]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/disk-io.c
18bc678ae4e62c6741456bb5ab94636736aeeb23
[linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107         void *private_data;
108         struct bio *bio;
109         extent_submit_bio_start_t *submit_bio_start;
110         int mirror_num;
111         /*
112          * bio_offset is optional, can be used if the pages in the bio
113          * can't tell us where in the file the bio should go
114          */
115         u64 bio_offset;
116         struct btrfs_work work;
117         blk_status_t status;
118 };
119
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
129  * roots have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149         u64                     id;             /* root objectid */
150         const char              *name_stem;     /* lock name stem */
151         char                    names[BTRFS_MAX_LEVEL + 1][20];
152         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
155         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
156         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
157         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
158         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
159         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
160         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
161         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
162         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
163         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
164         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
165         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166         { .id = 0,                              .name_stem = "tree"     },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171         int i, j;
172
173         /* initialize lockdep class names */
174         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178                         snprintf(ks->names[j], sizeof(ks->names[j]),
179                                  "btrfs-%s-%02d", ks->name_stem, j);
180         }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184                                     int level)
185 {
186         struct btrfs_lockdep_keyset *ks;
187
188         BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190         /* find the matching keyset, id 0 is the default entry */
191         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192                 if (ks->id == objectid)
193                         break;
194
195         lockdep_set_class_and_name(&eb->lock,
196                                    &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206                 struct page *page, size_t pg_offset, u64 start, u64 len,
207                 int create)
208 {
209         struct btrfs_fs_info *fs_info = inode->root->fs_info;
210         struct extent_map_tree *em_tree = &inode->extent_tree;
211         struct extent_map *em;
212         int ret;
213
214         read_lock(&em_tree->lock);
215         em = lookup_extent_mapping(em_tree, start, len);
216         if (em) {
217                 em->bdev = fs_info->fs_devices->latest_bdev;
218                 read_unlock(&em_tree->lock);
219                 goto out;
220         }
221         read_unlock(&em_tree->lock);
222
223         em = alloc_extent_map();
224         if (!em) {
225                 em = ERR_PTR(-ENOMEM);
226                 goto out;
227         }
228         em->start = 0;
229         em->len = (u64)-1;
230         em->block_len = (u64)-1;
231         em->block_start = 0;
232         em->bdev = fs_info->fs_devices->latest_bdev;
233
234         write_lock(&em_tree->lock);
235         ret = add_extent_mapping(em_tree, em, 0);
236         if (ret == -EEXIST) {
237                 free_extent_map(em);
238                 em = lookup_extent_mapping(em_tree, start, len);
239                 if (!em)
240                         em = ERR_PTR(-EIO);
241         } else if (ret) {
242                 free_extent_map(em);
243                 em = ERR_PTR(ret);
244         }
245         write_unlock(&em_tree->lock);
246
247 out:
248         return em;
249 }
250
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253         return crc32c(seed, data, len);
254 }
255
256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258         put_unaligned_le32(~crc, result);
259 }
260
261 /*
262  * compute the csum for a btree block, and either verify it or write it
263  * into the csum field of the block.
264  */
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266                            struct extent_buffer *buf,
267                            int verify)
268 {
269         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270         char result[BTRFS_CSUM_SIZE];
271         unsigned long len;
272         unsigned long cur_len;
273         unsigned long offset = BTRFS_CSUM_SIZE;
274         char *kaddr;
275         unsigned long map_start;
276         unsigned long map_len;
277         int err;
278         u32 crc = ~(u32)0;
279
280         len = buf->len - offset;
281         while (len > 0) {
282                 err = map_private_extent_buffer(buf, offset, 32,
283                                         &kaddr, &map_start, &map_len);
284                 if (err)
285                         return err;
286                 cur_len = min(len, map_len - (offset - map_start));
287                 crc = btrfs_csum_data(kaddr + offset - map_start,
288                                       crc, cur_len);
289                 len -= cur_len;
290                 offset += cur_len;
291         }
292         memset(result, 0, BTRFS_CSUM_SIZE);
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         btrfs_warn_rl(fs_info,
304                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
305                                 fs_info->sb->s_id, buf->start,
306                                 val, found, btrfs_header_level(buf));
307                         return -EUCLEAN;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312
313         return 0;
314 }
315
316 /*
317  * we can't consider a given block up to date unless the transid of the
318  * block matches the transid in the parent node's pointer.  This is how we
319  * detect blocks that either didn't get written at all or got written
320  * in the wrong place.
321  */
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323                                  struct extent_buffer *eb, u64 parent_transid,
324                                  int atomic)
325 {
326         struct extent_state *cached_state = NULL;
327         int ret;
328         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         if (need_lock) {
337                 btrfs_tree_read_lock(eb);
338                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339         }
340
341         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
342                          &cached_state);
343         if (extent_buffer_uptodate(eb) &&
344             btrfs_header_generation(eb) == parent_transid) {
345                 ret = 0;
346                 goto out;
347         }
348         btrfs_err_rl(eb->fs_info,
349                 "parent transid verify failed on %llu wanted %llu found %llu",
350                         eb->start,
351                         parent_transid, btrfs_header_generation(eb));
352         ret = 1;
353
354         /*
355          * Things reading via commit roots that don't have normal protection,
356          * like send, can have a really old block in cache that may point at a
357          * block that has been freed and re-allocated.  So don't clear uptodate
358          * if we find an eb that is under IO (dirty/writeback) because we could
359          * end up reading in the stale data and then writing it back out and
360          * making everybody very sad.
361          */
362         if (!extent_buffer_under_io(eb))
363                 clear_extent_buffer_uptodate(eb);
364 out:
365         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
366                              &cached_state);
367         if (need_lock)
368                 btrfs_tree_read_unlock_blocking(eb);
369         return ret;
370 }
371
372 /*
373  * Return 0 if the superblock checksum type matches the checksum value of that
374  * algorithm. Pass the raw disk superblock data.
375  */
376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377                                   char *raw_disk_sb)
378 {
379         struct btrfs_super_block *disk_sb =
380                 (struct btrfs_super_block *)raw_disk_sb;
381         u16 csum_type = btrfs_super_csum_type(disk_sb);
382         int ret = 0;
383
384         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385                 u32 crc = ~(u32)0;
386                 char result[sizeof(crc)];
387
388                 /*
389                  * The super_block structure does not span the whole
390                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391                  * is filled with zeros and is included in the checksum.
392                  */
393                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395                 btrfs_csum_final(crc, result);
396
397                 if (memcmp(raw_disk_sb, result, sizeof(result)))
398                         ret = 1;
399         }
400
401         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
402                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
403                                 csum_type);
404                 ret = 1;
405         }
406
407         return ret;
408 }
409
410 static int verify_level_key(struct btrfs_fs_info *fs_info,
411                             struct extent_buffer *eb, int level,
412                             struct btrfs_key *first_key, u64 parent_transid)
413 {
414         int found_level;
415         struct btrfs_key found_key;
416         int ret;
417
418         found_level = btrfs_header_level(eb);
419         if (found_level != level) {
420 #ifdef CONFIG_BTRFS_DEBUG
421                 WARN_ON(1);
422                 btrfs_err(fs_info,
423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424                           eb->start, level, found_level);
425 #endif
426                 return -EIO;
427         }
428
429         if (!first_key)
430                 return 0;
431
432         /*
433          * For live tree block (new tree blocks in current transaction),
434          * we need proper lock context to avoid race, which is impossible here.
435          * So we only checks tree blocks which is read from disk, whose
436          * generation <= fs_info->last_trans_committed.
437          */
438         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439                 return 0;
440         if (found_level)
441                 btrfs_node_key_to_cpu(eb, &found_key, 0);
442         else
443                 btrfs_item_key_to_cpu(eb, &found_key, 0);
444         ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446 #ifdef CONFIG_BTRFS_DEBUG
447         if (ret) {
448                 WARN_ON(1);
449                 btrfs_err(fs_info,
450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451                           eb->start, parent_transid, first_key->objectid,
452                           first_key->type, first_key->offset,
453                           found_key.objectid, found_key.type,
454                           found_key.offset);
455         }
456 #endif
457         return ret;
458 }
459
460 /*
461  * helper to read a given tree block, doing retries as required when
462  * the checksums don't match and we have alternate mirrors to try.
463  *
464  * @parent_transid:     expected transid, skip check if 0
465  * @level:              expected level, mandatory check
466  * @first_key:          expected key of first slot, skip check if NULL
467  */
468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
469                                           struct extent_buffer *eb,
470                                           u64 parent_transid, int level,
471                                           struct btrfs_key *first_key)
472 {
473         struct extent_io_tree *io_tree;
474         int failed = 0;
475         int ret;
476         int num_copies = 0;
477         int mirror_num = 0;
478         int failed_mirror = 0;
479
480         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
481         while (1) {
482                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
483                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
484                                                mirror_num);
485                 if (!ret) {
486                         if (verify_parent_transid(io_tree, eb,
487                                                    parent_transid, 0))
488                                 ret = -EIO;
489                         else if (verify_level_key(fs_info, eb, level,
490                                                   first_key, parent_transid))
491                                 ret = -EUCLEAN;
492                         else
493                                 break;
494                 }
495
496                 num_copies = btrfs_num_copies(fs_info,
497                                               eb->start, eb->len);
498                 if (num_copies == 1)
499                         break;
500
501                 if (!failed_mirror) {
502                         failed = 1;
503                         failed_mirror = eb->read_mirror;
504                 }
505
506                 mirror_num++;
507                 if (mirror_num == failed_mirror)
508                         mirror_num++;
509
510                 if (mirror_num > num_copies)
511                         break;
512         }
513
514         if (failed && !ret && failed_mirror)
515                 repair_eb_io_failure(fs_info, eb, failed_mirror);
516
517         return ret;
518 }
519
520 /*
521  * checksum a dirty tree block before IO.  This has extra checks to make sure
522  * we only fill in the checksum field in the first page of a multi-page block
523  */
524
525 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
526 {
527         u64 start = page_offset(page);
528         u64 found_start;
529         struct extent_buffer *eb;
530
531         eb = (struct extent_buffer *)page->private;
532         if (page != eb->pages[0])
533                 return 0;
534
535         found_start = btrfs_header_bytenr(eb);
536         /*
537          * Please do not consolidate these warnings into a single if.
538          * It is useful to know what went wrong.
539          */
540         if (WARN_ON(found_start != start))
541                 return -EUCLEAN;
542         if (WARN_ON(!PageUptodate(page)))
543                 return -EUCLEAN;
544
545         ASSERT(memcmp_extent_buffer(eb, fs_info->metadata_fsid,
546                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
547
548         return csum_tree_block(fs_info, eb, 0);
549 }
550
551 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
552                                  struct extent_buffer *eb)
553 {
554         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
555         u8 fsid[BTRFS_FSID_SIZE];
556         int ret = 1;
557
558         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
559         while (fs_devices) {
560                 u8 *metadata_uuid;
561
562                 /*
563                  * Checking the incompat flag is only valid for the current
564                  * fs. For seed devices it's forbidden to have their uuid
565                  * changed so reading ->fsid in this case is fine
566                  */
567                 if (fs_devices == fs_info->fs_devices &&
568                     btrfs_fs_incompat(fs_info, METADATA_UUID))
569                         metadata_uuid = fs_devices->metadata_uuid;
570                 else
571                         metadata_uuid = fs_devices->fsid;
572
573                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
574                         ret = 0;
575                         break;
576                 }
577                 fs_devices = fs_devices->seed;
578         }
579         return ret;
580 }
581
582 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
583                                       u64 phy_offset, struct page *page,
584                                       u64 start, u64 end, int mirror)
585 {
586         u64 found_start;
587         int found_level;
588         struct extent_buffer *eb;
589         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
590         struct btrfs_fs_info *fs_info = root->fs_info;
591         int ret = 0;
592         int reads_done;
593
594         if (!page->private)
595                 goto out;
596
597         eb = (struct extent_buffer *)page->private;
598
599         /* the pending IO might have been the only thing that kept this buffer
600          * in memory.  Make sure we have a ref for all this other checks
601          */
602         extent_buffer_get(eb);
603
604         reads_done = atomic_dec_and_test(&eb->io_pages);
605         if (!reads_done)
606                 goto err;
607
608         eb->read_mirror = mirror;
609         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
610                 ret = -EIO;
611                 goto err;
612         }
613
614         found_start = btrfs_header_bytenr(eb);
615         if (found_start != eb->start) {
616                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617                              eb->start, found_start);
618                 ret = -EIO;
619                 goto err;
620         }
621         if (check_tree_block_fsid(fs_info, eb)) {
622                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
623                              eb->start);
624                 ret = -EIO;
625                 goto err;
626         }
627         found_level = btrfs_header_level(eb);
628         if (found_level >= BTRFS_MAX_LEVEL) {
629                 btrfs_err(fs_info, "bad tree block level %d on %llu",
630                           (int)btrfs_header_level(eb), eb->start);
631                 ret = -EIO;
632                 goto err;
633         }
634
635         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636                                        eb, found_level);
637
638         ret = csum_tree_block(fs_info, eb, 1);
639         if (ret)
640                 goto err;
641
642         /*
643          * If this is a leaf block and it is corrupt, set the corrupt bit so
644          * that we don't try and read the other copies of this block, just
645          * return -EIO.
