]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/extent_io.c
0c4389634985c86ebff8809d9f2dbd90610df497
[linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        state->start, state->end, state->state, state->tree,
65                        atomic_read(&state->refs));
66                 list_del(&state->leak_list);
67                 kmem_cache_free(extent_state_cache, state);
68         }
69
70         while (!list_empty(&buffers)) {
71                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73                        "refs %d\n",
74                        eb->start, eb->len, atomic_read(&eb->refs));
75                 list_del(&eb->leak_list);
76                 kmem_cache_free(extent_buffer_cache, eb);
77         }
78 }
79
80 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
81         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83                 struct extent_io_tree *tree, u64 start, u64 end)
84 {
85         struct inode *inode;
86         u64 isize;
87
88         if (!tree->mapping)
89                 return;
90
91         inode = tree->mapping->host;
92         isize = i_size_read(inode);
93         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94                 printk_ratelimited(KERN_DEBUG
95                     "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96                                 caller, btrfs_ino(inode), isize, start, end);
97         }
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry)     do {} while (0)
102 #define btrfs_leak_debug_check()        do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
104 #endif
105
106 #define BUFFER_LRU_MAX 64
107
108 struct tree_entry {
109         u64 start;
110         u64 end;
111         struct rb_node rb_node;
112 };
113
114 struct extent_page_data {
115         struct bio *bio;
116         struct extent_io_tree *tree;
117         get_extent_t *get_extent;
118         unsigned long bio_flags;
119
120         /* tells writepage not to lock the state bits for this range
121          * it still does the unlocking
122          */
123         unsigned int extent_locked:1;
124
125         /* tells the submit_bio code to use a WRITE_SYNC */
126         unsigned int sync_io:1;
127 };
128
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133         if (!tree->mapping)
134                 return NULL;
135         return btrfs_sb(tree->mapping->host->i_sb);
136 }
137
138 int __init extent_io_init(void)
139 {
140         extent_state_cache = kmem_cache_create("btrfs_extent_state",
141                         sizeof(struct extent_state), 0,
142                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143         if (!extent_state_cache)
144                 return -ENOMEM;
145
146         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147                         sizeof(struct extent_buffer), 0,
148                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149         if (!extent_buffer_cache)
150                 goto free_state_cache;
151
152         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153                                      offsetof(struct btrfs_io_bio, bio));
154         if (!btrfs_bioset)
155                 goto free_buffer_cache;
156
157         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158                 goto free_bioset;
159
160         return 0;
161
162 free_bioset:
163         bioset_free(btrfs_bioset);
164         btrfs_bioset = NULL;
165
166 free_buffer_cache:
167         kmem_cache_destroy(extent_buffer_cache);
168         extent_buffer_cache = NULL;
169
170 free_state_cache:
171         kmem_cache_destroy(extent_state_cache);
172         extent_state_cache = NULL;
173         return -ENOMEM;
174 }
175
176 void extent_io_exit(void)
177 {
178         btrfs_leak_debug_check();
179
180         /*
181          * Make sure all delayed rcu free are flushed before we
182          * destroy caches.
183          */
184         rcu_barrier();
185         if (extent_state_cache)
186                 kmem_cache_destroy(extent_state_cache);
187         if (extent_buffer_cache)
188                 kmem_cache_destroy(extent_buffer_cache);
189         if (btrfs_bioset)
190                 bioset_free(btrfs_bioset);
191 }
192
193 void extent_io_tree_init(struct extent_io_tree *tree,
194                          struct address_space *mapping)
195 {
196         tree->state = RB_ROOT;
197         tree->ops = NULL;
198         tree->dirty_bytes = 0;
199         spin_lock_init(&tree->lock);
200         tree->mapping = mapping;
201 }
202
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205         struct extent_state *state;
206
207         state = kmem_cache_alloc(extent_state_cache, mask);
208         if (!state)
209                 return state;
210         state->state = 0;
211         state->private = 0;
212         state->tree = NULL;
213         btrfs_leak_debug_add(&state->leak_list, &states);
214         atomic_set(&state->refs, 1);
215         init_waitqueue_head(&state->wq);
216         trace_alloc_extent_state(state, mask, _RET_IP_);
217         return state;
218 }
219
220 void free_extent_state(struct extent_state *state)
221 {
222         if (!state)
223                 return;
224         if (atomic_dec_and_test(&state->refs)) {
225                 WARN_ON(state->tree);
226                 btrfs_leak_debug_del(&state->leak_list);
227                 trace_free_extent_state(state, _RET_IP_);
228                 kmem_cache_free(extent_state_cache, state);
229         }
230 }
231
232 static struct rb_node *tree_insert(struct rb_root *root,
233                                    struct rb_node *search_start,
234                                    u64 offset,
235                                    struct rb_node *node,
236                                    struct rb_node ***p_in,
237                                    struct rb_node **parent_in)
238 {
239         struct rb_node **p;
240         struct rb_node *parent = NULL;
241         struct tree_entry *entry;
242
243         if (p_in && parent_in) {
244                 p = *p_in;
245                 parent = *parent_in;
246                 goto do_insert;
247         }
248
249         p = search_start ? &search_start : &root->rb_node;
250         while (*p) {
251                 parent = *p;
252                 entry = rb_entry(parent, struct tree_entry, rb_node);
253
254                 if (offset < entry->start)
255                         p = &(*p)->rb_left;
256                 else if (offset > entry->end)
257                         p = &(*p)->rb_right;
258                 else
259                         return parent;
260         }
261
262 do_insert:
263         rb_link_node(node, parent, p);
264         rb_insert_color(node, root);
265         return NULL;
266 }
267
268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
269                                       struct rb_node **prev_ret,
270                                       struct rb_node **next_ret,
271                                       struct rb_node ***p_ret,
272                                       struct rb_node **parent_ret)
273 {
274         struct rb_root *root = &tree->state;
275         struct rb_node **n = &root->rb_node;
276         struct rb_node *prev = NULL;
277         struct rb_node *orig_prev = NULL;
278         struct tree_entry *entry;
279         struct tree_entry *prev_entry = NULL;
280
281         while (*n) {
282                 prev = *n;
283                 entry = rb_entry(prev, struct tree_entry, rb_node);
284                 prev_entry = entry;
285
286                 if (offset < entry->start)
287                         n = &(*n)->rb_left;
288                 else if (offset > entry->end)
289                         n = &(*n)->rb_right;
290                 else
291                         return *n;
292         }
293
294         if (p_ret)
295                 *p_ret = n;
296         if (parent_ret)
297                 *parent_ret = prev;
298
299         if (prev_ret) {
300                 orig_prev = prev;
301                 while (prev && offset > prev_entry->end) {
302                         prev = rb_next(prev);
303                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
304                 }
305                 *prev_ret = prev;
306                 prev = orig_prev;
307         }
308
309         if (next_ret) {
310                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311                 while (prev && offset < prev_entry->start) {
312                         prev = rb_prev(prev);
313                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
314                 }
315                 *next_ret = prev;
316         }
317         return NULL;
318 }
319
320 static inline struct rb_node *
321 tree_search_for_insert(struct extent_io_tree *tree,
322                        u64 offset,
323                        struct rb_node ***p_ret,
324                        struct rb_node **parent_ret)
325 {
326         struct rb_node *prev = NULL;
327         struct rb_node *ret;
328
329         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
330         if (!ret)
331                 return prev;
332         return ret;
333 }
334
335 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336                                           u64 offset)
337 {
338         return tree_search_for_insert(tree, offset, NULL, NULL);
339 }
340
341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342                      struct extent_state *other)
343 {
344         if (tree->ops && tree->ops->merge_extent_hook)
345                 tree->ops->merge_extent_hook(tree->mapping->host, new,
346                                              other);
347 }
348
349 /*
350  * utility function to look for merge candidates inside a given range.
351  * Any extents with matching state are merged together into a single
352  * extent in the tree.  Extents with EXTENT_IO in their state field
353  * are not merged because the end_io handlers need to be able to do
354  * operations on them without sleeping (or doing allocations/splits).
355  *
356  * This should be called with the tree lock held.
357  */
358 static void merge_state(struct extent_io_tree *tree,
359                         struct extent_state *state)
360 {
361         struct extent_state *other;
362         struct rb_node *other_node;
363
364         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
365                 return;
366
367         other_node = rb_prev(&state->rb_node);
368         if (other_node) {
369                 other = rb_entry(other_node, struct extent_state, rb_node);
370                 if (other->end == state->start - 1 &&
371                     other->state == state->state) {
372                         merge_cb(tree, state, other);
373                         state->start = other->start;
374                         other->tree = NULL;
375                         rb_erase(&other->rb_node, &tree->state);
376                         free_extent_state(other);
377                 }
378         }
379         other_node = rb_next(&state->rb_node);
380         if (other_node) {
381                 other = rb_entry(other_node, struct extent_state, rb_node);
382                 if (other->start == state->end + 1 &&
383                     other->state == state->state) {
384                         merge_cb(tree, state, other);
385                         state->end = other->end;
386                         other->tree = NULL;
387                         rb_erase(&other->rb_node, &tree->state);
388                         free_extent_state(other);
389                 }
390         }
391 }
392
393 static void set_state_cb(struct extent_io_tree *tree,
394                          struct extent_state *state, unsigned long *bits)
395 {
396         if (tree->ops && tree->ops->set_bit_hook)
397                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
398 }
399
400 static void clear_state_cb(struct extent_io_tree *tree,
401                            struct extent_state *state, unsigned long *bits)
402 {
403         if (tree->ops && tree->ops->clear_bit_hook)
404                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
405 }
406
407 static void set_state_bits(struct extent_io_tree *tree,
408                            struct extent_state *state, unsigned long *bits);
409
410 /*
411  * insert an extent_state struct into the tree.  'bits' are set on the
412  * struct before it is inserted.
413  *
414  * This may return -EEXIST if the extent is already there, in which case the
415  * state struct is freed.
416  *
417  * The tree lock is not taken internally.  This is a utility function and
418  * probably isn't what you want to call (see set/clear_extent_bit).
419  */
420 static int insert_state(struct extent_io_tree *tree,
421                         struct extent_state *state, u64 start, u64 end,
422                         struct rb_node ***p,
423                         struct rb_node **parent,
424                         unsigned long *bits)
425 {
426         struct rb_node *node;
427
428         if (end < start)
429                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430                        end, start);
431         state->start = start;
432         state->end = end;
433
434         set_state_bits(tree, state, bits);
435
436         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437         if (node) {
438                 struct extent_state *found;
439                 found = rb_entry(node, struct extent_state, rb_node);
440                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
441                        "%llu %llu\n",
442                        found->start, found->end, start, end);
443                 return -EEXIST;
444         }
445         state->tree = tree;
446         merge_state(tree, state);
447         return 0;
448 }
449
450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
451                      u64 split)
452 {
453         if (tree->ops && tree->ops->split_extent_hook)
454                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
455 }
456
457 /*
458  * split a given extent state struct in two, inserting the preallocated
459  * struct 'prealloc' as the newly created second half.  'split' indicates an
460  * offset inside 'orig' where it should be split.
461  *
462  * Before calling,
463  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
464  * are two extent state structs in the tree:
465  * prealloc: [orig->start, split - 1]
466  * orig: [ split, orig->end ]
467  *
468  * The tree locks are not taken by this function. They need to be held
469  * by the caller.
470  */
471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472                        struct extent_state *prealloc, u64 split)
473 {
474         struct rb_node *node;
475
476         split_cb(tree, orig, split);
477
478         prealloc->start = orig->start;
479         prealloc->end = split - 1;
480         prealloc->state = orig->state;
481         orig->start = split;
482
483         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484                            &prealloc->rb_node, NULL, NULL);
485         if (node) {
486                 free_extent_state(prealloc);
487                 return -EEXIST;
488         }
489         prealloc->tree = tree;
490         return 0;
491 }
492
493 static struct extent_state *next_state(struct extent_state *state)
494 {
495         struct rb_node *next = rb_next(&state->rb_node);
496         if (next)
497                 return rb_entry(next, struct extent_state, rb_node);
498         else
499                 return NULL;
500 }
501
502 /*
503  * utility function to clear some bits in an extent state struct.
504  * it will optionally wake up any one waiting on this state (wake == 1).
505  *
506  * If no bits are set on the state struct after clearing things, the
507  * struct is freed and removed from the tree
508  */
509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510                                             struct extent_state *state,
511                                             unsigned long *bits, int wake)
512 {
513         struct extent_state *next;
514         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
515
516         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
517                 u64 range = state->end - state->start + 1;
518                 WARN_ON(range > tree->dirty_bytes);
519                 tree->dirty_bytes -= range;
520         }
521         clear_state_cb(tree, state, bits);
522         state->state &= ~bits_to_clear;
523         if (wake)
524                 wake_up(&state->wq);
525         if (state->state == 0) {
526                 next = next_state(state);
527                 if (state->tree) {
528                         rb_erase(&state->rb_node, &tree->state);
529                         state->tree = NULL;
530                         free_extent_state(state);
531                 } else {
532                         WARN_ON(1);
533                 }
534         } else {
535                 merge_state(tree, state);
536                 next = next_state(state);
537         }
538         return next;
539 }
540
541 static struct extent_state *
542 alloc_extent_state_atomic(struct extent_state *prealloc)
543 {
544         if (!prealloc)
545                 prealloc = alloc_extent_state(GFP_ATOMIC);
546
547         return prealloc;
548 }
549
550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
551 {
552         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553                     "Extent tree was modified by another "
554                     "thread while locked.");
555 }
556
557 /*
558  * clear some bits on a range in the tree.  This may require splitting
559  * or inserting elements in the tree, so the gfp mask is used to
560  * indicate which allocations or sleeping are allowed.
561  *
562  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563  * the given range from the tree regardless of state (ie for truncate).
564  *
565  * the range [start, end] is inclusive.
566  *
567  * This takes the tree lock, and returns 0 on success and < 0 on error.
568  */
569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
570                      unsigned long bits, int wake, int delete,
571                      struct extent_state **cached_state,
572                      gfp_t mask)
573 {
574         struct extent_state *state;
575         struct extent_state *cached;
576         struct extent_state *prealloc = NULL;
577         struct rb_node *node;
578         u64 last_end;
579         int err;
580         int clear = 0;
581
582         btrfs_debug_check_extent_io_range(tree, start, end);
583
584         if (bits & EXTENT_DELALLOC)
585                 bits |= EXTENT_NORESERVE;
586
587         if (delete)
588                 bits |= ~EXTENT_CTLBITS;
589         bits |= EXTENT_FIRST_DELALLOC;
590
591         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592                 clear = 1;
593 again:
594         if (!prealloc && (mask & __GFP_WAIT)) {
595                 prealloc = alloc_extent_state(mask);
596                 if (!prealloc)
597                         return -ENOMEM;
598         }
599
600         spin_lock(&tree->lock);
601         if (cached_state) {
602                 cached = *cached_state;
603
604                 if (clear) {
605                         *cached_state = NULL;
606                         cached_state = NULL;
607                 }
608
609                 if (cached && cached->tree && cached->start <= start &&
610                     cached->end > start) {
611                         if (clear)
612                                 atomic_dec(&cached->refs);
613                         state = cached;
614                         goto hit_next;
615                 }
616                 if (clear)
617                         free_extent_state(cached);
618         }
619         /*
620          * this search will find the extents that end after
621          * our range starts
622          */
623         node = tree_search(tree, start);
624         if (!node)
625                 goto out;
626         state = rb_entry(node, struct extent_state, rb_node);
627 hit_next:
628         if (state->start > end)
629                 goto out;
630         WARN_ON(state->end < start);
631         last_end = state->end;
632
633         /* the state doesn't have the wanted bits, go ahead */
634         if (!(state->state & bits)) {
635                 state = next_state(state);
636                 goto next;
637         }
638
639         /*
640          *     | ---- desired range ---- |
641          *  | state | or
642          *  | ------------- state -------------- |
643          *
644          * We need to split the extent we found, and may flip
645          * bits on second half.
646          *
647          * If the extent we found extends past our range, we
648          * just split and search again.  It'll get split again
649          * the next time though.
650          *
651          * If the extent we found is inside our range, we clear
652          * the desired bit on it.
