep->stream_info);
2639                 ep->stream_info = NULL;
2640                 ep->ep_state &= ~EP_HAS_STREAMS;
2641         }
2642 }
2643
2644 /* Called after one or more calls to xhci_add_endpoint() or
2645  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2646  * to call xhci_reset_bandwidth().
2647  *
2648  * Since we are in the middle of changing either configuration or
2649  * installing a new alt setting, the USB core won't allow URBs to be
2650  * enqueued for any endpoint on the old config or interface.  Nothing
2651  * else should be touching the xhci->devs[slot_id] structure, so we
2652  * don't need to take the xhci->lock for manipulating that.
2653  */
2654 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2655 {
2656         int i;
2657         int ret = 0;
2658         struct xhci_hcd *xhci;
2659         struct xhci_virt_device *virt_dev;
2660         struct xhci_input_control_ctx *ctrl_ctx;
2661         struct xhci_slot_ctx *slot_ctx;
2662         struct xhci_command *command;
2663
2664         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2665         if (ret <= 0)
2666                 return ret;
2667         xhci = hcd_to_xhci(hcd);
2668         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2669                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2670                 return -ENODEV;
2671
2672         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2673         virt_dev = xhci->devs[udev->slot_id];
2674
2675         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2676         if (!command)
2677                 return -ENOMEM;
2678
2679         command->in_ctx = virt_dev->in_ctx;
2680
2681         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2682         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2683         if (!ctrl_ctx) {
2684                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2685                                 __func__);
2686                 ret = -ENOMEM;
2687                 goto command_cleanup;
2688         }
2689         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2690         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2691         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2692
2693         /* Don't issue the command if there's no endpoints to update. */
2694         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2695             ctrl_ctx->drop_flags == 0) {
2696                 ret = 0;
2697                 goto command_cleanup;
2698         }
2699         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2700         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2701         for (i = 31; i >= 1; i--) {
2702                 __le32 le32 = cpu_to_le32(BIT(i));
2703
2704                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2705                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2706                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2707                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2708                         break;
2709                 }
2710         }
2711
2712         ret = xhci_configure_endpoint(xhci, udev, command,
2713                         false, false);
2714         if (ret)
2715                 /* Callee should call reset_bandwidth() */
2716                 goto command_cleanup;
2717
2718         /* Free any rings that were dropped, but not changed. */
2719         for (i = 1; i < 31; i++) {
2720                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2721                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2722                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2723                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2724                 }
2725         }
2726         xhci_zero_in_ctx(xhci, virt_dev);
2727         /*
2728          * Install any rings for completely new endpoints or changed endpoints,
2729          * and free any old rings from changed endpoints.
2730          */
2731         for (i = 1; i < 31; i++) {
2732                 if (!virt_dev->eps[i].new_ring)
2733                         continue;
2734                 /* Only free the old ring if it exists.
2735                  * It may not if this is the first add of an endpoint.
2736                  */
2737                 if (virt_dev->eps[i].ring) {
2738                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2739                 }
2740                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2741                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2742                 virt_dev->eps[i].new_ring = NULL;
2743         }
2744 command_cleanup:
2745         kfree(command->completion);
2746         kfree(command);
2747
2748         return ret;
2749 }
2750
2751 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2752 {
2753         struct xhci_hcd *xhci;
2754         struct xhci_virt_device *virt_dev;
2755         int i, ret;
2756
2757         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2758         if (ret <= 0)
2759                 return;
2760         xhci = hcd_to_xhci(hcd);
2761
2762         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2763         virt_dev = xhci->devs[udev->slot_id];
2764         /* Free any rings allocated for added endpoints */
2765         for (i = 0; i < 31; i++) {
2766                 if (virt_dev->eps[i].new_ring) {
2767                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2768                         virt_dev->eps[i].new_ring = NULL;
2769                 }
2770         }
2771         xhci_zero_in_ctx(xhci, virt_dev);
2772 }
2773
2774 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2775                 struct xhci_container_ctx *in_ctx,
2776                 struct xhci_container_ctx *out_ctx,
2777                 struct xhci_input_control_ctx *ctrl_ctx,
2778                 u32 add_flags, u32 drop_flags)
2779 {
2780         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2781         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2782         xhci_slot_copy(xhci, in_ctx, out_ctx);
2783         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2784 }
2785
2786 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2787                 unsigned int slot_id, unsigned int ep_index,
2788                 struct xhci_dequeue_state *deq_state)
2789 {
2790         struct xhci_input_control_ctx *ctrl_ctx;
2791         struct xhci_container_ctx *in_ctx;
2792         struct xhci_ep_ctx *ep_ctx;
2793         u32 added_ctxs;
2794         dma_addr_t addr;
2795
2796         in_ctx = xhci->devs[slot_id]->in_ctx;
2797         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2798         if (!ctrl_ctx) {
2799                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2800                                 __func__);
2801                 return;
2802         }
2803
2804         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2805                         xhci->devs[slot_id]->out_ctx, ep_index);
2806         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2807         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2808                         deq_state->new_deq_ptr);
2809         if (addr == 0) {
2810                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2811                                 "reset ep command\n");
2812                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2813                                 deq_state->new_deq_seg,
2814                                 deq_state->new_deq_ptr);
2815                 return;
2816         }
2817         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2818
2819         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2820         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2821                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2822                         added_ctxs, added_ctxs);
2823 }
2824
2825 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2826                                unsigned int stream_id, struct xhci_td *td)
2827 {
2828         struct xhci_dequeue_state deq_state;
2829         struct xhci_virt_ep *ep;
2830         struct usb_device *udev = td->urb->dev;
2831
2832         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2833                         "Cleaning up stalled endpoint ring");
2834         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2835         /* We need to move the HW's dequeue pointer past this TD,
2836          * or it will attempt to resend it on the next doorbell ring.
2837          */
2838         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2839                         ep_index, stream_id, td, &deq_state);
2840
2841         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2842                 return;
2843
2844         /* HW with the reset endpoint quirk will use the saved dequeue state to
2845          * issue a configure endpoint command later.
2846          */
2847         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2848                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2849                                 "Queueing new dequeue state");
2850                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2851                                 ep_index, &deq_state);
2852         } else {
2853                 /* Better hope no one uses the input context between now and the
2854                  * reset endpoint completion!
2855                  * XXX: No idea how this hardware will react when stream rings
2856                  * are enabled.
2857                  */
2858                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2859                                 "Setting up input context for "
2860                                 "configure endpoint command");
2861                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2862                                 ep_index, &deq_state);
2863         }
2864 }
2865
2866 /* Called when clearing halted device. The core should have sent the control
2867  * message to clear the device halt condition. The host side of the halt should
2868  * already be cleared with a reset endpoint command issued when the STALL tx
2869  * event was received.
2870  *
2871  * Context: in_interrupt
2872  */
2873
2874 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2875                 struct usb_host_endpoint *ep)
2876 {
2877         struct xhci_hcd *xhci;
2878
2879         xhci = hcd_to_xhci(hcd);
2880
2881         /*
2882          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2883          * The Reset Endpoint Command may only be issued to endpoints in the
2884          * Halted state. If software wishes reset the Data Toggle or Sequence
2885          * Number of an endpoint that isn't in the Halted state, then software
2886          * may issue a Configure Endpoint Command with the Drop and Add bits set
2887          * for the target endpoint. that is in the Stopped state.
2888          */
2889
2890         /* For now just print debug to follow the situation */
2891         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2892                  ep->desc.bEndpointAddress);
2893 }
2894
2895 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2896                 struct usb_device *udev, struct usb_host_endpoint *ep,
2897                 unsigned int slot_id)
2898 {
2899         int ret;
2900         unsigned int ep_index;
2901         unsigned int ep_state;
2902
2903         if (!ep)
2904                 return -EINVAL;
2905         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2906         if (ret <= 0)
2907                 return -EINVAL;
2908         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2909                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2910                                 " descriptor for ep 0x%x does not support streams\n",
2911                                 ep->desc.bEndpointAddress);
2912                 return -EINVAL;
2913         }
2914
2915         ep_index = xhci_get_endpoint_index(&ep->desc);
2916         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2917         if (ep_state & EP_HAS_STREAMS ||
2918                         ep_state & EP_GETTING_STREAMS) {
2919                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2920                                 "already has streams set up.\n",
2921                                 ep->desc.bEndpointAddress);
2922                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2923                                 "dynamic stream context array reallocation.\n");
2924                 return -EINVAL;
2925         }
2926         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2927                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2928                                 "endpoint 0x%x; URBs are pending.\n",
2929                                 ep->desc.bEndpointAddress);
2930                 return -EINVAL;
2931         }
2932         return 0;
2933 }
2934
2935 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2936                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2937 {
2938         unsigned int max_streams;
2939
2940         /* The stream context array size must be a power of two */
2941         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2942         /*
2943          * Find out how many primary stream array entries the host controller
2944          * supports.  Later we may use secondary stream arrays (similar to 2nd
2945          * level page entries), but that's an optional feature for xHCI host
2946          * controllers. xHCs must support at least 4 stream IDs.