646          */
647         if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
648                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
649                 ret = -EIO;
650         }
651
652         if (found_level > 0 && btrfs_check_node(fs_info, eb))
653                 ret = -EIO;
654
655         if (!ret)
656                 set_extent_buffer_uptodate(eb);
657 err:
658         if (reads_done &&
659             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
660                 btree_readahead_hook(eb, ret);
661
662         if (ret) {
663                 /*
664                  * our io error hook is going to dec the io pages
665                  * again, we have to make sure it has something
666                  * to decrement
667                  */
668                 atomic_inc(&eb->io_pages);
669                 clear_extent_buffer_uptodate(eb);
670         }
671         free_extent_buffer(eb);
672 out:
673         return ret;
674 }
675
676 static int btree_io_failed_hook(struct page *page, int failed_mirror)
677 {
678         struct extent_buffer *eb;
679
680         eb = (struct extent_buffer *)page->private;
681         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
682         eb->read_mirror = failed_mirror;
683         atomic_dec(&eb->io_pages);
684         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685                 btree_readahead_hook(eb, -EIO);
686         return -EIO;    /* we fixed nothing */
687 }
688
689 static void end_workqueue_bio(struct bio *bio)
690 {
691         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
692         struct btrfs_fs_info *fs_info;
693         struct btrfs_workqueue *wq;
694         btrfs_work_func_t func;
695
696         fs_info = end_io_wq->info;
697         end_io_wq->status = bio->bi_status;
698
699         if (bio_op(bio) == REQ_OP_WRITE) {
700                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
701                         wq = fs_info->endio_meta_write_workers;
702                         func = btrfs_endio_meta_write_helper;
703                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
704                         wq = fs_info->endio_freespace_worker;
705                         func = btrfs_freespace_write_helper;
706                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
707                         wq = fs_info->endio_raid56_workers;
708                         func = btrfs_endio_raid56_helper;
709                 } else {
710                         wq = fs_info->endio_write_workers;
711                         func = btrfs_endio_write_helper;
712                 }
713         } else {
714                 if (unlikely(end_io_wq->metadata ==
715                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
716                         wq = fs_info->endio_repair_workers;
717                         func = btrfs_endio_repair_helper;
718                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
719                         wq = fs_info->endio_raid56_workers;
720                         func = btrfs_endio_raid56_helper;
721                 } else if (end_io_wq->metadata) {
722                         wq = fs_info->endio_meta_workers;
723                         func = btrfs_endio_meta_helper;
724                 } else {
725                         wq = fs_info->endio_workers;
726                         func = btrfs_endio_helper;
727                 }
728         }
729
730         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
731         btrfs_queue_work(wq, &end_io_wq->work);
732 }
733
734 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735                         enum btrfs_wq_endio_type metadata)
736 {
737         struct btrfs_end_io_wq *end_io_wq;
738
739         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
740         if (!end_io_wq)
741                 return BLK_STS_RESOURCE;
742
743         end_io_wq->private = bio->bi_private;
744         end_io_wq->end_io = bio->bi_end_io;
745         end_io_wq->info = info;
746         end_io_wq->status = 0;
747         end_io_wq->bio = bio;
748         end_io_wq->metadata = metadata;
749
750         bio->bi_private = end_io_wq;
751         bio->bi_end_io = end_workqueue_bio;
752         return 0;
753 }
754
755 static void run_one_async_start(struct btrfs_work *work)
756 {
757         struct async_submit_bio *async;
758         blk_status_t ret;
759
760         async = container_of(work, struct  async_submit_bio, work);
761         ret = async->submit_bio_start(async->private_data, async->bio,
762                                       async->bio_offset);
763         if (ret)
764                 async->status = ret;
765 }
766
767 static void run_one_async_done(struct btrfs_work *work)
768 {
769         struct async_submit_bio *async;
770
771         async = container_of(work, struct  async_submit_bio, work);
772
773         /* If an error occurred we just want to clean up the bio and move on */
774         if (async->status) {
775                 async->bio->bi_status = async->status;
776                 bio_endio(async->bio);
777                 return;
778         }
779
780         btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
781 }
782
783 static void run_one_async_free(struct btrfs_work *work)
784 {
785         struct async_submit_bio *async;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         kfree(async);
789 }
790
791 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
792                                  int mirror_num, unsigned long bio_flags,
793                                  u64 bio_offset, void *private_data,
794                                  extent_submit_bio_start_t *submit_bio_start)
795 {
796         struct async_submit_bio *async;
797
798         async = kmalloc(sizeof(*async), GFP_NOFS);
799         if (!async)
800                 return BLK_STS_RESOURCE;
801
802         async->private_data = private_data;
803         async->bio = bio;
804         async->mirror_num = mirror_num;
805         async->submit_bio_start = submit_bio_start;
806
807         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
808                         run_one_async_done, run_one_async_free);
809
810         async->bio_offset = bio_offset;
811
812         async->status = 0;
813
814         if (op_is_sync(bio->bi_opf))
815                 btrfs_set_work_high_priority(&async->work);
816
817         btrfs_queue_work(fs_info->workers, &async->work);
818         return 0;
819 }
820
821 static blk_status_t btree_csum_one_bio(struct bio *bio)
822 {
823         struct bio_vec *bvec;
824         struct btrfs_root *root;
825         int i, ret = 0;
826
827         ASSERT(!bio_flagged(bio, BIO_CLONED));
828         bio_for_each_segment_all(bvec, bio, i) {
829                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
831                 if (ret)
832                         break;
833         }
834
835         return errno_to_blk_status(ret);
836 }
837
838 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
839                                              u64 bio_offset)
840 {
841         /*
842          * when we're called for a write, we're already in the async
843          * submission context.  Just jump into btrfs_map_bio
844          */
845         return btree_csum_one_bio(bio);
846 }
847
848 static int check_async_write(struct btrfs_inode *bi)
849 {
850         if (atomic_read(&bi->sync_writers))
851                 return 0;
852 #ifdef CONFIG_X86
853         if (static_cpu_has(X86_FEATURE_XMM4_2))
854                 return 0;
855 #endif
856         return 1;
857 }
858
859 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
860                                           int mirror_num, unsigned long bio_flags,
861                                           u64 bio_offset)
862 {
863         struct inode *inode = private_data;
864         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
865         int async = check_async_write(BTRFS_I(inode));
866         blk_status_t ret;
867
868         if (bio_op(bio) != REQ_OP_WRITE) {
869                 /*
870                  * called for a read, do the setup so that checksum validation
871                  * can happen in the async kernel threads
872                  */
873                 ret = btrfs_bio_wq_end_io(fs_info, bio,
874                                           BTRFS_WQ_ENDIO_METADATA);
875                 if (ret)
876                         goto out_w_error;
877                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
878         } else if (!async) {
879                 ret = btree_csum_one_bio(bio);
880                 if (ret)
881                         goto out_w_error;
882                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
883         } else {
884                 /*
885                  * kthread helpers are used to submit writes so that
886                  * checksumming can happen in parallel across all CPUs
887                  */
888                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
889                                           bio_offset, private_data,
890                                           btree_submit_bio_start);
891         }
892
893         if (ret)
894                 goto out_w_error;
895         return 0;
896
897 out_w_error:
898         bio->bi_status = ret;
899         bio_endio(bio);
900         return ret;
901 }
902
903 #ifdef CONFIG_MIGRATION
904 static int btree_migratepage(struct address_space *mapping,
905                         struct page *newpage, struct page *page,
906                         enum migrate_mode mode)
907 {
908         /*
909          * we can't safely write a btree page from here,
910          * we haven't done the locking hook
911          */
912         if (PageDirty(page))
913                 return -EAGAIN;
914         /*
915          * Buffers may be managed in a filesystem specific way.
916          * We must have no buffers or drop them.
917          */
918         if (page_has_private(page) &&
919             !try_to_release_page(page, GFP_KERNEL))
920                 return -EAGAIN;
921         return migrate_page(mapping, newpage, page, mode);
922 }
923 #endif
924
925
926 static int btree_writepages(struct address_space *mapping,
927                             struct writeback_control *wbc)
928 {
929         struct btrfs_fs_info *fs_info;
930         int ret;
931
932         if (wbc->sync_mode == WB_SYNC_NONE) {
933
934                 if (wbc->for_kupdate)
935                         return 0;
936
937                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
938                 /* this is a bit racy, but that's ok */
939                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
940                                              BTRFS_DIRTY_METADATA_THRESH,
941                                              fs_info->dirty_metadata_batch);
942                 if (ret < 0)
943                         return 0;
944         }
945         return btree_write_cache_pages(mapping, wbc);
946 }
947
948 static int btree_readpage(struct file *file, struct page *page)
949 {
950         struct extent_io_tree *tree;
951         tree = &BTRFS_I(page->mapping->host)->io_tree;
952         return extent_read_full_page(tree, page, btree_get_extent, 0);
953 }
954
955 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
956 {
957         if (PageWriteback(page) || PageDirty(page))
958                 return 0;
959
960         return try_release_extent_buffer(page);
961 }
962
963 static void btree_invalidatepage(struct page *page, unsigned int offset,
964                                  unsigned int length)
965 {
966         struct extent_io_tree *tree;
967         tree = &BTRFS_I(page->mapping->host)->io_tree;
968         extent_invalidatepage(tree, page, offset);
969         btree_releasepage(page, GFP_NOFS);
970         if (PagePrivate(page)) {
971                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
972                            "page private not zero on page %llu",
973                            (unsigned long long)page_offset(page));
974                 ClearPagePrivate(page);
975                 set_page_private(page, 0);
976                 put_page(page);
977         }
978 }
979
980 static int btree_set_page_dirty(struct page *page)
981 {
982 #ifdef DEBUG
983         struct extent_buffer *eb;
984
985         BUG_ON(!PagePrivate(page));
986         eb = (struct extent_buffer *)page->private;
987         BUG_ON(!eb);
988         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989         BUG_ON(!atomic_read(&eb->refs));
990         btrfs_assert_tree_locked(eb);
991 #endif
992         return __set_page_dirty_nobuffers(page);
993 }
994
995 static const struct address_space_operations btree_aops = {
996         .readpage       = btree_readpage,
997         .writepages     = btree_writepages,
998         .releasepage    = btree_releasepage,
999         .invalidatepage = btree_invalidatepage,
1000 #ifdef CONFIG_MIGRATION
1001         .migratepage    = btree_migratepage,
1002 #endif
1003         .set_page_dirty = btree_set_page_dirty,
1004 };
1005
1006 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1007 {
1008         struct extent_buffer *buf = NULL;
1009         struct inode *btree_inode = fs_info->btree_inode;
1010
1011         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1012         if (IS_ERR(buf))
1013                 return;
1014         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1015                                  buf, WAIT_NONE, 0);
1016         free_extent_buffer(buf);
1017 }
1018
1019 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1020                          int mirror_num, struct extent_buffer **eb)
1021 {
1022         struct extent_buffer *buf = NULL;
1023         struct inode *btree_inode = fs_info->btree_inode;
1024         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025         int ret;
1026
1027         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1028         if (IS_ERR(buf))
1029                 return 0;
1030
1031         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
1033         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1034                                        mirror_num);
1035         if (ret) {
1036                 free_extent_buffer(buf);
1037                 return ret;
1038         }
1039
1040         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041                 free_extent_buffer(buf);
1042                 return -EIO;
1043         } else if (extent_buffer_uptodate(buf)) {
1044                 *eb = buf;
1045         } else {
1046                 free_extent_buffer(buf);
1047         }
1048         return 0;
1049 }
1050
1051 struct extent_buffer *btrfs_find_create_tree_block(
1052                                                 struct btrfs_fs_info *fs_info,
1053                                                 u64 bytenr)
1054 {
1055         if (btrfs_is_testing(fs_info))
1056                 return alloc_test_extent_buffer(fs_info, bytenr);
1057         return alloc_extent_buffer(fs_info, bytenr);
1058 }
1059
1060
1061 int btrfs_write_tree_block(struct extent_buffer *buf)
1062 {
1063         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1064                                         buf->start + buf->len - 1);
1065 }
1066
1067 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1068 {
1069         filemap_fdatawait_range(buf->pages[0]->mapping,
1070                                 buf->start, buf->start + buf->len - 1);
1071 }
1072
1073 /*
1074  * Read tree block at logical address @bytenr and do variant basic but critical
1075  * verification.
1076  *
1077  * @parent_transid:     expected transid of this tree block, skip check if 0
1078  * @level:              expected level, mandatory check
1079  * @first_key:          expected key in slot 0, skip check if NULL
1080  */
1081 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1082                                       u64 parent_transid, int level,
1083                                       struct btrfs_key *first_key)
1084 {
1085         struct extent_buffer *buf = NULL;
1086         int ret;
1087
1088         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1089         if (IS_ERR(buf))
1090                 return buf;
1091
1092         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1093                                              level, first_key);
1094         if (ret) {
1095                 free_extent_buffer(buf);
1096                 return ERR_PTR(ret);
1097         }
1098         return buf;
1099
1100 }
1101
1102 void clean_tree_block(struct btrfs_fs_info *fs_info,
1103                       struct extent_buffer *buf)
1104 {
1105         if (btrfs_header_generation(buf) ==
1106             fs_info->running_transaction->transid) {
1107                 btrfs_assert_tree_locked(buf);
1108
1109                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1111                                                  -buf->len,
1112                                                  fs_info->dirty_metadata_batch);
1113                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1114                         btrfs_set_lock_blocking(buf);
1115                         clear_extent_buffer_dirty(buf);
1116                 }
1117         }
1118 }
1119
1120 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1121 {
1122         struct btrfs_subvolume_writers *writers;
1123         int ret;
1124
1125         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1126         if (!writers)
1127                 return ERR_PTR(-ENOMEM);
1128
1129         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1130         if (ret < 0) {
1131                 kfree(writers);
1132                 return ERR_PTR(ret);
1133         }
1134
1135         init_waitqueue_head(&writers->wait);
1136         return writers;
1137 }
1138
1139 static void
1140 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1141 {
1142         percpu_counter_destroy(&writers->counter);
1143         kfree(writers);
1144 }
1145
1146 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1147                          u64 objectid)
1148 {
1149         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1150         root->node = NULL;
1151         root->commit_root = NULL;
1152         root->state = 0;
1153         root->orphan_cleanup_state = 0;
1154
1155         root->last_trans = 0;
1156         root->highest_objectid = 0;
1157         root->nr_delalloc_inodes = 0;
1158         root->nr_ordered_extents = 0;
1159         root->inode_tree = RB_ROOT;
1160         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1161         root->block_rsv = NULL;
1162
1163         INIT_LIST_HEAD(&root->dirty_list);
1164         INIT_LIST_HEAD(&root->root_list);
1165         INIT_LIST_HEAD(&root->delalloc_inodes);
1166         INIT_LIST_HEAD(&root->delalloc_root);
1167         INIT_LIST_HEAD(&root->ordered_extents);
1168         INIT_LIST_HEAD(&root->ordered_root);
1169         INIT_LIST_HEAD(&root->logged_list[0]);
1170         INIT_LIST_HEAD(&root->logged_list[1]);
1171         spin_lock_init(&root->inode_lock);
1172         spin_lock_init(&root->delalloc_lock);
1173         spin_lock_init(&root->ordered_extent_lock);
1174         spin_lock_init(&root->accounting_lock);
1175         spin_lock_init(&root->log_extents_lock[0]);
1176         spin_lock_init(&root->log_extents_lock[1]);
1177         spin_lock_init(&root->qgroup_meta_rsv_lock);
1178         mutex_init(&root->objectid_mutex);
1179         mutex_init(&root->log_mutex);
1180         mutex_init(&root->ordered_extent_mutex);
1181         mutex_init(&root->delalloc_mutex);
1182         init_waitqueue_head(&root->log_writer_wait);
1183         init_waitqueue_head(&root->log_commit_wait[0]);
1184         init_waitqueue_head(&root->log_commit_wait[1]);
1185         INIT_LIST_HEAD(&root->log_ctxs[0]);
1186         INIT_LIST_HEAD(&root->log_ctxs[1]);
1187         atomic_set(&root->log_commit[0], 0);
1188         atomic_set(&root->log_commit[1], 0);
1189         atomic_set(&root->log_writers, 0);
1190         atomic_set(&root->log_batch, 0);
1191         refcount_set(&root->refs, 1);
1192         atomic_set(&root->will_be_snapshotted, 0);
1193         atomic_set(&root->snapshot_force_cow, 0);
1194         atomic_set(&root->nr_swapfiles, 0);
1195         root->log_transid = 0;
1196         root->log_transid_committed = -1;
1197         root->last_log_commit = 0;
1198         if (!dummy)
1199                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1200
1201         memset(&root->root_key, 0, sizeof(root->root_key));
1202         memset(&root->root_item, 0, sizeof(root->root_item));
1203         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1204         if (!dummy)
1205                 root->defrag_trans_start = fs_info->generation;
1206         else
1207                 root->defrag_trans_start = 0;
1208         root->root_key.objectid = objectid;
1209         root->anon_dev = 0;
1210
1211         spin_lock_init(&root->root_item_lock);
1212 }
1213
1214 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1215                 gfp_t flags)
1216 {
1217         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1218         if (root)
1219                 root->fs_info = fs_info;
1220         return root;
1221 }
1222
1223 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1224 /* Should only be used by the testing infrastructure */
1225 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1226 {
1227         struct btrfs_root *root;
1228
1229         if (!fs_info)
1230                 return ERR_PTR(-EINVAL);
1231
1232         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1233         if (!root)
1234                 return ERR_PTR(-ENOMEM);
1235
1236         /* We don't use the stripesize in selftest, set it as sectorsize */
1237         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1238         root->alloc_bytenr = 0;
1239
1240         return root;
1241 }
1242 #endif
1243
1244 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1245                                      struct btrfs_fs_info *fs_info,
1246                                      u64 objectid)
1247 {
1248         struct extent_buffer *leaf;
1249         struct btrfs_root *tree_root = fs_info->tree_root;
1250         struct btrfs_root *root;
1251         struct btrfs_key key;
1252         int ret = 0;
1253         uuid_le uuid = NULL_UUID_LE;
1254
1255         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1256         if (!root)
1257                 return ERR_PTR(-ENOMEM);
1258
1259         __setup_root(root, fs_info, objectid);
1260         root->root_key.objectid = objectid;
1261         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1262         root->root_key.offset = 0;
1263
1264         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1265         if (IS_ERR(leaf)) {
1266                 ret = PTR_ERR(leaf);
1267                 leaf = NULL;
1268                 goto fail;
1269         }
1270
1271         root->node = leaf;
1272         btrfs_mark_buffer_dirty(leaf);
1273
1274         root->commit_root = btrfs_root_node(root);
1275         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1276
1277         root->root_item.flags = 0;
1278         root->root_item.byte_limit = 0;
1279         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280         btrfs_set_root_generation(&root->root_item, trans->transid);
1281         btrfs_set_root_level(&root->root_item, 0);
1282         btrfs_set_root_refs(&root->root_item, 1);
1283         btrfs_set_root_used(&root->root_item, leaf->len);
1284         btrfs_set_root_last_snapshot(&root->root_item, 0);
1285         btrfs_set_root_dirid(&root->root_item, 0);
1286         if (is_fstree(objectid))
1287                 uuid_le_gen(&uuid);
1288         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1289         root->root_item.drop_level = 0;
1290
1291         key.objectid = objectid;
1292         key.type = BTRFS_ROOT_ITEM_KEY;
1293         key.offset = 0;
1294         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1295         if (ret)
1296                 goto fail;
1297
1298         btrfs_tree_unlock(leaf);
1299
1300         return root;
1301
1302 fail:
1303         if (leaf) {
1304                 btrfs_tree_unlock(leaf);
1305                 free_extent_buffer(root->commit_root);
1306                 free_extent_buffer(leaf);
1307         }
1308         kfree(root);
1309
1310         return ERR_PTR(ret);
1311 }
1312
1313 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1314                                          struct btrfs_fs_info *fs_info)
1315 {
1316         struct btrfs_root *root;
1317         struct extent_buffer *leaf;
1318
1319         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1320         if (!root)
1321                 return ERR_PTR(-ENOMEM);
1322
1323         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1324
1325         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1326         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1328
1329         /*
1330          * DON'T set REF_COWS for log trees
1331          *
1332          * log trees do not get reference counted because they go away
1333          * before a real commit is actually done.  They do store pointers
1334          * to file data extents, and those reference counts still get
1335          * updated (along with back refs to the log tree).