653          */
654
655         if (state->start < start) {
656                 prealloc = alloc_extent_state_atomic(prealloc);
657                 BUG_ON(!prealloc);
658                 err = split_state(tree, state, prealloc, start);
659                 if (err)
660                         extent_io_tree_panic(tree, err);
661
662                 prealloc = NULL;
663                 if (err)
664                         goto out;
665                 if (state->end <= end) {
666                         state = clear_state_bit(tree, state, &bits, wake);
667                         goto next;
668                 }
669                 goto search_again;
670         }
671         /*
672          * | ---- desired range ---- |
673          *                        | state |
674          * We need to split the extent, and clear the bit
675          * on the first half
676          */
677         if (state->start <= end && state->end > end) {
678                 prealloc = alloc_extent_state_atomic(prealloc);
679                 BUG_ON(!prealloc);
680                 err = split_state(tree, state, prealloc, end + 1);
681                 if (err)
682                         extent_io_tree_panic(tree, err);
683
684                 if (wake)
685                         wake_up(&state->wq);
686
687                 clear_state_bit(tree, prealloc, &bits, wake);
688
689                 prealloc = NULL;
690                 goto out;
691         }
692
693         state = clear_state_bit(tree, state, &bits, wake);
694 next:
695         if (last_end == (u64)-1)
696                 goto out;
697         start = last_end + 1;
698         if (start <= end && state && !need_resched())
699                 goto hit_next;
700         goto search_again;
701
702 out:
703         spin_unlock(&tree->lock);
704         if (prealloc)
705                 free_extent_state(prealloc);
706
707         return 0;
708
709 search_again:
710         if (start > end)
711                 goto out;
712         spin_unlock(&tree->lock);
713         if (mask & __GFP_WAIT)
714                 cond_resched();
715         goto again;
716 }
717
718 static void wait_on_state(struct extent_io_tree *tree,
719                           struct extent_state *state)
720                 __releases(tree->lock)
721                 __acquires(tree->lock)
722 {
723         DEFINE_WAIT(wait);
724         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
725         spin_unlock(&tree->lock);
726         schedule();
727         spin_lock(&tree->lock);
728         finish_wait(&state->wq, &wait);
729 }
730
731 /*
732  * waits for one or more bits to clear on a range in the state tree.
733  * The range [start, end] is inclusive.
734  * The tree lock is taken by this function
735  */
736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737                             unsigned long bits)
738 {
739         struct extent_state *state;
740         struct rb_node *node;
741
742         btrfs_debug_check_extent_io_range(tree, start, end);
743
744         spin_lock(&tree->lock);
745 again:
746         while (1) {
747                 /*
748                  * this search will find all the extents that end after
749                  * our range starts
750                  */
751                 node = tree_search(tree, start);
752 process_node:
753                 if (!node)
754                         break;
755
756                 state = rb_entry(node, struct extent_state, rb_node);
757
758                 if (state->start > end)
759                         goto out;
760
761                 if (state->state & bits) {
762                         start = state->start;
763                         atomic_inc(&state->refs);
764                         wait_on_state(tree, state);
765                         free_extent_state(state);
766                         goto again;
767                 }
768                 start = state->end + 1;
769
770                 if (start > end)
771                         break;
772
773                 if (!cond_resched_lock(&tree->lock)) {
774                         node = rb_next(node);
775                         goto process_node;
776                 }
777         }
778 out:
779         spin_unlock(&tree->lock);
780 }
781
782 static void set_state_bits(struct extent_io_tree *tree,
783                            struct extent_state *state,
784                            unsigned long *bits)
785 {
786         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
787
788         set_state_cb(tree, state, bits);
789         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
790                 u64 range = state->end - state->start + 1;
791                 tree->dirty_bytes += range;
792         }
793         state->state |= bits_to_set;
794 }
795
796 static void cache_state(struct extent_state *state,
797                         struct extent_state **cached_ptr)
798 {
799         if (cached_ptr && !(*cached_ptr)) {
800                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
801                         *cached_ptr = state;
802                         atomic_inc(&state->refs);
803                 }
804         }
805 }
806
807 /*
808  * set some bits on a range in the tree.  This may require allocations or
809  * sleeping, so the gfp mask is used to indicate what is allowed.
810  *
811  * If any of the exclusive bits are set, this will fail with -EEXIST if some
812  * part of the range already has the desired bits set.  The start of the
813  * existing range is returned in failed_start in this case.
814  *
815  * [start, end] is inclusive This takes the tree lock.
816  */
817
818 static int __must_check
819 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
820                  unsigned long bits, unsigned long exclusive_bits,
821                  u64 *failed_start, struct extent_state **cached_state,
822                  gfp_t mask)
823 {
824         struct extent_state *state;
825         struct extent_state *prealloc = NULL;
826         struct rb_node *node;
827         struct rb_node **p;
828         struct rb_node *parent;
829         int err = 0;
830         u64 last_start;
831         u64 last_end;
832
833         btrfs_debug_check_extent_io_range(tree, start, end);
834
835         bits |= EXTENT_FIRST_DELALLOC;
836 again:
837         if (!prealloc && (mask & __GFP_WAIT)) {
838                 prealloc = alloc_extent_state(mask);
839                 BUG_ON(!prealloc);
840         }
841
842         spin_lock(&tree->lock);
843         if (cached_state && *cached_state) {
844                 state = *cached_state;
845                 if (state->start <= start && state->end > start &&
846                     state->tree) {
847                         node = &state->rb_node;
848                         goto hit_next;
849                 }
850         }
851         /*
852          * this search will find all the extents that end after
853          * our range starts.
854          */
855         node = tree_search_for_insert(tree, start, &p, &parent);
856         if (!node) {
857                 prealloc = alloc_extent_state_atomic(prealloc);
858                 BUG_ON(!prealloc);
859                 err = insert_state(tree, prealloc, start, end,
860                                    &p, &parent, &bits);
861                 if (err)
862                         extent_io_tree_panic(tree, err);
863
864                 cache_state(prealloc, cached_state);
865                 prealloc = NULL;
866                 goto out;
867         }
868         state = rb_entry(node, struct extent_state, rb_node);
869 hit_next:
870         last_start = state->start;
871         last_end = state->end;
872
873         /*
874          * | ---- desired range ---- |
875          * | state |
876          *
877          * Just lock what we found and keep going
878          */
879         if (state->start == start && state->end <= end) {
880                 if (state->state & exclusive_bits) {
881                         *failed_start = state->start;
882                         err = -EEXIST;
883                         goto out;
884                 }
885
886                 set_state_bits(tree, state, &bits);
887                 cache_state(state, cached_state);
888                 merge_state(tree, state);
889                 if (last_end == (u64)-1)
890                         goto out;
891                 start = last_end + 1;
892                 state = next_state(state);
893                 if (start < end && state && state->start == start &&
894                     !need_resched())
895                         goto hit_next;
896                 goto search_again;
897         }
898
899         /*
900          *     | ---- desired range ---- |
901          * | state |
902          *   or
903          * | ------------- state -------------- |
904          *
905          * We need to split the extent we found, and may flip bits on
906          * second half.
907          *
908          * If the extent we found extends past our
909          * range, we just split and search again.  It'll get split
910          * again the next time though.
911          *
912          * If the extent we found is inside our range, we set the
913          * desired bit on it.
914          */
915         if (state->start < start) {
916                 if (state->state & exclusive_bits) {
917                         *failed_start = start;
918                         err = -EEXIST;
919                         goto out;
920                 }
921
922                 prealloc = alloc_extent_state_atomic(prealloc);
923                 BUG_ON(!prealloc);
924                 err = split_state(tree, state, prealloc, start);
925                 if (err)
926                         extent_io_tree_panic(tree, err);
927
928                 prealloc = NULL;
929                 if (err)
930                         goto out;
931                 if (state->end <= end) {
932                         set_state_bits(tree, state, &bits);
933                         cache_state(state, cached_state);
934                         merge_state(tree, state);
935                         if (last_end == (u64)-1)
936                                 goto out;
937                         start = last_end + 1;
938                         state = next_state(state);
939                         if (start < end && state && state->start == start &&
940                             !need_resched())
941                                 goto hit_next;
942                 }
943                 goto search_again;
944         }
945         /*
946          * | ---- desired range ---- |
947          *     | state | or               | state |
948          *
949          * There's a hole, we need to insert something in it and
950          * ignore the extent we found.
951          */
952         if (state->start > start) {
953                 u64 this_end;
954                 if (end < last_start)
955                         this_end = end;
956                 else
957                         this_end = last_start - 1;
958
959                 prealloc = alloc_extent_state_atomic(prealloc);
960                 BUG_ON(!prealloc);
961
962                 /*
963                  * Avoid to free 'prealloc' if it can be merged with
964                  * the later extent.
965                  */
966                 err = insert_state(tree, prealloc, start, this_end,
967                                    NULL, NULL, &bits);
968                 if (err)
969                         extent_io_tree_panic(tree, err);
970
971                 cache_state(prealloc, cached_state);
972                 prealloc = NULL;
973                 start = this_end + 1;
974                 goto search_again;
975         }
976         /*
977          * | ---- desired range ---- |
978          *                        | state |
979          * We need to split the extent, and set the bit
980          * on the first half
981          */
982         if (state->start <= end && state->end > end) {
983                 if (state->state & exclusive_bits) {
984                         *failed_start = start;
985                         err = -EEXIST;
986                         goto out;
987                 }
988
989                 prealloc = alloc_extent_state_atomic(prealloc);
990                 BUG_ON(!prealloc);
991                 err = split_state(tree, state, prealloc, end + 1);
992                 if (err)
993                         extent_io_tree_panic(tree, err);
994
995                 set_state_bits(tree, prealloc, &bits);
996                 cache_state(prealloc, cached_state);
997                 merge_state(tree, prealloc);
998                 prealloc = NULL;
999                 goto out;
1000         }
1001
1002         goto search_again;
1003
1004 out:
1005         spin_unlock(&tree->lock);
1006         if (prealloc)
1007                 free_extent_state(prealloc);
1008
1009         return err;
1010
1011 search_again:
1012         if (start > end)
1013                 goto out;
1014         spin_unlock(&tree->lock);
1015         if (mask & __GFP_WAIT)
1016                 cond_resched();
1017         goto again;
1018 }
1019
1020 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021                    unsigned long bits, u64 * failed_start,
1022                    struct extent_state **cached_state, gfp_t mask)
1023 {
1024         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025                                 cached_state, mask);
1026 }
1027
1028
1029 /**
1030  * convert_extent_bit - convert all bits in a given range from one bit to
1031  *                      another
1032  * @tree:       the io tree to search
1033  * @start:      the start offset in bytes
1034  * @end:        the end offset in bytes (inclusive)
1035  * @bits:       the bits to set in this range
1036  * @clear_bits: the bits to clear in this range
1037  * @cached_state:       state that we're going to cache
1038  * @mask:       the allocation mask
1039  *
1040  * This will go through and set bits for the given range.  If any states exist
1041  * already in this range they are set with the given bit and cleared of the
1042  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1043  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1044  * boundary bits like LOCK.
1045  */
1046 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1047                        unsigned long bits, unsigned long clear_bits,
1048                        struct extent_state **cached_state, gfp_t mask)
1049 {
1050         struct extent_state *state;
1051         struct extent_state *prealloc = NULL;
1052         struct rb_node *node;
1053         struct rb_node **p;
1054         struct rb_node *parent;
1055         int err = 0;
1056         u64 last_start;
1057         u64 last_end;
1058
1059         btrfs_debug_check_extent_io_range(tree, start, end);
1060
1061 again:
1062         if (!prealloc && (mask & __GFP_WAIT)) {
1063                 prealloc = alloc_extent_state(mask);
1064                 if (!prealloc)
1065                         return -ENOMEM;
1066         }
1067
1068         spin_lock(&tree->lock);
1069         if (cached_state && *cached_state) {
1070                 state = *cached_state;
1071                 if (state->start <= start && state->end > start &&
1072                     state->tree) {
1073                         node = &state->rb_node;
1074                         goto hit_next;
1075                 }
1076         }
1077
1078         /*
1079          * this search will find all the extents that end after
1080          * our range starts.
1081          */
1082         node = tree_search_for_insert(tree, start, &p, &parent);
1083         if (!node) {
1084                 prealloc = alloc_extent_state_atomic(prealloc);
1085                 if (!prealloc) {
1086                         err = -ENOMEM;
1087                         goto out;
1088                 }
1089                 err = insert_state(tree, prealloc, start, end,
1090                                    &p, &parent, &bits);
1091                 if (err)
1092                         extent_io_tree_panic(tree, err);
1093                 cache_state(prealloc, cached_state);
1094                 prealloc = NULL;
1095                 goto out;
1096         }
1097         state = rb_entry(node, struct extent_state, rb_node);
1098 hit_next:
1099         last_start = state->start;
1100         last_end = state->end;
1101
1102         /*
1103          * | ---- desired range ---- |
1104          * | state |
1105          *
1106          * Just lock what we found and keep going
1107          */
1108         if (state->start == start && state->end <= end) {
1109                 set_state_bits(tree, state, &bits);
1110                 cache_state(state, cached_state);
1111                 state = clear_state_bit(tree, state, &clear_bits, 0);
1112                 if (last_end == (u64)-1)
1113                         goto out;
1114                 start = last_end + 1;
1115                 if (start < end && state && state->start == start &&
1116                     !need_resched())
1117                         goto hit_next;
1118                 goto search_again;
1119         }
1120
1121         /*
1122          *     | ---- desired range ---- |
1123          * | state |
1124          *   or
1125          * | ------------- state -------------- |
1126          *
1127          * We need to split the extent we found, and may flip bits on
1128          * second half.
1129          *
1130          * If the extent we found extends past our
1131          * range, we just split and search again.  It'll get split
1132          * again the next time though.
1133          *
1134          * If the extent we found is inside our range, we set the
1135          * desired bit on it.
1136          */
1137         if (state->start < start) {
1138                 prealloc = alloc_extent_state_atomic(prealloc);
1139                 if (!prealloc) {
1140                         err = -ENOMEM;
1141                         goto out;
1142                 }
1143                 err = split_state(tree, state, prealloc, start);
1144                 if (err)
1145                         extent_io_tree_panic(tree, err);
1146                 prealloc = NULL;
1147                 if (err)
1148                         goto out;
1149                 if (state->end <= end) {
1150                         set_state_bits(tree, state, &bits);
1151                         cache_state(state, cached_state);
1152                         state = clear_state_bit(tree, state, &clear_bits, 0);
1153                         if (last_end == (u64)-1)
1154                                 goto out;
1155                         start = last_end + 1;
1156                         if (start < end && state && state->start == start &&
1157                             !need_resched())
1158                                 goto hit_next;
1159                 }
1160                 goto search_again;
1161         }
1162         /*
1163          * | ---- desired range ---- |
1164          *     | state | or               | state |
1165          *
1166          * There's a hole, we need to insert something in it and
1167          * ignore the extent we found.
1168          */
1169         if (state->start > start) {
1170                 u64 this_end;
1171                 if (end < last_start)
1172                         this_end = end;
1173                 else
1174                         this_end = last_start - 1;
1175
1176                 prealloc = alloc_extent_state_atomic(prealloc);
1177                 if (!prealloc) {
1178                         err = -ENOMEM;
1179                         goto out;
1180                 }
1181
1182                 /*
1183                  * Avoid to free 'prealloc' if it can be merged with
1184                  * the later extent.
