]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/disk-io.c
xfs: "optimize" buffer item log segment bitmap setting
[linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
46                                  BTRFS_HEADER_FLAG_RELOC |\
47                                  BTRFS_SUPER_FLAG_ERROR |\
48                                  BTRFS_SUPER_FLAG_SEEDING |\
49                                  BTRFS_SUPER_FLAG_METADUMP |\
50                                  BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106         void *private_data;
107         struct bio *bio;
108         extent_submit_bio_start_t *submit_bio_start;
109         int mirror_num;
110         /*
111          * bio_offset is optional, can be used if the pages in the bio
112          * can't tell us where in the file the bio should go
113          */
114         u64 bio_offset;
115         struct btrfs_work work;
116         blk_status_t status;
117 };
118
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148         u64                     id;             /* root objectid */
149         const char              *name_stem;     /* lock name stem */
150         char                    names[BTRFS_MAX_LEVEL + 1][20];
151         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
154         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
155         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
156         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
157         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
158         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
159         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
160         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
161         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
162         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
163         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
164         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165         { .id = 0,                              .name_stem = "tree"     },
166 };
167
168 void __init btrfs_init_lockdep(void)
169 {
170         int i, j;
171
172         /* initialize lockdep class names */
173         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177                         snprintf(ks->names[j], sizeof(ks->names[j]),
178                                  "btrfs-%s-%02d", ks->name_stem, j);
179         }
180 }
181
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183                                     int level)
184 {
185         struct btrfs_lockdep_keyset *ks;
186
187         BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189         /* find the matching keyset, id 0 is the default entry */
190         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191                 if (ks->id == objectid)
192                         break;
193
194         lockdep_set_class_and_name(&eb->lock,
195                                    &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205                 struct page *page, size_t pg_offset, u64 start, u64 len,
206                 int create)
207 {
208         struct btrfs_fs_info *fs_info = inode->root->fs_info;
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 em->bdev = fs_info->fs_devices->latest_bdev;
217                 read_unlock(&em_tree->lock);
218                 goto out;
219         }
220         read_unlock(&em_tree->lock);
221
222         em = alloc_extent_map();
223         if (!em) {
224                 em = ERR_PTR(-ENOMEM);
225                 goto out;
226         }
227         em->start = 0;
228         em->len = (u64)-1;
229         em->block_len = (u64)-1;
230         em->block_start = 0;
231         em->bdev = fs_info->fs_devices->latest_bdev;
232
233         write_lock(&em_tree->lock);
234         ret = add_extent_mapping(em_tree, em, 0);
235         if (ret == -EEXIST) {
236                 free_extent_map(em);
237                 em = lookup_extent_mapping(em_tree, start, len);
238                 if (!em)
239                         em = ERR_PTR(-EIO);
240         } else if (ret) {
241                 free_extent_map(em);
242                 em = ERR_PTR(ret);
243         }
244         write_unlock(&em_tree->lock);
245
246 out:
247         return em;
248 }
249
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257         struct btrfs_fs_info *fs_info = buf->fs_info;
258         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266
267         shash->tfm = fs_info->csum_shash;
268         crypto_shash_init(shash);
269
270         len = buf->len - offset;
271
272         while (len > 0) {
273                 /*
274                  * Note: we don't need to check for the err == 1 case here, as
275                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276                  * and 'min_len = 32' and the currently implemented mapping
277                  * algorithm we cannot cross a page boundary.
278                  */
279                 err = map_private_extent_buffer(buf, offset, 32,
280                                         &kaddr, &map_start, &map_len);
281                 if (WARN_ON(err))
282                         return err;
283                 cur_len = min(len, map_len - (offset - map_start));
284                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285                 len -= cur_len;
286                 offset += cur_len;
287         }
288         memset(result, 0, BTRFS_CSUM_SIZE);
289
290         crypto_shash_final(shash, result);
291
292         return 0;
293 }
294
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302                                  struct extent_buffer *eb, u64 parent_transid,
303                                  int atomic)
304 {
305         struct extent_state *cached_state = NULL;
306         int ret;
307         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310                 return 0;
311
312         if (atomic)
313                 return -EAGAIN;
314
315         if (need_lock) {
316                 btrfs_tree_read_lock(eb);
317                 btrfs_set_lock_blocking_read(eb);
318         }
319
320         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321                          &cached_state);
322         if (extent_buffer_uptodate(eb) &&
323             btrfs_header_generation(eb) == parent_transid) {
324                 ret = 0;
325                 goto out;
326         }
327         btrfs_err_rl(eb->fs_info,
328                 "parent transid verify failed on %llu wanted %llu found %llu",
329                         eb->start,
330                         parent_transid, btrfs_header_generation(eb));
331         ret = 1;
332
333         /*
334          * Things reading via commit roots that don't have normal protection,
335          * like send, can have a really old block in cache that may point at a
336          * block that has been freed and re-allocated.  So don't clear uptodate
337          * if we find an eb that is under IO (dirty/writeback) because we could
338          * end up reading in the stale data and then writing it back out and
339          * making everybody very sad.
340          */
341         if (!extent_buffer_under_io(eb))
342                 clear_extent_buffer_uptodate(eb);
343 out:
344         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345                              &cached_state);
346         if (need_lock)
347                 btrfs_tree_read_unlock_blocking(eb);
348         return ret;
349 }
350
351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353         switch (csum_type) {
354         case BTRFS_CSUM_TYPE_CRC32:
355                 return true;
356         default:
357                 return false;
358         }
359 }
360
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366                                   char *raw_disk_sb)
367 {
368         struct btrfs_super_block *disk_sb =
369                 (struct btrfs_super_block *)raw_disk_sb;
370         char result[BTRFS_CSUM_SIZE];
371         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373         shash->tfm = fs_info->csum_shash;
374         crypto_shash_init(shash);
375
376         /*
377          * The super_block structure does not span the whole
378          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379          * filled with zeros and is included in the checksum.
380          */
381         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383         crypto_shash_final(shash, result);
384
385         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386                 return 1;
387
388         return 0;
389 }
390
391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392                            struct btrfs_key *first_key, u64 parent_transid)
393 {
394         struct btrfs_fs_info *fs_info = eb->fs_info;
395         int found_level;
396         struct btrfs_key found_key;
397         int ret;
398
399         found_level = btrfs_header_level(eb);
400         if (found_level != level) {
401                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402                      KERN_ERR "BTRFS: tree level check failed\n");
403                 btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405                           eb->start, level, found_level);
406                 return -EIO;
407         }
408
409         if (!first_key)
410                 return 0;
411
412         /*
413          * For live tree block (new tree blocks in current transaction),
414          * we need proper lock context to avoid race, which is impossible here.
415          * So we only checks tree blocks which is read from disk, whose
416          * generation <= fs_info->last_trans_committed.
417          */
418         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419                 return 0;
420
421         /* We have @first_key, so this @eb must have at least one item */
422         if (btrfs_header_nritems(eb) == 0) {
423                 btrfs_err(fs_info,
424                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425                           eb->start);
426                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427                 return -EUCLEAN;
428         }
429
430         if (found_level)
431                 btrfs_node_key_to_cpu(eb, &found_key, 0);
432         else
433                 btrfs_item_key_to_cpu(eb, &found_key, 0);
434         ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
436         if (ret) {
437                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438                      KERN_ERR "BTRFS: tree first key check failed\n");
439                 btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441                           eb->start, parent_transid, first_key->objectid,
442                           first_key->type, first_key->offset,
443                           found_key.objectid, found_key.type,
444                           found_key.offset);
445         }
446         return ret;
447 }
448
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:     expected transid, skip check if 0
454  * @level:              expected level, mandatory check
455  * @first_key:          expected key of first slot, skip check if NULL
456  */
457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458                                           u64 parent_transid, int level,
459                                           struct btrfs_key *first_key)
460 {
461         struct btrfs_fs_info *fs_info = eb->fs_info;
462         struct extent_io_tree *io_tree;
463         int failed = 0;
464         int ret;
465         int num_copies = 0;
466         int mirror_num = 0;
467         int failed_mirror = 0;
468
469         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470         while (1) {
471                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473                 if (!ret) {
474                         if (verify_parent_transid(io_tree, eb,
475                                                    parent_transid, 0))
476                                 ret = -EIO;
477                         else if (btrfs_verify_level_key(eb, level,
478                                                 first_key, parent_transid))
479                                 ret = -EUCLEAN;
480                         else
481                                 break;
482                 }
483
484                 num_copies = btrfs_num_copies(fs_info,
485                                               eb->start, eb->len);
486                 if (num_copies == 1)
487                         break;
488
489                 if (!failed_mirror) {
490                         failed = 1;
491                         failed_mirror = eb->read_mirror;
492                 }
493
494                 mirror_num++;
495                 if (mirror_num == failed_mirror)
496                         mirror_num++;
497
498                 if (mirror_num > num_copies)
499                         break;
500         }
501
502         if (failed && !ret && failed_mirror)
503                 btrfs_repair_eb_io_failure(eb, failed_mirror);
504
505         return ret;
506 }
507
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512
513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515         u64 start = page_offset(page);
516         u64 found_start;
517         u8 result[BTRFS_CSUM_SIZE];
518         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519         struct extent_buffer *eb;
520         int ret;
521
522         eb = (struct extent_buffer *)page->private;
523         if (page != eb->pages[0])
524                 return 0;
525
526         found_start = btrfs_header_bytenr(eb);
527         /*
528          * Please do not consolidate these warnings into a single if.
529          * It is useful to know what went wrong.
530          */
531         if (WARN_ON(found_start != start))
532                 return -EUCLEAN;
533         if (WARN_ON(!PageUptodate(page)))
534                 return -EUCLEAN;
535
536         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
539         if (csum_tree_block(eb, result))
540                 return -EINVAL;
541
542         if (btrfs_header_level(eb))
543                 ret = btrfs_check_node(eb);
544         else
545                 ret = btrfs_check_leaf_full(eb);
546
547         if (ret < 0) {
548                 btrfs_err(fs_info,
549                 "block=%llu write time tree block corruption detected",
550                           eb->start);
551                 return ret;
552         }
553         write_extent_buffer(eb, result, 0, csum_size);
554
555         return 0;
556 }
557
558 static int check_tree_block_fsid(struct extent_buffer *eb)
559 {
560         struct btrfs_fs_info *fs_info = eb->fs_info;
561         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562         u8 fsid[BTRFS_FSID_SIZE];
563         int ret = 1;
564
565         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566         while (fs_devices) {
567                 u8 *metadata_uuid;
568
569                 /*
570                  * Checking the incompat flag is only valid for the current
571                  * fs. For seed devices it's forbidden to have their uuid
572                  * changed so reading ->fsid in this case is fine
573                  */
574                 if (fs_devices == fs_info->fs_devices &&
575                     btrfs_fs_incompat(fs_info, METADATA_UUID))
576                         metadata_uuid = fs_devices->metadata_uuid;
577                 else
578                         metadata_uuid = fs_devices->fsid;
579
580                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581                         ret = 0;
582                         break;
583                 }
584                 fs_devices = fs_devices->seed;
585         }
586         return ret;
587 }
588
589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590                                       u64 phy_offset, struct page *page,
591                                       u64 start, u64 end, int mirror)
592 {
593         u64 found_start;
594         int found_level;
595         struct extent_buffer *eb;
596         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597         struct btrfs_fs_info *fs_info = root->fs_info;
598         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
599         int ret = 0;
600         u8 result[BTRFS_CSUM_SIZE];
601         int reads_done;
602
603         if (!page->private)
604                 goto out;
605
606         eb = (struct extent_buffer *)page->private;
607
608         /* the pending IO might have been the only thing that kept this buffer
609          * in memory.  Make sure we have a ref for all this other checks
610          */
611         extent_buffer_get(eb);
612
613         reads_done = atomic_dec_and_test(&eb->io_pages);
614         if (!reads_done)
615                 goto err;
616
617         eb->read_mirror = mirror;
618         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619                 ret = -EIO;
620                 goto err;
621         }
622
623         found_start = btrfs_header_bytenr(eb);
624         if (found_start != eb->start) {
625                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626                              eb->start, found_start);
627                 ret = -EIO;
628                 goto err;
629         }
630         if (check_tree_block_fsid(eb)) {
631                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
632                              eb->start);
633                 ret = -EIO;
634                 goto err;
635         }
636         found_level = btrfs_header_level(eb);
637         if (found_level >= BTRFS_MAX_LEVEL) {
638                 btrfs_err(fs_info, "bad tree block level %d on %llu",
639                           (int)btrfs_header_level(eb), eb->start);
640                 ret = -EIO;
641                 goto err;
642         }
643
644         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645                                        eb, found_level);
646
647         ret = csum_tree_block(eb, result);
648         if (ret)
649                 goto err;
650
651         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652                 u32 val;
653                 u32 found = 0;
654
655                 memcpy(&found, result, csum_size);
656
657                 read_extent_buffer(eb, &val, 0, csum_size);
658                 btrfs_warn_rl(fs_info,
659                 "%s checksum verify failed on %llu wanted %x found %x level %d",
660                               fs_info->sb->s_id, eb->start,
661                               val, found, btrfs_header_level(eb));
662                 ret = -EUCLEAN;
663                 goto err;
664         }
665
666         /*
667          * If this is a leaf block and it is corrupt, set the corrupt bit so
668          * that we don't try and read the other copies of this block, just
669          * return -EIO.
670          */
671         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
672                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673                 ret = -EIO;
674         }
675
676         if (found_level > 0 && btrfs_check_node(eb))
677                 ret = -EIO;
678
679         if (!ret)
680                 set_extent_buffer_uptodate(eb);
681         else
682                 btrfs_err(fs_info,
683                           "block=%llu read time tree block corruption detected",
684                           eb->start);
685 err:
686         if (reads_done &&
687             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688                 btree_readahead_hook(eb, ret);
689
690         if (ret) {
691                 /*
692                  * our io error hook is going to dec the io pages
693                  * again, we have to make sure it has something
694                  * to decrement
695                  */
696                 atomic_inc(&eb->io_pages);
697                 clear_extent_buffer_uptodate(eb);
698         }
699         free_extent_buffer(eb);
700 out:
701         return ret;
702 }
703
704 static void end_workqueue_bio(struct bio *bio)
705 {
706         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
707         struct btrfs_fs_info *fs_info;
708         struct btrfs_workqueue *wq;
709         btrfs_work_func_t func;
710
711         fs_info = end_io_wq->info;
712         end_io_wq->status = bio->bi_status;
713
714         if (bio_op(bio) == REQ_OP_WRITE) {
715                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
716                         wq = fs_info->endio_meta_write_workers;
717                         func = btrfs_endio_meta_write_helper;
718                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
719                         wq = fs_info->endio_freespace_worker;
720                         func = btrfs_freespace_write_helper;
721                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
722                         wq = fs_info->endio_raid56_workers;
723                         func = btrfs_endio_raid56_helper;
724                 } else {
725                         wq = fs_info->endio_write_workers;
726                         func = btrfs_endio_write_helper;
727                 }
728         } else {
729                 if (unlikely(end_io_wq->metadata ==
730                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
731                         wq = fs_info->endio_repair_workers;
732                         func = btrfs_endio_repair_helper;
733                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
734                         wq = fs_info->endio_raid56_workers;
735                         func = btrfs_endio_raid56_helper;
736                 } else if (end_io_wq->metadata) {
737                         wq = fs_info->endio_meta_workers;
738                         func = btrfs_endio_meta_helper;
739                 } else {
740                         wq = fs_info->endio_workers;
741                         func = btrfs_endio_helper;
742                 }
743         }
744
745         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
746         btrfs_queue_work(wq, &end_io_wq->work);
747 }
748
749 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
750                         enum btrfs_wq_endio_type metadata)
751 {
752         struct btrfs_end_io_wq *end_io_wq;
753
754         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
755         if (!end_io_wq)
756                 return BLK_STS_RESOURCE;
757
758         end_io_wq->private = bio->bi_private;
759         end_io_wq->end_io = bio->bi_end_io;
760         end_io_wq->info = info;
761         end_io_wq->status = 0;
762         end_io_wq->bio = bio;
763         end_io_wq->metadata = metadata;
764
765         bio->bi_private = end_io_wq;
766         bio->bi_end_io = end_workqueue_bio;
767         return 0;
768 }
769
770 static void run_one_async_start(struct btrfs_work *work)
771 {
772         struct async_submit_bio *async;
773         blk_status_t ret;
774
775         async = container_of(work, struct  async_submit_bio, work);
776         ret = async->submit_bio_start(async->private_data, async->bio,
777                                       async->bio_offset);
778         if (ret)
779                 async->status = ret;
780 }
781
782 /*
783  * In order to insert checksums into the metadata in large chunks, we wait
784  * until bio submission time.   All the pages in the bio are checksummed and
785  * sums are attached onto the ordered extent record.