2947          */
2948         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2949         if (*num_stream_ctxs > max_streams) {
2950                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2951                                 max_streams);
2952                 *num_stream_ctxs = max_streams;
2953                 *num_streams = max_streams;
2954         }
2955 }
2956
2957 /* Returns an error code if one of the endpoint already has streams.
2958  * This does not change any data structures, it only checks and gathers
2959  * information.
2960  */
2961 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2962                 struct usb_device *udev,
2963                 struct usb_host_endpoint **eps, unsigned int num_eps,
2964                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2965 {
2966         unsigned int max_streams;
2967         unsigned int endpoint_flag;
2968         int i;
2969         int ret;
2970
2971         for (i = 0; i < num_eps; i++) {
2972                 ret = xhci_check_streams_endpoint(xhci, udev,
2973                                 eps[i], udev->slot_id);
2974                 if (ret < 0)
2975                         return ret;
2976
2977                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2978                 if (max_streams < (*num_streams - 1)) {
2979                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2980                                         eps[i]->desc.bEndpointAddress,
2981                                         max_streams);
2982                         *num_streams = max_streams+1;
2983                 }
2984
2985                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2986                 if (*changed_ep_bitmask & endpoint_flag)
2987                         return -EINVAL;
2988                 *changed_ep_bitmask |= endpoint_flag;
2989         }
2990         return 0;
2991 }
2992
2993 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2994                 struct usb_device *udev,
2995                 struct usb_host_endpoint **eps, unsigned int num_eps)
2996 {
2997         u32 changed_ep_bitmask = 0;
2998         unsigned int slot_id;
2999         unsigned int ep_index;
3000         unsigned int ep_state;
3001         int i;
3002
3003         slot_id = udev->slot_id;
3004         if (!xhci->devs[slot_id])
3005                 return 0;
3006
3007         for (i = 0; i < num_eps; i++) {
3008                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3009                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3010                 /* Are streams already being freed for the endpoint? */
3011                 if (ep_state & EP_GETTING_NO_STREAMS) {
3012                         xhci_warn(xhci, "WARN Can't disable streams for "
3013                                         "endpoint 0x%x, "
3014                                         "streams are being disabled already\n",
3015                                         eps[i]->desc.bEndpointAddress);
3016                         return 0;
3017                 }
3018                 /* Are there actually any streams to free? */
3019                 if (!(ep_state & EP_HAS_STREAMS) &&
3020                                 !(ep_state & EP_GETTING_STREAMS)) {
3021                         xhci_warn(xhci, "WARN Can't disable streams for "
3022                                         "endpoint 0x%x, "
3023                                         "streams are already disabled!\n",
3024                                         eps[i]->desc.bEndpointAddress);
3025                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3026                                         "with non-streams endpoint\n");
3027                         return 0;
3028                 }
3029                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3030         }
3031         return changed_ep_bitmask;
3032 }
3033
3034 /*
3035  * The USB device drivers use this function (through the HCD interface in USB
3036  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3037  * coordinate mass storage command queueing across multiple endpoints (basically
3038  * a stream ID == a task ID).
3039  *
3040  * Setting up streams involves allocating the same size stream context array
3041  * for each endpoint and issuing a configure endpoint command for all endpoints.
3042  *
3043  * Don't allow the call to succeed if one endpoint only supports one stream
3044  * (which means it doesn't support streams at all).
3045  *
3046  * Drivers may get less stream IDs than they asked for, if the host controller
3047  * hardware or endpoints claim they can't support the number of requested
3048  * stream IDs.
3049  */
3050 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3051                 struct usb_host_endpoint **eps, unsigned int num_eps,
3052                 unsigned int num_streams, gfp_t mem_flags)
3053 {
3054         int i, ret;
3055         struct xhci_hcd *xhci;
3056         struct xhci_virt_device *vdev;
3057         struct xhci_command *config_cmd;
3058         struct xhci_input_control_ctx *ctrl_ctx;
3059         unsigned int ep_index;
3060         unsigned int num_stream_ctxs;
3061         unsigned int max_packet;
3062         unsigned long flags;
3063         u32 changed_ep_bitmask = 0;
3064
3065         if (!eps)
3066                 return -EINVAL;
3067
3068         /* Add one to the number of streams requested to account for
3069          * stream 0 that is reserved for xHCI usage.
3070          */
3071         num_streams += 1;
3072         xhci = hcd_to_xhci(hcd);
3073         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3074                         num_streams);
3075
3076         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3077         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3078                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3079                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3080                 return -ENOSYS;
3081         }
3082
3083         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3084         if (!config_cmd)
3085                 return -ENOMEM;
3086
3087         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3088         if (!ctrl_ctx) {
3089                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3090                                 __func__);
3091                 xhci_free_command(xhci, config_cmd);
3092                 return -ENOMEM;
3093         }
3094
3095         /* Check to make sure all endpoints are not already configured for
3096          * streams.  While we're at it, find the maximum number of streams that
3097          * all the endpoints will support and check for duplicate endpoints.
3098          */
3099         spin_lock_irqsave(&xhci->lock, flags);
3100         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3101                         num_eps, &num_streams, &changed_ep_bitmask);
3102         if (ret < 0) {
3103                 xhci_free_command(xhci, config_cmd);
3104                 spin_unlock_irqrestore(&xhci->lock, flags);
3105                 return ret;
3106         }
3107         if (num_streams <= 1) {
3108                 xhci_warn(xhci, "WARN: endpoints can't handle "
3109                                 "more than one stream.\n");
3110                 xhci_free_command(xhci, config_cmd);
3111                 spin_unlock_irqrestore(&xhci->lock, flags);
3112                 return -EINVAL;
3113         }
3114         vdev = xhci->devs[udev->slot_id];
3115         /* Mark each endpoint as being in transition, so
3116          * xhci_urb_enqueue() will reject all URBs.
3117          */
3118         for (i = 0; i < num_eps; i++) {
3119                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3120                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3121         }
3122         spin_unlock_irqrestore(&xhci->lock, flags);
3123
3124         /* Setup internal data structures and allocate HW data structures for
3125          * streams (but don't install the HW structures in the input context
3126          * until we're sure all memory allocation succeeded).
3127          */
3128         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3129         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3130                         num_stream_ctxs, num_streams);
3131
3132         for (i = 0; i < num_eps; i++) {
3133                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3134                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3135                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3136                                 num_stream_ctxs,
3137                                 num_streams,
3138                                 max_packet, mem_flags);
3139                 if (!vdev->eps[ep_index].stream_info)
3140                         goto cleanup;
3141                 /* Set maxPstreams in endpoint context and update deq ptr to
3142                  * point to stream context array. FIXME
3143                  */
3144         }
3145
3146         /* Set up the input context for a configure endpoint command. */
3147         for (i = 0; i < num_eps; i++) {
3148                 struct xhci_ep_ctx *ep_ctx;
3149
3150                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3151                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3152
3153                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3154                                 vdev->out_ctx, ep_index);
3155                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3156                                 vdev->eps[ep_index].stream_info);
3157         }
3158         /* Tell the HW to drop its old copy of the endpoint context info
3159          * and add the updated copy from the input context.
3160          */
3161         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3162                         vdev->out_ctx, ctrl_ctx,
3163                         changed_ep_bitmask, changed_ep_bitmask);
3164
3165         /* Issue and wait for the configure endpoint command */
3166         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3167                         false, false);
3168
3169         /* xHC rejected the configure endpoint command for some reason, so we
3170          * leave the old ring intact and free our internal streams data
3171          * structure.
3172          */
3173         if (ret < 0)
3174                 goto cleanup;
3175
3176         spin_lock_irqsave(&xhci->lock, flags);
3177         for (i = 0; i < num_eps; i++) {
3178                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3179                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3180                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3181                          udev->slot_id, ep_index);
3182                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3183         }
3184         xhci_free_command(xhci, config_cmd);
3185         spin_unlock_irqrestore(&xhci->lock, flags);
3186
3187         /* Subtract 1 for stream 0, which drivers can't use */
3188         return num_streams - 1;
3189
3190 cleanup:
3191         /* If it didn't work, free the streams! */
3192         for (i = 0; i < num_eps; i++) {
3193                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3194                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3195                 vdev->eps[ep_index].stream_info = NULL;
3196                 /* FIXME Unset maxPstreams in endpoint context and
3197                  * update deq ptr to point to normal string ring.
3198                  */
3199                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3200                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3201                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3202         }
3203         xhci_free_command(xhci, config_cmd);
3204         return -ENOMEM;
3205 }
3206
3207 /* Transition the endpoint from using streams to being a "normal" endpoint
3208  * without streams.
3209  *
3210  * Modify the endpoint context state, submit a configure endpoint command,
3211  * and free all endpoint rings for streams if that completes successfully.
