]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/disk-io.c
btrfs: add sha256 to checksumming algorithm
[linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
46                                  BTRFS_HEADER_FLAG_RELOC |\
47                                  BTRFS_SUPER_FLAG_ERROR |\
48                                  BTRFS_SUPER_FLAG_SEEDING |\
49                                  BTRFS_SUPER_FLAG_METADUMP |\
50                                  BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106         void *private_data;
107         struct bio *bio;
108         extent_submit_bio_start_t *submit_bio_start;
109         int mirror_num;
110         /*
111          * bio_offset is optional, can be used if the pages in the bio
112          * can't tell us where in the file the bio should go
113          */
114         u64 bio_offset;
115         struct btrfs_work work;
116         blk_status_t status;
117 };
118
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148         u64                     id;             /* root objectid */
149         const char              *name_stem;     /* lock name stem */
150         char                    names[BTRFS_MAX_LEVEL + 1][20];
151         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
154         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
155         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
156         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
157         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
158         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
159         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
160         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
161         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
162         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
163         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
164         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165         { .id = 0,                              .name_stem = "tree"     },
166 };
167
168 void __init btrfs_init_lockdep(void)
169 {
170         int i, j;
171
172         /* initialize lockdep class names */
173         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177                         snprintf(ks->names[j], sizeof(ks->names[j]),
178                                  "btrfs-%s-%02d", ks->name_stem, j);
179         }
180 }
181
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183                                     int level)
184 {
185         struct btrfs_lockdep_keyset *ks;
186
187         BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189         /* find the matching keyset, id 0 is the default entry */
190         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191                 if (ks->id == objectid)
192                         break;
193
194         lockdep_set_class_and_name(&eb->lock,
195                                    &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205                 struct page *page, size_t pg_offset, u64 start, u64 len,
206                 int create)
207 {
208         struct btrfs_fs_info *fs_info = inode->root->fs_info;
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 em->bdev = fs_info->fs_devices->latest_bdev;
217                 read_unlock(&em_tree->lock);
218                 goto out;
219         }
220         read_unlock(&em_tree->lock);
221
222         em = alloc_extent_map();
223         if (!em) {
224                 em = ERR_PTR(-ENOMEM);
225                 goto out;
226         }
227         em->start = 0;
228         em->len = (u64)-1;
229         em->block_len = (u64)-1;
230         em->block_start = 0;
231         em->bdev = fs_info->fs_devices->latest_bdev;
232
233         write_lock(&em_tree->lock);
234         ret = add_extent_mapping(em_tree, em, 0);
235         if (ret == -EEXIST) {
236                 free_extent_map(em);
237                 em = lookup_extent_mapping(em_tree, start, len);
238                 if (!em)
239                         em = ERR_PTR(-EIO);
240         } else if (ret) {
241                 free_extent_map(em);
242                 em = ERR_PTR(ret);
243         }
244         write_unlock(&em_tree->lock);
245
246 out:
247         return em;
248 }
249
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257         struct btrfs_fs_info *fs_info = buf->fs_info;
258         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266
267         shash->tfm = fs_info->csum_shash;
268         crypto_shash_init(shash);
269
270         len = buf->len - offset;
271
272         while (len > 0) {
273                 /*
274                  * Note: we don't need to check for the err == 1 case here, as
275                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276                  * and 'min_len = 32' and the currently implemented mapping
277                  * algorithm we cannot cross a page boundary.
278                  */
279                 err = map_private_extent_buffer(buf, offset, 32,
280                                         &kaddr, &map_start, &map_len);
281                 if (WARN_ON(err))
282                         return err;
283                 cur_len = min(len, map_len - (offset - map_start));
284                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285                 len -= cur_len;
286                 offset += cur_len;
287         }
288         memset(result, 0, BTRFS_CSUM_SIZE);
289
290         crypto_shash_final(shash, result);
291
292         return 0;
293 }
294
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302                                  struct extent_buffer *eb, u64 parent_transid,
303                                  int atomic)
304 {
305         struct extent_state *cached_state = NULL;
306         int ret;
307         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310                 return 0;
311
312         if (atomic)
313                 return -EAGAIN;
314
315         if (need_lock) {
316                 btrfs_tree_read_lock(eb);
317                 btrfs_set_lock_blocking_read(eb);
318         }
319
320         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321                          &cached_state);
322         if (extent_buffer_uptodate(eb) &&
323             btrfs_header_generation(eb) == parent_transid) {
324                 ret = 0;
325                 goto out;
326         }
327         btrfs_err_rl(eb->fs_info,
328                 "parent transid verify failed on %llu wanted %llu found %llu",
329                         eb->start,
330                         parent_transid, btrfs_header_generation(eb));
331         ret = 1;
332
333         /*
334          * Things reading via commit roots that don't have normal protection,
335          * like send, can have a really old block in cache that may point at a
336          * block that has been freed and re-allocated.  So don't clear uptodate
337          * if we find an eb that is under IO (dirty/writeback) because we could
338          * end up reading in the stale data and then writing it back out and
339          * making everybody very sad.
340          */
341         if (!extent_buffer_under_io(eb))
342                 clear_extent_buffer_uptodate(eb);
343 out:
344         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345                              &cached_state);
346         if (need_lock)
347                 btrfs_tree_read_unlock_blocking(eb);
348         return ret;
349 }
350
351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353         switch (csum_type) {
354         case BTRFS_CSUM_TYPE_CRC32:
355         case BTRFS_CSUM_TYPE_XXHASH:
356         case BTRFS_CSUM_TYPE_SHA256:
357                 return true;
358         default:
359                 return false;
360         }
361 }
362
363 /*
364  * Return 0 if the superblock checksum type matches the checksum value of that
365  * algorithm. Pass the raw disk superblock data.
366  */
367 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
368                                   char *raw_disk_sb)
369 {
370         struct btrfs_super_block *disk_sb =
371                 (struct btrfs_super_block *)raw_disk_sb;
372         char result[BTRFS_CSUM_SIZE];
373         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
374
375         shash->tfm = fs_info->csum_shash;
376         crypto_shash_init(shash);
377
378         /*
379          * The super_block structure does not span the whole
380          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
381          * filled with zeros and is included in the checksum.
382          */
383         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
384                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
385         crypto_shash_final(shash, result);
386
387         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
388                 return 1;
389
390         return 0;
391 }
392
393 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
394                            struct btrfs_key *first_key, u64 parent_transid)
395 {
396         struct btrfs_fs_info *fs_info = eb->fs_info;
397         int found_level;
398         struct btrfs_key found_key;
399         int ret;
400
401         found_level = btrfs_header_level(eb);
402         if (found_level != level) {
403                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
404                      KERN_ERR "BTRFS: tree level check failed\n");
405                 btrfs_err(fs_info,
406 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
407                           eb->start, level, found_level);
408                 return -EIO;
409         }
410
411         if (!first_key)
412                 return 0;
413
414         /*
415          * For live tree block (new tree blocks in current transaction),
416          * we need proper lock context to avoid race, which is impossible here.
417          * So we only checks tree blocks which is read from disk, whose
418          * generation <= fs_info->last_trans_committed.
419          */
420         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
421                 return 0;
422
423         /* We have @first_key, so this @eb must have at least one item */
424         if (btrfs_header_nritems(eb) == 0) {
425                 btrfs_err(fs_info,
426                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
427                           eb->start);
428                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
429                 return -EUCLEAN;
430         }
431
432         if (found_level)
433                 btrfs_node_key_to_cpu(eb, &found_key, 0);
434         else
435                 btrfs_item_key_to_cpu(eb, &found_key, 0);
436         ret = btrfs_comp_cpu_keys(first_key, &found_key);
437
438         if (ret) {
439                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
440                      KERN_ERR "BTRFS: tree first key check failed\n");
441                 btrfs_err(fs_info,
442 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
443                           eb->start, parent_transid, first_key->objectid,
444                           first_key->type, first_key->offset,
445                           found_key.objectid, found_key.type,
446                           found_key.offset);
447         }
448         return ret;
449 }
450
451 /*
452  * helper to read a given tree block, doing retries as required when
453  * the checksums don't match and we have alternate mirrors to try.
454  *
455  * @parent_transid:     expected transid, skip check if 0
456  * @level:              expected level, mandatory check
457  * @first_key:          expected key of first slot, skip check if NULL
458  */
459 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
460                                           u64 parent_transid, int level,
461                                           struct btrfs_key *first_key)
462 {
463         struct btrfs_fs_info *fs_info = eb->fs_info;
464         struct extent_io_tree *io_tree;
465         int failed = 0;
466         int ret;
467         int num_copies = 0;
468         int mirror_num = 0;
469         int failed_mirror = 0;
470
471         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
472         while (1) {
473                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
474                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
475                 if (!ret) {
476                         if (verify_parent_transid(io_tree, eb,
477                                                    parent_transid, 0))
478                                 ret = -EIO;
479                         else if (btrfs_verify_level_key(eb, level,
480                                                 first_key, parent_transid))
481                                 ret = -EUCLEAN;
482                         else
483                                 break;
484                 }
485
486                 num_copies = btrfs_num_copies(fs_info,
487                                               eb->start, eb->len);
488                 if (num_copies == 1)
489                         break;
490
491                 if (!failed_mirror) {
492                         failed = 1;
493                         failed_mirror = eb->read_mirror;
494                 }
495
496                 mirror_num++;
497                 if (mirror_num == failed_mirror)
498                         mirror_num++;
499
500                 if (mirror_num > num_copies)
501                         break;
502         }
503
504         if (failed && !ret && failed_mirror)
505                 btrfs_repair_eb_io_failure(eb, failed_mirror);
506
507         return ret;
508 }
509
510 /*
511  * checksum a dirty tree block before IO.  This has extra checks to make sure
512  * we only fill in the checksum field in the first page of a multi-page block
513  */
514
515 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
516 {
517         u64 start = page_offset(page);
518         u64 found_start;
519         u8 result[BTRFS_CSUM_SIZE];
520         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
521         struct extent_buffer *eb;
522         int ret;
523
524         eb = (struct extent_buffer *)page->private;
525         if (page != eb->pages[0])
526                 return 0;
527
528         found_start = btrfs_header_bytenr(eb);
529         /*
530          * Please do not consolidate these warnings into a single if.
531          * It is useful to know what went wrong.
532          */
533         if (WARN_ON(found_start != start))
534                 return -EUCLEAN;
535         if (WARN_ON(!PageUptodate(page)))
536                 return -EUCLEAN;
537
538         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
539                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
540
541         if (csum_tree_block(eb, result))
542                 return -EINVAL;
543
544         if (btrfs_header_level(eb))
545                 ret = btrfs_check_node(eb);
546         else
547                 ret = btrfs_check_leaf_full(eb);
548
549         if (ret < 0) {
550                 btrfs_print_tree(eb, 0);
551                 btrfs_err(fs_info,
552                 "block=%llu write time tree block corruption detected",
553                           eb->start);
554                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
555                 return ret;
556         }
557         write_extent_buffer(eb, result, 0, csum_size);
558
559         return 0;
560 }
561
562 static int check_tree_block_fsid(struct extent_buffer *eb)
563 {
564         struct btrfs_fs_info *fs_info = eb->fs_info;
565         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
566         u8 fsid[BTRFS_FSID_SIZE];
567         int ret = 1;
568
569         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
570         while (fs_devices) {
571                 u8 *metadata_uuid;
572
573                 /*
574                  * Checking the incompat flag is only valid for the current
575                  * fs. For seed devices it's forbidden to have their uuid
576                  * changed so reading ->fsid in this case is fine
577                  */
578                 if (fs_devices == fs_info->fs_devices &&
579                     btrfs_fs_incompat(fs_info, METADATA_UUID))
580                         metadata_uuid = fs_devices->metadata_uuid;
581                 else
582                         metadata_uuid = fs_devices->fsid;
583
584                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
585                         ret = 0;
586                         break;
587                 }
588                 fs_devices = fs_devices->seed;
589         }
590         return ret;
591 }
592
593 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
594                                       u64 phy_offset, struct page *page,
595                                       u64 start, u64 end, int mirror)
596 {
597         u64 found_start;
598         int found_level;
599         struct extent_buffer *eb;
600         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
601         struct btrfs_fs_info *fs_info = root->fs_info;
602         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
603         int ret = 0;
604         u8 result[BTRFS_CSUM_SIZE];
605         int reads_done;
606
607         if (!page->private)
608                 goto out;
609
610         eb = (struct extent_buffer *)page->private;
611
612         /* the pending IO might have been the only thing that kept this buffer
613          * in memory.  Make sure we have a ref for all this other checks
614          */
615         atomic_inc(&eb->refs);
616
617         reads_done = atomic_dec_and_test(&eb->io_pages);
618         if (!reads_done)
619                 goto err;
620
621         eb->read_mirror = mirror;
622         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
623                 ret = -EIO;
624                 goto err;
625         }
626
627         found_start = btrfs_header_bytenr(eb);
628         if (found_start != eb->start) {
629                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
630                              eb->start, found_start);
631                 ret = -EIO;
632                 goto err;
633         }
634         if (check_tree_block_fsid(eb)) {
635                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
636                              eb->start);
637                 ret = -EIO;
638                 goto err;
639         }
640         found_level = btrfs_header_level(eb);
641         if (found_level >= BTRFS_MAX_LEVEL) {
642                 btrfs_err(fs_info, "bad tree block level %d on %llu",
643                           (int)btrfs_header_level(eb), eb->start);
644                 ret = -EIO;
645                 goto err;
646         }
647
648         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
649                                        eb, found_level);
650
651         ret = csum_tree_block(eb, result);
652         if (ret)
653                 goto err;
654
655         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
656                 u32 val;
657                 u32 found = 0;
658
659                 memcpy(&found, result, csum_size);
660
661                 read_extent_buffer(eb, &val, 0, csum_size);
662                 btrfs_warn_rl(fs_info,
663                 "%s checksum verify failed on %llu wanted %x found %x level %d",
664                               fs_info->sb->s_id, eb->start,
665                               val, found, btrfs_header_level(eb));
666                 ret = -EUCLEAN;
667                 goto err;
668         }
669
670         /*
671          * If this is a leaf block and it is corrupt, set the corrupt bit so
672          * that we don't try and read the other copies of this block, just
673          * return -EIO.
674          */
675         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
676                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
677                 ret = -EIO;
678         }
679
680         if (found_level > 0 && btrfs_check_node(eb))
681                 ret = -EIO;
682
683         if (!ret)
684                 set_extent_buffer_uptodate(eb);
685         else
686                 btrfs_err(fs_info,
687                           "block=%llu read time tree block corruption detected",
688                           eb->start);
689 err:
690         if (reads_done &&
691             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
692                 btree_readahead_hook(eb, ret);
693
694         if (ret) {
695                 /*
696                  * our io error hook is going to dec the io pages
697                  * again, we have to make sure it has something
698                  * to decrement
699                  */
700                 atomic_inc(&eb->io_pages);
701                 clear_extent_buffer_uptodate(eb);
702         }
703         free_extent_buffer(eb);
704 out:
705         return ret;
706 }
707
708 static void end_workqueue_bio(struct bio *bio)
709 {
710         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
711         struct btrfs_fs_info *fs_info;
712         struct btrfs_workqueue *wq;
713
714         fs_info = end_io_wq->info;
715         end_io_wq->status = bio->bi_status;
716
717         if (bio_op(bio) == REQ_OP_WRITE) {
718                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
719                         wq = fs_info->endio_meta_write_workers;
720                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
721                         wq = fs_info->endio_freespace_worker;
722                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
723                         wq = fs_info->endio_raid56_workers;
724                 else
725                         wq = fs_info->endio_write_workers;
726         } else {
727                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
728                         wq = fs_info->endio_repair_workers;
729                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
730                         wq = fs_info->endio_raid56_workers;
731                 else if (end_io_wq->metadata)
732                         wq = fs_info->endio_meta_workers;
733                 else
734                         wq = fs_info->endio_workers;
735         }
736
737         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
738         btrfs_queue_work(wq, &end_io_wq->work);
739 }
740
741 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
742                         enum btrfs_wq_endio_type metadata)
743 {
744         struct btrfs_end_io_wq *end_io_wq;
745
746         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
747         if (!end_io_wq)
748                 return BLK_STS_RESOURCE;
749
750         end_io_wq->private = bio->bi_private;
751         end_io_wq->end_io = bio->bi_end_io;
752         end_io_wq->info = info;
753         end_io_wq->status = 0;
754         end_io_wq->bio = bio;
755         end_io_wq->metadata = metadata;
756
757         bio->bi_private = end_io_wq;
758         bio->bi_end_io = end_workqueue_bio;
759         return 0;
760 }
761
762 static void run_one_async_start(struct btrfs_work *work)
763 {
764         struct async_submit_bio *async;
765         blk_status_t ret;
766
767         async = container_of(work, struct  async_submit_bio, work);
768         ret = async->submit_bio_start(async->private_data, async->bio,
769                                       async->bio_offset);
770         if (ret)
771                 async->status = ret;
772 }
773
774 /*
775  * In order to insert checksums into the metadata in large chunks, we wait
776  * until bio submission time.   All the pages in the bio are checksummed and
777  * sums are attached onto the ordered extent record.