786  *
787  * At IO completion time the csums attached on the ordered extent record are
788  * inserted into the tree.
789  */
790 static void run_one_async_done(struct btrfs_work *work)
791 {
792         struct async_submit_bio *async;
793         struct inode *inode;
794         blk_status_t ret;
795
796         async = container_of(work, struct  async_submit_bio, work);
797         inode = async->private_data;
798
799         /* If an error occurred we just want to clean up the bio and move on */
800         if (async->status) {
801                 async->bio->bi_status = async->status;
802                 bio_endio(async->bio);
803                 return;
804         }
805
806         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
807                         async->mirror_num, 1);
808         if (ret) {
809                 async->bio->bi_status = ret;
810                 bio_endio(async->bio);
811         }
812 }
813
814 static void run_one_async_free(struct btrfs_work *work)
815 {
816         struct async_submit_bio *async;
817
818         async = container_of(work, struct  async_submit_bio, work);
819         kfree(async);
820 }
821
822 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
823                                  int mirror_num, unsigned long bio_flags,
824                                  u64 bio_offset, void *private_data,
825                                  extent_submit_bio_start_t *submit_bio_start)
826 {
827         struct async_submit_bio *async;
828
829         async = kmalloc(sizeof(*async), GFP_NOFS);
830         if (!async)
831                 return BLK_STS_RESOURCE;
832
833         async->private_data = private_data;
834         async->bio = bio;
835         async->mirror_num = mirror_num;
836         async->submit_bio_start = submit_bio_start;
837
838         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
839                         run_one_async_done, run_one_async_free);
840
841         async->bio_offset = bio_offset;
842
843         async->status = 0;
844
845         if (op_is_sync(bio->bi_opf))
846                 btrfs_set_work_high_priority(&async->work);
847
848         btrfs_queue_work(fs_info->workers, &async->work);
849         return 0;
850 }
851
852 static blk_status_t btree_csum_one_bio(struct bio *bio)
853 {
854         struct bio_vec *bvec;
855         struct btrfs_root *root;
856         int ret = 0;
857         struct bvec_iter_all iter_all;
858
859         ASSERT(!bio_flagged(bio, BIO_CLONED));
860         bio_for_each_segment_all(bvec, bio, iter_all) {
861                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
862                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
863                 if (ret)
864                         break;
865         }
866
867         return errno_to_blk_status(ret);
868 }
869
870 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
871                                              u64 bio_offset)
872 {
873         /*
874          * when we're called for a write, we're already in the async
875          * submission context.  Just jump into btrfs_map_bio
876          */
877         return btree_csum_one_bio(bio);
878 }
879
880 static int check_async_write(struct btrfs_fs_info *fs_info,
881                              struct btrfs_inode *bi)
882 {
883         if (atomic_read(&bi->sync_writers))
884                 return 0;
885         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
886                 return 0;
887         return 1;
888 }
889
890 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
891                                           int mirror_num,
892                                           unsigned long bio_flags)
893 {
894         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
895         int async = check_async_write(fs_info, BTRFS_I(inode));
896         blk_status_t ret;
897
898         if (bio_op(bio) != REQ_OP_WRITE) {
899                 /*
900                  * called for a read, do the setup so that checksum validation
901                  * can happen in the async kernel threads
902                  */
903                 ret = btrfs_bio_wq_end_io(fs_info, bio,
904                                           BTRFS_WQ_ENDIO_METADATA);
905                 if (ret)
906                         goto out_w_error;
907                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
908         } else if (!async) {
909                 ret = btree_csum_one_bio(bio);
910                 if (ret)
911                         goto out_w_error;
912                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
913         } else {
914                 /*
915                  * kthread helpers are used to submit writes so that
916                  * checksumming can happen in parallel across all CPUs
917                  */
918                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
919                                           0, inode, btree_submit_bio_start);
920         }
921
922         if (ret)
923                 goto out_w_error;
924         return 0;
925
926 out_w_error:
927         bio->bi_status = ret;
928         bio_endio(bio);
929         return ret;
930 }
931
932 #ifdef CONFIG_MIGRATION
933 static int btree_migratepage(struct address_space *mapping,
934                         struct page *newpage, struct page *page,
935                         enum migrate_mode mode)
936 {
937         /*
938          * we can't safely write a btree page from here,
939          * we haven't done the locking hook
940          */
941         if (PageDirty(page))
942                 return -EAGAIN;
943         /*
944          * Buffers may be managed in a filesystem specific way.
945          * We must have no buffers or drop them.
946          */
947         if (page_has_private(page) &&
948             !try_to_release_page(page, GFP_KERNEL))
949                 return -EAGAIN;
950         return migrate_page(mapping, newpage, page, mode);
951 }
952 #endif
953
954
955 static int btree_writepages(struct address_space *mapping,
956                             struct writeback_control *wbc)
957 {
958         struct btrfs_fs_info *fs_info;
959         int ret;
960
961         if (wbc->sync_mode == WB_SYNC_NONE) {
962
963                 if (wbc->for_kupdate)
964                         return 0;
965
966                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
967                 /* this is a bit racy, but that's ok */
968                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
969                                              BTRFS_DIRTY_METADATA_THRESH,
970                                              fs_info->dirty_metadata_batch);
971                 if (ret < 0)
972                         return 0;
973         }
974         return btree_write_cache_pages(mapping, wbc);
975 }
976
977 static int btree_readpage(struct file *file, struct page *page)
978 {
979         struct extent_io_tree *tree;
980         tree = &BTRFS_I(page->mapping->host)->io_tree;
981         return extent_read_full_page(tree, page, btree_get_extent, 0);
982 }
983
984 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
985 {
986         if (PageWriteback(page) || PageDirty(page))
987                 return 0;
988
989         return try_release_extent_buffer(page);
990 }
991
992 static void btree_invalidatepage(struct page *page, unsigned int offset,
993                                  unsigned int length)
994 {
995         struct extent_io_tree *tree;
996         tree = &BTRFS_I(page->mapping->host)->io_tree;
997         extent_invalidatepage(tree, page, offset);
998         btree_releasepage(page, GFP_NOFS);
999         if (PagePrivate(page)) {
1000                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001                            "page private not zero on page %llu",
1002                            (unsigned long long)page_offset(page));
1003                 ClearPagePrivate(page);
1004                 set_page_private(page, 0);
1005                 put_page(page);
1006         }
1007 }
1008
1009 static int btree_set_page_dirty(struct page *page)
1010 {
1011 #ifdef DEBUG
1012         struct extent_buffer *eb;
1013
1014         BUG_ON(!PagePrivate(page));
1015         eb = (struct extent_buffer *)page->private;
1016         BUG_ON(!eb);
1017         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018         BUG_ON(!atomic_read(&eb->refs));
1019         btrfs_assert_tree_locked(eb);
1020 #endif
1021         return __set_page_dirty_nobuffers(page);
1022 }
1023
1024 static const struct address_space_operations btree_aops = {
1025         .readpage       = btree_readpage,
1026         .writepages     = btree_writepages,
1027         .releasepage    = btree_releasepage,
1028         .invalidatepage = btree_invalidatepage,
1029 #ifdef CONFIG_MIGRATION
1030         .migratepage    = btree_migratepage,
1031 #endif
1032         .set_page_dirty = btree_set_page_dirty,
1033 };
1034
1035 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1036 {
1037         struct extent_buffer *buf = NULL;
1038         int ret;
1039
1040         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1041         if (IS_ERR(buf))
1042                 return;
1043
1044         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1045         if (ret < 0)
1046                 free_extent_buffer_stale(buf);
1047         else
1048                 free_extent_buffer(buf);
1049 }
1050
1051 struct extent_buffer *btrfs_find_create_tree_block(
1052                                                 struct btrfs_fs_info *fs_info,
1053                                                 u64 bytenr)
1054 {
1055         if (btrfs_is_testing(fs_info))
1056                 return alloc_test_extent_buffer(fs_info, bytenr);
1057         return alloc_extent_buffer(fs_info, bytenr);
1058 }
1059
1060 /*
1061  * Read tree block at logical address @bytenr and do variant basic but critical
1062  * verification.
1063  *
1064  * @parent_transid:     expected transid of this tree block, skip check if 0
1065  * @level:              expected level, mandatory check
1066  * @first_key:          expected key in slot 0, skip check if NULL
1067  */
1068 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1069                                       u64 parent_transid, int level,
1070                                       struct btrfs_key *first_key)
1071 {
1072         struct extent_buffer *buf = NULL;
1073         int ret;
1074
1075         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1076         if (IS_ERR(buf))
1077                 return buf;
1078
1079         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1080                                              level, first_key);
1081         if (ret) {
1082                 free_extent_buffer_stale(buf);
1083                 return ERR_PTR(ret);
1084         }
1085         return buf;
1086
1087 }
1088
1089 void btrfs_clean_tree_block(struct extent_buffer *buf)
1090 {
1091         struct btrfs_fs_info *fs_info = buf->fs_info;
1092         if (btrfs_header_generation(buf) ==
1093             fs_info->running_transaction->transid) {
1094                 btrfs_assert_tree_locked(buf);
1095
1096                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1097                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098                                                  -buf->len,
1099                                                  fs_info->dirty_metadata_batch);
1100                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1101                         btrfs_set_lock_blocking_write(buf);
1102                         clear_extent_buffer_dirty(buf);
1103                 }
1104         }
1105 }
1106
1107 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108 {
1109         struct btrfs_subvolume_writers *writers;
1110         int ret;
1111
1112         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113         if (!writers)
1114                 return ERR_PTR(-ENOMEM);
1115
1116         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1117         if (ret < 0) {
1118                 kfree(writers);
1119                 return ERR_PTR(ret);
1120         }
1121
1122         init_waitqueue_head(&writers->wait);
1123         return writers;
1124 }
1125
1126 static void
1127 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128 {
1129         percpu_counter_destroy(&writers->counter);
1130         kfree(writers);
1131 }
1132
1133 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1134                          u64 objectid)
1135 {
1136         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1137         root->node = NULL;
1138         root->commit_root = NULL;
1139         root->state = 0;
1140         root->orphan_cleanup_state = 0;
1141
1142         root->last_trans = 0;
1143         root->highest_objectid = 0;
1144         root->nr_delalloc_inodes = 0;
1145         root->nr_ordered_extents = 0;
1146         root->inode_tree = RB_ROOT;
1147         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1148         root->block_rsv = NULL;
1149
1150         INIT_LIST_HEAD(&root->dirty_list);
1151         INIT_LIST_HEAD(&root->root_list);
1152         INIT_LIST_HEAD(&root->delalloc_inodes);
1153         INIT_LIST_HEAD(&root->delalloc_root);
1154         INIT_LIST_HEAD(&root->ordered_extents);
1155         INIT_LIST_HEAD(&root->ordered_root);
1156         INIT_LIST_HEAD(&root->reloc_dirty_list);
1157         INIT_LIST_HEAD(&root->logged_list[0]);
1158         INIT_LIST_HEAD(&root->logged_list[1]);
1159         spin_lock_init(&root->inode_lock);
1160         spin_lock_init(&root->delalloc_lock);
1161         spin_lock_init(&root->ordered_extent_lock);
1162         spin_lock_init(&root->accounting_lock);
1163         spin_lock_init(&root->log_extents_lock[0]);
1164         spin_lock_init(&root->log_extents_lock[1]);
1165         spin_lock_init(&root->qgroup_meta_rsv_lock);
1166         mutex_init(&root->objectid_mutex);
1167         mutex_init(&root->log_mutex);
1168         mutex_init(&root->ordered_extent_mutex);
1169         mutex_init(&root->delalloc_mutex);
1170         init_waitqueue_head(&root->log_writer_wait);
1171         init_waitqueue_head(&root->log_commit_wait[0]);
1172         init_waitqueue_head(&root->log_commit_wait[1]);
1173         INIT_LIST_HEAD(&root->log_ctxs[0]);
1174         INIT_LIST_HEAD(&root->log_ctxs[1]);
1175         atomic_set(&root->log_commit[0], 0);
1176         atomic_set(&root->log_commit[1], 0);
1177         atomic_set(&root->log_writers, 0);
1178         atomic_set(&root->log_batch, 0);
1179         refcount_set(&root->refs, 1);
1180         atomic_set(&root->will_be_snapshotted, 0);
1181         atomic_set(&root->snapshot_force_cow, 0);
1182         atomic_set(&root->nr_swapfiles, 0);
1183         root->log_transid = 0;
1184         root->log_transid_committed = -1;
1185         root->last_log_commit = 0;
1186         if (!dummy)
1187                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1188                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1189
1190         memset(&root->root_key, 0, sizeof(root->root_key));
1191         memset(&root->root_item, 0, sizeof(root->root_item));
1192         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1193         if (!dummy)
1194                 root->defrag_trans_start = fs_info->generation;
1195         else
1196                 root->defrag_trans_start = 0;
1197         root->root_key.objectid = objectid;
1198         root->anon_dev = 0;
1199
1200         spin_lock_init(&root->root_item_lock);
1201         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1202 }
1203
1204 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1205                 gfp_t flags)
1206 {
1207         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1208         if (root)
1209                 root->fs_info = fs_info;
1210         return root;
1211 }
1212
1213 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214 /* Should only be used by the testing infrastructure */
1215 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1216 {
1217         struct btrfs_root *root;
1218
1219         if (!fs_info)
1220                 return ERR_PTR(-EINVAL);
1221
1222         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1223         if (!root)
1224                 return ERR_PTR(-ENOMEM);
1225
1226         /* We don't use the stripesize in selftest, set it as sectorsize */
1227         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1228         root->alloc_bytenr = 0;
1229
1230         return root;
1231 }
1232 #endif
1233
1234 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1235                                      u64 objectid)
1236 {
1237         struct btrfs_fs_info *fs_info = trans->fs_info;
1238         struct extent_buffer *leaf;
1239         struct btrfs_root *tree_root = fs_info->tree_root;
1240         struct btrfs_root *root;
1241         struct btrfs_key key;
1242         unsigned int nofs_flag;
1243         int ret = 0;
1244         uuid_le uuid = NULL_UUID_LE;
1245
1246         /*
1247          * We're holding a transaction handle, so use a NOFS memory allocation
1248          * context to avoid deadlock if reclaim happens.
1249          */
1250         nofs_flag = memalloc_nofs_save();
1251         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252         memalloc_nofs_restore(nofs_flag);
1253         if (!root)
1254                 return ERR_PTR(-ENOMEM);
1255
1256         __setup_root(root, fs_info, objectid);
1257         root->root_key.objectid = objectid;
1258         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1259         root->root_key.offset = 0;
1260
1261         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1262         if (IS_ERR(leaf)) {
1263                 ret = PTR_ERR(leaf);
1264                 leaf = NULL;
1265                 goto fail;
1266         }
1267
1268         root->node = leaf;
1269         btrfs_mark_buffer_dirty(leaf);
1270
1271         root->commit_root = btrfs_root_node(root);
1272         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1273
1274         root->root_item.flags = 0;
1275         root->root_item.byte_limit = 0;
1276         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1277         btrfs_set_root_generation(&root->root_item, trans->transid);
1278         btrfs_set_root_level(&root->root_item, 0);
1279         btrfs_set_root_refs(&root->root_item, 1);
1280         btrfs_set_root_used(&root->root_item, leaf->len);
1281         btrfs_set_root_last_snapshot(&root->root_item, 0);
1282         btrfs_set_root_dirid(&root->root_item, 0);
1283         if (is_fstree(objectid))
1284                 uuid_le_gen(&uuid);
1285         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1286         root->root_item.drop_level = 0;
1287
1288         key.objectid = objectid;
1289         key.type = BTRFS_ROOT_ITEM_KEY;
1290         key.offset = 0;
1291         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292         if (ret)
1293                 goto fail;
1294
1295         btrfs_tree_unlock(leaf);
1296
1297         return root;
1298
1299 fail:
1300         if (leaf) {
1301                 btrfs_tree_unlock(leaf);
1302                 free_extent_buffer(root->commit_root);
1303                 free_extent_buffer(leaf);
1304         }
1305         kfree(root);
1306
1307         return ERR_PTR(ret);
1308 }
1309
1310 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1311                                          struct btrfs_fs_info *fs_info)
1312 {
1313         struct btrfs_root *root;
1314         struct extent_buffer *leaf;
1315
1316         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1317         if (!root)
1318                 return ERR_PTR(-ENOMEM);
1319
1320         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1321
1322         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1323         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1324         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1325
1326         /*
1327          * DON'T set REF_COWS for log trees
1328          *
1329          * log trees do not get reference counted because they go away
1330          * before a real commit is actually done.  They do store pointers
1331          * to file data extents, and those reference counts still get
1332          * updated (along with back refs to the log tree).