3212  */
3213 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3214                 struct usb_host_endpoint **eps, unsigned int num_eps,
3215                 gfp_t mem_flags)
3216 {
3217         int i, ret;
3218         struct xhci_hcd *xhci;
3219         struct xhci_virt_device *vdev;
3220         struct xhci_command *command;
3221         struct xhci_input_control_ctx *ctrl_ctx;
3222         unsigned int ep_index;
3223         unsigned long flags;
3224         u32 changed_ep_bitmask;
3225
3226         xhci = hcd_to_xhci(hcd);
3227         vdev = xhci->devs[udev->slot_id];
3228
3229         /* Set up a configure endpoint command to remove the streams rings */
3230         spin_lock_irqsave(&xhci->lock, flags);
3231         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3232                         udev, eps, num_eps);
3233         if (changed_ep_bitmask == 0) {
3234                 spin_unlock_irqrestore(&xhci->lock, flags);
3235                 return -EINVAL;
3236         }
3237
3238         /* Use the xhci_command structure from the first endpoint.  We may have
3239          * allocated too many, but the driver may call xhci_free_streams() for
3240          * each endpoint it grouped into one call to xhci_alloc_streams().
3241          */
3242         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3243         command = vdev->eps[ep_index].stream_info->free_streams_command;
3244         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3245         if (!ctrl_ctx) {
3246                 spin_unlock_irqrestore(&xhci->lock, flags);
3247                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3248                                 __func__);
3249                 return -EINVAL;
3250         }
3251
3252         for (i = 0; i < num_eps; i++) {
3253                 struct xhci_ep_ctx *ep_ctx;
3254
3255                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3256                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3257                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3258                         EP_GETTING_NO_STREAMS;
3259
3260                 xhci_endpoint_copy(xhci, command->in_ctx,
3261                                 vdev->out_ctx, ep_index);
3262                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3263                                 &vdev->eps[ep_index]);
3264         }
3265         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3266                         vdev->out_ctx, ctrl_ctx,
3267                         changed_ep_bitmask, changed_ep_bitmask);
3268         spin_unlock_irqrestore(&xhci->lock, flags);
3269
3270         /* Issue and wait for the configure endpoint command,
3271          * which must succeed.
3272          */
3273         ret = xhci_configure_endpoint(xhci, udev, command,
3274                         false, true);
3275
3276         /* xHC rejected the configure endpoint command for some reason, so we
3277          * leave the streams rings intact.
3278          */
3279         if (ret < 0)
3280                 return ret;
3281
3282         spin_lock_irqsave(&xhci->lock, flags);
3283         for (i = 0; i < num_eps; i++) {
3284                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3285                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3286                 vdev->eps[ep_index].stream_info = NULL;
3287                 /* FIXME Unset maxPstreams in endpoint context and
3288                  * update deq ptr to point to normal string ring.
3289                  */
3290                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3291                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3292         }
3293         spin_unlock_irqrestore(&xhci->lock, flags);
3294
3295         return 0;
3296 }
3297
3298 /*
3299  * Deletes endpoint resources for endpoints that were active before a Reset
3300  * Device command, or a Disable Slot command.  The Reset Device command leaves
3301  * the control endpoint intact, whereas the Disable Slot command deletes it.
3302  *
3303  * Must be called with xhci->lock held.
3304  */
3305 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3306         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3307 {
3308         int i;
3309         unsigned int num_dropped_eps = 0;
3310         unsigned int drop_flags = 0;
3311
3312         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3313                 if (virt_dev->eps[i].ring) {
3314                         drop_flags |= 1 << i;
3315                         num_dropped_eps++;
3316                 }
3317         }
3318         xhci->num_active_eps -= num_dropped_eps;
3319         if (num_dropped_eps)
3320                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3321                                 "Dropped %u ep ctxs, flags = 0x%x, "
3322                                 "%u now active.",
3323                                 num_dropped_eps, drop_flags,
3324                                 xhci->num_active_eps);
3325 }
3326
3327 /*
3328  * This submits a Reset Device Command, which will set the device state to 0,
3329  * set the device address to 0, and disable all the endpoints except the default
3330  * control endpoint.  The USB core should come back and call
3331  * xhci_address_device(), and then re-set up the configuration.  If this is
3332  * called because of a usb_reset_and_verify_device(), then the old alternate
3333  * settings will be re-installed through the normal bandwidth allocation
3334  * functions.
3335  *
3336  * Wait for the Reset Device command to finish.  Remove all structures
3337  * associated with the endpoints that were disabled.  Clear the input device
3338  * structure? Reset the control endpoint 0 max packet size?
3339  *
3340  * If the virt_dev to be reset does not exist or does not match the udev,
3341  * it means the device is lost, possibly due to the xHC restore error and
3342  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3343  * re-allocate the device.
3344  */
3345 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3346                 struct usb_device *udev)
3347 {
3348         int ret, i;
3349         unsigned long flags;
3350         struct xhci_hcd *xhci;
3351         unsigned int slot_id;
3352         struct xhci_virt_device *virt_dev;
3353         struct xhci_command *reset_device_cmd;
3354         int last_freed_endpoint;
3355         struct xhci_slot_ctx *slot_ctx;
3356         int old_active_eps = 0;
3357
3358         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3359         if (ret <= 0)
3360                 return ret;
3361         xhci = hcd_to_xhci(hcd);
3362         slot_id = udev->slot_id;
3363         virt_dev = xhci->devs[slot_id];
3364         if (!virt_dev) {
3365                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3366                                 "not exist. Re-allocate the device\n", slot_id);
3367                 ret = xhci_alloc_dev(hcd, udev);
3368                 if (ret == 1)
3369                         return 0;
3370                 else
3371                         return -EINVAL;
3372         }
3373
3374         if (virt_dev->tt_info)
3375                 old_active_eps = virt_dev->tt_info->active_eps;
3376
3377         if (virt_dev->udev != udev) {
3378                 /* If the virt_dev and the udev does not match, this virt_dev
3379                  * may belong to another udev.
3380                  * Re-allocate the device.
3381                  */
3382                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3383                                 "not match the udev. Re-allocate the device\n",
3384                                 slot_id);
3385                 ret = xhci_alloc_dev(hcd, udev);
3386                 if (ret == 1)
3387                         return 0;
3388                 else
3389                         return -EINVAL;
3390         }
3391
3392         /* If device is not setup, there is no point in resetting it */
3393         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3394         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3395                                                 SLOT_STATE_DISABLED)
3396                 return 0;
3397
3398         trace_xhci_discover_or_reset_device(slot_ctx);
3399
3400         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3401         /* Allocate the command structure that holds the struct completion.
3402          * Assume we're in process context, since the normal device reset
3403          * process has to wait for the device anyway.  Storage devices are
3404          * reset as part of error handling, so use GFP_NOIO instead of
3405          * GFP_KERNEL.
3406          */
3407         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3408         if (!reset_device_cmd) {
3409                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3410                 return -ENOMEM;
3411         }
3412
3413         /* Attempt to submit the Reset Device command to the command ring */
3414         spin_lock_irqsave(&xhci->lock, flags);
3415
3416         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3417         if (ret) {
3418                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3419                 spin_unlock_irqrestore(&xhci->lock, flags);
3420                 goto command_cleanup;
3421         }
3422         xhci_ring_cmd_db(xhci);
3423         spin_unlock_irqrestore(&xhci->lock, flags);
3424
3425         /* Wait for the Reset Device command to finish */
3426         wait_for_completion(reset_device_cmd->completion);
3427
3428         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3429          * unless we tried to reset a slot ID that wasn't enabled,
3430          * or the device wasn't in the addressed or configured state.
3431          */
3432         ret = reset_device_cmd->status;
3433         switch (ret) {
3434         case COMP_COMMAND_ABORTED:
3435         case COMP_COMMAND_RING_STOPPED:
3436                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3437                 ret = -ETIME;
3438                 goto command_cleanup;
3439         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3440         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3441                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3442                                 slot_id,
3443                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3444                 xhci_dbg(xhci, "Not freeing device rings.\n");
3445                 /* Don't treat this as an error.  May change my mind later. */
3446                 ret = 0;
3447                 goto command_cleanup;
3448         case COMP_SUCCESS:
3449                 xhci_dbg(xhci, "Successful reset device command.\n");
3450                 break;
3451         default:
3452                 if (xhci_is_vendor_info_code(xhci, ret))
3453                         break;
3454                 xhci_warn(xhci, "Unknown completion code %u for "
3455                                 "reset device command.\n", ret);
3456                 ret = -EINVAL;
3457                 goto command_cleanup;
3458         }
3459
3460         /* Free up host controller endpoint resources */
3461         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3462                 spin_lock_irqsave(&xhci->lock, flags);
3463                 /* Don't delete the default control endpoint resources */
3464                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3465                 spin_unlock_irqrestore(&xhci->lock, flags);
3466         }
3467
3468         /* Everything but endpoint 0 is disabled, so free the rings. */
3469         last_freed_endpoint = 1;
3470         for (i = 1; i < 31; i++) {
3471                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3472
3473                 if (ep->ep_state & EP_HAS_STREAMS) {
3474                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3475                                         xhci_get_endpoint_address(i));
3476                         xhci_free_stream_info(xhci, ep->stream_info);
3477                         ep->stream_info = NULL;
3478                         ep->ep_state &= ~EP_HAS_STREAMS;
3479                 }
3480
3481                 if (ep->ring) {
3482                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3483                         last_freed_endpoint = i;
3484                 }
3485                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3486                         xhci_drop_ep_from_interval_table(xhci,
3487                                         &virt_dev->eps[i].bw_info,
3488                                         virt_dev->bw_table,
3489                                         udev,
3490                                         &virt_dev->eps[i],
3491                                         virt_dev->tt_info);
3492                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3493         }
3494         /* If necessary, update the number of active TTs on this root port */
3495         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3496         ret = 0;
3497
3498 command_cleanup:
3499         xhci_free_command(xhci, reset_device_cmd);
3500         return ret;
3501 }
3502
3503 /*
3504  * At this point, the struct usb_device is about to go away, the device has
3505  * disconnected, and all traffic has been stopped and the endpoints have been
3506  * disabled.  Free any HC data structures associated with that device.