778  *
779  * At IO completion time the csums attached on the ordered extent record are
780  * inserted into the tree.
781  */
782 static void run_one_async_done(struct btrfs_work *work)
783 {
784         struct async_submit_bio *async;
785         struct inode *inode;
786         blk_status_t ret;
787
788         async = container_of(work, struct  async_submit_bio, work);
789         inode = async->private_data;
790
791         /* If an error occurred we just want to clean up the bio and move on */
792         if (async->status) {
793                 async->bio->bi_status = async->status;
794                 bio_endio(async->bio);
795                 return;
796         }
797
798         /*
799          * All of the bios that pass through here are from async helpers.
800          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
801          * This changes nothing when cgroups aren't in use.
802          */
803         async->bio->bi_opf |= REQ_CGROUP_PUNT;
804         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
805         if (ret) {
806                 async->bio->bi_status = ret;
807                 bio_endio(async->bio);
808         }
809 }
810
811 static void run_one_async_free(struct btrfs_work *work)
812 {
813         struct async_submit_bio *async;
814
815         async = container_of(work, struct  async_submit_bio, work);
816         kfree(async);
817 }
818
819 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
820                                  int mirror_num, unsigned long bio_flags,
821                                  u64 bio_offset, void *private_data,
822                                  extent_submit_bio_start_t *submit_bio_start)
823 {
824         struct async_submit_bio *async;
825
826         async = kmalloc(sizeof(*async), GFP_NOFS);
827         if (!async)
828                 return BLK_STS_RESOURCE;
829
830         async->private_data = private_data;
831         async->bio = bio;
832         async->mirror_num = mirror_num;
833         async->submit_bio_start = submit_bio_start;
834
835         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
836                         run_one_async_free);
837
838         async->bio_offset = bio_offset;
839
840         async->status = 0;
841
842         if (op_is_sync(bio->bi_opf))
843                 btrfs_set_work_high_priority(&async->work);
844
845         btrfs_queue_work(fs_info->workers, &async->work);
846         return 0;
847 }
848
849 static blk_status_t btree_csum_one_bio(struct bio *bio)
850 {
851         struct bio_vec *bvec;
852         struct btrfs_root *root;
853         int ret = 0;
854         struct bvec_iter_all iter_all;
855
856         ASSERT(!bio_flagged(bio, BIO_CLONED));
857         bio_for_each_segment_all(bvec, bio, iter_all) {
858                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
859                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
860                 if (ret)
861                         break;
862         }
863
864         return errno_to_blk_status(ret);
865 }
866
867 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
868                                              u64 bio_offset)
869 {
870         /*
871          * when we're called for a write, we're already in the async
872          * submission context.  Just jump into btrfs_map_bio
873          */
874         return btree_csum_one_bio(bio);
875 }
876
877 static int check_async_write(struct btrfs_fs_info *fs_info,
878                              struct btrfs_inode *bi)
879 {
880         if (atomic_read(&bi->sync_writers))
881                 return 0;
882         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
883                 return 0;
884         return 1;
885 }
886
887 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
888                                           int mirror_num,
889                                           unsigned long bio_flags)
890 {
891         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
892         int async = check_async_write(fs_info, BTRFS_I(inode));
893         blk_status_t ret;
894
895         if (bio_op(bio) != REQ_OP_WRITE) {
896                 /*
897                  * called for a read, do the setup so that checksum validation
898                  * can happen in the async kernel threads
899                  */
900                 ret = btrfs_bio_wq_end_io(fs_info, bio,
901                                           BTRFS_WQ_ENDIO_METADATA);
902                 if (ret)
903                         goto out_w_error;
904                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
905         } else if (!async) {
906                 ret = btree_csum_one_bio(bio);
907                 if (ret)
908                         goto out_w_error;
909                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
910         } else {
911                 /*
912                  * kthread helpers are used to submit writes so that
913                  * checksumming can happen in parallel across all CPUs
914                  */
915                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
916                                           0, inode, btree_submit_bio_start);
917         }
918
919         if (ret)
920                 goto out_w_error;
921         return 0;
922
923 out_w_error:
924         bio->bi_status = ret;
925         bio_endio(bio);
926         return ret;
927 }
928
929 #ifdef CONFIG_MIGRATION
930 static int btree_migratepage(struct address_space *mapping,
931                         struct page *newpage, struct page *page,
932                         enum migrate_mode mode)
933 {
934         /*
935          * we can't safely write a btree page from here,
936          * we haven't done the locking hook
937          */
938         if (PageDirty(page))
939                 return -EAGAIN;
940         /*
941          * Buffers may be managed in a filesystem specific way.
942          * We must have no buffers or drop them.
943          */
944         if (page_has_private(page) &&
945             !try_to_release_page(page, GFP_KERNEL))
946                 return -EAGAIN;
947         return migrate_page(mapping, newpage, page, mode);
948 }
949 #endif
950
951
952 static int btree_writepages(struct address_space *mapping,
953                             struct writeback_control *wbc)
954 {
955         struct btrfs_fs_info *fs_info;
956         int ret;
957
958         if (wbc->sync_mode == WB_SYNC_NONE) {
959
960                 if (wbc->for_kupdate)
961                         return 0;
962
963                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
964                 /* this is a bit racy, but that's ok */
965                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
966                                              BTRFS_DIRTY_METADATA_THRESH,
967                                              fs_info->dirty_metadata_batch);
968                 if (ret < 0)
969                         return 0;
970         }
971         return btree_write_cache_pages(mapping, wbc);
972 }
973
974 static int btree_readpage(struct file *file, struct page *page)
975 {
976         struct extent_io_tree *tree;
977         tree = &BTRFS_I(page->mapping->host)->io_tree;
978         return extent_read_full_page(tree, page, btree_get_extent, 0);
979 }
980
981 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
982 {
983         if (PageWriteback(page) || PageDirty(page))
984                 return 0;
985
986         return try_release_extent_buffer(page);
987 }
988
989 static void btree_invalidatepage(struct page *page, unsigned int offset,
990                                  unsigned int length)
991 {
992         struct extent_io_tree *tree;
993         tree = &BTRFS_I(page->mapping->host)->io_tree;
994         extent_invalidatepage(tree, page, offset);
995         btree_releasepage(page, GFP_NOFS);
996         if (PagePrivate(page)) {
997                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
998                            "page private not zero on page %llu",
999                            (unsigned long long)page_offset(page));
1000                 ClearPagePrivate(page);
1001                 set_page_private(page, 0);
1002                 put_page(page);
1003         }
1004 }
1005
1006 static int btree_set_page_dirty(struct page *page)
1007 {
1008 #ifdef DEBUG
1009         struct extent_buffer *eb;
1010
1011         BUG_ON(!PagePrivate(page));
1012         eb = (struct extent_buffer *)page->private;
1013         BUG_ON(!eb);
1014         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1015         BUG_ON(!atomic_read(&eb->refs));
1016         btrfs_assert_tree_locked(eb);
1017 #endif
1018         return __set_page_dirty_nobuffers(page);
1019 }
1020
1021 static const struct address_space_operations btree_aops = {
1022         .readpage       = btree_readpage,
1023         .writepages     = btree_writepages,
1024         .releasepage    = btree_releasepage,
1025         .invalidatepage = btree_invalidatepage,
1026 #ifdef CONFIG_MIGRATION
1027         .migratepage    = btree_migratepage,
1028 #endif
1029         .set_page_dirty = btree_set_page_dirty,
1030 };
1031
1032 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1033 {
1034         struct extent_buffer *buf = NULL;
1035         int ret;
1036
1037         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1038         if (IS_ERR(buf))
1039                 return;
1040
1041         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1042         if (ret < 0)
1043                 free_extent_buffer_stale(buf);
1044         else
1045                 free_extent_buffer(buf);
1046 }
1047
1048 struct extent_buffer *btrfs_find_create_tree_block(
1049                                                 struct btrfs_fs_info *fs_info,
1050                                                 u64 bytenr)
1051 {
1052         if (btrfs_is_testing(fs_info))
1053                 return alloc_test_extent_buffer(fs_info, bytenr);
1054         return alloc_extent_buffer(fs_info, bytenr);
1055 }
1056
1057 /*
1058  * Read tree block at logical address @bytenr and do variant basic but critical
1059  * verification.
1060  *
1061  * @parent_transid:     expected transid of this tree block, skip check if 0
1062  * @level:              expected level, mandatory check
1063  * @first_key:          expected key in slot 0, skip check if NULL
1064  */
1065 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1066                                       u64 parent_transid, int level,
1067                                       struct btrfs_key *first_key)
1068 {
1069         struct extent_buffer *buf = NULL;
1070         int ret;
1071
1072         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1073         if (IS_ERR(buf))
1074                 return buf;
1075
1076         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1077                                              level, first_key);
1078         if (ret) {
1079                 free_extent_buffer_stale(buf);
1080                 return ERR_PTR(ret);
1081         }
1082         return buf;
1083
1084 }
1085
1086 void btrfs_clean_tree_block(struct extent_buffer *buf)
1087 {
1088         struct btrfs_fs_info *fs_info = buf->fs_info;
1089         if (btrfs_header_generation(buf) ==
1090             fs_info->running_transaction->transid) {
1091                 btrfs_assert_tree_locked(buf);
1092
1093                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1094                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1095                                                  -buf->len,
1096                                                  fs_info->dirty_metadata_batch);
1097                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1098                         btrfs_set_lock_blocking_write(buf);
1099                         clear_extent_buffer_dirty(buf);
1100                 }
1101         }
1102 }
1103
1104 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1105 {
1106         struct btrfs_subvolume_writers *writers;
1107         int ret;
1108
1109         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1110         if (!writers)
1111                 return ERR_PTR(-ENOMEM);
1112
1113         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1114         if (ret < 0) {
1115                 kfree(writers);
1116                 return ERR_PTR(ret);
1117         }
1118
1119         init_waitqueue_head(&writers->wait);
1120         return writers;
1121 }
1122
1123 static void
1124 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1125 {
1126         percpu_counter_destroy(&writers->counter);
1127         kfree(writers);
1128 }
1129
1130 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1131                          u64 objectid)
1132 {
1133         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1134         root->node = NULL;
1135         root->commit_root = NULL;
1136         root->state = 0;
1137         root->orphan_cleanup_state = 0;
1138
1139         root->last_trans = 0;
1140         root->highest_objectid = 0;
1141         root->nr_delalloc_inodes = 0;
1142         root->nr_ordered_extents = 0;
1143         root->inode_tree = RB_ROOT;
1144         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1145         root->block_rsv = NULL;
1146
1147         INIT_LIST_HEAD(&root->dirty_list);
1148         INIT_LIST_HEAD(&root->root_list);
1149         INIT_LIST_HEAD(&root->delalloc_inodes);
1150         INIT_LIST_HEAD(&root->delalloc_root);
1151         INIT_LIST_HEAD(&root->ordered_extents);
1152         INIT_LIST_HEAD(&root->ordered_root);
1153         INIT_LIST_HEAD(&root->reloc_dirty_list);
1154         INIT_LIST_HEAD(&root->logged_list[0]);
1155         INIT_LIST_HEAD(&root->logged_list[1]);
1156         spin_lock_init(&root->inode_lock);
1157         spin_lock_init(&root->delalloc_lock);
1158         spin_lock_init(&root->ordered_extent_lock);
1159         spin_lock_init(&root->accounting_lock);
1160         spin_lock_init(&root->log_extents_lock[0]);
1161         spin_lock_init(&root->log_extents_lock[1]);
1162         spin_lock_init(&root->qgroup_meta_rsv_lock);
1163         mutex_init(&root->objectid_mutex);
1164         mutex_init(&root->log_mutex);
1165         mutex_init(&root->ordered_extent_mutex);
1166         mutex_init(&root->delalloc_mutex);
1167         init_waitqueue_head(&root->log_writer_wait);
1168         init_waitqueue_head(&root->log_commit_wait[0]);
1169         init_waitqueue_head(&root->log_commit_wait[1]);
1170         INIT_LIST_HEAD(&root->log_ctxs[0]);
1171         INIT_LIST_HEAD(&root->log_ctxs[1]);
1172         atomic_set(&root->log_commit[0], 0);
1173         atomic_set(&root->log_commit[1], 0);
1174         atomic_set(&root->log_writers, 0);
1175         atomic_set(&root->log_batch, 0);
1176         refcount_set(&root->refs, 1);
1177         atomic_set(&root->will_be_snapshotted, 0);
1178         atomic_set(&root->snapshot_force_cow, 0);
1179         atomic_set(&root->nr_swapfiles, 0);
1180         root->log_transid = 0;
1181         root->log_transid_committed = -1;
1182         root->last_log_commit = 0;
1183         if (!dummy)
1184                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1185                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1186
1187         memset(&root->root_key, 0, sizeof(root->root_key));
1188         memset(&root->root_item, 0, sizeof(root->root_item));
1189         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1190         if (!dummy)
1191                 root->defrag_trans_start = fs_info->generation;
1192         else
1193                 root->defrag_trans_start = 0;
1194         root->root_key.objectid = objectid;
1195         root->anon_dev = 0;
1196
1197         spin_lock_init(&root->root_item_lock);
1198         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1199 }
1200
1201 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1202                 gfp_t flags)
1203 {
1204         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1205         if (root)
1206                 root->fs_info = fs_info;
1207         return root;
1208 }
1209
1210 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211 /* Should only be used by the testing infrastructure */
1212 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1213 {
1214         struct btrfs_root *root;
1215
1216         if (!fs_info)
1217                 return ERR_PTR(-EINVAL);
1218
1219         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1220         if (!root)
1221                 return ERR_PTR(-ENOMEM);
1222
1223         /* We don't use the stripesize in selftest, set it as sectorsize */
1224         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1225         root->alloc_bytenr = 0;
1226
1227         return root;
1228 }
1229 #endif
1230
1231 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1232                                      u64 objectid)
1233 {
1234         struct btrfs_fs_info *fs_info = trans->fs_info;
1235         struct extent_buffer *leaf;
1236         struct btrfs_root *tree_root = fs_info->tree_root;
1237         struct btrfs_root *root;
1238         struct btrfs_key key;
1239         unsigned int nofs_flag;
1240         int ret = 0;
1241         uuid_le uuid = NULL_UUID_LE;
1242
1243         /*
1244          * We're holding a transaction handle, so use a NOFS memory allocation
1245          * context to avoid deadlock if reclaim happens.
1246          */
1247         nofs_flag = memalloc_nofs_save();
1248         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1249         memalloc_nofs_restore(nofs_flag);
1250         if (!root)
1251                 return ERR_PTR(-ENOMEM);
1252
1253         __setup_root(root, fs_info, objectid);
1254         root->root_key.objectid = objectid;
1255         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1256         root->root_key.offset = 0;
1257
1258         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1259         if (IS_ERR(leaf)) {
1260                 ret = PTR_ERR(leaf);
1261                 leaf = NULL;
1262                 goto fail;
1263         }
1264
1265         root->node = leaf;
1266         btrfs_mark_buffer_dirty(leaf);
1267
1268         root->commit_root = btrfs_root_node(root);
1269         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1270
1271         root->root_item.flags = 0;
1272         root->root_item.byte_limit = 0;
1273         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1274         btrfs_set_root_generation(&root->root_item, trans->transid);
1275         btrfs_set_root_level(&root->root_item, 0);
1276         btrfs_set_root_refs(&root->root_item, 1);
1277         btrfs_set_root_used(&root->root_item, leaf->len);
1278         btrfs_set_root_last_snapshot(&root->root_item, 0);
1279         btrfs_set_root_dirid(&root->root_item, 0);
1280         if (is_fstree(objectid))
1281                 uuid_le_gen(&uuid);
1282         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1283         root->root_item.drop_level = 0;
1284
1285         key.objectid = objectid;
1286         key.type = BTRFS_ROOT_ITEM_KEY;
1287         key.offset = 0;
1288         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1289         if (ret)
1290                 goto fail;
1291
1292         btrfs_tree_unlock(leaf);
1293
1294         return root;
1295
1296 fail:
1297         if (leaf) {
1298                 btrfs_tree_unlock(leaf);
1299                 free_extent_buffer(root->commit_root);
1300                 free_extent_buffer(leaf);
1301         }
1302         kfree(root);
1303
1304         return ERR_PTR(ret);
1305 }
1306
1307 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1308                                          struct btrfs_fs_info *fs_info)
1309 {
1310         struct btrfs_root *root;
1311         struct extent_buffer *leaf;
1312
1313         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1314         if (!root)
1315                 return ERR_PTR(-ENOMEM);
1316
1317         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1318
1319         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1322
1323         /*
1324          * DON'T set REF_COWS for log trees
1325          *
1326          * log trees do not get reference counted because they go away
1327          * before a real commit is actually done.  They do store pointers
1328          * to file data extents, and those reference counts still get
1329          * updated (along with back refs to the log tree).