1333          */
1334
1335         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1336                         NULL, 0, 0, 0);
1337         if (IS_ERR(leaf)) {
1338                 kfree(root);
1339                 return ERR_CAST(leaf);
1340         }
1341
1342         root->node = leaf;
1343
1344         btrfs_mark_buffer_dirty(root->node);
1345         btrfs_tree_unlock(root->node);
1346         return root;
1347 }
1348
1349 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350                              struct btrfs_fs_info *fs_info)
1351 {
1352         struct btrfs_root *log_root;
1353
1354         log_root = alloc_log_tree(trans, fs_info);
1355         if (IS_ERR(log_root))
1356                 return PTR_ERR(log_root);
1357         WARN_ON(fs_info->log_root_tree);
1358         fs_info->log_root_tree = log_root;
1359         return 0;
1360 }
1361
1362 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363                        struct btrfs_root *root)
1364 {
1365         struct btrfs_fs_info *fs_info = root->fs_info;
1366         struct btrfs_root *log_root;
1367         struct btrfs_inode_item *inode_item;
1368
1369         log_root = alloc_log_tree(trans, fs_info);
1370         if (IS_ERR(log_root))
1371                 return PTR_ERR(log_root);
1372
1373         log_root->last_trans = trans->transid;
1374         log_root->root_key.offset = root->root_key.objectid;
1375
1376         inode_item = &log_root->root_item.inode;
1377         btrfs_set_stack_inode_generation(inode_item, 1);
1378         btrfs_set_stack_inode_size(inode_item, 3);
1379         btrfs_set_stack_inode_nlink(inode_item, 1);
1380         btrfs_set_stack_inode_nbytes(inode_item,
1381                                      fs_info->nodesize);
1382         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1383
1384         btrfs_set_root_node(&log_root->root_item, log_root->node);
1385
1386         WARN_ON(root->log_root);
1387         root->log_root = log_root;
1388         root->log_transid = 0;
1389         root->log_transid_committed = -1;
1390         root->last_log_commit = 0;
1391         return 0;
1392 }
1393
1394 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395                                                struct btrfs_key *key)
1396 {
1397         struct btrfs_root *root;
1398         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1399         struct btrfs_path *path;
1400         u64 generation;
1401         int ret;
1402         int level;
1403
1404         path = btrfs_alloc_path();
1405         if (!path)
1406                 return ERR_PTR(-ENOMEM);
1407
1408         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409         if (!root) {
1410                 ret = -ENOMEM;
1411                 goto alloc_fail;
1412         }
1413
1414         __setup_root(root, fs_info, key->objectid);
1415
1416         ret = btrfs_find_root(tree_root, key, path,
1417                               &root->root_item, &root->root_key);
1418         if (ret) {
1419                 if (ret > 0)
1420                         ret = -ENOENT;
1421                 goto find_fail;
1422         }
1423
1424         generation = btrfs_root_generation(&root->root_item);
1425         level = btrfs_root_level(&root->root_item);
1426         root->node = read_tree_block(fs_info,
1427                                      btrfs_root_bytenr(&root->root_item),
1428                                      generation, level, NULL);
1429         if (IS_ERR(root->node)) {
1430                 ret = PTR_ERR(root->node);
1431                 goto find_fail;
1432         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433                 ret = -EIO;
1434                 free_extent_buffer(root->node);
1435                 goto find_fail;
1436         }
1437         root->commit_root = btrfs_root_node(root);
1438 out:
1439         btrfs_free_path(path);
1440         return root;
1441
1442 find_fail:
1443         kfree(root);
1444 alloc_fail:
1445         root = ERR_PTR(ret);
1446         goto out;
1447 }
1448
1449 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450                                       struct btrfs_key *location)
1451 {
1452         struct btrfs_root *root;
1453
1454         root = btrfs_read_tree_root(tree_root, location);
1455         if (IS_ERR(root))
1456                 return root;
1457
1458         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460                 btrfs_check_and_init_root_item(&root->root_item);
1461         }
1462
1463         return root;
1464 }
1465
1466 int btrfs_init_fs_root(struct btrfs_root *root)
1467 {
1468         int ret;
1469         struct btrfs_subvolume_writers *writers;
1470
1471         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473                                         GFP_NOFS);
1474         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475                 ret = -ENOMEM;
1476                 goto fail;
1477         }
1478
1479         writers = btrfs_alloc_subvolume_writers();
1480         if (IS_ERR(writers)) {
1481                 ret = PTR_ERR(writers);
1482                 goto fail;
1483         }
1484         root->subv_writers = writers;
1485
1486         btrfs_init_free_ino_ctl(root);
1487         spin_lock_init(&root->ino_cache_lock);
1488         init_waitqueue_head(&root->ino_cache_wait);
1489
1490         ret = get_anon_bdev(&root->anon_dev);
1491         if (ret)
1492                 goto fail;
1493
1494         mutex_lock(&root->objectid_mutex);
1495         ret = btrfs_find_highest_objectid(root,
1496                                         &root->highest_objectid);
1497         if (ret) {
1498                 mutex_unlock(&root->objectid_mutex);
1499                 goto fail;
1500         }
1501
1502         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504         mutex_unlock(&root->objectid_mutex);
1505
1506         return 0;
1507 fail:
1508         /* The caller is responsible to call btrfs_free_fs_root */
1509         return ret;
1510 }
1511
1512 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513                                         u64 root_id)
1514 {
1515         struct btrfs_root *root;
1516
1517         spin_lock(&fs_info->fs_roots_radix_lock);
1518         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519                                  (unsigned long)root_id);
1520         spin_unlock(&fs_info->fs_roots_radix_lock);
1521         return root;
1522 }
1523
1524 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525                          struct btrfs_root *root)
1526 {
1527         int ret;
1528
1529         ret = radix_tree_preload(GFP_NOFS);
1530         if (ret)
1531                 return ret;
1532
1533         spin_lock(&fs_info->fs_roots_radix_lock);
1534         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535                                 (unsigned long)root->root_key.objectid,
1536                                 root);
1537         if (ret == 0)
1538                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1539         spin_unlock(&fs_info->fs_roots_radix_lock);
1540         radix_tree_preload_end();
1541
1542         return ret;
1543 }
1544
1545 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546                                      struct btrfs_key *location,
1547                                      bool check_ref)
1548 {
1549         struct btrfs_root *root;
1550         struct btrfs_path *path;
1551         struct btrfs_key key;
1552         int ret;
1553
1554         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555                 return fs_info->tree_root;
1556         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557                 return fs_info->extent_root;
1558         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559                 return fs_info->chunk_root;
1560         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561                 return fs_info->dev_root;
1562         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563                 return fs_info->csum_root;
1564         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565                 return fs_info->quota_root ? fs_info->quota_root :
1566                                              ERR_PTR(-ENOENT);
1567         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568                 return fs_info->uuid_root ? fs_info->uuid_root :
1569                                             ERR_PTR(-ENOENT);
1570         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571                 return fs_info->free_space_root ? fs_info->free_space_root :
1572                                                   ERR_PTR(-ENOENT);
1573 again:
1574         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575         if (root) {
1576                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1577                         return ERR_PTR(-ENOENT);
1578                 return root;
1579         }
1580
1581         root = btrfs_read_fs_root(fs_info->tree_root, location);
1582         if (IS_ERR(root))
1583                 return root;
1584
1585         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586                 ret = -ENOENT;
1587                 goto fail;
1588         }
1589
1590         ret = btrfs_init_fs_root(root);
1591         if (ret)
1592                 goto fail;
1593
1594         path = btrfs_alloc_path();
1595         if (!path) {
1596                 ret = -ENOMEM;
1597                 goto fail;
1598         }
1599         key.objectid = BTRFS_ORPHAN_OBJECTID;
1600         key.type = BTRFS_ORPHAN_ITEM_KEY;
1601         key.offset = location->objectid;
1602
1603         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604         btrfs_free_path(path);
1605         if (ret < 0)
1606                 goto fail;
1607         if (ret == 0)
1608                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610         ret = btrfs_insert_fs_root(fs_info, root);
1611         if (ret) {
1612                 if (ret == -EEXIST) {
1613                         btrfs_free_fs_root(root);
1614                         goto again;
1615                 }
1616                 goto fail;
1617         }
1618         return root;
1619 fail:
1620         btrfs_free_fs_root(root);
1621         return ERR_PTR(ret);
1622 }
1623
1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625 {
1626         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627         int ret = 0;
1628         struct btrfs_device *device;
1629         struct backing_dev_info *bdi;
1630
1631         rcu_read_lock();
1632         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633                 if (!device->bdev)
1634                         continue;
1635                 bdi = device->bdev->bd_bdi;
1636                 if (bdi_congested(bdi, bdi_bits)) {
1637                         ret = 1;
1638                         break;
1639                 }
1640         }
1641         rcu_read_unlock();
1642         return ret;
1643 }
1644
1645 /*
1646  * called by the kthread helper functions to finally call the bio end_io
1647  * functions.  This is where read checksum verification actually happens
1648  */
1649 static void end_workqueue_fn(struct btrfs_work *work)
1650 {
1651         struct bio *bio;
1652         struct btrfs_end_io_wq *end_io_wq;
1653
1654         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655         bio = end_io_wq->bio;
1656
1657         bio->bi_status = end_io_wq->status;
1658         bio->bi_private = end_io_wq->private;
1659         bio->bi_end_io = end_io_wq->end_io;
1660         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661         bio_endio(bio);
1662 }
1663
1664 static int cleaner_kthread(void *arg)
1665 {
1666         struct btrfs_root *root = arg;
1667         struct btrfs_fs_info *fs_info = root->fs_info;
1668         int again;
1669
1670         while (1) {
1671                 again = 0;
1672
1673                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
1675                 /* Make the cleaner go to sleep early. */
1676                 if (btrfs_need_cleaner_sleep(fs_info))
1677                         goto sleep;
1678
1679                 /*
1680                  * Do not do anything if we might cause open_ctree() to block
1681                  * before we have finished mounting the filesystem.
1682                  */
1683                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1684                         goto sleep;
1685
1686                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1687                         goto sleep;
1688
1689                 /*
1690                  * Avoid the problem that we change the status of the fs
1691                  * during the above check and trylock.
1692                  */
1693                 if (btrfs_need_cleaner_sleep(fs_info)) {
1694                         mutex_unlock(&fs_info->cleaner_mutex);
1695                         goto sleep;
1696                 }
1697
1698                 btrfs_run_delayed_iputs(fs_info);
1699
1700                 again = btrfs_clean_one_deleted_snapshot(root);
1701                 mutex_unlock(&fs_info->cleaner_mutex);
1702
1703                 /*
1704                  * The defragger has dealt with the R/O remount and umount,
1705                  * needn't do anything special here.
1706                  */
1707                 btrfs_run_defrag_inodes(fs_info);
1708
1709                 /*
1710                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711                  * with relocation (btrfs_relocate_chunk) and relocation
1712                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715                  * unused block groups.
1716                  */
1717                 btrfs_delete_unused_bgs(fs_info);
1718 sleep:
1719                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720                 if (kthread_should_park())
1721                         kthread_parkme();
1722                 if (kthread_should_stop())
1723                         return 0;
1724                 if (!again) {
1725                         set_current_state(TASK_INTERRUPTIBLE);
1726                         schedule();
1727                         __set_current_state(TASK_RUNNING);
1728                 }
1729         }
1730 }
1731
1732 static int transaction_kthread(void *arg)
1733 {
1734         struct btrfs_root *root = arg;
1735         struct btrfs_fs_info *fs_info = root->fs_info;
1736         struct btrfs_trans_handle *trans;
1737         struct btrfs_transaction *cur;
1738         u64 transid;
1739         time64_t now;
1740         unsigned long delay;
1741         bool cannot_commit;
1742
1743         do {
1744                 cannot_commit = false;
1745                 delay = HZ * fs_info->commit_interval;
1746                 mutex_lock(&fs_info->transaction_kthread_mutex);
1747
1748                 spin_lock(&fs_info->trans_lock);
1749                 cur = fs_info->running_transaction;
1750                 if (!cur) {
1751                         spin_unlock(&fs_info->trans_lock);
1752                         goto sleep;
1753                 }
1754
1755                 now = ktime_get_seconds();
1756                 if (cur->state < TRANS_STATE_BLOCKED &&
1757                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1758                     (now < cur->start_time ||
1759                      now - cur->start_time < fs_info->commit_interval)) {
1760                         spin_unlock(&fs_info->trans_lock);
1761                         delay = HZ * 5;
1762                         goto sleep;
1763                 }
1764                 transid = cur->transid;
1765                 spin_unlock(&fs_info->trans_lock);
1766
1767                 /* If the file system is aborted, this will always fail. */
1768                 trans = btrfs_attach_transaction(root);
1769                 if (IS_ERR(trans)) {
1770                         if (PTR_ERR(trans) != -ENOENT)
1771                                 cannot_commit = true;
1772                         goto sleep;
1773                 }
1774                 if (transid == trans->transid) {
1775                         btrfs_commit_transaction(trans);
1776                 } else {
1777                         btrfs_end_transaction(trans);
1778                 }
1779 sleep:
1780                 wake_up_process(fs_info->cleaner_kthread);
1781                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1782
1783                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784                                       &fs_info->fs_state)))
1785                         btrfs_cleanup_transaction(fs_info);
1786                 if (!kthread_should_stop() &&
1787                                 (!btrfs_transaction_blocked(fs_info) ||
1788                                  cannot_commit))
1789                         schedule_timeout_interruptible(delay);
1790         } while (!kthread_should_stop());
1791         return 0;
1792 }
1793
1794 /*
1795  * this will find the highest generation in the array of
1796  * root backups.  The index of the highest array is returned,
1797  * or -1 if we can't find anything.
1798  *
1799  * We check to make sure the array is valid by comparing the
1800  * generation of the latest  root in the array with the generation
1801  * in the super block.  If they don't match we pitch it.
1802  */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805         u64 cur;
1806         int newest_index = -1;
1807         struct btrfs_root_backup *root_backup;
1808         int i;
1809
1810         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811                 root_backup = info->super_copy->super_roots + i;
1812                 cur = btrfs_backup_tree_root_gen(root_backup);
1813                 if (cur == newest_gen)
1814                         newest_index = i;
1815         }
1816
1817         /* check to see if we actually wrapped around */
1818         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819                 root_backup = info->super_copy->super_roots;
1820                 cur = btrfs_backup_tree_root_gen(root_backup);
1821                 if (cur == newest_gen)
1822                         newest_index = 0;
1823         }
1824         return newest_index;
1825 }
1826
1827
1828 /*
1829  * find the oldest backup so we know where to store new entries
1830  * in the backup array.  This will set the backup_root_index
1831  * field in the fs_info struct
1832  */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834                                      u64 newest_gen)
1835 {
1836         int newest_index = -1;
1837
1838         newest_index = find_newest_super_backup(info, newest_gen);
1839         /* if there was garbage in there, just move along */
1840         if (newest_index == -1) {
1841                 info->backup_root_index = 0;
1842         } else {
1843                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844         }
1845 }
1846
1847 /*
1848  * copy all the root pointers into the super backup array.
1849  * this will bump the backup pointer by one when it is
1850  * done
1851  */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854         int next_backup;
1855         struct btrfs_root_backup *root_backup;
1856         int last_backup;
1857
1858         next_backup = info->backup_root_index;
1859         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860                 BTRFS_NUM_BACKUP_ROOTS;
1861
1862         /*
1863          * just overwrite the last backup if we're at the same generation
1864          * this happens only at umount
1865          */
1866         root_backup = info->super_for_commit->super_roots + last_backup;
1867         if (btrfs_backup_tree_root_gen(root_backup) ==
1868             btrfs_header_generation(info->tree_root->node))
1869                 next_backup = last_backup;
1870
1871         root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873         /*
1874          * make sure all of our padding and empty slots get zero filled
1875          * regardless of which ones we use today
1876          */
1877         memset(root_backup, 0, sizeof(*root_backup));
1878
1879         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882         btrfs_set_backup_tree_root_gen(root_backup,
1883                                btrfs_header_generation(info->tree_root->node));
1884
1885         btrfs_set_backup_tree_root_level(root_backup,
1886                                btrfs_header_level(info->tree_root->node));
1887
1888         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889         btrfs_set_backup_chunk_root_gen(root_backup,
1890                                btrfs_header_generation(info->chunk_root->node));
1891         btrfs_set_backup_chunk_root_level(root_backup,
1892                                btrfs_header_level(info->chunk_root->node));
1893
1894         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895         btrfs_set_backup_extent_root_gen(root_backup,
1896                                btrfs_header_generation(info->extent_root->node));
1897         btrfs_set_backup_extent_root_level(root_backup,
1898                                btrfs_header_level(info->extent_root->node));
1899
1900         /*
1901          * we might commit during log recovery, which happens before we set
1902          * the fs_root.  Make sure it is valid before we fill it in.