1336          */
1337
1338         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1339                         NULL, 0, 0, 0);
1340         if (IS_ERR(leaf)) {
1341                 kfree(root);
1342                 return ERR_CAST(leaf);
1343         }
1344
1345         root->node = leaf;
1346
1347         btrfs_mark_buffer_dirty(root->node);
1348         btrfs_tree_unlock(root->node);
1349         return root;
1350 }
1351
1352 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1353                              struct btrfs_fs_info *fs_info)
1354 {
1355         struct btrfs_root *log_root;
1356
1357         log_root = alloc_log_tree(trans, fs_info);
1358         if (IS_ERR(log_root))
1359                 return PTR_ERR(log_root);
1360         WARN_ON(fs_info->log_root_tree);
1361         fs_info->log_root_tree = log_root;
1362         return 0;
1363 }
1364
1365 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1366                        struct btrfs_root *root)
1367 {
1368         struct btrfs_fs_info *fs_info = root->fs_info;
1369         struct btrfs_root *log_root;
1370         struct btrfs_inode_item *inode_item;
1371
1372         log_root = alloc_log_tree(trans, fs_info);
1373         if (IS_ERR(log_root))
1374                 return PTR_ERR(log_root);
1375
1376         log_root->last_trans = trans->transid;
1377         log_root->root_key.offset = root->root_key.objectid;
1378
1379         inode_item = &log_root->root_item.inode;
1380         btrfs_set_stack_inode_generation(inode_item, 1);
1381         btrfs_set_stack_inode_size(inode_item, 3);
1382         btrfs_set_stack_inode_nlink(inode_item, 1);
1383         btrfs_set_stack_inode_nbytes(inode_item,
1384                                      fs_info->nodesize);
1385         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1386
1387         btrfs_set_root_node(&log_root->root_item, log_root->node);
1388
1389         WARN_ON(root->log_root);
1390         root->log_root = log_root;
1391         root->log_transid = 0;
1392         root->log_transid_committed = -1;
1393         root->last_log_commit = 0;
1394         return 0;
1395 }
1396
1397 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1398                                                struct btrfs_key *key)
1399 {
1400         struct btrfs_root *root;
1401         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1402         struct btrfs_path *path;
1403         u64 generation;
1404         int ret;
1405         int level;
1406
1407         path = btrfs_alloc_path();
1408         if (!path)
1409                 return ERR_PTR(-ENOMEM);
1410
1411         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1412         if (!root) {
1413                 ret = -ENOMEM;
1414                 goto alloc_fail;
1415         }
1416
1417         __setup_root(root, fs_info, key->objectid);
1418
1419         ret = btrfs_find_root(tree_root, key, path,
1420                               &root->root_item, &root->root_key);
1421         if (ret) {
1422                 if (ret > 0)
1423                         ret = -ENOENT;
1424                 goto find_fail;
1425         }
1426
1427         generation = btrfs_root_generation(&root->root_item);
1428         level = btrfs_root_level(&root->root_item);
1429         root->node = read_tree_block(fs_info,
1430                                      btrfs_root_bytenr(&root->root_item),
1431                                      generation, level, NULL);
1432         if (IS_ERR(root->node)) {
1433                 ret = PTR_ERR(root->node);
1434                 goto find_fail;
1435         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1436                 ret = -EIO;
1437                 free_extent_buffer(root->node);
1438                 goto find_fail;
1439         }
1440         root->commit_root = btrfs_root_node(root);
1441 out:
1442         btrfs_free_path(path);
1443         return root;
1444
1445 find_fail:
1446         kfree(root);
1447 alloc_fail:
1448         root = ERR_PTR(ret);
1449         goto out;
1450 }
1451
1452 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1453                                       struct btrfs_key *location)
1454 {
1455         struct btrfs_root *root;
1456
1457         root = btrfs_read_tree_root(tree_root, location);
1458         if (IS_ERR(root))
1459                 return root;
1460
1461         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1462                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1463                 btrfs_check_and_init_root_item(&root->root_item);
1464         }
1465
1466         return root;
1467 }
1468
1469 int btrfs_init_fs_root(struct btrfs_root *root)
1470 {
1471         int ret;
1472         struct btrfs_subvolume_writers *writers;
1473
1474         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1475         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1476                                         GFP_NOFS);
1477         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1478                 ret = -ENOMEM;
1479                 goto fail;
1480         }
1481
1482         writers = btrfs_alloc_subvolume_writers();
1483         if (IS_ERR(writers)) {
1484                 ret = PTR_ERR(writers);
1485                 goto fail;
1486         }
1487         root->subv_writers = writers;
1488
1489         btrfs_init_free_ino_ctl(root);
1490         spin_lock_init(&root->ino_cache_lock);
1491         init_waitqueue_head(&root->ino_cache_wait);
1492
1493         ret = get_anon_bdev(&root->anon_dev);
1494         if (ret)
1495                 goto fail;
1496
1497         mutex_lock(&root->objectid_mutex);
1498         ret = btrfs_find_highest_objectid(root,
1499                                         &root->highest_objectid);
1500         if (ret) {
1501                 mutex_unlock(&root->objectid_mutex);
1502                 goto fail;
1503         }
1504
1505         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1506
1507         mutex_unlock(&root->objectid_mutex);
1508
1509         return 0;
1510 fail:
1511         /* The caller is responsible to call btrfs_free_fs_root */
1512         return ret;
1513 }
1514
1515 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1516                                         u64 root_id)
1517 {
1518         struct btrfs_root *root;
1519
1520         spin_lock(&fs_info->fs_roots_radix_lock);
1521         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1522                                  (unsigned long)root_id);
1523         spin_unlock(&fs_info->fs_roots_radix_lock);
1524         return root;
1525 }
1526
1527 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1528                          struct btrfs_root *root)
1529 {
1530         int ret;
1531
1532         ret = radix_tree_preload(GFP_NOFS);
1533         if (ret)
1534                 return ret;
1535
1536         spin_lock(&fs_info->fs_roots_radix_lock);
1537         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1538                                 (unsigned long)root->root_key.objectid,
1539                                 root);
1540         if (ret == 0)
1541                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1542         spin_unlock(&fs_info->fs_roots_radix_lock);
1543         radix_tree_preload_end();
1544
1545         return ret;
1546 }
1547
1548 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1549                                      struct btrfs_key *location,
1550                                      bool check_ref)
1551 {
1552         struct btrfs_root *root;
1553         struct btrfs_path *path;
1554         struct btrfs_key key;
1555         int ret;
1556
1557         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1558                 return fs_info->tree_root;
1559         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560                 return fs_info->extent_root;
1561         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562                 return fs_info->chunk_root;
1563         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1564                 return fs_info->dev_root;
1565         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1566                 return fs_info->csum_root;
1567         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568                 return fs_info->quota_root ? fs_info->quota_root :
1569                                              ERR_PTR(-ENOENT);
1570         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1571                 return fs_info->uuid_root ? fs_info->uuid_root :
1572                                             ERR_PTR(-ENOENT);
1573         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574                 return fs_info->free_space_root ? fs_info->free_space_root :
1575                                                   ERR_PTR(-ENOENT);
1576 again:
1577         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1578         if (root) {
1579                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1580                         return ERR_PTR(-ENOENT);
1581                 return root;
1582         }
1583
1584         root = btrfs_read_fs_root(fs_info->tree_root, location);
1585         if (IS_ERR(root))
1586                 return root;
1587
1588         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1589                 ret = -ENOENT;
1590                 goto fail;
1591         }
1592
1593         ret = btrfs_init_fs_root(root);
1594         if (ret)
1595                 goto fail;
1596
1597         path = btrfs_alloc_path();
1598         if (!path) {
1599                 ret = -ENOMEM;
1600                 goto fail;
1601         }
1602         key.objectid = BTRFS_ORPHAN_OBJECTID;
1603         key.type = BTRFS_ORPHAN_ITEM_KEY;
1604         key.offset = location->objectid;
1605
1606         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1607         btrfs_free_path(path);
1608         if (ret < 0)
1609                 goto fail;
1610         if (ret == 0)
1611                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1612
1613         ret = btrfs_insert_fs_root(fs_info, root);
1614         if (ret) {
1615                 if (ret == -EEXIST) {
1616                         btrfs_free_fs_root(root);
1617                         goto again;
1618                 }
1619                 goto fail;
1620         }
1621         return root;
1622 fail:
1623         btrfs_free_fs_root(root);
1624         return ERR_PTR(ret);
1625 }
1626
1627 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628 {
1629         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630         int ret = 0;
1631         struct btrfs_device *device;
1632         struct backing_dev_info *bdi;
1633
1634         rcu_read_lock();
1635         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1636                 if (!device->bdev)
1637                         continue;
1638                 bdi = device->bdev->bd_bdi;
1639                 if (bdi_congested(bdi, bdi_bits)) {
1640                         ret = 1;
1641                         break;
1642                 }
1643         }
1644         rcu_read_unlock();
1645         return ret;
1646 }
1647
1648 /*
1649  * called by the kthread helper functions to finally call the bio end_io
1650  * functions.  This is where read checksum verification actually happens
1651  */
1652 static void end_workqueue_fn(struct btrfs_work *work)
1653 {
1654         struct bio *bio;
1655         struct btrfs_end_io_wq *end_io_wq;
1656
1657         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1658         bio = end_io_wq->bio;
1659
1660         bio->bi_status = end_io_wq->status;
1661         bio->bi_private = end_io_wq->private;
1662         bio->bi_end_io = end_io_wq->end_io;
1663         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1664         bio_endio(bio);
1665 }
1666
1667 static int cleaner_kthread(void *arg)
1668 {
1669         struct btrfs_root *root = arg;
1670         struct btrfs_fs_info *fs_info = root->fs_info;
1671         int again;
1672
1673         while (1) {
1674                 again = 0;
1675
1676                 /* Make the cleaner go to sleep early. */
1677                 if (btrfs_need_cleaner_sleep(fs_info))
1678                         goto sleep;
1679
1680                 /*
1681                  * Do not do anything if we might cause open_ctree() to block
1682                  * before we have finished mounting the filesystem.
1683                  */
1684                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1685                         goto sleep;
1686
1687                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1688                         goto sleep;
1689
1690                 /*
1691                  * Avoid the problem that we change the status of the fs
1692                  * during the above check and trylock.
1693                  */
1694                 if (btrfs_need_cleaner_sleep(fs_info)) {
1695                         mutex_unlock(&fs_info->cleaner_mutex);
1696                         goto sleep;
1697                 }
1698
1699                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1700                 btrfs_run_delayed_iputs(fs_info);
1701                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1702
1703                 again = btrfs_clean_one_deleted_snapshot(root);
1704                 mutex_unlock(&fs_info->cleaner_mutex);
1705
1706                 /*
1707                  * The defragger has dealt with the R/O remount and umount,
1708                  * needn't do anything special here.
1709                  */
1710                 btrfs_run_defrag_inodes(fs_info);
1711
1712                 /*
1713                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1714                  * with relocation (btrfs_relocate_chunk) and relocation
1715                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1716                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1717                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1718                  * unused block groups.
1719                  */
1720                 btrfs_delete_unused_bgs(fs_info);
1721 sleep:
1722                 if (kthread_should_park())
1723                         kthread_parkme();
1724                 if (kthread_should_stop())
1725                         return 0;
1726                 if (!again) {
1727                         set_current_state(TASK_INTERRUPTIBLE);
1728                         schedule();
1729                         __set_current_state(TASK_RUNNING);
1730                 }
1731         }
1732 }
1733
1734 static int transaction_kthread(void *arg)
1735 {
1736         struct btrfs_root *root = arg;
1737         struct btrfs_fs_info *fs_info = root->fs_info;
1738         struct btrfs_trans_handle *trans;
1739         struct btrfs_transaction *cur;
1740         u64 transid;
1741         time64_t now;
1742         unsigned long delay;
1743         bool cannot_commit;
1744
1745         do {
1746                 cannot_commit = false;
1747                 delay = HZ * fs_info->commit_interval;
1748                 mutex_lock(&fs_info->transaction_kthread_mutex);
1749
1750                 spin_lock(&fs_info->trans_lock);
1751                 cur = fs_info->running_transaction;
1752                 if (!cur) {
1753                         spin_unlock(&fs_info->trans_lock);
1754                         goto sleep;
1755                 }
1756
1757                 now = ktime_get_seconds();
1758                 if (cur->state < TRANS_STATE_BLOCKED &&
1759                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1760                     (now < cur->start_time ||
1761                      now - cur->start_time < fs_info->commit_interval)) {
1762                         spin_unlock(&fs_info->trans_lock);
1763                         delay = HZ * 5;
1764                         goto sleep;
1765                 }
1766                 transid = cur->transid;
1767                 spin_unlock(&fs_info->trans_lock);
1768
1769                 /* If the file system is aborted, this will always fail. */
1770                 trans = btrfs_attach_transaction(root);
1771                 if (IS_ERR(trans)) {
1772                         if (PTR_ERR(trans) != -ENOENT)
1773                                 cannot_commit = true;
1774                         goto sleep;
1775                 }
1776                 if (transid == trans->transid) {
1777                         btrfs_commit_transaction(trans);
1778                 } else {
1779                         btrfs_end_transaction(trans);
1780                 }
1781 sleep:
1782                 wake_up_process(fs_info->cleaner_kthread);
1783                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1784
1785                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1786                                       &fs_info->fs_state)))
1787                         btrfs_cleanup_transaction(fs_info);
1788                 if (!kthread_should_stop() &&
1789                                 (!btrfs_transaction_blocked(fs_info) ||
1790                                  cannot_commit))
1791                         schedule_timeout_interruptible(delay);
1792         } while (!kthread_should_stop());
1793         return 0;
1794 }
1795
1796 /*
1797  * this will find the highest generation in the array of
1798  * root backups.  The index of the highest array is returned,
1799  * or -1 if we can't find anything.
1800  *
1801  * We check to make sure the array is valid by comparing the
1802  * generation of the latest  root in the array with the generation
1803  * in the super block.  If they don't match we pitch it.
1804  */
1805 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1806 {
1807         u64 cur;
1808         int newest_index = -1;
1809         struct btrfs_root_backup *root_backup;
1810         int i;
1811
1812         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1813                 root_backup = info->super_copy->super_roots + i;
1814                 cur = btrfs_backup_tree_root_gen(root_backup);
1815                 if (cur == newest_gen)
1816                         newest_index = i;
1817         }
1818
1819         /* check to see if we actually wrapped around */
1820         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1821                 root_backup = info->super_copy->super_roots;
1822                 cur = btrfs_backup_tree_root_gen(root_backup);
1823                 if (cur == newest_gen)
1824                         newest_index = 0;
1825         }
1826         return newest_index;
1827 }
1828
1829
1830 /*
1831  * find the oldest backup so we know where to store new entries
1832  * in the backup array.  This will set the backup_root_index
1833  * field in the fs_info struct
1834  */
1835 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1836                                      u64 newest_gen)
1837 {
1838         int newest_index = -1;
1839
1840         newest_index = find_newest_super_backup(info, newest_gen);
1841         /* if there was garbage in there, just move along */
1842         if (newest_index == -1) {
1843                 info->backup_root_index = 0;
1844         } else {
1845                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1846         }
1847 }
1848
1849 /*
1850  * copy all the root pointers into the super backup array.