1330          */
1331
1332         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1333                         NULL, 0, 0, 0);
1334         if (IS_ERR(leaf)) {
1335                 kfree(root);
1336                 return ERR_CAST(leaf);
1337         }
1338
1339         root->node = leaf;
1340
1341         btrfs_mark_buffer_dirty(root->node);
1342         btrfs_tree_unlock(root->node);
1343         return root;
1344 }
1345
1346 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1347                              struct btrfs_fs_info *fs_info)
1348 {
1349         struct btrfs_root *log_root;
1350
1351         log_root = alloc_log_tree(trans, fs_info);
1352         if (IS_ERR(log_root))
1353                 return PTR_ERR(log_root);
1354         WARN_ON(fs_info->log_root_tree);
1355         fs_info->log_root_tree = log_root;
1356         return 0;
1357 }
1358
1359 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1360                        struct btrfs_root *root)
1361 {
1362         struct btrfs_fs_info *fs_info = root->fs_info;
1363         struct btrfs_root *log_root;
1364         struct btrfs_inode_item *inode_item;
1365
1366         log_root = alloc_log_tree(trans, fs_info);
1367         if (IS_ERR(log_root))
1368                 return PTR_ERR(log_root);
1369
1370         log_root->last_trans = trans->transid;
1371         log_root->root_key.offset = root->root_key.objectid;
1372
1373         inode_item = &log_root->root_item.inode;
1374         btrfs_set_stack_inode_generation(inode_item, 1);
1375         btrfs_set_stack_inode_size(inode_item, 3);
1376         btrfs_set_stack_inode_nlink(inode_item, 1);
1377         btrfs_set_stack_inode_nbytes(inode_item,
1378                                      fs_info->nodesize);
1379         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1380
1381         btrfs_set_root_node(&log_root->root_item, log_root->node);
1382
1383         WARN_ON(root->log_root);
1384         root->log_root = log_root;
1385         root->log_transid = 0;
1386         root->log_transid_committed = -1;
1387         root->last_log_commit = 0;
1388         return 0;
1389 }
1390
1391 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1392                                                struct btrfs_key *key)
1393 {
1394         struct btrfs_root *root;
1395         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1396         struct btrfs_path *path;
1397         u64 generation;
1398         int ret;
1399         int level;
1400
1401         path = btrfs_alloc_path();
1402         if (!path)
1403                 return ERR_PTR(-ENOMEM);
1404
1405         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1406         if (!root) {
1407                 ret = -ENOMEM;
1408                 goto alloc_fail;
1409         }
1410
1411         __setup_root(root, fs_info, key->objectid);
1412
1413         ret = btrfs_find_root(tree_root, key, path,
1414                               &root->root_item, &root->root_key);
1415         if (ret) {
1416                 if (ret > 0)
1417                         ret = -ENOENT;
1418                 goto find_fail;
1419         }
1420
1421         generation = btrfs_root_generation(&root->root_item);
1422         level = btrfs_root_level(&root->root_item);
1423         root->node = read_tree_block(fs_info,
1424                                      btrfs_root_bytenr(&root->root_item),
1425                                      generation, level, NULL);
1426         if (IS_ERR(root->node)) {
1427                 ret = PTR_ERR(root->node);
1428                 goto find_fail;
1429         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1430                 ret = -EIO;
1431                 free_extent_buffer(root->node);
1432                 goto find_fail;
1433         }
1434         root->commit_root = btrfs_root_node(root);
1435 out:
1436         btrfs_free_path(path);
1437         return root;
1438
1439 find_fail:
1440         kfree(root);
1441 alloc_fail:
1442         root = ERR_PTR(ret);
1443         goto out;
1444 }
1445
1446 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1447                                       struct btrfs_key *location)
1448 {
1449         struct btrfs_root *root;
1450
1451         root = btrfs_read_tree_root(tree_root, location);
1452         if (IS_ERR(root))
1453                 return root;
1454
1455         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1456                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1457                 btrfs_check_and_init_root_item(&root->root_item);
1458         }
1459
1460         return root;
1461 }
1462
1463 int btrfs_init_fs_root(struct btrfs_root *root)
1464 {
1465         int ret;
1466         struct btrfs_subvolume_writers *writers;
1467
1468         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1469         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1470                                         GFP_NOFS);
1471         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1472                 ret = -ENOMEM;
1473                 goto fail;
1474         }
1475
1476         writers = btrfs_alloc_subvolume_writers();
1477         if (IS_ERR(writers)) {
1478                 ret = PTR_ERR(writers);
1479                 goto fail;
1480         }
1481         root->subv_writers = writers;
1482
1483         btrfs_init_free_ino_ctl(root);
1484         spin_lock_init(&root->ino_cache_lock);
1485         init_waitqueue_head(&root->ino_cache_wait);
1486
1487         ret = get_anon_bdev(&root->anon_dev);
1488         if (ret)
1489                 goto fail;
1490
1491         mutex_lock(&root->objectid_mutex);
1492         ret = btrfs_find_highest_objectid(root,
1493                                         &root->highest_objectid);
1494         if (ret) {
1495                 mutex_unlock(&root->objectid_mutex);
1496                 goto fail;
1497         }
1498
1499         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1500
1501         mutex_unlock(&root->objectid_mutex);
1502
1503         return 0;
1504 fail:
1505         /* The caller is responsible to call btrfs_free_fs_root */
1506         return ret;
1507 }
1508
1509 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1510                                         u64 root_id)
1511 {
1512         struct btrfs_root *root;
1513
1514         spin_lock(&fs_info->fs_roots_radix_lock);
1515         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1516                                  (unsigned long)root_id);
1517         spin_unlock(&fs_info->fs_roots_radix_lock);
1518         return root;
1519 }
1520
1521 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1522                          struct btrfs_root *root)
1523 {
1524         int ret;
1525
1526         ret = radix_tree_preload(GFP_NOFS);
1527         if (ret)
1528                 return ret;
1529
1530         spin_lock(&fs_info->fs_roots_radix_lock);
1531         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1532                                 (unsigned long)root->root_key.objectid,
1533                                 root);
1534         if (ret == 0)
1535                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1536         spin_unlock(&fs_info->fs_roots_radix_lock);
1537         radix_tree_preload_end();
1538
1539         return ret;
1540 }
1541
1542 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1543                                      struct btrfs_key *location,
1544                                      bool check_ref)
1545 {
1546         struct btrfs_root *root;
1547         struct btrfs_path *path;
1548         struct btrfs_key key;
1549         int ret;
1550
1551         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1552                 return fs_info->tree_root;
1553         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1554                 return fs_info->extent_root;
1555         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1556                 return fs_info->chunk_root;
1557         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1558                 return fs_info->dev_root;
1559         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1560                 return fs_info->csum_root;
1561         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1562                 return fs_info->quota_root ? fs_info->quota_root :
1563                                              ERR_PTR(-ENOENT);
1564         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1565                 return fs_info->uuid_root ? fs_info->uuid_root :
1566                                             ERR_PTR(-ENOENT);
1567         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1568                 return fs_info->free_space_root ? fs_info->free_space_root :
1569                                                   ERR_PTR(-ENOENT);
1570 again:
1571         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1572         if (root) {
1573                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1574                         return ERR_PTR(-ENOENT);
1575                 return root;
1576         }
1577
1578         root = btrfs_read_fs_root(fs_info->tree_root, location);
1579         if (IS_ERR(root))
1580                 return root;
1581
1582         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1583                 ret = -ENOENT;
1584                 goto fail;
1585         }
1586
1587         ret = btrfs_init_fs_root(root);
1588         if (ret)
1589                 goto fail;
1590
1591         path = btrfs_alloc_path();
1592         if (!path) {
1593                 ret = -ENOMEM;
1594                 goto fail;
1595         }
1596         key.objectid = BTRFS_ORPHAN_OBJECTID;
1597         key.type = BTRFS_ORPHAN_ITEM_KEY;
1598         key.offset = location->objectid;
1599
1600         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1601         btrfs_free_path(path);
1602         if (ret < 0)
1603                 goto fail;
1604         if (ret == 0)
1605                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1606
1607         ret = btrfs_insert_fs_root(fs_info, root);
1608         if (ret) {
1609                 if (ret == -EEXIST) {
1610                         btrfs_free_fs_root(root);
1611                         goto again;
1612                 }
1613                 goto fail;
1614         }
1615         return root;
1616 fail:
1617         btrfs_free_fs_root(root);
1618         return ERR_PTR(ret);
1619 }
1620
1621 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1622 {
1623         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1624         int ret = 0;
1625         struct btrfs_device *device;
1626         struct backing_dev_info *bdi;
1627
1628         rcu_read_lock();
1629         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1630                 if (!device->bdev)
1631                         continue;
1632                 bdi = device->bdev->bd_bdi;
1633                 if (bdi_congested(bdi, bdi_bits)) {
1634                         ret = 1;
1635                         break;
1636                 }
1637         }
1638         rcu_read_unlock();
1639         return ret;
1640 }
1641
1642 /*
1643  * called by the kthread helper functions to finally call the bio end_io
1644  * functions.  This is where read checksum verification actually happens
1645  */
1646 static void end_workqueue_fn(struct btrfs_work *work)
1647 {
1648         struct bio *bio;
1649         struct btrfs_end_io_wq *end_io_wq;
1650
1651         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1652         bio = end_io_wq->bio;
1653
1654         bio->bi_status = end_io_wq->status;
1655         bio->bi_private = end_io_wq->private;
1656         bio->bi_end_io = end_io_wq->end_io;
1657         bio_endio(bio);
1658         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1659 }
1660
1661 static int cleaner_kthread(void *arg)
1662 {
1663         struct btrfs_root *root = arg;
1664         struct btrfs_fs_info *fs_info = root->fs_info;
1665         int again;
1666
1667         while (1) {
1668                 again = 0;
1669
1670                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1671
1672                 /* Make the cleaner go to sleep early. */
1673                 if (btrfs_need_cleaner_sleep(fs_info))
1674                         goto sleep;
1675
1676                 /*
1677                  * Do not do anything if we might cause open_ctree() to block
1678                  * before we have finished mounting the filesystem.
1679                  */
1680                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1681                         goto sleep;
1682
1683                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1684                         goto sleep;
1685
1686                 /*
1687                  * Avoid the problem that we change the status of the fs
1688                  * during the above check and trylock.
1689                  */
1690                 if (btrfs_need_cleaner_sleep(fs_info)) {
1691                         mutex_unlock(&fs_info->cleaner_mutex);
1692                         goto sleep;
1693                 }
1694
1695                 btrfs_run_delayed_iputs(fs_info);
1696
1697                 again = btrfs_clean_one_deleted_snapshot(root);
1698                 mutex_unlock(&fs_info->cleaner_mutex);
1699
1700                 /*
1701                  * The defragger has dealt with the R/O remount and umount,
1702                  * needn't do anything special here.
1703                  */
1704                 btrfs_run_defrag_inodes(fs_info);
1705
1706                 /*
1707                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1708                  * with relocation (btrfs_relocate_chunk) and relocation
1709                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1710                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1711                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1712                  * unused block groups.
1713                  */
1714                 btrfs_delete_unused_bgs(fs_info);
1715 sleep:
1716                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1717                 if (kthread_should_park())
1718                         kthread_parkme();
1719                 if (kthread_should_stop())
1720                         return 0;
1721                 if (!again) {
1722                         set_current_state(TASK_INTERRUPTIBLE);
1723                         schedule();
1724                         __set_current_state(TASK_RUNNING);
1725                 }
1726         }
1727 }
1728
1729 static int transaction_kthread(void *arg)
1730 {
1731         struct btrfs_root *root = arg;
1732         struct btrfs_fs_info *fs_info = root->fs_info;
1733         struct btrfs_trans_handle *trans;
1734         struct btrfs_transaction *cur;
1735         u64 transid;
1736         time64_t now;
1737         unsigned long delay;
1738         bool cannot_commit;
1739
1740         do {
1741                 cannot_commit = false;
1742                 delay = HZ * fs_info->commit_interval;
1743                 mutex_lock(&fs_info->transaction_kthread_mutex);
1744
1745                 spin_lock(&fs_info->trans_lock);
1746                 cur = fs_info->running_transaction;
1747                 if (!cur) {
1748                         spin_unlock(&fs_info->trans_lock);
1749                         goto sleep;
1750                 }
1751
1752                 now = ktime_get_seconds();
1753                 if (cur->state < TRANS_STATE_COMMIT_START &&
1754                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1755                     (now < cur->start_time ||
1756                      now - cur->start_time < fs_info->commit_interval)) {
1757                         spin_unlock(&fs_info->trans_lock);
1758                         delay = HZ * 5;
1759                         goto sleep;
1760                 }
1761                 transid = cur->transid;
1762                 spin_unlock(&fs_info->trans_lock);
1763
1764                 /* If the file system is aborted, this will always fail. */
1765                 trans = btrfs_attach_transaction(root);
1766                 if (IS_ERR(trans)) {
1767                         if (PTR_ERR(trans) != -ENOENT)
1768                                 cannot_commit = true;
1769                         goto sleep;
1770                 }
1771                 if (transid == trans->transid) {
1772                         btrfs_commit_transaction(trans);
1773                 } else {
1774                         btrfs_end_transaction(trans);
1775                 }
1776 sleep:
1777                 wake_up_process(fs_info->cleaner_kthread);
1778                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1779
1780                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1781                                       &fs_info->fs_state)))
1782                         btrfs_cleanup_transaction(fs_info);
1783                 if (!kthread_should_stop() &&
1784                                 (!btrfs_transaction_blocked(fs_info) ||
1785                                  cannot_commit))
1786                         schedule_timeout_interruptible(delay);
1787         } while (!kthread_should_stop());
1788         return 0;
1789 }
1790
1791 /*
1792  * this will find the highest generation in the array of
1793  * root backups.  The index of the highest array is returned,
1794  * or -1 if we can't find anything.
1795  *
1796  * We check to make sure the array is valid by comparing the
1797  * generation of the latest  root in the array with the generation
1798  * in the super block.  If they don't match we pitch it.
1799  */
1800 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801 {
1802         u64 cur;
1803         int newest_index = -1;
1804         struct btrfs_root_backup *root_backup;
1805         int i;
1806
1807         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808                 root_backup = info->super_copy->super_roots + i;
1809                 cur = btrfs_backup_tree_root_gen(root_backup);
1810                 if (cur == newest_gen)
1811                         newest_index = i;
1812         }
1813
1814         /* check to see if we actually wrapped around */
1815         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816                 root_backup = info->super_copy->super_roots;
1817                 cur = btrfs_backup_tree_root_gen(root_backup);
1818                 if (cur == newest_gen)
1819                         newest_index = 0;
1820         }
1821         return newest_index;
1822 }
1823
1824
1825 /*
1826  * find the oldest backup so we know where to store new entries
1827  * in the backup array.  This will set the backup_root_index
1828  * field in the fs_info struct
1829  */
1830 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831                                      u64 newest_gen)
1832 {
1833         int newest_index = -1;
1834
1835         newest_index = find_newest_super_backup(info, newest_gen);
1836         /* if there was garbage in there, just move along */
1837         if (newest_index == -1) {
1838                 info->backup_root_index = 0;
1839         } else {
1840                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841         }
1842 }
1843
1844 /*
1845  * copy all the root pointers into the super backup array.