3507  */
3508 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3509 {
3510         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3511         struct xhci_virt_device *virt_dev;
3512         struct xhci_slot_ctx *slot_ctx;
3513         int i, ret;
3514         struct xhci_command *command;
3515
3516         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3517         if (!command)
3518                 return;
3519
3520 #ifndef CONFIG_USB_DEFAULT_PERSIST
3521         /*
3522          * We called pm_runtime_get_noresume when the device was attached.
3523          * Decrement the counter here to allow controller to runtime suspend
3524          * if no devices remain.
3525          */
3526         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3527                 pm_runtime_put_noidle(hcd->self.controller);
3528 #endif
3529
3530         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3531         /* If the host is halted due to driver unload, we still need to free the
3532          * device.
3533          */
3534         if (ret <= 0 && ret != -ENODEV) {
3535                 kfree(command);
3536                 return;
3537         }
3538
3539         virt_dev = xhci->devs[udev->slot_id];
3540         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3541         trace_xhci_free_dev(slot_ctx);
3542
3543         /* Stop any wayward timer functions (which may grab the lock) */
3544         for (i = 0; i < 31; i++) {
3545                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3546                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3547         }
3548
3549         xhci_disable_slot(xhci, command, udev->slot_id);
3550         /*
3551          * Event command completion handler will free any data structures
3552          * associated with the slot.  XXX Can free sleep?
3553          */
3554 }
3555
3556 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3557                         u32 slot_id)
3558 {
3559         unsigned long flags;
3560         u32 state;
3561         int ret = 0;
3562         struct xhci_virt_device *virt_dev;
3563
3564         virt_dev = xhci->devs[slot_id];
3565         if (!virt_dev)
3566                 return -EINVAL;
3567         if (!command)
3568                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3569         if (!command)
3570                 return -ENOMEM;
3571
3572         spin_lock_irqsave(&xhci->lock, flags);
3573         /* Don't disable the slot if the host controller is dead. */
3574         state = readl(&xhci->op_regs->status);
3575         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3576                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3577                 xhci_free_virt_device(xhci, slot_id);
3578                 spin_unlock_irqrestore(&xhci->lock, flags);
3579                 kfree(command);
3580                 return ret;
3581         }
3582
3583         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3584                                 slot_id);
3585         if (ret) {
3586                 spin_unlock_irqrestore(&xhci->lock, flags);
3587                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3588                 return ret;
3589         }
3590         xhci_ring_cmd_db(xhci);
3591         spin_unlock_irqrestore(&xhci->lock, flags);
3592         return ret;
3593 }
3594
3595 /*
3596  * Checks if we have enough host controller resources for the default control
3597  * endpoint.
3598  *
3599  * Must be called with xhci->lock held.
3600  */
3601 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3602 {
3603         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3604                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3605                                 "Not enough ep ctxs: "
3606                                 "%u active, need to add 1, limit is %u.",
3607                                 xhci->num_active_eps, xhci->limit_active_eps);
3608                 return -ENOMEM;
3609         }
3610         xhci->num_active_eps += 1;
3611         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3612                         "Adding 1 ep ctx, %u now active.",
3613                         xhci->num_active_eps);
3614         return 0;
3615 }
3616
3617
3618 /*
3619  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3620  * timed out, or allocating memory failed.  Returns 1 on success.
3621  */
3622 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3623 {
3624         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3625         struct xhci_virt_device *vdev;
3626         struct xhci_slot_ctx *slot_ctx;
3627         unsigned long flags;
3628         int ret, slot_id;
3629         struct xhci_command *command;
3630
3631         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3632         if (!command)
3633                 return 0;
3634
3635         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3636         mutex_lock(&xhci->mutex);
3637         spin_lock_irqsave(&xhci->lock, flags);
3638         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3639         if (ret) {
3640                 spin_unlock_irqrestore(&xhci->lock, flags);
3641                 mutex_unlock(&xhci->mutex);
3642                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3643                 xhci_free_command(xhci, command);
3644                 return 0;
3645         }
3646         xhci_ring_cmd_db(xhci);
3647         spin_unlock_irqrestore(&xhci->lock, flags);
3648
3649         wait_for_completion(command->completion);
3650         slot_id = command->slot_id;
3651         mutex_unlock(&xhci->mutex);
3652
3653         if (!slot_id || command->status != COMP_SUCCESS) {
3654                 xhci_err(xhci, "Error while assigning device slot ID\n");
3655                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3656                                 HCS_MAX_SLOTS(
3657                                         readl(&xhci->cap_regs->hcs_params1)));
3658                 xhci_free_command(xhci, command);
3659                 return 0;
3660         }
3661
3662         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3663                 spin_lock_irqsave(&xhci->lock, flags);
3664                 ret = xhci_reserve_host_control_ep_resources(xhci);
3665                 if (ret) {
3666                         spin_unlock_irqrestore(&xhci->lock, flags);
3667                         xhci_warn(xhci, "Not enough host resources, "
3668                                         "active endpoint contexts = %u\n",
3669                                         xhci->num_active_eps);
3670                         goto disable_slot;
3671                 }
3672                 spin_unlock_irqrestore(&xhci->lock, flags);
3673         }
3674         /* Use GFP_NOIO, since this function can be called from
3675          * xhci_discover_or_reset_device(), which may be called as part of
3676          * mass storage driver error handling.
3677          */
3678         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3679                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3680                 goto disable_slot;
3681         }
3682         vdev = xhci->devs[slot_id];
3683         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3684         trace_xhci_alloc_dev(slot_ctx);
3685
3686         udev->slot_id = slot_id;
3687
3688 #ifndef CONFIG_USB_DEFAULT_PERSIST
3689         /*
3690          * If resetting upon resume, we can't put the controller into runtime
3691          * suspend if there is a device attached.
3692          */
3693         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3694                 pm_runtime_get_noresume(hcd->self.controller);
3695 #endif
3696
3697
3698         xhci_free_command(xhci, command);
3699         /* Is this a LS or FS device under a HS hub? */
3700         /* Hub or peripherial? */
3701         return 1;
3702
3703 disable_slot:
3704         /* Disable slot, if we can do it without mem alloc */
3705         kfree(command->completion);
3706         command->completion = NULL;
3707         command->status = 0;
3708         return xhci_disable_slot(xhci, command, udev->slot_id);
3709 }
3710
3711 /*
3712  * Issue an Address Device command and optionally send a corresponding
3713  * SetAddress request to the device.
3714  */
3715 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3716                              enum xhci_setup_dev setup)
3717 {
3718         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3719         unsigned long flags;
3720         struct xhci_virt_device *virt_dev;
3721         int ret = 0;
3722         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3723         struct xhci_slot_ctx *slot_ctx;
3724         struct xhci_input_control_ctx *ctrl_ctx;
3725         u64 temp_64;
3726         struct xhci_command *command = NULL;
3727
3728         mutex_lock(&xhci->mutex);
3729
3730         if (xhci->xhc_state) {  /* dying, removing or halted */
3731                 ret = -ESHUTDOWN;
3732                 goto out;
3733         }
3734
3735         if (!udev->slot_id) {
3736                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3737                                 "Bad Slot ID %d", udev->slot_id);
3738                 ret = -EINVAL;
3739                 goto out;
3740         }
3741
3742         virt_dev = xhci->devs[udev->slot_id];
3743
3744         if (WARN_ON(!virt_dev)) {
3745                 /*
3746                  * In plug/unplug torture test with an NEC controller,
3747                  * a zero-dereference was observed once due to virt_dev = 0.
3748                  * Print useful debug rather than crash if it is observed again!
3749                  */
3750                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3751                         udev->slot_id);
3752                 ret = -EINVAL;
3753                 goto out;
3754         }
3755         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3756         trace_xhci_setup_device_slot(slot_ctx);
3757
3758         if (setup == SETUP_CONTEXT_ONLY) {
3759                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3760                     SLOT_STATE_DEFAULT) {
3761                         xhci_dbg(xhci, "Slot already in default state\n");
3762                         goto out;
3763                 }
3764         }
3765
3766         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3767         if (!command) {
3768                 ret = -ENOMEM;
3769                 goto out;
3770         }
3771
3772         command->in_ctx = virt_dev->in_ctx;
3773
3774         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3775         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3776         if (!ctrl_ctx) {
3777                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3778                                 __func__);
3779                 ret = -EINVAL;
3780                 goto out;
3781         }
3782         /*
3783          * If this is the first Set Address since device plug-in or
3784          * virt_device realloaction after a resume with an xHCI power loss,
3785          * then set up the slot context.