1851  * this will bump the backup pointer by one when it is
1852  * done
1853  */
1854 static void backup_super_roots(struct btrfs_fs_info *info)
1855 {
1856         int next_backup;
1857         struct btrfs_root_backup *root_backup;
1858         int last_backup;
1859
1860         next_backup = info->backup_root_index;
1861         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1862                 BTRFS_NUM_BACKUP_ROOTS;
1863
1864         /*
1865          * just overwrite the last backup if we're at the same generation
1866          * this happens only at umount
1867          */
1868         root_backup = info->super_for_commit->super_roots + last_backup;
1869         if (btrfs_backup_tree_root_gen(root_backup) ==
1870             btrfs_header_generation(info->tree_root->node))
1871                 next_backup = last_backup;
1872
1873         root_backup = info->super_for_commit->super_roots + next_backup;
1874
1875         /*
1876          * make sure all of our padding and empty slots get zero filled
1877          * regardless of which ones we use today
1878          */
1879         memset(root_backup, 0, sizeof(*root_backup));
1880
1881         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1882
1883         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1884         btrfs_set_backup_tree_root_gen(root_backup,
1885                                btrfs_header_generation(info->tree_root->node));
1886
1887         btrfs_set_backup_tree_root_level(root_backup,
1888                                btrfs_header_level(info->tree_root->node));
1889
1890         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1891         btrfs_set_backup_chunk_root_gen(root_backup,
1892                                btrfs_header_generation(info->chunk_root->node));
1893         btrfs_set_backup_chunk_root_level(root_backup,
1894                                btrfs_header_level(info->chunk_root->node));
1895
1896         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1897         btrfs_set_backup_extent_root_gen(root_backup,
1898                                btrfs_header_generation(info->extent_root->node));
1899         btrfs_set_backup_extent_root_level(root_backup,
1900                                btrfs_header_level(info->extent_root->node));
1901
1902         /*
1903          * we might commit during log recovery, which happens before we set
1904          * the fs_root.  Make sure it is valid before we fill it in.
1905          */
1906         if (info->fs_root && info->fs_root->node) {
1907                 btrfs_set_backup_fs_root(root_backup,
1908                                          info->fs_root->node->start);
1909                 btrfs_set_backup_fs_root_gen(root_backup,
1910                                btrfs_header_generation(info->fs_root->node));
1911                 btrfs_set_backup_fs_root_level(root_backup,
1912                                btrfs_header_level(info->fs_root->node));
1913         }
1914
1915         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1916         btrfs_set_backup_dev_root_gen(root_backup,
1917                                btrfs_header_generation(info->dev_root->node));
1918         btrfs_set_backup_dev_root_level(root_backup,
1919                                        btrfs_header_level(info->dev_root->node));
1920
1921         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1922         btrfs_set_backup_csum_root_gen(root_backup,
1923                                btrfs_header_generation(info->csum_root->node));
1924         btrfs_set_backup_csum_root_level(root_backup,
1925                                btrfs_header_level(info->csum_root->node));
1926
1927         btrfs_set_backup_total_bytes(root_backup,
1928                              btrfs_super_total_bytes(info->super_copy));
1929         btrfs_set_backup_bytes_used(root_backup,
1930                              btrfs_super_bytes_used(info->super_copy));
1931         btrfs_set_backup_num_devices(root_backup,
1932                              btrfs_super_num_devices(info->super_copy));
1933
1934         /*
1935          * if we don't copy this out to the super_copy, it won't get remembered
1936          * for the next commit
1937          */
1938         memcpy(&info->super_copy->super_roots,
1939                &info->super_for_commit->super_roots,
1940                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1941 }
1942
1943 /*
1944  * this copies info out of the root backup array and back into
1945  * the in-memory super block.  It is meant to help iterate through
1946  * the array, so you send it the number of backups you've already
1947  * tried and the last backup index you used.
1948  *
1949  * this returns -1 when it has tried all the backups
1950  */
1951 static noinline int next_root_backup(struct btrfs_fs_info *info,
1952                                      struct btrfs_super_block *super,
1953                                      int *num_backups_tried, int *backup_index)
1954 {
1955         struct btrfs_root_backup *root_backup;
1956         int newest = *backup_index;
1957
1958         if (*num_backups_tried == 0) {
1959                 u64 gen = btrfs_super_generation(super);
1960
1961                 newest = find_newest_super_backup(info, gen);
1962                 if (newest == -1)
1963                         return -1;
1964
1965                 *backup_index = newest;
1966                 *num_backups_tried = 1;
1967         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1968                 /* we've tried all the backups, all done */
1969                 return -1;
1970         } else {
1971                 /* jump to the next oldest backup */
1972                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1973                         BTRFS_NUM_BACKUP_ROOTS;
1974                 *backup_index = newest;
1975                 *num_backups_tried += 1;
1976         }
1977         root_backup = super->super_roots + newest;
1978
1979         btrfs_set_super_generation(super,
1980                                    btrfs_backup_tree_root_gen(root_backup));
1981         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1982         btrfs_set_super_root_level(super,
1983                                    btrfs_backup_tree_root_level(root_backup));
1984         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1985
1986         /*
1987          * fixme: the total bytes and num_devices need to match or we should
1988          * need a fsck
1989          */
1990         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1991         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1992         return 0;
1993 }
1994
1995 /* helper to cleanup workers */
1996 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1997 {
1998         btrfs_destroy_workqueue(fs_info->fixup_workers);
1999         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2000         btrfs_destroy_workqueue(fs_info->workers);
2001         btrfs_destroy_workqueue(fs_info->endio_workers);
2002         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2003         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2004         btrfs_destroy_workqueue(fs_info->rmw_workers);
2005         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2006         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2007         btrfs_destroy_workqueue(fs_info->submit_workers);
2008         btrfs_destroy_workqueue(fs_info->delayed_workers);
2009         btrfs_destroy_workqueue(fs_info->caching_workers);
2010         btrfs_destroy_workqueue(fs_info->readahead_workers);
2011         btrfs_destroy_workqueue(fs_info->flush_workers);
2012         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2013         btrfs_destroy_workqueue(fs_info->extent_workers);
2014         /*
2015          * Now that all other work queues are destroyed, we can safely destroy
2016          * the queues used for metadata I/O, since tasks from those other work
2017          * queues can do metadata I/O operations.
2018          */
2019         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2020         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2021 }
2022
2023 static void free_root_extent_buffers(struct btrfs_root *root)
2024 {
2025         if (root) {
2026                 free_extent_buffer(root->node);
2027                 free_extent_buffer(root->commit_root);
2028                 root->node = NULL;
2029                 root->commit_root = NULL;
2030         }
2031 }
2032
2033 /* helper to cleanup tree roots */
2034 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2035 {
2036         free_root_extent_buffers(info->tree_root);
2037
2038         free_root_extent_buffers(info->dev_root);
2039         free_root_extent_buffers(info->extent_root);
2040         free_root_extent_buffers(info->csum_root);
2041         free_root_extent_buffers(info->quota_root);
2042         free_root_extent_buffers(info->uuid_root);
2043         if (chunk_root)
2044                 free_root_extent_buffers(info->chunk_root);
2045         free_root_extent_buffers(info->free_space_root);
2046 }
2047
2048 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2049 {
2050         int ret;
2051         struct btrfs_root *gang[8];
2052         int i;
2053
2054         while (!list_empty(&fs_info->dead_roots)) {
2055                 gang[0] = list_entry(fs_info->dead_roots.next,
2056                                      struct btrfs_root, root_list);
2057                 list_del(&gang[0]->root_list);
2058
2059                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2060                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2061                 } else {
2062                         free_extent_buffer(gang[0]->node);
2063                         free_extent_buffer(gang[0]->commit_root);
2064                         btrfs_put_fs_root(gang[0]);
2065                 }
2066         }
2067
2068         while (1) {
2069                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2070                                              (void **)gang, 0,
2071                                              ARRAY_SIZE(gang));
2072                 if (!ret)
2073                         break;
2074                 for (i = 0; i < ret; i++)
2075                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2076         }
2077
2078         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2079                 btrfs_free_log_root_tree(NULL, fs_info);
2080                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2081         }
2082 }
2083
2084 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2085 {
2086         mutex_init(&fs_info->scrub_lock);
2087         atomic_set(&fs_info->scrubs_running, 0);
2088         atomic_set(&fs_info->scrub_pause_req, 0);
2089         atomic_set(&fs_info->scrubs_paused, 0);
2090         atomic_set(&fs_info->scrub_cancel_req, 0);
2091         init_waitqueue_head(&fs_info->scrub_pause_wait);
2092         fs_info->scrub_workers_refcnt = 0;
2093 }
2094
2095 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2096 {
2097         spin_lock_init(&fs_info->balance_lock);
2098         mutex_init(&fs_info->balance_mutex);
2099         atomic_set(&fs_info->balance_pause_req, 0);
2100         atomic_set(&fs_info->balance_cancel_req, 0);
2101         fs_info->balance_ctl = NULL;
2102         init_waitqueue_head(&fs_info->balance_wait_q);
2103 }
2104
2105 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2106 {
2107         struct inode *inode = fs_info->btree_inode;
2108
2109         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2110         set_nlink(inode, 1);
2111         /*
2112          * we set the i_size on the btree inode to the max possible int.
2113          * the real end of the address space is determined by all of
2114          * the devices in the system
2115          */
2116         inode->i_size = OFFSET_MAX;
2117         inode->i_mapping->a_ops = &btree_aops;
2118
2119         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2120         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2121         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2122         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2123
2124         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2125
2126         BTRFS_I(inode)->root = fs_info->tree_root;
2127         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2128         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2129         btrfs_insert_inode_hash(inode);
2130 }
2131
2132 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2133 {
2134         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2135         rwlock_init(&fs_info->dev_replace.lock);
2136         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2137         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2138         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2139 }
2140
2141 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2142 {
2143         spin_lock_init(&fs_info->qgroup_lock);
2144         mutex_init(&fs_info->qgroup_ioctl_lock);
2145         fs_info->qgroup_tree = RB_ROOT;
2146         fs_info->qgroup_op_tree = RB_ROOT;
2147         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2148         fs_info->qgroup_seq = 1;
2149         fs_info->qgroup_ulist = NULL;
2150         fs_info->qgroup_rescan_running = false;
2151         mutex_init(&fs_info->qgroup_rescan_lock);
2152 }
2153
2154 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2155                 struct btrfs_fs_devices *fs_devices)
2156 {
2157         u32 max_active = fs_info->thread_pool_size;
2158         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159
2160         fs_info->workers =
2161                 btrfs_alloc_workqueue(fs_info, "worker",
2162                                       flags | WQ_HIGHPRI, max_active, 16);
2163
2164         fs_info->delalloc_workers =
2165                 btrfs_alloc_workqueue(fs_info, "delalloc",
2166                                       flags, max_active, 2);
2167
2168         fs_info->flush_workers =
2169                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2170                                       flags, max_active, 0);
2171
2172         fs_info->caching_workers =
2173                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2174
2175         /*
2176          * a higher idle thresh on the submit workers makes it much more
2177          * likely that bios will be send down in a sane order to the
2178          * devices
2179          */
2180         fs_info->submit_workers =
2181                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2182                                       min_t(u64, fs_devices->num_devices,
2183                                             max_active), 64);
2184
2185         fs_info->fixup_workers =
2186                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2187
2188         /*
2189          * endios are largely parallel and should have a very
2190          * low idle thresh
2191          */
2192         fs_info->endio_workers =
2193                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2194         fs_info->endio_meta_workers =
2195                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2196                                       max_active, 4);
2197         fs_info->endio_meta_write_workers =
2198                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2199                                       max_active, 2);
2200         fs_info->endio_raid56_workers =
2201                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2202                                       max_active, 4);
2203         fs_info->endio_repair_workers =
2204                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2205         fs_info->rmw_workers =
2206                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2207         fs_info->endio_write_workers =
2208                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2209                                       max_active, 2);
2210         fs_info->endio_freespace_worker =
2211                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2212                                       max_active, 0);
2213         fs_info->delayed_workers =
2214                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2215                                       max_active, 0);
2216         fs_info->readahead_workers =
2217                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2218                                       max_active, 2);
2219         fs_info->qgroup_rescan_workers =
2220                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2221         fs_info->extent_workers =
2222                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2223                                       min_t(u64, fs_devices->num_devices,
2224                                             max_active), 8);
2225
2226         if (!(fs_info->workers && fs_info->delalloc_workers &&
2227               fs_info->submit_workers && fs_info->flush_workers &&
2228               fs_info->endio_workers && fs_info->endio_meta_workers &&
2229               fs_info->endio_meta_write_workers &&
2230               fs_info->endio_repair_workers &&
2231               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2232               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2233               fs_info->caching_workers && fs_info->readahead_workers &&
2234               fs_info->fixup_workers && fs_info->delayed_workers &&
2235               fs_info->extent_workers &&
2236               fs_info->qgroup_rescan_workers)) {
2237                 return -ENOMEM;
2238         }
2239
2240         return 0;
2241 }
2242
2243 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2244                             struct btrfs_fs_devices *fs_devices)
2245 {
2246         int ret;
2247         struct btrfs_root *log_tree_root;
2248         struct btrfs_super_block *disk_super = fs_info->super_copy;
2249         u64 bytenr = btrfs_super_log_root(disk_super);
2250         int level = btrfs_super_log_root_level(disk_super);
2251
2252         if (fs_devices->rw_devices == 0) {
2253                 btrfs_warn(fs_info, "log replay required on RO media");
2254                 return -EIO;
2255         }
2256
2257         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2258         if (!log_tree_root)
2259                 return -ENOMEM;
2260
2261         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2262
2263         log_tree_root->node = read_tree_block(fs_info, bytenr,
2264                                               fs_info->generation + 1,
2265                                               level, NULL);
2266         if (IS_ERR(log_tree_root->node)) {
2267                 btrfs_warn(fs_info, "failed to read log tree");
2268                 ret = PTR_ERR(log_tree_root->node);
2269                 kfree(log_tree_root);
2270                 return ret;
2271         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2272                 btrfs_err(fs_info, "failed to read log tree");
2273                 free_extent_buffer(log_tree_root->node);
2274                 kfree(log_tree_root);
2275                 return -EIO;
2276         }
2277         /* returns with log_tree_root freed on success */
2278         ret = btrfs_recover_log_trees(log_tree_root);
2279         if (ret) {
2280                 btrfs_handle_fs_error(fs_info, ret,
2281                                       "Failed to recover log tree");
2282                 free_extent_buffer(log_tree_root->node);
2283                 kfree(log_tree_root);
2284                 return ret;
2285         }
2286
2287         if (sb_rdonly(fs_info->sb)) {
2288                 ret = btrfs_commit_super(fs_info);
2289                 if (ret)
2290                         return ret;
2291         }
2292
2293         return 0;
2294 }
2295
2296 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2297 {
2298         struct btrfs_root *tree_root = fs_info->tree_root;
2299         struct btrfs_root *root;
2300         struct btrfs_key location;
2301         int ret;
2302
2303         BUG_ON(!fs_info->tree_root);
2304
2305         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2306         location.type = BTRFS_ROOT_ITEM_KEY;
2307         location.offset = 0;
2308
2309         root = btrfs_read_tree_root(tree_root, &location);
2310         if (IS_ERR(root)) {
2311                 ret = PTR_ERR(root);
2312                 goto out;
2313         }
2314         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315         fs_info->extent_root = root;
2316
2317         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2318         root = btrfs_read_tree_root(tree_root, &location);
2319         if (IS_ERR(root)) {
2320                 ret = PTR_ERR(root);
2321                 goto out;
2322         }
2323         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324         fs_info->dev_root = root;
2325         btrfs_init_devices_late(fs_info);
2326
2327         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2328         root = btrfs_read_tree_root(tree_root, &location);
2329         if (IS_ERR(root)) {
2330                 ret = PTR_ERR(root);
2331                 goto out;
2332         }
2333         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334         fs_info->csum_root = root;
2335
2336         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2337         root = btrfs_read_tree_root(tree_root, &location);
2338         if (!IS_ERR(root)) {
2339                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2340                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2341                 fs_info->quota_root = root;
2342         }
2343
2344         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2345         root = btrfs_read_tree_root(tree_root, &location);
2346         if (IS_ERR(root)) {
2347                 ret = PTR_ERR(root);
2348                 if (ret != -ENOENT)
2349                         goto out;
2350         } else {
2351                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352                 fs_info->uuid_root = root;
2353         }
2354
2355         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2356                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2357                 root = btrfs_read_tree_root(tree_root, &location);
2358                 if (IS_ERR(root)) {
2359                         ret = PTR_ERR(root);
2360                         goto out;
2361                 }
2362                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363                 fs_info->free_space_root = root;
2364         }
2365
2366         return 0;
2367 out:
2368         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2369                    location.objectid, ret);
2370         return ret;
2371 }
2372
2373 /*
2374  * Real super block validation
2375  * NOTE: super csum type and incompat features will not be checked here.