1185                  */
1186                 err = insert_state(tree, prealloc, start, this_end,
1187                                    NULL, NULL, &bits);
1188                 if (err)
1189                         extent_io_tree_panic(tree, err);
1190                 cache_state(prealloc, cached_state);
1191                 prealloc = NULL;
1192                 start = this_end + 1;
1193                 goto search_again;
1194         }
1195         /*
1196          * | ---- desired range ---- |
1197          *                        | state |
1198          * We need to split the extent, and set the bit
1199          * on the first half
1200          */
1201         if (state->start <= end && state->end > end) {
1202                 prealloc = alloc_extent_state_atomic(prealloc);
1203                 if (!prealloc) {
1204                         err = -ENOMEM;
1205                         goto out;
1206                 }
1207
1208                 err = split_state(tree, state, prealloc, end + 1);
1209                 if (err)
1210                         extent_io_tree_panic(tree, err);
1211
1212                 set_state_bits(tree, prealloc, &bits);
1213                 cache_state(prealloc, cached_state);
1214                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1215                 prealloc = NULL;
1216                 goto out;
1217         }
1218
1219         goto search_again;
1220
1221 out:
1222         spin_unlock(&tree->lock);
1223         if (prealloc)
1224                 free_extent_state(prealloc);
1225
1226         return err;
1227
1228 search_again:
1229         if (start > end)
1230                 goto out;
1231         spin_unlock(&tree->lock);
1232         if (mask & __GFP_WAIT)
1233                 cond_resched();
1234         goto again;
1235 }
1236
1237 /* wrappers around set/clear extent bit */
1238 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239                      gfp_t mask)
1240 {
1241         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1242                               NULL, mask);
1243 }
1244
1245 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246                     unsigned long bits, gfp_t mask)
1247 {
1248         return set_extent_bit(tree, start, end, bits, NULL,
1249                               NULL, mask);
1250 }
1251
1252 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1253                       unsigned long bits, gfp_t mask)
1254 {
1255         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1256 }
1257
1258 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1259                         struct extent_state **cached_state, gfp_t mask)
1260 {
1261         return set_extent_bit(tree, start, end,
1262                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1263                               NULL, cached_state, mask);
1264 }
1265
1266 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267                       struct extent_state **cached_state, gfp_t mask)
1268 {
1269         return set_extent_bit(tree, start, end,
1270                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271                               NULL, cached_state, mask);
1272 }
1273
1274 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275                        gfp_t mask)
1276 {
1277         return clear_extent_bit(tree, start, end,
1278                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1279                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1280 }
1281
1282 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283                      gfp_t mask)
1284 {
1285         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1286                               NULL, mask);
1287 }
1288
1289 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290                         struct extent_state **cached_state, gfp_t mask)
1291 {
1292         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1293                               cached_state, mask);
1294 }
1295
1296 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297                           struct extent_state **cached_state, gfp_t mask)
1298 {
1299         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1300                                 cached_state, mask);
1301 }
1302
1303 /*
1304  * either insert or lock state struct between start and end use mask to tell
1305  * us if waiting is desired.
1306  */
1307 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1308                      unsigned long bits, struct extent_state **cached_state)
1309 {
1310         int err;
1311         u64 failed_start;
1312         while (1) {
1313                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314                                        EXTENT_LOCKED, &failed_start,
1315                                        cached_state, GFP_NOFS);
1316                 if (err == -EEXIST) {
1317                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318                         start = failed_start;
1319                 } else
1320                         break;
1321                 WARN_ON(start > end);
1322         }
1323         return err;
1324 }
1325
1326 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1327 {
1328         return lock_extent_bits(tree, start, end, 0, NULL);
1329 }
1330
1331 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1332 {
1333         int err;
1334         u64 failed_start;
1335
1336         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337                                &failed_start, NULL, GFP_NOFS);
1338         if (err == -EEXIST) {
1339                 if (failed_start > start)
1340                         clear_extent_bit(tree, start, failed_start - 1,
1341                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1342                 return 0;
1343         }
1344         return 1;
1345 }
1346
1347 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348                          struct extent_state **cached, gfp_t mask)
1349 {
1350         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351                                 mask);
1352 }
1353
1354 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1355 {
1356         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1357                                 GFP_NOFS);
1358 }
1359
1360 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362         unsigned long index = start >> PAGE_CACHE_SHIFT;
1363         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364         struct page *page;
1365
1366         while (index <= end_index) {
1367                 page = find_get_page(inode->i_mapping, index);
1368                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369                 clear_page_dirty_for_io(page);
1370                 page_cache_release(page);
1371                 index++;
1372         }
1373         return 0;
1374 }
1375
1376 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377 {
1378         unsigned long index = start >> PAGE_CACHE_SHIFT;
1379         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380         struct page *page;
1381
1382         while (index <= end_index) {
1383                 page = find_get_page(inode->i_mapping, index);
1384                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385                 account_page_redirty(page);
1386                 __set_page_dirty_nobuffers(page);
1387                 page_cache_release(page);
1388                 index++;
1389         }
1390         return 0;
1391 }
1392
1393 /*
1394  * helper function to set both pages and extents in the tree writeback
1395  */
1396 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1397 {
1398         unsigned long index = start >> PAGE_CACHE_SHIFT;
1399         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400         struct page *page;
1401
1402         while (index <= end_index) {
1403                 page = find_get_page(tree->mapping, index);
1404                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1405                 set_page_writeback(page);
1406                 page_cache_release(page);
1407                 index++;
1408         }
1409         return 0;
1410 }
1411
1412 /* find the first state struct with 'bits' set after 'start', and
1413  * return it.  tree->lock must be held.  NULL will returned if
1414  * nothing was found after 'start'
1415  */
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418                             u64 start, unsigned long bits)
1419 {
1420         struct rb_node *node;
1421         struct extent_state *state;
1422
1423         /*
1424          * this search will find all the extents that end after
1425          * our range starts.
1426          */
1427         node = tree_search(tree, start);
1428         if (!node)
1429                 goto out;
1430
1431         while (1) {
1432                 state = rb_entry(node, struct extent_state, rb_node);
1433                 if (state->end >= start && (state->state & bits))
1434                         return state;
1435
1436                 node = rb_next(node);
1437                 if (!node)
1438                         break;
1439         }
1440 out:
1441         return NULL;
1442 }
1443
1444 /*
1445  * find the first offset in the io tree with 'bits' set. zero is
1446  * returned if we find something, and *start_ret and *end_ret are
1447  * set to reflect the state struct that was found.
1448  *
1449  * If nothing was found, 1 is returned. If found something, return 0.
1450  */
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1453                           struct extent_state **cached_state)
1454 {
1455         struct extent_state *state;
1456         struct rb_node *n;
1457         int ret = 1;
1458
1459         spin_lock(&tree->lock);
1460         if (cached_state && *cached_state) {
1461                 state = *cached_state;
1462                 if (state->end == start - 1 && state->tree) {
1463                         n = rb_next(&state->rb_node);
1464                         while (n) {
1465                                 state = rb_entry(n, struct extent_state,
1466                                                  rb_node);
1467                                 if (state->state & bits)
1468                                         goto got_it;
1469                                 n = rb_next(n);
1470                         }
1471                         free_extent_state(*cached_state);
1472                         *cached_state = NULL;
1473                         goto out;
1474                 }
1475                 free_extent_state(*cached_state);
1476                 *cached_state = NULL;
1477         }
1478
1479         state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481         if (state) {
1482                 cache_state(state, cached_state);
1483                 *start_ret = state->start;
1484                 *end_ret = state->end;
1485                 ret = 0;
1486         }
1487 out:
1488         spin_unlock(&tree->lock);
1489         return ret;
1490 }
1491
1492 /*
1493  * find a contiguous range of bytes in the file marked as delalloc, not
1494  * more than 'max_bytes'.  start and end are used to return the range,
1495  *
1496  * 1 is returned if we find something, 0 if nothing was in the tree
1497  */
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499                                         u64 *start, u64 *end, u64 max_bytes,
1500                                         struct extent_state **cached_state)
1501 {
1502         struct rb_node *node;
1503         struct extent_state *state;
1504         u64 cur_start = *start;
1505         u64 found = 0;
1506         u64 total_bytes = 0;
1507
1508         spin_lock(&tree->lock);
1509
1510         /*
1511          * this search will find all the extents that end after
1512          * our range starts.
1513          */
1514         node = tree_search(tree, cur_start);
1515         if (!node) {
1516                 if (!found)
1517                         *end = (u64)-1;
1518                 goto out;
1519         }
1520
1521         while (1) {
1522                 state = rb_entry(node, struct extent_state, rb_node);
1523                 if (found && (state->start != cur_start ||
1524                               (state->state & EXTENT_BOUNDARY))) {
1525                         goto out;
1526                 }
1527                 if (!(state->state & EXTENT_DELALLOC)) {
1528                         if (!found)
1529                                 *end = state->end;
1530                         goto out;
1531                 }
1532                 if (!found) {
1533                         *start = state->start;
1534                         *cached_state = state;
1535                         atomic_inc(&state->refs);
1536                 }
1537                 found++;
1538                 *end = state->end;
1539                 cur_start = state->end + 1;
1540                 node = rb_next(node);
1541                 total_bytes += state->end - state->start + 1;
1542                 if (total_bytes >= max_bytes)
1543                         break;
1544                 if (!node)
1545                         break;
1546         }
1547 out:
1548         spin_unlock(&tree->lock);
1549         return found;
1550 }
1551
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553                                            struct page *locked_page,
1554                                            u64 start, u64 end)
1555 {
1556         int ret;
1557         struct page *pages[16];
1558         unsigned long index = start >> PAGE_CACHE_SHIFT;
1559         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560         unsigned long nr_pages = end_index - index + 1;
1561         int i;
1562
1563         if (index == locked_page->index && end_index == index)
1564                 return;
1565
1566         while (nr_pages > 0) {
1567                 ret = find_get_pages_contig(inode->i_mapping, index,
1568                                      min_t(unsigned long, nr_pages,
1569                                      ARRAY_SIZE(pages)), pages);
1570                 for (i = 0; i < ret; i++) {
1571                         if (pages[i] != locked_page)
1572                                 unlock_page(pages[i]);
1573                         page_cache_release(pages[i]);
1574                 }
1575                 nr_pages -= ret;
1576                 index += ret;
1577                 cond_resched();
1578         }
1579 }
1580
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582                                         struct page *locked_page,
1583                                         u64 delalloc_start,
1584                                         u64 delalloc_end)
1585 {
1586         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587         unsigned long start_index = index;
1588         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589         unsigned long pages_locked = 0;
1590         struct page *pages[16];
1591         unsigned long nrpages;
1592         int ret;
1593         int i;
1594
1595         /* the caller is responsible for locking the start index */
1596         if (index == locked_page->index && index == end_index)
1597                 return 0;
1598
1599         /* skip the page at the start index */
1600         nrpages = end_index - index + 1;
1601         while (nrpages > 0) {
1602                 ret = find_get_pages_contig(inode->i_mapping, index,
1603                                      min_t(unsigned long,
1604                                      nrpages, ARRAY_SIZE(pages)), pages);
1605                 if (ret == 0) {
1606                         ret = -EAGAIN;
1607                         goto done;
1608                 }
1609                 /* now we have an array of pages, lock them all */
1610                 for (i = 0; i < ret; i++) {
1611                         /*
1612                          * the caller is taking responsibility for
1613                          * locked_page
1614                          */
1615                         if (pages[i] != locked_page) {
1616                                 lock_page(pages[i]);
1617                                 if (!PageDirty(pages[i]) ||
1618                                     pages[i]->mapping != inode->i_mapping) {
1619                                         ret = -EAGAIN;
1620                                         unlock_page(pages[i]);
1621                                         page_cache_release(pages[i]);
1622                                         goto done;
1623                                 }
1624                         }
1625                         page_cache_release(pages[i]);
1626                         pages_locked++;
1627                 }
1628                 nrpages -= ret;
1629                 index += ret;
1630                 cond_resched();
1631         }
1632         ret = 0;
1633 done:
1634         if (ret && pages_locked) {
1635                 __unlock_for_delalloc(inode, locked_page,
1636                               delalloc_start,
1637                               ((u64)(start_index + pages_locked - 1)) <<
1638                               PAGE_CACHE_SHIFT);
1639         }
1640         return ret;
1641 }
1642
1643 /*
1644  * find a contiguous range of bytes in the file marked as delalloc, not
1645  * more than 'max_bytes'.  start and end are used to return the range,
1646  *
1647  * 1 is returned if we find something, 0 if nothing was in the tree
1648  */
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650                                     struct extent_io_tree *tree,
1651                                     struct page *locked_page, u64 *start,
1652                                     u64 *end, u64 max_bytes)
1653 {
1654         u64 delalloc_start;
1655         u64 delalloc_end;
1656         u64 found;
1657         struct extent_state *cached_state = NULL;
1658         int ret;
1659         int loops = 0;
1660
1661 again:
1662         /* step one, find a bunch of delalloc bytes starting at start */
1663         delalloc_start = *start;
1664         delalloc_end = 0;
1665         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666                                     max_bytes, &cached_state);
1667         if (!found || delalloc_end <= *start) {
1668                 *start = delalloc_start;
1669                 *end = delalloc_end;
1670                 free_extent_state(cached_state);
1671                 return 0;
1672         }
1673
1674         /*
1675          * start comes from the offset of locked_page.  We have to lock
1676          * pages in order, so we can't process delalloc bytes before
1677          * locked_page
1678          */
1679         if (delalloc_start < *start)
1680                 delalloc_start = *start;
1681
1682         /*
1683          * make sure to limit the number of pages we try to lock down
1684          */
1685         if (delalloc_end + 1 - delalloc_start > max_bytes)
1686                 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688         /* step two, lock all the pages after the page that has start */
1689         ret = lock_delalloc_pages(inode, locked_page,
1690                                   delalloc_start, delalloc_end);
1691         if (ret == -EAGAIN) {
1692                 /* some of the pages are gone, lets avoid looping by
1693                  * shortening the size of the delalloc range we're searching
1694                  */
1695                 free_extent_state(cached_state);
1696                 if (!loops) {
1697                         max_bytes = PAGE_CACHE_SIZE;
1698                         loops = 1;
1699                         goto again;
1700                 } else {
1701                         found = 0;
1702                         goto out_failed;
1703                 }
1704         }
1705         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1706
1707         /* step three, lock the state bits for the whole range */
1708         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1709
1710         /* then test to make sure it is all still delalloc */
1711         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1712                              EXTENT_DELALLOC, 1, cached_state);
1713         if (!ret) {
1714                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1715                                      &cached_state, GFP_NOFS);
1716                 __unlock_for_delalloc(inode, locked_page,
1717                               delalloc_start, delalloc_end);
1718                 cond_resched();
1719                 goto again;
1720         }
1721         free_extent_state(cached_state);
1722         *start = delalloc_start;
1723         *end = delalloc_end;
1724 out_failed:
1725         return found;
1726 }
1727
1728 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1729                                  struct page *locked_page,
1730                                  unsigned long clear_bits,
1731                                  unsigned long page_ops)
1732 {
1733         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1734         int ret;
1735         struct page *pages[16];
1736         unsigned long index = start >> PAGE_CACHE_SHIFT;
1737         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1738         unsigned long nr_pages = end_index - index + 1;
1739         int i;
1740
1741         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1742         if (page_ops == 0)
1743                 return 0;
1744
1745         while (nr_pages > 0) {
1746                 ret = find_get_pages_contig(inode->i_mapping, index,
1747                                      min_t(unsigned long,
1748                                      nr_pages, ARRAY_SIZE(pages)), pages);
1749                 for (i = 0; i < ret; i++) {
1750
1751                         if (page_ops & PAGE_SET_PRIVATE2)
1752                                 SetPagePrivate2(pages[i]);
1753
1754                         if (pages[i] == locked_page) {
1755                                 page_cache_release(pages[i]);
1756                                 continue;
1757                         }
1758                         if (page_ops & PAGE_CLEAR_DIRTY)
1759                                 clear_page_dirty_for_io(pages[i]);
1760                         if (page_ops & PAGE_SET_WRITEBACK)
1761                                 set_page_writeback(pages[i]);
1762                         if (page_ops & PAGE_END_WRITEBACK)
1763                                 end_page_writeback(pages[i]);
1764                         if (page_ops & PAGE_UNLOCK)
1765                                 unlock_page(pages[i]);
1766                         page_cache_release(pages[i]);
1767                 }
1768                 nr_pages -= ret;
1769                 index += ret;
1770                 cond_resched();
1771         }
1772         return 0;
1773 }
1774
1775 /*
1776  * count the number of bytes in the tree that have a given bit(s)
1777  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1778  * cached.  The total number found is returned.
1779  */
1780 u64 count_range_bits(struct extent_io_tree *tree,
1781                      u64 *start, u64 search_end, u64 max_bytes,
1782                      unsigned long bits, int contig)
1783 {
1784         struct rb_node *node;
1785         struct extent_state *state;
1786         u64 cur_start = *start;
1787         u64 total_bytes = 0;
1788         u64 last = 0;
1789         int found = 0;
1790
1791         if (WARN_ON(search_end <= cur_start))
1792                 return 0;
1793
1794         spin_lock(&tree->lock);
1795         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796                 total_bytes = tree->dirty_bytes;
1797                 goto out;
1798         }
1799         /*
1800          * this search will find all the extents that end after
1801          * our range starts.