3786          */
3787         if (!slot_ctx->dev_info)
3788                 xhci_setup_addressable_virt_dev(xhci, udev);
3789         /* Otherwise, update the control endpoint ring enqueue pointer. */
3790         else
3791                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3792         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3793         ctrl_ctx->drop_flags = 0;
3794
3795         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3796                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3797
3798         spin_lock_irqsave(&xhci->lock, flags);
3799         trace_xhci_setup_device(virt_dev);
3800         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3801                                         udev->slot_id, setup);
3802         if (ret) {
3803                 spin_unlock_irqrestore(&xhci->lock, flags);
3804                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3805                                 "FIXME: allocate a command ring segment");
3806                 goto out;
3807         }
3808         xhci_ring_cmd_db(xhci);
3809         spin_unlock_irqrestore(&xhci->lock, flags);
3810
3811         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3812         wait_for_completion(command->completion);
3813
3814         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3815          * the SetAddress() "recovery interval" required by USB and aborting the
3816          * command on a timeout.
3817          */
3818         switch (command->status) {
3819         case COMP_COMMAND_ABORTED:
3820         case COMP_COMMAND_RING_STOPPED:
3821                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3822                 ret = -ETIME;
3823                 break;
3824         case COMP_CONTEXT_STATE_ERROR:
3825         case COMP_SLOT_NOT_ENABLED_ERROR:
3826                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3827                          act, udev->slot_id);
3828                 ret = -EINVAL;
3829                 break;
3830         case COMP_USB_TRANSACTION_ERROR:
3831                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3832                 ret = -EPROTO;
3833                 break;
3834         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3835                 dev_warn(&udev->dev,
3836                          "ERROR: Incompatible device for setup %s command\n", act);
3837                 ret = -ENODEV;
3838                 break;
3839         case COMP_SUCCESS:
3840                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3841                                "Successful setup %s command", act);
3842                 break;
3843         default:
3844                 xhci_err(xhci,
3845                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3846                          act, command->status);
3847                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3848                 ret = -EINVAL;
3849                 break;
3850         }
3851         if (ret)
3852                 goto out;
3853         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3854         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3855                         "Op regs DCBAA ptr = %#016llx", temp_64);
3856         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3857                 "Slot ID %d dcbaa entry @%p = %#016llx",
3858                 udev->slot_id,
3859                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3860                 (unsigned long long)
3861                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3862         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3863                         "Output Context DMA address = %#08llx",
3864                         (unsigned long long)virt_dev->out_ctx->dma);
3865         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3866                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3867         /*
3868          * USB core uses address 1 for the roothubs, so we add one to the
3869          * address given back to us by the HC.
3870          */
3871         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3872                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3873         /* Zero the input context control for later use */
3874         ctrl_ctx->add_flags = 0;
3875         ctrl_ctx->drop_flags = 0;
3876
3877         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878                        "Internal device address = %d",
3879                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3880 out:
3881         mutex_unlock(&xhci->mutex);
3882         if (command) {
3883                 kfree(command->completion);
3884                 kfree(command);
3885         }
3886         return ret;
3887 }
3888
3889 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3890 {
3891         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3892 }
3893
3894 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3895 {
3896         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3897 }
3898
3899 /*
3900  * Transfer the port index into real index in the HW port status
3901  * registers. Caculate offset between the port's PORTSC register
3902  * and port status base. Divide the number of per port register
3903  * to get the real index. The raw port number bases 1.
3904  */
3905 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3906 {
3907         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3908         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3909         __le32 __iomem *addr;
3910         int raw_port;
3911
3912         if (hcd->speed < HCD_USB3)
3913                 addr = xhci->usb2_ports[port1 - 1];
3914         else
3915                 addr = xhci->usb3_ports[port1 - 1];
3916
3917         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3918         return raw_port;
3919 }
3920
3921 /*
3922  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3923  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3924  */
3925 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3926                         struct usb_device *udev, u16 max_exit_latency)
3927 {
3928         struct xhci_virt_device *virt_dev;
3929         struct xhci_command *command;
3930         struct xhci_input_control_ctx *ctrl_ctx;
3931         struct xhci_slot_ctx *slot_ctx;
3932         unsigned long flags;
3933         int ret;
3934
3935         spin_lock_irqsave(&xhci->lock, flags);
3936
3937         virt_dev = xhci->devs[udev->slot_id];
3938
3939         /*
3940          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3941          * xHC was re-initialized. Exit latency will be set later after
3942          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3943          */
3944
3945         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3946                 spin_unlock_irqrestore(&xhci->lock, flags);
3947                 return 0;
3948         }
3949
3950         /* Attempt to issue an Evaluate Context command to change the MEL. */
3951         command = xhci->lpm_command;
3952         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3953         if (!ctrl_ctx) {
3954                 spin_unlock_irqrestore(&xhci->lock, flags);
3955                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3956                                 __func__);
3957                 return -ENOMEM;
3958         }
3959
3960         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3961         spin_unlock_irqrestore(&xhci->lock, flags);
3962
3963         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3964         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3965         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3966         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3967         slot_ctx->dev_state = 0;
3968
3969         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3970                         "Set up evaluate context for LPM MEL change.");
3971
3972         /* Issue and wait for the evaluate context command. */
3973         ret = xhci_configure_endpoint(xhci, udev, command,
3974                         true, true);
3975
3976         if (!ret) {
3977                 spin_lock_irqsave(&xhci->lock, flags);
3978                 virt_dev->current_mel = max_exit_latency;
3979                 spin_unlock_irqrestore(&xhci->lock, flags);
3980         }
3981         return ret;
3982 }
3983
3984 #ifdef CONFIG_PM
3985
3986 /* BESL to HIRD Encoding array for USB2 LPM */
3987 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3988         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3989
3990 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3991 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3992                                         struct usb_device *udev)
3993 {
3994         int u2del, besl, besl_host;
3995         int besl_device = 0;
3996         u32 field;
3997
3998         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3999         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4000
4001         if (field & USB_BESL_SUPPORT) {
4002                 for (besl_host = 0; besl_host < 16; besl_host++) {
4003                         if (xhci_besl_encoding[besl_host] >= u2del)
4004                                 break;
4005                 }
4006                 /* Use baseline BESL value as default */
4007                 if (field & USB_BESL_BASELINE_VALID)
4008                         besl_device = USB_GET_BESL_BASELINE(field);
4009                 else if (field & USB_BESL_DEEP_VALID)
4010                         besl_device = USB_GET_BESL_DEEP(field);
4011         } else {
4012                 if (u2del <= 50)
4013                         besl_host = 0;
4014                 else
4015                         besl_host = (u2del - 51) / 75 + 1;
4016         }
4017
4018         besl = besl_host + besl_device;
4019         if (besl > 15)
4020                 besl = 15;
4021
4022         return besl;
4023 }
4024
4025 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4026 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4027 {
4028         u32 field;
4029         int l1;
4030         int besld = 0;
4031         int hirdm = 0;
4032
4033         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4034
4035         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4036         l1 = udev->l1_params.timeout / 256;
4037
4038         /* device has preferred BESLD */
4039         if (field & USB_BESL_DEEP_VALID) {
4040                 besld = USB_GET_BESL_DEEP(field);
4041                 hirdm = 1;
4042         }
4043
4044         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4045 }
4046
4047 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4048                         struct usb_device *udev, int enable)
4049 {
4050         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4051         __le32 __iomem  **port_array;
4052         __le32 __iomem  *pm_addr, *hlpm_addr;
4053         u32             pm_val, hlpm_val, field;
4054         unsigned int    port_num;
4055         unsigned long   flags;
4056         int             hird, exit_latency;
4057         int             ret;
4058
4059         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4060                         !udev->lpm_capable)
4061                 return -EPERM;
4062
4063         if (!udev->parent || udev->parent->parent ||
4064                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4065                 return -EPERM;
4066
4067         if (udev->usb2_hw_lpm_capable != 1)
4068                 return -EPERM;
4069
4070         spin_lock_irqsave(&xhci->lock, flags);
4071
4072         port_array = xhci->usb2_ports;
4073         port_num = udev->portnum - 1;
4074         pm_addr = port_array[port_num] + PORTPMSC;
4075         pm_val = readl(pm_addr);
4076         hlpm_addr = port_array[port_num] + PORTHLPMC;
4077         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4078
4079         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4080                         enable ? "enable" : "disable", port_num + 1);
4081
4082         if (enable) {
4083                 /* Host supports BESL timeout instead of HIRD */
4084                 if (udev->usb2_hw_lpm_besl_capable) {
4085                         /* if device doesn't have a preferred BESL value use a
4086                          * default one which works with mixed HIRD and BESL
4087                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4088                          */
4089                         if ((field & USB_BESL_SUPPORT) &&
4090                             (field & USB_BESL_BASELINE_VALID))
4091                                 hird = USB_GET_BESL_BASELINE(field);
4092                         else
4093                                 hird = udev->l1_params.besl;
4094
4095                         exit_latency = xhci_besl_encoding[hird];
4096                         spin_unlock_irqrestore(&xhci->lock, flags);
4097
4098                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4099                          * input context for link powermanagement evaluate
4100                          * context commands. It is protected by hcd->bandwidth
4101                          * mutex and is shared by all devices. We need to set
4102                          * the max ext latency in USB 2 BESL LPM as well, so
4103                          * use the same mutex and xhci_change_max_exit_latency()
4104                          */
4105                         mutex_lock(hcd->bandwidth_mutex);
4106                         ret = xhci_change_max_exit_latency(xhci, udev,
4107                                                            exit_latency);
4108                         mutex_unlock(hcd->bandwidth_mutex);
4109
4110                         if (ret < 0)
4111                                 return ret;
4112                         spin_lock_irqsave(&xhci->lock, flags);
4113
4114                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4115                         writel(hlpm_val, hlpm_addr);
4116                         /* flush write */
4117                         readl(hlpm_addr);
4118                 } else {
4119                         hird = xhci_calculate_hird_besl(xhci, udev);
4120                 }
4121
4122                 pm_val &= ~PORT_HIRD_MASK;
4123                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4124                 writel(pm_val, pm_addr);
4125                 pm_val = readl(pm_addr);
4126                 pm_val |= PORT_HLE;
4127                 writel(pm_val, pm_addr);
4128                 /* flush write */
4129                 readl(pm_addr);
4130         } else {
4131                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4132                 writel(pm_val, pm_addr);
4133                 /* flush write */
4134                 readl(pm_addr);
4135                 if (udev->usb2_hw_lpm_besl_capable) {
4136                         spin_unlock_irqrestore(&xhci->lock, flags);
4137                         mutex_lock(hcd->bandwidth_mutex);
4138                         xhci_change_max_exit_latency(xhci, udev, 0);
4139                         mutex_unlock(hcd->bandwidth_mutex);
4140                         return 0;
4141                 }
4142         }
4143
4144         spin_unlock_irqrestore(&xhci->lock, flags);
4145         return 0;
4146 }
4147
4148 /* check if a usb2 port supports a given extened capability protocol
4149  * only USB2 ports extended protocol capability values are cached.