1903          */
1904         if (info->fs_root && info->fs_root->node) {
1905                 btrfs_set_backup_fs_root(root_backup,
1906                                          info->fs_root->node->start);
1907                 btrfs_set_backup_fs_root_gen(root_backup,
1908                                btrfs_header_generation(info->fs_root->node));
1909                 btrfs_set_backup_fs_root_level(root_backup,
1910                                btrfs_header_level(info->fs_root->node));
1911         }
1912
1913         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914         btrfs_set_backup_dev_root_gen(root_backup,
1915                                btrfs_header_generation(info->dev_root->node));
1916         btrfs_set_backup_dev_root_level(root_backup,
1917                                        btrfs_header_level(info->dev_root->node));
1918
1919         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920         btrfs_set_backup_csum_root_gen(root_backup,
1921                                btrfs_header_generation(info->csum_root->node));
1922         btrfs_set_backup_csum_root_level(root_backup,
1923                                btrfs_header_level(info->csum_root->node));
1924
1925         btrfs_set_backup_total_bytes(root_backup,
1926                              btrfs_super_total_bytes(info->super_copy));
1927         btrfs_set_backup_bytes_used(root_backup,
1928                              btrfs_super_bytes_used(info->super_copy));
1929         btrfs_set_backup_num_devices(root_backup,
1930                              btrfs_super_num_devices(info->super_copy));
1931
1932         /*
1933          * if we don't copy this out to the super_copy, it won't get remembered
1934          * for the next commit
1935          */
1936         memcpy(&info->super_copy->super_roots,
1937                &info->super_for_commit->super_roots,
1938                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942  * this copies info out of the root backup array and back into
1943  * the in-memory super block.  It is meant to help iterate through
1944  * the array, so you send it the number of backups you've already
1945  * tried and the last backup index you used.
1946  *
1947  * this returns -1 when it has tried all the backups
1948  */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950                                      struct btrfs_super_block *super,
1951                                      int *num_backups_tried, int *backup_index)
1952 {
1953         struct btrfs_root_backup *root_backup;
1954         int newest = *backup_index;
1955
1956         if (*num_backups_tried == 0) {
1957                 u64 gen = btrfs_super_generation(super);
1958
1959                 newest = find_newest_super_backup(info, gen);
1960                 if (newest == -1)
1961                         return -1;
1962
1963                 *backup_index = newest;
1964                 *num_backups_tried = 1;
1965         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966                 /* we've tried all the backups, all done */
1967                 return -1;
1968         } else {
1969                 /* jump to the next oldest backup */
1970                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971                         BTRFS_NUM_BACKUP_ROOTS;
1972                 *backup_index = newest;
1973                 *num_backups_tried += 1;
1974         }
1975         root_backup = super->super_roots + newest;
1976
1977         btrfs_set_super_generation(super,
1978                                    btrfs_backup_tree_root_gen(root_backup));
1979         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980         btrfs_set_super_root_level(super,
1981                                    btrfs_backup_tree_root_level(root_backup));
1982         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984         /*
1985          * fixme: the total bytes and num_devices need to match or we should
1986          * need a fsck
1987          */
1988         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990         return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996         btrfs_destroy_workqueue(fs_info->fixup_workers);
1997         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1998         btrfs_destroy_workqueue(fs_info->workers);
1999         btrfs_destroy_workqueue(fs_info->endio_workers);
2000         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2001         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2002         btrfs_destroy_workqueue(fs_info->rmw_workers);
2003         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2004         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2005         btrfs_destroy_workqueue(fs_info->submit_workers);
2006         btrfs_destroy_workqueue(fs_info->delayed_workers);
2007         btrfs_destroy_workqueue(fs_info->caching_workers);
2008         btrfs_destroy_workqueue(fs_info->readahead_workers);
2009         btrfs_destroy_workqueue(fs_info->flush_workers);
2010         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2011         btrfs_destroy_workqueue(fs_info->extent_workers);
2012         /*
2013          * Now that all other work queues are destroyed, we can safely destroy
2014          * the queues used for metadata I/O, since tasks from those other work
2015          * queues can do metadata I/O operations.
2016          */
2017         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2018         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2019 }
2020
2021 static void free_root_extent_buffers(struct btrfs_root *root)
2022 {
2023         if (root) {
2024                 free_extent_buffer(root->node);
2025                 free_extent_buffer(root->commit_root);
2026                 root->node = NULL;
2027                 root->commit_root = NULL;
2028         }
2029 }
2030
2031 /* helper to cleanup tree roots */
2032 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2033 {
2034         free_root_extent_buffers(info->tree_root);
2035
2036         free_root_extent_buffers(info->dev_root);
2037         free_root_extent_buffers(info->extent_root);
2038         free_root_extent_buffers(info->csum_root);
2039         free_root_extent_buffers(info->quota_root);
2040         free_root_extent_buffers(info->uuid_root);
2041         if (chunk_root)
2042                 free_root_extent_buffers(info->chunk_root);
2043         free_root_extent_buffers(info->free_space_root);
2044 }
2045
2046 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2047 {
2048         int ret;
2049         struct btrfs_root *gang[8];
2050         int i;
2051
2052         while (!list_empty(&fs_info->dead_roots)) {
2053                 gang[0] = list_entry(fs_info->dead_roots.next,
2054                                      struct btrfs_root, root_list);
2055                 list_del(&gang[0]->root_list);
2056
2057                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2058                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2059                 } else {
2060                         free_extent_buffer(gang[0]->node);
2061                         free_extent_buffer(gang[0]->commit_root);
2062                         btrfs_put_fs_root(gang[0]);
2063                 }
2064         }
2065
2066         while (1) {
2067                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2068                                              (void **)gang, 0,
2069                                              ARRAY_SIZE(gang));
2070                 if (!ret)
2071                         break;
2072                 for (i = 0; i < ret; i++)
2073                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2074         }
2075
2076         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2077                 btrfs_free_log_root_tree(NULL, fs_info);
2078                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2079         }
2080 }
2081
2082 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2083 {
2084         mutex_init(&fs_info->scrub_lock);
2085         atomic_set(&fs_info->scrubs_running, 0);
2086         atomic_set(&fs_info->scrub_pause_req, 0);
2087         atomic_set(&fs_info->scrubs_paused, 0);
2088         atomic_set(&fs_info->scrub_cancel_req, 0);
2089         init_waitqueue_head(&fs_info->scrub_pause_wait);
2090         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2091 }
2092
2093 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2094 {
2095         spin_lock_init(&fs_info->balance_lock);
2096         mutex_init(&fs_info->balance_mutex);
2097         atomic_set(&fs_info->balance_pause_req, 0);
2098         atomic_set(&fs_info->balance_cancel_req, 0);
2099         fs_info->balance_ctl = NULL;
2100         init_waitqueue_head(&fs_info->balance_wait_q);
2101 }
2102
2103 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2104 {
2105         struct inode *inode = fs_info->btree_inode;
2106
2107         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2108         set_nlink(inode, 1);
2109         /*
2110          * we set the i_size on the btree inode to the max possible int.
2111          * the real end of the address space is determined by all of
2112          * the devices in the system
2113          */
2114         inode->i_size = OFFSET_MAX;
2115         inode->i_mapping->a_ops = &btree_aops;
2116
2117         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2118         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2119                             IO_TREE_INODE_IO, inode);
2120         BTRFS_I(inode)->io_tree.track_uptodate = false;
2121         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2122
2123         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2124
2125         BTRFS_I(inode)->root = fs_info->tree_root;
2126         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2127         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2128         btrfs_insert_inode_hash(inode);
2129 }
2130
2131 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2132 {
2133         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2134         init_rwsem(&fs_info->dev_replace.rwsem);
2135         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2136 }
2137
2138 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2139 {
2140         spin_lock_init(&fs_info->qgroup_lock);
2141         mutex_init(&fs_info->qgroup_ioctl_lock);
2142         fs_info->qgroup_tree = RB_ROOT;
2143         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2144         fs_info->qgroup_seq = 1;
2145         fs_info->qgroup_ulist = NULL;
2146         fs_info->qgroup_rescan_running = false;
2147         mutex_init(&fs_info->qgroup_rescan_lock);
2148 }
2149
2150 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2151                 struct btrfs_fs_devices *fs_devices)
2152 {
2153         u32 max_active = fs_info->thread_pool_size;
2154         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2155
2156         fs_info->workers =
2157                 btrfs_alloc_workqueue(fs_info, "worker",
2158                                       flags | WQ_HIGHPRI, max_active, 16);
2159
2160         fs_info->delalloc_workers =
2161                 btrfs_alloc_workqueue(fs_info, "delalloc",
2162                                       flags, max_active, 2);
2163
2164         fs_info->flush_workers =
2165                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2166                                       flags, max_active, 0);
2167
2168         fs_info->caching_workers =
2169                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2170
2171         /*
2172          * a higher idle thresh on the submit workers makes it much more
2173          * likely that bios will be send down in a sane order to the
2174          * devices
2175          */
2176         fs_info->submit_workers =
2177                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2178                                       min_t(u64, fs_devices->num_devices,
2179                                             max_active), 64);
2180
2181         fs_info->fixup_workers =
2182                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2183
2184         /*
2185          * endios are largely parallel and should have a very
2186          * low idle thresh
2187          */
2188         fs_info->endio_workers =
2189                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2190         fs_info->endio_meta_workers =
2191                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2192                                       max_active, 4);
2193         fs_info->endio_meta_write_workers =
2194                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2195                                       max_active, 2);
2196         fs_info->endio_raid56_workers =
2197                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2198                                       max_active, 4);
2199         fs_info->endio_repair_workers =
2200                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2201         fs_info->rmw_workers =
2202                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2203         fs_info->endio_write_workers =
2204                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2205                                       max_active, 2);
2206         fs_info->endio_freespace_worker =
2207                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2208                                       max_active, 0);
2209         fs_info->delayed_workers =
2210                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2211                                       max_active, 0);
2212         fs_info->readahead_workers =
2213                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2214                                       max_active, 2);
2215         fs_info->qgroup_rescan_workers =
2216                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2217         fs_info->extent_workers =
2218                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2219                                       min_t(u64, fs_devices->num_devices,
2220                                             max_active), 8);
2221
2222         if (!(fs_info->workers && fs_info->delalloc_workers &&
2223               fs_info->submit_workers && fs_info->flush_workers &&
2224               fs_info->endio_workers && fs_info->endio_meta_workers &&
2225               fs_info->endio_meta_write_workers &&
2226               fs_info->endio_repair_workers &&
2227               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2228               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2229               fs_info->caching_workers && fs_info->readahead_workers &&
2230               fs_info->fixup_workers && fs_info->delayed_workers &&
2231               fs_info->extent_workers &&
2232               fs_info->qgroup_rescan_workers)) {
2233                 return -ENOMEM;
2234         }
2235
2236         return 0;
2237 }
2238
2239 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2240 {
2241         struct crypto_shash *csum_shash;
2242         const char *csum_name = btrfs_super_csum_name(csum_type);
2243
2244         csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2245
2246         if (IS_ERR(csum_shash)) {
2247                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2248                           csum_name);
2249                 return PTR_ERR(csum_shash);
2250         }
2251
2252         fs_info->csum_shash = csum_shash;
2253
2254         return 0;
2255 }
2256
2257 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2258 {
2259         crypto_free_shash(fs_info->csum_shash);
2260 }
2261
2262 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2263                             struct btrfs_fs_devices *fs_devices)
2264 {
2265         int ret;
2266         struct btrfs_root *log_tree_root;
2267         struct btrfs_super_block *disk_super = fs_info->super_copy;
2268         u64 bytenr = btrfs_super_log_root(disk_super);
2269         int level = btrfs_super_log_root_level(disk_super);
2270
2271         if (fs_devices->rw_devices == 0) {
2272                 btrfs_warn(fs_info, "log replay required on RO media");
2273                 return -EIO;
2274         }
2275
2276         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2277         if (!log_tree_root)
2278                 return -ENOMEM;
2279
2280         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2281
2282         log_tree_root->node = read_tree_block(fs_info, bytenr,
2283                                               fs_info->generation + 1,
2284                                               level, NULL);
2285         if (IS_ERR(log_tree_root->node)) {
2286                 btrfs_warn(fs_info, "failed to read log tree");
2287                 ret = PTR_ERR(log_tree_root->node);
2288                 kfree(log_tree_root);
2289                 return ret;
2290         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2291                 btrfs_err(fs_info, "failed to read log tree");
2292                 free_extent_buffer(log_tree_root->node);
2293                 kfree(log_tree_root);
2294                 return -EIO;
2295         }
2296         /* returns with log_tree_root freed on success */
2297         ret = btrfs_recover_log_trees(log_tree_root);
2298         if (ret) {
2299                 btrfs_handle_fs_error(fs_info, ret,
2300                                       "Failed to recover log tree");
2301                 free_extent_buffer(log_tree_root->node);
2302                 kfree(log_tree_root);
2303                 return ret;
2304         }
2305
2306         if (sb_rdonly(fs_info->sb)) {
2307                 ret = btrfs_commit_super(fs_info);
2308                 if (ret)
2309                         return ret;
2310         }
2311
2312         return 0;
2313 }
2314
2315 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2316 {
2317         struct btrfs_root *tree_root = fs_info->tree_root;
2318         struct btrfs_root *root;
2319         struct btrfs_key location;
2320         int ret;
2321
2322         BUG_ON(!fs_info->tree_root);
2323
2324         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2325         location.type = BTRFS_ROOT_ITEM_KEY;
2326         location.offset = 0;
2327
2328         root = btrfs_read_tree_root(tree_root, &location);
2329         if (IS_ERR(root)) {
2330                 ret = PTR_ERR(root);
2331                 goto out;
2332         }
2333         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334         fs_info->extent_root = root;
2335
2336         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2337         root = btrfs_read_tree_root(tree_root, &location);
2338         if (IS_ERR(root)) {
2339                 ret = PTR_ERR(root);
2340                 goto out;
2341         }
2342         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343         fs_info->dev_root = root;
2344         btrfs_init_devices_late(fs_info);
2345
2346         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2347         root = btrfs_read_tree_root(tree_root, &location);
2348         if (IS_ERR(root)) {
2349                 ret = PTR_ERR(root);
2350                 goto out;
2351         }
2352         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353         fs_info->csum_root = root;
2354
2355         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2356         root = btrfs_read_tree_root(tree_root, &location);
2357         if (!IS_ERR(root)) {
2358                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2359                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2360                 fs_info->quota_root = root;
2361         }
2362
2363         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2364         root = btrfs_read_tree_root(tree_root, &location);
2365         if (IS_ERR(root)) {
2366                 ret = PTR_ERR(root);
2367                 if (ret != -ENOENT)
2368                         goto out;
2369         } else {
2370                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371                 fs_info->uuid_root = root;
2372         }
2373
2374         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2375                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2376                 root = btrfs_read_tree_root(tree_root, &location);
2377                 if (IS_ERR(root)) {
2378                         ret = PTR_ERR(root);
2379                         goto out;
2380                 }
2381                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382                 fs_info->free_space_root = root;
2383         }
2384
2385         return 0;
2386 out:
2387         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2388                    location.objectid, ret);
2389         return ret;
2390 }
2391
2392 /*
2393  * Real super block validation
2394  * NOTE: super csum type and incompat features will not be checked here.
2395  *
2396  * @sb:         super block to check
2397  * @mirror_num: the super block number to check its bytenr:
2398  *              0       the primary (1st) sb
2399  *              1, 2    2nd and 3rd backup copy
2400  *             -1       skip bytenr check
2401  */
2402 static int validate_super(struct btrfs_fs_info *fs_info,
2403                             struct btrfs_super_block *sb, int mirror_num)
2404 {
2405         u64 nodesize = btrfs_super_nodesize(sb);
2406         u64 sectorsize = btrfs_super_sectorsize(sb);
2407         int ret = 0;
2408
2409         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2410                 btrfs_err(fs_info, "no valid FS found");
2411                 ret = -EINVAL;
2412         }
2413         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2414                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2415                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2416                 ret = -EINVAL;
2417         }
2418         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2420                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2421                 ret = -EINVAL;
2422         }
2423         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2425                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2426                 ret = -EINVAL;
2427         }
2428         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2430                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2431                 ret = -EINVAL;
2432         }
2433
2434         /*
2435          * Check sectorsize and nodesize first, other check will need it.