1802          */
1803         node = tree_search(tree, cur_start);
1804         if (!node)
1805                 goto out;
1806
1807         while (1) {
1808                 state = rb_entry(node, struct extent_state, rb_node);
1809                 if (state->start > search_end)
1810                         break;
1811                 if (contig && found && state->start > last + 1)
1812                         break;
1813                 if (state->end >= cur_start && (state->state & bits) == bits) {
1814                         total_bytes += min(search_end, state->end) + 1 -
1815                                        max(cur_start, state->start);
1816                         if (total_bytes >= max_bytes)
1817                                 break;
1818                         if (!found) {
1819                                 *start = max(cur_start, state->start);
1820                                 found = 1;
1821                         }
1822                         last = state->end;
1823                 } else if (contig && found) {
1824                         break;
1825                 }
1826                 node = rb_next(node);
1827                 if (!node)
1828                         break;
1829         }
1830 out:
1831         spin_unlock(&tree->lock);
1832         return total_bytes;
1833 }
1834
1835 /*
1836  * set the private field for a given byte offset in the tree.  If there isn't
1837  * an extent_state there already, this does nothing.
1838  */
1839 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1840 {
1841         struct rb_node *node;
1842         struct extent_state *state;
1843         int ret = 0;
1844
1845         spin_lock(&tree->lock);
1846         /*
1847          * this search will find all the extents that end after
1848          * our range starts.
1849          */
1850         node = tree_search(tree, start);
1851         if (!node) {
1852                 ret = -ENOENT;
1853                 goto out;
1854         }
1855         state = rb_entry(node, struct extent_state, rb_node);
1856         if (state->start != start) {
1857                 ret = -ENOENT;
1858                 goto out;
1859         }
1860         state->private = private;
1861 out:
1862         spin_unlock(&tree->lock);
1863         return ret;
1864 }
1865
1866 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1867 {
1868         struct rb_node *node;
1869         struct extent_state *state;
1870         int ret = 0;
1871
1872         spin_lock(&tree->lock);
1873         /*
1874          * this search will find all the extents that end after
1875          * our range starts.
1876          */
1877         node = tree_search(tree, start);
1878         if (!node) {
1879                 ret = -ENOENT;
1880                 goto out;
1881         }
1882         state = rb_entry(node, struct extent_state, rb_node);
1883         if (state->start != start) {
1884                 ret = -ENOENT;
1885                 goto out;
1886         }
1887         *private = state->private;
1888 out:
1889         spin_unlock(&tree->lock);
1890         return ret;
1891 }
1892
1893 /*
1894  * searches a range in the state tree for a given mask.
1895  * If 'filled' == 1, this returns 1 only if every extent in the tree
1896  * has the bits set.  Otherwise, 1 is returned if any bit in the
1897  * range is found set.
1898  */
1899 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1900                    unsigned long bits, int filled, struct extent_state *cached)
1901 {
1902         struct extent_state *state = NULL;
1903         struct rb_node *node;
1904         int bitset = 0;
1905
1906         spin_lock(&tree->lock);
1907         if (cached && cached->tree && cached->start <= start &&
1908             cached->end > start)
1909                 node = &cached->rb_node;
1910         else
1911                 node = tree_search(tree, start);
1912         while (node && start <= end) {
1913                 state = rb_entry(node, struct extent_state, rb_node);
1914
1915                 if (filled && state->start > start) {
1916                         bitset = 0;
1917                         break;
1918                 }
1919
1920                 if (state->start > end)
1921                         break;
1922
1923                 if (state->state & bits) {
1924                         bitset = 1;
1925                         if (!filled)
1926                                 break;
1927                 } else if (filled) {
1928                         bitset = 0;
1929                         break;
1930                 }
1931
1932                 if (state->end == (u64)-1)
1933                         break;
1934
1935                 start = state->end + 1;
1936                 if (start > end)
1937                         break;
1938                 node = rb_next(node);
1939                 if (!node) {
1940                         if (filled)
1941                                 bitset = 0;
1942                         break;
1943                 }
1944         }
1945         spin_unlock(&tree->lock);
1946         return bitset;
1947 }
1948
1949 /*
1950  * helper function to set a given page up to date if all the
1951  * extents in the tree for that page are up to date
1952  */
1953 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1954 {
1955         u64 start = page_offset(page);
1956         u64 end = start + PAGE_CACHE_SIZE - 1;
1957         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1958                 SetPageUptodate(page);
1959 }
1960
1961 /*
1962  * When IO fails, either with EIO or csum verification fails, we
1963  * try other mirrors that might have a good copy of the data.  This
1964  * io_failure_record is used to record state as we go through all the
1965  * mirrors.  If another mirror has good data, the page is set up to date
1966  * and things continue.  If a good mirror can't be found, the original
1967  * bio end_io callback is called to indicate things have failed.
1968  */
1969 struct io_failure_record {
1970         struct page *page;
1971         u64 start;
1972         u64 len;
1973         u64 logical;
1974         unsigned long bio_flags;
1975         int this_mirror;
1976         int failed_mirror;
1977         int in_validation;
1978 };
1979
1980 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1981                                 int did_repair)
1982 {
1983         int ret;
1984         int err = 0;
1985         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1986
1987         set_state_private(failure_tree, rec->start, 0);
1988         ret = clear_extent_bits(failure_tree, rec->start,
1989                                 rec->start + rec->len - 1,
1990                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1991         if (ret)
1992                 err = ret;
1993
1994         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1995                                 rec->start + rec->len - 1,
1996                                 EXTENT_DAMAGED, GFP_NOFS);
1997         if (ret && !err)
1998                 err = ret;
1999
2000         kfree(rec);
2001         return err;
2002 }
2003
2004 /*
2005  * this bypasses the standard btrfs submit functions deliberately, as
2006  * the standard behavior is to write all copies in a raid setup. here we only
2007  * want to write the one bad copy. so we do the mapping for ourselves and issue
2008  * submit_bio directly.
2009  * to avoid any synchronization issues, wait for the data after writing, which
2010  * actually prevents the read that triggered the error from finishing.
2011  * currently, there can be no more than two copies of every data bit. thus,
2012  * exactly one rewrite is required.
2013  */
2014 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2015                         u64 length, u64 logical, struct page *page,
2016                         int mirror_num)
2017 {
2018         struct bio *bio;
2019         struct btrfs_device *dev;
2020         u64 map_length = 0;
2021         u64 sector;
2022         struct btrfs_bio *bbio = NULL;
2023         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2024         int ret;
2025
2026         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2027         BUG_ON(!mirror_num);
2028
2029         /* we can't repair anything in raid56 yet */
2030         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2031                 return 0;
2032
2033         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2034         if (!bio)
2035                 return -EIO;
2036         bio->bi_size = 0;
2037         map_length = length;
2038
2039         ret = btrfs_map_block(fs_info, WRITE, logical,
2040                               &map_length, &bbio, mirror_num);
2041         if (ret) {
2042                 bio_put(bio);
2043                 return -EIO;
2044         }
2045         BUG_ON(mirror_num != bbio->mirror_num);
2046         sector = bbio->stripes[mirror_num-1].physical >> 9;
2047         bio->bi_sector = sector;
2048         dev = bbio->stripes[mirror_num-1].dev;
2049         kfree(bbio);
2050         if (!dev || !dev->bdev || !dev->writeable) {
2051                 bio_put(bio);
2052                 return -EIO;
2053         }
2054         bio->bi_bdev = dev->bdev;
2055         bio_add_page(bio, page, length, start - page_offset(page));
2056
2057         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2058                 /* try to remap that extent elsewhere? */
2059                 bio_put(bio);
2060                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2061                 return -EIO;
2062         }
2063
2064         printk_ratelimited_in_rcu(KERN_INFO
2065                         "BTRFS: read error corrected: ino %lu off %llu "
2066                     "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2067                     start, rcu_str_deref(dev->name), sector);
2068
2069         bio_put(bio);
2070         return 0;
2071 }
2072
2073 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2074                          int mirror_num)
2075 {
2076         u64 start = eb->start;
2077         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2078         int ret = 0;
2079
2080         if (root->fs_info->sb->s_flags & MS_RDONLY)
2081                 return -EROFS;
2082
2083         for (i = 0; i < num_pages; i++) {
2084                 struct page *p = extent_buffer_page(eb, i);
2085                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2086                                         start, p, mirror_num);
2087                 if (ret)
2088                         break;
2089                 start += PAGE_CACHE_SIZE;
2090         }
2091
2092         return ret;
2093 }
2094
2095 /*
2096  * each time an IO finishes, we do a fast check in the IO failure tree
2097  * to see if we need to process or clean up an io_failure_record
2098  */
2099 static int clean_io_failure(u64 start, struct page *page)
2100 {
2101         u64 private;
2102         u64 private_failure;
2103         struct io_failure_record *failrec;
2104         struct inode *inode = page->mapping->host;
2105         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106         struct extent_state *state;
2107         int num_copies;
2108         int did_repair = 0;
2109         int ret;
2110
2111         private = 0;
2112         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2113                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2114         if (!ret)
2115                 return 0;
2116
2117         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2118                                 &private_failure);
2119         if (ret)
2120                 return 0;
2121
2122         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2123         BUG_ON(!failrec->this_mirror);
2124
2125         if (failrec->in_validation) {
2126                 /* there was no real error, just free the record */
2127                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2128                          failrec->start);
2129                 did_repair = 1;
2130                 goto out;
2131         }
2132         if (fs_info->sb->s_flags & MS_RDONLY)
2133                 goto out;
2134
2135         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2136         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2137                                             failrec->start,
2138                                             EXTENT_LOCKED);
2139         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2140
2141         if (state && state->start <= failrec->start &&
2142             state->end >= failrec->start + failrec->len - 1) {
2143                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2144                                               failrec->len);
2145                 if (num_copies > 1)  {
2146                         ret = repair_io_failure(fs_info, start, failrec->len,
2147                                                 failrec->logical, page,
2148                                                 failrec->failed_mirror);
2149                         did_repair = !ret;
2150                 }
2151                 ret = 0;
2152         }
2153
2154 out:
2155         if (!ret)
2156                 ret = free_io_failure(inode, failrec, did_repair);
2157
2158         return ret;
2159 }
2160
2161 /*
2162  * this is a generic handler for readpage errors (default
2163  * readpage_io_failed_hook). if other copies exist, read those and write back
2164  * good data to the failed position. does not investigate in remapping the
2165  * failed extent elsewhere, hoping the device will be smart enough to do this as
2166  * needed
2167  */
2168
2169 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2170                               struct page *page, u64 start, u64 end,
2171                               int failed_mirror)
2172 {
2173         struct io_failure_record *failrec = NULL;
2174         u64 private;
2175         struct extent_map *em;
2176         struct inode *inode = page->mapping->host;
2177         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2179         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180         struct bio *bio;
2181         struct btrfs_io_bio *btrfs_failed_bio;
2182         struct btrfs_io_bio *btrfs_bio;
2183         int num_copies;
2184         int ret;
2185         int read_mode;
2186         u64 logical;
2187
2188         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2189
2190         ret = get_state_private(failure_tree, start, &private);
2191         if (ret) {
2192                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193                 if (!failrec)
2194                         return -ENOMEM;
2195                 failrec->start = start;
2196                 failrec->len = end - start + 1;
2197                 failrec->this_mirror = 0;
2198                 failrec->bio_flags = 0;
2199                 failrec->in_validation = 0;
2200
2201                 read_lock(&em_tree->lock);
2202                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2203                 if (!em) {
2204                         read_unlock(&em_tree->lock);
2205                         kfree(failrec);
2206                         return -EIO;
2207                 }
2208
2209                 if (em->start > start || em->start + em->len <= start) {
2210                         free_extent_map(em);
2211                         em = NULL;
2212                 }
2213                 read_unlock(&em_tree->lock);
2214
2215                 if (!em) {
2216                         kfree(failrec);
2217                         return -EIO;
2218                 }
2219                 logical = start - em->start;
2220                 logical = em->block_start + logical;
2221                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222                         logical = em->block_start;
2223                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224                         extent_set_compress_type(&failrec->bio_flags,
2225                                                  em->compress_type);
2226                 }
2227                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2228                          "len=%llu\n", logical, start, failrec->len);
2229                 failrec->logical = logical;
2230                 free_extent_map(em);
2231
2232                 /* set the bits in the private failure tree */
2233                 ret = set_extent_bits(failure_tree, start, end,
2234                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2235                 if (ret >= 0)
2236                         ret = set_state_private(failure_tree, start,
2237                                                 (u64)(unsigned long)failrec);
2238                 /* set the bits in the inode's tree */
2239                 if (ret >= 0)
2240                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241                                                 GFP_NOFS);
2242                 if (ret < 0) {
2243                         kfree(failrec);
2244                         return ret;
2245                 }
2246         } else {
2247                 failrec = (struct io_failure_record *)(unsigned long)private;
2248                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2249                          "start=%llu, len=%llu, validation=%d\n",
2250                          failrec->logical, failrec->start, failrec->len,
2251                          failrec->in_validation);
2252                 /*
2253                  * when data can be on disk more than twice, add to failrec here
2254                  * (e.g. with a list for failed_mirror) to make
2255                  * clean_io_failure() clean all those errors at once.
2256                  */
2257         }
2258         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2259                                       failrec->logical, failrec->len);
2260         if (num_copies == 1) {
2261                 /*
2262                  * we only have a single copy of the data, so don't bother with
2263                  * all the retry and error correction code that follows. no
2264                  * matter what the error is, it is very likely to persist.
2265                  */
2266                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2267                          num_copies, failrec->this_mirror, failed_mirror);
2268                 free_io_failure(inode, failrec, 0);
2269                 return -EIO;
2270         }
2271
2272         /*
2273          * there are two premises:
2274          *      a) deliver good data to the caller
2275          *      b) correct the bad sectors on disk
2276          */
2277         if (failed_bio->bi_vcnt > 1) {
2278                 /*
2279                  * to fulfill b), we need to know the exact failing sectors, as
2280                  * we don't want to rewrite any more than the failed ones. thus,
2281                  * we need separate read requests for the failed bio
2282                  *
2283                  * if the following BUG_ON triggers, our validation request got
2284                  * merged. we need separate requests for our algorithm to work.
2285                  */
2286                 BUG_ON(failrec->in_validation);
2287                 failrec->in_validation = 1;
2288                 failrec->this_mirror = failed_mirror;
2289                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2290         } else {
2291                 /*
2292                  * we're ready to fulfill a) and b) alongside. get a good copy
2293                  * of the failed sector and if we succeed, we have setup
2294                  * everything for repair_io_failure to do the rest for us.
2295                  */
2296                 if (failrec->in_validation) {
2297                         BUG_ON(failrec->this_mirror != failed_mirror);
2298                         failrec->in_validation = 0;
2299                         failrec->this_mirror = 0;
2300                 }
2301                 failrec->failed_mirror = failed_mirror;
2302                 failrec->this_mirror++;
2303                 if (failrec->this_mirror == failed_mirror)
2304                         failrec->this_mirror++;
2305                 read_mode = READ_SYNC;
2306         }
2307
2308         if (failrec->this_mirror > num_copies) {
2309                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310                          num_copies, failrec->this_mirror, failed_mirror);
2311                 free_io_failure(inode, failrec, 0);
2312                 return -EIO;
2313         }
2314
2315         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2316         if (!bio) {
2317                 free_io_failure(inode, failrec, 0);
2318                 return -EIO;
2319         }
2320         bio->bi_end_io = failed_bio->bi_end_io;
2321         bio->bi_sector = failrec->logical >> 9;
2322         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2323         bio->bi_size = 0;
2324
2325         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2326         if (btrfs_failed_bio->csum) {
2327                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2328                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2329
2330                 btrfs_bio = btrfs_io_bio(bio);
2331                 btrfs_bio->csum = btrfs_bio->csum_inline;
2332                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2333                 phy_offset *= csum_size;
2334                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2335                        csum_size);
2336         }
2337
2338         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2339
2340         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2341                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2342                  failrec->this_mirror, num_copies, failrec->in_validation);
2343
2344         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2345                                          failrec->this_mirror,
2346                                          failrec->bio_flags, 0);
2347         return ret;
2348 }
2349
2350 /* lots and lots of room for performance fixes in the end_bio funcs */
2351
2352 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2353 {
2354         int uptodate = (err == 0);
2355         struct extent_io_tree *tree;
2356         int ret;
2357
2358         tree = &BTRFS_I(page->mapping->host)->io_tree;
2359
2360         if (tree->ops && tree->ops->writepage_end_io_hook) {
2361                 ret = tree->ops->writepage_end_io_hook(page, start,
2362                                                end, NULL, uptodate);
2363                 if (ret)
2364                         uptodate = 0;
2365         }
2366
2367         if (!uptodate) {
2368                 ClearPageUptodate(page);
2369                 SetPageError(page);
2370         }
2371         return 0;
2372 }
2373
2374 /*
2375  * after a writepage IO is done, we need to:
2376  * clear the uptodate bits on error
2377  * clear the writeback bits in the extent tree for this IO
2378  * end_page_writeback if the page has no more pending IO
2379  *
2380  * Scheduling is not allowed, so the extent state tree is expected
2381  * to have one and only one object corresponding to this IO.