4150  * Return 1 if capability is supported
4151  */
4152 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4153                                            unsigned capability)
4154 {
4155         u32 port_offset, port_count;
4156         int i;
4157
4158         for (i = 0; i < xhci->num_ext_caps; i++) {
4159                 if (xhci->ext_caps[i] & capability) {
4160                         /* port offsets starts at 1 */
4161                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4162                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4163                         if (port >= port_offset &&
4164                             port < port_offset + port_count)
4165                                 return 1;
4166                 }
4167         }
4168         return 0;
4169 }
4170
4171 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4172 {
4173         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4174         int             portnum = udev->portnum - 1;
4175
4176         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4177                         !udev->lpm_capable)
4178                 return 0;
4179
4180         /* we only support lpm for non-hub device connected to root hub yet */
4181         if (!udev->parent || udev->parent->parent ||
4182                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4183                 return 0;
4184
4185         if (xhci->hw_lpm_support == 1 &&
4186                         xhci_check_usb2_port_capability(
4187                                 xhci, portnum, XHCI_HLC)) {
4188                 udev->usb2_hw_lpm_capable = 1;
4189                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4190                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4191                 if (xhci_check_usb2_port_capability(xhci, portnum,
4192                                         XHCI_BLC))
4193                         udev->usb2_hw_lpm_besl_capable = 1;
4194         }
4195
4196         return 0;
4197 }
4198
4199 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4200
4201 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4202 static unsigned long long xhci_service_interval_to_ns(
4203                 struct usb_endpoint_descriptor *desc)
4204 {
4205         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4206 }
4207
4208 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4209                 enum usb3_link_state state)
4210 {
4211         unsigned long long sel;
4212         unsigned long long pel;
4213         unsigned int max_sel_pel;
4214         char *state_name;
4215
4216         switch (state) {
4217         case USB3_LPM_U1:
4218                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4219                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4220                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4221                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4222                 state_name = "U1";
4223                 break;
4224         case USB3_LPM_U2:
4225                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4226                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4227                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4228                 state_name = "U2";
4229                 break;
4230         default:
4231                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4232                                 __func__);
4233                 return USB3_LPM_DISABLED;
4234         }
4235
4236         if (sel <= max_sel_pel && pel <= max_sel_pel)
4237                 return USB3_LPM_DEVICE_INITIATED;
4238
4239         if (sel > max_sel_pel)
4240                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4241                                 "due to long SEL %llu ms\n",
4242                                 state_name, sel);
4243         else
4244                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4245                                 "due to long PEL %llu ms\n",
4246                                 state_name, pel);
4247         return USB3_LPM_DISABLED;
4248 }
4249
4250 /* The U1 timeout should be the maximum of the following values:
4251  *  - For control endpoints, U1 system exit latency (SEL) * 3
4252  *  - For bulk endpoints, U1 SEL * 5
4253  *  - For interrupt endpoints:
4254  *    - Notification EPs, U1 SEL * 3
4255  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4256  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4257  */
4258 static unsigned long long xhci_calculate_intel_u1_timeout(
4259                 struct usb_device *udev,
4260                 struct usb_endpoint_descriptor *desc)
4261 {
4262         unsigned long long timeout_ns;
4263         int ep_type;
4264         int intr_type;
4265
4266         ep_type = usb_endpoint_type(desc);
4267         switch (ep_type) {
4268         case USB_ENDPOINT_XFER_CONTROL:
4269                 timeout_ns = udev->u1_params.sel * 3;
4270                 break;
4271         case USB_ENDPOINT_XFER_BULK:
4272                 timeout_ns = udev->u1_params.sel * 5;
4273                 break;
4274         case USB_ENDPOINT_XFER_INT:
4275                 intr_type = usb_endpoint_interrupt_type(desc);
4276                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4277                         timeout_ns = udev->u1_params.sel * 3;
4278                         break;
4279                 }
4280                 /* Otherwise the calculation is the same as isoc eps */
4281         case USB_ENDPOINT_XFER_ISOC:
4282                 timeout_ns = xhci_service_interval_to_ns(desc);
4283                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4284                 if (timeout_ns < udev->u1_params.sel * 2)
4285                         timeout_ns = udev->u1_params.sel * 2;
4286                 break;
4287         default:
4288                 return 0;
4289         }
4290
4291         return timeout_ns;
4292 }
4293
4294 /* Returns the hub-encoded U1 timeout value. */
4295 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4296                 struct usb_device *udev,
4297                 struct usb_endpoint_descriptor *desc)
4298 {
4299         unsigned long long timeout_ns;
4300
4301         if (xhci->quirks & XHCI_INTEL_HOST)
4302                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4303         else
4304                 timeout_ns = udev->u1_params.sel;
4305
4306         /* The U1 timeout is encoded in 1us intervals.
4307          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4308          */
4309         if (timeout_ns == USB3_LPM_DISABLED)
4310                 timeout_ns = 1;
4311         else
4312                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4313
4314         /* If the necessary timeout value is bigger than what we can set in the
4315          * USB 3.0 hub, we have to disable hub-initiated U1.
4316          */
4317         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4318                 return timeout_ns;
4319         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4320                         "due to long timeout %llu ms\n", timeout_ns);
4321         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4322 }
4323
4324 /* The U2 timeout should be the maximum of:
4325  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4326  *  - largest bInterval of any active periodic endpoint (to avoid going
4327  *    into lower power link states between intervals).
4328  *  - the U2 Exit Latency of the device
4329  */
4330 static unsigned long long xhci_calculate_intel_u2_timeout(
4331                 struct usb_device *udev,
4332                 struct usb_endpoint_descriptor *desc)
4333 {
4334         unsigned long long timeout_ns;
4335         unsigned long long u2_del_ns;
4336
4337         timeout_ns = 10 * 1000 * 1000;
4338
4339         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4340                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4341                 timeout_ns = xhci_service_interval_to_ns(desc);
4342
4343         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4344         if (u2_del_ns > timeout_ns)
4345                 timeout_ns = u2_del_ns;
4346
4347         return timeout_ns;
4348 }
4349
4350 /* Returns the hub-encoded U2 timeout value. */
4351 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4352                 struct usb_device *udev,
4353                 struct usb_endpoint_descriptor *desc)
4354 {
4355         unsigned long long timeout_ns;
4356
4357         if (xhci->quirks & XHCI_INTEL_HOST)
4358                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4359         else
4360                 timeout_ns = udev->u2_params.sel;
4361
4362         /* The U2 timeout is encoded in 256us intervals */
4363         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4364         /* If the necessary timeout value is bigger than what we can set in the
4365          * USB 3.0 hub, we have to disable hub-initiated U2.
4366          */
4367         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4368                 return timeout_ns;
4369         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4370                         "due to long timeout %llu ms\n", timeout_ns);
4371         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4372 }
4373
4374 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4375                 struct usb_device *udev,
4376                 struct usb_endpoint_descriptor *desc,
4377                 enum usb3_link_state state,
4378                 u16 *timeout)
4379 {
4380         if (state == USB3_LPM_U1)
4381                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4382         else if (state == USB3_LPM_U2)
4383                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4384
4385         return USB3_LPM_DISABLED;
4386 }
4387
4388 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4389                 struct usb_device *udev,
4390                 struct usb_endpoint_descriptor *desc,
4391                 enum usb3_link_state state,
4392                 u16 *timeout)
4393 {
4394         u16 alt_timeout;
4395
4396         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4397                 desc, state, timeout);
4398
4399         /* If we found we can't enable hub-initiated LPM, or
4400          * the U1 or U2 exit latency was too high to allow
4401          * device-initiated LPM as well, just stop searching.