2376  *
2377  * @sb:         super block to check
2378  * @mirror_num: the super block number to check its bytenr:
2379  *              0       the primary (1st) sb
2380  *              1, 2    2nd and 3rd backup copy
2381  *             -1       skip bytenr check
2382  */
2383 static int validate_super(struct btrfs_fs_info *fs_info,
2384                             struct btrfs_super_block *sb, int mirror_num)
2385 {
2386         u64 nodesize = btrfs_super_nodesize(sb);
2387         u64 sectorsize = btrfs_super_sectorsize(sb);
2388         int ret = 0;
2389
2390         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2391                 btrfs_err(fs_info, "no valid FS found");
2392                 ret = -EINVAL;
2393         }
2394         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2395                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2396                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2397                 ret = -EINVAL;
2398         }
2399         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2400                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2401                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2402                 ret = -EINVAL;
2403         }
2404         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2405                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2406                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2407                 ret = -EINVAL;
2408         }
2409         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2410                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2411                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2412                 ret = -EINVAL;
2413         }
2414
2415         /*
2416          * Check sectorsize and nodesize first, other check will need it.
2417          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2418          */
2419         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2420             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2421                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2422                 ret = -EINVAL;
2423         }
2424         /* Only PAGE SIZE is supported yet */
2425         if (sectorsize != PAGE_SIZE) {
2426                 btrfs_err(fs_info,
2427                         "sectorsize %llu not supported yet, only support %lu",
2428                         sectorsize, PAGE_SIZE);
2429                 ret = -EINVAL;
2430         }
2431         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2432             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2433                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2434                 ret = -EINVAL;
2435         }
2436         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2437                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2438                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2439                 ret = -EINVAL;
2440         }
2441
2442         /* Root alignment check */
2443         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2444                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2445                            btrfs_super_root(sb));
2446                 ret = -EINVAL;
2447         }
2448         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2449                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2450                            btrfs_super_chunk_root(sb));
2451                 ret = -EINVAL;
2452         }
2453         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2454                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2455                            btrfs_super_log_root(sb));
2456                 ret = -EINVAL;
2457         }
2458
2459         if (memcmp(fs_info->metadata_fsid, sb->dev_item.fsid,
2460                    BTRFS_FSID_SIZE) != 0) {
2461                 btrfs_err(fs_info,
2462                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2463                         fs_info->metadata_fsid, sb->dev_item.fsid);
2464                 ret = -EINVAL;
2465         }
2466
2467         /*
2468          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2469          * done later
2470          */
2471         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2472                 btrfs_err(fs_info, "bytes_used is too small %llu",
2473                           btrfs_super_bytes_used(sb));
2474                 ret = -EINVAL;
2475         }
2476         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2477                 btrfs_err(fs_info, "invalid stripesize %u",
2478                           btrfs_super_stripesize(sb));
2479                 ret = -EINVAL;
2480         }
2481         if (btrfs_super_num_devices(sb) > (1UL << 31))
2482                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2483                            btrfs_super_num_devices(sb));
2484         if (btrfs_super_num_devices(sb) == 0) {
2485                 btrfs_err(fs_info, "number of devices is 0");
2486                 ret = -EINVAL;
2487         }
2488
2489         if (mirror_num >= 0 &&
2490             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2491                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2492                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2493                 ret = -EINVAL;
2494         }
2495
2496         /*
2497          * Obvious sys_chunk_array corruptions, it must hold at least one key
2498          * and one chunk
2499          */
2500         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2501                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2502                           btrfs_super_sys_array_size(sb),
2503                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2504                 ret = -EINVAL;
2505         }
2506         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2507                         + sizeof(struct btrfs_chunk)) {
2508                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2509                           btrfs_super_sys_array_size(sb),
2510                           sizeof(struct btrfs_disk_key)
2511                           + sizeof(struct btrfs_chunk));
2512                 ret = -EINVAL;
2513         }
2514
2515         /*
2516          * The generation is a global counter, we'll trust it more than the others
2517          * but it's still possible that it's the one that's wrong.
2518          */
2519         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2520                 btrfs_warn(fs_info,
2521                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2522                         btrfs_super_generation(sb),
2523                         btrfs_super_chunk_root_generation(sb));
2524         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2525             && btrfs_super_cache_generation(sb) != (u64)-1)
2526                 btrfs_warn(fs_info,
2527                         "suspicious: generation < cache_generation: %llu < %llu",
2528                         btrfs_super_generation(sb),
2529                         btrfs_super_cache_generation(sb));
2530
2531         return ret;
2532 }
2533
2534 /*
2535  * Validation of super block at mount time.
2536  * Some checks already done early at mount time, like csum type and incompat
2537  * flags will be skipped.
2538  */
2539 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2540 {
2541         return validate_super(fs_info, fs_info->super_copy, 0);
2542 }
2543
2544 /*
2545  * Validation of super block at write time.
2546  * Some checks like bytenr check will be skipped as their values will be
2547  * overwritten soon.
2548  * Extra checks like csum type and incompat flags will be done here.
2549  */
2550 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2551                                       struct btrfs_super_block *sb)
2552 {
2553         int ret;
2554
2555         ret = validate_super(fs_info, sb, -1);
2556         if (ret < 0)
2557                 goto out;
2558         if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2559                 ret = -EUCLEAN;
2560                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2561                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2562                 goto out;
2563         }
2564         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2565                 ret = -EUCLEAN;
2566                 btrfs_err(fs_info,
2567                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2568                           btrfs_super_incompat_flags(sb),
2569                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2570                 goto out;
2571         }
2572 out:
2573         if (ret < 0)
2574                 btrfs_err(fs_info,
2575                 "super block corruption detected before writing it to disk");
2576         return ret;
2577 }
2578
2579 int open_ctree(struct super_block *sb,
2580                struct btrfs_fs_devices *fs_devices,
2581                char *options)
2582 {
2583         u32 sectorsize;
2584         u32 nodesize;
2585         u32 stripesize;
2586         u64 generation;
2587         u64 features;
2588         struct btrfs_key location;
2589         struct buffer_head *bh;
2590         struct btrfs_super_block *disk_super;
2591         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2592         struct btrfs_root *tree_root;
2593         struct btrfs_root *chunk_root;
2594         int ret;
2595         int err = -EINVAL;
2596         int num_backups_tried = 0;
2597         int backup_index = 0;
2598         int clear_free_space_tree = 0;
2599         int level;
2600
2601         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2602         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2603         if (!tree_root || !chunk_root) {
2604                 err = -ENOMEM;
2605                 goto fail;
2606         }
2607
2608         ret = init_srcu_struct(&fs_info->subvol_srcu);
2609         if (ret) {
2610                 err = ret;
2611                 goto fail;
2612         }
2613
2614         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2615         if (ret) {
2616                 err = ret;
2617                 goto fail_srcu;
2618         }
2619         fs_info->dirty_metadata_batch = PAGE_SIZE *
2620                                         (1 + ilog2(nr_cpu_ids));
2621
2622         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2623         if (ret) {
2624                 err = ret;
2625                 goto fail_dirty_metadata_bytes;
2626         }
2627
2628         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2629                         GFP_KERNEL);
2630         if (ret) {
2631                 err = ret;
2632                 goto fail_delalloc_bytes;
2633         }
2634
2635         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2636         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2637         INIT_LIST_HEAD(&fs_info->trans_list);
2638         INIT_LIST_HEAD(&fs_info->dead_roots);
2639         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2640         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2641         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2642         INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2643         spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2644         spin_lock_init(&fs_info->delalloc_root_lock);
2645         spin_lock_init(&fs_info->trans_lock);
2646         spin_lock_init(&fs_info->fs_roots_radix_lock);
2647         spin_lock_init(&fs_info->delayed_iput_lock);
2648         spin_lock_init(&fs_info->defrag_inodes_lock);
2649         spin_lock_init(&fs_info->tree_mod_seq_lock);
2650         spin_lock_init(&fs_info->super_lock);
2651         spin_lock_init(&fs_info->qgroup_op_lock);
2652         spin_lock_init(&fs_info->buffer_lock);
2653         spin_lock_init(&fs_info->unused_bgs_lock);
2654         rwlock_init(&fs_info->tree_mod_log_lock);
2655         mutex_init(&fs_info->unused_bg_unpin_mutex);
2656         mutex_init(&fs_info->delete_unused_bgs_mutex);
2657         mutex_init(&fs_info->reloc_mutex);
2658         mutex_init(&fs_info->delalloc_root_mutex);
2659         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2660         seqlock_init(&fs_info->profiles_lock);
2661
2662         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2663         INIT_LIST_HEAD(&fs_info->space_info);
2664         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2665         INIT_LIST_HEAD(&fs_info->unused_bgs);
2666         btrfs_mapping_init(&fs_info->mapping_tree);
2667         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2668                              BTRFS_BLOCK_RSV_GLOBAL);
2669         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2670         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2671         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2672         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2673                              BTRFS_BLOCK_RSV_DELOPS);
2674         atomic_set(&fs_info->async_delalloc_pages, 0);
2675         atomic_set(&fs_info->defrag_running, 0);
2676         atomic_set(&fs_info->qgroup_op_seq, 0);
2677         atomic_set(&fs_info->reada_works_cnt, 0);
2678         atomic64_set(&fs_info->tree_mod_seq, 0);
2679         fs_info->sb = sb;
2680         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2681         fs_info->metadata_ratio = 0;
2682         fs_info->defrag_inodes = RB_ROOT;
2683         atomic64_set(&fs_info->free_chunk_space, 0);
2684         fs_info->tree_mod_log = RB_ROOT;
2685         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2686         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2687         /* readahead state */
2688         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2689         spin_lock_init(&fs_info->reada_lock);
2690         btrfs_init_ref_verify(fs_info);
2691
2692         fs_info->thread_pool_size = min_t(unsigned long,
2693                                           num_online_cpus() + 2, 8);
2694
2695         INIT_LIST_HEAD(&fs_info->ordered_roots);
2696         spin_lock_init(&fs_info->ordered_root_lock);
2697
2698         fs_info->btree_inode = new_inode(sb);
2699         if (!fs_info->btree_inode) {
2700                 err = -ENOMEM;
2701                 goto fail_bio_counter;
2702         }
2703         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2704
2705         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2706                                         GFP_KERNEL);
2707         if (!fs_info->delayed_root) {
2708                 err = -ENOMEM;
2709                 goto fail_iput;
2710         }
2711         btrfs_init_delayed_root(fs_info->delayed_root);
2712
2713         btrfs_init_scrub(fs_info);
2714 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2715         fs_info->check_integrity_print_mask = 0;
2716 #endif
2717         btrfs_init_balance(fs_info);
2718         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2719
2720         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2721         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2722
2723         btrfs_init_btree_inode(fs_info);
2724
2725         spin_lock_init(&fs_info->block_group_cache_lock);
2726         fs_info->block_group_cache_tree = RB_ROOT;
2727         fs_info->first_logical_byte = (u64)-1;
2728
2729         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2730         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2731         fs_info->pinned_extents = &fs_info->freed_extents[0];
2732         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2733
2734         mutex_init(&fs_info->ordered_operations_mutex);
2735         mutex_init(&fs_info->tree_log_mutex);
2736         mutex_init(&fs_info->chunk_mutex);
2737         mutex_init(&fs_info->transaction_kthread_mutex);
2738         mutex_init(&fs_info->cleaner_mutex);
2739         mutex_init(&fs_info->ro_block_group_mutex);
2740         init_rwsem(&fs_info->commit_root_sem);
2741         init_rwsem(&fs_info->cleanup_work_sem);
2742         init_rwsem(&fs_info->subvol_sem);
2743         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2744
2745         btrfs_init_dev_replace_locks(fs_info);
2746         btrfs_init_qgroup(fs_info);
2747
2748         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
2751         init_waitqueue_head(&fs_info->transaction_throttle);
2752         init_waitqueue_head(&fs_info->transaction_wait);
2753         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2754         init_waitqueue_head(&fs_info->async_submit_wait);
2755
2756         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
2758         /* Usable values until the real ones are cached from the superblock */
2759         fs_info->nodesize = 4096;
2760         fs_info->sectorsize = 4096;
2761         fs_info->stripesize = 4096;
2762
2763         spin_lock_init(&fs_info->swapfile_pins_lock);
2764         fs_info->swapfile_pins = RB_ROOT;
2765
2766         ret = btrfs_alloc_stripe_hash_table(fs_info);
2767         if (ret) {
2768                 err = ret;
2769                 goto fail_alloc;
2770         }
2771
2772         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2773
2774         invalidate_bdev(fs_devices->latest_bdev);
2775
2776         /*
2777          * Read super block and check the signature bytes only
2778          */
2779         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2780         if (IS_ERR(bh)) {
2781                 err = PTR_ERR(bh);
2782                 goto fail_alloc;
2783         }
2784
2785         /*
2786          * We want to check superblock checksum, the type is stored inside.
2787          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2788          */
2789         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2790                 btrfs_err(fs_info, "superblock checksum mismatch");
2791                 err = -EINVAL;
2792                 brelse(bh);
2793                 goto fail_alloc;
2794         }
2795
2796         /*
2797          * super_copy is zeroed at allocation time and we never touch the
2798          * following bytes up to INFO_SIZE, the checksum is calculated from
2799          * the whole block of INFO_SIZE
2800          */
2801         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2802         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2803                sizeof(*fs_info->super_for_commit));
2804         brelse(bh);
2805
2806         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2807         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2808                 memcpy(fs_info->metadata_fsid,
2809                        fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE);
2810         } else {
2811                 memcpy(fs_info->metadata_fsid, fs_info->fsid, BTRFS_FSID_SIZE);
2812         }
2813
2814         ret = btrfs_validate_mount_super(fs_info);
2815         if (ret) {
2816                 btrfs_err(fs_info, "superblock contains fatal errors");
2817                 err = -EINVAL;
2818                 goto fail_alloc;
2819         }
2820
2821         disk_super = fs_info->super_copy;
2822         if (!btrfs_super_root(disk_super))
2823                 goto fail_alloc;
2824
2825         /* check FS state, whether FS is broken. */
2826         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2827                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2828
2829         /*
2830          * run through our array of backup supers and setup
2831          * our ring pointer to the oldest one
2832          */
2833         generation = btrfs_super_generation(disk_super);
2834         find_oldest_super_backup(fs_info, generation);
2835
2836         /*
2837          * In the long term, we'll store the compression type in the super
2838          * block, and it'll be used for per file compression control.
2839          */
2840         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2841
2842         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2843         if (ret) {
2844                 err = ret;
2845                 goto fail_alloc;
2846         }
2847
2848         features = btrfs_super_incompat_flags(disk_super) &
2849                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2850         if (features) {
2851                 btrfs_err(fs_info,
2852                     "cannot mount because of unsupported optional features (%llx)",
2853                     features);
2854                 err = -EINVAL;
2855                 goto fail_alloc;
2856         }
2857
2858         features = btrfs_super_incompat_flags(disk_super);
2859         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2860         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2861                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2862         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2863                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2864
2865         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2866                 btrfs_info(fs_info, "has skinny extents");
2867
2868         /*
2869          * flag our filesystem as having big metadata blocks if
2870          * they are bigger than the page size
2871          */
2872         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2873                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2874                         btrfs_info(fs_info,
2875                                 "flagging fs with big metadata feature");
2876                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2877         }
2878
2879         nodesize = btrfs_super_nodesize(disk_super);
2880         sectorsize = btrfs_super_sectorsize(disk_super);
2881         stripesize = sectorsize;
2882         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2883         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2884
2885         /* Cache block sizes */
2886         fs_info->nodesize = nodesize;
2887         fs_info->sectorsize = sectorsize;
2888         fs_info->stripesize = stripesize;
2889
2890         /*
2891          * mixed block groups end up with duplicate but slightly offset
2892          * extent buffers for the same range.  It leads to corruptions
2893          */
2894         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2895             (sectorsize != nodesize)) {
2896                 btrfs_err(fs_info,
2897 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2898                         nodesize, sectorsize);
2899                 goto fail_alloc;
2900         }
2901
2902         /*
2903          * Needn't use the lock because there is no other task which will
2904          * update the flag.