2436          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2437          */
2438         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2439             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2441                 ret = -EINVAL;
2442         }
2443         /* Only PAGE SIZE is supported yet */
2444         if (sectorsize != PAGE_SIZE) {
2445                 btrfs_err(fs_info,
2446                         "sectorsize %llu not supported yet, only support %lu",
2447                         sectorsize, PAGE_SIZE);
2448                 ret = -EINVAL;
2449         }
2450         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2451             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2452                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2453                 ret = -EINVAL;
2454         }
2455         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2456                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2457                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2458                 ret = -EINVAL;
2459         }
2460
2461         /* Root alignment check */
2462         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2463                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2464                            btrfs_super_root(sb));
2465                 ret = -EINVAL;
2466         }
2467         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2468                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2469                            btrfs_super_chunk_root(sb));
2470                 ret = -EINVAL;
2471         }
2472         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2473                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2474                            btrfs_super_log_root(sb));
2475                 ret = -EINVAL;
2476         }
2477
2478         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2479                    BTRFS_FSID_SIZE) != 0) {
2480                 btrfs_err(fs_info,
2481                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2482                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2483                 ret = -EINVAL;
2484         }
2485
2486         /*
2487          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2488          * done later
2489          */
2490         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2491                 btrfs_err(fs_info, "bytes_used is too small %llu",
2492                           btrfs_super_bytes_used(sb));
2493                 ret = -EINVAL;
2494         }
2495         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2496                 btrfs_err(fs_info, "invalid stripesize %u",
2497                           btrfs_super_stripesize(sb));
2498                 ret = -EINVAL;
2499         }
2500         if (btrfs_super_num_devices(sb) > (1UL << 31))
2501                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2502                            btrfs_super_num_devices(sb));
2503         if (btrfs_super_num_devices(sb) == 0) {
2504                 btrfs_err(fs_info, "number of devices is 0");
2505                 ret = -EINVAL;
2506         }
2507
2508         if (mirror_num >= 0 &&
2509             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2510                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2511                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2512                 ret = -EINVAL;
2513         }
2514
2515         /*
2516          * Obvious sys_chunk_array corruptions, it must hold at least one key
2517          * and one chunk
2518          */
2519         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2520                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2521                           btrfs_super_sys_array_size(sb),
2522                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2523                 ret = -EINVAL;
2524         }
2525         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2526                         + sizeof(struct btrfs_chunk)) {
2527                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2528                           btrfs_super_sys_array_size(sb),
2529                           sizeof(struct btrfs_disk_key)
2530                           + sizeof(struct btrfs_chunk));
2531                 ret = -EINVAL;
2532         }
2533
2534         /*
2535          * The generation is a global counter, we'll trust it more than the others
2536          * but it's still possible that it's the one that's wrong.
2537          */
2538         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2539                 btrfs_warn(fs_info,
2540                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2541                         btrfs_super_generation(sb),
2542                         btrfs_super_chunk_root_generation(sb));
2543         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2544             && btrfs_super_cache_generation(sb) != (u64)-1)
2545                 btrfs_warn(fs_info,
2546                         "suspicious: generation < cache_generation: %llu < %llu",
2547                         btrfs_super_generation(sb),
2548                         btrfs_super_cache_generation(sb));
2549
2550         return ret;
2551 }
2552
2553 /*
2554  * Validation of super block at mount time.
2555  * Some checks already done early at mount time, like csum type and incompat
2556  * flags will be skipped.
2557  */
2558 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2559 {
2560         return validate_super(fs_info, fs_info->super_copy, 0);
2561 }
2562
2563 /*
2564  * Validation of super block at write time.
2565  * Some checks like bytenr check will be skipped as their values will be
2566  * overwritten soon.
2567  * Extra checks like csum type and incompat flags will be done here.
2568  */
2569 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2570                                       struct btrfs_super_block *sb)
2571 {
2572         int ret;
2573
2574         ret = validate_super(fs_info, sb, -1);
2575         if (ret < 0)
2576                 goto out;
2577         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2578                 ret = -EUCLEAN;
2579                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2580                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2581                 goto out;
2582         }
2583         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2584                 ret = -EUCLEAN;
2585                 btrfs_err(fs_info,
2586                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2587                           btrfs_super_incompat_flags(sb),
2588                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2589                 goto out;
2590         }
2591 out:
2592         if (ret < 0)
2593                 btrfs_err(fs_info,
2594                 "super block corruption detected before writing it to disk");
2595         return ret;
2596 }
2597
2598 int open_ctree(struct super_block *sb,
2599                struct btrfs_fs_devices *fs_devices,
2600                char *options)
2601 {
2602         u32 sectorsize;
2603         u32 nodesize;
2604         u32 stripesize;
2605         u64 generation;
2606         u64 features;
2607         u16 csum_type;
2608         struct btrfs_key location;
2609         struct buffer_head *bh;
2610         struct btrfs_super_block *disk_super;
2611         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2612         struct btrfs_root *tree_root;
2613         struct btrfs_root *chunk_root;
2614         int ret;
2615         int err = -EINVAL;
2616         int num_backups_tried = 0;
2617         int backup_index = 0;
2618         int clear_free_space_tree = 0;
2619         int level;
2620
2621         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2622         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2623         if (!tree_root || !chunk_root) {
2624                 err = -ENOMEM;
2625                 goto fail;
2626         }
2627
2628         ret = init_srcu_struct(&fs_info->subvol_srcu);
2629         if (ret) {
2630                 err = ret;
2631                 goto fail;
2632         }
2633
2634         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2635         if (ret) {
2636                 err = ret;
2637                 goto fail_srcu;
2638         }
2639
2640         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2641         if (ret) {
2642                 err = ret;
2643                 goto fail_dio_bytes;
2644         }
2645         fs_info->dirty_metadata_batch = PAGE_SIZE *
2646                                         (1 + ilog2(nr_cpu_ids));
2647
2648         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2649         if (ret) {
2650                 err = ret;
2651                 goto fail_dirty_metadata_bytes;
2652         }
2653
2654         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2655                         GFP_KERNEL);
2656         if (ret) {
2657                 err = ret;
2658                 goto fail_delalloc_bytes;
2659         }
2660
2661         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2662         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2663         INIT_LIST_HEAD(&fs_info->trans_list);
2664         INIT_LIST_HEAD(&fs_info->dead_roots);
2665         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2666         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2667         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2668         spin_lock_init(&fs_info->delalloc_root_lock);
2669         spin_lock_init(&fs_info->trans_lock);
2670         spin_lock_init(&fs_info->fs_roots_radix_lock);
2671         spin_lock_init(&fs_info->delayed_iput_lock);
2672         spin_lock_init(&fs_info->defrag_inodes_lock);
2673         spin_lock_init(&fs_info->tree_mod_seq_lock);
2674         spin_lock_init(&fs_info->super_lock);
2675         spin_lock_init(&fs_info->buffer_lock);
2676         spin_lock_init(&fs_info->unused_bgs_lock);
2677         rwlock_init(&fs_info->tree_mod_log_lock);
2678         mutex_init(&fs_info->unused_bg_unpin_mutex);
2679         mutex_init(&fs_info->delete_unused_bgs_mutex);
2680         mutex_init(&fs_info->reloc_mutex);
2681         mutex_init(&fs_info->delalloc_root_mutex);
2682         seqlock_init(&fs_info->profiles_lock);
2683
2684         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2685         INIT_LIST_HEAD(&fs_info->space_info);
2686         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2687         INIT_LIST_HEAD(&fs_info->unused_bgs);
2688         extent_map_tree_init(&fs_info->mapping_tree);
2689         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2690                              BTRFS_BLOCK_RSV_GLOBAL);
2691         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2692         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2693         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2694         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2695                              BTRFS_BLOCK_RSV_DELOPS);
2696         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2697                              BTRFS_BLOCK_RSV_DELREFS);
2698
2699         atomic_set(&fs_info->async_delalloc_pages, 0);
2700         atomic_set(&fs_info->defrag_running, 0);
2701         atomic_set(&fs_info->reada_works_cnt, 0);
2702         atomic_set(&fs_info->nr_delayed_iputs, 0);
2703         atomic64_set(&fs_info->tree_mod_seq, 0);
2704         fs_info->sb = sb;
2705         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2706         fs_info->metadata_ratio = 0;
2707         fs_info->defrag_inodes = RB_ROOT;
2708         atomic64_set(&fs_info->free_chunk_space, 0);
2709         fs_info->tree_mod_log = RB_ROOT;
2710         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2711         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2712         /* readahead state */
2713         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2714         spin_lock_init(&fs_info->reada_lock);
2715         btrfs_init_ref_verify(fs_info);
2716
2717         fs_info->thread_pool_size = min_t(unsigned long,
2718                                           num_online_cpus() + 2, 8);
2719
2720         INIT_LIST_HEAD(&fs_info->ordered_roots);
2721         spin_lock_init(&fs_info->ordered_root_lock);
2722
2723         fs_info->btree_inode = new_inode(sb);
2724         if (!fs_info->btree_inode) {
2725                 err = -ENOMEM;
2726                 goto fail_bio_counter;
2727         }
2728         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2729
2730         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2731                                         GFP_KERNEL);
2732         if (!fs_info->delayed_root) {
2733                 err = -ENOMEM;
2734                 goto fail_iput;
2735         }
2736         btrfs_init_delayed_root(fs_info->delayed_root);
2737
2738         btrfs_init_scrub(fs_info);
2739 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2740         fs_info->check_integrity_print_mask = 0;
2741 #endif
2742         btrfs_init_balance(fs_info);
2743         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2744
2745         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2746         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2747
2748         btrfs_init_btree_inode(fs_info);
2749
2750         spin_lock_init(&fs_info->block_group_cache_lock);
2751         fs_info->block_group_cache_tree = RB_ROOT;
2752         fs_info->first_logical_byte = (u64)-1;
2753
2754         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2755                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2756         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2757                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2758         fs_info->pinned_extents = &fs_info->freed_extents[0];
2759         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2760
2761         mutex_init(&fs_info->ordered_operations_mutex);
2762         mutex_init(&fs_info->tree_log_mutex);
2763         mutex_init(&fs_info->chunk_mutex);
2764         mutex_init(&fs_info->transaction_kthread_mutex);
2765         mutex_init(&fs_info->cleaner_mutex);
2766         mutex_init(&fs_info->ro_block_group_mutex);
2767         init_rwsem(&fs_info->commit_root_sem);
2768         init_rwsem(&fs_info->cleanup_work_sem);
2769         init_rwsem(&fs_info->subvol_sem);
2770         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2771
2772         btrfs_init_dev_replace_locks(fs_info);
2773         btrfs_init_qgroup(fs_info);
2774
2775         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2776         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2777
2778         init_waitqueue_head(&fs_info->transaction_throttle);
2779         init_waitqueue_head(&fs_info->transaction_wait);
2780         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2781         init_waitqueue_head(&fs_info->async_submit_wait);
2782         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2783
2784         /* Usable values until the real ones are cached from the superblock */
2785         fs_info->nodesize = 4096;
2786         fs_info->sectorsize = 4096;
2787         fs_info->stripesize = 4096;
2788
2789         spin_lock_init(&fs_info->swapfile_pins_lock);
2790         fs_info->swapfile_pins = RB_ROOT;
2791
2792         fs_info->send_in_progress = 0;
2793
2794         ret = btrfs_alloc_stripe_hash_table(fs_info);
2795         if (ret) {
2796                 err = ret;
2797                 goto fail_alloc;
2798         }
2799
2800         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2801
2802         invalidate_bdev(fs_devices->latest_bdev);
2803
2804         /*
2805          * Read super block and check the signature bytes only
2806          */
2807         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2808         if (IS_ERR(bh)) {
2809                 err = PTR_ERR(bh);
2810                 goto fail_alloc;
2811         }
2812
2813         /*
2814          * Verify the type first, if that or the the checksum value are
2815          * corrupted, we'll find out
2816          */
2817         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2818         if (!btrfs_supported_super_csum(csum_type)) {
2819                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2820                           csum_type);
2821                 err = -EINVAL;
2822                 brelse(bh);
2823                 goto fail_alloc;
2824         }
2825
2826         ret = btrfs_init_csum_hash(fs_info, csum_type);
2827         if (ret) {
2828                 err = ret;
2829                 goto fail_alloc;
2830         }
2831
2832         /*
2833          * We want to check superblock checksum, the type is stored inside.
2834          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2835          */
2836         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2837                 btrfs_err(fs_info, "superblock checksum mismatch");
2838                 err = -EINVAL;
2839                 brelse(bh);
2840                 goto fail_csum;
2841         }
2842
2843         /*
2844          * super_copy is zeroed at allocation time and we never touch the
2845          * following bytes up to INFO_SIZE, the checksum is calculated from
2846          * the whole block of INFO_SIZE
2847          */
2848         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2849         brelse(bh);
2850
2851         disk_super = fs_info->super_copy;
2852
2853         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2854                        BTRFS_FSID_SIZE));
2855
2856         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2857                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2858                                 fs_info->super_copy->metadata_uuid,
2859                                 BTRFS_FSID_SIZE));
2860         }
2861
2862         features = btrfs_super_flags(disk_super);
2863         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2864                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2865                 btrfs_set_super_flags(disk_super, features);
2866                 btrfs_info(fs_info,
2867                         "found metadata UUID change in progress flag, clearing");
2868         }
2869
2870         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2871                sizeof(*fs_info->super_for_commit));
2872
2873         ret = btrfs_validate_mount_super(fs_info);
2874         if (ret) {
2875                 btrfs_err(fs_info, "superblock contains fatal errors");
2876                 err = -EINVAL;
2877                 goto fail_csum;
2878         }
2879
2880         if (!btrfs_super_root(disk_super))
2881                 goto fail_csum;
2882
2883         /* check FS state, whether FS is broken. */
2884         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2885                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2886
2887         /*
2888          * run through our array of backup supers and setup
2889          * our ring pointer to the oldest one
2890          */
2891         generation = btrfs_super_generation(disk_super);
2892         find_oldest_super_backup(fs_info, generation);
2893
2894         /*
2895          * In the long term, we'll store the compression type in the super
2896          * block, and it'll be used for per file compression control.
2897          */
2898         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2899
2900         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2901         if (ret) {
2902                 err = ret;
2903                 goto fail_csum;
2904         }
2905
2906         features = btrfs_super_incompat_flags(disk_super) &
2907                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2908         if (features) {
2909                 btrfs_err(fs_info,
2910                     "cannot mount because of unsupported optional features (%llx)",
2911                     features);
2912                 err = -EINVAL;
2913                 goto fail_csum;
2914         }
2915
2916         features = btrfs_super_incompat_flags(disk_super);
2917         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2918         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2919                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2920         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2921                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2922
2923         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2924                 btrfs_info(fs_info, "has skinny extents");
2925
2926         /*
2927          * flag our filesystem as having big metadata blocks if
2928          * they are bigger than the page size
2929          */
2930         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2931                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2932                         btrfs_info(fs_info,
2933                                 "flagging fs with big metadata feature");
2934                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2935         }
2936
2937         nodesize = btrfs_super_nodesize(disk_super);
2938         sectorsize = btrfs_super_sectorsize(disk_super);
2939         stripesize = sectorsize;
2940         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2941         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2942
2943         /* Cache block sizes */
2944         fs_info->nodesize = nodesize;
2945         fs_info->sectorsize = sectorsize;
2946         fs_info->stripesize = stripesize;
2947
2948         /*
2949          * mixed block groups end up with duplicate but slightly offset
2950          * extent buffers for the same range.  It leads to corruptions
2951          */
2952         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2953             (sectorsize != nodesize)) {
2954                 btrfs_err(fs_info,
2955 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2956                         nodesize, sectorsize);
2957                 goto fail_csum;
2958         }
2959
2960         /*
2961          * Needn't use the lock because there is no other task which will
2962          * update the flag.