1846  * this will bump the backup pointer by one when it is
1847  * done
1848  */
1849 static void backup_super_roots(struct btrfs_fs_info *info)
1850 {
1851         int next_backup;
1852         struct btrfs_root_backup *root_backup;
1853         int last_backup;
1854
1855         next_backup = info->backup_root_index;
1856         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857                 BTRFS_NUM_BACKUP_ROOTS;
1858
1859         /*
1860          * just overwrite the last backup if we're at the same generation
1861          * this happens only at umount
1862          */
1863         root_backup = info->super_for_commit->super_roots + last_backup;
1864         if (btrfs_backup_tree_root_gen(root_backup) ==
1865             btrfs_header_generation(info->tree_root->node))
1866                 next_backup = last_backup;
1867
1868         root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870         /*
1871          * make sure all of our padding and empty slots get zero filled
1872          * regardless of which ones we use today
1873          */
1874         memset(root_backup, 0, sizeof(*root_backup));
1875
1876         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879         btrfs_set_backup_tree_root_gen(root_backup,
1880                                btrfs_header_generation(info->tree_root->node));
1881
1882         btrfs_set_backup_tree_root_level(root_backup,
1883                                btrfs_header_level(info->tree_root->node));
1884
1885         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886         btrfs_set_backup_chunk_root_gen(root_backup,
1887                                btrfs_header_generation(info->chunk_root->node));
1888         btrfs_set_backup_chunk_root_level(root_backup,
1889                                btrfs_header_level(info->chunk_root->node));
1890
1891         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892         btrfs_set_backup_extent_root_gen(root_backup,
1893                                btrfs_header_generation(info->extent_root->node));
1894         btrfs_set_backup_extent_root_level(root_backup,
1895                                btrfs_header_level(info->extent_root->node));
1896
1897         /*
1898          * we might commit during log recovery, which happens before we set
1899          * the fs_root.  Make sure it is valid before we fill it in.
1900          */
1901         if (info->fs_root && info->fs_root->node) {
1902                 btrfs_set_backup_fs_root(root_backup,
1903                                          info->fs_root->node->start);
1904                 btrfs_set_backup_fs_root_gen(root_backup,
1905                                btrfs_header_generation(info->fs_root->node));
1906                 btrfs_set_backup_fs_root_level(root_backup,
1907                                btrfs_header_level(info->fs_root->node));
1908         }
1909
1910         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911         btrfs_set_backup_dev_root_gen(root_backup,
1912                                btrfs_header_generation(info->dev_root->node));
1913         btrfs_set_backup_dev_root_level(root_backup,
1914                                        btrfs_header_level(info->dev_root->node));
1915
1916         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917         btrfs_set_backup_csum_root_gen(root_backup,
1918                                btrfs_header_generation(info->csum_root->node));
1919         btrfs_set_backup_csum_root_level(root_backup,
1920                                btrfs_header_level(info->csum_root->node));
1921
1922         btrfs_set_backup_total_bytes(root_backup,
1923                              btrfs_super_total_bytes(info->super_copy));
1924         btrfs_set_backup_bytes_used(root_backup,
1925                              btrfs_super_bytes_used(info->super_copy));
1926         btrfs_set_backup_num_devices(root_backup,
1927                              btrfs_super_num_devices(info->super_copy));
1928
1929         /*
1930          * if we don't copy this out to the super_copy, it won't get remembered
1931          * for the next commit
1932          */
1933         memcpy(&info->super_copy->super_roots,
1934                &info->super_for_commit->super_roots,
1935                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936 }
1937
1938 /*
1939  * this copies info out of the root backup array and back into
1940  * the in-memory super block.  It is meant to help iterate through
1941  * the array, so you send it the number of backups you've already
1942  * tried and the last backup index you used.
1943  *
1944  * this returns -1 when it has tried all the backups
1945  */
1946 static noinline int next_root_backup(struct btrfs_fs_info *info,
1947                                      struct btrfs_super_block *super,
1948                                      int *num_backups_tried, int *backup_index)
1949 {
1950         struct btrfs_root_backup *root_backup;
1951         int newest = *backup_index;
1952
1953         if (*num_backups_tried == 0) {
1954                 u64 gen = btrfs_super_generation(super);
1955
1956                 newest = find_newest_super_backup(info, gen);
1957                 if (newest == -1)
1958                         return -1;
1959
1960                 *backup_index = newest;
1961                 *num_backups_tried = 1;
1962         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963                 /* we've tried all the backups, all done */
1964                 return -1;
1965         } else {
1966                 /* jump to the next oldest backup */
1967                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968                         BTRFS_NUM_BACKUP_ROOTS;
1969                 *backup_index = newest;
1970                 *num_backups_tried += 1;
1971         }
1972         root_backup = super->super_roots + newest;
1973
1974         btrfs_set_super_generation(super,
1975                                    btrfs_backup_tree_root_gen(root_backup));
1976         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977         btrfs_set_super_root_level(super,
1978                                    btrfs_backup_tree_root_level(root_backup));
1979         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980
1981         /*
1982          * fixme: the total bytes and num_devices need to match or we should
1983          * need a fsck
1984          */
1985         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987         return 0;
1988 }
1989
1990 /* helper to cleanup workers */
1991 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992 {
1993         btrfs_destroy_workqueue(fs_info->fixup_workers);
1994         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1995         btrfs_destroy_workqueue(fs_info->workers);
1996         btrfs_destroy_workqueue(fs_info->endio_workers);
1997         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1998         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1999         btrfs_destroy_workqueue(fs_info->rmw_workers);
2000         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2001         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2002         btrfs_destroy_workqueue(fs_info->delayed_workers);
2003         btrfs_destroy_workqueue(fs_info->caching_workers);
2004         btrfs_destroy_workqueue(fs_info->readahead_workers);
2005         btrfs_destroy_workqueue(fs_info->flush_workers);
2006         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2007         /*
2008          * Now that all other work queues are destroyed, we can safely destroy
2009          * the queues used for metadata I/O, since tasks from those other work
2010          * queues can do metadata I/O operations.
2011          */
2012         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2013         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2014 }
2015
2016 static void free_root_extent_buffers(struct btrfs_root *root)
2017 {
2018         if (root) {
2019                 free_extent_buffer(root->node);
2020                 free_extent_buffer(root->commit_root);
2021                 root->node = NULL;
2022                 root->commit_root = NULL;
2023         }
2024 }
2025
2026 /* helper to cleanup tree roots */
2027 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2028 {
2029         free_root_extent_buffers(info->tree_root);
2030
2031         free_root_extent_buffers(info->dev_root);
2032         free_root_extent_buffers(info->extent_root);
2033         free_root_extent_buffers(info->csum_root);
2034         free_root_extent_buffers(info->quota_root);
2035         free_root_extent_buffers(info->uuid_root);
2036         if (free_chunk_root)
2037                 free_root_extent_buffers(info->chunk_root);
2038         free_root_extent_buffers(info->free_space_root);
2039 }
2040
2041 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2042 {
2043         int ret;
2044         struct btrfs_root *gang[8];
2045         int i;
2046
2047         while (!list_empty(&fs_info->dead_roots)) {
2048                 gang[0] = list_entry(fs_info->dead_roots.next,
2049                                      struct btrfs_root, root_list);
2050                 list_del(&gang[0]->root_list);
2051
2052                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2053                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2054                 } else {
2055                         free_extent_buffer(gang[0]->node);
2056                         free_extent_buffer(gang[0]->commit_root);
2057                         btrfs_put_fs_root(gang[0]);
2058                 }
2059         }
2060
2061         while (1) {
2062                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2063                                              (void **)gang, 0,
2064                                              ARRAY_SIZE(gang));
2065                 if (!ret)
2066                         break;
2067                 for (i = 0; i < ret; i++)
2068                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2069         }
2070
2071         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2072                 btrfs_free_log_root_tree(NULL, fs_info);
2073                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2074         }
2075 }
2076
2077 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2078 {
2079         mutex_init(&fs_info->scrub_lock);
2080         atomic_set(&fs_info->scrubs_running, 0);
2081         atomic_set(&fs_info->scrub_pause_req, 0);
2082         atomic_set(&fs_info->scrubs_paused, 0);
2083         atomic_set(&fs_info->scrub_cancel_req, 0);
2084         init_waitqueue_head(&fs_info->scrub_pause_wait);
2085         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2086 }
2087
2088 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2089 {
2090         spin_lock_init(&fs_info->balance_lock);
2091         mutex_init(&fs_info->balance_mutex);
2092         atomic_set(&fs_info->balance_pause_req, 0);
2093         atomic_set(&fs_info->balance_cancel_req, 0);
2094         fs_info->balance_ctl = NULL;
2095         init_waitqueue_head(&fs_info->balance_wait_q);
2096 }
2097
2098 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2099 {
2100         struct inode *inode = fs_info->btree_inode;
2101
2102         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2103         set_nlink(inode, 1);
2104         /*
2105          * we set the i_size on the btree inode to the max possible int.
2106          * the real end of the address space is determined by all of
2107          * the devices in the system
2108          */
2109         inode->i_size = OFFSET_MAX;
2110         inode->i_mapping->a_ops = &btree_aops;
2111
2112         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2113         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2114                             IO_TREE_INODE_IO, inode);
2115         BTRFS_I(inode)->io_tree.track_uptodate = false;
2116         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2117
2118         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2119
2120         BTRFS_I(inode)->root = fs_info->tree_root;
2121         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2122         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2123         btrfs_insert_inode_hash(inode);
2124 }
2125
2126 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2127 {
2128         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2129         init_rwsem(&fs_info->dev_replace.rwsem);
2130         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2131 }
2132
2133 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2134 {
2135         spin_lock_init(&fs_info->qgroup_lock);
2136         mutex_init(&fs_info->qgroup_ioctl_lock);
2137         fs_info->qgroup_tree = RB_ROOT;
2138         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2139         fs_info->qgroup_seq = 1;
2140         fs_info->qgroup_ulist = NULL;
2141         fs_info->qgroup_rescan_running = false;
2142         mutex_init(&fs_info->qgroup_rescan_lock);
2143 }
2144
2145 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2146                 struct btrfs_fs_devices *fs_devices)
2147 {
2148         u32 max_active = fs_info->thread_pool_size;
2149         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2150
2151         fs_info->workers =
2152                 btrfs_alloc_workqueue(fs_info, "worker",
2153                                       flags | WQ_HIGHPRI, max_active, 16);
2154
2155         fs_info->delalloc_workers =
2156                 btrfs_alloc_workqueue(fs_info, "delalloc",
2157                                       flags, max_active, 2);
2158
2159         fs_info->flush_workers =
2160                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2161                                       flags, max_active, 0);
2162
2163         fs_info->caching_workers =
2164                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2165
2166         fs_info->fixup_workers =
2167                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2168
2169         /*
2170          * endios are largely parallel and should have a very
2171          * low idle thresh
2172          */
2173         fs_info->endio_workers =
2174                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2175         fs_info->endio_meta_workers =
2176                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2177                                       max_active, 4);
2178         fs_info->endio_meta_write_workers =
2179                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2180                                       max_active, 2);
2181         fs_info->endio_raid56_workers =
2182                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2183                                       max_active, 4);
2184         fs_info->endio_repair_workers =
2185                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2186         fs_info->rmw_workers =
2187                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2188         fs_info->endio_write_workers =
2189                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2190                                       max_active, 2);
2191         fs_info->endio_freespace_worker =
2192                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2193                                       max_active, 0);
2194         fs_info->delayed_workers =
2195                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2196                                       max_active, 0);
2197         fs_info->readahead_workers =
2198                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2199                                       max_active, 2);
2200         fs_info->qgroup_rescan_workers =
2201                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2202
2203         if (!(fs_info->workers && fs_info->delalloc_workers &&
2204               fs_info->flush_workers &&
2205               fs_info->endio_workers && fs_info->endio_meta_workers &&
2206               fs_info->endio_meta_write_workers &&
2207               fs_info->endio_repair_workers &&
2208               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2209               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2210               fs_info->caching_workers && fs_info->readahead_workers &&
2211               fs_info->fixup_workers && fs_info->delayed_workers &&
2212               fs_info->qgroup_rescan_workers)) {
2213                 return -ENOMEM;
2214         }
2215
2216         return 0;
2217 }
2218
2219 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2220 {
2221         struct crypto_shash *csum_shash;
2222         const char *csum_name = btrfs_super_csum_name(csum_type);
2223
2224         csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2225
2226         if (IS_ERR(csum_shash)) {
2227                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2228                           csum_name);
2229                 return PTR_ERR(csum_shash);
2230         }
2231
2232         fs_info->csum_shash = csum_shash;
2233
2234         return 0;
2235 }
2236
2237 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2238 {
2239         crypto_free_shash(fs_info->csum_shash);
2240 }
2241
2242 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2243                             struct btrfs_fs_devices *fs_devices)
2244 {
2245         int ret;
2246         struct btrfs_root *log_tree_root;
2247         struct btrfs_super_block *disk_super = fs_info->super_copy;
2248         u64 bytenr = btrfs_super_log_root(disk_super);
2249         int level = btrfs_super_log_root_level(disk_super);
2250
2251         if (fs_devices->rw_devices == 0) {
2252                 btrfs_warn(fs_info, "log replay required on RO media");
2253                 return -EIO;
2254         }
2255
2256         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2257         if (!log_tree_root)
2258                 return -ENOMEM;
2259
2260         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2261
2262         log_tree_root->node = read_tree_block(fs_info, bytenr,
2263                                               fs_info->generation + 1,
2264                                               level, NULL);
2265         if (IS_ERR(log_tree_root->node)) {
2266                 btrfs_warn(fs_info, "failed to read log tree");
2267                 ret = PTR_ERR(log_tree_root->node);
2268                 kfree(log_tree_root);
2269                 return ret;
2270         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2271                 btrfs_err(fs_info, "failed to read log tree");
2272                 free_extent_buffer(log_tree_root->node);
2273                 kfree(log_tree_root);
2274                 return -EIO;
2275         }
2276         /* returns with log_tree_root freed on success */
2277         ret = btrfs_recover_log_trees(log_tree_root);
2278         if (ret) {
2279                 btrfs_handle_fs_error(fs_info, ret,
2280                                       "Failed to recover log tree");
2281                 free_extent_buffer(log_tree_root->node);
2282                 kfree(log_tree_root);
2283                 return ret;
2284         }
2285
2286         if (sb_rdonly(fs_info->sb)) {
2287                 ret = btrfs_commit_super(fs_info);
2288                 if (ret)
2289                         return ret;
2290         }
2291
2292         return 0;
2293 }
2294
2295 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2296 {
2297         struct btrfs_root *tree_root = fs_info->tree_root;
2298         struct btrfs_root *root;
2299         struct btrfs_key location;
2300         int ret;
2301
2302         BUG_ON(!fs_info->tree_root);
2303
2304         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2305         location.type = BTRFS_ROOT_ITEM_KEY;
2306         location.offset = 0;
2307
2308         root = btrfs_read_tree_root(tree_root, &location);
2309         if (IS_ERR(root)) {
2310                 ret = PTR_ERR(root);
2311                 goto out;
2312         }
2313         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314         fs_info->extent_root = root;
2315
2316         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2317         root = btrfs_read_tree_root(tree_root, &location);
2318         if (IS_ERR(root)) {
2319                 ret = PTR_ERR(root);
2320                 goto out;
2321         }
2322         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2323         fs_info->dev_root = root;
2324         btrfs_init_devices_late(fs_info);
2325
2326         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2327         root = btrfs_read_tree_root(tree_root, &location);
2328         if (IS_ERR(root)) {
2329                 ret = PTR_ERR(root);
2330                 goto out;
2331         }
2332         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333         fs_info->csum_root = root;
2334
2335         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2336         root = btrfs_read_tree_root(tree_root, &location);
2337         if (!IS_ERR(root)) {
2338                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2340                 fs_info->quota_root = root;
2341         }
2342
2343         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2344         root = btrfs_read_tree_root(tree_root, &location);
2345         if (IS_ERR(root)) {
2346                 ret = PTR_ERR(root);
2347                 if (ret != -ENOENT)
2348                         goto out;
2349         } else {
2350                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351                 fs_info->uuid_root = root;
2352         }
2353
2354         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2355                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2356                 root = btrfs_read_tree_root(tree_root, &location);
2357                 if (IS_ERR(root)) {
2358                         ret = PTR_ERR(root);
2359                         goto out;
2360                 }
2361                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362                 fs_info->free_space_root = root;
2363         }
2364
2365         return 0;
2366 out:
2367         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2368                    location.objectid, ret);
2369         return ret;
2370 }
2371
2372 /*
2373  * Real super block validation
2374  * NOTE: super csum type and incompat features will not be checked here.
2375  *
2376  * @sb:         super block to check
2377  * @mirror_num: the super block number to check its bytenr:
2378  *              0       the primary (1st) sb
2379  *              1, 2    2nd and 3rd backup copy
2380  *             -1       skip bytenr check
2381  */
2382 static int validate_super(struct btrfs_fs_info *fs_info,
2383                             struct btrfs_super_block *sb, int mirror_num)
2384 {
2385         u64 nodesize = btrfs_super_nodesize(sb);
2386         u64 sectorsize = btrfs_super_sectorsize(sb);
2387         int ret = 0;
2388
2389         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2390                 btrfs_err(fs_info, "no valid FS found");
2391                 ret = -EINVAL;
2392         }
2393         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2394                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2395                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2396                 ret = -EINVAL;
2397         }
2398         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2399                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2400                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2401                 ret = -EINVAL;
2402         }
2403         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2404                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2405                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2406                 ret = -EINVAL;
2407         }
2408         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2410                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2411                 ret = -EINVAL;
2412         }
2413
2414         /*
2415          * Check sectorsize and nodesize first, other check will need it.