4402          */
4403         if (alt_timeout == USB3_LPM_DISABLED ||
4404                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4405                 *timeout = alt_timeout;
4406                 return -E2BIG;
4407         }
4408         if (alt_timeout > *timeout)
4409                 *timeout = alt_timeout;
4410         return 0;
4411 }
4412
4413 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4414                 struct usb_device *udev,
4415                 struct usb_host_interface *alt,
4416                 enum usb3_link_state state,
4417                 u16 *timeout)
4418 {
4419         int j;
4420
4421         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4422                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4423                                         &alt->endpoint[j].desc, state, timeout))
4424                         return -E2BIG;
4425                 continue;
4426         }
4427         return 0;
4428 }
4429
4430 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4431                 enum usb3_link_state state)
4432 {
4433         struct usb_device *parent;
4434         unsigned int num_hubs;
4435
4436         if (state == USB3_LPM_U2)
4437                 return 0;
4438
4439         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4440         for (parent = udev->parent, num_hubs = 0; parent->parent;
4441                         parent = parent->parent)
4442                 num_hubs++;
4443
4444         if (num_hubs < 2)
4445                 return 0;
4446
4447         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4448                         " below second-tier hub.\n");
4449         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4450                         "to decrease power consumption.\n");
4451         return -E2BIG;
4452 }
4453
4454 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4455                 struct usb_device *udev,
4456                 enum usb3_link_state state)
4457 {
4458         if (xhci->quirks & XHCI_INTEL_HOST)
4459                 return xhci_check_intel_tier_policy(udev, state);
4460         else
4461                 return 0;
4462 }
4463
4464 /* Returns the U1 or U2 timeout that should be enabled.
4465  * If the tier check or timeout setting functions return with a non-zero exit
4466  * code, that means the timeout value has been finalized and we shouldn't look
4467  * at any more endpoints.
4468  */
4469 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4470                         struct usb_device *udev, enum usb3_link_state state)
4471 {
4472         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4473         struct usb_host_config *config;
4474         char *state_name;
4475         int i;
4476         u16 timeout = USB3_LPM_DISABLED;
4477
4478         if (state == USB3_LPM_U1)
4479                 state_name = "U1";
4480         else if (state == USB3_LPM_U2)
4481                 state_name = "U2";
4482         else {
4483                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4484                                 state);
4485                 return timeout;
4486         }
4487
4488         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4489                 return timeout;
4490
4491         /* Gather some information about the currently installed configuration
4492          * and alternate interface settings.
4493          */
4494         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4495                         state, &timeout))
4496                 return timeout;
4497
4498         config = udev->actconfig;
4499         if (!config)
4500                 return timeout;
4501
4502         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4503                 struct usb_driver *driver;
4504                 struct usb_interface *intf = config->interface[i];
4505
4506                 if (!intf)
4507                         continue;
4508
4509                 /* Check if any currently bound drivers want hub-initiated LPM
4510                  * disabled.
4511                  */
4512                 if (intf->dev.driver) {
4513                         driver = to_usb_driver(intf->dev.driver);
4514                         if (driver && driver->disable_hub_initiated_lpm) {
4515                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4516                                                 "at request of driver %s\n",
4517                                                 state_name, driver->name);
4518                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4519                         }
4520                 }
4521
4522                 /* Not sure how this could happen... */
4523                 if (!intf->cur_altsetting)
4524                         continue;
4525
4526                 if (xhci_update_timeout_for_interface(xhci, udev,
4527                                         intf->cur_altsetting,
4528                                         state, &timeout))
4529                         return timeout;
4530         }
4531         return timeout;
4532 }
4533
4534 static int calculate_max_exit_latency(struct usb_device *udev,
4535                 enum usb3_link_state state_changed,
4536                 u16 hub_encoded_timeout)
4537 {
4538         unsigned long long u1_mel_us = 0;
4539         unsigned long long u2_mel_us = 0;
4540         unsigned long long mel_us = 0;
4541         bool disabling_u1;
4542         bool disabling_u2;
4543         bool enabling_u1;
4544         bool enabling_u2;
4545
4546         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4547                         hub_encoded_timeout == USB3_LPM_DISABLED);
4548         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4549                         hub_encoded_timeout == USB3_LPM_DISABLED);
4550
4551         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4552                         hub_encoded_timeout != USB3_LPM_DISABLED);
4553         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4554                         hub_encoded_timeout != USB3_LPM_DISABLED);
4555
4556         /* If U1 was already enabled and we're not disabling it,
4557          * or we're going to enable U1, account for the U1 max exit latency.
4558          */
4559         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4560                         enabling_u1)
4561                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4562         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4563                         enabling_u2)
4564                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4565
4566         if (u1_mel_us > u2_mel_us)
4567                 mel_us = u1_mel_us;
4568         else
4569                 mel_us = u2_mel_us;
4570         /* xHCI host controller max exit latency field is only 16 bits wide. */
4571         if (mel_us > MAX_EXIT) {
4572                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4573                                 "is too big.\n", mel_us);
4574                 return -E2BIG;
4575         }
4576         return mel_us;
4577 }
4578
4579 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4580 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4581                         struct usb_device *udev, enum usb3_link_state state)
4582 {
4583         struct xhci_hcd *xhci;
4584         u16 hub_encoded_timeout;
4585         int mel;
4586         int ret;
4587
4588         xhci = hcd_to_xhci(hcd);
4589         /* The LPM timeout values are pretty host-controller specific, so don't
4590          * enable hub-initiated timeouts unless the vendor has provided
4591          * information about their timeout algorithm.
4592          */
4593         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4594                         !xhci->devs[udev->slot_id])
4595                 return USB3_LPM_DISABLED;
4596
4597         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4598         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4599         if (mel < 0) {
4600                 /* Max Exit Latency is too big, disable LPM. */
4601                 hub_encoded_timeout = USB3_LPM_DISABLED;
4602                 mel = 0;
4603         }
4604
4605         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4606         if (ret)
4607                 return ret;
4608         return hub_encoded_timeout;
4609 }
4610
4611 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4612                         struct usb_device *udev, enum usb3_link_state state)
4613 {
4614         struct xhci_hcd *xhci;
4615         u16 mel;
4616
4617         xhci = hcd_to_xhci(hcd);
4618         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4619                         !xhci->devs[udev->slot_id])
4620                 return 0;
4621
4622         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4623         return xhci_change_max_exit_latency(xhci, udev, mel);
4624 }
4625 #else /* CONFIG_PM */
4626
4627 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4628                                 struct usb_device *udev, int enable)
4629 {
4630         return 0;
4631 }
4632
4633 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4634 {
4635         return 0;
4636 }
4637
4638 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639                         struct usb_device *udev, enum usb3_link_state state)
4640 {
4641         return USB3_LPM_DISABLED;
4642 }
4643
4644 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4645                         struct usb_device *udev, enum usb3_link_state state)
4646 {
4647         return 0;
4648 }
4649 #endif  /* CONFIG_PM */
4650
4651 /*-------------------------------------------------------------------------*/
4652
4653 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4654  * internal data structures for the device.
4655  */
4656 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4657                         struct usb_tt *tt, gfp_t mem_flags)
4658 {
4659         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4660         struct xhci_virt_device *vdev;
4661         struct xhci_command *config_cmd;
4662         struct xhci_input_control_ctx *ctrl_ctx;
4663         struct xhci_slot_ctx *slot_ctx;
4664         unsigned long flags;
4665         unsigned think_time;
4666         int ret;
4667
4668         /* Ignore root hubs */
4669         if (!hdev->parent)
4670                 return 0;
4671
4672         vdev = xhci->devs[hdev->slot_id];
4673         if (!vdev) {
4674                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4675                 return -EINVAL;
4676         }
4677
4678         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4679         if (!config_cmd)
4680                 return -ENOMEM;
4681
4682         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4683         if (!ctrl_ctx) {
4684                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4685                                 __func__);
4686                 xhci_free_command(xhci, config_cmd);
4687                 return -ENOMEM;
4688         }
4689
4690         spin_lock_irqsave(&xhci->lock, flags);
4691         if (hdev->speed == USB_SPEED_HIGH &&
4692                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4693                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4694                 xhci_free_command(xhci, config_cmd);
4695                 spin_unlock_irqrestore(&xhci->lock, flags);
4696                 return -ENOMEM;
4697         }
4698
4699         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4700         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4701         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4702         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4703         /*
4704          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4705          * but it may be already set to 1 when setup an xHCI virtual
4706          * device, so clear it anyway.