2963          */
2964         btrfs_set_super_incompat_flags(disk_super, features);
2965
2966         features = btrfs_super_compat_ro_flags(disk_super) &
2967                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2968         if (!sb_rdonly(sb) && features) {
2969                 btrfs_err(fs_info,
2970         "cannot mount read-write because of unsupported optional features (%llx)",
2971                        features);
2972                 err = -EINVAL;
2973                 goto fail_csum;
2974         }
2975
2976         ret = btrfs_init_workqueues(fs_info, fs_devices);
2977         if (ret) {
2978                 err = ret;
2979                 goto fail_sb_buffer;
2980         }
2981
2982         sb->s_bdi->congested_fn = btrfs_congested_fn;
2983         sb->s_bdi->congested_data = fs_info;
2984         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2985         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2986         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2987         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2988
2989         sb->s_blocksize = sectorsize;
2990         sb->s_blocksize_bits = blksize_bits(sectorsize);
2991         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2992
2993         mutex_lock(&fs_info->chunk_mutex);
2994         ret = btrfs_read_sys_array(fs_info);
2995         mutex_unlock(&fs_info->chunk_mutex);
2996         if (ret) {
2997                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2998                 goto fail_sb_buffer;
2999         }
3000
3001         generation = btrfs_super_chunk_root_generation(disk_super);
3002         level = btrfs_super_chunk_root_level(disk_super);
3003
3004         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3005
3006         chunk_root->node = read_tree_block(fs_info,
3007                                            btrfs_super_chunk_root(disk_super),
3008                                            generation, level, NULL);
3009         if (IS_ERR(chunk_root->node) ||
3010             !extent_buffer_uptodate(chunk_root->node)) {
3011                 btrfs_err(fs_info, "failed to read chunk root");
3012                 if (!IS_ERR(chunk_root->node))
3013                         free_extent_buffer(chunk_root->node);
3014                 chunk_root->node = NULL;
3015                 goto fail_tree_roots;
3016         }
3017         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3018         chunk_root->commit_root = btrfs_root_node(chunk_root);
3019
3020         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3021            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3022
3023         ret = btrfs_read_chunk_tree(fs_info);
3024         if (ret) {
3025                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3026                 goto fail_tree_roots;
3027         }
3028
3029         /*
3030          * Keep the devid that is marked to be the target device for the
3031          * device replace procedure
3032          */
3033         btrfs_free_extra_devids(fs_devices, 0);
3034
3035         if (!fs_devices->latest_bdev) {
3036                 btrfs_err(fs_info, "failed to read devices");
3037                 goto fail_tree_roots;
3038         }
3039
3040 retry_root_backup:
3041         generation = btrfs_super_generation(disk_super);
3042         level = btrfs_super_root_level(disk_super);
3043
3044         tree_root->node = read_tree_block(fs_info,
3045                                           btrfs_super_root(disk_super),
3046                                           generation, level, NULL);
3047         if (IS_ERR(tree_root->node) ||
3048             !extent_buffer_uptodate(tree_root->node)) {
3049                 btrfs_warn(fs_info, "failed to read tree root");
3050                 if (!IS_ERR(tree_root->node))
3051                         free_extent_buffer(tree_root->node);
3052                 tree_root->node = NULL;
3053                 goto recovery_tree_root;
3054         }
3055
3056         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3057         tree_root->commit_root = btrfs_root_node(tree_root);
3058         btrfs_set_root_refs(&tree_root->root_item, 1);
3059
3060         mutex_lock(&tree_root->objectid_mutex);
3061         ret = btrfs_find_highest_objectid(tree_root,
3062                                         &tree_root->highest_objectid);
3063         if (ret) {
3064                 mutex_unlock(&tree_root->objectid_mutex);
3065                 goto recovery_tree_root;
3066         }
3067
3068         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3069
3070         mutex_unlock(&tree_root->objectid_mutex);
3071
3072         ret = btrfs_read_roots(fs_info);
3073         if (ret)
3074                 goto recovery_tree_root;
3075
3076         fs_info->generation = generation;
3077         fs_info->last_trans_committed = generation;
3078
3079         ret = btrfs_verify_dev_extents(fs_info);
3080         if (ret) {
3081                 btrfs_err(fs_info,
3082                           "failed to verify dev extents against chunks: %d",
3083                           ret);
3084                 goto fail_block_groups;
3085         }
3086         ret = btrfs_recover_balance(fs_info);
3087         if (ret) {
3088                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3089                 goto fail_block_groups;
3090         }
3091
3092         ret = btrfs_init_dev_stats(fs_info);
3093         if (ret) {
3094                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3095                 goto fail_block_groups;
3096         }
3097
3098         ret = btrfs_init_dev_replace(fs_info);
3099         if (ret) {
3100                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3101                 goto fail_block_groups;
3102         }
3103
3104         btrfs_free_extra_devids(fs_devices, 1);
3105
3106         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3107         if (ret) {
3108                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3109                                 ret);
3110                 goto fail_block_groups;
3111         }
3112
3113         ret = btrfs_sysfs_add_device(fs_devices);
3114         if (ret) {
3115                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3116                                 ret);
3117                 goto fail_fsdev_sysfs;
3118         }
3119
3120         ret = btrfs_sysfs_add_mounted(fs_info);
3121         if (ret) {
3122                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3123                 goto fail_fsdev_sysfs;
3124         }
3125
3126         ret = btrfs_init_space_info(fs_info);
3127         if (ret) {
3128                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3129                 goto fail_sysfs;
3130         }
3131
3132         ret = btrfs_read_block_groups(fs_info);
3133         if (ret) {
3134                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3135                 goto fail_sysfs;
3136         }
3137
3138         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3139                 btrfs_warn(fs_info,
3140                 "writable mount is not allowed due to too many missing devices");
3141                 goto fail_sysfs;
3142         }
3143
3144         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3145                                                "btrfs-cleaner");
3146         if (IS_ERR(fs_info->cleaner_kthread))
3147                 goto fail_sysfs;
3148
3149         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3150                                                    tree_root,
3151                                                    "btrfs-transaction");
3152         if (IS_ERR(fs_info->transaction_kthread))
3153                 goto fail_cleaner;
3154
3155         if (!btrfs_test_opt(fs_info, NOSSD) &&
3156             !fs_info->fs_devices->rotating) {
3157                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3158         }
3159
3160         /*
3161          * Mount does not set all options immediately, we can do it now and do
3162          * not have to wait for transaction commit
3163          */
3164         btrfs_apply_pending_changes(fs_info);
3165
3166 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3167         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3168                 ret = btrfsic_mount(fs_info, fs_devices,
3169                                     btrfs_test_opt(fs_info,
3170                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3171                                     1 : 0,
3172                                     fs_info->check_integrity_print_mask);
3173                 if (ret)
3174                         btrfs_warn(fs_info,
3175                                 "failed to initialize integrity check module: %d",
3176                                 ret);
3177         }
3178 #endif
3179         ret = btrfs_read_qgroup_config(fs_info);
3180         if (ret)
3181                 goto fail_trans_kthread;
3182
3183         if (btrfs_build_ref_tree(fs_info))
3184                 btrfs_err(fs_info, "couldn't build ref tree");
3185
3186         /* do not make disk changes in broken FS or nologreplay is given */
3187         if (btrfs_super_log_root(disk_super) != 0 &&
3188             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3189                 ret = btrfs_replay_log(fs_info, fs_devices);
3190                 if (ret) {
3191                         err = ret;
3192                         goto fail_qgroup;
3193                 }
3194         }
3195
3196         ret = btrfs_find_orphan_roots(fs_info);
3197         if (ret)
3198                 goto fail_qgroup;
3199
3200         if (!sb_rdonly(sb)) {
3201                 ret = btrfs_cleanup_fs_roots(fs_info);
3202                 if (ret)
3203                         goto fail_qgroup;
3204
3205                 mutex_lock(&fs_info->cleaner_mutex);
3206                 ret = btrfs_recover_relocation(tree_root);
3207                 mutex_unlock(&fs_info->cleaner_mutex);
3208                 if (ret < 0) {
3209                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3210                                         ret);
3211                         err = -EINVAL;
3212                         goto fail_qgroup;
3213                 }
3214         }
3215
3216         location.objectid = BTRFS_FS_TREE_OBJECTID;
3217         location.type = BTRFS_ROOT_ITEM_KEY;
3218         location.offset = 0;
3219
3220         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3221         if (IS_ERR(fs_info->fs_root)) {
3222                 err = PTR_ERR(fs_info->fs_root);
3223                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3224                 goto fail_qgroup;
3225         }
3226
3227         if (sb_rdonly(sb))
3228                 return 0;
3229
3230         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3231             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3232                 clear_free_space_tree = 1;
3233         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3234                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3235                 btrfs_warn(fs_info, "free space tree is invalid");
3236                 clear_free_space_tree = 1;
3237         }
3238
3239         if (clear_free_space_tree) {
3240                 btrfs_info(fs_info, "clearing free space tree");
3241                 ret = btrfs_clear_free_space_tree(fs_info);
3242                 if (ret) {
3243                         btrfs_warn(fs_info,
3244                                    "failed to clear free space tree: %d", ret);
3245                         close_ctree(fs_info);
3246                         return ret;
3247                 }
3248         }
3249
3250         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3251             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3252                 btrfs_info(fs_info, "creating free space tree");
3253                 ret = btrfs_create_free_space_tree(fs_info);
3254                 if (ret) {
3255                         btrfs_warn(fs_info,
3256                                 "failed to create free space tree: %d", ret);
3257                         close_ctree(fs_info);
3258                         return ret;
3259                 }
3260         }
3261
3262         down_read(&fs_info->cleanup_work_sem);
3263         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3264             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3265                 up_read(&fs_info->cleanup_work_sem);
3266                 close_ctree(fs_info);
3267                 return ret;
3268         }
3269         up_read(&fs_info->cleanup_work_sem);
3270
3271         ret = btrfs_resume_balance_async(fs_info);
3272         if (ret) {
3273                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3274                 close_ctree(fs_info);
3275                 return ret;
3276         }
3277
3278         ret = btrfs_resume_dev_replace_async(fs_info);
3279         if (ret) {
3280                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3281                 close_ctree(fs_info);
3282                 return ret;
3283         }
3284
3285         btrfs_qgroup_rescan_resume(fs_info);
3286
3287         if (!fs_info->uuid_root) {
3288                 btrfs_info(fs_info, "creating UUID tree");
3289                 ret = btrfs_create_uuid_tree(fs_info);
3290                 if (ret) {
3291                         btrfs_warn(fs_info,
3292                                 "failed to create the UUID tree: %d", ret);
3293                         close_ctree(fs_info);
3294                         return ret;
3295                 }
3296         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3297                    fs_info->generation !=
3298                                 btrfs_super_uuid_tree_generation(disk_super)) {
3299                 btrfs_info(fs_info, "checking UUID tree");
3300                 ret = btrfs_check_uuid_tree(fs_info);
3301                 if (ret) {
3302                         btrfs_warn(fs_info,
3303                                 "failed to check the UUID tree: %d", ret);
3304                         close_ctree(fs_info);
3305                         return ret;
3306                 }
3307         } else {
3308                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3309         }
3310         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3311
3312         /*
3313          * backuproot only affect mount behavior, and if open_ctree succeeded,
3314          * no need to keep the flag
3315          */
3316         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3317
3318         return 0;
3319
3320 fail_qgroup:
3321         btrfs_free_qgroup_config(fs_info);
3322 fail_trans_kthread:
3323         kthread_stop(fs_info->transaction_kthread);
3324         btrfs_cleanup_transaction(fs_info);
3325         btrfs_free_fs_roots(fs_info);
3326 fail_cleaner:
3327         kthread_stop(fs_info->cleaner_kthread);
3328
3329         /*
3330          * make sure we're done with the btree inode before we stop our
3331          * kthreads
3332          */
3333         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3334
3335 fail_sysfs:
3336         btrfs_sysfs_remove_mounted(fs_info);
3337
3338 fail_fsdev_sysfs:
3339         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3340
3341 fail_block_groups:
3342         btrfs_put_block_group_cache(fs_info);
3343
3344 fail_tree_roots:
3345         free_root_pointers(fs_info, 1);
3346         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3347
3348 fail_sb_buffer:
3349         btrfs_stop_all_workers(fs_info);
3350         btrfs_free_block_groups(fs_info);
3351 fail_csum:
3352         btrfs_free_csum_hash(fs_info);
3353 fail_alloc:
3354 fail_iput:
3355         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3356
3357         iput(fs_info->btree_inode);
3358 fail_bio_counter:
3359         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3360 fail_delalloc_bytes:
3361         percpu_counter_destroy(&fs_info->delalloc_bytes);
3362 fail_dirty_metadata_bytes:
3363         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3364 fail_dio_bytes:
3365         percpu_counter_destroy(&fs_info->dio_bytes);
3366 fail_srcu:
3367         cleanup_srcu_struct(&fs_info->subvol_srcu);
3368 fail:
3369         btrfs_free_stripe_hash_table(fs_info);
3370         btrfs_close_devices(fs_info->fs_devices);
3371         return err;
3372
3373 recovery_tree_root:
3374         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3375                 goto fail_tree_roots;
3376
3377         free_root_pointers(fs_info, 0);
3378
3379         /* don't use the log in recovery mode, it won't be valid */
3380         btrfs_set_super_log_root(disk_super, 0);
3381
3382         /* we can't trust the free space cache either */
3383         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3384
3385         ret = next_root_backup(fs_info, fs_info->super_copy,
3386                                &num_backups_tried, &backup_index);
3387         if (ret == -1)
3388                 goto fail_block_groups;
3389         goto retry_root_backup;
3390 }
3391 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3392
3393 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3394 {
3395         if (uptodate) {
3396                 set_buffer_uptodate(bh);
3397         } else {
3398                 struct btrfs_device *device = (struct btrfs_device *)
3399                         bh->b_private;
3400
3401                 btrfs_warn_rl_in_rcu(device->fs_info,
3402                                 "lost page write due to IO error on %s",
3403                                           rcu_str_deref(device->name));
3404                 /* note, we don't set_buffer_write_io_error because we have
3405                  * our own ways of dealing with the IO errors
3406                  */
3407                 clear_buffer_uptodate(bh);
3408                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3409         }
3410         unlock_buffer(bh);
3411         put_bh(bh);
3412 }
3413
3414 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3415                         struct buffer_head **bh_ret)
3416 {
3417         struct buffer_head *bh;
3418         struct btrfs_super_block *super;
3419         u64 bytenr;
3420
3421         bytenr = btrfs_sb_offset(copy_num);
3422         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3423                 return -EINVAL;
3424
3425         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3426         /*
3427          * If we fail to read from the underlying devices, as of now
3428          * the best option we have is to mark it EIO.
3429          */
3430         if (!bh)
3431                 return -EIO;
3432
3433         super = (struct btrfs_super_block *)bh->b_data;
3434         if (btrfs_super_bytenr(super) != bytenr ||
3435                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3436                 brelse(bh);
3437                 return -EINVAL;
3438         }
3439
3440         *bh_ret = bh;
3441         return 0;
3442 }
3443
3444
3445 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3446 {
3447         struct buffer_head *bh;
3448         struct buffer_head *latest = NULL;
3449         struct btrfs_super_block *super;
3450         int i;
3451         u64 transid = 0;
3452         int ret = -EINVAL;
3453
3454         /* we would like to check all the supers, but that would make
3455          * a btrfs mount succeed after a mkfs from a different FS.
3456          * So, we need to add a special mount option to scan for
3457          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3458          */
3459         for (i = 0; i < 1; i++) {
3460                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3461                 if (ret)
3462                         continue;
3463
3464                 super = (struct btrfs_super_block *)bh->b_data;
3465
3466                 if (!latest || btrfs_super_generation(super) > transid) {
3467                         brelse(latest);
3468                         latest = bh;
3469                         transid = btrfs_super_generation(super);
3470                 } else {
3471                         brelse(bh);
3472                 }
3473         }
3474
3475         if (!latest)
3476                 return ERR_PTR(ret);
3477
3478         return latest;
3479 }
3480
3481 /*
3482  * Write superblock @sb to the @device. Do not wait for completion, all the
3483  * buffer heads we write are pinned.
3484  *
3485  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3486  * the expected device size at commit time. Note that max_mirrors must be
3487  * same for write and wait phases.
3488  *
3489  * Return number of errors when buffer head is not found or submission fails.
3490  */
3491 static int write_dev_supers(struct btrfs_device *device,
3492                             struct btrfs_super_block *sb, int max_mirrors)
3493 {
3494         struct btrfs_fs_info *fs_info = device->fs_info;
3495         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3496         struct buffer_head *bh;
3497         int i;
3498         int ret;
3499         int errors = 0;
3500         u64 bytenr;
3501         int op_flags;
3502
3503         if (max_mirrors == 0)
3504                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3505
3506         shash->tfm = fs_info->csum_shash;
3507
3508         for (i = 0; i < max_mirrors; i++) {
3509                 bytenr = btrfs_sb_offset(i);
3510                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3511                     device->commit_total_bytes)
3512                         break;
3513
3514                 btrfs_set_super_bytenr(sb, bytenr);
3515
3516                 crypto_shash_init(shash);
3517                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3518                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3519                 crypto_shash_final(shash, sb->csum);
3520
3521                 /* One reference for us, and we leave it for the caller */
3522                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3523                               BTRFS_SUPER_INFO_SIZE);
3524                 if (!bh) {
3525                         btrfs_err(device->fs_info,
3526                             "couldn't get super buffer head for bytenr %llu",
3527                             bytenr);
3528                         errors++;
3529                         continue;
3530                 }
3531
3532                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3533
3534                 /* one reference for submit_bh */
3535                 get_bh(bh);
3536
3537                 set_buffer_uptodate(bh);
3538                 lock_buffer(bh);
3539                 bh->b_end_io = btrfs_end_buffer_write_sync;
3540                 bh->b_private = device;
3541
3542                 /*
3543                  * we fua the first super.  The others we allow
3544                  * to go down lazy.