2382  */
2383 static void end_bio_extent_writepage(struct bio *bio, int err)
2384 {
2385         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2386         u64 start;
2387         u64 end;
2388
2389         do {
2390                 struct page *page = bvec->bv_page;
2391
2392                 /* We always issue full-page reads, but if some block
2393                  * in a page fails to read, blk_update_request() will
2394                  * advance bv_offset and adjust bv_len to compensate.
2395                  * Print a warning for nonzero offsets, and an error
2396                  * if they don't add up to a full page.  */
2397                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2398                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2399                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2400                                    "partial page write in btrfs with offset %u and length %u",
2401                                         bvec->bv_offset, bvec->bv_len);
2402                         else
2403                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2404                                    "incomplete page write in btrfs with offset %u and "
2405                                    "length %u",
2406                                         bvec->bv_offset, bvec->bv_len);
2407                 }
2408
2409                 start = page_offset(page);
2410                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2411
2412                 if (--bvec >= bio->bi_io_vec)
2413                         prefetchw(&bvec->bv_page->flags);
2414
2415                 if (end_extent_writepage(page, err, start, end))
2416                         continue;
2417
2418                 end_page_writeback(page);
2419         } while (bvec >= bio->bi_io_vec);
2420
2421         bio_put(bio);
2422 }
2423
2424 static void
2425 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2426                               int uptodate)
2427 {
2428         struct extent_state *cached = NULL;
2429         u64 end = start + len - 1;
2430
2431         if (uptodate && tree->track_uptodate)
2432                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2433         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2434 }
2435
2436 /*
2437  * after a readpage IO is done, we need to:
2438  * clear the uptodate bits on error
2439  * set the uptodate bits if things worked
2440  * set the page up to date if all extents in the tree are uptodate
2441  * clear the lock bit in the extent tree
2442  * unlock the page if there are no other extents locked for it
2443  *
2444  * Scheduling is not allowed, so the extent state tree is expected
2445  * to have one and only one object corresponding to this IO.
2446  */
2447 static void end_bio_extent_readpage(struct bio *bio, int err)
2448 {
2449         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2450         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2451         struct bio_vec *bvec = bio->bi_io_vec;
2452         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453         struct extent_io_tree *tree;
2454         u64 offset = 0;
2455         u64 start;
2456         u64 end;
2457         u64 len;
2458         u64 extent_start = 0;
2459         u64 extent_len = 0;
2460         int mirror;
2461         int ret;
2462
2463         if (err)
2464                 uptodate = 0;
2465
2466         do {
2467                 struct page *page = bvec->bv_page;
2468                 struct inode *inode = page->mapping->host;
2469
2470                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2471                          "mirror=%lu\n", (u64)bio->bi_sector, err,
2472                          io_bio->mirror_num);
2473                 tree = &BTRFS_I(inode)->io_tree;
2474
2475                 /* We always issue full-page reads, but if some block
2476                  * in a page fails to read, blk_update_request() will
2477                  * advance bv_offset and adjust bv_len to compensate.
2478                  * Print a warning for nonzero offsets, and an error
2479                  * if they don't add up to a full page.  */
2480                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2481                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2482                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483                                    "partial page read in btrfs with offset %u and length %u",
2484                                         bvec->bv_offset, bvec->bv_len);
2485                         else
2486                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487                                    "incomplete page read in btrfs with offset %u and "
2488                                    "length %u",
2489                                         bvec->bv_offset, bvec->bv_len);
2490                 }
2491
2492                 start = page_offset(page);
2493                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2494                 len = bvec->bv_len;
2495
2496                 if (++bvec <= bvec_end)
2497                         prefetchw(&bvec->bv_page->flags);
2498
2499                 mirror = io_bio->mirror_num;
2500                 if (likely(uptodate && tree->ops &&
2501                            tree->ops->readpage_end_io_hook)) {
2502                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2503                                                               page, start, end,
2504                                                               mirror);
2505                         if (ret)
2506                                 uptodate = 0;
2507                         else
2508                                 clean_io_failure(start, page);
2509                 }
2510
2511                 if (likely(uptodate))
2512                         goto readpage_ok;
2513
2514                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2515                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2516                         if (!ret && !err &&
2517                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2518                                 uptodate = 1;
2519                 } else {
2520                         /*
2521                          * The generic bio_readpage_error handles errors the
2522                          * following way: If possible, new read requests are
2523                          * created and submitted and will end up in
2524                          * end_bio_extent_readpage as well (if we're lucky, not
2525                          * in the !uptodate case). In that case it returns 0 and
2526                          * we just go on with the next page in our bio. If it
2527                          * can't handle the error it will return -EIO and we
2528                          * remain responsible for that page.
2529                          */
2530                         ret = bio_readpage_error(bio, offset, page, start, end,
2531                                                  mirror);
2532                         if (ret == 0) {
2533                                 uptodate =
2534                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2535                                 if (err)
2536                                         uptodate = 0;
2537                                 continue;
2538                         }
2539                 }
2540 readpage_ok:
2541                 if (likely(uptodate)) {
2542                         loff_t i_size = i_size_read(inode);
2543                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2544                         unsigned offset;
2545
2546                         /* Zero out the end if this page straddles i_size */
2547                         offset = i_size & (PAGE_CACHE_SIZE-1);
2548                         if (page->index == end_index && offset)
2549                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2550                         SetPageUptodate(page);
2551                 } else {
2552                         ClearPageUptodate(page);
2553                         SetPageError(page);
2554                 }
2555                 unlock_page(page);
2556                 offset += len;
2557
2558                 if (unlikely(!uptodate)) {
2559                         if (extent_len) {
2560                                 endio_readpage_release_extent(tree,
2561                                                               extent_start,
2562                                                               extent_len, 1);
2563                                 extent_start = 0;
2564                                 extent_len = 0;
2565                         }
2566                         endio_readpage_release_extent(tree, start,
2567                                                       end - start + 1, 0);
2568                 } else if (!extent_len) {
2569                         extent_start = start;
2570                         extent_len = end + 1 - start;
2571                 } else if (extent_start + extent_len == start) {
2572                         extent_len += end + 1 - start;
2573                 } else {
2574                         endio_readpage_release_extent(tree, extent_start,
2575                                                       extent_len, uptodate);
2576                         extent_start = start;
2577                         extent_len = end + 1 - start;
2578                 }
2579         } while (bvec <= bvec_end);
2580
2581         if (extent_len)
2582                 endio_readpage_release_extent(tree, extent_start, extent_len,
2583                                               uptodate);
2584         if (io_bio->end_io)
2585                 io_bio->end_io(io_bio, err);
2586         bio_put(bio);
2587 }
2588
2589 /*
2590  * this allocates from the btrfs_bioset.  We're returning a bio right now
2591  * but you can call btrfs_io_bio for the appropriate container_of magic
2592  */
2593 struct bio *
2594 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2595                 gfp_t gfp_flags)
2596 {
2597         struct btrfs_io_bio *btrfs_bio;
2598         struct bio *bio;
2599
2600         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2601
2602         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2603                 while (!bio && (nr_vecs /= 2)) {
2604                         bio = bio_alloc_bioset(gfp_flags,
2605                                                nr_vecs, btrfs_bioset);
2606                 }
2607         }
2608
2609         if (bio) {
2610                 bio->bi_size = 0;
2611                 bio->bi_bdev = bdev;
2612                 bio->bi_sector = first_sector;
2613                 btrfs_bio = btrfs_io_bio(bio);
2614                 btrfs_bio->csum = NULL;
2615                 btrfs_bio->csum_allocated = NULL;
2616                 btrfs_bio->end_io = NULL;
2617         }
2618         return bio;
2619 }
2620
2621 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2622 {
2623         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2624 }
2625
2626
2627 /* this also allocates from the btrfs_bioset */
2628 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2629 {
2630         struct btrfs_io_bio *btrfs_bio;
2631         struct bio *bio;
2632
2633         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2634         if (bio) {
2635                 btrfs_bio = btrfs_io_bio(bio);
2636                 btrfs_bio->csum = NULL;
2637                 btrfs_bio->csum_allocated = NULL;
2638                 btrfs_bio->end_io = NULL;
2639         }
2640         return bio;
2641 }
2642
2643
2644 static int __must_check submit_one_bio(int rw, struct bio *bio,
2645                                        int mirror_num, unsigned long bio_flags)
2646 {
2647         int ret = 0;
2648         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2649         struct page *page = bvec->bv_page;
2650         struct extent_io_tree *tree = bio->bi_private;
2651         u64 start;
2652
2653         start = page_offset(page) + bvec->bv_offset;
2654
2655         bio->bi_private = NULL;
2656
2657         bio_get(bio);
2658
2659         if (tree->ops && tree->ops->submit_bio_hook)
2660                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2661                                            mirror_num, bio_flags, start);
2662         else
2663                 btrfsic_submit_bio(rw, bio);
2664
2665         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2666                 ret = -EOPNOTSUPP;
2667         bio_put(bio);
2668         return ret;
2669 }
2670
2671 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2672                      unsigned long offset, size_t size, struct bio *bio,
2673                      unsigned long bio_flags)
2674 {
2675         int ret = 0;
2676         if (tree->ops && tree->ops->merge_bio_hook)
2677                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2678                                                 bio_flags);
2679         BUG_ON(ret < 0);
2680         return ret;
2681
2682 }
2683
2684 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2685                               struct page *page, sector_t sector,
2686                               size_t size, unsigned long offset,
2687                               struct block_device *bdev,
2688                               struct bio **bio_ret,
2689                               unsigned long max_pages,
2690                               bio_end_io_t end_io_func,
2691                               int mirror_num,
2692                               unsigned long prev_bio_flags,
2693                               unsigned long bio_flags)
2694 {
2695         int ret = 0;
2696         struct bio *bio;
2697         int nr;
2698         int contig = 0;
2699         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2700         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2701         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2702
2703         if (bio_ret && *bio_ret) {
2704                 bio = *bio_ret;
2705                 if (old_compressed)
2706                         contig = bio->bi_sector == sector;
2707                 else
2708                         contig = bio_end_sector(bio) == sector;
2709
2710                 if (prev_bio_flags != bio_flags || !contig ||
2711                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2712                     bio_add_page(bio, page, page_size, offset) < page_size) {
2713                         ret = submit_one_bio(rw, bio, mirror_num,
2714                                              prev_bio_flags);
2715                         if (ret < 0)
2716                                 return ret;
2717                         bio = NULL;
2718                 } else {
2719                         return 0;
2720                 }
2721         }
2722         if (this_compressed)
2723                 nr = BIO_MAX_PAGES;
2724         else
2725                 nr = bio_get_nr_vecs(bdev);
2726
2727         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2728         if (!bio)
2729                 return -ENOMEM;
2730
2731         bio_add_page(bio, page, page_size, offset);
2732         bio->bi_end_io = end_io_func;
2733         bio->bi_private = tree;
2734
2735         if (bio_ret)
2736                 *bio_ret = bio;
2737         else
2738                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2739
2740         return ret;
2741 }
2742
2743 static void attach_extent_buffer_page(struct extent_buffer *eb,
2744                                       struct page *page)
2745 {
2746         if (!PagePrivate(page)) {
2747                 SetPagePrivate(page);
2748                 page_cache_get(page);
2749                 set_page_private(page, (unsigned long)eb);
2750         } else {
2751                 WARN_ON(page->private != (unsigned long)eb);
2752         }
2753 }
2754
2755 void set_page_extent_mapped(struct page *page)
2756 {
2757         if (!PagePrivate(page)) {
2758                 SetPagePrivate(page);
2759                 page_cache_get(page);
2760                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2761         }
2762 }
2763
2764 static struct extent_map *
2765 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2766                  u64 start, u64 len, get_extent_t *get_extent,
2767                  struct extent_map **em_cached)
2768 {
2769         struct extent_map *em;
2770
2771         if (em_cached && *em_cached) {
2772                 em = *em_cached;
2773                 if (extent_map_in_tree(em) && start >= em->start &&
2774                     start < extent_map_end(em)) {
2775                         atomic_inc(&em->refs);
2776                         return em;
2777                 }
2778
2779                 free_extent_map(em);
2780                 *em_cached = NULL;
2781         }
2782
2783         em = get_extent(inode, page, pg_offset, start, len, 0);
2784         if (em_cached && !IS_ERR_OR_NULL(em)) {
2785                 BUG_ON(*em_cached);
2786                 atomic_inc(&em->refs);
2787                 *em_cached = em;
2788         }
2789         return em;
2790 }
2791 /*
2792  * basic readpage implementation.  Locked extent state structs are inserted
2793  * into the tree that are removed when the IO is done (by the end_io
2794  * handlers)
2795  * XXX JDM: This needs looking at to ensure proper page locking
2796  */
2797 static int __do_readpage(struct extent_io_tree *tree,
2798                          struct page *page,
2799                          get_extent_t *get_extent,
2800                          struct extent_map **em_cached,
2801                          struct bio **bio, int mirror_num,
2802                          unsigned long *bio_flags, int rw)
2803 {
2804         struct inode *inode = page->mapping->host;
2805         u64 start = page_offset(page);
2806         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2807         u64 end;
2808         u64 cur = start;
2809         u64 extent_offset;
2810         u64 last_byte = i_size_read(inode);
2811         u64 block_start;
2812         u64 cur_end;
2813         sector_t sector;
2814         struct extent_map *em;
2815         struct block_device *bdev;
2816         int ret;
2817         int nr = 0;
2818         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2819         size_t pg_offset = 0;
2820         size_t iosize;
2821         size_t disk_io_size;
2822         size_t blocksize = inode->i_sb->s_blocksize;
2823         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2824
2825         set_page_extent_mapped(page);
2826
2827         end = page_end;
2828         if (!PageUptodate(page)) {
2829                 if (cleancache_get_page(page) == 0) {
2830                         BUG_ON(blocksize != PAGE_SIZE);
2831                         unlock_extent(tree, start, end);
2832                         goto out;
2833                 }
2834         }
2835
2836         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2837                 char *userpage;
2838                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2839
2840                 if (zero_offset) {
2841                         iosize = PAGE_CACHE_SIZE - zero_offset;
2842                         userpage = kmap_atomic(page);
2843                         memset(userpage + zero_offset, 0, iosize);
2844                         flush_dcache_page(page);
2845                         kunmap_atomic(userpage);
2846                 }
2847         }
2848         while (cur <= end) {
2849                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2850
2851                 if (cur >= last_byte) {
2852                         char *userpage;
2853                         struct extent_state *cached = NULL;
2854
2855                         iosize = PAGE_CACHE_SIZE - pg_offset;
2856                         userpage = kmap_atomic(page);
2857                         memset(userpage + pg_offset, 0, iosize);
2858                         flush_dcache_page(page);
2859                         kunmap_atomic(userpage);
2860                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2861                                             &cached, GFP_NOFS);
2862                         if (!parent_locked)
2863                                 unlock_extent_cached(tree, cur,
2864                                                      cur + iosize - 1,
2865                                                      &cached, GFP_NOFS);
2866                         break;
2867                 }
2868                 em = __get_extent_map(inode, page, pg_offset, cur,
2869                                       end - cur + 1, get_extent, em_cached);
2870                 if (IS_ERR_OR_NULL(em)) {
2871                         SetPageError(page);
2872                         if (!parent_locked)
2873                                 unlock_extent(tree, cur, end);
2874                         break;
2875                 }
2876                 extent_offset = cur - em->start;
2877                 BUG_ON(extent_map_end(em) <= cur);
2878                 BUG_ON(end < cur);
2879
2880                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2881                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2882                         extent_set_compress_type(&this_bio_flag,
2883                                                  em->compress_type);
2884                 }
2885
2886                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2887                 cur_end = min(extent_map_end(em) - 1, end);
2888                 iosize = ALIGN(iosize, blocksize);
2889                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2890                         disk_io_size = em->block_len;
2891                         sector = em->block_start >> 9;
2892                 } else {
2893                         sector = (em->block_start + extent_offset) >> 9;
2894                         disk_io_size = iosize;
2895                 }
2896                 bdev = em->bdev;
2897                 block_start = em->block_start;
2898                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2899                         block_start = EXTENT_MAP_HOLE;
2900                 free_extent_map(em);
2901                 em = NULL;
2902
2903                 /* we've found a hole, just zero and go on */
2904                 if (block_start == EXTENT_MAP_HOLE) {
2905                         char *userpage;
2906                         struct extent_state *cached = NULL;
2907
2908                         userpage = kmap_atomic(page);
2909                         memset(userpage + pg_offset, 0, iosize);