2416          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2417          */
2418         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2419             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2420                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2421                 ret = -EINVAL;
2422         }
2423         /* Only PAGE SIZE is supported yet */
2424         if (sectorsize != PAGE_SIZE) {
2425                 btrfs_err(fs_info,
2426                         "sectorsize %llu not supported yet, only support %lu",
2427                         sectorsize, PAGE_SIZE);
2428                 ret = -EINVAL;
2429         }
2430         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2431             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2433                 ret = -EINVAL;
2434         }
2435         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2436                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2437                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2438                 ret = -EINVAL;
2439         }
2440
2441         /* Root alignment check */
2442         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2443                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2444                            btrfs_super_root(sb));
2445                 ret = -EINVAL;
2446         }
2447         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2448                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2449                            btrfs_super_chunk_root(sb));
2450                 ret = -EINVAL;
2451         }
2452         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2453                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2454                            btrfs_super_log_root(sb));
2455                 ret = -EINVAL;
2456         }
2457
2458         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2459                    BTRFS_FSID_SIZE) != 0) {
2460                 btrfs_err(fs_info,
2461                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2462                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2463                 ret = -EINVAL;
2464         }
2465
2466         /*
2467          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2468          * done later
2469          */
2470         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2471                 btrfs_err(fs_info, "bytes_used is too small %llu",
2472                           btrfs_super_bytes_used(sb));
2473                 ret = -EINVAL;
2474         }
2475         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2476                 btrfs_err(fs_info, "invalid stripesize %u",
2477                           btrfs_super_stripesize(sb));
2478                 ret = -EINVAL;
2479         }
2480         if (btrfs_super_num_devices(sb) > (1UL << 31))
2481                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2482                            btrfs_super_num_devices(sb));
2483         if (btrfs_super_num_devices(sb) == 0) {
2484                 btrfs_err(fs_info, "number of devices is 0");
2485                 ret = -EINVAL;
2486         }
2487
2488         if (mirror_num >= 0 &&
2489             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2490                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2491                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2492                 ret = -EINVAL;
2493         }
2494
2495         /*
2496          * Obvious sys_chunk_array corruptions, it must hold at least one key
2497          * and one chunk
2498          */
2499         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2500                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2501                           btrfs_super_sys_array_size(sb),
2502                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2503                 ret = -EINVAL;
2504         }
2505         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2506                         + sizeof(struct btrfs_chunk)) {
2507                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2508                           btrfs_super_sys_array_size(sb),
2509                           sizeof(struct btrfs_disk_key)
2510                           + sizeof(struct btrfs_chunk));
2511                 ret = -EINVAL;
2512         }
2513
2514         /*
2515          * The generation is a global counter, we'll trust it more than the others
2516          * but it's still possible that it's the one that's wrong.
2517          */
2518         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2519                 btrfs_warn(fs_info,
2520                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2521                         btrfs_super_generation(sb),
2522                         btrfs_super_chunk_root_generation(sb));
2523         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2524             && btrfs_super_cache_generation(sb) != (u64)-1)
2525                 btrfs_warn(fs_info,
2526                         "suspicious: generation < cache_generation: %llu < %llu",
2527                         btrfs_super_generation(sb),
2528                         btrfs_super_cache_generation(sb));
2529
2530         return ret;
2531 }
2532
2533 /*
2534  * Validation of super block at mount time.
2535  * Some checks already done early at mount time, like csum type and incompat
2536  * flags will be skipped.
2537  */
2538 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2539 {
2540         return validate_super(fs_info, fs_info->super_copy, 0);
2541 }
2542
2543 /*
2544  * Validation of super block at write time.
2545  * Some checks like bytenr check will be skipped as their values will be
2546  * overwritten soon.
2547  * Extra checks like csum type and incompat flags will be done here.
2548  */
2549 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2550                                       struct btrfs_super_block *sb)
2551 {
2552         int ret;
2553
2554         ret = validate_super(fs_info, sb, -1);
2555         if (ret < 0)
2556                 goto out;
2557         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2558                 ret = -EUCLEAN;
2559                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2560                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2561                 goto out;
2562         }
2563         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2564                 ret = -EUCLEAN;
2565                 btrfs_err(fs_info,
2566                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2567                           btrfs_super_incompat_flags(sb),
2568                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2569                 goto out;
2570         }
2571 out:
2572         if (ret < 0)
2573                 btrfs_err(fs_info,
2574                 "super block corruption detected before writing it to disk");
2575         return ret;
2576 }
2577
2578 int __cold open_ctree(struct super_block *sb,
2579                struct btrfs_fs_devices *fs_devices,
2580                char *options)
2581 {
2582         u32 sectorsize;
2583         u32 nodesize;
2584         u32 stripesize;
2585         u64 generation;
2586         u64 features;
2587         u16 csum_type;
2588         struct btrfs_key location;
2589         struct buffer_head *bh;
2590         struct btrfs_super_block *disk_super;
2591         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2592         struct btrfs_root *tree_root;
2593         struct btrfs_root *chunk_root;
2594         int ret;
2595         int err = -EINVAL;
2596         int num_backups_tried = 0;
2597         int backup_index = 0;
2598         int clear_free_space_tree = 0;
2599         int level;
2600
2601         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2602         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2603         if (!tree_root || !chunk_root) {
2604                 err = -ENOMEM;
2605                 goto fail;
2606         }
2607
2608         ret = init_srcu_struct(&fs_info->subvol_srcu);
2609         if (ret) {
2610                 err = ret;
2611                 goto fail;
2612         }
2613
2614         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2615         if (ret) {
2616                 err = ret;
2617                 goto fail_srcu;
2618         }
2619
2620         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2621         if (ret) {
2622                 err = ret;
2623                 goto fail_dio_bytes;
2624         }
2625         fs_info->dirty_metadata_batch = PAGE_SIZE *
2626                                         (1 + ilog2(nr_cpu_ids));
2627
2628         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2629         if (ret) {
2630                 err = ret;
2631                 goto fail_dirty_metadata_bytes;
2632         }
2633
2634         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2635                         GFP_KERNEL);
2636         if (ret) {
2637                 err = ret;
2638                 goto fail_delalloc_bytes;
2639         }
2640
2641         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2642         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2643         INIT_LIST_HEAD(&fs_info->trans_list);
2644         INIT_LIST_HEAD(&fs_info->dead_roots);
2645         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2646         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2647         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2648         spin_lock_init(&fs_info->delalloc_root_lock);
2649         spin_lock_init(&fs_info->trans_lock);
2650         spin_lock_init(&fs_info->fs_roots_radix_lock);
2651         spin_lock_init(&fs_info->delayed_iput_lock);
2652         spin_lock_init(&fs_info->defrag_inodes_lock);
2653         spin_lock_init(&fs_info->tree_mod_seq_lock);
2654         spin_lock_init(&fs_info->super_lock);
2655         spin_lock_init(&fs_info->buffer_lock);
2656         spin_lock_init(&fs_info->unused_bgs_lock);
2657         rwlock_init(&fs_info->tree_mod_log_lock);
2658         mutex_init(&fs_info->unused_bg_unpin_mutex);
2659         mutex_init(&fs_info->delete_unused_bgs_mutex);
2660         mutex_init(&fs_info->reloc_mutex);
2661         mutex_init(&fs_info->delalloc_root_mutex);
2662         seqlock_init(&fs_info->profiles_lock);
2663
2664         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2665         INIT_LIST_HEAD(&fs_info->space_info);
2666         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2667         INIT_LIST_HEAD(&fs_info->unused_bgs);
2668         extent_map_tree_init(&fs_info->mapping_tree);
2669         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670                              BTRFS_BLOCK_RSV_GLOBAL);
2671         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2672         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2673         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2674         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2675                              BTRFS_BLOCK_RSV_DELOPS);
2676         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2677                              BTRFS_BLOCK_RSV_DELREFS);
2678
2679         atomic_set(&fs_info->async_delalloc_pages, 0);
2680         atomic_set(&fs_info->defrag_running, 0);
2681         atomic_set(&fs_info->reada_works_cnt, 0);
2682         atomic_set(&fs_info->nr_delayed_iputs, 0);
2683         atomic64_set(&fs_info->tree_mod_seq, 0);
2684         fs_info->sb = sb;
2685         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2686         fs_info->metadata_ratio = 0;
2687         fs_info->defrag_inodes = RB_ROOT;
2688         atomic64_set(&fs_info->free_chunk_space, 0);
2689         fs_info->tree_mod_log = RB_ROOT;
2690         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2691         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2692         /* readahead state */
2693         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2694         spin_lock_init(&fs_info->reada_lock);
2695         btrfs_init_ref_verify(fs_info);
2696
2697         fs_info->thread_pool_size = min_t(unsigned long,
2698                                           num_online_cpus() + 2, 8);
2699
2700         INIT_LIST_HEAD(&fs_info->ordered_roots);
2701         spin_lock_init(&fs_info->ordered_root_lock);
2702
2703         fs_info->btree_inode = new_inode(sb);
2704         if (!fs_info->btree_inode) {
2705                 err = -ENOMEM;
2706                 goto fail_bio_counter;
2707         }
2708         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2709
2710         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2711                                         GFP_KERNEL);
2712         if (!fs_info->delayed_root) {
2713                 err = -ENOMEM;
2714                 goto fail_iput;
2715         }
2716         btrfs_init_delayed_root(fs_info->delayed_root);
2717
2718         btrfs_init_scrub(fs_info);
2719 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2720         fs_info->check_integrity_print_mask = 0;
2721 #endif
2722         btrfs_init_balance(fs_info);
2723         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2724
2725         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2726         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2727
2728         btrfs_init_btree_inode(fs_info);
2729
2730         spin_lock_init(&fs_info->block_group_cache_lock);
2731         fs_info->block_group_cache_tree = RB_ROOT;
2732         fs_info->first_logical_byte = (u64)-1;
2733
2734         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2735                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2736         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2737                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2738         fs_info->pinned_extents = &fs_info->freed_extents[0];
2739         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2740
2741         mutex_init(&fs_info->ordered_operations_mutex);
2742         mutex_init(&fs_info->tree_log_mutex);
2743         mutex_init(&fs_info->chunk_mutex);
2744         mutex_init(&fs_info->transaction_kthread_mutex);
2745         mutex_init(&fs_info->cleaner_mutex);
2746         mutex_init(&fs_info->ro_block_group_mutex);
2747         init_rwsem(&fs_info->commit_root_sem);
2748         init_rwsem(&fs_info->cleanup_work_sem);
2749         init_rwsem(&fs_info->subvol_sem);
2750         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2751
2752         btrfs_init_dev_replace_locks(fs_info);
2753         btrfs_init_qgroup(fs_info);
2754
2755         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2756         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2757
2758         init_waitqueue_head(&fs_info->transaction_throttle);
2759         init_waitqueue_head(&fs_info->transaction_wait);
2760         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2761         init_waitqueue_head(&fs_info->async_submit_wait);
2762         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2763
2764         /* Usable values until the real ones are cached from the superblock */
2765         fs_info->nodesize = 4096;
2766         fs_info->sectorsize = 4096;
2767         fs_info->stripesize = 4096;
2768
2769         spin_lock_init(&fs_info->swapfile_pins_lock);
2770         fs_info->swapfile_pins = RB_ROOT;
2771
2772         fs_info->send_in_progress = 0;
2773
2774         ret = btrfs_alloc_stripe_hash_table(fs_info);
2775         if (ret) {
2776                 err = ret;
2777                 goto fail_alloc;
2778         }
2779
2780         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2781
2782         invalidate_bdev(fs_devices->latest_bdev);
2783
2784         /*
2785          * Read super block and check the signature bytes only
2786          */
2787         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2788         if (IS_ERR(bh)) {
2789                 err = PTR_ERR(bh);
2790                 goto fail_alloc;
2791         }
2792
2793         /*
2794          * Verify the type first, if that or the the checksum value are
2795          * corrupted, we'll find out
2796          */
2797         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2798         if (!btrfs_supported_super_csum(csum_type)) {
2799                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2800                           csum_type);
2801                 err = -EINVAL;
2802                 brelse(bh);
2803                 goto fail_alloc;
2804         }
2805
2806         ret = btrfs_init_csum_hash(fs_info, csum_type);
2807         if (ret) {
2808                 err = ret;
2809                 goto fail_alloc;
2810         }
2811
2812         /*
2813          * We want to check superblock checksum, the type is stored inside.
2814          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2815          */
2816         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2817                 btrfs_err(fs_info, "superblock checksum mismatch");
2818                 err = -EINVAL;
2819                 brelse(bh);
2820                 goto fail_csum;
2821         }
2822
2823         /*
2824          * super_copy is zeroed at allocation time and we never touch the
2825          * following bytes up to INFO_SIZE, the checksum is calculated from
2826          * the whole block of INFO_SIZE
2827          */
2828         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2829         brelse(bh);
2830
2831         disk_super = fs_info->super_copy;
2832
2833         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2834                        BTRFS_FSID_SIZE));
2835
2836         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2837                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2838                                 fs_info->super_copy->metadata_uuid,
2839                                 BTRFS_FSID_SIZE));
2840         }
2841
2842         features = btrfs_super_flags(disk_super);
2843         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2844                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2845                 btrfs_set_super_flags(disk_super, features);
2846                 btrfs_info(fs_info,
2847                         "found metadata UUID change in progress flag, clearing");
2848         }
2849
2850         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2851                sizeof(*fs_info->super_for_commit));
2852
2853         ret = btrfs_validate_mount_super(fs_info);
2854         if (ret) {
2855                 btrfs_err(fs_info, "superblock contains fatal errors");
2856                 err = -EINVAL;
2857                 goto fail_csum;
2858         }
2859
2860         if (!btrfs_super_root(disk_super))
2861                 goto fail_csum;
2862
2863         /* check FS state, whether FS is broken. */
2864         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2865                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2866
2867         /*
2868          * run through our array of backup supers and setup
2869          * our ring pointer to the oldest one
2870          */
2871         generation = btrfs_super_generation(disk_super);
2872         find_oldest_super_backup(fs_info, generation);
2873
2874         /*
2875          * In the long term, we'll store the compression type in the super
2876          * block, and it'll be used for per file compression control.
2877          */
2878         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2879
2880         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2881         if (ret) {
2882                 err = ret;
2883                 goto fail_csum;
2884         }
2885
2886         features = btrfs_super_incompat_flags(disk_super) &
2887                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2888         if (features) {
2889                 btrfs_err(fs_info,
2890                     "cannot mount because of unsupported optional features (%llx)",
2891                     features);
2892                 err = -EINVAL;
2893                 goto fail_csum;
2894         }
2895
2896         features = btrfs_super_incompat_flags(disk_super);
2897         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2898         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2899                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2900         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2901                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2902
2903         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2904                 btrfs_info(fs_info, "has skinny extents");
2905
2906         /*
2907          * flag our filesystem as having big metadata blocks if
2908          * they are bigger than the page size
2909          */
2910         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2911                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2912                         btrfs_info(fs_info,
2913                                 "flagging fs with big metadata feature");
2914                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2915         }
2916
2917         nodesize = btrfs_super_nodesize(disk_super);
2918         sectorsize = btrfs_super_sectorsize(disk_super);
2919         stripesize = sectorsize;
2920         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2921         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2922
2923         /* Cache block sizes */
2924         fs_info->nodesize = nodesize;
2925         fs_info->sectorsize = sectorsize;
2926         fs_info->stripesize = stripesize;
2927
2928         /*
2929          * mixed block groups end up with duplicate but slightly offset
2930          * extent buffers for the same range.  It leads to corruptions
2931          */
2932         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2933             (sectorsize != nodesize)) {
2934                 btrfs_err(fs_info,
2935 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2936                         nodesize, sectorsize);
2937                 goto fail_csum;
2938         }
2939
2940         /*
2941          * Needn't use the lock because there is no other task which will
2942          * update the flag.