4707          */
4708         if (tt->multi)
4709                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4710         else if (hdev->speed == USB_SPEED_FULL)
4711                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4712
4713         if (xhci->hci_version > 0x95) {
4714                 xhci_dbg(xhci, "xHCI version %x needs hub "
4715                                 "TT think time and number of ports\n",
4716                                 (unsigned int) xhci->hci_version);
4717                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4718                 /* Set TT think time - convert from ns to FS bit times.
4719                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4720                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4721                  *
4722                  * xHCI 1.0: this field shall be 0 if the device is not a
4723                  * High-spped hub.
4724                  */
4725                 think_time = tt->think_time;
4726                 if (think_time != 0)
4727                         think_time = (think_time / 666) - 1;
4728                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4729                         slot_ctx->tt_info |=
4730                                 cpu_to_le32(TT_THINK_TIME(think_time));
4731         } else {
4732                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4733                                 "TT think time or number of ports\n",
4734                                 (unsigned int) xhci->hci_version);
4735         }
4736         slot_ctx->dev_state = 0;
4737         spin_unlock_irqrestore(&xhci->lock, flags);
4738
4739         xhci_dbg(xhci, "Set up %s for hub device.\n",
4740                         (xhci->hci_version > 0x95) ?
4741                         "configure endpoint" : "evaluate context");
4742
4743         /* Issue and wait for the configure endpoint or
4744          * evaluate context command.
4745          */
4746         if (xhci->hci_version > 0x95)
4747                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4748                                 false, false);
4749         else
4750                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4751                                 true, false);
4752
4753         xhci_free_command(xhci, config_cmd);
4754         return ret;
4755 }
4756
4757 static int xhci_get_frame(struct usb_hcd *hcd)
4758 {
4759         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4760         /* EHCI mods by the periodic size.  Why? */
4761         return readl(&xhci->run_regs->microframe_index) >> 3;
4762 }
4763
4764 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4765 {
4766         struct xhci_hcd         *xhci;
4767         /*
4768          * TODO: Check with DWC3 clients for sysdev according to
4769          * quirks
4770          */
4771         struct device           *dev = hcd->self.sysdev;
4772         int                     retval;
4773
4774         /* Accept arbitrarily long scatter-gather lists */
4775         hcd->self.sg_tablesize = ~0;
4776
4777         /* support to build packet from discontinuous buffers */
4778         hcd->self.no_sg_constraint = 1;
4779
4780         /* XHCI controllers don't stop the ep queue on short packets :| */
4781         hcd->self.no_stop_on_short = 1;
4782
4783         xhci = hcd_to_xhci(hcd);
4784
4785         if (usb_hcd_is_primary_hcd(hcd)) {
4786                 xhci->main_hcd = hcd;
4787                 /* Mark the first roothub as being USB 2.0.
4788                  * The xHCI driver will register the USB 3.0 roothub.
4789                  */
4790                 hcd->speed = HCD_USB2;
4791                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4792                 /*
4793                  * USB 2.0 roothub under xHCI has an integrated TT,
4794                  * (rate matching hub) as opposed to having an OHCI/UHCI
4795                  * companion controller.
4796                  */
4797                 hcd->has_tt = 1;
4798         } else {
4799                 if (xhci->sbrn == 0x31) {
4800                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4801                         hcd->speed = HCD_USB31;
4802                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4803                 }
4804                 /* xHCI private pointer was set in xhci_pci_probe for the second
4805                  * registered roothub.
4806                  */
4807                 return 0;
4808         }
4809
4810         mutex_init(&xhci->mutex);
4811         xhci->cap_regs = hcd->regs;
4812         xhci->op_regs = hcd->regs +
4813                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4814         xhci->run_regs = hcd->regs +
4815                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4816         /* Cache read-only capability registers */
4817         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4818         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4819         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4820         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4821         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4822         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4823         if (xhci->hci_version > 0x100)
4824                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4825         xhci_print_registers(xhci);
4826
4827         xhci->quirks |= quirks;
4828
4829         get_quirks(dev, xhci);
4830
4831         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4832          * success event after a short transfer. This quirk will ignore such
4833          * spurious event.
4834          */
4835         if (xhci->hci_version > 0x96)
4836                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4837
4838         /* Make sure the HC is halted. */
4839         retval = xhci_halt(xhci);
4840         if (retval)
4841                 return retval;
4842
4843         xhci_dbg(xhci, "Resetting HCD\n");
4844         /* Reset the internal HC memory state and registers. */
4845         retval = xhci_reset(xhci);
4846         if (retval)
4847                 return retval;
4848         xhci_dbg(xhci, "Reset complete\n");
4849
4850         /*
4851          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4852          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4853          * address memory pointers actually. So, this driver clears the AC64
4854          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4855          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4856          */
4857         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4858                 xhci->hcc_params &= ~BIT(0);
4859
4860         /* Set dma_mask and coherent_dma_mask to 64-bits,
4861          * if xHC supports 64-bit addressing */
4862         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4863                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4864                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4865                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4866         } else {
4867                 /*
4868                  * This is to avoid error in cases where a 32-bit USB
4869                  * controller is used on a 64-bit capable system.
4870                  */
4871                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4872                 if (retval)
4873                         return retval;
4874                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4875                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4876         }
4877
4878         xhci_dbg(xhci, "Calling HCD init\n");
4879         /* Initialize HCD and host controller data structures. */
4880         retval = xhci_init(hcd);
4881         if (retval)
4882                 return retval;
4883         xhci_dbg(xhci, "Called HCD init\n");
4884
4885         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4886                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4887
4888         return 0;
4889 }
4890 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4891
4892 static const struct hc_driver xhci_hc_driver = {
4893         .description =          "xhci-hcd",
4894         .product_desc =         "xHCI Host Controller",
4895         .hcd_priv_size =        sizeof(struct xhci_hcd),
4896
4897         /*
4898          * generic hardware linkage
4899          */
4900         .irq =                  xhci_irq,
4901         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4902
4903         /*
4904          * basic lifecycle operations
4905          */
4906         .reset =                NULL, /* set in xhci_init_driver() */
4907         .start =                xhci_run,
4908         .stop =                 xhci_stop,
4909         .shutdown =             xhci_shutdown,
4910
4911         /*
4912          * managing i/o requests and associated device resources
4913          */
4914         .urb_enqueue =          xhci_urb_enqueue,
4915         .urb_dequeue =          xhci_urb_dequeue,
4916         .alloc_dev =            xhci_alloc_dev,
4917         .free_dev =             xhci_free_dev,
4918         .alloc_streams =        xhci_alloc_streams,
4919         .free_streams =         xhci_free_streams,
4920         .add_endpoint =         xhci_add_endpoint,
4921         .drop_endpoint =        xhci_drop_endpoint,
4922         .endpoint_reset =       xhci_endpoint_reset,
4923         .check_bandwidth =      xhci_check_bandwidth,
4924         .reset_bandwidth =      xhci_reset_bandwidth,
4925         .address_device =       xhci_address_device,
4926         .enable_device =        xhci_enable_device,
4927         .update_hub_device =    xhci_update_hub_device,
4928         .reset_device =         xhci_discover_or_reset_device,
4929
4930         /*
4931          * scheduling support
4932          */
4933         .get_frame_number =     xhci_get_frame,
4934
4935         /*
4936          * root hub support
4937          */
4938         .hub_control =          xhci_hub_control,
4939         .hub_status_data =      xhci_hub_status_data,
4940         .bus_suspend =          xhci_bus_suspend,
4941         .bus_resume =           xhci_bus_resume,
4942
4943         /*
4944          * call back when device connected and addressed
4945          */
4946         .update_device =        xhci_update_device,
4947         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4948         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4949         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4950         .find_raw_port_number = xhci_find_raw_port_number,
4951 };
4952
4953 void xhci_init_driver(struct hc_driver *drv,
4954                       const struct xhci_driver_overrides *over)
4955 {
4956         BUG_ON(!over);
4957
4958         /* Copy the generic table to drv then apply the overrides */
4959         *drv = xhci_hc_driver;
4960
4961         if (over) {
4962                 drv->hcd_priv_size += over->extra_priv_size;
4963                 if (over->reset)
4964                         drv->reset = over->reset;
4965                 if (over->start)
4966                         drv->start = over->start;
4967         }
4968 }
4969 EXPORT_SYMBOL_GPL(xhci_init_driver);
4970
4971 MODULE_DESCRIPTION(DRIVER_DESC);
4972 MODULE_AUTHOR(DRIVER_AUTHOR);
4973 MODULE_LICENSE("GPL");
4974
4975 static int __init xhci_hcd_init(void)
4976 {
4977         /*
4978          * Check the compiler generated sizes of structures that must be laid
4979          * out in specific ways for hardware access.
4980          */
4981         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4982         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4983         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4984         /* xhci_device_control has eight fields, and also
4985          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4986          */
4987         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4988         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4989         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4990         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4991         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4992         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4993         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4994
4995         if (usb_disabled())
4996                 return -ENODEV;
4997
4998         return 0;
4999 }
5000
5001 /*
5002  * If an init function is provided, an exit function must also be provided
5003  * to allow module unload.
5004  */
5005 static void __exit xhci_hcd_fini(void) { }
5006
5007 module_init(xhci_hcd_init);
5008 module_exit(xhci_hcd_fini);