]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/usb/host/xhci.c
powerpc/entry: Fix an #if which should be an #ifdef in entry_32.S
[linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2, portsc;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 portsc = t1;
901                 t1 = xhci_port_state_to_neutral(t1);
902                 t2 = t1 & ~PORT_WAKE_BITS;
903                 if (t1 != t2) {
904                         writel(t2, ports[port_index]->addr);
905                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906                                  xhci->usb3_rhub.hcd->self.busnum,
907                                  port_index + 1, portsc, t2);
908                 }
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 portsc = t1;
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2) {
920                         writel(t2, ports[port_index]->addr);
921                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922                                  xhci->usb2_rhub.hcd->self.busnum,
923                                  port_index + 1, portsc, t2);
924                 }
925         }
926         spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931         struct xhci_port        **ports;
932         int                     port_index;
933         u32                     status;
934         u32                     portsc;
935
936         status = readl(&xhci->op_regs->status);
937         if (status & STS_EINT)
938                 return true;
939         /*
940          * Checking STS_EINT is not enough as there is a lag between a change
941          * bit being set and the Port Status Change Event that it generated
942          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943          */
944
945         port_index = xhci->usb2_rhub.num_ports;
946         ports = xhci->usb2_rhub.ports;
947         while (port_index--) {
948                 portsc = readl(ports[port_index]->addr);
949                 if (portsc & PORT_CHANGE_MASK ||
950                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951                         return true;
952         }
953         port_index = xhci->usb3_rhub.num_ports;
954         ports = xhci->usb3_rhub.ports;
955         while (port_index--) {
956                 portsc = readl(ports[port_index]->addr);
957                 if (portsc & PORT_CHANGE_MASK ||
958                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959                         return true;
960         }
961         return false;
962 }
963
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972         int                     rc = 0;
973         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
974         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
975         u32                     command;
976         u32                     res;
977
978         if (!hcd->state)
979                 return 0;
980
981         if (hcd->state != HC_STATE_SUSPENDED ||
982                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983                 return -EINVAL;
984
985         xhci_dbc_suspend(xhci);
986
987         /* Clear root port wake on bits if wakeup not allowed. */
988         if (!do_wakeup)
989                 xhci_disable_port_wake_on_bits(xhci);
990
991         /* Don't poll the roothubs on bus suspend. */
992         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
993         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
994         del_timer_sync(&hcd->rh_timer);
995         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
996         del_timer_sync(&xhci->shared_hcd->rh_timer);
997
998         if (xhci->quirks & XHCI_SUSPEND_DELAY)
999                 usleep_range(1000, 1500);
1000
1001         spin_lock_irq(&xhci->lock);
1002         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1004         /* step 1: stop endpoint */
1005         /* skipped assuming that port suspend has done */
1006
1007         /* step 2: clear Run/Stop bit */
1008         command = readl(&xhci->op_regs->command);
1009         command &= ~CMD_RUN;
1010         writel(command, &xhci->op_regs->command);
1011
1012         /* Some chips from Fresco Logic need an extraordinary delay */
1013         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1014
1015         if (xhci_handshake(&xhci->op_regs->status,
1016                       STS_HALT, STS_HALT, delay)) {
1017                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1018                 spin_unlock_irq(&xhci->lock);
1019                 return -ETIMEDOUT;
1020         }
1021         xhci_clear_command_ring(xhci);
1022
1023         /* step 3: save registers */
1024         xhci_save_registers(xhci);
1025
1026         /* step 4: set CSS flag */
1027         command = readl(&xhci->op_regs->command);
1028         command |= CMD_CSS;
1029         writel(command, &xhci->op_regs->command);
1030         xhci->broken_suspend = 0;
1031         if (xhci_handshake(&xhci->op_regs->status,
1032                                 STS_SAVE, 0, 20 * 1000)) {
1033         /*
1034          * AMD SNPS xHC 3.0 occasionally does not clear the
1035          * SSS bit of USBSTS and when driver tries to poll
1036          * to see if the xHC clears BIT(8) which never happens
1037          * and driver assumes that controller is not responding
1038          * and times out. To workaround this, its good to check
1039          * if SRE and HCE bits are not set (as per xhci
1040          * Section 5.4.2) and bypass the timeout.
1041          */
1042                 res = readl(&xhci->op_regs->status);
1043                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1044                     (((res & STS_SRE) == 0) &&
1045                                 ((res & STS_HCE) == 0))) {
1046                         xhci->broken_suspend = 1;
1047                 } else {
1048                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1049                         spin_unlock_irq(&xhci->lock);
1050                         return -ETIMEDOUT;
1051                 }
1052         }
1053         spin_unlock_irq(&xhci->lock);
1054
1055         /*
1056          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1057          * is about to be suspended.
1058          */
1059         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1060                         (!(xhci_all_ports_seen_u0(xhci)))) {
1061                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1062                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1063                                 "%s: compliance mode recovery timer deleted",
1064                                 __func__);
1065         }
1066
1067         /* step 5: remove core well power */
1068         /* synchronize irq when using MSI-X */
1069         xhci_msix_sync_irqs(xhci);
1070
1071         return rc;
1072 }
1073 EXPORT_SYMBOL_GPL(xhci_suspend);
1074
1075 /*
1076  * start xHC (not bus-specific)
1077  *
1078  * This is called when the machine transition from S3/S4 mode.
1079  *
1080  */
1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1082 {
1083         u32                     command, temp = 0;
1084         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1085         struct usb_hcd          *secondary_hcd;
1086         int                     retval = 0;
1087         bool                    comp_timer_running = false;
1088
1089         if (!hcd->state)
1090                 return 0;
1091
1092         /* Wait a bit if either of the roothubs need to settle from the
1093          * transition into bus suspend.
1094          */
1095
1096         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1097             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1098                 msleep(100);
1099
1100         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1101         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1102
1103         spin_lock_irq(&xhci->lock);
1104         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1105                 hibernated = true;
1106
1107         if (!hibernated) {
1108                 /*
1109                  * Some controllers might lose power during suspend, so wait
1110                  * for controller not ready bit to clear, just as in xHC init.
1111                  */
1112                 retval = xhci_handshake(&xhci->op_regs->status,
1113                                         STS_CNR, 0, 10 * 1000 * 1000);
1114                 if (retval) {
1115                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1116                                   retval);
1117                         spin_unlock_irq(&xhci->lock);
1118                         return retval;
1119                 }
1120                 /* step 1: restore register */
1121                 xhci_restore_registers(xhci);
1122                 /* step 2: initialize command ring buffer */
1123                 xhci_set_cmd_ring_deq(xhci);
1124                 /* step 3: restore state and start state*/
1125                 /* step 3: set CRS flag */
1126                 command = readl(&xhci->op_regs->command);
1127                 command |= CMD_CRS;
1128                 writel(command, &xhci->op_regs->command);
1129                 /*
1130                  * Some controllers take up to 55+ ms to complete the controller
1131                  * restore so setting the timeout to 100ms. Xhci specification
1132                  * doesn't mention any timeout value.
1133                  */
1134                 if (xhci_handshake(&xhci->op_regs->status,
1135                               STS_RESTORE, 0, 100 * 1000)) {
1136                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1137                         spin_unlock_irq(&xhci->lock);
1138                         return -ETIMEDOUT;
1139                 }
1140                 temp = readl(&xhci->op_regs->status);
1141         }
1142
1143         /* If restore operation fails, re-initialize the HC during resume */
1144         if ((temp & STS_SRE) || hibernated) {
1145
1146                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147                                 !(xhci_all_ports_seen_u0(xhci))) {
1148                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1149                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150                                 "Compliance Mode Recovery Timer deleted!");
1151                 }
1152
1153                 /* Let the USB core know _both_ roothubs lost power. */
1154                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1156
1157                 xhci_dbg(xhci, "Stop HCD\n");
1158                 xhci_halt(xhci);
1159                 xhci_zero_64b_regs(xhci);
1160                 xhci_reset(xhci);
1161                 spin_unlock_irq(&xhci->lock);
1162                 xhci_cleanup_msix(xhci);
1163
1164                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1165                 temp = readl(&xhci->op_regs->status);
1166                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1167                 temp = readl(&xhci->ir_set->irq_pending);
1168                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1169
1170                 xhci_dbg(xhci, "cleaning up memory\n");
1171                 xhci_mem_cleanup(xhci);
1172                 xhci_debugfs_exit(xhci);
1173                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1174                             readl(&xhci->op_regs->status));
1175
1176                 /* USB core calls the PCI reinit and start functions twice:
1177                  * first with the primary HCD, and then with the secondary HCD.
1178                  * If we don't do the same, the host will never be started.
1179                  */
1180                 if (!usb_hcd_is_primary_hcd(hcd))
1181                         secondary_hcd = hcd;
1182                 else
1183                         secondary_hcd = xhci->shared_hcd;
1184
1185                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1186                 retval = xhci_init(hcd->primary_hcd);
1187                 if (retval)
1188                         return retval;
1189                 comp_timer_running = true;
1190
1191                 xhci_dbg(xhci, "Start the primary HCD\n");
1192                 retval = xhci_run(hcd->primary_hcd);
1193                 if (!retval) {
1194                         xhci_dbg(xhci, "Start the secondary HCD\n");
1195                         retval = xhci_run(secondary_hcd);
1196                 }
1197                 hcd->state = HC_STATE_SUSPENDED;
1198                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1199                 goto done;
1200         }
1201
1202         /* step 4: set Run/Stop bit */
1203         command = readl(&xhci->op_regs->command);
1204         command |= CMD_RUN;
1205         writel(command, &xhci->op_regs->command);
1206         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1207                   0, 250 * 1000);
1208
1209         /* step 5: walk topology and initialize portsc,
1210          * portpmsc and portli
1211          */
1212         /* this is done in bus_resume */
1213
1214         /* step 6: restart each of the previously
1215          * Running endpoints by ringing their doorbells
1216          */
1217
1218         spin_unlock_irq(&xhci->lock);
1219
1220         xhci_dbc_resume(xhci);
1221
1222  done:
1223         if (retval == 0) {
1224                 /* Resume root hubs only when have pending events. */
1225                 if (xhci_pending_portevent(xhci)) {
1226                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1227                         usb_hcd_resume_root_hub(hcd);
1228                 }
1229         }
1230
1231         /*
1232          * If system is subject to the Quirk, Compliance Mode Timer needs to
1233          * be re-initialized Always after a system resume. Ports are subject
1234          * to suffer the Compliance Mode issue again. It doesn't matter if
1235          * ports have entered previously to U0 before system's suspension.
1236          */
1237         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1238                 compliance_mode_recovery_timer_init(xhci);
1239
1240         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1241                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1242
1243         /* Re-enable port polling. */
1244         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1245         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1246         usb_hcd_poll_rh_status(xhci->shared_hcd);
1247         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1248         usb_hcd_poll_rh_status(hcd);
1249
1250         return retval;
1251 }
1252 EXPORT_SYMBOL_GPL(xhci_resume);
1253 #endif  /* CONFIG_PM */
1254
1255 /*-------------------------------------------------------------------------*/
1256
1257 /*
1258  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1259  * we'll copy the actual data into the TRB address register. This is limited to
1260  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1261  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1262  */
1263 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1264                                 gfp_t mem_flags)
1265 {
1266         if (xhci_urb_suitable_for_idt(urb))
1267                 return 0;
1268
1269         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1270 }
1271
1272 /**
1273  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1274  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1275  * value to right shift 1 for the bitmask.
1276  *
1277  * Index  = (epnum * 2) + direction - 1,
1278  * where direction = 0 for OUT, 1 for IN.
1279  * For control endpoints, the IN index is used (OUT index is unused), so
1280  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1281  */
1282 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1283 {
1284         unsigned int index;
1285         if (usb_endpoint_xfer_control(desc))
1286                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1287         else
1288                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1289                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1290         return index;
1291 }
1292
1293 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1294  * address from the XHCI endpoint index.
1295  */
1296 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1297 {
1298         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1299         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1300         return direction | number;
1301 }
1302
1303 /* Find the flag for this endpoint (for use in the control context).  Use the
1304  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1305  * bit 1, etc.
1306  */
1307 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1308 {
1309         return 1 << (xhci_get_endpoint_index(desc) + 1);
1310 }
1311
1312 /* Find the flag for this endpoint (for use in the control context).  Use the
1313  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1314  * bit 1, etc.
1315  */
1316 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1317 {
1318         return 1 << (ep_index + 1);
1319 }
1320
1321 /* Compute the last valid endpoint context index.  Basically, this is the
1322  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1323  * we find the most significant bit set in the added contexts flags.
1324  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1325  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1326  */
1327 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1328 {
1329         return fls(added_ctxs) - 1;
1330 }
1331
1332 /* Returns 1 if the arguments are OK;
1333  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1334  */
1335 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1336                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1337                 const char *func) {
1338         struct xhci_hcd *xhci;
1339         struct xhci_virt_device *virt_dev;
1340
1341         if (!hcd || (check_ep && !ep) || !udev) {
1342                 pr_debug("xHCI %s called with invalid args\n", func);
1343                 return -EINVAL;
1344         }
1345         if (!udev->parent) {
1346                 pr_debug("xHCI %s called for root hub\n", func);
1347                 return 0;
1348         }
1349
1350         xhci = hcd_to_xhci(hcd);
1351         if (check_virt_dev) {
1352                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1353                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1354                                         func);
1355                         return -EINVAL;
1356                 }
1357
1358                 virt_dev = xhci->devs[udev->slot_id];
1359                 if (virt_dev->udev != udev) {
1360                         xhci_dbg(xhci, "xHCI %s called with udev and "
1361                                           "virt_dev does not match\n", func);
1362                         return -EINVAL;
1363                 }
1364         }
1365
1366         if (xhci->xhc_state & XHCI_STATE_HALTED)
1367                 return -ENODEV;
1368
1369         return 1;
1370 }
1371
1372 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1373                 struct usb_device *udev, struct xhci_command *command,
1374                 bool ctx_change, bool must_succeed);
1375
1376 /*
1377  * Full speed devices may have a max packet size greater than 8 bytes, but the
1378  * USB core doesn't know that until it reads the first 8 bytes of the
1379  * descriptor.  If the usb_device's max packet size changes after that point,
1380  * we need to issue an evaluate context command and wait on it.
1381  */
1382 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1383                 unsigned int ep_index, struct urb *urb)
1384 {
1385         struct xhci_container_ctx *out_ctx;
1386         struct xhci_input_control_ctx *ctrl_ctx;
1387         struct xhci_ep_ctx *ep_ctx;
1388         struct xhci_command *command;
1389         int max_packet_size;
1390         int hw_max_packet_size;
1391         int ret = 0;
1392
1393         out_ctx = xhci->devs[slot_id]->out_ctx;
1394         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1395         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1396         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1397         if (hw_max_packet_size != max_packet_size) {
1398                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1399                                 "Max Packet Size for ep 0 changed.");
1400                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1401                                 "Max packet size in usb_device = %d",
1402                                 max_packet_size);
1403                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404                                 "Max packet size in xHCI HW = %d",
1405                                 hw_max_packet_size);
1406                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1407                                 "Issuing evaluate context command.");
1408
1409                 /* Set up the input context flags for the command */
1410                 /* FIXME: This won't work if a non-default control endpoint
1411                  * changes max packet sizes.
1412                  */
1413
1414                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1415                 if (!command)
1416                         return -ENOMEM;
1417
1418                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1419                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1420                 if (!ctrl_ctx) {
1421                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1422                                         __func__);
1423                         ret = -ENOMEM;
1424                         goto command_cleanup;
1425                 }
1426                 /* Set up the modified control endpoint 0 */
1427                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1428                                 xhci->devs[slot_id]->out_ctx, ep_index);
1429
1430                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1431                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1432                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1433
1434                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1435                 ctrl_ctx->drop_flags = 0;
1436
1437                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1438                                 true, false);
1439
1440                 /* Clean up the input context for later use by bandwidth
1441                  * functions.