2943          */
2944         btrfs_set_super_incompat_flags(disk_super, features);
2945
2946         features = btrfs_super_compat_ro_flags(disk_super) &
2947                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2948         if (!sb_rdonly(sb) && features) {
2949                 btrfs_err(fs_info,
2950         "cannot mount read-write because of unsupported optional features (%llx)",
2951                        features);
2952                 err = -EINVAL;
2953                 goto fail_csum;
2954         }
2955
2956         ret = btrfs_init_workqueues(fs_info, fs_devices);
2957         if (ret) {
2958                 err = ret;
2959                 goto fail_sb_buffer;
2960         }
2961
2962         sb->s_bdi->congested_fn = btrfs_congested_fn;
2963         sb->s_bdi->congested_data = fs_info;
2964         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2965         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2966         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2967         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2968
2969         sb->s_blocksize = sectorsize;
2970         sb->s_blocksize_bits = blksize_bits(sectorsize);
2971         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2972
2973         mutex_lock(&fs_info->chunk_mutex);
2974         ret = btrfs_read_sys_array(fs_info);
2975         mutex_unlock(&fs_info->chunk_mutex);
2976         if (ret) {
2977                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2978                 goto fail_sb_buffer;
2979         }
2980
2981         generation = btrfs_super_chunk_root_generation(disk_super);
2982         level = btrfs_super_chunk_root_level(disk_super);
2983
2984         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2985
2986         chunk_root->node = read_tree_block(fs_info,
2987                                            btrfs_super_chunk_root(disk_super),
2988                                            generation, level, NULL);
2989         if (IS_ERR(chunk_root->node) ||
2990             !extent_buffer_uptodate(chunk_root->node)) {
2991                 btrfs_err(fs_info, "failed to read chunk root");
2992                 if (!IS_ERR(chunk_root->node))
2993                         free_extent_buffer(chunk_root->node);
2994                 chunk_root->node = NULL;
2995                 goto fail_tree_roots;
2996         }
2997         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2998         chunk_root->commit_root = btrfs_root_node(chunk_root);
2999
3000         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3001            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3002
3003         ret = btrfs_read_chunk_tree(fs_info);
3004         if (ret) {
3005                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3006                 goto fail_tree_roots;
3007         }
3008
3009         /*
3010          * Keep the devid that is marked to be the target device for the
3011          * device replace procedure
3012          */
3013         btrfs_free_extra_devids(fs_devices, 0);
3014
3015         if (!fs_devices->latest_bdev) {
3016                 btrfs_err(fs_info, "failed to read devices");
3017                 goto fail_tree_roots;
3018         }
3019
3020 retry_root_backup:
3021         generation = btrfs_super_generation(disk_super);
3022         level = btrfs_super_root_level(disk_super);
3023
3024         tree_root->node = read_tree_block(fs_info,
3025                                           btrfs_super_root(disk_super),
3026                                           generation, level, NULL);
3027         if (IS_ERR(tree_root->node) ||
3028             !extent_buffer_uptodate(tree_root->node)) {
3029                 btrfs_warn(fs_info, "failed to read tree root");
3030                 if (!IS_ERR(tree_root->node))
3031                         free_extent_buffer(tree_root->node);
3032                 tree_root->node = NULL;
3033                 goto recovery_tree_root;
3034         }
3035
3036         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3037         tree_root->commit_root = btrfs_root_node(tree_root);
3038         btrfs_set_root_refs(&tree_root->root_item, 1);
3039
3040         mutex_lock(&tree_root->objectid_mutex);
3041         ret = btrfs_find_highest_objectid(tree_root,
3042                                         &tree_root->highest_objectid);
3043         if (ret) {
3044                 mutex_unlock(&tree_root->objectid_mutex);
3045                 goto recovery_tree_root;
3046         }
3047
3048         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3049
3050         mutex_unlock(&tree_root->objectid_mutex);
3051
3052         ret = btrfs_read_roots(fs_info);
3053         if (ret)
3054                 goto recovery_tree_root;
3055
3056         fs_info->generation = generation;
3057         fs_info->last_trans_committed = generation;
3058
3059         ret = btrfs_verify_dev_extents(fs_info);
3060         if (ret) {
3061                 btrfs_err(fs_info,
3062                           "failed to verify dev extents against chunks: %d",
3063                           ret);
3064                 goto fail_block_groups;
3065         }
3066         ret = btrfs_recover_balance(fs_info);
3067         if (ret) {
3068                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3069                 goto fail_block_groups;
3070         }
3071
3072         ret = btrfs_init_dev_stats(fs_info);
3073         if (ret) {
3074                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3075                 goto fail_block_groups;
3076         }
3077
3078         ret = btrfs_init_dev_replace(fs_info);
3079         if (ret) {
3080                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3081                 goto fail_block_groups;
3082         }
3083
3084         btrfs_free_extra_devids(fs_devices, 1);
3085
3086         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3087         if (ret) {
3088                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3089                                 ret);
3090                 goto fail_block_groups;
3091         }
3092
3093         ret = btrfs_sysfs_add_device(fs_devices);
3094         if (ret) {
3095                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3096                                 ret);
3097                 goto fail_fsdev_sysfs;
3098         }
3099
3100         ret = btrfs_sysfs_add_mounted(fs_info);
3101         if (ret) {
3102                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3103                 goto fail_fsdev_sysfs;
3104         }
3105
3106         ret = btrfs_init_space_info(fs_info);
3107         if (ret) {
3108                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3109                 goto fail_sysfs;
3110         }
3111
3112         ret = btrfs_read_block_groups(fs_info);
3113         if (ret) {
3114                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3115                 goto fail_sysfs;
3116         }
3117
3118         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3119                 btrfs_warn(fs_info,
3120                 "writable mount is not allowed due to too many missing devices");
3121                 goto fail_sysfs;
3122         }
3123
3124         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3125                                                "btrfs-cleaner");
3126         if (IS_ERR(fs_info->cleaner_kthread))
3127                 goto fail_sysfs;
3128
3129         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3130                                                    tree_root,
3131                                                    "btrfs-transaction");
3132         if (IS_ERR(fs_info->transaction_kthread))
3133                 goto fail_cleaner;
3134
3135         if (!btrfs_test_opt(fs_info, NOSSD) &&
3136             !fs_info->fs_devices->rotating) {
3137                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3138         }
3139
3140         /*
3141          * Mount does not set all options immediately, we can do it now and do
3142          * not have to wait for transaction commit
3143          */
3144         btrfs_apply_pending_changes(fs_info);
3145
3146 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3147         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3148                 ret = btrfsic_mount(fs_info, fs_devices,
3149                                     btrfs_test_opt(fs_info,
3150                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3151                                     1 : 0,
3152                                     fs_info->check_integrity_print_mask);
3153                 if (ret)
3154                         btrfs_warn(fs_info,
3155                                 "failed to initialize integrity check module: %d",
3156                                 ret);
3157         }
3158 #endif
3159         ret = btrfs_read_qgroup_config(fs_info);
3160         if (ret)
3161                 goto fail_trans_kthread;
3162
3163         if (btrfs_build_ref_tree(fs_info))
3164                 btrfs_err(fs_info, "couldn't build ref tree");
3165
3166         /* do not make disk changes in broken FS or nologreplay is given */
3167         if (btrfs_super_log_root(disk_super) != 0 &&
3168             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3169                 ret = btrfs_replay_log(fs_info, fs_devices);
3170                 if (ret) {
3171                         err = ret;
3172                         goto fail_qgroup;
3173                 }
3174         }
3175
3176         ret = btrfs_find_orphan_roots(fs_info);
3177         if (ret)
3178                 goto fail_qgroup;
3179
3180         if (!sb_rdonly(sb)) {
3181                 ret = btrfs_cleanup_fs_roots(fs_info);
3182                 if (ret)
3183                         goto fail_qgroup;
3184
3185                 mutex_lock(&fs_info->cleaner_mutex);
3186                 ret = btrfs_recover_relocation(tree_root);
3187                 mutex_unlock(&fs_info->cleaner_mutex);
3188                 if (ret < 0) {
3189                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3190                                         ret);
3191                         err = -EINVAL;
3192                         goto fail_qgroup;
3193                 }
3194         }
3195
3196         location.objectid = BTRFS_FS_TREE_OBJECTID;
3197         location.type = BTRFS_ROOT_ITEM_KEY;
3198         location.offset = 0;
3199
3200         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3201         if (IS_ERR(fs_info->fs_root)) {
3202                 err = PTR_ERR(fs_info->fs_root);
3203                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3204                 goto fail_qgroup;
3205         }
3206
3207         if (sb_rdonly(sb))
3208                 return 0;
3209
3210         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3211             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3212                 clear_free_space_tree = 1;
3213         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3214                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3215                 btrfs_warn(fs_info, "free space tree is invalid");
3216                 clear_free_space_tree = 1;
3217         }
3218
3219         if (clear_free_space_tree) {
3220                 btrfs_info(fs_info, "clearing free space tree");
3221                 ret = btrfs_clear_free_space_tree(fs_info);
3222                 if (ret) {
3223                         btrfs_warn(fs_info,
3224                                    "failed to clear free space tree: %d", ret);
3225                         close_ctree(fs_info);
3226                         return ret;
3227                 }
3228         }
3229
3230         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3231             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3232                 btrfs_info(fs_info, "creating free space tree");
3233                 ret = btrfs_create_free_space_tree(fs_info);
3234                 if (ret) {
3235                         btrfs_warn(fs_info,
3236                                 "failed to create free space tree: %d", ret);
3237                         close_ctree(fs_info);
3238                         return ret;
3239                 }
3240         }
3241
3242         down_read(&fs_info->cleanup_work_sem);
3243         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3244             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3245                 up_read(&fs_info->cleanup_work_sem);
3246                 close_ctree(fs_info);
3247                 return ret;
3248         }
3249         up_read(&fs_info->cleanup_work_sem);
3250
3251         ret = btrfs_resume_balance_async(fs_info);
3252         if (ret) {
3253                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3254                 close_ctree(fs_info);
3255                 return ret;
3256         }
3257
3258         ret = btrfs_resume_dev_replace_async(fs_info);
3259         if (ret) {
3260                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3261                 close_ctree(fs_info);
3262                 return ret;
3263         }
3264
3265         btrfs_qgroup_rescan_resume(fs_info);
3266
3267         if (!fs_info->uuid_root) {
3268                 btrfs_info(fs_info, "creating UUID tree");
3269                 ret = btrfs_create_uuid_tree(fs_info);
3270                 if (ret) {
3271                         btrfs_warn(fs_info,
3272                                 "failed to create the UUID tree: %d", ret);
3273                         close_ctree(fs_info);
3274                         return ret;
3275                 }
3276         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3277                    fs_info->generation !=
3278                                 btrfs_super_uuid_tree_generation(disk_super)) {
3279                 btrfs_info(fs_info, "checking UUID tree");
3280                 ret = btrfs_check_uuid_tree(fs_info);
3281                 if (ret) {
3282                         btrfs_warn(fs_info,
3283                                 "failed to check the UUID tree: %d", ret);
3284                         close_ctree(fs_info);
3285                         return ret;
3286                 }
3287         } else {
3288                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3289         }
3290         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3291
3292         /*
3293          * backuproot only affect mount behavior, and if open_ctree succeeded,
3294          * no need to keep the flag
3295          */
3296         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3297
3298         return 0;
3299
3300 fail_qgroup:
3301         btrfs_free_qgroup_config(fs_info);
3302 fail_trans_kthread:
3303         kthread_stop(fs_info->transaction_kthread);
3304         btrfs_cleanup_transaction(fs_info);
3305         btrfs_free_fs_roots(fs_info);
3306 fail_cleaner:
3307         kthread_stop(fs_info->cleaner_kthread);
3308
3309         /*
3310          * make sure we're done with the btree inode before we stop our
3311          * kthreads
3312          */
3313         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3314
3315 fail_sysfs:
3316         btrfs_sysfs_remove_mounted(fs_info);
3317
3318 fail_fsdev_sysfs:
3319         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3320
3321 fail_block_groups:
3322         btrfs_put_block_group_cache(fs_info);
3323
3324 fail_tree_roots:
3325         free_root_pointers(fs_info, true);
3326         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3327
3328 fail_sb_buffer:
3329         btrfs_stop_all_workers(fs_info);
3330         btrfs_free_block_groups(fs_info);
3331 fail_csum:
3332         btrfs_free_csum_hash(fs_info);
3333 fail_alloc:
3334 fail_iput:
3335         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3336
3337         iput(fs_info->btree_inode);
3338 fail_bio_counter:
3339         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3340 fail_delalloc_bytes:
3341         percpu_counter_destroy(&fs_info->delalloc_bytes);
3342 fail_dirty_metadata_bytes:
3343         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3344 fail_dio_bytes:
3345         percpu_counter_destroy(&fs_info->dio_bytes);
3346 fail_srcu:
3347         cleanup_srcu_struct(&fs_info->subvol_srcu);
3348 fail:
3349         btrfs_free_stripe_hash_table(fs_info);
3350         btrfs_close_devices(fs_info->fs_devices);
3351         return err;
3352
3353 recovery_tree_root:
3354         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3355                 goto fail_tree_roots;
3356
3357         free_root_pointers(fs_info, false);
3358
3359         /* don't use the log in recovery mode, it won't be valid */
3360         btrfs_set_super_log_root(disk_super, 0);
3361
3362         /* we can't trust the free space cache either */
3363         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3364
3365         ret = next_root_backup(fs_info, fs_info->super_copy,
3366                                &num_backups_tried, &backup_index);
3367         if (ret == -1)
3368                 goto fail_block_groups;
3369         goto retry_root_backup;
3370 }
3371 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3372
3373 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3374 {
3375         if (uptodate) {
3376                 set_buffer_uptodate(bh);
3377         } else {
3378                 struct btrfs_device *device = (struct btrfs_device *)
3379                         bh->b_private;
3380
3381                 btrfs_warn_rl_in_rcu(device->fs_info,
3382                                 "lost page write due to IO error on %s",
3383                                           rcu_str_deref(device->name));
3384                 /* note, we don't set_buffer_write_io_error because we have
3385                  * our own ways of dealing with the IO errors
3386                  */
3387                 clear_buffer_uptodate(bh);
3388                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3389         }
3390         unlock_buffer(bh);
3391         put_bh(bh);
3392 }
3393
3394 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3395                         struct buffer_head **bh_ret)
3396 {
3397         struct buffer_head *bh;
3398         struct btrfs_super_block *super;
3399         u64 bytenr;
3400
3401         bytenr = btrfs_sb_offset(copy_num);
3402         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3403                 return -EINVAL;
3404
3405         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3406         /*
3407          * If we fail to read from the underlying devices, as of now
3408          * the best option we have is to mark it EIO.
3409          */
3410         if (!bh)
3411                 return -EIO;
3412
3413         super = (struct btrfs_super_block *)bh->b_data;
3414         if (btrfs_super_bytenr(super) != bytenr ||
3415                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3416                 brelse(bh);
3417                 return -EINVAL;
3418         }
3419
3420         *bh_ret = bh;
3421         return 0;
3422 }
3423
3424
3425 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3426 {
3427         struct buffer_head *bh;
3428         struct buffer_head *latest = NULL;
3429         struct btrfs_super_block *super;
3430         int i;
3431         u64 transid = 0;
3432         int ret = -EINVAL;
3433
3434         /* we would like to check all the supers, but that would make
3435          * a btrfs mount succeed after a mkfs from a different FS.
3436          * So, we need to add a special mount option to scan for
3437          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3438          */
3439         for (i = 0; i < 1; i++) {
3440                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3441                 if (ret)
3442                         continue;
3443
3444                 super = (struct btrfs_super_block *)bh->b_data;
3445
3446                 if (!latest || btrfs_super_generation(super) > transid) {
3447                         brelse(latest);
3448                         latest = bh;
3449                         transid = btrfs_super_generation(super);
3450                 } else {
3451                         brelse(bh);
3452                 }
3453         }
3454
3455         if (!latest)
3456                 return ERR_PTR(ret);
3457
3458         return latest;
3459 }
3460
3461 /*
3462  * Write superblock @sb to the @device. Do not wait for completion, all the
3463  * buffer heads we write are pinned.
3464  *
3465  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3466  * the expected device size at commit time. Note that max_mirrors must be
3467  * same for write and wait phases.
3468  *
3469  * Return number of errors when buffer head is not found or submission fails.
3470  */
3471 static int write_dev_supers(struct btrfs_device *device,
3472                             struct btrfs_super_block *sb, int max_mirrors)
3473 {
3474         struct btrfs_fs_info *fs_info = device->fs_info;
3475         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3476         struct buffer_head *bh;
3477         int i;
3478         int ret;
3479         int errors = 0;
3480         u64 bytenr;
3481         int op_flags;
3482
3483         if (max_mirrors == 0)
3484                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3485
3486         shash->tfm = fs_info->csum_shash;
3487
3488         for (i = 0; i < max_mirrors; i++) {
3489                 bytenr = btrfs_sb_offset(i);
3490                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3491                     device->commit_total_bytes)
3492                         break;
3493
3494                 btrfs_set_super_bytenr(sb, bytenr);
3495
3496                 crypto_shash_init(shash);
3497                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3498                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3499                 crypto_shash_final(shash, sb->csum);
3500
3501                 /* One reference for us, and we leave it for the caller */
3502                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3503                               BTRFS_SUPER_INFO_SIZE);
3504                 if (!bh) {
3505                         btrfs_err(device->fs_info,
3506                             "couldn't get super buffer head for bytenr %llu",
3507                             bytenr);
3508                         errors++;
3509                         continue;
3510                 }
3511
3512                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3513
3514                 /* one reference for submit_bh */
3515                 get_bh(bh);
3516
3517                 set_buffer_uptodate(bh);
3518                 lock_buffer(bh);
3519                 bh->b_end_io = btrfs_end_buffer_write_sync;
3520                 bh->b_private = device;
3521
3522                 /*
3523                  * we fua the first super.  The others we allow
3524                  * to go down lazy.