2905          */
2906         btrfs_set_super_incompat_flags(disk_super, features);
2907
2908         features = btrfs_super_compat_ro_flags(disk_super) &
2909                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2910         if (!sb_rdonly(sb) && features) {
2911                 btrfs_err(fs_info,
2912         "cannot mount read-write because of unsupported optional features (%llx)",
2913                        features);
2914                 err = -EINVAL;
2915                 goto fail_alloc;
2916         }
2917
2918         ret = btrfs_init_workqueues(fs_info, fs_devices);
2919         if (ret) {
2920                 err = ret;
2921                 goto fail_sb_buffer;
2922         }
2923
2924         sb->s_bdi->congested_fn = btrfs_congested_fn;
2925         sb->s_bdi->congested_data = fs_info;
2926         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2927         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2928         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2929         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2930
2931         sb->s_blocksize = sectorsize;
2932         sb->s_blocksize_bits = blksize_bits(sectorsize);
2933         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2934
2935         mutex_lock(&fs_info->chunk_mutex);
2936         ret = btrfs_read_sys_array(fs_info);
2937         mutex_unlock(&fs_info->chunk_mutex);
2938         if (ret) {
2939                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2940                 goto fail_sb_buffer;
2941         }
2942
2943         generation = btrfs_super_chunk_root_generation(disk_super);
2944         level = btrfs_super_chunk_root_level(disk_super);
2945
2946         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2947
2948         chunk_root->node = read_tree_block(fs_info,
2949                                            btrfs_super_chunk_root(disk_super),
2950                                            generation, level, NULL);
2951         if (IS_ERR(chunk_root->node) ||
2952             !extent_buffer_uptodate(chunk_root->node)) {
2953                 btrfs_err(fs_info, "failed to read chunk root");
2954                 if (!IS_ERR(chunk_root->node))
2955                         free_extent_buffer(chunk_root->node);
2956                 chunk_root->node = NULL;
2957                 goto fail_tree_roots;
2958         }
2959         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2960         chunk_root->commit_root = btrfs_root_node(chunk_root);
2961
2962         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2963            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2964
2965         ret = btrfs_read_chunk_tree(fs_info);
2966         if (ret) {
2967                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2968                 goto fail_tree_roots;
2969         }
2970
2971         /*
2972          * Keep the devid that is marked to be the target device for the
2973          * device replace procedure
2974          */
2975         btrfs_free_extra_devids(fs_devices, 0);
2976
2977         if (!fs_devices->latest_bdev) {
2978                 btrfs_err(fs_info, "failed to read devices");
2979                 goto fail_tree_roots;
2980         }
2981
2982 retry_root_backup:
2983         generation = btrfs_super_generation(disk_super);
2984         level = btrfs_super_root_level(disk_super);
2985
2986         tree_root->node = read_tree_block(fs_info,
2987                                           btrfs_super_root(disk_super),
2988                                           generation, level, NULL);
2989         if (IS_ERR(tree_root->node) ||
2990             !extent_buffer_uptodate(tree_root->node)) {
2991                 btrfs_warn(fs_info, "failed to read tree root");
2992                 if (!IS_ERR(tree_root->node))
2993                         free_extent_buffer(tree_root->node);
2994                 tree_root->node = NULL;
2995                 goto recovery_tree_root;
2996         }
2997
2998         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2999         tree_root->commit_root = btrfs_root_node(tree_root);
3000         btrfs_set_root_refs(&tree_root->root_item, 1);
3001
3002         mutex_lock(&tree_root->objectid_mutex);
3003         ret = btrfs_find_highest_objectid(tree_root,
3004                                         &tree_root->highest_objectid);
3005         if (ret) {
3006                 mutex_unlock(&tree_root->objectid_mutex);
3007                 goto recovery_tree_root;
3008         }
3009
3010         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3011
3012         mutex_unlock(&tree_root->objectid_mutex);
3013
3014         ret = btrfs_read_roots(fs_info);
3015         if (ret)
3016                 goto recovery_tree_root;
3017
3018         fs_info->generation = generation;
3019         fs_info->last_trans_committed = generation;
3020
3021         ret = btrfs_verify_dev_extents(fs_info);
3022         if (ret) {
3023                 btrfs_err(fs_info,
3024                           "failed to verify dev extents against chunks: %d",
3025                           ret);
3026                 goto fail_block_groups;
3027         }
3028         ret = btrfs_recover_balance(fs_info);
3029         if (ret) {
3030                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3031                 goto fail_block_groups;
3032         }
3033
3034         ret = btrfs_init_dev_stats(fs_info);
3035         if (ret) {
3036                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3037                 goto fail_block_groups;
3038         }
3039
3040         ret = btrfs_init_dev_replace(fs_info);
3041         if (ret) {
3042                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3043                 goto fail_block_groups;
3044         }
3045
3046         btrfs_free_extra_devids(fs_devices, 1);
3047
3048         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3049         if (ret) {
3050                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3051                                 ret);
3052                 goto fail_block_groups;
3053         }
3054
3055         ret = btrfs_sysfs_add_device(fs_devices);
3056         if (ret) {
3057                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3058                                 ret);
3059                 goto fail_fsdev_sysfs;
3060         }
3061
3062         ret = btrfs_sysfs_add_mounted(fs_info);
3063         if (ret) {
3064                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3065                 goto fail_fsdev_sysfs;
3066         }
3067
3068         ret = btrfs_init_space_info(fs_info);
3069         if (ret) {
3070                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3071                 goto fail_sysfs;
3072         }
3073
3074         ret = btrfs_read_block_groups(fs_info);
3075         if (ret) {
3076                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3077                 goto fail_sysfs;
3078         }
3079
3080         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3081                 btrfs_warn(fs_info,
3082                 "writeable mount is not allowed due to too many missing devices");
3083                 goto fail_sysfs;
3084         }
3085
3086         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3087                                                "btrfs-cleaner");
3088         if (IS_ERR(fs_info->cleaner_kthread))
3089                 goto fail_sysfs;
3090
3091         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3092                                                    tree_root,
3093                                                    "btrfs-transaction");
3094         if (IS_ERR(fs_info->transaction_kthread))
3095                 goto fail_cleaner;
3096
3097         if (!btrfs_test_opt(fs_info, NOSSD) &&
3098             !fs_info->fs_devices->rotating) {
3099                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3100         }
3101
3102         /*
3103          * Mount does not set all options immediately, we can do it now and do
3104          * not have to wait for transaction commit
3105          */
3106         btrfs_apply_pending_changes(fs_info);
3107
3108 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3109         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3110                 ret = btrfsic_mount(fs_info, fs_devices,
3111                                     btrfs_test_opt(fs_info,
3112                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3113                                     1 : 0,
3114                                     fs_info->check_integrity_print_mask);
3115                 if (ret)
3116                         btrfs_warn(fs_info,
3117                                 "failed to initialize integrity check module: %d",
3118                                 ret);
3119         }
3120 #endif
3121         ret = btrfs_read_qgroup_config(fs_info);
3122         if (ret)
3123                 goto fail_trans_kthread;
3124
3125         if (btrfs_build_ref_tree(fs_info))
3126                 btrfs_err(fs_info, "couldn't build ref tree");
3127
3128         /* do not make disk changes in broken FS or nologreplay is given */
3129         if (btrfs_super_log_root(disk_super) != 0 &&
3130             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3131                 ret = btrfs_replay_log(fs_info, fs_devices);
3132                 if (ret) {
3133                         err = ret;
3134                         goto fail_qgroup;
3135                 }
3136         }
3137
3138         ret = btrfs_find_orphan_roots(fs_info);
3139         if (ret)
3140                 goto fail_qgroup;
3141
3142         if (!sb_rdonly(sb)) {
3143                 ret = btrfs_cleanup_fs_roots(fs_info);
3144                 if (ret)
3145                         goto fail_qgroup;
3146
3147                 mutex_lock(&fs_info->cleaner_mutex);
3148                 ret = btrfs_recover_relocation(tree_root);
3149                 mutex_unlock(&fs_info->cleaner_mutex);
3150                 if (ret < 0) {
3151                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3152                                         ret);
3153                         err = -EINVAL;
3154                         goto fail_qgroup;
3155                 }
3156         }
3157
3158         location.objectid = BTRFS_FS_TREE_OBJECTID;
3159         location.type = BTRFS_ROOT_ITEM_KEY;
3160         location.offset = 0;
3161
3162         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3163         if (IS_ERR(fs_info->fs_root)) {
3164                 err = PTR_ERR(fs_info->fs_root);
3165                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3166                 goto fail_qgroup;
3167         }
3168
3169         if (sb_rdonly(sb))
3170                 return 0;
3171
3172         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3173             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3174                 clear_free_space_tree = 1;
3175         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3176                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3177                 btrfs_warn(fs_info, "free space tree is invalid");
3178                 clear_free_space_tree = 1;
3179         }
3180
3181         if (clear_free_space_tree) {
3182                 btrfs_info(fs_info, "clearing free space tree");
3183                 ret = btrfs_clear_free_space_tree(fs_info);
3184                 if (ret) {
3185                         btrfs_warn(fs_info,
3186                                    "failed to clear free space tree: %d", ret);
3187                         close_ctree(fs_info);
3188                         return ret;
3189                 }
3190         }
3191
3192         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3193             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3194                 btrfs_info(fs_info, "creating free space tree");
3195                 ret = btrfs_create_free_space_tree(fs_info);
3196                 if (ret) {
3197                         btrfs_warn(fs_info,
3198                                 "failed to create free space tree: %d", ret);
3199                         close_ctree(fs_info);
3200                         return ret;
3201                 }
3202         }
3203
3204         down_read(&fs_info->cleanup_work_sem);
3205         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3206             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3207                 up_read(&fs_info->cleanup_work_sem);
3208                 close_ctree(fs_info);
3209                 return ret;
3210         }
3211         up_read(&fs_info->cleanup_work_sem);
3212
3213         ret = btrfs_resume_balance_async(fs_info);
3214         if (ret) {
3215                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3216                 close_ctree(fs_info);
3217                 return ret;
3218         }
3219
3220         ret = btrfs_resume_dev_replace_async(fs_info);
3221         if (ret) {
3222                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3223                 close_ctree(fs_info);
3224                 return ret;
3225         }
3226
3227         btrfs_qgroup_rescan_resume(fs_info);
3228
3229         if (!fs_info->uuid_root) {
3230                 btrfs_info(fs_info, "creating UUID tree");
3231                 ret = btrfs_create_uuid_tree(fs_info);
3232                 if (ret) {
3233                         btrfs_warn(fs_info,
3234                                 "failed to create the UUID tree: %d", ret);
3235                         close_ctree(fs_info);
3236                         return ret;
3237                 }
3238         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3239                    fs_info->generation !=
3240                                 btrfs_super_uuid_tree_generation(disk_super)) {
3241                 btrfs_info(fs_info, "checking UUID tree");
3242                 ret = btrfs_check_uuid_tree(fs_info);
3243                 if (ret) {
3244                         btrfs_warn(fs_info,
3245                                 "failed to check the UUID tree: %d", ret);
3246                         close_ctree(fs_info);
3247                         return ret;
3248                 }
3249         } else {
3250                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3251         }
3252         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3253
3254         /*
3255          * backuproot only affect mount behavior, and if open_ctree succeeded,
3256          * no need to keep the flag
3257          */
3258         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3259
3260         return 0;
3261
3262 fail_qgroup:
3263         btrfs_free_qgroup_config(fs_info);
3264 fail_trans_kthread:
3265         kthread_stop(fs_info->transaction_kthread);
3266         btrfs_cleanup_transaction(fs_info);
3267         btrfs_free_fs_roots(fs_info);
3268 fail_cleaner:
3269         kthread_stop(fs_info->cleaner_kthread);
3270
3271         /*
3272          * make sure we're done with the btree inode before we stop our
3273          * kthreads
3274          */
3275         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3276
3277 fail_sysfs:
3278         btrfs_sysfs_remove_mounted(fs_info);
3279
3280 fail_fsdev_sysfs:
3281         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3282
3283 fail_block_groups:
3284         btrfs_put_block_group_cache(fs_info);
3285
3286 fail_tree_roots:
3287         free_root_pointers(fs_info, 1);
3288         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3289
3290 fail_sb_buffer:
3291         btrfs_stop_all_workers(fs_info);
3292         btrfs_free_block_groups(fs_info);
3293 fail_alloc:
3294 fail_iput:
3295         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3296
3297         iput(fs_info->btree_inode);
3298 fail_bio_counter:
3299         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3300 fail_delalloc_bytes:
3301         percpu_counter_destroy(&fs_info->delalloc_bytes);
3302 fail_dirty_metadata_bytes:
3303         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3304 fail_srcu:
3305         cleanup_srcu_struct(&fs_info->subvol_srcu);
3306 fail:
3307         btrfs_free_stripe_hash_table(fs_info);
3308         btrfs_close_devices(fs_info->fs_devices);
3309         return err;
3310
3311 recovery_tree_root:
3312         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3313                 goto fail_tree_roots;
3314
3315         free_root_pointers(fs_info, 0);
3316
3317         /* don't use the log in recovery mode, it won't be valid */
3318         btrfs_set_super_log_root(disk_super, 0);
3319
3320         /* we can't trust the free space cache either */
3321         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3322
3323         ret = next_root_backup(fs_info, fs_info->super_copy,
3324                                &num_backups_tried, &backup_index);
3325         if (ret == -1)
3326                 goto fail_block_groups;
3327         goto retry_root_backup;
3328 }
3329 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3330
3331 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3332 {
3333         if (uptodate) {
3334                 set_buffer_uptodate(bh);
3335         } else {
3336                 struct btrfs_device *device = (struct btrfs_device *)
3337                         bh->b_private;
3338
3339                 btrfs_warn_rl_in_rcu(device->fs_info,
3340                                 "lost page write due to IO error on %s",
3341                                           rcu_str_deref(device->name));
3342                 /* note, we don't set_buffer_write_io_error because we have
3343                  * our own ways of dealing with the IO errors
3344                  */
3345                 clear_buffer_uptodate(bh);
3346                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3347         }
3348         unlock_buffer(bh);
3349         put_bh(bh);
3350 }
3351
3352 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3353                         struct buffer_head **bh_ret)
3354 {
3355         struct buffer_head *bh;
3356         struct btrfs_super_block *super;
3357         u64 bytenr;
3358
3359         bytenr = btrfs_sb_offset(copy_num);
3360         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3361                 return -EINVAL;
3362
3363         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3364         /*
3365          * If we fail to read from the underlying devices, as of now
3366          * the best option we have is to mark it EIO.
3367          */
3368         if (!bh)
3369                 return -EIO;
3370
3371         super = (struct btrfs_super_block *)bh->b_data;
3372         if (btrfs_super_bytenr(super) != bytenr ||
3373                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3374                 brelse(bh);
3375                 return -EINVAL;
3376         }
3377
3378         *bh_ret = bh;
3379         return 0;
3380 }
3381
3382
3383 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3384 {
3385         struct buffer_head *bh;
3386         struct buffer_head *latest = NULL;
3387         struct btrfs_super_block *super;
3388         int i;
3389         u64 transid = 0;
3390         int ret = -EINVAL;
3391
3392         /* we would like to check all the supers, but that would make
3393          * a btrfs mount succeed after a mkfs from a different FS.
3394          * So, we need to add a special mount option to scan for
3395          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3396          */
3397         for (i = 0; i < 1; i++) {
3398                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3399                 if (ret)
3400                         continue;
3401
3402                 super = (struct btrfs_super_block *)bh->b_data;
3403
3404                 if (!latest || btrfs_super_generation(super) > transid) {
3405                         brelse(latest);
3406                         latest = bh;
3407                         transid = btrfs_super_generation(super);
3408                 } else {
3409                         brelse(bh);
3410                 }
3411         }
3412
3413         if (!latest)
3414                 return ERR_PTR(ret);
3415
3416         return latest;
3417 }
3418
3419 /*
3420  * Write superblock @sb to the @device. Do not wait for completion, all the
3421  * buffer heads we write are pinned.
3422  *
3423  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3424  * the expected device size at commit time. Note that max_mirrors must be
3425  * same for write and wait phases.
3426  *
3427  * Return number of errors when buffer head is not found or submission fails.
3428  */
3429 static int write_dev_supers(struct btrfs_device *device,
3430                             struct btrfs_super_block *sb, int max_mirrors)
3431 {
3432         struct buffer_head *bh;
3433         int i;
3434         int ret;
3435         int errors = 0;
3436         u32 crc;
3437         u64 bytenr;
3438         int op_flags;
3439
3440         if (max_mirrors == 0)
3441                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3442
3443         for (i = 0; i < max_mirrors; i++) {
3444                 bytenr = btrfs_sb_offset(i);
3445                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3446                     device->commit_total_bytes)
3447                         break;
3448
3449                 btrfs_set_super_bytenr(sb, bytenr);
3450
3451                 crc = ~(u32)0;
3452                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3453                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3454                 btrfs_csum_final(crc, sb->csum);
3455
3456                 /* One reference for us, and we leave it for the caller */
3457                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3458                               BTRFS_SUPER_INFO_SIZE);
3459                 if (!bh) {
3460                         btrfs_err(device->fs_info,
3461                             "couldn't get super buffer head for bytenr %llu",
3462                             bytenr);
3463                         errors++;
3464                         continue;
3465                 }
3466
3467                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3468
3469                 /* one reference for submit_bh */
3470                 get_bh(bh);
3471
3472                 set_buffer_uptodate(bh);
3473                 lock_buffer(bh);
3474                 bh->b_end_io = btrfs_end_buffer_write_sync;
3475                 bh->b_private = device;
3476
3477                 /*
3478                  * we fua the first super.  The others we allow
3479                  * to go down lazy.