1442                  */
1443                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1444 command_cleanup:
1445                 kfree(command->completion);
1446                 kfree(command);
1447         }
1448         return ret;
1449 }
1450
1451 /*
1452  * non-error returns are a promise to giveback() the urb later
1453  * we drop ownership so next owner (or urb unlink) can get it
1454  */
1455 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1456 {
1457         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1458         unsigned long flags;
1459         int ret = 0;
1460         unsigned int slot_id, ep_index;
1461         unsigned int *ep_state;
1462         struct urb_priv *urb_priv;
1463         int num_tds;
1464
1465         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1466                                         true, true, __func__) <= 0)
1467                 return -EINVAL;
1468
1469         slot_id = urb->dev->slot_id;
1470         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1471         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1472
1473         if (!HCD_HW_ACCESSIBLE(hcd)) {
1474                 if (!in_interrupt())
1475                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1476                 return -ESHUTDOWN;
1477         }
1478         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1479                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1480                 return -ENODEV;
1481         }
1482
1483         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1484                 num_tds = urb->number_of_packets;
1485         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1486             urb->transfer_buffer_length > 0 &&
1487             urb->transfer_flags & URB_ZERO_PACKET &&
1488             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1489                 num_tds = 2;
1490         else
1491                 num_tds = 1;
1492
1493         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1494         if (!urb_priv)
1495                 return -ENOMEM;
1496
1497         urb_priv->num_tds = num_tds;
1498         urb_priv->num_tds_done = 0;
1499         urb->hcpriv = urb_priv;
1500
1501         trace_xhci_urb_enqueue(urb);
1502
1503         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1504                 /* Check to see if the max packet size for the default control
1505                  * endpoint changed during FS device enumeration
1506                  */
1507                 if (urb->dev->speed == USB_SPEED_FULL) {
1508                         ret = xhci_check_maxpacket(xhci, slot_id,
1509                                         ep_index, urb);
1510                         if (ret < 0) {
1511                                 xhci_urb_free_priv(urb_priv);
1512                                 urb->hcpriv = NULL;
1513                                 return ret;
1514                         }
1515                 }
1516         }
1517
1518         spin_lock_irqsave(&xhci->lock, flags);
1519
1520         if (xhci->xhc_state & XHCI_STATE_DYING) {
1521                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1522                          urb->ep->desc.bEndpointAddress, urb);
1523                 ret = -ESHUTDOWN;
1524                 goto free_priv;
1525         }
1526         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1527                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1528                           *ep_state);
1529                 ret = -EINVAL;
1530                 goto free_priv;
1531         }
1532         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1533                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1534                 ret = -EINVAL;
1535                 goto free_priv;
1536         }
1537
1538         switch (usb_endpoint_type(&urb->ep->desc)) {
1539
1540         case USB_ENDPOINT_XFER_CONTROL:
1541                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1542                                          slot_id, ep_index);
1543                 break;
1544         case USB_ENDPOINT_XFER_BULK:
1545                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1546                                          slot_id, ep_index);
1547                 break;
1548         case USB_ENDPOINT_XFER_INT:
1549                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1550                                 slot_id, ep_index);
1551                 break;
1552         case USB_ENDPOINT_XFER_ISOC:
1553                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1554                                 slot_id, ep_index);
1555         }
1556
1557         if (ret) {
1558 free_priv:
1559                 xhci_urb_free_priv(urb_priv);
1560                 urb->hcpriv = NULL;
1561         }
1562         spin_unlock_irqrestore(&xhci->lock, flags);
1563         return ret;
1564 }
1565
1566 /*
1567  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1568  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1569  * should pick up where it left off in the TD, unless a Set Transfer Ring
1570  * Dequeue Pointer is issued.
1571  *
1572  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1573  * the ring.  Since the ring is a contiguous structure, they can't be physically
1574  * removed.  Instead, there are two options:
1575  *
1576  *  1) If the HC is in the middle of processing the URB to be canceled, we
1577  *     simply move the ring's dequeue pointer past those TRBs using the Set
1578  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1579  *     when drivers timeout on the last submitted URB and attempt to cancel.
1580  *
1581  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1582  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1583  *     HC will need to invalidate the any TRBs it has cached after the stop
1584  *     endpoint command, as noted in the xHCI 0.95 errata.
1585  *
1586  *  3) The TD may have completed by the time the Stop Endpoint Command
1587  *     completes, so software needs to handle that case too.
1588  *
1589  * This function should protect against the TD enqueueing code ringing the
1590  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1591  * It also needs to account for multiple cancellations on happening at the same
1592  * time for the same endpoint.
1593  *
1594  * Note that this function can be called in any context, or so says
1595  * usb_hcd_unlink_urb()
1596  */
1597 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1598 {
1599         unsigned long flags;
1600         int ret, i;
1601         u32 temp;
1602         struct xhci_hcd *xhci;
1603         struct urb_priv *urb_priv;
1604         struct xhci_td *td;
1605         unsigned int ep_index;
1606         struct xhci_ring *ep_ring;
1607         struct xhci_virt_ep *ep;
1608         struct xhci_command *command;
1609         struct xhci_virt_device *vdev;
1610
1611         xhci = hcd_to_xhci(hcd);
1612         spin_lock_irqsave(&xhci->lock, flags);
1613
1614         trace_xhci_urb_dequeue(urb);
1615
1616         /* Make sure the URB hasn't completed or been unlinked already */
1617         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1618         if (ret)
1619                 goto done;
1620
1621         /* give back URB now if we can't queue it for cancel */
1622         vdev = xhci->devs[urb->dev->slot_id];
1623         urb_priv = urb->hcpriv;
1624         if (!vdev || !urb_priv)
1625                 goto err_giveback;
1626
1627         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1628         ep = &vdev->eps[ep_index];
1629         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1630         if (!ep || !ep_ring)
1631                 goto err_giveback;
1632
1633         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1634         temp = readl(&xhci->op_regs->status);
1635         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1636                 xhci_hc_died(xhci);
1637                 goto done;
1638         }
1639
1640         /*
1641          * check ring is not re-allocated since URB was enqueued. If it is, then
1642          * make sure none of the ring related pointers in this URB private data
1643          * are touched, such as td_list, otherwise we overwrite freed data
1644          */
1645         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1646                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1647                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1648                         td = &urb_priv->td[i];
1649                         if (!list_empty(&td->cancelled_td_list))
1650                                 list_del_init(&td->cancelled_td_list);
1651                 }
1652                 goto err_giveback;
1653         }
1654
1655         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1656                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1657                                 "HC halted, freeing TD manually.");
1658                 for (i = urb_priv->num_tds_done;
1659                      i < urb_priv->num_tds;
1660                      i++) {
1661                         td = &urb_priv->td[i];
1662                         if (!list_empty(&td->td_list))
1663                                 list_del_init(&td->td_list);
1664                         if (!list_empty(&td->cancelled_td_list))
1665                                 list_del_init(&td->cancelled_td_list);
1666                 }
1667                 goto err_giveback;
1668         }
1669
1670         i = urb_priv->num_tds_done;
1671         if (i < urb_priv->num_tds)
1672                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1673                                 "Cancel URB %p, dev %s, ep 0x%x, "
1674                                 "starting at offset 0x%llx",
1675                                 urb, urb->dev->devpath,
1676                                 urb->ep->desc.bEndpointAddress,
1677                                 (unsigned long long) xhci_trb_virt_to_dma(
1678                                         urb_priv->td[i].start_seg,
1679                                         urb_priv->td[i].first_trb));
1680
1681         for (; i < urb_priv->num_tds; i++) {
1682                 td = &urb_priv->td[i];
1683                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1684         }
1685
1686         /* Queue a stop endpoint command, but only if this is
1687          * the first cancellation to be handled.
1688          */
1689         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1690                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1691                 if (!command) {
1692                         ret = -ENOMEM;
1693                         goto done;
1694                 }
1695                 ep->ep_state |= EP_STOP_CMD_PENDING;
1696                 ep->stop_cmd_timer.expires = jiffies +
1697                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1698                 add_timer(&ep->stop_cmd_timer);
1699                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1700                                          ep_index, 0);
1701                 xhci_ring_cmd_db(xhci);
1702         }
1703 done:
1704         spin_unlock_irqrestore(&xhci->lock, flags);
1705         return ret;
1706
1707 err_giveback:
1708         if (urb_priv)
1709                 xhci_urb_free_priv(urb_priv);
1710         usb_hcd_unlink_urb_from_ep(hcd, urb);
1711         spin_unlock_irqrestore(&xhci->lock, flags);
1712         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1713         return ret;
1714 }
1715
1716 /* Drop an endpoint from a new bandwidth configuration for this device.
1717  * Only one call to this function is allowed per endpoint before
1718  * check_bandwidth() or reset_bandwidth() must be called.
1719  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1720  * add the endpoint to the schedule with possibly new parameters denoted by a
1721  * different endpoint descriptor in usb_host_endpoint.
1722  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1723  * not allowed.
1724  *
1725  * The USB core will not allow URBs to be queued to an endpoint that is being
1726  * disabled, so there's no need for mutual exclusion to protect
1727  * the xhci->devs[slot_id] structure.
1728  */
1729 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1730                 struct usb_host_endpoint *ep)
1731 {
1732         struct xhci_hcd *xhci;
1733         struct xhci_container_ctx *in_ctx, *out_ctx;
1734         struct xhci_input_control_ctx *ctrl_ctx;
1735         unsigned int ep_index;
1736         struct xhci_ep_ctx *ep_ctx;
1737         u32 drop_flag;
1738         u32 new_add_flags, new_drop_flags;
1739         int ret;
1740
1741         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1742         if (ret <= 0)
1743                 return ret;
1744         xhci = hcd_to_xhci(hcd);
1745         if (xhci->xhc_state & XHCI_STATE_DYING)
1746                 return -ENODEV;
1747
1748         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1749         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1750         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1751                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1752                                 __func__, drop_flag);
1753                 return 0;
1754         }
1755
1756         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1757         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1758         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1759         if (!ctrl_ctx) {
1760                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1761                                 __func__);
1762                 return 0;
1763         }
1764
1765         ep_index = xhci_get_endpoint_index(&ep->desc);
1766         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1767         /* If the HC already knows the endpoint is disabled,
1768          * or the HCD has noted it is disabled, ignore this request
1769          */
1770         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1771             le32_to_cpu(ctrl_ctx->drop_flags) &
1772             xhci_get_endpoint_flag(&ep->desc)) {
1773                 /* Do not warn when called after a usb_device_reset */
1774                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1775                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1776                                   __func__, ep);
1777                 return 0;
1778         }
1779
1780         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1781         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1782
1783         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1784         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1785
1786         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1787
1788         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1789
1790         if (xhci->quirks & XHCI_MTK_HOST)
1791                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1792
1793         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1794                         (unsigned int) ep->desc.bEndpointAddress,
1795                         udev->slot_id,
1796                         (unsigned int) new_drop_flags,
1797                         (unsigned int) new_add_flags);
1798         return 0;
1799 }
1800
1801 /* Add an endpoint to a new possible bandwidth configuration for this device.
1802  * Only one call to this function is allowed per endpoint before
1803  * check_bandwidth() or reset_bandwidth() must be called.
1804  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1805  * add the endpoint to the schedule with possibly new parameters denoted by a
1806  * different endpoint descriptor in usb_host_endpoint.
1807  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1808  * not allowed.
1809  *
1810  * The USB core will not allow URBs to be queued to an endpoint until the
1811  * configuration or alt setting is installed in the device, so there's no need
1812  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1813  */
1814 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1815                 struct usb_host_endpoint *ep)
1816 {
1817         struct xhci_hcd *xhci;
1818         struct xhci_container_ctx *in_ctx;
1819         unsigned int ep_index;
1820         struct xhci_input_control_ctx *ctrl_ctx;
1821         struct xhci_ep_ctx *ep_ctx;
1822         u32 added_ctxs;
1823         u32 new_add_flags, new_drop_flags;
1824         struct xhci_virt_device *virt_dev;
1825         int ret = 0;
1826
1827         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1828         if (ret <= 0) {
1829                 /* So we won't queue a reset ep command for a root hub */
1830                 ep->hcpriv = NULL;
1831                 return ret;
1832         }
1833         xhci = hcd_to_xhci(hcd);
1834         if (xhci->xhc_state & XHCI_STATE_DYING)
1835                 return -ENODEV;
1836
1837         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1838         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1839                 /* FIXME when we have to issue an evaluate endpoint command to
1840                  * deal with ep0 max packet size changing once we get the
1841                  * descriptors
1842                  */
1843                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1844                                 __func__, added_ctxs);
1845                 return 0;
1846         }
1847
1848         virt_dev = xhci->devs[udev->slot_id];
1849         in_ctx = virt_dev->in_ctx;
1850         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1851         if (!ctrl_ctx) {
1852                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1853                                 __func__);
1854                 return 0;
1855         }
1856
1857         ep_index = xhci_get_endpoint_index(&ep->desc);
1858         /* If this endpoint is already in use, and the upper layers are trying
1859          * to add it again without dropping it, reject the addition.
1860          */
1861         if (virt_dev->eps[ep_index].ring &&
1862                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1863                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1864                                 "without dropping it.\n",
1865                                 (unsigned int) ep->desc.bEndpointAddress);
1866                 return -EINVAL;
1867         }
1868
1869         /* If the HCD has already noted the endpoint is enabled,
1870          * ignore this request.
1871          */
1872         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1873                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1874                                 __func__, ep);
1875                 return 0;
1876         }
1877
1878         /*
1879          * Configuration and alternate setting changes must be done in
1880          * process context, not interrupt context (or so documenation
1881          * for usb_set_interface() and usb_set_configuration() claim).
1882          */
1883         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1884                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1885                                 __func__, ep->desc.bEndpointAddress);
1886                 return -ENOMEM;
1887         }
1888
1889         if (xhci->quirks & XHCI_MTK_HOST) {
1890                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1891                 if (ret < 0) {
1892                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1893                         virt_dev->eps[ep_index].new_ring = NULL;
1894                         return ret;
1895                 }
1896         }
1897
1898         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1899         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1900
1901         /* If xhci_endpoint_disable() was called for this endpoint, but the
1902          * xHC hasn't been notified yet through the check_bandwidth() call,
1903          * this re-adds a new state for the endpoint from the new endpoint
1904          * descriptors.  We must drop and re-add this endpoint, so we leave the
1905          * drop flags alone.
1906          */
1907         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1908
1909         /* Store the usb_device pointer for later use */
1910         ep->hcpriv = udev;
1911
1912         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1913         trace_xhci_add_endpoint(ep_ctx);
1914
1915         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1916
1917         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1918                         (unsigned int) ep->desc.bEndpointAddress,
1919                         udev->slot_id,
1920                         (unsigned int) new_drop_flags,
1921                         (unsigned int) new_add_flags);
1922         return 0;
1923 }
1924
1925 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1926 {
1927         struct xhci_input_control_ctx *ctrl_ctx;
1928         struct xhci_ep_ctx *ep_ctx;
1929         struct xhci_slot_ctx *slot_ctx;
1930         int i;
1931
1932         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1933         if (!ctrl_ctx) {
1934                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1935                                 __func__);
1936                 return;
1937         }
1938
1939         /* When a device's add flag and drop flag are zero, any subsequent
1940          * configure endpoint command will leave that endpoint's state
1941          * untouched.  Make sure we don't leave any old state in the input
1942          * endpoint contexts.
1943          */
1944         ctrl_ctx->drop_flags = 0;
1945         ctrl_ctx->add_flags = 0;
1946         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1947         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1948         /* Endpoint 0 is always valid */
1949         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1950         for (i = 1; i < 31; i++) {
1951                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1952                 ep_ctx->ep_info = 0;
1953                 ep_ctx->ep_info2 = 0;
1954                 ep_ctx->deq = 0;
1955                 ep_ctx->tx_info = 0;
1956         }
1957 }
1958
1959 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1960                 struct usb_device *udev, u32 *cmd_status)
1961 {
1962         int ret;
1963
1964         switch (*cmd_status) {
1965         case COMP_COMMAND_ABORTED:
1966         case COMP_COMMAND_RING_STOPPED:
1967                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1968                 ret = -ETIME;
1969                 break;
1970         case COMP_RESOURCE_ERROR:
1971                 dev_warn(&udev->dev,
1972                          "Not enough host controller resources for new device state.\n");
1973                 ret = -ENOMEM;
1974                 /* FIXME: can we allocate more resources for the HC? */
1975                 break;
1976         case COMP_BANDWIDTH_ERROR:
1977         case COMP_SECONDARY_BANDWIDTH_ERROR:
1978                 dev_warn(&udev->dev,
1979                          "Not enough bandwidth for new device state.\n");
1980                 ret = -ENOSPC;
1981                 /* FIXME: can we go back to the old state? */
1982                 break;
1983         case COMP_TRB_ERROR:
1984                 /* the HCD set up something wrong */
1985                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1986                                 "add flag = 1, "
1987                                 "and endpoint is not disabled.\n");
1988                 ret = -EINVAL;
1989                 break;
1990         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1991                 dev_warn(&udev->dev,
1992                          "ERROR: Incompatible device for endpoint configure command.\n");
1993                 ret = -ENODEV;
1994                 break;
1995         case COMP_SUCCESS:
1996                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1997                                 "Successful Endpoint Configure command");
1998                 ret = 0;
1999                 break;
2000         default:
2001                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2002                                 *cmd_status);
2003                 ret = -EINVAL;
2004                 break;
2005         }
2006         return ret;
2007 }
2008
2009 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2010                 struct usb_device *udev, u32 *cmd_status)
2011 {
2012         int ret;
2013
2014         switch (*cmd_status) {
2015         case COMP_COMMAND_ABORTED:
2016         case COMP_COMMAND_RING_STOPPED:
2017                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2018                 ret = -ETIME;
2019                 break;
2020         case COMP_PARAMETER_ERROR:
2021                 dev_warn(&udev->dev,
2022                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2023                 ret = -EINVAL;
2024                 break;
2025         case COMP_SLOT_NOT_ENABLED_ERROR:
2026                 dev_warn(&udev->dev,
2027                         "WARN: slot not enabled for evaluate context command.\n");
2028                 ret = -EINVAL;
2029                 break;
2030         case COMP_CONTEXT_STATE_ERROR:
2031                 dev_warn(&udev->dev,
2032                         "WARN: invalid context state for evaluate context command.\n");
2033                 ret = -EINVAL;
2034                 break;
2035         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2036                 dev_warn(&udev->dev,
2037                         "ERROR: Incompatible device for evaluate context command.\n");
2038                 ret = -ENODEV;
2039                 break;
2040         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2041                 /* Max Exit Latency too large error */
2042                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2043                 ret = -EINVAL;
2044                 break;
2045         case COMP_SUCCESS:
2046                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2047                                 "Successful evaluate context command");
2048                 ret = 0;
2049                 break;
2050         default:
2051                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2052                         *cmd_status);
2053                 ret = -EINVAL;
2054                 break;
2055         }
2056         return ret;
2057 }
2058
2059 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2060                 struct xhci_input_control_ctx *ctrl_ctx)
2061 {
2062         u32 valid_add_flags;
2063         u32 valid_drop_flags;
2064
2065         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2066          * (bit 1).  The default control endpoint is added during the Address
2067          * Device command and is never removed until the slot is disabled.