2910                         flush_dcache_page(page);
2911                         kunmap_atomic(userpage);
2912
2913                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2914                                             &cached, GFP_NOFS);
2915                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2916                                              &cached, GFP_NOFS);
2917                         cur = cur + iosize;
2918                         pg_offset += iosize;
2919                         continue;
2920                 }
2921                 /* the get_extent function already copied into the page */
2922                 if (test_range_bit(tree, cur, cur_end,
2923                                    EXTENT_UPTODATE, 1, NULL)) {
2924                         check_page_uptodate(tree, page);
2925                         if (!parent_locked)
2926                                 unlock_extent(tree, cur, cur + iosize - 1);
2927                         cur = cur + iosize;
2928                         pg_offset += iosize;
2929                         continue;
2930                 }
2931                 /* we have an inline extent but it didn't get marked up
2932                  * to date.  Error out
2933                  */
2934                 if (block_start == EXTENT_MAP_INLINE) {
2935                         SetPageError(page);
2936                         if (!parent_locked)
2937                                 unlock_extent(tree, cur, cur + iosize - 1);
2938                         cur = cur + iosize;
2939                         pg_offset += iosize;
2940                         continue;
2941                 }
2942
2943                 pnr -= page->index;
2944                 ret = submit_extent_page(rw, tree, page,
2945                                          sector, disk_io_size, pg_offset,
2946                                          bdev, bio, pnr,
2947                                          end_bio_extent_readpage, mirror_num,
2948                                          *bio_flags,
2949                                          this_bio_flag);
2950                 if (!ret) {
2951                         nr++;
2952                         *bio_flags = this_bio_flag;
2953                 } else {
2954                         SetPageError(page);
2955                         if (!parent_locked)
2956                                 unlock_extent(tree, cur, cur + iosize - 1);
2957                 }
2958                 cur = cur + iosize;
2959                 pg_offset += iosize;
2960         }
2961 out:
2962         if (!nr) {
2963                 if (!PageError(page))
2964                         SetPageUptodate(page);
2965                 unlock_page(page);
2966         }
2967         return 0;
2968 }
2969
2970 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2971                                              struct page *pages[], int nr_pages,
2972                                              u64 start, u64 end,
2973                                              get_extent_t *get_extent,
2974                                              struct extent_map **em_cached,
2975                                              struct bio **bio, int mirror_num,
2976                                              unsigned long *bio_flags, int rw)
2977 {
2978         struct inode *inode;
2979         struct btrfs_ordered_extent *ordered;
2980         int index;
2981
2982         inode = pages[0]->mapping->host;
2983         while (1) {
2984                 lock_extent(tree, start, end);
2985                 ordered = btrfs_lookup_ordered_range(inode, start,
2986                                                      end - start + 1);
2987                 if (!ordered)
2988                         break;
2989                 unlock_extent(tree, start, end);
2990                 btrfs_start_ordered_extent(inode, ordered, 1);
2991                 btrfs_put_ordered_extent(ordered);
2992         }
2993
2994         for (index = 0; index < nr_pages; index++) {
2995                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2996                               mirror_num, bio_flags, rw);
2997                 page_cache_release(pages[index]);
2998         }
2999 }
3000
3001 static void __extent_readpages(struct extent_io_tree *tree,
3002                                struct page *pages[],
3003                                int nr_pages, get_extent_t *get_extent,
3004                                struct extent_map **em_cached,
3005                                struct bio **bio, int mirror_num,
3006                                unsigned long *bio_flags, int rw)
3007 {
3008         u64 start = 0;
3009         u64 end = 0;
3010         u64 page_start;
3011         int index;
3012         int first_index = 0;
3013
3014         for (index = 0; index < nr_pages; index++) {
3015                 page_start = page_offset(pages[index]);
3016                 if (!end) {
3017                         start = page_start;
3018                         end = start + PAGE_CACHE_SIZE - 1;
3019                         first_index = index;
3020                 } else if (end + 1 == page_start) {
3021                         end += PAGE_CACHE_SIZE;
3022                 } else {
3023                         __do_contiguous_readpages(tree, &pages[first_index],
3024                                                   index - first_index, start,
3025                                                   end, get_extent, em_cached,
3026                                                   bio, mirror_num, bio_flags,
3027                                                   rw);
3028                         start = page_start;
3029                         end = start + PAGE_CACHE_SIZE - 1;
3030                         first_index = index;
3031                 }
3032         }
3033
3034         if (end)
3035                 __do_contiguous_readpages(tree, &pages[first_index],
3036                                           index - first_index, start,
3037                                           end, get_extent, em_cached, bio,
3038                                           mirror_num, bio_flags, rw);
3039 }
3040
3041 static int __extent_read_full_page(struct extent_io_tree *tree,
3042                                    struct page *page,
3043                                    get_extent_t *get_extent,
3044                                    struct bio **bio, int mirror_num,
3045                                    unsigned long *bio_flags, int rw)
3046 {
3047         struct inode *inode = page->mapping->host;
3048         struct btrfs_ordered_extent *ordered;
3049         u64 start = page_offset(page);
3050         u64 end = start + PAGE_CACHE_SIZE - 1;
3051         int ret;
3052
3053         while (1) {
3054                 lock_extent(tree, start, end);
3055                 ordered = btrfs_lookup_ordered_extent(inode, start);
3056                 if (!ordered)
3057                         break;
3058                 unlock_extent(tree, start, end);
3059                 btrfs_start_ordered_extent(inode, ordered, 1);
3060                 btrfs_put_ordered_extent(ordered);
3061         }
3062
3063         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3064                             bio_flags, rw);
3065         return ret;
3066 }
3067
3068 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3069                             get_extent_t *get_extent, int mirror_num)
3070 {
3071         struct bio *bio = NULL;
3072         unsigned long bio_flags = 0;
3073         int ret;
3074
3075         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3076                                       &bio_flags, READ);
3077         if (bio)
3078                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3079         return ret;
3080 }
3081
3082 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3083                                  get_extent_t *get_extent, int mirror_num)
3084 {
3085         struct bio *bio = NULL;
3086         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3087         int ret;
3088
3089         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3090                                       &bio_flags, READ);
3091         if (bio)
3092                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3093         return ret;
3094 }
3095
3096 static noinline void update_nr_written(struct page *page,
3097                                       struct writeback_control *wbc,
3098                                       unsigned long nr_written)
3099 {
3100         wbc->nr_to_write -= nr_written;
3101         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3102             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3103                 page->mapping->writeback_index = page->index + nr_written;
3104 }
3105
3106 /*
3107  * the writepage semantics are similar to regular writepage.  extent
3108  * records are inserted to lock ranges in the tree, and as dirty areas
3109  * are found, they are marked writeback.  Then the lock bits are removed
3110  * and the end_io handler clears the writeback ranges
3111  */
3112 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3113                               void *data)
3114 {
3115         struct inode *inode = page->mapping->host;
3116         struct extent_page_data *epd = data;
3117         struct extent_io_tree *tree = epd->tree;
3118         u64 start = page_offset(page);
3119         u64 delalloc_start;
3120         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3121         u64 end;
3122         u64 cur = start;
3123         u64 extent_offset;
3124         u64 last_byte = i_size_read(inode);
3125         u64 block_start;
3126         u64 iosize;
3127         sector_t sector;
3128         struct extent_state *cached_state = NULL;
3129         struct extent_map *em;
3130         struct block_device *bdev;
3131         int ret;
3132         int nr = 0;
3133         size_t pg_offset = 0;
3134         size_t blocksize;
3135         loff_t i_size = i_size_read(inode);
3136         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3137         u64 nr_delalloc;
3138         u64 delalloc_end;
3139         int page_started;
3140         int compressed;
3141         int write_flags;
3142         unsigned long nr_written = 0;
3143         bool fill_delalloc = true;
3144
3145         if (wbc->sync_mode == WB_SYNC_ALL)
3146                 write_flags = WRITE_SYNC;
3147         else
3148                 write_flags = WRITE;
3149
3150         trace___extent_writepage(page, inode, wbc);
3151
3152         WARN_ON(!PageLocked(page));
3153
3154         ClearPageError(page);
3155
3156         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3157         if (page->index > end_index ||
3158            (page->index == end_index && !pg_offset)) {
3159                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3160                 unlock_page(page);
3161                 return 0;
3162         }
3163
3164         if (page->index == end_index) {
3165                 char *userpage;
3166
3167                 userpage = kmap_atomic(page);
3168                 memset(userpage + pg_offset, 0,
3169                        PAGE_CACHE_SIZE - pg_offset);
3170                 kunmap_atomic(userpage);
3171                 flush_dcache_page(page);
3172         }
3173         pg_offset = 0;
3174
3175         set_page_extent_mapped(page);
3176
3177         if (!tree->ops || !tree->ops->fill_delalloc)
3178                 fill_delalloc = false;
3179
3180         delalloc_start = start;
3181         delalloc_end = 0;
3182         page_started = 0;
3183         if (!epd->extent_locked && fill_delalloc) {
3184                 u64 delalloc_to_write = 0;
3185                 /*
3186                  * make sure the wbc mapping index is at least updated
3187                  * to this page.
3188                  */
3189                 update_nr_written(page, wbc, 0);
3190
3191                 while (delalloc_end < page_end) {
3192                         nr_delalloc = find_lock_delalloc_range(inode, tree,
3193                                                        page,
3194                                                        &delalloc_start,
3195                                                        &delalloc_end,
3196                                                        128 * 1024 * 1024);
3197                         if (nr_delalloc == 0) {
3198                                 delalloc_start = delalloc_end + 1;
3199                                 continue;
3200                         }
3201                         ret = tree->ops->fill_delalloc(inode, page,
3202                                                        delalloc_start,
3203                                                        delalloc_end,
3204                                                        &page_started,
3205                                                        &nr_written);
3206                         /* File system has been set read-only */
3207                         if (ret) {
3208                                 SetPageError(page);
3209                                 goto done;
3210                         }
3211                         /*
3212                          * delalloc_end is already one less than the total
3213                          * length, so we don't subtract one from
3214                          * PAGE_CACHE_SIZE
3215                          */
3216                         delalloc_to_write += (delalloc_end - delalloc_start +
3217                                               PAGE_CACHE_SIZE) >>
3218                                               PAGE_CACHE_SHIFT;
3219                         delalloc_start = delalloc_end + 1;
3220                 }
3221                 if (wbc->nr_to_write < delalloc_to_write) {
3222                         int thresh = 8192;
3223
3224                         if (delalloc_to_write < thresh * 2)
3225                                 thresh = delalloc_to_write;
3226                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3227                                                  thresh);
3228                 }
3229
3230                 /* did the fill delalloc function already unlock and start
3231                  * the IO?
3232                  */
3233                 if (page_started) {
3234                         ret = 0;
3235                         /*
3236                          * we've unlocked the page, so we can't update
3237                          * the mapping's writeback index, just update
3238                          * nr_to_write.
3239                          */
3240                         wbc->nr_to_write -= nr_written;
3241                         goto done_unlocked;
3242                 }
3243         }
3244         if (tree->ops && tree->ops->writepage_start_hook) {
3245                 ret = tree->ops->writepage_start_hook(page, start,
3246                                                       page_end);
3247                 if (ret) {
3248                         /* Fixup worker will requeue */
3249                         if (ret == -EBUSY)
3250                                 wbc->pages_skipped++;
3251                         else
3252                                 redirty_page_for_writepage(wbc, page);
3253                         update_nr_written(page, wbc, nr_written);
3254                         unlock_page(page);
3255                         ret = 0;
3256                         goto done_unlocked;
3257                 }
3258         }
3259
3260         /*
3261          * we don't want to touch the inode after unlocking the page,
3262          * so we update the mapping writeback index now
3263          */
3264         update_nr_written(page, wbc, nr_written + 1);
3265
3266         end = page_end;
3267         if (last_byte <= start) {
3268                 if (tree->ops && tree->ops->writepage_end_io_hook)
3269                         tree->ops->writepage_end_io_hook(page, start,
3270                                                          page_end, NULL, 1);
3271                 goto done;
3272         }
3273
3274         blocksize = inode->i_sb->s_blocksize;
3275
3276         while (cur <= end) {
3277                 if (cur >= last_byte) {
3278                         if (tree->ops && tree->ops->writepage_end_io_hook)
3279                                 tree->ops->writepage_end_io_hook(page, cur,
3280                                                          page_end, NULL, 1);
3281                         break;
3282                 }
3283                 em = epd->get_extent(inode, page, pg_offset, cur,
3284                                      end - cur + 1, 1);
3285                 if (IS_ERR_OR_NULL(em)) {
3286                         SetPageError(page);
3287                         break;
3288                 }
3289
3290                 extent_offset = cur - em->start;
3291                 BUG_ON(extent_map_end(em) <= cur);
3292                 BUG_ON(end < cur);
3293                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3294                 iosize = ALIGN(iosize, blocksize);
3295                 sector = (em->block_start + extent_offset) >> 9;
3296                 bdev = em->bdev;
3297                 block_start = em->block_start;
3298                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3299                 free_extent_map(em);
3300                 em = NULL;
3301
3302                 /*
3303                  * compressed and inline extents are written through other
3304                  * paths in the FS
3305                  */
3306                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3307                     block_start == EXTENT_MAP_INLINE) {
3308                         /*
3309                          * end_io notification does not happen here for
3310                          * compressed extents
3311                          */
3312                         if (!compressed && tree->ops &&
3313                             tree->ops->writepage_end_io_hook)
3314                                 tree->ops->writepage_end_io_hook(page, cur,
3315                                                          cur + iosize - 1,
3316                                                          NULL, 1);
3317                         else if (compressed) {
3318                                 /* we don't want to end_page_writeback on
3319                                  * a compressed extent.  this happens
3320                                  * elsewhere
3321                                  */
3322                                 nr++;
3323                         }
3324
3325                         cur += iosize;
3326                         pg_offset += iosize;
3327                         continue;
3328                 }
3329                 /* leave this out until we have a page_mkwrite call */
3330                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3331                                    EXTENT_DIRTY, 0, NULL)) {
3332                         cur = cur + iosize;
3333                         pg_offset += iosize;
3334                         continue;
3335                 }
3336
3337                 if (tree->ops && tree->ops->writepage_io_hook) {
3338                         ret = tree->ops->writepage_io_hook(page, cur,
3339                                                 cur + iosize - 1);
3340                 } else {
3341                         ret = 0;
3342                 }
3343                 if (ret) {
3344                         SetPageError(page);
3345                 } else {
3346                         unsigned long max_nr = end_index + 1;
3347
3348                         set_range_writeback(tree, cur, cur + iosize - 1);
3349                         if (!PageWriteback(page)) {
3350                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
3351                                            "page %lu not writeback, cur %llu end %llu",
3352                                        page->index, cur, end);
3353                         }
3354
3355                         ret = submit_extent_page(write_flags, tree, page,
3356                                                  sector, iosize, pg_offset,
3357                                                  bdev, &epd->bio, max_nr,
3358                                                  end_bio_extent_writepage,
3359                                                  0, 0, 0);
3360                         if (ret)
3361                                 SetPageError(page);
3362                 }
3363                 cur = cur + iosize;
3364                 pg_offset += iosize;
3365                 nr++;
3366         }
3367 done:
3368         if (nr == 0) {
3369                 /* make sure the mapping tag for page dirty gets cleared */
3370                 set_page_writeback(page);
3371                 end_page_writeback(page);
3372         }
3373         unlock_page(page);
3374
3375 done_unlocked:
3376
3377         /* drop our reference on any cached states */
3378         free_extent_state(cached_state);
3379         return 0;
3380 }
3381
3382 static int eb_wait(void *word)
3383 {
3384         io_schedule();
3385         return 0;
3386 }
3387
3388 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3389 {
3390         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3391                     TASK_UNINTERRUPTIBLE);
3392 }
3393
3394 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3395                                      struct btrfs_fs_info *fs_info,
3396                                      struct extent_page_data *epd)
3397 {
3398         unsigned long i, num_pages;
3399         int flush = 0;
3400         int ret = 0;
3401
3402         if (!btrfs_try_tree_write_lock(eb)) {
3403                 flush = 1;
3404                 flush_write_bio(epd);
3405                 btrfs_tree_lock(eb);
3406         }
3407
3408         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3409                 btrfs_tree_unlock(eb);
3410                 if (!epd->sync_io)
3411                         return 0;
3412                 if (!flush) {
3413                         flush_write_bio(epd);
3414                         flush = 1;
3415                 }
3416                 while (1) {
3417                         wait_on_extent_buffer_writeback(eb);
3418                         btrfs_tree_lock(eb);
3419                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3420                                 break;
3421                         btrfs_tree_unlock(eb);
3422                 }
3423         }
3424
3425         /*
3426          * We need to do this to prevent races in people who check if the eb is
3427          * under IO since we can end up having no IO bits set for a short period
3428          * of time.