3480                  */
3481                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3482                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3483                         op_flags |= REQ_FUA;
3484                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3485                 if (ret)
3486                         errors++;
3487         }
3488         return errors < i ? 0 : -1;
3489 }
3490
3491 /*
3492  * Wait for write completion of superblocks done by write_dev_supers,
3493  * @max_mirrors same for write and wait phases.
3494  *
3495  * Return number of errors when buffer head is not found or not marked up to
3496  * date.
3497  */
3498 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3499 {
3500         struct buffer_head *bh;
3501         int i;
3502         int errors = 0;
3503         bool primary_failed = false;
3504         u64 bytenr;
3505
3506         if (max_mirrors == 0)
3507                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3508
3509         for (i = 0; i < max_mirrors; i++) {
3510                 bytenr = btrfs_sb_offset(i);
3511                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3512                     device->commit_total_bytes)
3513                         break;
3514
3515                 bh = __find_get_block(device->bdev,
3516                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3517                                       BTRFS_SUPER_INFO_SIZE);
3518                 if (!bh) {
3519                         errors++;
3520                         if (i == 0)
3521                                 primary_failed = true;
3522                         continue;
3523                 }
3524                 wait_on_buffer(bh);
3525                 if (!buffer_uptodate(bh)) {
3526                         errors++;
3527                         if (i == 0)
3528                                 primary_failed = true;
3529                 }
3530
3531                 /* drop our reference */
3532                 brelse(bh);
3533
3534                 /* drop the reference from the writing run */
3535                 brelse(bh);
3536         }
3537
3538         /* log error, force error return */
3539         if (primary_failed) {
3540                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3541                           device->devid);
3542                 return -1;
3543         }
3544
3545         return errors < i ? 0 : -1;
3546 }
3547
3548 /*
3549  * endio for the write_dev_flush, this will wake anyone waiting
3550  * for the barrier when it is done
3551  */
3552 static void btrfs_end_empty_barrier(struct bio *bio)
3553 {
3554         complete(bio->bi_private);
3555 }
3556
3557 /*
3558  * Submit a flush request to the device if it supports it. Error handling is
3559  * done in the waiting counterpart.
3560  */
3561 static void write_dev_flush(struct btrfs_device *device)
3562 {
3563         struct request_queue *q = bdev_get_queue(device->bdev);
3564         struct bio *bio = device->flush_bio;
3565
3566         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3567                 return;
3568
3569         bio_reset(bio);
3570         bio->bi_end_io = btrfs_end_empty_barrier;
3571         bio_set_dev(bio, device->bdev);
3572         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3573         init_completion(&device->flush_wait);
3574         bio->bi_private = &device->flush_wait;
3575
3576         btrfsic_submit_bio(bio);
3577         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3578 }
3579
3580 /*
3581  * If the flush bio has been submitted by write_dev_flush, wait for it.
3582  */
3583 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3584 {
3585         struct bio *bio = device->flush_bio;
3586
3587         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3588                 return BLK_STS_OK;
3589
3590         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3591         wait_for_completion_io(&device->flush_wait);
3592
3593         return bio->bi_status;
3594 }
3595
3596 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3597 {
3598         if (!btrfs_check_rw_degradable(fs_info, NULL))
3599                 return -EIO;
3600         return 0;
3601 }
3602
3603 /*
3604  * send an empty flush down to each device in parallel,
3605  * then wait for them
3606  */
3607 static int barrier_all_devices(struct btrfs_fs_info *info)
3608 {
3609         struct list_head *head;
3610         struct btrfs_device *dev;
3611         int errors_wait = 0;
3612         blk_status_t ret;
3613
3614         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3615         /* send down all the barriers */
3616         head = &info->fs_devices->devices;
3617         list_for_each_entry(dev, head, dev_list) {
3618                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3619                         continue;
3620                 if (!dev->bdev)
3621                         continue;
3622                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3623                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3624                         continue;
3625
3626                 write_dev_flush(dev);
3627                 dev->last_flush_error = BLK_STS_OK;
3628         }
3629
3630         /* wait for all the barriers */
3631         list_for_each_entry(dev, head, dev_list) {
3632                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3633                         continue;
3634                 if (!dev->bdev) {
3635                         errors_wait++;
3636                         continue;
3637                 }
3638                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3639                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3640                         continue;
3641
3642                 ret = wait_dev_flush(dev);
3643                 if (ret) {
3644                         dev->last_flush_error = ret;
3645                         btrfs_dev_stat_inc_and_print(dev,
3646                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3647                         errors_wait++;
3648                 }
3649         }
3650
3651         if (errors_wait) {
3652                 /*
3653                  * At some point we need the status of all disks
3654                  * to arrive at the volume status. So error checking
3655                  * is being pushed to a separate loop.
3656                  */
3657                 return check_barrier_error(info);
3658         }
3659         return 0;
3660 }
3661
3662 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3663 {
3664         int raid_type;
3665         int min_tolerated = INT_MAX;
3666
3667         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3668             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3669                 min_tolerated = min(min_tolerated,
3670                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3671                                     tolerated_failures);
3672
3673         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3674                 if (raid_type == BTRFS_RAID_SINGLE)
3675                         continue;
3676                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3677                         continue;
3678                 min_tolerated = min(min_tolerated,
3679                                     btrfs_raid_array[raid_type].
3680                                     tolerated_failures);
3681         }
3682
3683         if (min_tolerated == INT_MAX) {
3684                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3685                 min_tolerated = 0;
3686         }
3687
3688         return min_tolerated;
3689 }
3690
3691 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3692 {
3693         struct list_head *head;
3694         struct btrfs_device *dev;
3695         struct btrfs_super_block *sb;
3696         struct btrfs_dev_item *dev_item;
3697         int ret;
3698         int do_barriers;
3699         int max_errors;
3700         int total_errors = 0;
3701         u64 flags;
3702
3703         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3704
3705         /*
3706          * max_mirrors == 0 indicates we're from commit_transaction,
3707          * not from fsync where the tree roots in fs_info have not
3708          * been consistent on disk.
3709          */
3710         if (max_mirrors == 0)
3711                 backup_super_roots(fs_info);
3712
3713         sb = fs_info->super_for_commit;
3714         dev_item = &sb->dev_item;
3715
3716         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3717         head = &fs_info->fs_devices->devices;
3718         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3719
3720         if (do_barriers) {
3721                 ret = barrier_all_devices(fs_info);
3722                 if (ret) {
3723                         mutex_unlock(
3724                                 &fs_info->fs_devices->device_list_mutex);
3725                         btrfs_handle_fs_error(fs_info, ret,
3726                                               "errors while submitting device barriers.");
3727                         return ret;
3728                 }
3729         }
3730
3731         list_for_each_entry(dev, head, dev_list) {
3732                 if (!dev->bdev) {
3733                         total_errors++;
3734                         continue;
3735                 }
3736                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3737                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3738                         continue;
3739
3740                 btrfs_set_stack_device_generation(dev_item, 0);
3741                 btrfs_set_stack_device_type(dev_item, dev->type);
3742                 btrfs_set_stack_device_id(dev_item, dev->devid);
3743                 btrfs_set_stack_device_total_bytes(dev_item,
3744                                                    dev->commit_total_bytes);
3745                 btrfs_set_stack_device_bytes_used(dev_item,
3746                                                   dev->commit_bytes_used);
3747                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3751                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3752                        BTRFS_FSID_SIZE);
3753
3754                 flags = btrfs_super_flags(sb);
3755                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3756
3757                 ret = btrfs_validate_write_super(fs_info, sb);
3758                 if (ret < 0) {
3759                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3760                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3761                                 "unexpected superblock corruption detected");
3762                         return -EUCLEAN;
3763                 }
3764
3765                 ret = write_dev_supers(dev, sb, max_mirrors);
3766                 if (ret)
3767                         total_errors++;
3768         }
3769         if (total_errors > max_errors) {
3770                 btrfs_err(fs_info, "%d errors while writing supers",
3771                           total_errors);
3772                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3773
3774                 /* FUA is masked off if unsupported and can't be the reason */
3775                 btrfs_handle_fs_error(fs_info, -EIO,
3776                                       "%d errors while writing supers",
3777                                       total_errors);
3778                 return -EIO;
3779         }
3780
3781         total_errors = 0;
3782         list_for_each_entry(dev, head, dev_list) {
3783                 if (!dev->bdev)
3784                         continue;
3785                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3786                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3787                         continue;
3788
3789                 ret = wait_dev_supers(dev, max_mirrors);
3790                 if (ret)
3791                         total_errors++;
3792         }
3793         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3794         if (total_errors > max_errors) {
3795                 btrfs_handle_fs_error(fs_info, -EIO,
3796                                       "%d errors while writing supers",
3797                                       total_errors);
3798                 return -EIO;
3799         }
3800         return 0;
3801 }
3802
3803 /* Drop a fs root from the radix tree and free it. */
3804 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3805                                   struct btrfs_root *root)
3806 {
3807         spin_lock(&fs_info->fs_roots_radix_lock);
3808         radix_tree_delete(&fs_info->fs_roots_radix,
3809                           (unsigned long)root->root_key.objectid);
3810         spin_unlock(&fs_info->fs_roots_radix_lock);
3811
3812         if (btrfs_root_refs(&root->root_item) == 0)
3813                 synchronize_srcu(&fs_info->subvol_srcu);
3814
3815         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3816                 btrfs_free_log(NULL, root);
3817                 if (root->reloc_root) {
3818                         free_extent_buffer(root->reloc_root->node);
3819                         free_extent_buffer(root->reloc_root->commit_root);
3820                         btrfs_put_fs_root(root->reloc_root);
3821                         root->reloc_root = NULL;
3822                 }
3823         }
3824
3825         if (root->free_ino_pinned)
3826                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3827         if (root->free_ino_ctl)
3828                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3829         btrfs_free_fs_root(root);
3830 }
3831
3832 void btrfs_free_fs_root(struct btrfs_root *root)
3833 {
3834         iput(root->ino_cache_inode);
3835         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3836         if (root->anon_dev)
3837                 free_anon_bdev(root->anon_dev);
3838         if (root->subv_writers)
3839                 btrfs_free_subvolume_writers(root->subv_writers);
3840         free_extent_buffer(root->node);
3841         free_extent_buffer(root->commit_root);
3842         kfree(root->free_ino_ctl);
3843         kfree(root->free_ino_pinned);
3844         btrfs_put_fs_root(root);
3845 }
3846
3847 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3848 {
3849         u64 root_objectid = 0;
3850         struct btrfs_root *gang[8];
3851         int i = 0;
3852         int err = 0;
3853         unsigned int ret = 0;
3854         int index;
3855
3856         while (1) {
3857                 index = srcu_read_lock(&fs_info->subvol_srcu);
3858                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3859                                              (void **)gang, root_objectid,
3860                                              ARRAY_SIZE(gang));
3861                 if (!ret) {
3862                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3863                         break;
3864                 }
3865                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3866
3867                 for (i = 0; i < ret; i++) {
3868                         /* Avoid to grab roots in dead_roots */
3869                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3870                                 gang[i] = NULL;
3871                                 continue;
3872                         }
3873                         /* grab all the search result for later use */
3874                         gang[i] = btrfs_grab_fs_root(gang[i]);
3875                 }
3876                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3877
3878                 for (i = 0; i < ret; i++) {
3879                         if (!gang[i])
3880                                 continue;
3881                         root_objectid = gang[i]->root_key.objectid;
3882                         err = btrfs_orphan_cleanup(gang[i]);
3883                         if (err)
3884                                 break;
3885                         btrfs_put_fs_root(gang[i]);
3886                 }
3887                 root_objectid++;
3888         }
3889
3890         /* release the uncleaned roots due to error */
3891         for (; i < ret; i++) {
3892                 if (gang[i])
3893                         btrfs_put_fs_root(gang[i]);
3894         }
3895         return err;
3896 }
3897
3898 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3899 {
3900         struct btrfs_root *root = fs_info->tree_root;
3901         struct btrfs_trans_handle *trans;
3902
3903         mutex_lock(&fs_info->cleaner_mutex);
3904         btrfs_run_delayed_iputs(fs_info);
3905         mutex_unlock(&fs_info->cleaner_mutex);
3906         wake_up_process(fs_info->cleaner_kthread);
3907
3908         /* wait until ongoing cleanup work done */
3909         down_write(&fs_info->cleanup_work_sem);
3910         up_write(&fs_info->cleanup_work_sem);
3911
3912         trans = btrfs_join_transaction(root);
3913         if (IS_ERR(trans))
3914                 return PTR_ERR(trans);
3915         return btrfs_commit_transaction(trans);
3916 }
3917
3918 void close_ctree(struct btrfs_fs_info *fs_info)
3919 {
3920         int ret;
3921
3922         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3923         /*
3924          * We don't want the cleaner to start new transactions, add more delayed
3925          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3926          * because that frees the task_struct, and the transaction kthread might
3927          * still try to wake up the cleaner.
3928          */
3929         kthread_park(fs_info->cleaner_kthread);
3930
3931         /* wait for the qgroup rescan worker to stop */
3932         btrfs_qgroup_wait_for_completion(fs_info, false);
3933
3934         /* wait for the uuid_scan task to finish */
3935         down(&fs_info->uuid_tree_rescan_sem);
3936         /* avoid complains from lockdep et al., set sem back to initial state */
3937         up(&fs_info->uuid_tree_rescan_sem);
3938
3939         /* pause restriper - we want to resume on mount */
3940         btrfs_pause_balance(fs_info);
3941
3942         btrfs_dev_replace_suspend_for_unmount(fs_info);
3943
3944         btrfs_scrub_cancel(fs_info);
3945
3946         /* wait for any defraggers to finish */
3947         wait_event(fs_info->transaction_wait,
3948                    (atomic_read(&fs_info->defrag_running) == 0));
3949
3950         /* clear out the rbtree of defraggable inodes */
3951         btrfs_cleanup_defrag_inodes(fs_info);
3952
3953         cancel_work_sync(&fs_info->async_reclaim_work);
3954
3955         if (!sb_rdonly(fs_info->sb)) {
3956                 /*
3957                  * The cleaner kthread is stopped, so do one final pass over
3958                  * unused block groups.
3959                  */
3960                 btrfs_delete_unused_bgs(fs_info);
3961
3962                 ret = btrfs_commit_super(fs_info);
3963                 if (ret)
3964                         btrfs_err(fs_info, "commit super ret %d", ret);
3965         }
3966
3967         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3968             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3969                 btrfs_error_commit_super(fs_info);
3970
3971         kthread_stop(fs_info->transaction_kthread);
3972         kthread_stop(fs_info->cleaner_kthread);
3973
3974         ASSERT(list_empty(&fs_info->delayed_iputs));
3975         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3976
3977         btrfs_free_qgroup_config(fs_info);
3978         ASSERT(list_empty(&fs_info->delalloc_roots));
3979
3980         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3981                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3982                        percpu_counter_sum(&fs_info->delalloc_bytes));
3983         }
3984
3985         btrfs_sysfs_remove_mounted(fs_info);
3986         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3987
3988         btrfs_free_fs_roots(fs_info);
3989
3990         btrfs_put_block_group_cache(fs_info);
3991
3992         /*
3993          * we must make sure there is not any read request to
3994          * submit after we stopping all workers.
3995          */
3996         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3997         btrfs_stop_all_workers(fs_info);
3998
3999         btrfs_free_block_groups(fs_info);
4000
4001         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4002         free_root_pointers(fs_info, 1);
4003
4004         iput(fs_info->btree_inode);
4005
4006 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4007         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4008                 btrfsic_unmount(fs_info->fs_devices);
4009 #endif
4010
4011         btrfs_close_devices(fs_info->fs_devices);
4012         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4013
4014         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4015         percpu_counter_destroy(&fs_info->delalloc_bytes);
4016         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4017         cleanup_srcu_struct(&fs_info->subvol_srcu);
4018
4019         btrfs_free_stripe_hash_table(fs_info);
4020         btrfs_free_ref_cache(fs_info);
4021
4022         while (!list_empty(&fs_info->pinned_chunks)) {
4023                 struct extent_map *em;
4024
4025                 em = list_first_entry(&fs_info->pinned_chunks,
4026                                       struct extent_map, list);
4027                 list_del_init(&em->list);
4028                 free_extent_map(em);
4029         }
4030 }
4031
4032 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4033                           int atomic)
4034 {
4035         int ret;
4036         struct inode *btree_inode = buf->pages[0]->mapping->host;
4037
4038         ret = extent_buffer_uptodate(buf);
4039         if (!ret)
4040                 return ret;
4041
4042         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4043                                     parent_transid, atomic);
4044         if (ret == -EAGAIN)
4045                 return ret;
4046         return !ret;
4047 }
4048
4049 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4050 {
4051         struct btrfs_fs_info *fs_info;
4052         struct btrfs_root *root;
4053         u64 transid = btrfs_header_generation(buf);
4054         int was_dirty;
4055
4056 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4057         /*
4058          * This is a fast path so only do this check if we have sanity tests
4059          * enabled.  Normal people shouldn't be using umapped buffers as dirty
4060          * outside of the sanity tests.