2068          */
2069         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2070         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2071
2072         /* Use hweight32 to count the number of ones in the add flags, or
2073          * number of endpoints added.  Don't count endpoints that are changed
2074          * (both added and dropped).
2075          */
2076         return hweight32(valid_add_flags) -
2077                 hweight32(valid_add_flags & valid_drop_flags);
2078 }
2079
2080 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2081                 struct xhci_input_control_ctx *ctrl_ctx)
2082 {
2083         u32 valid_add_flags;
2084         u32 valid_drop_flags;
2085
2086         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2087         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2088
2089         return hweight32(valid_drop_flags) -
2090                 hweight32(valid_add_flags & valid_drop_flags);
2091 }
2092
2093 /*
2094  * We need to reserve the new number of endpoints before the configure endpoint
2095  * command completes.  We can't subtract the dropped endpoints from the number
2096  * of active endpoints until the command completes because we can oversubscribe
2097  * the host in this case:
2098  *
2099  *  - the first configure endpoint command drops more endpoints than it adds
2100  *  - a second configure endpoint command that adds more endpoints is queued
2101  *  - the first configure endpoint command fails, so the config is unchanged
2102  *  - the second command may succeed, even though there isn't enough resources
2103  *
2104  * Must be called with xhci->lock held.
2105  */
2106 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2107                 struct xhci_input_control_ctx *ctrl_ctx)
2108 {
2109         u32 added_eps;
2110
2111         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2112         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2113                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2114                                 "Not enough ep ctxs: "
2115                                 "%u active, need to add %u, limit is %u.",
2116                                 xhci->num_active_eps, added_eps,
2117                                 xhci->limit_active_eps);
2118                 return -ENOMEM;
2119         }
2120         xhci->num_active_eps += added_eps;
2121         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2122                         "Adding %u ep ctxs, %u now active.", added_eps,
2123                         xhci->num_active_eps);
2124         return 0;
2125 }
2126
2127 /*
2128  * The configure endpoint was failed by the xHC for some other reason, so we
2129  * need to revert the resources that failed configuration would have used.
2130  *
2131  * Must be called with xhci->lock held.
2132  */
2133 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2134                 struct xhci_input_control_ctx *ctrl_ctx)
2135 {
2136         u32 num_failed_eps;
2137
2138         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2139         xhci->num_active_eps -= num_failed_eps;
2140         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141                         "Removing %u failed ep ctxs, %u now active.",
2142                         num_failed_eps,
2143                         xhci->num_active_eps);
2144 }
2145
2146 /*
2147  * Now that the command has completed, clean up the active endpoint count by
2148  * subtracting out the endpoints that were dropped (but not changed).
2149  *
2150  * Must be called with xhci->lock held.
2151  */
2152 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2153                 struct xhci_input_control_ctx *ctrl_ctx)
2154 {
2155         u32 num_dropped_eps;
2156
2157         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2158         xhci->num_active_eps -= num_dropped_eps;
2159         if (num_dropped_eps)
2160                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161                                 "Removing %u dropped ep ctxs, %u now active.",
2162                                 num_dropped_eps,
2163                                 xhci->num_active_eps);
2164 }
2165
2166 static unsigned int xhci_get_block_size(struct usb_device *udev)
2167 {
2168         switch (udev->speed) {
2169         case USB_SPEED_LOW:
2170         case USB_SPEED_FULL:
2171                 return FS_BLOCK;
2172         case USB_SPEED_HIGH:
2173                 return HS_BLOCK;
2174         case USB_SPEED_SUPER:
2175         case USB_SPEED_SUPER_PLUS:
2176                 return SS_BLOCK;
2177         case USB_SPEED_UNKNOWN:
2178         case USB_SPEED_WIRELESS:
2179         default:
2180                 /* Should never happen */
2181                 return 1;
2182         }
2183 }
2184
2185 static unsigned int
2186 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2187 {
2188         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2189                 return LS_OVERHEAD;
2190         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2191                 return FS_OVERHEAD;
2192         return HS_OVERHEAD;
2193 }
2194
2195 /* If we are changing a LS/FS device under a HS hub,
2196  * make sure (if we are activating a new TT) that the HS bus has enough
2197  * bandwidth for this new TT.
2198  */
2199 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2200                 struct xhci_virt_device *virt_dev,
2201                 int old_active_eps)
2202 {
2203         struct xhci_interval_bw_table *bw_table;
2204         struct xhci_tt_bw_info *tt_info;
2205
2206         /* Find the bandwidth table for the root port this TT is attached to. */
2207         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2208         tt_info = virt_dev->tt_info;
2209         /* If this TT already had active endpoints, the bandwidth for this TT
2210          * has already been added.  Removing all periodic endpoints (and thus
2211          * making the TT enactive) will only decrease the bandwidth used.
2212          */
2213         if (old_active_eps)
2214                 return 0;
2215         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2216                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2217                         return -ENOMEM;
2218                 return 0;
2219         }
2220         /* Not sure why we would have no new active endpoints...
2221          *
2222          * Maybe because of an Evaluate Context change for a hub update or a
2223          * control endpoint 0 max packet size change?
2224          * FIXME: skip the bandwidth calculation in that case.
2225          */
2226         return 0;
2227 }
2228
2229 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2230                 struct xhci_virt_device *virt_dev)
2231 {
2232         unsigned int bw_reserved;
2233
2234         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2235         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2236                 return -ENOMEM;
2237
2238         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2239         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2240                 return -ENOMEM;
2241
2242         return 0;
2243 }
2244
2245 /*
2246  * This algorithm is a very conservative estimate of the worst-case scheduling
2247  * scenario for any one interval.  The hardware dynamically schedules the
2248  * packets, so we can't tell which microframe could be the limiting factor in
2249  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2250  *
2251  * Obviously, we can't solve an NP complete problem to find the minimum worst
2252  * case scenario.  Instead, we come up with an estimate that is no less than
2253  * the worst case bandwidth used for any one microframe, but may be an
2254  * over-estimate.
2255  *
2256  * We walk the requirements for each endpoint by interval, starting with the
2257  * smallest interval, and place packets in the schedule where there is only one
2258  * possible way to schedule packets for that interval.  In order to simplify
2259  * this algorithm, we record the largest max packet size for each interval, and
2260  * assume all packets will be that size.
2261  *
2262  * For interval 0, we obviously must schedule all packets for each interval.
2263  * The bandwidth for interval 0 is just the amount of data to be transmitted
2264  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2265  * the number of packets).
2266  *
2267  * For interval 1, we have two possible microframes to schedule those packets
2268  * in.  For this algorithm, if we can schedule the same number of packets for
2269  * each possible scheduling opportunity (each microframe), we will do so.  The
2270  * remaining number of packets will be saved to be transmitted in the gaps in
2271  * the next interval's scheduling sequence.
2272  *
2273  * As we move those remaining packets to be scheduled with interval 2 packets,
2274  * we have to double the number of remaining packets to transmit.  This is
2275  * because the intervals are actually powers of 2, and we would be transmitting
2276  * the previous interval's packets twice in this interval.  We also have to be
2277  * sure that when we look at the largest max packet size for this interval, we
2278  * also look at the largest max packet size for the remaining packets and take
2279  * the greater of the two.
2280  *
2281  * The algorithm continues to evenly distribute packets in each scheduling
2282  * opportunity, and push the remaining packets out, until we get to the last
2283  * interval.  Then those packets and their associated overhead are just added
2284  * to the bandwidth used.
2285  */
2286 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2287                 struct xhci_virt_device *virt_dev,
2288                 int old_active_eps)
2289 {
2290         unsigned int bw_reserved;
2291         unsigned int max_bandwidth;
2292         unsigned int bw_used;
2293         unsigned int block_size;
2294         struct xhci_interval_bw_table *bw_table;
2295         unsigned int packet_size = 0;
2296         unsigned int overhead = 0;
2297         unsigned int packets_transmitted = 0;
2298         unsigned int packets_remaining = 0;
2299         unsigned int i;
2300
2301         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2302                 return xhci_check_ss_bw(xhci, virt_dev);
2303
2304         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2305                 max_bandwidth = HS_BW_LIMIT;
2306                 /* Convert percent of bus BW reserved to blocks reserved */
2307                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2308         } else {
2309                 max_bandwidth = FS_BW_LIMIT;
2310                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2311         }
2312
2313         bw_table = virt_dev->bw_table;
2314         /* We need to translate the max packet size and max ESIT payloads into
2315          * the units the hardware uses.
2316          */
2317         block_size = xhci_get_block_size(virt_dev->udev);
2318
2319         /* If we are manipulating a LS/FS device under a HS hub, double check
2320          * that the HS bus has enough bandwidth if we are activing a new TT.
2321          */
2322         if (virt_dev->tt_info) {
2323                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2324                                 "Recalculating BW for rootport %u",
2325                                 virt_dev->real_port);
2326                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2327                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2328                                         "newly activated TT.\n");
2329                         return -ENOMEM;
2330                 }
2331                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2332                                 "Recalculating BW for TT slot %u port %u",
2333                                 virt_dev->tt_info->slot_id,
2334                                 virt_dev->tt_info->ttport);
2335         } else {
2336                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2337                                 "Recalculating BW for rootport %u",
2338                                 virt_dev->real_port);
2339         }
2340
2341         /* Add in how much bandwidth will be used for interval zero, or the
2342          * rounded max ESIT payload + number of packets * largest overhead.
2343          */
2344         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2345                 bw_table->interval_bw[0].num_packets *
2346                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2347
2348         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2349                 unsigned int bw_added;
2350                 unsigned int largest_mps;
2351                 unsigned int interval_overhead;
2352
2353                 /*
2354                  * How many packets could we transmit in this interval?
2355                  * If packets didn't fit in the previous interval, we will need
2356                  * to transmit that many packets twice within this interval.
2357                  */
2358                 packets_remaining = 2 * packets_remaining +
2359                         bw_table->interval_bw[i].num_packets;
2360
2361                 /* Find the largest max packet size of this or the previous
2362                  * interval.
2363                  */
2364                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2365                         largest_mps = 0;
2366                 else {
2367                         struct xhci_virt_ep *virt_ep;
2368                         struct list_head *ep_entry;
2369
2370                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2371                         virt_ep = list_entry(ep_entry,
2372                                         struct xhci_virt_ep, bw_endpoint_list);
2373                         /* Convert to blocks, rounding up */
2374                         largest_mps = DIV_ROUND_UP(
2375                                         virt_ep->bw_info.max_packet_size,
2376                                         block_size);
2377                 }
2378                 if (largest_mps > packet_size)
2379                         packet_size = largest_mps;
2380
2381                 /* Use the larger overhead of this or the previous interval. */
2382                 interval_overhead = xhci_get_largest_overhead(
2383                                 &bw_table->interval_bw[i]);
2384                 if (interval_overhead > overhead)
2385                         overhead = interval_overhead;
2386
2387                 /* How many packets can we evenly distribute across
2388                  * (1 << (i + 1)) possible scheduling opportunities?
2389                  */
2390                 packets_transmitted = packets_remaining >> (i + 1);
2391
2392                 /* Add in the bandwidth used for those scheduled packets */
2393                 bw_added = packets_transmitted * (overhead + packet_size);
2394
2395                 /* How many packets do we have remaining to transmit? */
2396                 packets_remaining = packets_remaining % (1 << (i + 1));
2397
2398                 /* What largest max packet size should those packets have? */
2399                 /* If we've transmitted all packets, don't carry over the
2400                  * largest packet size.
2401                  */
2402                 if (packets_remaining == 0) {
2403                         packet_size = 0;
2404                         overhead = 0;
2405                 } else if (packets_transmitted > 0) {
2406                         /* Otherwise if we do have remaining packets, and we've
2407                          * scheduled some packets in this interval, take the
2408                          * largest max packet size from endpoints with this
2409                          * interval.
2410                          */
2411                         packet_size = largest_mps;
2412                         overhead = interval_overhead;
2413                 }
2414                 /* Otherwise carry over packet_size and overhead from the last
2415                  * time we had a remainder.
2416                  */
2417                 bw_used += bw_added;
2418                 if (bw_used > max_bandwidth) {
2419                         xhci_warn(xhci, "Not enough bandwidth. "
2420                                         "Proposed: %u, Max: %u\n",
2421                                 bw_used, max_bandwidth);
2422                         return -ENOMEM;
2423                 }
2424         }
2425         /*
2426          * Ok, we know we have some packets left over after even-handedly
2427          * scheduling interval 15.  We don't know which microframes they will
2428          * fit into, so we over-schedule and say they will be scheduled every
2429          * microframe.
2430          */
2431         if (packets_remaining > 0)
2432                 bw_used += overhead + packet_size;
2433
2434         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2435                 unsigned int port_index = virt_dev->real_port - 1;
2436
2437                 /* OK, we're manipulating a HS device attached to a
2438                  * root port bandwidth domain.  Include the number of active TTs
2439                  * in the bandwidth used.
2440                  */
2441                 bw_used += TT_HS_OVERHEAD *
2442                         xhci->rh_bw[port_index].num_active_tts;
2443         }
2444
2445         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2446                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2447                 "Available: %u " "percent",
2448                 bw_used, max_bandwidth, bw_reserved,
2449                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2450                 max_bandwidth);
2451
2452         bw_used += bw_reserved;
2453         if (bw_used > max_bandwidth) {
2454                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2455                                 bw_used, max_bandwidth);
2456                 return -ENOMEM;
2457         }
2458
2459         bw_table->bw_used = bw_used;
2460         return 0;
2461 }
2462
2463 static bool xhci_is_async_ep(unsigned int ep_type)
2464 {
2465         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2466                                         ep_type != ISOC_IN_EP &&
2467                                         ep_type != INT_IN_EP);
2468 }
2469
2470 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2471 {
2472         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2473 }
2474
2475 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2476 {
2477         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2478
2479         if (ep_bw->ep_interval == 0)
2480                 return SS_OVERHEAD_BURST +
2481                         (ep_bw->mult * ep_bw->num_packets *
2482                                         (SS_OVERHEAD + mps));
2483         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2484                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2485                                 1 << ep_bw->ep_interval);
2486
2487 }
2488
2489 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2490                 struct xhci_bw_info *ep_bw,
2491                 struct xhci_interval_bw_table *bw_table,
2492                 struct usb_device *udev,
2493                 struct xhci_virt_ep *virt_ep,
2494                 struct xhci_tt_bw_info *tt_info)
2495 {
2496         struct xhci_interval_bw *interval_bw;
2497         int normalized_interval;
2498
2499         if (xhci_is_async_ep(ep_bw->type))
2500                 return;
2501
2502         if (udev->speed >= USB_SPEED_SUPER) {
2503                 if (xhci_is_sync_in_ep(ep_bw->type))
2504                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2505                                 xhci_get_ss_bw_consumed(ep_bw);
2506                 else
2507                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2508                                 xhci_get_ss_bw_consumed(ep_bw);
2509                 return;
2510         }
2511
2512         /* SuperSpeed endpoints never get added to intervals in the table, so
2513          * this check is only valid for HS/FS/LS devices.
2514          */
2515         if (list_empty(&virt_ep->bw_endpoint_list))
2516                 return;
2517         /* For LS/FS devices, we need to translate the interval expressed in
2518          * microframes to frames.
2519          */
2520         if (udev->speed == USB_SPEED_HIGH)
2521                 normalized_interval = ep_bw->ep_interval;
2522         else
2523                 normalized_interval = ep_bw->ep_interval - 3;
2524
2525         if (normalized_interval == 0)
2526                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2527         interval_bw = &bw_table->interval_bw[normalized_interval];
2528         interval_bw->num_packets -= ep_bw->num_packets;
2529         switch (udev->speed) {
2530         case USB_SPEED_LOW:
2531                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2532                 break;
2533         case USB_SPEED_FULL:
2534                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2535                 break;
2536         case USB_SPEED_HIGH:
2537                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2538                 break;
2539         case USB_SPEED_SUPER:
2540         case USB_SPEED_SUPER_PLUS:
2541         case USB_SPEED_UNKNOWN:
2542         case USB_SPEED_WIRELESS:
2543                 /* Should never happen because only LS/FS/HS endpoints will get
2544                  * added to the endpoint list.
2545                  */
2546                 return;
2547         }
2548         if (tt_info)
2549                 tt_info->active_eps -= 1;
2550         list_del_init(&virt_ep->bw_endpoint_list);
2551 }
2552
2553 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2554                 struct xhci_bw_info *ep_bw,
2555                 struct xhci_interval_bw_table *bw_table,
2556                 struct usb_device *udev,
2557                 struct xhci_virt_ep *virt_ep,
2558                 struct xhci_tt_bw_info *tt_info)
2559 {
2560         struct xhci_interval_bw *interval_bw;
2561         struct xhci_virt_ep *smaller_ep;
2562         int normalized_interval;
2563
2564         if (xhci_is_async_ep(ep_bw->type))
2565                 return;
2566
2567         if (udev->speed == USB_SPEED_SUPER) {
2568                 if (xhci_is_sync_in_ep(ep_bw->type))
2569                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2570                                 xhci_get_ss_bw_consumed(ep_bw);
2571                 else
2572                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2573                                 xhci_get_ss_bw_consumed(ep_bw);
2574                 return;
2575         }
2576
2577         /* For LS/FS devices, we need to translate the interval expressed in
2578          * microframes to frames.