3429          */
3430         spin_lock(&eb->refs_lock);
3431         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3432                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3433                 spin_unlock(&eb->refs_lock);
3434                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3435                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3436                                      -eb->len,
3437                                      fs_info->dirty_metadata_batch);
3438                 ret = 1;
3439         } else {
3440                 spin_unlock(&eb->refs_lock);
3441         }
3442
3443         btrfs_tree_unlock(eb);
3444
3445         if (!ret)
3446                 return ret;
3447
3448         num_pages = num_extent_pages(eb->start, eb->len);
3449         for (i = 0; i < num_pages; i++) {
3450                 struct page *p = extent_buffer_page(eb, i);
3451
3452                 if (!trylock_page(p)) {
3453                         if (!flush) {
3454                                 flush_write_bio(epd);
3455                                 flush = 1;
3456                         }
3457                         lock_page(p);
3458                 }
3459         }
3460
3461         return ret;
3462 }
3463
3464 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3465 {
3466         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3467         smp_mb__after_clear_bit();
3468         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3469 }
3470
3471 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3472 {
3473         int uptodate = err == 0;
3474         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3475         struct extent_buffer *eb;
3476         int done;
3477
3478         do {
3479                 struct page *page = bvec->bv_page;
3480
3481                 bvec--;
3482                 eb = (struct extent_buffer *)page->private;
3483                 BUG_ON(!eb);
3484                 done = atomic_dec_and_test(&eb->io_pages);
3485
3486                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3487                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3488                         ClearPageUptodate(page);
3489                         SetPageError(page);
3490                 }
3491
3492                 end_page_writeback(page);
3493
3494                 if (!done)
3495                         continue;
3496
3497                 end_extent_buffer_writeback(eb);
3498         } while (bvec >= bio->bi_io_vec);
3499
3500         bio_put(bio);
3501
3502 }
3503
3504 static int write_one_eb(struct extent_buffer *eb,
3505                         struct btrfs_fs_info *fs_info,
3506                         struct writeback_control *wbc,
3507                         struct extent_page_data *epd)
3508 {
3509         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3510         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3511         u64 offset = eb->start;
3512         unsigned long i, num_pages;
3513         unsigned long bio_flags = 0;
3514         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3515         int ret = 0;
3516
3517         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3518         num_pages = num_extent_pages(eb->start, eb->len);
3519         atomic_set(&eb->io_pages, num_pages);
3520         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3521                 bio_flags = EXTENT_BIO_TREE_LOG;
3522
3523         for (i = 0; i < num_pages; i++) {
3524                 struct page *p = extent_buffer_page(eb, i);
3525
3526                 clear_page_dirty_for_io(p);
3527                 set_page_writeback(p);
3528                 ret = submit_extent_page(rw, tree, p, offset >> 9,
3529                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3530                                          -1, end_bio_extent_buffer_writepage,
3531                                          0, epd->bio_flags, bio_flags);
3532                 epd->bio_flags = bio_flags;
3533                 if (ret) {
3534                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3535                         SetPageError(p);
3536                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3537                                 end_extent_buffer_writeback(eb);
3538                         ret = -EIO;
3539                         break;
3540                 }
3541                 offset += PAGE_CACHE_SIZE;
3542                 update_nr_written(p, wbc, 1);
3543                 unlock_page(p);
3544         }
3545
3546         if (unlikely(ret)) {
3547                 for (; i < num_pages; i++) {
3548                         struct page *p = extent_buffer_page(eb, i);
3549                         unlock_page(p);
3550                 }
3551         }
3552
3553         return ret;
3554 }
3555
3556 int btree_write_cache_pages(struct address_space *mapping,
3557                                    struct writeback_control *wbc)
3558 {
3559         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3560         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3561         struct extent_buffer *eb, *prev_eb = NULL;
3562         struct extent_page_data epd = {
3563                 .bio = NULL,
3564                 .tree = tree,
3565                 .extent_locked = 0,
3566                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3567                 .bio_flags = 0,
3568         };
3569         int ret = 0;
3570         int done = 0;
3571         int nr_to_write_done = 0;
3572         struct pagevec pvec;
3573         int nr_pages;
3574         pgoff_t index;
3575         pgoff_t end;            /* Inclusive */
3576         int scanned = 0;
3577         int tag;
3578
3579         pagevec_init(&pvec, 0);
3580         if (wbc->range_cyclic) {
3581                 index = mapping->writeback_index; /* Start from prev offset */
3582                 end = -1;
3583         } else {
3584                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3585                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3586                 scanned = 1;
3587         }
3588         if (wbc->sync_mode == WB_SYNC_ALL)
3589                 tag = PAGECACHE_TAG_TOWRITE;
3590         else
3591                 tag = PAGECACHE_TAG_DIRTY;
3592 retry:
3593         if (wbc->sync_mode == WB_SYNC_ALL)
3594                 tag_pages_for_writeback(mapping, index, end);
3595         while (!done && !nr_to_write_done && (index <= end) &&
3596                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3597                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3598                 unsigned i;
3599
3600                 scanned = 1;
3601                 for (i = 0; i < nr_pages; i++) {
3602                         struct page *page = pvec.pages[i];
3603
3604                         if (!PagePrivate(page))
3605                                 continue;
3606
3607                         if (!wbc->range_cyclic && page->index > end) {
3608                                 done = 1;
3609                                 break;
3610                         }
3611
3612                         spin_lock(&mapping->private_lock);
3613                         if (!PagePrivate(page)) {
3614                                 spin_unlock(&mapping->private_lock);
3615                                 continue;
3616                         }
3617
3618                         eb = (struct extent_buffer *)page->private;
3619
3620                         /*
3621                          * Shouldn't happen and normally this would be a BUG_ON
3622                          * but no sense in crashing the users box for something
3623                          * we can survive anyway.
3624                          */
3625                         if (WARN_ON(!eb)) {
3626                                 spin_unlock(&mapping->private_lock);
3627                                 continue;
3628                         }
3629
3630                         if (eb == prev_eb) {
3631                                 spin_unlock(&mapping->private_lock);
3632                                 continue;
3633                         }
3634
3635                         ret = atomic_inc_not_zero(&eb->refs);
3636                         spin_unlock(&mapping->private_lock);
3637                         if (!ret)
3638                                 continue;
3639
3640                         prev_eb = eb;
3641                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3642                         if (!ret) {
3643                                 free_extent_buffer(eb);
3644                                 continue;
3645                         }
3646
3647                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3648                         if (ret) {
3649                                 done = 1;
3650                                 free_extent_buffer(eb);
3651                                 break;
3652                         }
3653                         free_extent_buffer(eb);
3654
3655                         /*
3656                          * the filesystem may choose to bump up nr_to_write.
3657                          * We have to make sure to honor the new nr_to_write
3658                          * at any time
3659                          */
3660                         nr_to_write_done = wbc->nr_to_write <= 0;
3661                 }
3662                 pagevec_release(&pvec);
3663                 cond_resched();
3664         }
3665         if (!scanned && !done) {
3666                 /*
3667                  * We hit the last page and there is more work to be done: wrap
3668                  * back to the start of the file
3669                  */
3670                 scanned = 1;
3671                 index = 0;
3672                 goto retry;
3673         }
3674         flush_write_bio(&epd);
3675         return ret;
3676 }
3677
3678 /**
3679  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3680  * @mapping: address space structure to write
3681  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3682  * @writepage: function called for each page
3683  * @data: data passed to writepage function
3684  *
3685  * If a page is already under I/O, write_cache_pages() skips it, even
3686  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3687  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3688  * and msync() need to guarantee that all the data which was dirty at the time
3689  * the call was made get new I/O started against them.  If wbc->sync_mode is
3690  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3691  * existing IO to complete.
3692  */
3693 static int extent_write_cache_pages(struct extent_io_tree *tree,
3694                              struct address_space *mapping,
3695                              struct writeback_control *wbc,
3696                              writepage_t writepage, void *data,
3697                              void (*flush_fn)(void *))
3698 {
3699         struct inode *inode = mapping->host;
3700         int ret = 0;
3701         int done = 0;
3702         int nr_to_write_done = 0;
3703         struct pagevec pvec;
3704         int nr_pages;
3705         pgoff_t index;
3706         pgoff_t end;            /* Inclusive */
3707         int scanned = 0;
3708         int tag;
3709
3710         /*
3711          * We have to hold onto the inode so that ordered extents can do their
3712          * work when the IO finishes.  The alternative to this is failing to add
3713          * an ordered extent if the igrab() fails there and that is a huge pain
3714          * to deal with, so instead just hold onto the inode throughout the
3715          * writepages operation.  If it fails here we are freeing up the inode
3716          * anyway and we'd rather not waste our time writing out stuff that is
3717          * going to be truncated anyway.
3718          */
3719         if (!igrab(inode))
3720                 return 0;
3721
3722         pagevec_init(&pvec, 0);
3723         if (wbc->range_cyclic) {
3724                 index = mapping->writeback_index; /* Start from prev offset */
3725                 end = -1;
3726         } else {
3727                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3728                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3729                 scanned = 1;
3730         }
3731         if (wbc->sync_mode == WB_SYNC_ALL)
3732                 tag = PAGECACHE_TAG_TOWRITE;
3733         else
3734                 tag = PAGECACHE_TAG_DIRTY;
3735 retry:
3736         if (wbc->sync_mode == WB_SYNC_ALL)
3737                 tag_pages_for_writeback(mapping, index, end);
3738         while (!done && !nr_to_write_done && (index <= end) &&
3739                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3740                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3741                 unsigned i;
3742
3743                 scanned = 1;
3744                 for (i = 0; i < nr_pages; i++) {
3745                         struct page *page = pvec.pages[i];
3746
3747                         /*
3748                          * At this point we hold neither mapping->tree_lock nor
3749                          * lock on the page itself: the page may be truncated or
3750                          * invalidated (changing page->mapping to NULL), or even
3751                          * swizzled back from swapper_space to tmpfs file
3752                          * mapping
3753                          */
3754                         if (!trylock_page(page)) {
3755                                 flush_fn(data);
3756                                 lock_page(page);
3757                         }
3758
3759                         if (unlikely(page->mapping != mapping)) {
3760                                 unlock_page(page);
3761                                 continue;
3762                         }
3763
3764                         if (!wbc->range_cyclic && page->index > end) {
3765                                 done = 1;
3766                                 unlock_page(page);
3767                                 continue;
3768                         }
3769
3770                         if (wbc->sync_mode != WB_SYNC_NONE) {
3771                                 if (PageWriteback(page))
3772                                         flush_fn(data);
3773                                 wait_on_page_writeback(page);
3774                         }
3775
3776                         if (PageWriteback(page) ||
3777                             !clear_page_dirty_for_io(page)) {
3778                                 unlock_page(page);
3779                                 continue;
3780                         }
3781
3782                         ret = (*writepage)(page, wbc, data);
3783
3784                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3785                                 unlock_page(page);
3786                                 ret = 0;
3787                         }
3788                         if (ret)
3789                                 done = 1;
3790
3791                         /*
3792                          * the filesystem may choose to bump up nr_to_write.
3793                          * We have to make sure to honor the new nr_to_write
3794                          * at any time
3795                          */
3796                         nr_to_write_done = wbc->nr_to_write <= 0;
3797                 }
3798                 pagevec_release(&pvec);
3799                 cond_resched();
3800         }
3801         if (!scanned && !done) {
3802                 /*
3803                  * We hit the last page and there is more work to be done: wrap
3804                  * back to the start of the file
3805                  */
3806                 scanned = 1;
3807                 index = 0;
3808                 goto retry;
3809         }
3810         btrfs_add_delayed_iput(inode);
3811         return ret;
3812 }
3813
3814 static void flush_epd_write_bio(struct extent_page_data *epd)
3815 {
3816         if (epd->bio) {
3817                 int rw = WRITE;
3818                 int ret;
3819
3820                 if (epd->sync_io)
3821                         rw = WRITE_SYNC;
3822
3823                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3824                 BUG_ON(ret < 0); /* -ENOMEM */
3825                 epd->bio = NULL;
3826         }
3827 }
3828
3829 static noinline void flush_write_bio(void *data)
3830 {
3831         struct extent_page_data *epd = data;
3832         flush_epd_write_bio(epd);
3833 }
3834
3835 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3836                           get_extent_t *get_extent,
3837                           struct writeback_control *wbc)
3838 {
3839         int ret;
3840         struct extent_page_data epd = {
3841                 .bio = NULL,
3842                 .tree = tree,
3843                 .get_extent = get_extent,
3844                 .extent_locked = 0,
3845                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3846                 .bio_flags = 0,
3847         };
3848
3849         ret = __extent_writepage(page, wbc, &epd);
3850
3851         flush_epd_write_bio(&epd);
3852         return ret;
3853 }
3854
3855 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3856                               u64 start, u64 end, get_extent_t *get_extent,
3857                               int mode)
3858 {
3859         int ret = 0;
3860         struct address_space *mapping = inode->i_mapping;
3861         struct page *page;
3862         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3863                 PAGE_CACHE_SHIFT;
3864
3865         struct extent_page_data epd = {
3866                 .bio = NULL,
3867                 .tree = tree,
3868                 .get_extent = get_extent,
3869                 .extent_locked = 1,
3870                 .sync_io = mode == WB_SYNC_ALL,
3871                 .bio_flags = 0,
3872         };
3873         struct writeback_control wbc_writepages = {
3874                 .sync_mode      = mode,
3875                 .nr_to_write    = nr_pages * 2,
3876                 .range_start    = start,
3877                 .range_end      = end + 1,
3878         };
3879
3880         while (start <= end) {
3881                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3882                 if (clear_page_dirty_for_io(page))
3883                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3884                 else {
3885                         if (tree->ops && tree->ops->writepage_end_io_hook)
3886                                 tree->ops->writepage_end_io_hook(page, start,
3887                                                  start + PAGE_CACHE_SIZE - 1,
3888                                                  NULL, 1);
3889                         unlock_page(page);
3890                 }
3891                 page_cache_release(page);
3892                 start += PAGE_CACHE_SIZE;
3893         }
3894
3895         flush_epd_write_bio(&epd);
3896         return ret;
3897 }
3898
3899 int extent_writepages(struct extent_io_tree *tree,
3900                       struct address_space *mapping,
3901                       get_extent_t *get_extent,
3902                       struct writeback_control *wbc)
3903 {
3904         int ret = 0;
3905         struct extent_page_data epd = {
3906                 .bio = NULL,
3907                 .tree = tree,
3908                 .get_extent = get_extent,
3909                 .extent_locked = 0,
3910                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3911                 .bio_flags = 0,
3912         };
3913
3914         ret = extent_write_cache_pages(tree, mapping, wbc,
3915                                        __extent_writepage, &epd,
3916                                        flush_write_bio);
3917         flush_epd_write_bio(&epd);
3918         return ret;
3919 }
3920
3921 int extent_readpages(struct extent_io_tree *tree,
3922                      struct address_space *mapping,
3923                      struct list_head *pages, unsigned nr_pages,
3924                      get_extent_t get_extent)
3925 {
3926         struct bio *bio = NULL;
3927         unsigned page_idx;
3928         unsigned long bio_flags = 0;
3929         struct page *pagepool[16];
3930         struct page *page;
3931         struct extent_map *em_cached = NULL;
3932         int nr = 0;
3933
3934         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3935                 page = list_entry(pages->prev, struct page, lru);
3936
3937                 prefetchw(&page->flags);
3938                 list_del(&page->lru);
3939                 if (add_to_page_cache_lru(page, mapping,
3940                                         page->index, GFP_NOFS)) {
3941                         page_cache_release(page);
3942                         continue;
3943                 }
3944
3945                 pagepool[nr++] = page;
3946                 if (nr < ARRAY_SIZE(pagepool))
3947                         continue;
3948                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3949                                    &bio, 0, &bio_flags, READ);
3950                 nr = 0;
3951         }
3952         if (nr)
3953                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3954                                    &bio, 0, &bio_flags, READ);
3955
3956         if (em_cached)
3957                 free_extent_map(em_cached);
3958
3959         BUG_ON(!list_empty(pages));
3960         if (bio)
3961                 return submit_one_bio(READ, bio, 0, bio_flags);
3962         return 0;
3963 }
3964
3965 /*
3966  * basic invalidatepage code, this waits on any locked or writeback
3967  * ranges corresponding to the page, and then deletes any extent state
3968  * records from the tree
3969  */
3970 int extent_invalidatepage(struct extent_io_tree *tree,
3971                           struct page *page, unsigned long offset)
3972 {
3973         struct extent_state *cached_state = NULL;
3974         u64 start = page_offset(page);
3975         u64 end = start + PAGE_CACHE_SIZE - 1;
3976         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3977
3978         start += ALIGN(offset, blocksize);
3979         if (start > end)
3980                 return 0;
3981
3982         lock_extent_bits(tree, start, end, 0, &cached_state);
3983         wait_on_page_writeback(page);
3984         clear_extent_bit(tree, start, end,
3985                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3986                          EXTENT_DO_ACCOUNTING,
3987                          1, 1, &cached_state, GFP_NOFS);
3988         return 0;
3989 }
3990
3991 /*
3992  * a helper for releasepage, this tests for areas of the page that
3993  * are locked or under IO and drops the related state bits if it is safe
3994  * to drop the page.