4061          */
4062         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4063                 return;
4064 #endif
4065         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4066         fs_info = root->fs_info;
4067         btrfs_assert_tree_locked(buf);
4068         if (transid != fs_info->generation)
4069                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4070                         buf->start, transid, fs_info->generation);
4071         was_dirty = set_extent_buffer_dirty(buf);
4072         if (!was_dirty)
4073                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4074                                          buf->len,
4075                                          fs_info->dirty_metadata_batch);
4076 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4077         /*
4078          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4079          * but item data not updated.
4080          * So here we should only check item pointers, not item data.
4081          */
4082         if (btrfs_header_level(buf) == 0 &&
4083             btrfs_check_leaf_relaxed(fs_info, buf)) {
4084                 btrfs_print_leaf(buf);
4085                 ASSERT(0);
4086         }
4087 #endif
4088 }
4089
4090 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4091                                         int flush_delayed)
4092 {
4093         /*
4094          * looks as though older kernels can get into trouble with
4095          * this code, they end up stuck in balance_dirty_pages forever
4096          */
4097         int ret;
4098
4099         if (current->flags & PF_MEMALLOC)
4100                 return;
4101
4102         if (flush_delayed)
4103                 btrfs_balance_delayed_items(fs_info);
4104
4105         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4106                                      BTRFS_DIRTY_METADATA_THRESH,
4107                                      fs_info->dirty_metadata_batch);
4108         if (ret > 0) {
4109                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4110         }
4111 }
4112
4113 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4114 {
4115         __btrfs_btree_balance_dirty(fs_info, 1);
4116 }
4117
4118 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4119 {
4120         __btrfs_btree_balance_dirty(fs_info, 0);
4121 }
4122
4123 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4124                       struct btrfs_key *first_key)
4125 {
4126         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4127         struct btrfs_fs_info *fs_info = root->fs_info;
4128
4129         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4130                                               level, first_key);
4131 }
4132
4133 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4134 {
4135         /* cleanup FS via transaction */
4136         btrfs_cleanup_transaction(fs_info);
4137
4138         mutex_lock(&fs_info->cleaner_mutex);
4139         btrfs_run_delayed_iputs(fs_info);
4140         mutex_unlock(&fs_info->cleaner_mutex);
4141
4142         down_write(&fs_info->cleanup_work_sem);
4143         up_write(&fs_info->cleanup_work_sem);
4144 }
4145
4146 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4147 {
4148         struct btrfs_ordered_extent *ordered;
4149
4150         spin_lock(&root->ordered_extent_lock);
4151         /*
4152          * This will just short circuit the ordered completion stuff which will
4153          * make sure the ordered extent gets properly cleaned up.
4154          */
4155         list_for_each_entry(ordered, &root->ordered_extents,
4156                             root_extent_list)
4157                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4158         spin_unlock(&root->ordered_extent_lock);
4159 }
4160
4161 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4162 {
4163         struct btrfs_root *root;
4164         struct list_head splice;
4165
4166         INIT_LIST_HEAD(&splice);
4167
4168         spin_lock(&fs_info->ordered_root_lock);
4169         list_splice_init(&fs_info->ordered_roots, &splice);
4170         while (!list_empty(&splice)) {
4171                 root = list_first_entry(&splice, struct btrfs_root,
4172                                         ordered_root);
4173                 list_move_tail(&root->ordered_root,
4174                                &fs_info->ordered_roots);
4175
4176                 spin_unlock(&fs_info->ordered_root_lock);
4177                 btrfs_destroy_ordered_extents(root);
4178
4179                 cond_resched();
4180                 spin_lock(&fs_info->ordered_root_lock);
4181         }
4182         spin_unlock(&fs_info->ordered_root_lock);
4183 }
4184
4185 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4186                                       struct btrfs_fs_info *fs_info)
4187 {
4188         struct rb_node *node;
4189         struct btrfs_delayed_ref_root *delayed_refs;
4190         struct btrfs_delayed_ref_node *ref;
4191         int ret = 0;
4192
4193         delayed_refs = &trans->delayed_refs;
4194
4195         spin_lock(&delayed_refs->lock);
4196         if (atomic_read(&delayed_refs->num_entries) == 0) {
4197                 spin_unlock(&delayed_refs->lock);
4198                 btrfs_info(fs_info, "delayed_refs has NO entry");
4199                 return ret;
4200         }
4201
4202         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4203                 struct btrfs_delayed_ref_head *head;
4204                 struct rb_node *n;
4205                 bool pin_bytes = false;
4206
4207                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4208                                 href_node);
4209                 if (!mutex_trylock(&head->mutex)) {
4210                         refcount_inc(&head->refs);
4211                         spin_unlock(&delayed_refs->lock);
4212
4213                         mutex_lock(&head->mutex);
4214                         mutex_unlock(&head->mutex);
4215                         btrfs_put_delayed_ref_head(head);
4216                         spin_lock(&delayed_refs->lock);
4217                         continue;
4218                 }
4219                 spin_lock(&head->lock);
4220                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4221                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4222                                        ref_node);
4223                         ref->in_tree = 0;
4224                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4225                         RB_CLEAR_NODE(&ref->ref_node);
4226                         if (!list_empty(&ref->add_list))
4227                                 list_del(&ref->add_list);
4228                         atomic_dec(&delayed_refs->num_entries);
4229                         btrfs_put_delayed_ref(ref);
4230                 }
4231                 if (head->must_insert_reserved)
4232                         pin_bytes = true;
4233                 btrfs_free_delayed_extent_op(head->extent_op);
4234                 delayed_refs->num_heads--;
4235                 if (head->processing == 0)
4236                         delayed_refs->num_heads_ready--;
4237                 atomic_dec(&delayed_refs->num_entries);
4238                 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
4239                 RB_CLEAR_NODE(&head->href_node);
4240                 spin_unlock(&head->lock);
4241                 spin_unlock(&delayed_refs->lock);
4242                 mutex_unlock(&head->mutex);
4243
4244                 if (pin_bytes)
4245                         btrfs_pin_extent(fs_info, head->bytenr,
4246                                          head->num_bytes, 1);
4247                 btrfs_put_delayed_ref_head(head);
4248                 cond_resched();
4249                 spin_lock(&delayed_refs->lock);
4250         }
4251
4252         spin_unlock(&delayed_refs->lock);
4253
4254         return ret;
4255 }
4256
4257 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4258 {
4259         struct btrfs_inode *btrfs_inode;
4260         struct list_head splice;
4261
4262         INIT_LIST_HEAD(&splice);
4263
4264         spin_lock(&root->delalloc_lock);
4265         list_splice_init(&root->delalloc_inodes, &splice);
4266
4267         while (!list_empty(&splice)) {
4268                 struct inode *inode = NULL;
4269                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4270                                                delalloc_inodes);
4271                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4272                 spin_unlock(&root->delalloc_lock);
4273
4274                 /*
4275                  * Make sure we get a live inode and that it'll not disappear
4276                  * meanwhile.
4277                  */
4278                 inode = igrab(&btrfs_inode->vfs_inode);
4279                 if (inode) {
4280                         invalidate_inode_pages2(inode->i_mapping);
4281                         iput(inode);
4282                 }
4283                 spin_lock(&root->delalloc_lock);
4284         }
4285         spin_unlock(&root->delalloc_lock);
4286 }
4287
4288 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4289 {
4290         struct btrfs_root *root;
4291         struct list_head splice;
4292
4293         INIT_LIST_HEAD(&splice);
4294
4295         spin_lock(&fs_info->delalloc_root_lock);
4296         list_splice_init(&fs_info->delalloc_roots, &splice);
4297         while (!list_empty(&splice)) {
4298                 root = list_first_entry(&splice, struct btrfs_root,
4299                                          delalloc_root);
4300                 root = btrfs_grab_fs_root(root);
4301                 BUG_ON(!root);
4302                 spin_unlock(&fs_info->delalloc_root_lock);
4303
4304                 btrfs_destroy_delalloc_inodes(root);
4305                 btrfs_put_fs_root(root);
4306
4307                 spin_lock(&fs_info->delalloc_root_lock);
4308         }
4309         spin_unlock(&fs_info->delalloc_root_lock);
4310 }
4311
4312 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4313                                         struct extent_io_tree *dirty_pages,
4314                                         int mark)
4315 {
4316         int ret;
4317         struct extent_buffer *eb;
4318         u64 start = 0;
4319         u64 end;
4320
4321         while (1) {
4322                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4323                                             mark, NULL);
4324                 if (ret)
4325                         break;
4326
4327                 clear_extent_bits(dirty_pages, start, end, mark);
4328                 while (start <= end) {
4329                         eb = find_extent_buffer(fs_info, start);
4330                         start += fs_info->nodesize;
4331                         if (!eb)
4332                                 continue;
4333                         wait_on_extent_buffer_writeback(eb);
4334
4335                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4336                                                &eb->bflags))
4337                                 clear_extent_buffer_dirty(eb);
4338                         free_extent_buffer_stale(eb);
4339                 }
4340         }
4341
4342         return ret;
4343 }
4344
4345 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4346                                        struct extent_io_tree *pinned_extents)
4347 {
4348         struct extent_io_tree *unpin;
4349         u64 start;
4350         u64 end;
4351         int ret;
4352         bool loop = true;
4353
4354         unpin = pinned_extents;
4355 again:
4356         while (1) {
4357                 /*
4358                  * The btrfs_finish_extent_commit() may get the same range as
4359                  * ours between find_first_extent_bit and clear_extent_dirty.
4360                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4361                  * the same extent range.
4362                  */
4363                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4364                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4365                                             EXTENT_DIRTY, NULL);
4366                 if (ret) {
4367                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4368                         break;
4369                 }
4370
4371                 clear_extent_dirty(unpin, start, end);
4372                 btrfs_error_unpin_extent_range(fs_info, start, end);
4373                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4374                 cond_resched();
4375         }
4376
4377         if (loop) {
4378                 if (unpin == &fs_info->freed_extents[0])
4379                         unpin = &fs_info->freed_extents[1];
4380                 else
4381                         unpin = &fs_info->freed_extents[0];
4382                 loop = false;
4383                 goto again;
4384         }
4385
4386         return 0;
4387 }
4388
4389 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4390 {
4391         struct inode *inode;
4392
4393         inode = cache->io_ctl.inode;
4394         if (inode) {
4395                 invalidate_inode_pages2(inode->i_mapping);
4396                 BTRFS_I(inode)->generation = 0;
4397                 cache->io_ctl.inode = NULL;
4398                 iput(inode);
4399         }
4400         btrfs_put_block_group(cache);
4401 }
4402
4403 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4404                              struct btrfs_fs_info *fs_info)
4405 {
4406         struct btrfs_block_group_cache *cache;
4407
4408         spin_lock(&cur_trans->dirty_bgs_lock);
4409         while (!list_empty(&cur_trans->dirty_bgs)) {
4410                 cache = list_first_entry(&cur_trans->dirty_bgs,
4411                                          struct btrfs_block_group_cache,
4412                                          dirty_list);
4413
4414                 if (!list_empty(&cache->io_list)) {
4415                         spin_unlock(&cur_trans->dirty_bgs_lock);
4416                         list_del_init(&cache->io_list);
4417                         btrfs_cleanup_bg_io(cache);
4418                         spin_lock(&cur_trans->dirty_bgs_lock);
4419                 }
4420
4421                 list_del_init(&cache->dirty_list);
4422                 spin_lock(&cache->lock);
4423                 cache->disk_cache_state = BTRFS_DC_ERROR;
4424                 spin_unlock(&cache->lock);
4425
4426                 spin_unlock(&cur_trans->dirty_bgs_lock);
4427                 btrfs_put_block_group(cache);
4428                 spin_lock(&cur_trans->dirty_bgs_lock);
4429         }
4430         spin_unlock(&cur_trans->dirty_bgs_lock);
4431
4432         /*
4433          * Refer to the definition of io_bgs member for details why it's safe
4434          * to use it without any locking
4435          */
4436         while (!list_empty(&cur_trans->io_bgs)) {
4437                 cache = list_first_entry(&cur_trans->io_bgs,
4438                                          struct btrfs_block_group_cache,
4439                                          io_list);
4440
4441                 list_del_init(&cache->io_list);
4442                 spin_lock(&cache->lock);
4443                 cache->disk_cache_state = BTRFS_DC_ERROR;
4444                 spin_unlock(&cache->lock);
4445                 btrfs_cleanup_bg_io(cache);
4446         }
4447 }
4448
4449 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4450                                    struct btrfs_fs_info *fs_info)
4451 {
4452         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4453         ASSERT(list_empty(&cur_trans->dirty_bgs));
4454         ASSERT(list_empty(&cur_trans->io_bgs));
4455
4456         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4457
4458         cur_trans->state = TRANS_STATE_COMMIT_START;
4459         wake_up(&fs_info->transaction_blocked_wait);
4460
4461         cur_trans->state = TRANS_STATE_UNBLOCKED;
4462         wake_up(&fs_info->transaction_wait);
4463
4464         btrfs_destroy_delayed_inodes(fs_info);
4465         btrfs_assert_delayed_root_empty(fs_info);
4466
4467         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4468                                      EXTENT_DIRTY);
4469         btrfs_destroy_pinned_extent(fs_info,
4470                                     fs_info->pinned_extents);
4471
4472         cur_trans->state =TRANS_STATE_COMPLETED;
4473         wake_up(&cur_trans->commit_wait);
4474 }
4475
4476 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4477 {
4478         struct btrfs_transaction *t;
4479
4480         mutex_lock(&fs_info->transaction_kthread_mutex);
4481
4482         spin_lock(&fs_info->trans_lock);
4483         while (!list_empty(&fs_info->trans_list)) {
4484                 t = list_first_entry(&fs_info->trans_list,
4485                                      struct btrfs_transaction, list);
4486                 if (t->state >= TRANS_STATE_COMMIT_START) {
4487                         refcount_inc(&t->use_count);
4488                         spin_unlock(&fs_info->trans_lock);
4489                         btrfs_wait_for_commit(fs_info, t->transid);
4490                         btrfs_put_transaction(t);
4491                         spin_lock(&fs_info->trans_lock);
4492                         continue;
4493                 }
4494                 if (t == fs_info->running_transaction) {
4495                         t->state = TRANS_STATE_COMMIT_DOING;
4496                         spin_unlock(&fs_info->trans_lock);
4497                         /*
4498                          * We wait for 0 num_writers since we don't hold a trans
4499                          * handle open currently for this transaction.
4500                          */
4501                         wait_event(t->writer_wait,
4502                                    atomic_read(&t->num_writers) == 0);
4503                 } else {
4504                         spin_unlock(&fs_info->trans_lock);
4505                 }
4506                 btrfs_cleanup_one_transaction(t, fs_info);
4507
4508                 spin_lock(&fs_info->trans_lock);
4509                 if (t == fs_info->running_transaction)
4510                         fs_info->running_transaction = NULL;
4511                 list_del_init(&t->list);
4512                 spin_unlock(&fs_info->trans_lock);
4513
4514                 btrfs_put_transaction(t);
4515                 trace_btrfs_transaction_commit(fs_info->tree_root);
4516                 spin_lock(&fs_info->trans_lock);
4517         }
4518         spin_unlock(&fs_info->trans_lock);
4519         btrfs_destroy_all_ordered_extents(fs_info);
4520         btrfs_destroy_delayed_inodes(fs_info);
4521         btrfs_assert_delayed_root_empty(fs_info);
4522         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4523         btrfs_destroy_all_delalloc_inodes(fs_info);
4524         mutex_unlock(&fs_info->transaction_kthread_mutex);
4525
4526         return 0;
4527 }
4528
4529 static const struct extent_io_ops btree_extent_io_ops = {
4530         /* mandatory callbacks */
4531         .submit_bio_hook = btree_submit_bio_hook,
4532         .readpage_end_io_hook = btree_readpage_end_io_hook,
4533         .readpage_io_failed_hook = btree_io_failed_hook,
4534
4535         /* optional callbacks */
4536 };