3545                  */
3546                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3547                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3548                         op_flags |= REQ_FUA;
3549                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3550                 if (ret)
3551                         errors++;
3552         }
3553         return errors < i ? 0 : -1;
3554 }
3555
3556 /*
3557  * Wait for write completion of superblocks done by write_dev_supers,
3558  * @max_mirrors same for write and wait phases.
3559  *
3560  * Return number of errors when buffer head is not found or not marked up to
3561  * date.
3562  */
3563 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3564 {
3565         struct buffer_head *bh;
3566         int i;
3567         int errors = 0;
3568         bool primary_failed = false;
3569         u64 bytenr;
3570
3571         if (max_mirrors == 0)
3572                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3573
3574         for (i = 0; i < max_mirrors; i++) {
3575                 bytenr = btrfs_sb_offset(i);
3576                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3577                     device->commit_total_bytes)
3578                         break;
3579
3580                 bh = __find_get_block(device->bdev,
3581                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3582                                       BTRFS_SUPER_INFO_SIZE);
3583                 if (!bh) {
3584                         errors++;
3585                         if (i == 0)
3586                                 primary_failed = true;
3587                         continue;
3588                 }
3589                 wait_on_buffer(bh);
3590                 if (!buffer_uptodate(bh)) {
3591                         errors++;
3592                         if (i == 0)
3593                                 primary_failed = true;
3594                 }
3595
3596                 /* drop our reference */
3597                 brelse(bh);
3598
3599                 /* drop the reference from the writing run */
3600                 brelse(bh);
3601         }
3602
3603         /* log error, force error return */
3604         if (primary_failed) {
3605                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3606                           device->devid);
3607                 return -1;
3608         }
3609
3610         return errors < i ? 0 : -1;
3611 }
3612
3613 /*
3614  * endio for the write_dev_flush, this will wake anyone waiting
3615  * for the barrier when it is done
3616  */
3617 static void btrfs_end_empty_barrier(struct bio *bio)
3618 {
3619         complete(bio->bi_private);
3620 }
3621
3622 /*
3623  * Submit a flush request to the device if it supports it. Error handling is
3624  * done in the waiting counterpart.
3625  */
3626 static void write_dev_flush(struct btrfs_device *device)
3627 {
3628         struct request_queue *q = bdev_get_queue(device->bdev);
3629         struct bio *bio = device->flush_bio;
3630
3631         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3632                 return;
3633
3634         bio_reset(bio);
3635         bio->bi_end_io = btrfs_end_empty_barrier;
3636         bio_set_dev(bio, device->bdev);
3637         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3638         init_completion(&device->flush_wait);
3639         bio->bi_private = &device->flush_wait;
3640
3641         btrfsic_submit_bio(bio);
3642         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3643 }
3644
3645 /*
3646  * If the flush bio has been submitted by write_dev_flush, wait for it.
3647  */
3648 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3649 {
3650         struct bio *bio = device->flush_bio;
3651
3652         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3653                 return BLK_STS_OK;
3654
3655         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3656         wait_for_completion_io(&device->flush_wait);
3657
3658         return bio->bi_status;
3659 }
3660
3661 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3662 {
3663         if (!btrfs_check_rw_degradable(fs_info, NULL))
3664                 return -EIO;
3665         return 0;
3666 }
3667
3668 /*
3669  * send an empty flush down to each device in parallel,
3670  * then wait for them
3671  */
3672 static int barrier_all_devices(struct btrfs_fs_info *info)
3673 {
3674         struct list_head *head;
3675         struct btrfs_device *dev;
3676         int errors_wait = 0;
3677         blk_status_t ret;
3678
3679         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3680         /* send down all the barriers */
3681         head = &info->fs_devices->devices;
3682         list_for_each_entry(dev, head, dev_list) {
3683                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3684                         continue;
3685                 if (!dev->bdev)
3686                         continue;
3687                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3688                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3689                         continue;
3690
3691                 write_dev_flush(dev);
3692                 dev->last_flush_error = BLK_STS_OK;
3693         }
3694
3695         /* wait for all the barriers */
3696         list_for_each_entry(dev, head, dev_list) {
3697                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3698                         continue;
3699                 if (!dev->bdev) {
3700                         errors_wait++;
3701                         continue;
3702                 }
3703                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3704                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3705                         continue;
3706
3707                 ret = wait_dev_flush(dev);
3708                 if (ret) {
3709                         dev->last_flush_error = ret;
3710                         btrfs_dev_stat_inc_and_print(dev,
3711                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3712                         errors_wait++;
3713                 }
3714         }
3715
3716         if (errors_wait) {
3717                 /*
3718                  * At some point we need the status of all disks
3719                  * to arrive at the volume status. So error checking
3720                  * is being pushed to a separate loop.
3721                  */
3722                 return check_barrier_error(info);
3723         }
3724         return 0;
3725 }
3726
3727 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3728 {
3729         int raid_type;
3730         int min_tolerated = INT_MAX;
3731
3732         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3733             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3734                 min_tolerated = min_t(int, min_tolerated,
3735                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3736                                     tolerated_failures);
3737
3738         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3739                 if (raid_type == BTRFS_RAID_SINGLE)
3740                         continue;
3741                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3742                         continue;
3743                 min_tolerated = min_t(int, min_tolerated,
3744                                     btrfs_raid_array[raid_type].
3745                                     tolerated_failures);
3746         }
3747
3748         if (min_tolerated == INT_MAX) {
3749                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3750                 min_tolerated = 0;
3751         }
3752
3753         return min_tolerated;
3754 }
3755
3756 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3757 {
3758         struct list_head *head;
3759         struct btrfs_device *dev;
3760         struct btrfs_super_block *sb;
3761         struct btrfs_dev_item *dev_item;
3762         int ret;
3763         int do_barriers;
3764         int max_errors;
3765         int total_errors = 0;
3766         u64 flags;
3767
3768         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3769
3770         /*
3771          * max_mirrors == 0 indicates we're from commit_transaction,
3772          * not from fsync where the tree roots in fs_info have not
3773          * been consistent on disk.
3774          */
3775         if (max_mirrors == 0)
3776                 backup_super_roots(fs_info);
3777
3778         sb = fs_info->super_for_commit;
3779         dev_item = &sb->dev_item;
3780
3781         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3782         head = &fs_info->fs_devices->devices;
3783         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3784
3785         if (do_barriers) {
3786                 ret = barrier_all_devices(fs_info);
3787                 if (ret) {
3788                         mutex_unlock(
3789                                 &fs_info->fs_devices->device_list_mutex);
3790                         btrfs_handle_fs_error(fs_info, ret,
3791                                               "errors while submitting device barriers.");
3792                         return ret;
3793                 }
3794         }
3795
3796         list_for_each_entry(dev, head, dev_list) {
3797                 if (!dev->bdev) {
3798                         total_errors++;
3799                         continue;
3800                 }
3801                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3802                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3803                         continue;
3804
3805                 btrfs_set_stack_device_generation(dev_item, 0);
3806                 btrfs_set_stack_device_type(dev_item, dev->type);
3807                 btrfs_set_stack_device_id(dev_item, dev->devid);
3808                 btrfs_set_stack_device_total_bytes(dev_item,
3809                                                    dev->commit_total_bytes);
3810                 btrfs_set_stack_device_bytes_used(dev_item,
3811                                                   dev->commit_bytes_used);
3812                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3813                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3814                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3815                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3816                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3817                        BTRFS_FSID_SIZE);
3818
3819                 flags = btrfs_super_flags(sb);
3820                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3821
3822                 ret = btrfs_validate_write_super(fs_info, sb);
3823                 if (ret < 0) {
3824                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3825                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3826                                 "unexpected superblock corruption detected");
3827                         return -EUCLEAN;
3828                 }
3829
3830                 ret = write_dev_supers(dev, sb, max_mirrors);
3831                 if (ret)
3832                         total_errors++;
3833         }
3834         if (total_errors > max_errors) {
3835                 btrfs_err(fs_info, "%d errors while writing supers",
3836                           total_errors);
3837                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3838
3839                 /* FUA is masked off if unsupported and can't be the reason */
3840                 btrfs_handle_fs_error(fs_info, -EIO,
3841                                       "%d errors while writing supers",
3842                                       total_errors);
3843                 return -EIO;
3844         }
3845
3846         total_errors = 0;
3847         list_for_each_entry(dev, head, dev_list) {
3848                 if (!dev->bdev)
3849                         continue;
3850                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3851                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3852                         continue;
3853
3854                 ret = wait_dev_supers(dev, max_mirrors);
3855                 if (ret)
3856                         total_errors++;
3857         }
3858         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3859         if (total_errors > max_errors) {
3860                 btrfs_handle_fs_error(fs_info, -EIO,
3861                                       "%d errors while writing supers",
3862                                       total_errors);
3863                 return -EIO;
3864         }
3865         return 0;
3866 }
3867
3868 /* Drop a fs root from the radix tree and free it. */
3869 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3870                                   struct btrfs_root *root)
3871 {
3872         spin_lock(&fs_info->fs_roots_radix_lock);
3873         radix_tree_delete(&fs_info->fs_roots_radix,
3874                           (unsigned long)root->root_key.objectid);
3875         spin_unlock(&fs_info->fs_roots_radix_lock);
3876
3877         if (btrfs_root_refs(&root->root_item) == 0)
3878                 synchronize_srcu(&fs_info->subvol_srcu);
3879
3880         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3881                 btrfs_free_log(NULL, root);
3882                 if (root->reloc_root) {
3883                         free_extent_buffer(root->reloc_root->node);
3884                         free_extent_buffer(root->reloc_root->commit_root);
3885                         btrfs_put_fs_root(root->reloc_root);
3886                         root->reloc_root = NULL;
3887                 }
3888         }
3889
3890         if (root->free_ino_pinned)
3891                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3892         if (root->free_ino_ctl)
3893                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3894         btrfs_free_fs_root(root);
3895 }
3896
3897 void btrfs_free_fs_root(struct btrfs_root *root)
3898 {
3899         iput(root->ino_cache_inode);
3900         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3901         if (root->anon_dev)
3902                 free_anon_bdev(root->anon_dev);
3903         if (root->subv_writers)
3904                 btrfs_free_subvolume_writers(root->subv_writers);
3905         free_extent_buffer(root->node);
3906         free_extent_buffer(root->commit_root);
3907         kfree(root->free_ino_ctl);
3908         kfree(root->free_ino_pinned);
3909         btrfs_put_fs_root(root);
3910 }
3911
3912 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3913 {
3914         u64 root_objectid = 0;
3915         struct btrfs_root *gang[8];
3916         int i = 0;
3917         int err = 0;
3918         unsigned int ret = 0;
3919         int index;
3920
3921         while (1) {
3922                 index = srcu_read_lock(&fs_info->subvol_srcu);
3923                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3924                                              (void **)gang, root_objectid,
3925                                              ARRAY_SIZE(gang));
3926                 if (!ret) {
3927                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3928                         break;
3929                 }
3930                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3931
3932                 for (i = 0; i < ret; i++) {
3933                         /* Avoid to grab roots in dead_roots */
3934                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3935                                 gang[i] = NULL;
3936                                 continue;
3937                         }
3938                         /* grab all the search result for later use */
3939                         gang[i] = btrfs_grab_fs_root(gang[i]);
3940                 }
3941                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3942
3943                 for (i = 0; i < ret; i++) {
3944                         if (!gang[i])
3945                                 continue;
3946                         root_objectid = gang[i]->root_key.objectid;
3947                         err = btrfs_orphan_cleanup(gang[i]);
3948                         if (err)
3949                                 break;
3950                         btrfs_put_fs_root(gang[i]);
3951                 }
3952                 root_objectid++;
3953         }
3954
3955         /* release the uncleaned roots due to error */
3956         for (; i < ret; i++) {
3957                 if (gang[i])
3958                         btrfs_put_fs_root(gang[i]);
3959         }
3960         return err;
3961 }
3962
3963 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3964 {
3965         struct btrfs_root *root = fs_info->tree_root;
3966         struct btrfs_trans_handle *trans;
3967
3968         mutex_lock(&fs_info->cleaner_mutex);
3969         btrfs_run_delayed_iputs(fs_info);
3970         mutex_unlock(&fs_info->cleaner_mutex);
3971         wake_up_process(fs_info->cleaner_kthread);
3972
3973         /* wait until ongoing cleanup work done */
3974         down_write(&fs_info->cleanup_work_sem);
3975         up_write(&fs_info->cleanup_work_sem);
3976
3977         trans = btrfs_join_transaction(root);
3978         if (IS_ERR(trans))
3979                 return PTR_ERR(trans);
3980         return btrfs_commit_transaction(trans);
3981 }
3982
3983 void close_ctree(struct btrfs_fs_info *fs_info)
3984 {
3985         int ret;
3986
3987         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3988         /*
3989          * We don't want the cleaner to start new transactions, add more delayed
3990          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3991          * because that frees the task_struct, and the transaction kthread might
3992          * still try to wake up the cleaner.
3993          */
3994         kthread_park(fs_info->cleaner_kthread);
3995
3996         /* wait for the qgroup rescan worker to stop */
3997         btrfs_qgroup_wait_for_completion(fs_info, false);
3998
3999         /* wait for the uuid_scan task to finish */
4000         down(&fs_info->uuid_tree_rescan_sem);
4001         /* avoid complains from lockdep et al., set sem back to initial state */
4002         up(&fs_info->uuid_tree_rescan_sem);
4003
4004         /* pause restriper - we want to resume on mount */
4005         btrfs_pause_balance(fs_info);
4006
4007         btrfs_dev_replace_suspend_for_unmount(fs_info);
4008
4009         btrfs_scrub_cancel(fs_info);
4010
4011         /* wait for any defraggers to finish */
4012         wait_event(fs_info->transaction_wait,
4013                    (atomic_read(&fs_info->defrag_running) == 0));
4014
4015         /* clear out the rbtree of defraggable inodes */
4016         btrfs_cleanup_defrag_inodes(fs_info);
4017
4018         cancel_work_sync(&fs_info->async_reclaim_work);
4019
4020         if (!sb_rdonly(fs_info->sb)) {
4021                 /*
4022                  * The cleaner kthread is stopped, so do one final pass over
4023                  * unused block groups.
4024                  */
4025                 btrfs_delete_unused_bgs(fs_info);
4026
4027                 ret = btrfs_commit_super(fs_info);
4028                 if (ret)
4029                         btrfs_err(fs_info, "commit super ret %d", ret);
4030         }
4031
4032         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4033             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4034                 btrfs_error_commit_super(fs_info);
4035
4036         kthread_stop(fs_info->transaction_kthread);
4037         kthread_stop(fs_info->cleaner_kthread);
4038
4039         ASSERT(list_empty(&fs_info->delayed_iputs));
4040         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4041
4042         btrfs_free_qgroup_config(fs_info);
4043         ASSERT(list_empty(&fs_info->delalloc_roots));
4044
4045         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4046                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4047                        percpu_counter_sum(&fs_info->delalloc_bytes));
4048         }
4049
4050         if (percpu_counter_sum(&fs_info->dio_bytes))
4051                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4052                            percpu_counter_sum(&fs_info->dio_bytes));
4053
4054         btrfs_sysfs_remove_mounted(fs_info);
4055         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4056
4057         btrfs_free_fs_roots(fs_info);
4058
4059         btrfs_put_block_group_cache(fs_info);
4060
4061         /*
4062          * we must make sure there is not any read request to
4063          * submit after we stopping all workers.