3525                  */
3526                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3527                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3528                         op_flags |= REQ_FUA;
3529                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3530                 if (ret)
3531                         errors++;
3532         }
3533         return errors < i ? 0 : -1;
3534 }
3535
3536 /*
3537  * Wait for write completion of superblocks done by write_dev_supers,
3538  * @max_mirrors same for write and wait phases.
3539  *
3540  * Return number of errors when buffer head is not found or not marked up to
3541  * date.
3542  */
3543 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3544 {
3545         struct buffer_head *bh;
3546         int i;
3547         int errors = 0;
3548         bool primary_failed = false;
3549         u64 bytenr;
3550
3551         if (max_mirrors == 0)
3552                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3553
3554         for (i = 0; i < max_mirrors; i++) {
3555                 bytenr = btrfs_sb_offset(i);
3556                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3557                     device->commit_total_bytes)
3558                         break;
3559
3560                 bh = __find_get_block(device->bdev,
3561                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3562                                       BTRFS_SUPER_INFO_SIZE);
3563                 if (!bh) {
3564                         errors++;
3565                         if (i == 0)
3566                                 primary_failed = true;
3567                         continue;
3568                 }
3569                 wait_on_buffer(bh);
3570                 if (!buffer_uptodate(bh)) {
3571                         errors++;
3572                         if (i == 0)
3573                                 primary_failed = true;
3574                 }
3575
3576                 /* drop our reference */
3577                 brelse(bh);
3578
3579                 /* drop the reference from the writing run */
3580                 brelse(bh);
3581         }
3582
3583         /* log error, force error return */
3584         if (primary_failed) {
3585                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3586                           device->devid);
3587                 return -1;
3588         }
3589
3590         return errors < i ? 0 : -1;
3591 }
3592
3593 /*
3594  * endio for the write_dev_flush, this will wake anyone waiting
3595  * for the barrier when it is done
3596  */
3597 static void btrfs_end_empty_barrier(struct bio *bio)
3598 {
3599         complete(bio->bi_private);
3600 }
3601
3602 /*
3603  * Submit a flush request to the device if it supports it. Error handling is
3604  * done in the waiting counterpart.
3605  */
3606 static void write_dev_flush(struct btrfs_device *device)
3607 {
3608         struct request_queue *q = bdev_get_queue(device->bdev);
3609         struct bio *bio = device->flush_bio;
3610
3611         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3612                 return;
3613
3614         bio_reset(bio);
3615         bio->bi_end_io = btrfs_end_empty_barrier;
3616         bio_set_dev(bio, device->bdev);
3617         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3618         init_completion(&device->flush_wait);
3619         bio->bi_private = &device->flush_wait;
3620
3621         btrfsic_submit_bio(bio);
3622         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3623 }
3624
3625 /*
3626  * If the flush bio has been submitted by write_dev_flush, wait for it.
3627  */
3628 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3629 {
3630         struct bio *bio = device->flush_bio;
3631
3632         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3633                 return BLK_STS_OK;
3634
3635         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3636         wait_for_completion_io(&device->flush_wait);
3637
3638         return bio->bi_status;
3639 }
3640
3641 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3642 {
3643         if (!btrfs_check_rw_degradable(fs_info, NULL))
3644                 return -EIO;
3645         return 0;
3646 }
3647
3648 /*
3649  * send an empty flush down to each device in parallel,
3650  * then wait for them
3651  */
3652 static int barrier_all_devices(struct btrfs_fs_info *info)
3653 {
3654         struct list_head *head;
3655         struct btrfs_device *dev;
3656         int errors_wait = 0;
3657         blk_status_t ret;
3658
3659         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3660         /* send down all the barriers */
3661         head = &info->fs_devices->devices;
3662         list_for_each_entry(dev, head, dev_list) {
3663                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3664                         continue;
3665                 if (!dev->bdev)
3666                         continue;
3667                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3668                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3669                         continue;
3670
3671                 write_dev_flush(dev);
3672                 dev->last_flush_error = BLK_STS_OK;
3673         }
3674
3675         /* wait for all the barriers */
3676         list_for_each_entry(dev, head, dev_list) {
3677                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3678                         continue;
3679                 if (!dev->bdev) {
3680                         errors_wait++;
3681                         continue;
3682                 }
3683                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3684                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3685                         continue;
3686
3687                 ret = wait_dev_flush(dev);
3688                 if (ret) {
3689                         dev->last_flush_error = ret;
3690                         btrfs_dev_stat_inc_and_print(dev,
3691                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3692                         errors_wait++;
3693                 }
3694         }
3695
3696         if (errors_wait) {
3697                 /*
3698                  * At some point we need the status of all disks
3699                  * to arrive at the volume status. So error checking
3700                  * is being pushed to a separate loop.
3701                  */
3702                 return check_barrier_error(info);
3703         }
3704         return 0;
3705 }
3706
3707 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3708 {
3709         int raid_type;
3710         int min_tolerated = INT_MAX;
3711
3712         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3713             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3714                 min_tolerated = min_t(int, min_tolerated,
3715                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3716                                     tolerated_failures);
3717
3718         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3719                 if (raid_type == BTRFS_RAID_SINGLE)
3720                         continue;
3721                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3722                         continue;
3723                 min_tolerated = min_t(int, min_tolerated,
3724                                     btrfs_raid_array[raid_type].
3725                                     tolerated_failures);
3726         }
3727
3728         if (min_tolerated == INT_MAX) {
3729                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3730                 min_tolerated = 0;
3731         }
3732
3733         return min_tolerated;
3734 }
3735
3736 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3737 {
3738         struct list_head *head;
3739         struct btrfs_device *dev;
3740         struct btrfs_super_block *sb;
3741         struct btrfs_dev_item *dev_item;
3742         int ret;
3743         int do_barriers;
3744         int max_errors;
3745         int total_errors = 0;
3746         u64 flags;
3747
3748         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3749
3750         /*
3751          * max_mirrors == 0 indicates we're from commit_transaction,
3752          * not from fsync where the tree roots in fs_info have not
3753          * been consistent on disk.
3754          */
3755         if (max_mirrors == 0)
3756                 backup_super_roots(fs_info);
3757
3758         sb = fs_info->super_for_commit;
3759         dev_item = &sb->dev_item;
3760
3761         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3762         head = &fs_info->fs_devices->devices;
3763         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3764
3765         if (do_barriers) {
3766                 ret = barrier_all_devices(fs_info);
3767                 if (ret) {
3768                         mutex_unlock(
3769                                 &fs_info->fs_devices->device_list_mutex);
3770                         btrfs_handle_fs_error(fs_info, ret,
3771                                               "errors while submitting device barriers.");
3772                         return ret;
3773                 }
3774         }
3775
3776         list_for_each_entry(dev, head, dev_list) {
3777                 if (!dev->bdev) {
3778                         total_errors++;
3779                         continue;
3780                 }
3781                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3782                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3783                         continue;
3784
3785                 btrfs_set_stack_device_generation(dev_item, 0);
3786                 btrfs_set_stack_device_type(dev_item, dev->type);
3787                 btrfs_set_stack_device_id(dev_item, dev->devid);
3788                 btrfs_set_stack_device_total_bytes(dev_item,
3789                                                    dev->commit_total_bytes);
3790                 btrfs_set_stack_device_bytes_used(dev_item,
3791                                                   dev->commit_bytes_used);
3792                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3793                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3794                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3795                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3796                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3797                        BTRFS_FSID_SIZE);
3798
3799                 flags = btrfs_super_flags(sb);
3800                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3801
3802                 ret = btrfs_validate_write_super(fs_info, sb);
3803                 if (ret < 0) {
3804                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3805                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3806                                 "unexpected superblock corruption detected");
3807                         return -EUCLEAN;
3808                 }
3809
3810                 ret = write_dev_supers(dev, sb, max_mirrors);
3811                 if (ret)
3812                         total_errors++;
3813         }
3814         if (total_errors > max_errors) {
3815                 btrfs_err(fs_info, "%d errors while writing supers",
3816                           total_errors);
3817                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3818
3819                 /* FUA is masked off if unsupported and can't be the reason */
3820                 btrfs_handle_fs_error(fs_info, -EIO,
3821                                       "%d errors while writing supers",
3822                                       total_errors);
3823                 return -EIO;
3824         }
3825
3826         total_errors = 0;
3827         list_for_each_entry(dev, head, dev_list) {
3828                 if (!dev->bdev)
3829                         continue;
3830                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3831                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3832                         continue;
3833
3834                 ret = wait_dev_supers(dev, max_mirrors);
3835                 if (ret)
3836                         total_errors++;
3837         }
3838         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3839         if (total_errors > max_errors) {
3840                 btrfs_handle_fs_error(fs_info, -EIO,
3841                                       "%d errors while writing supers",
3842                                       total_errors);
3843                 return -EIO;
3844         }
3845         return 0;
3846 }
3847
3848 /* Drop a fs root from the radix tree and free it. */
3849 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3850                                   struct btrfs_root *root)
3851 {
3852         spin_lock(&fs_info->fs_roots_radix_lock);
3853         radix_tree_delete(&fs_info->fs_roots_radix,
3854                           (unsigned long)root->root_key.objectid);
3855         spin_unlock(&fs_info->fs_roots_radix_lock);
3856
3857         if (btrfs_root_refs(&root->root_item) == 0)
3858                 synchronize_srcu(&fs_info->subvol_srcu);
3859
3860         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3861                 btrfs_free_log(NULL, root);
3862                 if (root->reloc_root) {
3863                         free_extent_buffer(root->reloc_root->node);
3864                         free_extent_buffer(root->reloc_root->commit_root);
3865                         btrfs_put_fs_root(root->reloc_root);
3866                         root->reloc_root = NULL;
3867                 }
3868         }
3869
3870         if (root->free_ino_pinned)
3871                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3872         if (root->free_ino_ctl)
3873                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3874         btrfs_free_fs_root(root);
3875 }
3876
3877 void btrfs_free_fs_root(struct btrfs_root *root)
3878 {
3879         iput(root->ino_cache_inode);
3880         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3881         if (root->anon_dev)
3882                 free_anon_bdev(root->anon_dev);
3883         if (root->subv_writers)
3884                 btrfs_free_subvolume_writers(root->subv_writers);
3885         free_extent_buffer(root->node);
3886         free_extent_buffer(root->commit_root);
3887         kfree(root->free_ino_ctl);
3888         kfree(root->free_ino_pinned);
3889         btrfs_put_fs_root(root);
3890 }
3891
3892 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3893 {
3894         u64 root_objectid = 0;
3895         struct btrfs_root *gang[8];
3896         int i = 0;
3897         int err = 0;
3898         unsigned int ret = 0;
3899         int index;
3900
3901         while (1) {
3902                 index = srcu_read_lock(&fs_info->subvol_srcu);
3903                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3904                                              (void **)gang, root_objectid,
3905                                              ARRAY_SIZE(gang));
3906                 if (!ret) {
3907                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3908                         break;
3909                 }
3910                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3911
3912                 for (i = 0; i < ret; i++) {
3913                         /* Avoid to grab roots in dead_roots */
3914                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3915                                 gang[i] = NULL;
3916                                 continue;
3917                         }
3918                         /* grab all the search result for later use */
3919                         gang[i] = btrfs_grab_fs_root(gang[i]);
3920                 }
3921                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3922
3923                 for (i = 0; i < ret; i++) {
3924                         if (!gang[i])
3925                                 continue;
3926                         root_objectid = gang[i]->root_key.objectid;
3927                         err = btrfs_orphan_cleanup(gang[i]);
3928                         if (err)
3929                                 break;
3930                         btrfs_put_fs_root(gang[i]);
3931                 }
3932                 root_objectid++;
3933         }
3934
3935         /* release the uncleaned roots due to error */
3936         for (; i < ret; i++) {
3937                 if (gang[i])
3938                         btrfs_put_fs_root(gang[i]);
3939         }
3940         return err;
3941 }
3942
3943 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3944 {
3945         struct btrfs_root *root = fs_info->tree_root;
3946         struct btrfs_trans_handle *trans;
3947
3948         mutex_lock(&fs_info->cleaner_mutex);
3949         btrfs_run_delayed_iputs(fs_info);
3950         mutex_unlock(&fs_info->cleaner_mutex);
3951         wake_up_process(fs_info->cleaner_kthread);
3952
3953         /* wait until ongoing cleanup work done */
3954         down_write(&fs_info->cleanup_work_sem);
3955         up_write(&fs_info->cleanup_work_sem);
3956
3957         trans = btrfs_join_transaction(root);
3958         if (IS_ERR(trans))
3959                 return PTR_ERR(trans);
3960         return btrfs_commit_transaction(trans);
3961 }
3962
3963 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3964 {
3965         int ret;
3966
3967         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3968         /*
3969          * We don't want the cleaner to start new transactions, add more delayed
3970          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3971          * because that frees the task_struct, and the transaction kthread might
3972          * still try to wake up the cleaner.
3973          */
3974         kthread_park(fs_info->cleaner_kthread);
3975
3976         /* wait for the qgroup rescan worker to stop */
3977         btrfs_qgroup_wait_for_completion(fs_info, false);
3978
3979         /* wait for the uuid_scan task to finish */
3980         down(&fs_info->uuid_tree_rescan_sem);
3981         /* avoid complains from lockdep et al., set sem back to initial state */
3982         up(&fs_info->uuid_tree_rescan_sem);
3983
3984         /* pause restriper - we want to resume on mount */
3985         btrfs_pause_balance(fs_info);
3986
3987         btrfs_dev_replace_suspend_for_unmount(fs_info);
3988
3989         btrfs_scrub_cancel(fs_info);
3990
3991         /* wait for any defraggers to finish */
3992         wait_event(fs_info->transaction_wait,
3993                    (atomic_read(&fs_info->defrag_running) == 0));
3994
3995         /* clear out the rbtree of defraggable inodes */
3996         btrfs_cleanup_defrag_inodes(fs_info);
3997
3998         cancel_work_sync(&fs_info->async_reclaim_work);
3999
4000         if (!sb_rdonly(fs_info->sb)) {
4001                 /*
4002                  * The cleaner kthread is stopped, so do one final pass over
4003                  * unused block groups.
4004                  */
4005                 btrfs_delete_unused_bgs(fs_info);
4006
4007                 ret = btrfs_commit_super(fs_info);
4008                 if (ret)
4009                         btrfs_err(fs_info, "commit super ret %d", ret);
4010         }
4011
4012         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4013             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4014                 btrfs_error_commit_super(fs_info);
4015
4016         kthread_stop(fs_info->transaction_kthread);
4017         kthread_stop(fs_info->cleaner_kthread);
4018
4019         ASSERT(list_empty(&fs_info->delayed_iputs));
4020         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4021
4022         btrfs_free_qgroup_config(fs_info);
4023         ASSERT(list_empty(&fs_info->delalloc_roots));
4024
4025         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4026                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4027                        percpu_counter_sum(&fs_info->delalloc_bytes));
4028         }
4029
4030         if (percpu_counter_sum(&fs_info->dio_bytes))
4031                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4032                            percpu_counter_sum(&fs_info->dio_bytes));
4033
4034         btrfs_sysfs_remove_mounted(fs_info);
4035         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4036
4037         btrfs_free_fs_roots(fs_info);
4038
4039         btrfs_put_block_group_cache(fs_info);
4040
4041         /*
4042          * we must make sure there is not any read request to
4043          * submit after we stopping all workers.