2579          */
2580         if (udev->speed == USB_SPEED_HIGH)
2581                 normalized_interval = ep_bw->ep_interval;
2582         else
2583                 normalized_interval = ep_bw->ep_interval - 3;
2584
2585         if (normalized_interval == 0)
2586                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2587         interval_bw = &bw_table->interval_bw[normalized_interval];
2588         interval_bw->num_packets += ep_bw->num_packets;
2589         switch (udev->speed) {
2590         case USB_SPEED_LOW:
2591                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2592                 break;
2593         case USB_SPEED_FULL:
2594                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2595                 break;
2596         case USB_SPEED_HIGH:
2597                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2598                 break;
2599         case USB_SPEED_SUPER:
2600         case USB_SPEED_SUPER_PLUS:
2601         case USB_SPEED_UNKNOWN:
2602         case USB_SPEED_WIRELESS:
2603                 /* Should never happen because only LS/FS/HS endpoints will get
2604                  * added to the endpoint list.
2605                  */
2606                 return;
2607         }
2608
2609         if (tt_info)
2610                 tt_info->active_eps += 1;
2611         /* Insert the endpoint into the list, largest max packet size first. */
2612         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2613                         bw_endpoint_list) {
2614                 if (ep_bw->max_packet_size >=
2615                                 smaller_ep->bw_info.max_packet_size) {
2616                         /* Add the new ep before the smaller endpoint */
2617                         list_add_tail(&virt_ep->bw_endpoint_list,
2618                                         &smaller_ep->bw_endpoint_list);
2619                         return;
2620                 }
2621         }
2622         /* Add the new endpoint at the end of the list. */
2623         list_add_tail(&virt_ep->bw_endpoint_list,
2624                         &interval_bw->endpoints);
2625 }
2626
2627 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2628                 struct xhci_virt_device *virt_dev,
2629                 int old_active_eps)
2630 {
2631         struct xhci_root_port_bw_info *rh_bw_info;
2632         if (!virt_dev->tt_info)
2633                 return;
2634
2635         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2636         if (old_active_eps == 0 &&
2637                                 virt_dev->tt_info->active_eps != 0) {
2638                 rh_bw_info->num_active_tts += 1;
2639                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2640         } else if (old_active_eps != 0 &&
2641                                 virt_dev->tt_info->active_eps == 0) {
2642                 rh_bw_info->num_active_tts -= 1;
2643                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2644         }
2645 }
2646
2647 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2648                 struct xhci_virt_device *virt_dev,
2649                 struct xhci_container_ctx *in_ctx)
2650 {
2651         struct xhci_bw_info ep_bw_info[31];
2652         int i;
2653         struct xhci_input_control_ctx *ctrl_ctx;
2654         int old_active_eps = 0;
2655
2656         if (virt_dev->tt_info)
2657                 old_active_eps = virt_dev->tt_info->active_eps;
2658
2659         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2660         if (!ctrl_ctx) {
2661                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2662                                 __func__);
2663                 return -ENOMEM;
2664         }
2665
2666         for (i = 0; i < 31; i++) {
2667                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2668                         continue;
2669
2670                 /* Make a copy of the BW info in case we need to revert this */
2671                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2672                                 sizeof(ep_bw_info[i]));
2673                 /* Drop the endpoint from the interval table if the endpoint is
2674                  * being dropped or changed.
2675                  */
2676                 if (EP_IS_DROPPED(ctrl_ctx, i))
2677                         xhci_drop_ep_from_interval_table(xhci,
2678                                         &virt_dev->eps[i].bw_info,
2679                                         virt_dev->bw_table,
2680                                         virt_dev->udev,
2681                                         &virt_dev->eps[i],
2682                                         virt_dev->tt_info);
2683         }
2684         /* Overwrite the information stored in the endpoints' bw_info */
2685         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2686         for (i = 0; i < 31; i++) {
2687                 /* Add any changed or added endpoints to the interval table */
2688                 if (EP_IS_ADDED(ctrl_ctx, i))
2689                         xhci_add_ep_to_interval_table(xhci,
2690                                         &virt_dev->eps[i].bw_info,
2691                                         virt_dev->bw_table,
2692                                         virt_dev->udev,
2693                                         &virt_dev->eps[i],
2694                                         virt_dev->tt_info);
2695         }
2696
2697         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2698                 /* Ok, this fits in the bandwidth we have.
2699                  * Update the number of active TTs.
2700                  */
2701                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2702                 return 0;
2703         }
2704
2705         /* We don't have enough bandwidth for this, revert the stored info. */
2706         for (i = 0; i < 31; i++) {
2707                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2708                         continue;
2709
2710                 /* Drop the new copies of any added or changed endpoints from
2711                  * the interval table.
2712                  */
2713                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2714                         xhci_drop_ep_from_interval_table(xhci,
2715                                         &virt_dev->eps[i].bw_info,
2716                                         virt_dev->bw_table,
2717                                         virt_dev->udev,
2718                                         &virt_dev->eps[i],
2719                                         virt_dev->tt_info);
2720                 }
2721                 /* Revert the endpoint back to its old information */
2722                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2723                                 sizeof(ep_bw_info[i]));
2724                 /* Add any changed or dropped endpoints back into the table */
2725                 if (EP_IS_DROPPED(ctrl_ctx, i))
2726                         xhci_add_ep_to_interval_table(xhci,
2727                                         &virt_dev->eps[i].bw_info,
2728                                         virt_dev->bw_table,
2729                                         virt_dev->udev,
2730                                         &virt_dev->eps[i],
2731                                         virt_dev->tt_info);
2732         }
2733         return -ENOMEM;
2734 }
2735
2736
2737 /* Issue a configure endpoint command or evaluate context command
2738  * and wait for it to finish.
2739  */
2740 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2741                 struct usb_device *udev,
2742                 struct xhci_command *command,
2743                 bool ctx_change, bool must_succeed)
2744 {
2745         int ret;
2746         unsigned long flags;
2747         struct xhci_input_control_ctx *ctrl_ctx;
2748         struct xhci_virt_device *virt_dev;
2749         struct xhci_slot_ctx *slot_ctx;
2750
2751         if (!command)
2752                 return -EINVAL;
2753
2754         spin_lock_irqsave(&xhci->lock, flags);
2755
2756         if (xhci->xhc_state & XHCI_STATE_DYING) {
2757                 spin_unlock_irqrestore(&xhci->lock, flags);
2758                 return -ESHUTDOWN;
2759         }
2760
2761         virt_dev = xhci->devs[udev->slot_id];
2762
2763         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2764         if (!ctrl_ctx) {
2765                 spin_unlock_irqrestore(&xhci->lock, flags);
2766                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2767                                 __func__);
2768                 return -ENOMEM;
2769         }
2770
2771         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2772                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2773                 spin_unlock_irqrestore(&xhci->lock, flags);
2774                 xhci_warn(xhci, "Not enough host resources, "
2775                                 "active endpoint contexts = %u\n",
2776                                 xhci->num_active_eps);
2777                 return -ENOMEM;
2778         }
2779         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2780             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2781                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2782                         xhci_free_host_resources(xhci, ctrl_ctx);
2783                 spin_unlock_irqrestore(&xhci->lock, flags);
2784                 xhci_warn(xhci, "Not enough bandwidth\n");
2785                 return -ENOMEM;
2786         }
2787
2788         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2789
2790         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2791         trace_xhci_configure_endpoint(slot_ctx);
2792
2793         if (!ctx_change)
2794                 ret = xhci_queue_configure_endpoint(xhci, command,
2795                                 command->in_ctx->dma,
2796                                 udev->slot_id, must_succeed);
2797         else
2798                 ret = xhci_queue_evaluate_context(xhci, command,
2799                                 command->in_ctx->dma,
2800                                 udev->slot_id, must_succeed);
2801         if (ret < 0) {
2802                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2803                         xhci_free_host_resources(xhci, ctrl_ctx);
2804                 spin_unlock_irqrestore(&xhci->lock, flags);
2805                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2806                                 "FIXME allocate a new ring segment");
2807                 return -ENOMEM;
2808         }
2809         xhci_ring_cmd_db(xhci);
2810         spin_unlock_irqrestore(&xhci->lock, flags);
2811
2812         /* Wait for the configure endpoint command to complete */
2813         wait_for_completion(command->completion);
2814
2815         if (!ctx_change)
2816                 ret = xhci_configure_endpoint_result(xhci, udev,
2817                                                      &command->status);
2818         else
2819                 ret = xhci_evaluate_context_result(xhci, udev,
2820                                                    &command->status);
2821
2822         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2823                 spin_lock_irqsave(&xhci->lock, flags);
2824                 /* If the command failed, remove the reserved resources.
2825                  * Otherwise, clean up the estimate to include dropped eps.
2826                  */
2827                 if (ret)
2828                         xhci_free_host_resources(xhci, ctrl_ctx);
2829                 else
2830                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2831                 spin_unlock_irqrestore(&xhci->lock, flags);
2832         }
2833         return ret;
2834 }
2835
2836 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2837         struct xhci_virt_device *vdev, int i)
2838 {
2839         struct xhci_virt_ep *ep = &vdev->eps[i];
2840
2841         if (ep->ep_state & EP_HAS_STREAMS) {
2842                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2843                                 xhci_get_endpoint_address(i));
2844                 xhci_free_stream_info(xhci, ep->stream_info);
2845                 ep->stream_info = NULL;
2846                 ep->ep_state &= ~EP_HAS_STREAMS;
2847         }
2848 }
2849
2850 /* Called after one or more calls to xhci_add_endpoint() or
2851  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2852  * to call xhci_reset_bandwidth().
2853  *
2854  * Since we are in the middle of changing either configuration or
2855  * installing a new alt setting, the USB core won't allow URBs to be
2856  * enqueued for any endpoint on the old config or interface.  Nothing
2857  * else should be touching the xhci->devs[slot_id] structure, so we
2858  * don't need to take the xhci->lock for manipulating that.
2859  */
2860 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2861 {
2862         int i;
2863         int ret = 0;
2864         struct xhci_hcd *xhci;
2865         struct xhci_virt_device *virt_dev;
2866         struct xhci_input_control_ctx *ctrl_ctx;
2867         struct xhci_slot_ctx *slot_ctx;
2868         struct xhci_command *command;
2869
2870         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2871         if (ret <= 0)
2872                 return ret;
2873         xhci = hcd_to_xhci(hcd);
2874         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2875                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2876                 return -ENODEV;
2877
2878         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879         virt_dev = xhci->devs[udev->slot_id];
2880
2881         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2882         if (!command)
2883                 return -ENOMEM;
2884
2885         command->in_ctx = virt_dev->in_ctx;
2886
2887         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2888         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2889         if (!ctrl_ctx) {
2890                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2891                                 __func__);
2892                 ret = -ENOMEM;
2893                 goto command_cleanup;
2894         }
2895         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2896         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2897         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2898
2899         /* Don't issue the command if there's no endpoints to update. */
2900         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2901             ctrl_ctx->drop_flags == 0) {
2902                 ret = 0;
2903                 goto command_cleanup;
2904         }
2905         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2906         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2907         for (i = 31; i >= 1; i--) {
2908                 __le32 le32 = cpu_to_le32(BIT(i));
2909
2910                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2911                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2912                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2913                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2914                         break;
2915                 }
2916         }
2917
2918         ret = xhci_configure_endpoint(xhci, udev, command,
2919                         false, false);
2920         if (ret)
2921                 /* Callee should call reset_bandwidth() */
2922                 goto command_cleanup;
2923
2924         /* Free any rings that were dropped, but not changed. */
2925         for (i = 1; i < 31; i++) {
2926                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2927                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2928                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2929                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2930                 }
2931         }
2932         xhci_zero_in_ctx(xhci, virt_dev);
2933         /*
2934          * Install any rings for completely new endpoints or changed endpoints,
2935          * and free any old rings from changed endpoints.
2936          */
2937         for (i = 1; i < 31; i++) {
2938                 if (!virt_dev->eps[i].new_ring)
2939                         continue;
2940                 /* Only free the old ring if it exists.
2941                  * It may not if this is the first add of an endpoint.
2942                  */
2943                 if (virt_dev->eps[i].ring) {
2944                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2945                 }
2946                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2947                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2948                 virt_dev->eps[i].new_ring = NULL;
2949         }
2950 command_cleanup:
2951         kfree(command->completion);
2952         kfree(command);
2953
2954         return ret;
2955 }
2956
2957 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2958 {
2959         struct xhci_hcd *xhci;
2960         struct xhci_virt_device *virt_dev;
2961         int i, ret;
2962
2963         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2964         if (ret <= 0)
2965                 return;
2966         xhci = hcd_to_xhci(hcd);
2967
2968         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2969         virt_dev = xhci->devs[udev->slot_id];
2970         /* Free any rings allocated for added endpoints */
2971         for (i = 0; i < 31; i++) {
2972                 if (virt_dev->eps[i].new_ring) {
2973                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2974                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2975                         virt_dev->eps[i].new_ring = NULL;
2976                 }
2977         }
2978         xhci_zero_in_ctx(xhci, virt_dev);
2979 }
2980
2981 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2982                 struct xhci_container_ctx *in_ctx,
2983                 struct xhci_container_ctx *out_ctx,
2984                 struct xhci_input_control_ctx *ctrl_ctx,
2985                 u32 add_flags, u32 drop_flags)
2986 {
2987         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2988         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2989         xhci_slot_copy(xhci, in_ctx, out_ctx);
2990         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2991 }
2992
2993 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2994                 unsigned int slot_id, unsigned int ep_index,
2995                 struct xhci_dequeue_state *deq_state)
2996 {
2997         struct xhci_input_control_ctx *ctrl_ctx;
2998         struct xhci_container_ctx *in_ctx;
2999         struct xhci_ep_ctx *ep_ctx;
3000         u32 added_ctxs;
3001         dma_addr_t addr;
3002
3003         in_ctx = xhci->devs[slot_id]->in_ctx;
3004         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3005         if (!ctrl_ctx) {
3006                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3007                                 __func__);
3008                 return;
3009         }
3010
3011         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3012                         xhci->devs[slot_id]->out_ctx, ep_index);
3013         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3014         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3015                         deq_state->new_deq_ptr);
3016         if (addr == 0) {
3017                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3018                                 "reset ep command\n");
3019                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3020                                 deq_state->new_deq_seg,
3021                                 deq_state->new_deq_ptr);
3022                 return;
3023         }
3024         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3025
3026         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3027         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3028                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3029                         added_ctxs, added_ctxs);
3030 }
3031
3032 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3033                                unsigned int stream_id, struct xhci_td *td)
3034 {
3035         struct xhci_dequeue_state deq_state;
3036         struct usb_device *udev = td->urb->dev;
3037
3038         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3039                         "Cleaning up stalled endpoint ring");
3040         /* We need to move the HW's dequeue pointer past this TD,
3041          * or it will attempt to resend it on the next doorbell ring.
3042          */
3043         xhci_find_new_dequeue_state(xhci, udev->slot_id,
3044                         ep_index, stream_id, td, &deq_state);
3045
3046         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3047                 return;
3048
3049         /* HW with the reset endpoint quirk will use the saved dequeue state to
3050          * issue a configure endpoint command later.
3051          */
3052         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3053                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3054                                 "Queueing new dequeue state");
3055                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3056                                 ep_index, &deq_state);
3057         } else {
3058                 /* Better hope no one uses the input context between now and the
3059                  * reset endpoint completion!
3060                  * XXX: No idea how this hardware will react when stream rings
3061                  * are enabled.
3062                  */
3063                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3064                                 "Setting up input context for "
3065                                 "configure endpoint command");
3066                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3067                                 ep_index, &deq_state);
3068         }
3069 }
3070
3071 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3072                                   struct usb_host_endpoint *host_ep)
3073 {
3074         struct xhci_hcd         *xhci;
3075         struct xhci_virt_device *vdev;
3076         struct xhci_virt_ep     *ep;
3077         struct usb_device       *udev;
3078         unsigned long           flags;
3079         unsigned int            ep_index;
3080
3081         xhci = hcd_to_xhci(hcd);
3082 rescan:
3083         spin_lock_irqsave(&xhci->lock, flags);
3084
3085         udev = (struct usb_device *)host_ep->hcpriv;
3086         if (!udev || !udev->slot_id)
3087                 goto done;
3088
3089         vdev = xhci->devs[udev->slot_id];
3090         if (!vdev)
3091                 goto done;
3092
3093         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3094         ep = &vdev->eps[ep_index];
3095         if (!ep)
3096                 goto done;
3097
3098         /* wait for hub_tt_work to finish clearing hub TT */
3099         if (ep->ep_state & EP_CLEARING_TT) {
3100                 spin_unlock_irqrestore(&xhci->lock, flags);
3101                 schedule_timeout_uninterruptible(1);
3102                 goto rescan;
3103         }
3104
3105         if (ep->ep_state)
3106                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3107                          ep->ep_state);
3108 done:
3109         host_ep->hcpriv = NULL;
3110         spin_unlock_irqrestore(&xhci->lock, flags);
3111 }
3112
3113 /*
3114  * Called after usb core issues a clear halt control message.
3115  * The host side of the halt should already be cleared by a reset endpoint
3116  * command issued when the STALL event was received.