4064          */
4065         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4066         btrfs_stop_all_workers(fs_info);
4067
4068         btrfs_free_block_groups(fs_info);
4069
4070         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4071         free_root_pointers(fs_info, 1);
4072
4073         iput(fs_info->btree_inode);
4074
4075 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4076         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4077                 btrfsic_unmount(fs_info->fs_devices);
4078 #endif
4079
4080         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4081         btrfs_close_devices(fs_info->fs_devices);
4082
4083         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4084         percpu_counter_destroy(&fs_info->delalloc_bytes);
4085         percpu_counter_destroy(&fs_info->dio_bytes);
4086         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4087         cleanup_srcu_struct(&fs_info->subvol_srcu);
4088
4089         btrfs_free_csum_hash(fs_info);
4090         btrfs_free_stripe_hash_table(fs_info);
4091         btrfs_free_ref_cache(fs_info);
4092 }
4093
4094 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4095                           int atomic)
4096 {
4097         int ret;
4098         struct inode *btree_inode = buf->pages[0]->mapping->host;
4099
4100         ret = extent_buffer_uptodate(buf);
4101         if (!ret)
4102                 return ret;
4103
4104         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4105                                     parent_transid, atomic);
4106         if (ret == -EAGAIN)
4107                 return ret;
4108         return !ret;
4109 }
4110
4111 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4112 {
4113         struct btrfs_fs_info *fs_info;
4114         struct btrfs_root *root;
4115         u64 transid = btrfs_header_generation(buf);
4116         int was_dirty;
4117
4118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4119         /*
4120          * This is a fast path so only do this check if we have sanity tests
4121          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4122          * outside of the sanity tests.
4123          */
4124         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4125                 return;
4126 #endif
4127         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4128         fs_info = root->fs_info;
4129         btrfs_assert_tree_locked(buf);
4130         if (transid != fs_info->generation)
4131                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4132                         buf->start, transid, fs_info->generation);
4133         was_dirty = set_extent_buffer_dirty(buf);
4134         if (!was_dirty)
4135                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4136                                          buf->len,
4137                                          fs_info->dirty_metadata_batch);
4138 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4139         /*
4140          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4141          * but item data not updated.
4142          * So here we should only check item pointers, not item data.
4143          */
4144         if (btrfs_header_level(buf) == 0 &&
4145             btrfs_check_leaf_relaxed(buf)) {
4146                 btrfs_print_leaf(buf);
4147                 ASSERT(0);
4148         }
4149 #endif
4150 }
4151
4152 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4153                                         int flush_delayed)
4154 {
4155         /*
4156          * looks as though older kernels can get into trouble with
4157          * this code, they end up stuck in balance_dirty_pages forever
4158          */
4159         int ret;
4160
4161         if (current->flags & PF_MEMALLOC)
4162                 return;
4163
4164         if (flush_delayed)
4165                 btrfs_balance_delayed_items(fs_info);
4166
4167         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4168                                      BTRFS_DIRTY_METADATA_THRESH,
4169                                      fs_info->dirty_metadata_batch);
4170         if (ret > 0) {
4171                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4172         }
4173 }
4174
4175 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4176 {
4177         __btrfs_btree_balance_dirty(fs_info, 1);
4178 }
4179
4180 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4181 {
4182         __btrfs_btree_balance_dirty(fs_info, 0);
4183 }
4184
4185 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4186                       struct btrfs_key *first_key)
4187 {
4188         return btree_read_extent_buffer_pages(buf, parent_transid,
4189                                               level, first_key);
4190 }
4191
4192 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4193 {
4194         /* cleanup FS via transaction */
4195         btrfs_cleanup_transaction(fs_info);
4196
4197         mutex_lock(&fs_info->cleaner_mutex);
4198         btrfs_run_delayed_iputs(fs_info);
4199         mutex_unlock(&fs_info->cleaner_mutex);
4200
4201         down_write(&fs_info->cleanup_work_sem);
4202         up_write(&fs_info->cleanup_work_sem);
4203 }
4204
4205 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4206 {
4207         struct btrfs_ordered_extent *ordered;
4208
4209         spin_lock(&root->ordered_extent_lock);
4210         /*
4211          * This will just short circuit the ordered completion stuff which will
4212          * make sure the ordered extent gets properly cleaned up.
4213          */
4214         list_for_each_entry(ordered, &root->ordered_extents,
4215                             root_extent_list)
4216                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4217         spin_unlock(&root->ordered_extent_lock);
4218 }
4219
4220 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4221 {
4222         struct btrfs_root *root;
4223         struct list_head splice;
4224
4225         INIT_LIST_HEAD(&splice);
4226
4227         spin_lock(&fs_info->ordered_root_lock);
4228         list_splice_init(&fs_info->ordered_roots, &splice);
4229         while (!list_empty(&splice)) {
4230                 root = list_first_entry(&splice, struct btrfs_root,
4231                                         ordered_root);
4232                 list_move_tail(&root->ordered_root,
4233                                &fs_info->ordered_roots);
4234
4235                 spin_unlock(&fs_info->ordered_root_lock);
4236                 btrfs_destroy_ordered_extents(root);
4237
4238                 cond_resched();
4239                 spin_lock(&fs_info->ordered_root_lock);
4240         }
4241         spin_unlock(&fs_info->ordered_root_lock);
4242
4243         /*
4244          * We need this here because if we've been flipped read-only we won't
4245          * get sync() from the umount, so we need to make sure any ordered
4246          * extents that haven't had their dirty pages IO start writeout yet
4247          * actually get run and error out properly.
4248          */
4249         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4250 }
4251
4252 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4253                                       struct btrfs_fs_info *fs_info)
4254 {
4255         struct rb_node *node;
4256         struct btrfs_delayed_ref_root *delayed_refs;
4257         struct btrfs_delayed_ref_node *ref;
4258         int ret = 0;
4259
4260         delayed_refs = &trans->delayed_refs;
4261
4262         spin_lock(&delayed_refs->lock);
4263         if (atomic_read(&delayed_refs->num_entries) == 0) {
4264                 spin_unlock(&delayed_refs->lock);
4265                 btrfs_info(fs_info, "delayed_refs has NO entry");
4266                 return ret;
4267         }
4268
4269         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4270                 struct btrfs_delayed_ref_head *head;
4271                 struct rb_node *n;
4272                 bool pin_bytes = false;
4273
4274                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4275                                 href_node);
4276                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4277                         continue;
4278
4279                 spin_lock(&head->lock);
4280                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4281                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4282                                        ref_node);
4283                         ref->in_tree = 0;
4284                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4285                         RB_CLEAR_NODE(&ref->ref_node);
4286                         if (!list_empty(&ref->add_list))
4287                                 list_del(&ref->add_list);
4288                         atomic_dec(&delayed_refs->num_entries);
4289                         btrfs_put_delayed_ref(ref);
4290                 }
4291                 if (head->must_insert_reserved)
4292                         pin_bytes = true;
4293                 btrfs_free_delayed_extent_op(head->extent_op);
4294                 btrfs_delete_ref_head(delayed_refs, head);
4295                 spin_unlock(&head->lock);
4296                 spin_unlock(&delayed_refs->lock);
4297                 mutex_unlock(&head->mutex);
4298
4299                 if (pin_bytes)
4300                         btrfs_pin_extent(fs_info, head->bytenr,
4301                                          head->num_bytes, 1);
4302                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4303                 btrfs_put_delayed_ref_head(head);
4304                 cond_resched();
4305                 spin_lock(&delayed_refs->lock);
4306         }
4307
4308         spin_unlock(&delayed_refs->lock);
4309
4310         return ret;
4311 }
4312
4313 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4314 {
4315         struct btrfs_inode *btrfs_inode;
4316         struct list_head splice;
4317
4318         INIT_LIST_HEAD(&splice);
4319
4320         spin_lock(&root->delalloc_lock);
4321         list_splice_init(&root->delalloc_inodes, &splice);
4322
4323         while (!list_empty(&splice)) {
4324                 struct inode *inode = NULL;
4325                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4326                                                delalloc_inodes);
4327                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4328                 spin_unlock(&root->delalloc_lock);
4329
4330                 /*
4331                  * Make sure we get a live inode and that it'll not disappear
4332                  * meanwhile.
4333                  */
4334                 inode = igrab(&btrfs_inode->vfs_inode);
4335                 if (inode) {
4336                         invalidate_inode_pages2(inode->i_mapping);
4337                         iput(inode);
4338                 }
4339                 spin_lock(&root->delalloc_lock);
4340         }
4341         spin_unlock(&root->delalloc_lock);
4342 }
4343
4344 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4345 {
4346         struct btrfs_root *root;
4347         struct list_head splice;
4348
4349         INIT_LIST_HEAD(&splice);
4350
4351         spin_lock(&fs_info->delalloc_root_lock);
4352         list_splice_init(&fs_info->delalloc_roots, &splice);
4353         while (!list_empty(&splice)) {
4354                 root = list_first_entry(&splice, struct btrfs_root,
4355                                          delalloc_root);
4356                 root = btrfs_grab_fs_root(root);
4357                 BUG_ON(!root);
4358                 spin_unlock(&fs_info->delalloc_root_lock);
4359
4360                 btrfs_destroy_delalloc_inodes(root);
4361                 btrfs_put_fs_root(root);
4362
4363                 spin_lock(&fs_info->delalloc_root_lock);
4364         }
4365         spin_unlock(&fs_info->delalloc_root_lock);
4366 }
4367
4368 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4369                                         struct extent_io_tree *dirty_pages,
4370                                         int mark)
4371 {
4372         int ret;
4373         struct extent_buffer *eb;
4374         u64 start = 0;
4375         u64 end;
4376
4377         while (1) {
4378                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4379                                             mark, NULL);
4380                 if (ret)
4381                         break;
4382
4383                 clear_extent_bits(dirty_pages, start, end, mark);
4384                 while (start <= end) {
4385                         eb = find_extent_buffer(fs_info, start);
4386                         start += fs_info->nodesize;
4387                         if (!eb)
4388                                 continue;
4389                         wait_on_extent_buffer_writeback(eb);
4390
4391                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4392                                                &eb->bflags))
4393                                 clear_extent_buffer_dirty(eb);
4394                         free_extent_buffer_stale(eb);
4395                 }
4396         }
4397
4398         return ret;
4399 }
4400
4401 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4402                                        struct extent_io_tree *pinned_extents)
4403 {
4404         struct extent_io_tree *unpin;
4405         u64 start;
4406         u64 end;
4407         int ret;
4408         bool loop = true;
4409
4410         unpin = pinned_extents;
4411 again:
4412         while (1) {
4413                 struct extent_state *cached_state = NULL;
4414
4415                 /*
4416                  * The btrfs_finish_extent_commit() may get the same range as
4417                  * ours between find_first_extent_bit and clear_extent_dirty.
4418                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4419                  * the same extent range.
4420                  */
4421                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4422                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4423                                             EXTENT_DIRTY, &cached_state);
4424                 if (ret) {
4425                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4426                         break;
4427                 }
4428
4429                 clear_extent_dirty(unpin, start, end, &cached_state);
4430                 free_extent_state(cached_state);
4431                 btrfs_error_unpin_extent_range(fs_info, start, end);
4432                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4433                 cond_resched();
4434         }
4435
4436         if (loop) {
4437                 if (unpin == &fs_info->freed_extents[0])
4438                         unpin = &fs_info->freed_extents[1];
4439                 else
4440                         unpin = &fs_info->freed_extents[0];
4441                 loop = false;
4442                 goto again;
4443         }
4444
4445         return 0;
4446 }
4447
4448 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4449 {
4450         struct inode *inode;
4451
4452         inode = cache->io_ctl.inode;
4453         if (inode) {
4454                 invalidate_inode_pages2(inode->i_mapping);
4455                 BTRFS_I(inode)->generation = 0;
4456                 cache->io_ctl.inode = NULL;
4457                 iput(inode);
4458         }
4459         btrfs_put_block_group(cache);
4460 }
4461
4462 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4463                              struct btrfs_fs_info *fs_info)
4464 {
4465         struct btrfs_block_group_cache *cache;
4466
4467         spin_lock(&cur_trans->dirty_bgs_lock);
4468         while (!list_empty(&cur_trans->dirty_bgs)) {
4469                 cache = list_first_entry(&cur_trans->dirty_bgs,
4470                                          struct btrfs_block_group_cache,
4471                                          dirty_list);
4472
4473                 if (!list_empty(&cache->io_list)) {
4474                         spin_unlock(&cur_trans->dirty_bgs_lock);
4475                         list_del_init(&cache->io_list);
4476                         btrfs_cleanup_bg_io(cache);
4477                         spin_lock(&cur_trans->dirty_bgs_lock);
4478                 }
4479
4480                 list_del_init(&cache->dirty_list);
4481                 spin_lock(&cache->lock);
4482                 cache->disk_cache_state = BTRFS_DC_ERROR;
4483                 spin_unlock(&cache->lock);
4484
4485                 spin_unlock(&cur_trans->dirty_bgs_lock);
4486                 btrfs_put_block_group(cache);
4487                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4488                 spin_lock(&cur_trans->dirty_bgs_lock);
4489         }
4490         spin_unlock(&cur_trans->dirty_bgs_lock);
4491
4492         /*
4493          * Refer to the definition of io_bgs member for details why it's safe
4494          * to use it without any locking
4495          */
4496         while (!list_empty(&cur_trans->io_bgs)) {
4497                 cache = list_first_entry(&cur_trans->io_bgs,
4498                                          struct btrfs_block_group_cache,
4499                                          io_list);
4500
4501                 list_del_init(&cache->io_list);
4502                 spin_lock(&cache->lock);
4503                 cache->disk_cache_state = BTRFS_DC_ERROR;
4504                 spin_unlock(&cache->lock);
4505                 btrfs_cleanup_bg_io(cache);
4506         }
4507 }
4508
4509 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4510                                    struct btrfs_fs_info *fs_info)
4511 {
4512         struct btrfs_device *dev, *tmp;
4513
4514         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4515         ASSERT(list_empty(&cur_trans->dirty_bgs));
4516         ASSERT(list_empty(&cur_trans->io_bgs));
4517
4518         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4519                                  post_commit_list) {
4520                 list_del_init(&dev->post_commit_list);
4521         }
4522
4523         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4524
4525         cur_trans->state = TRANS_STATE_COMMIT_START;
4526         wake_up(&fs_info->transaction_blocked_wait);
4527
4528         cur_trans->state = TRANS_STATE_UNBLOCKED;
4529         wake_up(&fs_info->transaction_wait);
4530
4531         btrfs_destroy_delayed_inodes(fs_info);
4532         btrfs_assert_delayed_root_empty(fs_info);
4533
4534         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4535                                      EXTENT_DIRTY);
4536         btrfs_destroy_pinned_extent(fs_info,
4537                                     fs_info->pinned_extents);
4538
4539         cur_trans->state =TRANS_STATE_COMPLETED;
4540         wake_up(&cur_trans->commit_wait);
4541 }
4542
4543 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4544 {
4545         struct btrfs_transaction *t;
4546
4547         mutex_lock(&fs_info->transaction_kthread_mutex);
4548
4549         spin_lock(&fs_info->trans_lock);
4550         while (!list_empty(&fs_info->trans_list)) {
4551                 t = list_first_entry(&fs_info->trans_list,
4552                                      struct btrfs_transaction, list);
4553                 if (t->state >= TRANS_STATE_COMMIT_START) {
4554                         refcount_inc(&t->use_count);
4555                         spin_unlock(&fs_info->trans_lock);
4556                         btrfs_wait_for_commit(fs_info, t->transid);
4557                         btrfs_put_transaction(t);
4558                         spin_lock(&fs_info->trans_lock);
4559                         continue;
4560                 }
4561                 if (t == fs_info->running_transaction) {
4562                         t->state = TRANS_STATE_COMMIT_DOING;
4563                         spin_unlock(&fs_info->trans_lock);
4564                         /*
4565                          * We wait for 0 num_writers since we don't hold a trans
4566                          * handle open currently for this transaction.
4567                          */
4568                         wait_event(t->writer_wait,
4569                                    atomic_read(&t->num_writers) == 0);
4570                 } else {
4571                         spin_unlock(&fs_info->trans_lock);
4572                 }
4573                 btrfs_cleanup_one_transaction(t, fs_info);
4574
4575                 spin_lock(&fs_info->trans_lock);
4576                 if (t == fs_info->running_transaction)
4577                         fs_info->running_transaction = NULL;
4578                 list_del_init(&t->list);
4579                 spin_unlock(&fs_info->trans_lock);
4580
4581                 btrfs_put_transaction(t);
4582                 trace_btrfs_transaction_commit(fs_info->tree_root);
4583                 spin_lock(&fs_info->trans_lock);
4584         }
4585         spin_unlock(&fs_info->trans_lock);
4586         btrfs_destroy_all_ordered_extents(fs_info);
4587         btrfs_destroy_delayed_inodes(fs_info);
4588         btrfs_assert_delayed_root_empty(fs_info);
4589         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4590         btrfs_destroy_all_delalloc_inodes(fs_info);
4591         mutex_unlock(&fs_info->transaction_kthread_mutex);
4592
4593         return 0;
4594 }
4595
4596 static const struct extent_io_ops btree_extent_io_ops = {
4597         /* mandatory callbacks */
4598         .submit_bio_hook = btree_submit_bio_hook,
4599         .readpage_end_io_hook = btree_readpage_end_io_hook,
4600 };