4044          */
4045         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4046         btrfs_stop_all_workers(fs_info);
4047
4048         btrfs_free_block_groups(fs_info);
4049
4050         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4051         free_root_pointers(fs_info, true);
4052
4053         iput(fs_info->btree_inode);
4054
4055 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4056         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4057                 btrfsic_unmount(fs_info->fs_devices);
4058 #endif
4059
4060         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4061         btrfs_close_devices(fs_info->fs_devices);
4062
4063         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4064         percpu_counter_destroy(&fs_info->delalloc_bytes);
4065         percpu_counter_destroy(&fs_info->dio_bytes);
4066         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4067         cleanup_srcu_struct(&fs_info->subvol_srcu);
4068
4069         btrfs_free_csum_hash(fs_info);
4070         btrfs_free_stripe_hash_table(fs_info);
4071         btrfs_free_ref_cache(fs_info);
4072 }
4073
4074 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4075                           int atomic)
4076 {
4077         int ret;
4078         struct inode *btree_inode = buf->pages[0]->mapping->host;
4079
4080         ret = extent_buffer_uptodate(buf);
4081         if (!ret)
4082                 return ret;
4083
4084         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4085                                     parent_transid, atomic);
4086         if (ret == -EAGAIN)
4087                 return ret;
4088         return !ret;
4089 }
4090
4091 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4092 {
4093         struct btrfs_fs_info *fs_info;
4094         struct btrfs_root *root;
4095         u64 transid = btrfs_header_generation(buf);
4096         int was_dirty;
4097
4098 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4099         /*
4100          * This is a fast path so only do this check if we have sanity tests
4101          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4102          * outside of the sanity tests.
4103          */
4104         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4105                 return;
4106 #endif
4107         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4108         fs_info = root->fs_info;
4109         btrfs_assert_tree_locked(buf);
4110         if (transid != fs_info->generation)
4111                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4112                         buf->start, transid, fs_info->generation);
4113         was_dirty = set_extent_buffer_dirty(buf);
4114         if (!was_dirty)
4115                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4116                                          buf->len,
4117                                          fs_info->dirty_metadata_batch);
4118 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4119         /*
4120          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4121          * but item data not updated.
4122          * So here we should only check item pointers, not item data.
4123          */
4124         if (btrfs_header_level(buf) == 0 &&
4125             btrfs_check_leaf_relaxed(buf)) {
4126                 btrfs_print_leaf(buf);
4127                 ASSERT(0);
4128         }
4129 #endif
4130 }
4131
4132 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4133                                         int flush_delayed)
4134 {
4135         /*
4136          * looks as though older kernels can get into trouble with
4137          * this code, they end up stuck in balance_dirty_pages forever
4138          */
4139         int ret;
4140
4141         if (current->flags & PF_MEMALLOC)
4142                 return;
4143
4144         if (flush_delayed)
4145                 btrfs_balance_delayed_items(fs_info);
4146
4147         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4148                                      BTRFS_DIRTY_METADATA_THRESH,
4149                                      fs_info->dirty_metadata_batch);
4150         if (ret > 0) {
4151                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4152         }
4153 }
4154
4155 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4156 {
4157         __btrfs_btree_balance_dirty(fs_info, 1);
4158 }
4159
4160 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4161 {
4162         __btrfs_btree_balance_dirty(fs_info, 0);
4163 }
4164
4165 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4166                       struct btrfs_key *first_key)
4167 {
4168         return btree_read_extent_buffer_pages(buf, parent_transid,
4169                                               level, first_key);
4170 }
4171
4172 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4173 {
4174         /* cleanup FS via transaction */
4175         btrfs_cleanup_transaction(fs_info);
4176
4177         mutex_lock(&fs_info->cleaner_mutex);
4178         btrfs_run_delayed_iputs(fs_info);
4179         mutex_unlock(&fs_info->cleaner_mutex);
4180
4181         down_write(&fs_info->cleanup_work_sem);
4182         up_write(&fs_info->cleanup_work_sem);
4183 }
4184
4185 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4186 {
4187         struct btrfs_ordered_extent *ordered;
4188
4189         spin_lock(&root->ordered_extent_lock);
4190         /*
4191          * This will just short circuit the ordered completion stuff which will
4192          * make sure the ordered extent gets properly cleaned up.
4193          */
4194         list_for_each_entry(ordered, &root->ordered_extents,
4195                             root_extent_list)
4196                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4197         spin_unlock(&root->ordered_extent_lock);
4198 }
4199
4200 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4201 {
4202         struct btrfs_root *root;
4203         struct list_head splice;
4204
4205         INIT_LIST_HEAD(&splice);
4206
4207         spin_lock(&fs_info->ordered_root_lock);
4208         list_splice_init(&fs_info->ordered_roots, &splice);
4209         while (!list_empty(&splice)) {
4210                 root = list_first_entry(&splice, struct btrfs_root,
4211                                         ordered_root);
4212                 list_move_tail(&root->ordered_root,
4213                                &fs_info->ordered_roots);
4214
4215                 spin_unlock(&fs_info->ordered_root_lock);
4216                 btrfs_destroy_ordered_extents(root);
4217
4218                 cond_resched();
4219                 spin_lock(&fs_info->ordered_root_lock);
4220         }
4221         spin_unlock(&fs_info->ordered_root_lock);
4222
4223         /*
4224          * We need this here because if we've been flipped read-only we won't
4225          * get sync() from the umount, so we need to make sure any ordered
4226          * extents that haven't had their dirty pages IO start writeout yet
4227          * actually get run and error out properly.
4228          */
4229         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4230 }
4231
4232 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4233                                       struct btrfs_fs_info *fs_info)
4234 {
4235         struct rb_node *node;
4236         struct btrfs_delayed_ref_root *delayed_refs;
4237         struct btrfs_delayed_ref_node *ref;
4238         int ret = 0;
4239
4240         delayed_refs = &trans->delayed_refs;
4241
4242         spin_lock(&delayed_refs->lock);
4243         if (atomic_read(&delayed_refs->num_entries) == 0) {
4244                 spin_unlock(&delayed_refs->lock);
4245                 btrfs_info(fs_info, "delayed_refs has NO entry");
4246                 return ret;
4247         }
4248
4249         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4250                 struct btrfs_delayed_ref_head *head;
4251                 struct rb_node *n;
4252                 bool pin_bytes = false;
4253
4254                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4255                                 href_node);
4256                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4257                         continue;
4258
4259                 spin_lock(&head->lock);
4260                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4261                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4262                                        ref_node);
4263                         ref->in_tree = 0;
4264                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4265                         RB_CLEAR_NODE(&ref->ref_node);
4266                         if (!list_empty(&ref->add_list))
4267                                 list_del(&ref->add_list);
4268                         atomic_dec(&delayed_refs->num_entries);
4269                         btrfs_put_delayed_ref(ref);
4270                 }
4271                 if (head->must_insert_reserved)
4272                         pin_bytes = true;
4273                 btrfs_free_delayed_extent_op(head->extent_op);
4274                 btrfs_delete_ref_head(delayed_refs, head);
4275                 spin_unlock(&head->lock);
4276                 spin_unlock(&delayed_refs->lock);
4277                 mutex_unlock(&head->mutex);
4278
4279                 if (pin_bytes)
4280                         btrfs_pin_extent(fs_info, head->bytenr,
4281                                          head->num_bytes, 1);
4282                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4283                 btrfs_put_delayed_ref_head(head);
4284                 cond_resched();
4285                 spin_lock(&delayed_refs->lock);
4286         }
4287
4288         spin_unlock(&delayed_refs->lock);
4289
4290         return ret;
4291 }
4292
4293 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4294 {
4295         struct btrfs_inode *btrfs_inode;
4296         struct list_head splice;
4297
4298         INIT_LIST_HEAD(&splice);
4299
4300         spin_lock(&root->delalloc_lock);
4301         list_splice_init(&root->delalloc_inodes, &splice);
4302
4303         while (!list_empty(&splice)) {
4304                 struct inode *inode = NULL;
4305                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4306                                                delalloc_inodes);
4307                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4308                 spin_unlock(&root->delalloc_lock);
4309
4310                 /*
4311                  * Make sure we get a live inode and that it'll not disappear
4312                  * meanwhile.
4313                  */
4314                 inode = igrab(&btrfs_inode->vfs_inode);
4315                 if (inode) {
4316                         invalidate_inode_pages2(inode->i_mapping);
4317                         iput(inode);
4318                 }
4319                 spin_lock(&root->delalloc_lock);
4320         }
4321         spin_unlock(&root->delalloc_lock);
4322 }
4323
4324 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4325 {
4326         struct btrfs_root *root;
4327         struct list_head splice;
4328
4329         INIT_LIST_HEAD(&splice);
4330
4331         spin_lock(&fs_info->delalloc_root_lock);
4332         list_splice_init(&fs_info->delalloc_roots, &splice);
4333         while (!list_empty(&splice)) {
4334                 root = list_first_entry(&splice, struct btrfs_root,
4335                                          delalloc_root);
4336                 root = btrfs_grab_fs_root(root);
4337                 BUG_ON(!root);
4338                 spin_unlock(&fs_info->delalloc_root_lock);
4339
4340                 btrfs_destroy_delalloc_inodes(root);
4341                 btrfs_put_fs_root(root);
4342
4343                 spin_lock(&fs_info->delalloc_root_lock);
4344         }
4345         spin_unlock(&fs_info->delalloc_root_lock);
4346 }
4347
4348 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4349                                         struct extent_io_tree *dirty_pages,
4350                                         int mark)
4351 {
4352         int ret;
4353         struct extent_buffer *eb;
4354         u64 start = 0;
4355         u64 end;
4356
4357         while (1) {
4358                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4359                                             mark, NULL);
4360                 if (ret)
4361                         break;
4362
4363                 clear_extent_bits(dirty_pages, start, end, mark);
4364                 while (start <= end) {
4365                         eb = find_extent_buffer(fs_info, start);
4366                         start += fs_info->nodesize;
4367                         if (!eb)
4368                                 continue;
4369                         wait_on_extent_buffer_writeback(eb);
4370
4371                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4372                                                &eb->bflags))
4373                                 clear_extent_buffer_dirty(eb);
4374                         free_extent_buffer_stale(eb);
4375                 }
4376         }
4377
4378         return ret;
4379 }
4380
4381 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4382                                        struct extent_io_tree *pinned_extents)
4383 {
4384         struct extent_io_tree *unpin;
4385         u64 start;
4386         u64 end;
4387         int ret;
4388         bool loop = true;
4389
4390         unpin = pinned_extents;
4391 again:
4392         while (1) {
4393                 struct extent_state *cached_state = NULL;
4394
4395                 /*
4396                  * The btrfs_finish_extent_commit() may get the same range as
4397                  * ours between find_first_extent_bit and clear_extent_dirty.
4398                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4399                  * the same extent range.
4400                  */
4401                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4402                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4403                                             EXTENT_DIRTY, &cached_state);
4404                 if (ret) {
4405                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4406                         break;
4407                 }
4408
4409                 clear_extent_dirty(unpin, start, end, &cached_state);
4410                 free_extent_state(cached_state);
4411                 btrfs_error_unpin_extent_range(fs_info, start, end);
4412                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4413                 cond_resched();
4414         }
4415
4416         if (loop) {
4417                 if (unpin == &fs_info->freed_extents[0])
4418                         unpin = &fs_info->freed_extents[1];
4419                 else
4420                         unpin = &fs_info->freed_extents[0];
4421                 loop = false;
4422                 goto again;
4423         }
4424
4425         return 0;
4426 }
4427
4428 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4429 {
4430         struct inode *inode;
4431
4432         inode = cache->io_ctl.inode;
4433         if (inode) {
4434                 invalidate_inode_pages2(inode->i_mapping);
4435                 BTRFS_I(inode)->generation = 0;
4436                 cache->io_ctl.inode = NULL;
4437                 iput(inode);
4438         }
4439         btrfs_put_block_group(cache);
4440 }
4441
4442 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4443                              struct btrfs_fs_info *fs_info)
4444 {
4445         struct btrfs_block_group_cache *cache;
4446
4447         spin_lock(&cur_trans->dirty_bgs_lock);
4448         while (!list_empty(&cur_trans->dirty_bgs)) {
4449                 cache = list_first_entry(&cur_trans->dirty_bgs,
4450                                          struct btrfs_block_group_cache,
4451                                          dirty_list);
4452
4453                 if (!list_empty(&cache->io_list)) {
4454                         spin_unlock(&cur_trans->dirty_bgs_lock);
4455                         list_del_init(&cache->io_list);
4456                         btrfs_cleanup_bg_io(cache);
4457                         spin_lock(&cur_trans->dirty_bgs_lock);
4458                 }
4459
4460                 list_del_init(&cache->dirty_list);
4461                 spin_lock(&cache->lock);
4462                 cache->disk_cache_state = BTRFS_DC_ERROR;
4463                 spin_unlock(&cache->lock);
4464
4465                 spin_unlock(&cur_trans->dirty_bgs_lock);
4466                 btrfs_put_block_group(cache);
4467                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4468                 spin_lock(&cur_trans->dirty_bgs_lock);
4469         }
4470         spin_unlock(&cur_trans->dirty_bgs_lock);
4471
4472         /*
4473          * Refer to the definition of io_bgs member for details why it's safe
4474          * to use it without any locking
4475          */
4476         while (!list_empty(&cur_trans->io_bgs)) {
4477                 cache = list_first_entry(&cur_trans->io_bgs,
4478                                          struct btrfs_block_group_cache,
4479                                          io_list);
4480
4481                 list_del_init(&cache->io_list);
4482                 spin_lock(&cache->lock);
4483                 cache->disk_cache_state = BTRFS_DC_ERROR;
4484                 spin_unlock(&cache->lock);
4485                 btrfs_cleanup_bg_io(cache);
4486         }
4487 }
4488
4489 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4490                                    struct btrfs_fs_info *fs_info)
4491 {
4492         struct btrfs_device *dev, *tmp;
4493
4494         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4495         ASSERT(list_empty(&cur_trans->dirty_bgs));
4496         ASSERT(list_empty(&cur_trans->io_bgs));
4497
4498         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4499                                  post_commit_list) {
4500                 list_del_init(&dev->post_commit_list);
4501         }
4502
4503         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4504
4505         cur_trans->state = TRANS_STATE_COMMIT_START;
4506         wake_up(&fs_info->transaction_blocked_wait);
4507
4508         cur_trans->state = TRANS_STATE_UNBLOCKED;
4509         wake_up(&fs_info->transaction_wait);
4510
4511         btrfs_destroy_delayed_inodes(fs_info);
4512         btrfs_assert_delayed_root_empty(fs_info);
4513
4514         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4515                                      EXTENT_DIRTY);
4516         btrfs_destroy_pinned_extent(fs_info,
4517                                     fs_info->pinned_extents);
4518
4519         cur_trans->state =TRANS_STATE_COMPLETED;
4520         wake_up(&cur_trans->commit_wait);
4521 }
4522
4523 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4524 {
4525         struct btrfs_transaction *t;
4526
4527         mutex_lock(&fs_info->transaction_kthread_mutex);
4528
4529         spin_lock(&fs_info->trans_lock);
4530         while (!list_empty(&fs_info->trans_list)) {
4531                 t = list_first_entry(&fs_info->trans_list,
4532                                      struct btrfs_transaction, list);
4533                 if (t->state >= TRANS_STATE_COMMIT_START) {
4534                         refcount_inc(&t->use_count);
4535                         spin_unlock(&fs_info->trans_lock);
4536                         btrfs_wait_for_commit(fs_info, t->transid);
4537                         btrfs_put_transaction(t);
4538                         spin_lock(&fs_info->trans_lock);
4539                         continue;
4540                 }
4541                 if (t == fs_info->running_transaction) {
4542                         t->state = TRANS_STATE_COMMIT_DOING;
4543                         spin_unlock(&fs_info->trans_lock);
4544                         /*
4545                          * We wait for 0 num_writers since we don't hold a trans
4546                          * handle open currently for this transaction.
4547                          */
4548                         wait_event(t->writer_wait,
4549                                    atomic_read(&t->num_writers) == 0);
4550                 } else {
4551                         spin_unlock(&fs_info->trans_lock);
4552                 }
4553                 btrfs_cleanup_one_transaction(t, fs_info);
4554
4555                 spin_lock(&fs_info->trans_lock);
4556                 if (t == fs_info->running_transaction)
4557                         fs_info->running_transaction = NULL;
4558                 list_del_init(&t->list);
4559                 spin_unlock(&fs_info->trans_lock);
4560
4561                 btrfs_put_transaction(t);
4562                 trace_btrfs_transaction_commit(fs_info->tree_root);
4563                 spin_lock(&fs_info->trans_lock);
4564         }
4565         spin_unlock(&fs_info->trans_lock);
4566         btrfs_destroy_all_ordered_extents(fs_info);
4567         btrfs_destroy_delayed_inodes(fs_info);
4568         btrfs_assert_delayed_root_empty(fs_info);
4569         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4570         btrfs_destroy_all_delalloc_inodes(fs_info);
4571         mutex_unlock(&fs_info->transaction_kthread_mutex);
4572
4573         return 0;
4574 }
4575
4576 static const struct extent_io_ops btree_extent_io_ops = {
4577         /* mandatory callbacks */
4578         .submit_bio_hook = btree_submit_bio_hook,
4579         .readpage_end_io_hook = btree_readpage_end_io_hook,
4580 };