3117  *
3118  * The reset endpoint command may only be issued to endpoints in the halted
3119  * state. For software that wishes to reset the data toggle or sequence number
3120  * of an endpoint that isn't in the halted state this function will issue a
3121  * configure endpoint command with the Drop and Add bits set for the target
3122  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3123  */
3124
3125 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3126                 struct usb_host_endpoint *host_ep)
3127 {
3128         struct xhci_hcd *xhci;
3129         struct usb_device *udev;
3130         struct xhci_virt_device *vdev;
3131         struct xhci_virt_ep *ep;
3132         struct xhci_input_control_ctx *ctrl_ctx;
3133         struct xhci_command *stop_cmd, *cfg_cmd;
3134         unsigned int ep_index;
3135         unsigned long flags;
3136         u32 ep_flag;
3137         int err;
3138
3139         xhci = hcd_to_xhci(hcd);
3140         if (!host_ep->hcpriv)
3141                 return;
3142         udev = (struct usb_device *) host_ep->hcpriv;
3143         vdev = xhci->devs[udev->slot_id];
3144
3145         /*
3146          * vdev may be lost due to xHC restore error and re-initialization
3147          * during S3/S4 resume. A new vdev will be allocated later by
3148          * xhci_discover_or_reset_device()
3149          */
3150         if (!udev->slot_id || !vdev)
3151                 return;
3152         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3153         ep = &vdev->eps[ep_index];
3154         if (!ep)
3155                 return;
3156
3157         /* Bail out if toggle is already being cleared by a endpoint reset */
3158         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3159                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3160                 return;
3161         }
3162         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3163         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3164             usb_endpoint_xfer_isoc(&host_ep->desc))
3165                 return;
3166
3167         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3168
3169         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3170                 return;
3171
3172         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3173         if (!stop_cmd)
3174                 return;
3175
3176         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3177         if (!cfg_cmd)
3178                 goto cleanup;
3179
3180         spin_lock_irqsave(&xhci->lock, flags);
3181
3182         /* block queuing new trbs and ringing ep doorbell */
3183         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3184
3185         /*
3186          * Make sure endpoint ring is empty before resetting the toggle/seq.
3187          * Driver is required to synchronously cancel all transfer request.
3188          * Stop the endpoint to force xHC to update the output context
3189          */
3190
3191         if (!list_empty(&ep->ring->td_list)) {
3192                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3193                 spin_unlock_irqrestore(&xhci->lock, flags);
3194                 xhci_free_command(xhci, cfg_cmd);
3195                 goto cleanup;
3196         }
3197
3198         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3199                                         ep_index, 0);
3200         if (err < 0) {
3201                 spin_unlock_irqrestore(&xhci->lock, flags);
3202                 xhci_free_command(xhci, cfg_cmd);
3203                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3204                                 __func__, err);
3205                 goto cleanup;
3206         }
3207
3208         xhci_ring_cmd_db(xhci);
3209         spin_unlock_irqrestore(&xhci->lock, flags);
3210
3211         wait_for_completion(stop_cmd->completion);
3212
3213         spin_lock_irqsave(&xhci->lock, flags);
3214
3215         /* config ep command clears toggle if add and drop ep flags are set */
3216         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3217         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3218                                            ctrl_ctx, ep_flag, ep_flag);
3219         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3220
3221         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3222                                       udev->slot_id, false);
3223         if (err < 0) {
3224                 spin_unlock_irqrestore(&xhci->lock, flags);
3225                 xhci_free_command(xhci, cfg_cmd);
3226                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3227                                 __func__, err);
3228                 goto cleanup;
3229         }
3230
3231         xhci_ring_cmd_db(xhci);
3232         spin_unlock_irqrestore(&xhci->lock, flags);
3233
3234         wait_for_completion(cfg_cmd->completion);
3235
3236         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3237         xhci_free_command(xhci, cfg_cmd);
3238 cleanup:
3239         xhci_free_command(xhci, stop_cmd);
3240 }
3241
3242 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3243                 struct usb_device *udev, struct usb_host_endpoint *ep,
3244                 unsigned int slot_id)
3245 {
3246         int ret;
3247         unsigned int ep_index;
3248         unsigned int ep_state;
3249
3250         if (!ep)
3251                 return -EINVAL;
3252         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3253         if (ret <= 0)
3254                 return -EINVAL;
3255         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3256                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3257                                 " descriptor for ep 0x%x does not support streams\n",
3258                                 ep->desc.bEndpointAddress);
3259                 return -EINVAL;
3260         }
3261
3262         ep_index = xhci_get_endpoint_index(&ep->desc);
3263         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3264         if (ep_state & EP_HAS_STREAMS ||
3265                         ep_state & EP_GETTING_STREAMS) {
3266                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3267                                 "already has streams set up.\n",
3268                                 ep->desc.bEndpointAddress);
3269                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3270                                 "dynamic stream context array reallocation.\n");
3271                 return -EINVAL;
3272         }
3273         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3274                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3275                                 "endpoint 0x%x; URBs are pending.\n",
3276                                 ep->desc.bEndpointAddress);
3277                 return -EINVAL;
3278         }
3279         return 0;
3280 }
3281
3282 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3283                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3284 {
3285         unsigned int max_streams;
3286
3287         /* The stream context array size must be a power of two */
3288         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3289         /*
3290          * Find out how many primary stream array entries the host controller
3291          * supports.  Later we may use secondary stream arrays (similar to 2nd
3292          * level page entries), but that's an optional feature for xHCI host
3293          * controllers. xHCs must support at least 4 stream IDs.
3294          */
3295         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3296         if (*num_stream_ctxs > max_streams) {
3297                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3298                                 max_streams);
3299                 *num_stream_ctxs = max_streams;
3300                 *num_streams = max_streams;
3301         }
3302 }
3303
3304 /* Returns an error code if one of the endpoint already has streams.
3305  * This does not change any data structures, it only checks and gathers
3306  * information.
3307  */
3308 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3309                 struct usb_device *udev,
3310                 struct usb_host_endpoint **eps, unsigned int num_eps,
3311                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3312 {
3313         unsigned int max_streams;
3314         unsigned int endpoint_flag;
3315         int i;
3316         int ret;
3317
3318         for (i = 0; i < num_eps; i++) {
3319                 ret = xhci_check_streams_endpoint(xhci, udev,
3320                                 eps[i], udev->slot_id);
3321                 if (ret < 0)
3322                         return ret;
3323
3324                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3325                 if (max_streams < (*num_streams - 1)) {
3326                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3327                                         eps[i]->desc.bEndpointAddress,
3328                                         max_streams);
3329                         *num_streams = max_streams+1;
3330                 }
3331
3332                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3333                 if (*changed_ep_bitmask & endpoint_flag)
3334                         return -EINVAL;
3335                 *changed_ep_bitmask |= endpoint_flag;
3336         }
3337         return 0;
3338 }
3339
3340 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3341                 struct usb_device *udev,
3342                 struct usb_host_endpoint **eps, unsigned int num_eps)
3343 {
3344         u32 changed_ep_bitmask = 0;
3345         unsigned int slot_id;
3346         unsigned int ep_index;
3347         unsigned int ep_state;
3348         int i;
3349
3350         slot_id = udev->slot_id;
3351         if (!xhci->devs[slot_id])
3352                 return 0;
3353
3354         for (i = 0; i < num_eps; i++) {
3355                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3356                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3357                 /* Are streams already being freed for the endpoint? */
3358                 if (ep_state & EP_GETTING_NO_STREAMS) {
3359                         xhci_warn(xhci, "WARN Can't disable streams for "
3360                                         "endpoint 0x%x, "
3361                                         "streams are being disabled already\n",
3362                                         eps[i]->desc.bEndpointAddress);
3363                         return 0;
3364                 }
3365                 /* Are there actually any streams to free? */
3366                 if (!(ep_state & EP_HAS_STREAMS) &&
3367                                 !(ep_state & EP_GETTING_STREAMS)) {
3368                         xhci_warn(xhci, "WARN Can't disable streams for "
3369                                         "endpoint 0x%x, "
3370                                         "streams are already disabled!\n",
3371                                         eps[i]->desc.bEndpointAddress);
3372                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3373                                         "with non-streams endpoint\n");
3374                         return 0;
3375                 }
3376                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3377         }
3378         return changed_ep_bitmask;
3379 }
3380
3381 /*
3382  * The USB device drivers use this function (through the HCD interface in USB
3383  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3384  * coordinate mass storage command queueing across multiple endpoints (basically
3385  * a stream ID == a task ID).
3386  *
3387  * Setting up streams involves allocating the same size stream context array
3388  * for each endpoint and issuing a configure endpoint command for all endpoints.
3389  *
3390  * Don't allow the call to succeed if one endpoint only supports one stream
3391  * (which means it doesn't support streams at all).
3392  *
3393  * Drivers may get less stream IDs than they asked for, if the host controller
3394  * hardware or endpoints claim they can't support the number of requested
3395  * stream IDs.
3396  */
3397 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3398                 struct usb_host_endpoint **eps, unsigned int num_eps,
3399                 unsigned int num_streams, gfp_t mem_flags)
3400 {
3401         int i, ret;
3402         struct xhci_hcd *xhci;
3403         struct xhci_virt_device *vdev;
3404         struct xhci_command *config_cmd;
3405         struct xhci_input_control_ctx *ctrl_ctx;
3406         unsigned int ep_index;
3407         unsigned int num_stream_ctxs;
3408         unsigned int max_packet;
3409         unsigned long flags;
3410         u32 changed_ep_bitmask = 0;
3411
3412         if (!eps)
3413                 return -EINVAL;
3414
3415         /* Add one to the number of streams requested to account for
3416          * stream 0 that is reserved for xHCI usage.
3417          */
3418         num_streams += 1;
3419         xhci = hcd_to_xhci(hcd);
3420         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3421                         num_streams);
3422
3423         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3424         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3425                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3426                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3427                 return -ENOSYS;
3428         }
3429
3430         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3431         if (!config_cmd)
3432                 return -ENOMEM;
3433
3434         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3435         if (!ctrl_ctx) {
3436                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3437                                 __func__);
3438                 xhci_free_command(xhci, config_cmd);
3439                 return -ENOMEM;
3440         }
3441
3442         /* Check to make sure all endpoints are not already configured for
3443          * streams.  While we're at it, find the maximum number of streams that
3444          * all the endpoints will support and check for duplicate endpoints.
3445          */
3446         spin_lock_irqsave(&xhci->lock, flags);
3447         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3448                         num_eps, &num_streams, &changed_ep_bitmask);
3449         if (ret < 0) {
3450                 xhci_free_command(xhci, config_cmd);
3451                 spin_unlock_irqrestore(&xhci->lock, flags);
3452                 return ret;
3453         }
3454         if (num_streams <= 1) {
3455                 xhci_warn(xhci, "WARN: endpoints can't handle "
3456                                 "more than one stream.\n");
3457                 xhci_free_command(xhci, config_cmd);
3458                 spin_unlock_irqrestore(&xhci->lock, flags);
3459                 return -EINVAL;
3460         }
3461         vdev = xhci->devs[udev->slot_id];
3462         /* Mark each endpoint as being in transition, so
3463          * xhci_urb_enqueue() will reject all URBs.
3464          */
3465         for (i = 0; i < num_eps; i++) {
3466                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3467                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3468         }
3469         spin_unlock_irqrestore(&xhci->lock, flags);
3470
3471         /* Setup internal data structures and allocate HW data structures for
3472          * streams (but don't install the HW structures in the input context
3473          * until we're sure all memory allocation succeeded).
3474          */
3475         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3476         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3477                         num_stream_ctxs, num_streams);
3478
3479         for (i = 0; i < num_eps; i++) {
3480                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3481                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3482                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3483                                 num_stream_ctxs,
3484                                 num_streams,
3485                                 max_packet, mem_flags);
3486                 if (!vdev->eps[ep_index].stream_info)
3487                         goto cleanup;
3488                 /* Set maxPstreams in endpoint context and update deq ptr to
3489                  * point to stream context array. FIXME
3490                  */
3491         }
3492
3493         /* Set up the input context for a configure endpoint command. */
3494         for (i = 0; i < num_eps; i++) {
3495                 struct xhci_ep_ctx *ep_ctx;
3496
3497                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3498                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3499
3500                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3501                                 vdev->out_ctx, ep_index);
3502                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3503                                 vdev->eps[ep_index].stream_info);
3504         }
3505         /* Tell the HW to drop its old copy of the endpoint context info
3506          * and add the updated copy from the input context.
3507          */
3508         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3509                         vdev->out_ctx, ctrl_ctx,
3510                         changed_ep_bitmask, changed_ep_bitmask);
3511
3512         /* Issue and wait for the configure endpoint command */
3513         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3514                         false, false);
3515
3516         /* xHC rejected the configure endpoint command for some reason, so we
3517          * leave the old ring intact and free our internal streams data
3518          * structure.
3519          */
3520         if (ret < 0)
3521                 goto cleanup;
3522
3523         spin_lock_irqsave(&xhci->lock, flags);
3524         for (i = 0; i < num_eps; i++) {
3525                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3526                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3527                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3528                          udev->slot_id, ep_index);
3529                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3530         }
3531         xhci_free_command(xhci, config_cmd);
3532         spin_unlock_irqrestore(&xhci->lock, flags);
3533
3534         /* Subtract 1 for stream 0, which drivers can't use */
3535         return num_streams - 1;
3536
3537 cleanup:
3538         /* If it didn't work, free the streams! */
3539         for (i = 0; i < num_eps; i++) {
3540                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3542                 vdev->eps[ep_index].stream_info = NULL;
3543                 /* FIXME Unset maxPstreams in endpoint context and
3544                  * update deq ptr to point to normal string ring.
3545                  */
3546                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3547                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3548                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3549         }
3550         xhci_free_command(xhci, config_cmd);
3551         return -ENOMEM;
3552 }
3553
3554 /* Transition the endpoint from using streams to being a "normal" endpoint
3555  * without streams.
3556  *
3557  * Modify the endpoint context state, submit a configure endpoint command,
3558  * and free all endpoint rings for streams if that completes successfully.
3559  */
3560 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3561                 struct usb_host_endpoint **eps, unsigned int num_eps,
3562                 gfp_t mem_flags)
3563 {
3564         int i, ret;
3565         struct xhci_hcd *xhci;
3566         struct xhci_virt_device *vdev;
3567         struct xhci_command *command;
3568         struct xhci_input_control_ctx *ctrl_ctx;
3569         unsigned int ep_index;
3570         unsigned long flags;
3571         u32 changed_ep_bitmask;
3572
3573         xhci = hcd_to_xhci(hcd);
3574         vdev = xhci->devs[udev->slot_id];
3575
3576         /* Set up a configure endpoint command to remove the streams rings */
3577         spin_lock_irqsave(&xhci->lock, flags);
3578         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3579                         udev, eps, num_eps);
3580         if (changed_ep_bitmask == 0) {
3581                 spin_unlock_irqrestore(&xhci->lock, flags);
3582                 return -EINVAL;
3583         }
3584
3585         /* Use the xhci_command structure from the first endpoint.  We may have
3586          * allocated too many, but the driver may call xhci_free_streams() for
3587          * each endpoint it grouped into one call to xhci_alloc_streams().
3588          */
3589         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3590         command = vdev->eps[ep_index].stream_info->free_streams_command;
3591         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3592         if (!ctrl_ctx) {
3593                 spin_unlock_irqrestore(&xhci->lock, flags);
3594                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3595                                 __func__);
3596                 return -EINVAL;
3597         }
3598
3599         for (i = 0; i < num_eps; i++) {
3600                 struct xhci_ep_ctx *ep_ctx;
3601
3602                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3604                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3605                         EP_GETTING_NO_STREAMS;
3606
3607                 xhci_endpoint_copy(xhci, command->in_ctx,
3608                                 vdev->out_ctx, ep_index);
3609                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3610                                 &vdev->eps[ep_index]);
3611         }
3612         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3613                         vdev->out_ctx, ctrl_ctx,
3614                         changed_ep_bitmask, changed_ep_bitmask);
3615         spin_unlock_irqrestore(&xhci->lock, flags);
3616
3617         /* Issue and wait for the configure endpoint command,
3618          * which must succeed.
3619          */
3620         ret = xhci_configure_endpoint(xhci, udev, command,
3621                         false, true);
3622
3623         /* xHC rejected the configure endpoint command for some reason, so we
3624          * leave the streams rings intact.
3625          */
3626         if (ret < 0)
3627                 return ret;
3628
3629         spin_lock_irqsave(&xhci->lock, flags);
3630         for (i = 0; i < num_eps; i++) {
3631                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3632                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3633                 vdev->eps[ep_index].stream_info = NULL;
3634                 /* FIXME Unset maxPstreams in endpoint context and
3635                  * update deq ptr to point to normal string ring.
3636                  */
3637                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3638                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3639         }
3640         spin_unlock_irqrestore(&xhci->lock, flags);
3641
3642         return 0;
3643 }
3644
3645 /*
3646  * Deletes endpoint resources for endpoints that were active before a Reset
3647  * Device command, or a Disable Slot command.  The Reset Device command leaves
3648  * the control endpoint intact, whereas the Disable Slot command deletes it.
3649  *
3650  * Must be called with xhci->lock held.
3651  */
3652 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3653         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3654 {
3655         int i;
3656         unsigned int num_dropped_eps = 0;
3657         unsigned int drop_flags = 0;
3658
3659         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3660                 if (virt_dev->eps[i].ring) {
3661                         drop_flags |= 1 << i;
3662                         num_dropped_eps++;
3663                 }
3664         }
3665         xhci->num_active_eps -= num_dropped_eps;
3666         if (num_dropped_eps)
3667                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668                                 "Dropped %u ep ctxs, flags = 0x%x, "
3669                                 "%u now active.",
3670                                 num_dropped_eps, drop_flags,
3671                                 xhci->num_active_eps);
3672 }
3673
3674 /*
3675  * This submits a Reset Device Command, which will set the device state to 0,
3676  * set the device address to 0, and disable all the endpoints except the default
3677  * control endpoint.  The USB core should come back and call
3678  * xhci_address_device(), and then re-set up the configuration.  If this is
3679  * called because of a usb_reset_and_verify_device(), then the old alternate
3680  * settings will be re-installed through the normal bandwidth allocation
3681  * functions.
3682  *
3683  * Wait for the Reset Device command to finish.  Remove all structures
3684  * associated with the endpoints that were disabled.  Clear the input device
3685  * structure? Reset the control endpoint 0 max packet size?
3686  *
3687  * If the virt_dev to be reset does not exist or does not match the udev,
3688  * it means the device is lost, possibly due to the xHC restore error and
3689  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3690  * re-allocate the device.
3691  */
3692 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3693                 struct usb_device *udev)
3694 {
3695         int ret, i;
3696         unsigned long flags;
3697         struct xhci_hcd *xhci;
3698         unsigned int slot_id;
3699         struct xhci_virt_device *virt_dev;
3700         struct xhci_command *reset_device_cmd;
3701         struct xhci_slot_ctx *slot_ctx;
3702         int old_active_eps = 0;
3703
3704         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3705         if (ret <= 0)
3706                 return ret;
3707         xhci = hcd_to_xhci(hcd);
3708         slot_id = udev->slot_id;
3709         virt_dev = xhci->devs[slot_id];
3710         if (!virt_dev) {
3711                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3712                                 "not exist. Re-allocate the device\n", slot_id);
3713                 ret = xhci_alloc_dev(hcd, udev);
3714                 if (ret == 1)
3715                         return 0;
3716                 else
3717                         return -EINVAL;
3718         }
3719
3720         if (virt_dev->tt_info)
3721                 old_active_eps = virt_dev->tt_info->active_eps;
3722
3723         if (virt_dev->udev != udev) {
3724                 /* If the virt_dev and the udev does not match, this virt_dev
3725                  * may belong to another udev.
3726                  * Re-allocate the device.
3727                  */
3728                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3729                                 "not match the udev. Re-allocate the device\n",
3730                                 slot_id);
3731                 ret = xhci_alloc_dev(hcd, udev);
3732                 if (ret == 1)
3733                         return 0;
3734                 else
3735                         return -EINVAL;
3736         }
3737
3738         /* If device is not setup, there is no point in resetting it */
3739         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3740         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3741                                                 SLOT_STATE_DISABLED)
3742                 return 0;
3743
3744         trace_xhci_discover_or_reset_device(slot_ctx);
3745
3746         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3747         /* Allocate the command structure that holds the struct completion.
3748          * Assume we're in process context, since the normal device reset
3749          * process has to wait for the device anyway.  Storage devices are
3750          * reset as part of error handling, so use GFP_NOIO instead of
3751          * GFP_KERNEL.
3752          */
3753         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3754         if (!reset_device_cmd) {
3755                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3756                 return -ENOMEM;
3757         }
3758
3759         /* Attempt to submit the Reset Device command to the command ring */
3760         spin_lock_irqsave(&xhci->lock, flags);
3761
3762         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3763         if (ret) {
3764                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3765                 spin_unlock_irqrestore(&xhci->lock, flags);
3766                 goto command_cleanup;
3767         }
3768         xhci_ring_cmd_db(xhci);
3769         spin_unlock_irqrestore(&xhci->lock, flags);
3770
3771         /* Wait for the Reset Device command to finish */
3772         wait_for_completion(reset_device_cmd->completion);
3773
3774         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3775          * unless we tried to reset a slot ID that wasn't enabled,
3776          * or the device wasn't in the addressed or configured state.
3777          */
3778         ret = reset_device_cmd->status;
3779         switch (ret) {
3780         case COMP_COMMAND_ABORTED:
3781         case COMP_COMMAND_RING_STOPPED:
3782                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3783                 ret = -ETIME;
3784                 goto command_cleanup;
3785         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3786         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3787                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3788                                 slot_id,
3789                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3790                 xhci_dbg(xhci, "Not freeing device rings.\n");
3791                 /* Don't treat this as an error.  May change my mind later. */
3792                 ret = 0;
3793                 goto command_cleanup;
3794         case COMP_SUCCESS:
3795                 xhci_dbg(xhci, "Successful reset device command.\n");
3796                 break;
3797         default:
3798                 if (xhci_is_vendor_info_code(xhci, ret))
3799                         break;
3800                 xhci_warn(xhci, "Unknown completion code %u for "
3801                                 "reset device command.\n", ret);
3802                 ret = -EINVAL;
3803                 goto command_cleanup;
3804         }
3805
3806         /* Free up host controller endpoint resources */
3807         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3808                 spin_lock_irqsave(&xhci->lock, flags);
3809                 /* Don't delete the default control endpoint resources */
3810                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3811                 spin_unlock_irqrestore(&xhci->lock, flags);
3812         }
3813
3814         /* Everything but endpoint 0 is disabled, so free the rings. */
3815         for (i = 1; i < 31; i++) {
3816                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3817
3818                 if (ep->ep_state & EP_HAS_STREAMS) {
3819                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3820                                         xhci_get_endpoint_address(i));
3821                         xhci_free_stream_info(xhci, ep->stream_info);
3822                         ep->stream_info = NULL;
3823                         ep->ep_state &= ~EP_HAS_STREAMS;
3824                 }
3825
3826                 if (ep->ring) {
3827                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3828                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3829                 }
3830                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3831                         xhci_drop_ep_from_interval_table(xhci,
3832                                         &virt_dev->eps[i].bw_info,
3833                                         virt_dev->bw_table,
3834                                         udev,
3835                                         &virt_dev->eps[i],
3836                                         virt_dev->tt_info);
3837                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3838         }
3839         /* If necessary, update the number of active TTs on this root port */
3840         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3841         virt_dev->flags = 0;
3842         ret = 0;
3843
3844 command_cleanup:
3845         xhci_free_command(xhci, reset_device_cmd);
3846         return ret;
3847 }
3848
3849 /*
3850  * At this point, the struct usb_device is about to go away, the device has
3851  * disconnected, and all traffic has been stopped and the endpoints have been
3852  * disabled.  Free any HC data structures associated with that device.
3853  */
3854 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3855 {
3856         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3857         struct xhci_virt_device *virt_dev;
3858         struct xhci_slot_ctx *slot_ctx;
3859         int i, ret;
3860
3861 #ifndef CONFIG_USB_DEFAULT_PERSIST
3862         /*
3863          * We called pm_runtime_get_noresume when the device was attached.
3864          * Decrement the counter here to allow controller to runtime suspend
3865          * if no devices remain.
3866          */
3867         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3868                 pm_runtime_put_noidle(hcd->self.controller);
3869 #endif
3870
3871         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3872         /* If the host is halted due to driver unload, we still need to free the
3873          * device.
3874          */
3875         if (ret <= 0 && ret != -ENODEV)
3876                 return;
3877
3878         virt_dev = xhci->devs[udev->slot_id];
3879         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3880         trace_xhci_free_dev(slot_ctx);
3881
3882         /* Stop any wayward timer functions (which may grab the lock) */
3883         for (i = 0; i < 31; i++) {
3884                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3885                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3886         }
3887         virt_dev->udev = NULL;
3888         ret = xhci_disable_slot(xhci, udev->slot_id);
3889         if (ret)
3890                 xhci_free_virt_device(xhci, udev->slot_id);
3891 }
3892
3893 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3894 {
3895         struct xhci_command *command;
3896         unsigned long flags;
3897         u32 state;
3898         int ret = 0;
3899
3900         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3901         if (!command)
3902                 return -ENOMEM;
3903
3904         xhci_debugfs_remove_slot(xhci, slot_id);
3905
3906         spin_lock_irqsave(&xhci->lock, flags);
3907         /* Don't disable the slot if the host controller is dead. */
3908         state = readl(&xhci->op_regs->status);
3909         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3910                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3911                 spin_unlock_irqrestore(&xhci->lock, flags);
3912                 kfree(command);
3913                 return -ENODEV;
3914         }
3915
3916         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3917                                 slot_id);
3918         if (ret) {
3919                 spin_unlock_irqrestore(&xhci->lock, flags);
3920                 kfree(command);
3921                 return ret;
3922         }
3923         xhci_ring_cmd_db(xhci);
3924         spin_unlock_irqrestore(&xhci->lock, flags);
3925         return ret;
3926 }
3927
3928 /*
3929  * Checks if we have enough host controller resources for the default control
3930  * endpoint.
3931  *
3932  * Must be called with xhci->lock held.
3933  */
3934 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3935 {
3936         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3937                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3938                                 "Not enough ep ctxs: "
3939                                 "%u active, need to add 1, limit is %u.",
3940                                 xhci->num_active_eps, xhci->limit_active_eps);
3941                 return -ENOMEM;
3942         }
3943         xhci->num_active_eps += 1;
3944         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3945                         "Adding 1 ep ctx, %u now active.",
3946                         xhci->num_active_eps);
3947         return 0;
3948 }
3949
3950
3951 /*
3952  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3953  * timed out, or allocating memory failed.  Returns 1 on success.
3954  */
3955 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3956 {
3957         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3958         struct xhci_virt_device *vdev;
3959         struct xhci_slot_ctx *slot_ctx;
3960         unsigned long flags;
3961         int ret, slot_id;
3962         struct xhci_command *command;
3963
3964         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3965         if (!command)
3966                 return 0;
3967
3968         spin_lock_irqsave(&xhci->lock, flags);
3969         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3970         if (ret) {
3971                 spin_unlock_irqrestore(&xhci->lock, flags);
3972                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3973                 xhci_free_command(xhci, command);
3974                 return 0;
3975         }
3976         xhci_ring_cmd_db(xhci);
3977         spin_unlock_irqrestore(&xhci->lock, flags);
3978
3979         wait_for_completion(command->completion);
3980         slot_id = command->slot_id;
3981
3982         if (!slot_id || command->status != COMP_SUCCESS) {
3983                 xhci_err(xhci, "Error while assigning device slot ID\n");
3984                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3985                                 HCS_MAX_SLOTS(
3986                                         readl(&xhci->cap_regs->hcs_params1)));
3987                 xhci_free_command(xhci, command);
3988                 return 0;
3989         }
3990
3991         xhci_free_command(xhci, command);
3992
3993         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3994                 spin_lock_irqsave(&xhci->lock, flags);
3995                 ret = xhci_reserve_host_control_ep_resources(xhci);
3996                 if (ret) {
3997                         spin_unlock_irqrestore(&xhci->lock, flags);
3998                         xhci_warn(xhci, "Not enough host resources, "
3999                                         "active endpoint contexts = %u\n",
4000                                         xhci->num_active_eps);
4001                         goto disable_slot;
4002                 }
4003                 spin_unlock_irqrestore(&xhci->lock, flags);
4004         }
4005         /* Use GFP_NOIO, since this function can be called from
4006          * xhci_discover_or_reset_device(), which may be called as part of
4007          * mass storage driver error handling.
4008          */
4009         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4010                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4011                 goto disable_slot;
4012         }
4013         vdev = xhci->devs[slot_id];
4014         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4015         trace_xhci_alloc_dev(slot_ctx);
4016
4017         udev->slot_id = slot_id;
4018
4019         xhci_debugfs_create_slot(xhci, slot_id);
4020
4021 #ifndef CONFIG_USB_DEFAULT_PERSIST
4022         /*
4023          * If resetting upon resume, we can't put the controller into runtime
4024          * suspend if there is a device attached.
4025          */
4026         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4027                 pm_runtime_get_noresume(hcd->self.controller);
4028 #endif
4029
4030         /* Is this a LS or FS device under a HS hub? */
4031         /* Hub or peripherial? */
4032         return 1;
4033
4034 disable_slot:
4035         ret = xhci_disable_slot(xhci, udev->slot_id);
4036         if (ret)
4037                 xhci_free_virt_device(xhci, udev->slot_id);
4038
4039         return 0;
4040 }
4041
4042 /*
4043  * Issue an Address Device command and optionally send a corresponding
4044  * SetAddress request to the device.
4045  */
4046 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4047                              enum xhci_setup_dev setup)
4048 {
4049         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4050         unsigned long flags;
4051         struct xhci_virt_device *virt_dev;
4052         int ret = 0;
4053         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4054         struct xhci_slot_ctx *slot_ctx;
4055         struct xhci_input_control_ctx *ctrl_ctx;
4056         u64 temp_64;
4057         struct xhci_command *command = NULL;
4058
4059         mutex_lock(&xhci->mutex);
4060
4061         if (xhci->xhc_state) {  /* dying, removing or halted */
4062                 ret = -ESHUTDOWN;
4063                 goto out;
4064         }
4065
4066         if (!udev->slot_id) {
4067                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4068                                 "Bad Slot ID %d", udev->slot_id);
4069                 ret = -EINVAL;
4070                 goto out;
4071         }
4072
4073         virt_dev = xhci->devs[udev->slot_id];
4074
4075         if (WARN_ON(!virt_dev)) {
4076                 /*
4077                  * In plug/unplug torture test with an NEC controller,
4078                  * a zero-dereference was observed once due to virt_dev = 0.
4079                  * Print useful debug rather than crash if it is observed again!
4080                  */
4081                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4082                         udev->slot_id);
4083                 ret = -EINVAL;
4084                 goto out;
4085         }
4086         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4087         trace_xhci_setup_device_slot(slot_ctx);
4088
4089         if (setup == SETUP_CONTEXT_ONLY) {
4090                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4091                     SLOT_STATE_DEFAULT) {
4092                         xhci_dbg(xhci, "Slot already in default state\n");
4093                         goto out;
4094                 }
4095         }
4096
4097         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4098         if (!command) {
4099                 ret = -ENOMEM;
4100                 goto out;
4101         }
4102
4103         command->in_ctx = virt_dev->in_ctx;
4104
4105         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4106         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4107         if (!ctrl_ctx) {
4108                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4109                                 __func__);
4110                 ret = -EINVAL;
4111                 goto out;
4112         }
4113         /*
4114          * If this is the first Set Address since device plug-in or
4115          * virt_device realloaction after a resume with an xHCI power loss,
4116          * then set up the slot context.
4117          */
4118         if (!slot_ctx->dev_info)
4119                 xhci_setup_addressable_virt_dev(xhci, udev);
4120         /* Otherwise, update the control endpoint ring enqueue pointer. */
4121         else
4122                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4123         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4124         ctrl_ctx->drop_flags = 0;
4125
4126         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4127                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4128
4129         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4130         spin_lock_irqsave(&xhci->lock, flags);
4131         trace_xhci_setup_device(virt_dev);
4132         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4133                                         udev->slot_id, setup);
4134         if (ret) {
4135                 spin_unlock_irqrestore(&xhci->lock, flags);
4136                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4137                                 "FIXME: allocate a command ring segment");
4138                 goto out;
4139         }
4140         xhci_ring_cmd_db(xhci);
4141         spin_unlock_irqrestore(&xhci->lock, flags);
4142
4143         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4144         wait_for_completion(command->completion);
4145
4146         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4147          * the SetAddress() "recovery interval" required by USB and aborting the
4148          * command on a timeout.
4149          */
4150         switch (command->status) {
4151         case COMP_COMMAND_ABORTED:
4152         case COMP_COMMAND_RING_STOPPED:
4153                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4154                 ret = -ETIME;
4155                 break;
4156         case COMP_CONTEXT_STATE_ERROR:
4157         case COMP_SLOT_NOT_ENABLED_ERROR:
4158                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4159                          act, udev->slot_id);
4160                 ret = -EINVAL;
4161                 break;
4162         case COMP_USB_TRANSACTION_ERROR:
4163                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4164
4165                 mutex_unlock(&xhci->mutex);
4166                 ret = xhci_disable_slot(xhci, udev->slot_id);
4167                 if (!ret)
4168                         xhci_alloc_dev(hcd, udev);
4169                 kfree(command->completion);
4170                 kfree(command);
4171                 return -EPROTO;
4172         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4173                 dev_warn(&udev->dev,
4174                          "ERROR: Incompatible device for setup %s command\n", act);
4175                 ret = -ENODEV;
4176                 break;
4177         case COMP_SUCCESS:
4178                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4179                                "Successful setup %s command", act);
4180                 break;
4181         default:
4182                 xhci_err(xhci,
4183                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4184                          act, command->status);
4185                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4186                 ret = -EINVAL;
4187                 break;
4188         }
4189         if (ret)
4190                 goto out;
4191         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4192         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193                         "Op regs DCBAA ptr = %#016llx", temp_64);
4194         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4195                 "Slot ID %d dcbaa entry @%p = %#016llx",
4196                 udev->slot_id,
4197                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4198                 (unsigned long long)
4199                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4200         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4201                         "Output Context DMA address = %#08llx",
4202                         (unsigned long long)virt_dev->out_ctx->dma);
4203         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4205         /*
4206          * USB core uses address 1 for the roothubs, so we add one to the
4207          * address given back to us by the HC.
4208          */
4209         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4210                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4211         /* Zero the input context control for later use */
4212         ctrl_ctx->add_flags = 0;
4213         ctrl_ctx->drop_flags = 0;
4214         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4215         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4216
4217         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4218                        "Internal device address = %d",
4219                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4220 out:
4221         mutex_unlock(&xhci->mutex);
4222         if (command) {
4223                 kfree(command->completion);
4224                 kfree(command);
4225         }
4226         return ret;
4227 }
4228
4229 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4230 {
4231         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4232 }
4233
4234 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4235 {
4236         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4237 }
4238
4239 /*
4240  * Transfer the port index into real index in the HW port status
4241  * registers. Caculate offset between the port's PORTSC register
4242  * and port status base. Divide the number of per port register
4243  * to get the real index. The raw port number bases 1.
4244  */
4245 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4246 {
4247         struct xhci_hub *rhub;
4248
4249         rhub = xhci_get_rhub(hcd);
4250         return rhub->ports[port1 - 1]->hw_portnum + 1;
4251 }
4252
4253 /*
4254  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4255  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4256  */
4257 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4258                         struct usb_device *udev, u16 max_exit_latency)
4259 {
4260         struct xhci_virt_device *virt_dev;
4261         struct xhci_command *command;
4262         struct xhci_input_control_ctx *ctrl_ctx;
4263         struct xhci_slot_ctx *slot_ctx;
4264         unsigned long flags;
4265         int ret;
4266
4267         spin_lock_irqsave(&xhci->lock, flags);
4268
4269         virt_dev = xhci->devs[udev->slot_id];
4270
4271         /*
4272          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4273          * xHC was re-initialized. Exit latency will be set later after
4274          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4275          */
4276
4277         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4278                 spin_unlock_irqrestore(&xhci->lock, flags);
4279                 return 0;
4280         }
4281
4282         /* Attempt to issue an Evaluate Context command to change the MEL. */
4283         command = xhci->lpm_command;
4284         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4285         if (!ctrl_ctx) {
4286                 spin_unlock_irqrestore(&xhci->lock, flags);
4287                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4288                                 __func__);
4289                 return -ENOMEM;
4290         }
4291
4292         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4293         spin_unlock_irqrestore(&xhci->lock, flags);
4294
4295         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4296         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4297         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4298         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4299         slot_ctx->dev_state = 0;
4300
4301         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4302                         "Set up evaluate context for LPM MEL change.");
4303
4304         /* Issue and wait for the evaluate context command. */
4305         ret = xhci_configure_endpoint(xhci, udev, command,
4306                         true, true);
4307
4308         if (!ret) {
4309                 spin_lock_irqsave(&xhci->lock, flags);
4310                 virt_dev->current_mel = max_exit_latency;
4311                 spin_unlock_irqrestore(&xhci->lock, flags);
4312         }
4313         return ret;
4314 }
4315
4316 #ifdef CONFIG_PM
4317
4318 /* BESL to HIRD Encoding array for USB2 LPM */
4319 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4320         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4321
4322 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4323 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4324                                         struct usb_device *udev)
4325 {
4326         int u2del, besl, besl_host;
4327         int besl_device = 0;
4328         u32 field;
4329
4330         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4331         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4332
4333         if (field & USB_BESL_SUPPORT) {
4334                 for (besl_host = 0; besl_host < 16; besl_host++) {
4335                         if (xhci_besl_encoding[besl_host] >= u2del)
4336                                 break;
4337                 }
4338                 /* Use baseline BESL value as default */
4339                 if (field & USB_BESL_BASELINE_VALID)
4340                         besl_device = USB_GET_BESL_BASELINE(field);
4341                 else if (field & USB_BESL_DEEP_VALID)
4342                         besl_device = USB_GET_BESL_DEEP(field);
4343         } else {
4344                 if (u2del <= 50)
4345                         besl_host = 0;
4346                 else
4347                         besl_host = (u2del - 51) / 75 + 1;
4348         }
4349
4350         besl = besl_host + besl_device;
4351         if (besl > 15)
4352                 besl = 15;
4353
4354         return besl;
4355 }
4356
4357 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4358 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4359 {
4360         u32 field;
4361         int l1;
4362         int besld = 0;
4363         int hirdm = 0;
4364
4365         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4366
4367         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4368         l1 = udev->l1_params.timeout / 256;
4369
4370         /* device has preferred BESLD */
4371         if (field & USB_BESL_DEEP_VALID) {
4372                 besld = USB_GET_BESL_DEEP(field);
4373                 hirdm = 1;
4374         }
4375
4376         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4377 }
4378
4379 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4380                         struct usb_device *udev, int enable)
4381 {
4382         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4383         struct xhci_port **ports;
4384         __le32 __iomem  *pm_addr, *hlpm_addr;
4385         u32             pm_val, hlpm_val, field;
4386         unsigned int    port_num;
4387         unsigned long   flags;
4388         int             hird, exit_latency;
4389         int             ret;
4390
4391         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4392                         !udev->lpm_capable)
4393                 return -EPERM;
4394
4395         if (!udev->parent || udev->parent->parent ||
4396                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4397                 return -EPERM;
4398
4399         if (udev->usb2_hw_lpm_capable != 1)
4400                 return -EPERM;
4401
4402         spin_lock_irqsave(&xhci->lock, flags);
4403
4404         ports = xhci->usb2_rhub.ports;
4405         port_num = udev->portnum - 1;
4406         pm_addr = ports[port_num]->addr + PORTPMSC;
4407         pm_val = readl(pm_addr);
4408         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4409
4410         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4411                         enable ? "enable" : "disable", port_num + 1);
4412
4413         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4414                 /* Host supports BESL timeout instead of HIRD */
4415                 if (udev->usb2_hw_lpm_besl_capable) {
4416                         /* if device doesn't have a preferred BESL value use a
4417                          * default one which works with mixed HIRD and BESL
4418                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4419                          */
4420                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4421                         if ((field & USB_BESL_SUPPORT) &&
4422                             (field & USB_BESL_BASELINE_VALID))
4423                                 hird = USB_GET_BESL_BASELINE(field);
4424                         else
4425                                 hird = udev->l1_params.besl;
4426
4427                         exit_latency = xhci_besl_encoding[hird];
4428                         spin_unlock_irqrestore(&xhci->lock, flags);
4429
4430                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4431                          * input context for link powermanagement evaluate
4432                          * context commands. It is protected by hcd->bandwidth
4433                          * mutex and is shared by all devices. We need to set
4434                          * the max ext latency in USB 2 BESL LPM as well, so
4435                          * use the same mutex and xhci_change_max_exit_latency()
4436                          */
4437                         mutex_lock(hcd->bandwidth_mutex);
4438                         ret = xhci_change_max_exit_latency(xhci, udev,
4439                                                            exit_latency);
4440                         mutex_unlock(hcd->bandwidth_mutex);
4441
4442                         if (ret < 0)
4443                                 return ret;
4444                         spin_lock_irqsave(&xhci->lock, flags);
4445
4446                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4447                         writel(hlpm_val, hlpm_addr);
4448                         /* flush write */
4449                         readl(hlpm_addr);
4450                 } else {
4451                         hird = xhci_calculate_hird_besl(xhci, udev);
4452                 }
4453
4454                 pm_val &= ~PORT_HIRD_MASK;
4455                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4456                 writel(pm_val, pm_addr);
4457                 pm_val = readl(pm_addr);
4458                 pm_val |= PORT_HLE;
4459                 writel(pm_val, pm_addr);
4460                 /* flush write */
4461                 readl(pm_addr);
4462         } else {
4463                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4464                 writel(pm_val, pm_addr);
4465                 /* flush write */
4466                 readl(pm_addr);
4467                 if (udev->usb2_hw_lpm_besl_capable) {
4468                         spin_unlock_irqrestore(&xhci->lock, flags);
4469                         mutex_lock(hcd->bandwidth_mutex);
4470                         xhci_change_max_exit_latency(xhci, udev, 0);
4471                         mutex_unlock(hcd->bandwidth_mutex);
4472                         return 0;
4473                 }
4474         }
4475
4476         spin_unlock_irqrestore(&xhci->lock, flags);
4477         return 0;
4478 }
4479
4480 /* check if a usb2 port supports a given extened capability protocol
4481  * only USB2 ports extended protocol capability values are cached.
4482  * Return 1 if capability is supported
4483  */
4484 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4485                                            unsigned capability)
4486 {
4487         u32 port_offset, port_count;
4488         int i;
4489
4490         for (i = 0; i < xhci->num_ext_caps; i++) {
4491                 if (xhci->ext_caps[i] & capability) {
4492                         /* port offsets starts at 1 */
4493                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4494                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4495                         if (port >= port_offset &&
4496                             port < port_offset + port_count)
4497                                 return 1;
4498                 }
4499         }
4500         return 0;
4501 }
4502
4503 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4504 {
4505         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4506         int             portnum = udev->portnum - 1;
4507
4508         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4509                 return 0;
4510
4511         /* we only support lpm for non-hub device connected to root hub yet */
4512         if (!udev->parent || udev->parent->parent ||
4513                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4514                 return 0;
4515
4516         if (xhci->hw_lpm_support == 1 &&
4517                         xhci_check_usb2_port_capability(
4518                                 xhci, portnum, XHCI_HLC)) {
4519                 udev->usb2_hw_lpm_capable = 1;
4520                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4521                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4522                 if (xhci_check_usb2_port_capability(xhci, portnum,
4523                                         XHCI_BLC))
4524                         udev->usb2_hw_lpm_besl_capable = 1;
4525         }
4526
4527         return 0;
4528 }
4529
4530 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4531
4532 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4533 static unsigned long long xhci_service_interval_to_ns(
4534                 struct usb_endpoint_descriptor *desc)
4535 {
4536         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4537 }
4538
4539 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4540                 enum usb3_link_state state)
4541 {
4542         unsigned long long sel;
4543         unsigned long long pel;
4544         unsigned int max_sel_pel;
4545         char *state_name;
4546
4547         switch (state) {
4548         case USB3_LPM_U1:
4549                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4550                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4551                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4552                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4553                 state_name = "U1";
4554                 break;
4555         case USB3_LPM_U2:
4556                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4557                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4558                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4559                 state_name = "U2";
4560                 break;
4561         default:
4562                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4563                                 __func__);
4564                 return USB3_LPM_DISABLED;
4565         }
4566
4567         if (sel <= max_sel_pel && pel <= max_sel_pel)
4568                 return USB3_LPM_DEVICE_INITIATED;
4569
4570         if (sel > max_sel_pel)
4571                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4572                                 "due to long SEL %llu ms\n",
4573                                 state_name, sel);
4574         else
4575                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4576                                 "due to long PEL %llu ms\n",
4577                                 state_name, pel);
4578         return USB3_LPM_DISABLED;
4579 }
4580
4581 /* The U1 timeout should be the maximum of the following values:
4582  *  - For control endpoints, U1 system exit latency (SEL) * 3
4583  *  - For bulk endpoints, U1 SEL * 5
4584  *  - For interrupt endpoints:
4585  *    - Notification EPs, U1 SEL * 3
4586  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4587  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4588  */
4589 static unsigned long long xhci_calculate_intel_u1_timeout(
4590                 struct usb_device *udev,
4591                 struct usb_endpoint_descriptor *desc)
4592 {
4593         unsigned long long timeout_ns;
4594         int ep_type;
4595         int intr_type;
4596
4597         ep_type = usb_endpoint_type(desc);
4598         switch (ep_type) {
4599         case USB_ENDPOINT_XFER_CONTROL:
4600                 timeout_ns = udev->u1_params.sel * 3;
4601                 break;
4602         case USB_ENDPOINT_XFER_BULK:
4603                 timeout_ns = udev->u1_params.sel * 5;
4604                 break;
4605         case USB_ENDPOINT_XFER_INT:
4606                 intr_type = usb_endpoint_interrupt_type(desc);
4607                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4608                         timeout_ns = udev->u1_params.sel * 3;
4609                         break;
4610                 }
4611                 /* Otherwise the calculation is the same as isoc eps */
4612                 /* fall through */
4613         case USB_ENDPOINT_XFER_ISOC:
4614                 timeout_ns = xhci_service_interval_to_ns(desc);
4615                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4616                 if (timeout_ns < udev->u1_params.sel * 2)
4617                         timeout_ns = udev->u1_params.sel * 2;
4618                 break;
4619         default:
4620                 return 0;
4621         }
4622
4623         return timeout_ns;
4624 }
4625
4626 /* Returns the hub-encoded U1 timeout value. */
4627 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4628                 struct usb_device *udev,
4629                 struct usb_endpoint_descriptor *desc)
4630 {
4631         unsigned long long timeout_ns;
4632
4633         /* Prevent U1 if service interval is shorter than U1 exit latency */
4634         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4635                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4636                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4637                         return USB3_LPM_DISABLED;
4638                 }
4639         }
4640
4641         if (xhci->quirks & XHCI_INTEL_HOST)
4642                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4643         else
4644                 timeout_ns = udev->u1_params.sel;
4645
4646         /* The U1 timeout is encoded in 1us intervals.
4647          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4648          */
4649         if (timeout_ns == USB3_LPM_DISABLED)
4650                 timeout_ns = 1;
4651         else
4652                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4653
4654         /* If the necessary timeout value is bigger than what we can set in the
4655          * USB 3.0 hub, we have to disable hub-initiated U1.
4656          */
4657         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4658                 return timeout_ns;
4659         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4660                         "due to long timeout %llu ms\n", timeout_ns);
4661         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4662 }
4663
4664 /* The U2 timeout should be the maximum of:
4665  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4666  *  - largest bInterval of any active periodic endpoint (to avoid going
4667  *    into lower power link states between intervals).
4668  *  - the U2 Exit Latency of the device
4669  */
4670 static unsigned long long xhci_calculate_intel_u2_timeout(
4671                 struct usb_device *udev,
4672                 struct usb_endpoint_descriptor *desc)
4673 {
4674         unsigned long long timeout_ns;
4675         unsigned long long u2_del_ns;
4676
4677         timeout_ns = 10 * 1000 * 1000;
4678
4679         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4680                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4681                 timeout_ns = xhci_service_interval_to_ns(desc);
4682
4683         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4684         if (u2_del_ns > timeout_ns)
4685                 timeout_ns = u2_del_ns;
4686
4687         return timeout_ns;
4688 }
4689
4690 /* Returns the hub-encoded U2 timeout value. */
4691 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4692                 struct usb_device *udev,
4693                 struct usb_endpoint_descriptor *desc)
4694 {
4695         unsigned long long timeout_ns;
4696
4697         /* Prevent U2 if service interval is shorter than U2 exit latency */
4698         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4699                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4700                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4701                         return USB3_LPM_DISABLED;
4702                 }
4703         }
4704
4705         if (xhci->quirks & XHCI_INTEL_HOST)
4706                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4707         else
4708                 timeout_ns = udev->u2_params.sel;
4709
4710         /* The U2 timeout is encoded in 256us intervals */
4711         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4712         /* If the necessary timeout value is bigger than what we can set in the
4713          * USB 3.0 hub, we have to disable hub-initiated U2.
4714          */
4715         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4716                 return timeout_ns;
4717         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4718                         "due to long timeout %llu ms\n", timeout_ns);
4719         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4720 }
4721
4722 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4723                 struct usb_device *udev,
4724                 struct usb_endpoint_descriptor *desc,
4725                 enum usb3_link_state state,
4726                 u16 *timeout)
4727 {
4728         if (state == USB3_LPM_U1)
4729                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4730         else if (state == USB3_LPM_U2)
4731                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4732
4733         return USB3_LPM_DISABLED;
4734 }
4735
4736 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4737                 struct usb_device *udev,
4738                 struct usb_endpoint_descriptor *desc,
4739                 enum usb3_link_state state,
4740                 u16 *timeout)
4741 {
4742         u16 alt_timeout;
4743
4744         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4745                 desc, state, timeout);
4746
4747         /* If we found we can't enable hub-initiated LPM, and
4748          * the U1 or U2 exit latency was too high to allow
4749          * device-initiated LPM as well, then we will disable LPM
4750          * for this device, so stop searching any further.
4751          */
4752         if (alt_timeout == USB3_LPM_DISABLED) {
4753                 *timeout = alt_timeout;
4754                 return -E2BIG;
4755         }
4756         if (alt_timeout > *timeout)
4757                 *timeout = alt_timeout;
4758         return 0;
4759 }
4760
4761 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4762                 struct usb_device *udev,
4763                 struct usb_host_interface *alt,
4764                 enum usb3_link_state state,
4765                 u16 *timeout)
4766 {
4767         int j;
4768
4769         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4770                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4771                                         &alt->endpoint[j].desc, state, timeout))
4772                         return -E2BIG;
4773                 continue;
4774         }
4775         return 0;
4776 }
4777
4778 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4779                 enum usb3_link_state state)
4780 {
4781         struct usb_device *parent;
4782         unsigned int num_hubs;
4783
4784         if (state == USB3_LPM_U2)
4785                 return 0;
4786
4787         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4788         for (parent = udev->parent, num_hubs = 0; parent->parent;
4789                         parent = parent->parent)
4790                 num_hubs++;
4791
4792         if (num_hubs < 2)
4793                 return 0;
4794
4795         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4796                         " below second-tier hub.\n");
4797         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4798                         "to decrease power consumption.\n");
4799         return -E2BIG;
4800 }
4801
4802 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4803                 struct usb_device *udev,
4804                 enum usb3_link_state state)
4805 {
4806         if (xhci->quirks & XHCI_INTEL_HOST)
4807                 return xhci_check_intel_tier_policy(udev, state);
4808         else
4809                 return 0;
4810 }
4811
4812 /* Returns the U1 or U2 timeout that should be enabled.
4813  * If the tier check or timeout setting functions return with a non-zero exit
4814  * code, that means the timeout value has been finalized and we shouldn't look
4815  * at any more endpoints.
4816  */
4817 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4818                         struct usb_device *udev, enum usb3_link_state state)
4819 {
4820         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4821         struct usb_host_config *config;
4822         char *state_name;
4823         int i;
4824         u16 timeout = USB3_LPM_DISABLED;
4825
4826         if (state == USB3_LPM_U1)
4827                 state_name = "U1";
4828         else if (state == USB3_LPM_U2)
4829                 state_name = "U2";
4830         else {
4831                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4832                                 state);
4833                 return timeout;
4834         }
4835
4836         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4837                 return timeout;
4838
4839         /* Gather some information about the currently installed configuration
4840          * and alternate interface settings.
4841          */
4842         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4843                         state, &timeout))
4844                 return timeout;
4845
4846         config = udev->actconfig;
4847         if (!config)
4848                 return timeout;
4849
4850         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4851                 struct usb_driver *driver;
4852                 struct usb_interface *intf = config->interface[i];
4853
4854                 if (!intf)
4855                         continue;
4856
4857                 /* Check if any currently bound drivers want hub-initiated LPM
4858                  * disabled.
4859                  */
4860                 if (intf->dev.driver) {
4861                         driver = to_usb_driver(intf->dev.driver);
4862                         if (driver && driver->disable_hub_initiated_lpm) {
4863                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4864                                         state_name, driver->name);
4865                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4866                                                                       state);
4867                                 if (timeout == USB3_LPM_DISABLED)
4868                                         return timeout;
4869                         }
4870                 }
4871
4872                 /* Not sure how this could happen... */
4873                 if (!intf->cur_altsetting)
4874                         continue;
4875
4876                 if (xhci_update_timeout_for_interface(xhci, udev,
4877                                         intf->cur_altsetting,
4878                                         state, &timeout))
4879                         return timeout;
4880         }
4881         return timeout;
4882 }
4883
4884 static int calculate_max_exit_latency(struct usb_device *udev,
4885                 enum usb3_link_state state_changed,
4886                 u16 hub_encoded_timeout)
4887 {
4888         unsigned long long u1_mel_us = 0;
4889         unsigned long long u2_mel_us = 0;
4890         unsigned long long mel_us = 0;
4891         bool disabling_u1;
4892         bool disabling_u2;
4893         bool enabling_u1;
4894         bool enabling_u2;
4895
4896         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4897                         hub_encoded_timeout == USB3_LPM_DISABLED);
4898         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4899                         hub_encoded_timeout == USB3_LPM_DISABLED);
4900
4901         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4902                         hub_encoded_timeout != USB3_LPM_DISABLED);
4903         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4904                         hub_encoded_timeout != USB3_LPM_DISABLED);
4905
4906         /* If U1 was already enabled and we're not disabling it,
4907          * or we're going to enable U1, account for the U1 max exit latency.
4908          */
4909         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4910                         enabling_u1)
4911                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4912         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4913                         enabling_u2)
4914                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4915
4916         if (u1_mel_us > u2_mel_us)
4917                 mel_us = u1_mel_us;
4918         else
4919                 mel_us = u2_mel_us;
4920         /* xHCI host controller max exit latency field is only 16 bits wide. */
4921         if (mel_us > MAX_EXIT) {
4922                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4923                                 "is too big.\n", mel_us);
4924                 return -E2BIG;
4925         }
4926         return mel_us;
4927 }
4928
4929 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4930 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4931                         struct usb_device *udev, enum usb3_link_state state)
4932 {
4933         struct xhci_hcd *xhci;
4934         u16 hub_encoded_timeout;
4935         int mel;
4936         int ret;
4937
4938         xhci = hcd_to_xhci(hcd);
4939         /* The LPM timeout values are pretty host-controller specific, so don't
4940          * enable hub-initiated timeouts unless the vendor has provided
4941          * information about their timeout algorithm.
4942          */
4943         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4944                         !xhci->devs[udev->slot_id])
4945                 return USB3_LPM_DISABLED;
4946
4947         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4948         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4949         if (mel < 0) {
4950                 /* Max Exit Latency is too big, disable LPM. */
4951                 hub_encoded_timeout = USB3_LPM_DISABLED;
4952                 mel = 0;
4953         }
4954
4955         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4956         if (ret)
4957                 return ret;
4958         return hub_encoded_timeout;
4959 }
4960
4961 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4962                         struct usb_device *udev, enum usb3_link_state state)
4963 {
4964         struct xhci_hcd *xhci;
4965         u16 mel;
4966
4967         xhci = hcd_to_xhci(hcd);
4968         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4969                         !xhci->devs[udev->slot_id])
4970                 return 0;
4971
4972         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4973         return xhci_change_max_exit_latency(xhci, udev, mel);
4974 }
4975 #else /* CONFIG_PM */
4976
4977 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4978                                 struct usb_device *udev, int enable)
4979 {
4980         return 0;
4981 }
4982
4983 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4984 {
4985         return 0;
4986 }
4987
4988 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4989                         struct usb_device *udev, enum usb3_link_state state)
4990 {
4991         return USB3_LPM_DISABLED;
4992 }
4993
4994 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4995                         struct usb_device *udev, enum usb3_link_state state)
4996 {
4997         return 0;
4998 }
4999 #endif  /* CONFIG_PM */
5000
5001 /*-------------------------------------------------------------------------*/
5002
5003 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5004  * internal data structures for the device.
5005  */
5006 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5007                         struct usb_tt *tt, gfp_t mem_flags)
5008 {
5009         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5010         struct xhci_virt_device *vdev;
5011         struct xhci_command *config_cmd;
5012         struct xhci_input_control_ctx *ctrl_ctx;
5013         struct xhci_slot_ctx *slot_ctx;
5014         unsigned long flags;
5015         unsigned think_time;
5016         int ret;
5017
5018         /* Ignore root hubs */
5019         if (!hdev->parent)
5020                 return 0;
5021
5022         vdev = xhci->devs[hdev->slot_id];
5023         if (!vdev) {
5024                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5025                 return -EINVAL;
5026         }
5027
5028         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5029         if (!config_cmd)
5030                 return -ENOMEM;
5031
5032         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5033         if (!ctrl_ctx) {
5034                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5035                                 __func__);
5036                 xhci_free_command(xhci, config_cmd);
5037                 return -ENOMEM;
5038         }
5039
5040         spin_lock_irqsave(&xhci->lock, flags);
5041         if (hdev->speed == USB_SPEED_HIGH &&
5042                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5043                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5044                 xhci_free_command(xhci, config_cmd);
5045                 spin_unlock_irqrestore(&xhci->lock, flags);
5046                 return -ENOMEM;
5047         }
5048
5049         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5050         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5051         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5052         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5053         /*
5054          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5055          * but it may be already set to 1 when setup an xHCI virtual
5056          * device, so clear it anyway.
5057          */
5058         if (tt->multi)
5059                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5060         else if (hdev->speed == USB_SPEED_FULL)
5061                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5062
5063         if (xhci->hci_version > 0x95) {
5064                 xhci_dbg(xhci, "xHCI version %x needs hub "
5065                                 "TT think time and number of ports\n",
5066                                 (unsigned int) xhci->hci_version);
5067                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5068                 /* Set TT think time - convert from ns to FS bit times.
5069                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5070                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5071                  *
5072                  * xHCI 1.0: this field shall be 0 if the device is not a
5073                  * High-spped hub.
5074                  */
5075                 think_time = tt->think_time;
5076                 if (think_time != 0)
5077                         think_time = (think_time / 666) - 1;
5078                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5079                         slot_ctx->tt_info |=
5080                                 cpu_to_le32(TT_THINK_TIME(think_time));
5081         } else {
5082                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5083                                 "TT think time or number of ports\n",
5084                                 (unsigned int) xhci->hci_version);
5085         }
5086         slot_ctx->dev_state = 0;
5087         spin_unlock_irqrestore(&xhci->lock, flags);
5088
5089         xhci_dbg(xhci, "Set up %s for hub device.\n",
5090                         (xhci->hci_version > 0x95) ?
5091                         "configure endpoint" : "evaluate context");
5092
5093         /* Issue and wait for the configure endpoint or
5094          * evaluate context command.
5095          */
5096         if (xhci->hci_version > 0x95)
5097                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5098                                 false, false);
5099         else
5100                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101                                 true, false);
5102
5103         xhci_free_command(xhci, config_cmd);
5104         return ret;
5105 }
5106
5107 static int xhci_get_frame(struct usb_hcd *hcd)
5108 {
5109         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5110         /* EHCI mods by the periodic size.  Why? */
5111         return readl(&xhci->run_regs->microframe_index) >> 3;
5112 }
5113
5114 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5115 {
5116         struct xhci_hcd         *xhci;
5117         /*
5118          * TODO: Check with DWC3 clients for sysdev according to
5119          * quirks
5120          */
5121         struct device           *dev = hcd->self.sysdev;
5122         unsigned int            minor_rev;
5123         int                     retval;
5124
5125         /* Accept arbitrarily long scatter-gather lists */
5126         hcd->self.sg_tablesize = ~0;
5127
5128         /* support to build packet from discontinuous buffers */
5129         hcd->self.no_sg_constraint = 1;
5130
5131         /* XHCI controllers don't stop the ep queue on short packets :| */
5132         hcd->self.no_stop_on_short = 1;
5133
5134         xhci = hcd_to_xhci(hcd);
5135
5136         if (usb_hcd_is_primary_hcd(hcd)) {
5137                 xhci->main_hcd = hcd;
5138                 xhci->usb2_rhub.hcd = hcd;
5139                 /* Mark the first roothub as being USB 2.0.
5140                  * The xHCI driver will register the USB 3.0 roothub.
5141                  */
5142                 hcd->speed = HCD_USB2;
5143                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5144                 /*
5145                  * USB 2.0 roothub under xHCI has an integrated TT,
5146                  * (rate matching hub) as opposed to having an OHCI/UHCI
5147                  * companion controller.
5148                  */
5149                 hcd->has_tt = 1;
5150         } else {
5151                 /*
5152                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5153                  * should return 0x31 for sbrn, or that the minor revision
5154                  * is a two digit BCD containig minor and sub-minor numbers.
5155                  * This was later clarified in xHCI 1.2.
5156                  *
5157                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5158                  * minor revision set to 0x1 instead of 0x10.
5159                  */
5160                 if (xhci->usb3_rhub.min_rev == 0x1)
5161                         minor_rev = 1;
5162                 else
5163                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5164
5165                 switch (minor_rev) {
5166                 case 2:
5167                         hcd->speed = HCD_USB32;
5168                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5169                         hcd->self.root_hub->rx_lanes = 2;
5170                         hcd->self.root_hub->tx_lanes = 2;
5171                         break;
5172                 case 1:
5173                         hcd->speed = HCD_USB31;
5174                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5175                         break;
5176                 }
5177                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5178                           minor_rev,
5179                           minor_rev ? "Enhanced " : "");
5180
5181                 xhci->usb3_rhub.hcd = hcd;
5182                 /* xHCI private pointer was set in xhci_pci_probe for the second
5183                  * registered roothub.
5184                  */
5185                 return 0;
5186         }
5187
5188         mutex_init(&xhci->mutex);
5189         xhci->cap_regs = hcd->regs;
5190         xhci->op_regs = hcd->regs +
5191                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5192         xhci->run_regs = hcd->regs +
5193                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5194         /* Cache read-only capability registers */
5195         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5196         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5197         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5198         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5199         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5200         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5201         if (xhci->hci_version > 0x100)
5202                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5203
5204         xhci->quirks |= quirks;
5205
5206         get_quirks(dev, xhci);
5207
5208         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5209          * success event after a short transfer. This quirk will ignore such
5210          * spurious event.
5211          */
5212         if (xhci->hci_version > 0x96)
5213                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5214
5215         /* Make sure the HC is halted. */
5216         retval = xhci_halt(xhci);
5217         if (retval)
5218                 return retval;
5219
5220         xhci_zero_64b_regs(xhci);
5221
5222         xhci_dbg(xhci, "Resetting HCD\n");
5223         /* Reset the internal HC memory state and registers. */
5224         retval = xhci_reset(xhci);
5225         if (retval)
5226                 return retval;
5227         xhci_dbg(xhci, "Reset complete\n");
5228
5229         /*
5230          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5231          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5232          * address memory pointers actually. So, this driver clears the AC64
5233          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5234          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5235          */
5236         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5237                 xhci->hcc_params &= ~BIT(0);
5238
5239         /* Set dma_mask and coherent_dma_mask to 64-bits,
5240          * if xHC supports 64-bit addressing */
5241         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5242                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5243                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5244                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5245         } else {
5246                 /*
5247                  * This is to avoid error in cases where a 32-bit USB
5248                  * controller is used on a 64-bit capable system.
5249                  */
5250                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5251                 if (retval)
5252                         return retval;
5253                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5254                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5255         }
5256
5257         xhci_dbg(xhci, "Calling HCD init\n");
5258         /* Initialize HCD and host controller data structures. */
5259         retval = xhci_init(hcd);
5260         if (retval)
5261                 return retval;
5262         xhci_dbg(xhci, "Called HCD init\n");
5263
5264         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5265                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5266
5267         return 0;
5268 }
5269 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5270
5271 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5272                 struct usb_host_endpoint *ep)
5273 {
5274         struct xhci_hcd *xhci;
5275         struct usb_device *udev;
5276         unsigned int slot_id;
5277         unsigned int ep_index;
5278         unsigned long flags;
5279
5280         xhci = hcd_to_xhci(hcd);
5281
5282         spin_lock_irqsave(&xhci->lock, flags);
5283         udev = (struct usb_device *)ep->hcpriv;
5284         slot_id = udev->slot_id;
5285         ep_index = xhci_get_endpoint_index(&ep->desc);
5286
5287         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5288         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5289         spin_unlock_irqrestore(&xhci->lock, flags);
5290 }
5291
5292 static const struct hc_driver xhci_hc_driver = {
5293         .description =          "xhci-hcd",
5294         .product_desc =         "xHCI Host Controller",
5295         .hcd_priv_size =        sizeof(struct xhci_hcd),
5296
5297         /*
5298          * generic hardware linkage
5299          */
5300         .irq =                  xhci_irq,
5301         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5302                                 HCD_BH,
5303
5304         /*
5305          * basic lifecycle operations
5306          */
5307         .reset =                NULL, /* set in xhci_init_driver() */
5308         .start =                xhci_run,
5309         .stop =                 xhci_stop,
5310         .shutdown =             xhci_shutdown,
5311
5312         /*
5313          * managing i/o requests and associated device resources
5314          */
5315         .map_urb_for_dma =      xhci_map_urb_for_dma,
5316         .urb_enqueue =          xhci_urb_enqueue,
5317         .urb_dequeue =          xhci_urb_dequeue,
5318         .alloc_dev =            xhci_alloc_dev,
5319         .free_dev =             xhci_free_dev,
5320         .alloc_streams =        xhci_alloc_streams,
5321         .free_streams =         xhci_free_streams,
5322         .add_endpoint =         xhci_add_endpoint,
5323         .drop_endpoint =        xhci_drop_endpoint,
5324         .endpoint_disable =     xhci_endpoint_disable,
5325         .endpoint_reset =       xhci_endpoint_reset,
5326         .check_bandwidth =      xhci_check_bandwidth,
5327         .reset_bandwidth =      xhci_reset_bandwidth,
5328         .address_device =       xhci_address_device,
5329         .enable_device =        xhci_enable_device,
5330         .update_hub_device =    xhci_update_hub_device,
5331         .reset_device =         xhci_discover_or_reset_device,
5332
5333         /*
5334          * scheduling support
5335          */
5336         .get_frame_number =     xhci_get_frame,
5337
5338         /*
5339          * root hub support
5340          */
5341         .hub_control =          xhci_hub_control,
5342         .hub_status_data =      xhci_hub_status_data,
5343         .bus_suspend =          xhci_bus_suspend,
5344         .bus_resume =           xhci_bus_resume,
5345         .get_resuming_ports =   xhci_get_resuming_ports,
5346
5347         /*
5348          * call back when device connected and addressed
5349          */
5350         .update_device =        xhci_update_device,
5351         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5352         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5353         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5354         .find_raw_port_number = xhci_find_raw_port_number,
5355         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5356 };
5357
5358 void xhci_init_driver(struct hc_driver *drv,
5359                       const struct xhci_driver_overrides *over)
5360 {
5361         BUG_ON(!over);
5362
5363         /* Copy the generic table to drv then apply the overrides */
5364         *drv = xhci_hc_driver;
5365
5366         if (over) {
5367                 drv->hcd_priv_size += over->extra_priv_size;
5368                 if (over->reset)
5369                         drv->reset = over->reset;
5370                 if (over->start)
5371                         drv->start = over->start;
5372         }
5373 }
5374 EXPORT_SYMBOL_GPL(xhci_init_driver);
5375
5376 MODULE_DESCRIPTION(DRIVER_DESC);
5377 MODULE_AUTHOR(DRIVER_AUTHOR);
5378 MODULE_LICENSE("GPL");
5379
5380 static int __init xhci_hcd_init(void)
5381 {
5382         /*
5383          * Check the compiler generated sizes of structures that must be laid
5384          * out in specific ways for hardware access.
5385          */
5386         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5387         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5388         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5389         /* xhci_device_control has eight fields, and also
5390          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5391          */
5392         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5393         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5394         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5395         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5396         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5397         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5398         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5399
5400         if (usb_disabled())
5401                 return -ENODEV;
5402
5403         xhci_debugfs_create_root();
5404
5405         return 0;
5406 }
5407
5408 /*
5409  * If an init function is provided, an exit function must also be provided
5410  * to allow module unload.
5411  */
5412 static void __exit xhci_hcd_fini(void)
5413 {
5414         xhci_debugfs_remove_root();
5415 }
5416
5417 module_init(xhci_hcd_init);
5418 module_exit(xhci_hcd_fini);