3995  */
3996 static int try_release_extent_state(struct extent_map_tree *map,
3997                                     struct extent_io_tree *tree,
3998                                     struct page *page, gfp_t mask)
3999 {
4000         u64 start = page_offset(page);
4001         u64 end = start + PAGE_CACHE_SIZE - 1;
4002         int ret = 1;
4003
4004         if (test_range_bit(tree, start, end,
4005                            EXTENT_IOBITS, 0, NULL))
4006                 ret = 0;
4007         else {
4008                 if ((mask & GFP_NOFS) == GFP_NOFS)
4009                         mask = GFP_NOFS;
4010                 /*
4011                  * at this point we can safely clear everything except the
4012                  * locked bit and the nodatasum bit
4013                  */
4014                 ret = clear_extent_bit(tree, start, end,
4015                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4016                                  0, 0, NULL, mask);
4017
4018                 /* if clear_extent_bit failed for enomem reasons,
4019                  * we can't allow the release to continue.
4020                  */
4021                 if (ret < 0)
4022                         ret = 0;
4023                 else
4024                         ret = 1;
4025         }
4026         return ret;
4027 }
4028
4029 /*
4030  * a helper for releasepage.  As long as there are no locked extents
4031  * in the range corresponding to the page, both state records and extent
4032  * map records are removed
4033  */
4034 int try_release_extent_mapping(struct extent_map_tree *map,
4035                                struct extent_io_tree *tree, struct page *page,
4036                                gfp_t mask)
4037 {
4038         struct extent_map *em;
4039         u64 start = page_offset(page);
4040         u64 end = start + PAGE_CACHE_SIZE - 1;
4041
4042         if ((mask & __GFP_WAIT) &&
4043             page->mapping->host->i_size > 16 * 1024 * 1024) {
4044                 u64 len;
4045                 while (start <= end) {
4046                         len = end - start + 1;
4047                         write_lock(&map->lock);
4048                         em = lookup_extent_mapping(map, start, len);
4049                         if (!em) {
4050                                 write_unlock(&map->lock);
4051                                 break;
4052                         }
4053                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4054                             em->start != start) {
4055                                 write_unlock(&map->lock);
4056                                 free_extent_map(em);
4057                                 break;
4058                         }
4059                         if (!test_range_bit(tree, em->start,
4060                                             extent_map_end(em) - 1,
4061                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4062                                             0, NULL)) {
4063                                 remove_extent_mapping(map, em);
4064                                 /* once for the rb tree */
4065                                 free_extent_map(em);
4066                         }
4067                         start = extent_map_end(em);
4068                         write_unlock(&map->lock);
4069
4070                         /* once for us */
4071                         free_extent_map(em);
4072                 }
4073         }
4074         return try_release_extent_state(map, tree, page, mask);
4075 }
4076
4077 /*
4078  * helper function for fiemap, which doesn't want to see any holes.
4079  * This maps until we find something past 'last'
4080  */
4081 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4082                                                 u64 offset,
4083                                                 u64 last,
4084                                                 get_extent_t *get_extent)
4085 {
4086         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4087         struct extent_map *em;
4088         u64 len;
4089
4090         if (offset >= last)
4091                 return NULL;
4092
4093         while (1) {
4094                 len = last - offset;
4095                 if (len == 0)
4096                         break;
4097                 len = ALIGN(len, sectorsize);
4098                 em = get_extent(inode, NULL, 0, offset, len, 0);
4099                 if (IS_ERR_OR_NULL(em))
4100                         return em;
4101
4102                 /* if this isn't a hole return it */
4103                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4104                     em->block_start != EXTENT_MAP_HOLE) {
4105                         return em;
4106                 }
4107
4108                 /* this is a hole, advance to the next extent */
4109                 offset = extent_map_end(em);
4110                 free_extent_map(em);
4111                 if (offset >= last)
4112                         break;
4113         }
4114         return NULL;
4115 }
4116
4117 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4118 {
4119         unsigned long cnt = *((unsigned long *)ctx);
4120
4121         cnt++;
4122         *((unsigned long *)ctx) = cnt;
4123
4124         /* Now we're sure that the extent is shared. */
4125         if (cnt > 1)
4126                 return 1;
4127         return 0;
4128 }
4129
4130 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4131                 __u64 start, __u64 len, get_extent_t *get_extent)
4132 {
4133         int ret = 0;
4134         u64 off = start;
4135         u64 max = start + len;
4136         u32 flags = 0;
4137         u32 found_type;
4138         u64 last;
4139         u64 last_for_get_extent = 0;
4140         u64 disko = 0;
4141         u64 isize = i_size_read(inode);
4142         struct btrfs_key found_key;
4143         struct extent_map *em = NULL;
4144         struct extent_state *cached_state = NULL;
4145         struct btrfs_path *path;
4146         int end = 0;
4147         u64 em_start = 0;
4148         u64 em_len = 0;
4149         u64 em_end = 0;
4150
4151         if (len == 0)
4152                 return -EINVAL;
4153
4154         path = btrfs_alloc_path();
4155         if (!path)
4156                 return -ENOMEM;
4157         path->leave_spinning = 1;
4158
4159         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4160         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4161
4162         /*
4163          * lookup the last file extent.  We're not using i_size here
4164          * because there might be preallocation past i_size
4165          */
4166         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4167                                        path, btrfs_ino(inode), -1, 0);
4168         if (ret < 0) {
4169                 btrfs_free_path(path);
4170                 return ret;
4171         }
4172         WARN_ON(!ret);
4173         path->slots[0]--;
4174         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4175         found_type = btrfs_key_type(&found_key);
4176
4177         /* No extents, but there might be delalloc bits */
4178         if (found_key.objectid != btrfs_ino(inode) ||
4179             found_type != BTRFS_EXTENT_DATA_KEY) {
4180                 /* have to trust i_size as the end */
4181                 last = (u64)-1;
4182                 last_for_get_extent = isize;
4183         } else {
4184                 /*
4185                  * remember the start of the last extent.  There are a
4186                  * bunch of different factors that go into the length of the
4187                  * extent, so its much less complex to remember where it started
4188                  */
4189                 last = found_key.offset;
4190                 last_for_get_extent = last + 1;
4191         }
4192         btrfs_release_path(path);
4193
4194         /*
4195          * we might have some extents allocated but more delalloc past those
4196          * extents.  so, we trust isize unless the start of the last extent is
4197          * beyond isize
4198          */
4199         if (last < isize) {
4200                 last = (u64)-1;
4201                 last_for_get_extent = isize;
4202         }
4203
4204         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4205                          &cached_state);
4206
4207         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4208                                    get_extent);
4209         if (!em)
4210                 goto out;
4211         if (IS_ERR(em)) {
4212                 ret = PTR_ERR(em);
4213                 goto out;
4214         }
4215
4216         while (!end) {
4217                 u64 offset_in_extent = 0;
4218
4219                 /* break if the extent we found is outside the range */
4220                 if (em->start >= max || extent_map_end(em) < off)
4221                         break;
4222
4223                 /*
4224                  * get_extent may return an extent that starts before our
4225                  * requested range.  We have to make sure the ranges
4226                  * we return to fiemap always move forward and don't
4227                  * overlap, so adjust the offsets here
4228                  */
4229                 em_start = max(em->start, off);
4230
4231                 /*
4232                  * record the offset from the start of the extent
4233                  * for adjusting the disk offset below.  Only do this if the
4234                  * extent isn't compressed since our in ram offset may be past
4235                  * what we have actually allocated on disk.
4236                  */
4237                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4238                         offset_in_extent = em_start - em->start;
4239                 em_end = extent_map_end(em);
4240                 em_len = em_end - em_start;
4241                 disko = 0;
4242                 flags = 0;
4243
4244                 /*
4245                  * bump off for our next call to get_extent
4246                  */
4247                 off = extent_map_end(em);
4248                 if (off >= max)
4249                         end = 1;
4250
4251                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4252                         end = 1;
4253                         flags |= FIEMAP_EXTENT_LAST;
4254                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4255                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4256                                   FIEMAP_EXTENT_NOT_ALIGNED);
4257                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4258                         flags |= (FIEMAP_EXTENT_DELALLOC |
4259                                   FIEMAP_EXTENT_UNKNOWN);
4260                 } else {
4261                         unsigned long ref_cnt = 0;
4262
4263                         disko = em->block_start + offset_in_extent;
4264
4265                         /*
4266                          * As btrfs supports shared space, this information
4267                          * can be exported to userspace tools via
4268                          * flag FIEMAP_EXTENT_SHARED.
4269                          */
4270                         ret = iterate_inodes_from_logical(
4271                                         em->block_start,
4272                                         BTRFS_I(inode)->root->fs_info,
4273                                         path, count_ext_ref, &ref_cnt);
4274                         if (ret < 0 && ret != -ENOENT)
4275                                 goto out_free;
4276
4277                         if (ref_cnt > 1)
4278                                 flags |= FIEMAP_EXTENT_SHARED;
4279                 }
4280                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4281                         flags |= FIEMAP_EXTENT_ENCODED;
4282
4283                 free_extent_map(em);
4284                 em = NULL;
4285                 if ((em_start >= last) || em_len == (u64)-1 ||
4286                    (last == (u64)-1 && isize <= em_end)) {
4287                         flags |= FIEMAP_EXTENT_LAST;
4288                         end = 1;
4289                 }
4290
4291                 /* now scan forward to see if this is really the last extent. */
4292                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4293                                            get_extent);
4294                 if (IS_ERR(em)) {
4295                         ret = PTR_ERR(em);
4296                         goto out;
4297                 }
4298                 if (!em) {
4299                         flags |= FIEMAP_EXTENT_LAST;
4300                         end = 1;
4301                 }
4302                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4303                                               em_len, flags);
4304                 if (ret)
4305                         goto out_free;
4306         }
4307 out_free:
4308         free_extent_map(em);
4309 out:
4310         btrfs_free_path(path);
4311         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4312                              &cached_state, GFP_NOFS);
4313         return ret;
4314 }
4315
4316 static void __free_extent_buffer(struct extent_buffer *eb)
4317 {
4318         btrfs_leak_debug_del(&eb->leak_list);
4319         kmem_cache_free(extent_buffer_cache, eb);
4320 }
4321
4322 int extent_buffer_under_io(struct extent_buffer *eb)
4323 {
4324         return (atomic_read(&eb->io_pages) ||
4325                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4326                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4327 }
4328
4329 /*
4330  * Helper for releasing extent buffer page.
4331  */
4332 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4333                                                 unsigned long start_idx)
4334 {
4335         unsigned long index;
4336         unsigned long num_pages;
4337         struct page *page;
4338         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4339
4340         BUG_ON(extent_buffer_under_io(eb));
4341
4342         num_pages = num_extent_pages(eb->start, eb->len);
4343         index = start_idx + num_pages;
4344         if (start_idx >= index)
4345                 return;
4346
4347         do {
4348                 index--;
4349                 page = extent_buffer_page(eb, index);
4350                 if (page && mapped) {
4351                         spin_lock(&page->mapping->private_lock);
4352                         /*
4353                          * We do this since we'll remove the pages after we've
4354                          * removed the eb from the radix tree, so we could race
4355                          * and have this page now attached to the new eb.  So
4356                          * only clear page_private if it's still connected to
4357                          * this eb.
4358                          */
4359                         if (PagePrivate(page) &&
4360                             page->private == (unsigned long)eb) {
4361                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4362                                 BUG_ON(PageDirty(page));
4363                                 BUG_ON(PageWriteback(page));
4364                                 /*
4365                                  * We need to make sure we haven't be attached
4366                                  * to a new eb.
4367                                  */
4368                                 ClearPagePrivate(page);
4369                                 set_page_private(page, 0);
4370                                 /* One for the page private */
4371                                 page_cache_release(page);
4372                         }
4373                         spin_unlock(&page->mapping->private_lock);
4374
4375                 }
4376                 if (page) {
4377                         /* One for when we alloced the page */
4378                         page_cache_release(page);
4379                 }
4380         } while (index != start_idx);
4381 }
4382
4383 /*
4384  * Helper for releasing the extent buffer.
4385  */
4386 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4387 {
4388         btrfs_release_extent_buffer_page(eb, 0);
4389         __free_extent_buffer(eb);
4390 }
4391
4392 static struct extent_buffer *
4393 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4394                       unsigned long len, gfp_t mask)
4395 {
4396         struct extent_buffer *eb = NULL;
4397
4398         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4399         if (eb == NULL)
4400                 return NULL;
4401         eb->start = start;
4402         eb->len = len;
4403         eb->fs_info = fs_info;
4404         eb->bflags = 0;
4405         rwlock_init(&eb->lock);
4406         atomic_set(&eb->write_locks, 0);
4407         atomic_set(&eb->read_locks, 0);
4408         atomic_set(&eb->blocking_readers, 0);
4409         atomic_set(&eb->blocking_writers, 0);
4410         atomic_set(&eb->spinning_readers, 0);
4411         atomic_set(&eb->spinning_writers, 0);
4412         eb->lock_nested = 0;
4413         init_waitqueue_head(&eb->write_lock_wq);
4414         init_waitqueue_head(&eb->read_lock_wq);
4415
4416         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4417
4418         spin_lock_init(&eb->refs_lock);
4419         atomic_set(&eb->refs, 1);
4420         atomic_set(&eb->io_pages, 0);
4421
4422         /*
4423          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4424          */
4425         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4426                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4427         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4428
4429         return eb;
4430 }
4431
4432 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4433 {
4434         unsigned long i;
4435         struct page *p;
4436         struct extent_buffer *new;
4437         unsigned long num_pages = num_extent_pages(src->start, src->len);
4438
4439         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4440         if (new == NULL)
4441                 return NULL;
4442
4443         for (i = 0; i < num_pages; i++) {
4444                 p = alloc_page(GFP_NOFS);
4445                 if (!p) {
4446                         btrfs_release_extent_buffer(new);
4447                         return NULL;
4448                 }
4449                 attach_extent_buffer_page(new, p);
4450                 WARN_ON(PageDirty(p));
4451                 SetPageUptodate(p);
4452                 new->pages[i] = p;
4453         }
4454
4455         copy_extent_buffer(new, src, 0, 0, src->len);
4456         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4457         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4458
4459         return new;
4460 }
4461
4462 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4463 {
4464         struct extent_buffer *eb;
4465         unsigned long num_pages = num_extent_pages(0, len);
4466         unsigned long i;
4467
4468         eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4469         if (!eb)
4470                 return NULL;
4471
4472         for (i = 0; i < num_pages; i++) {
4473                 eb->pages[i] = alloc_page(GFP_NOFS);
4474                 if (!eb->pages[i])
4475                         goto err;
4476         }
4477         set_extent_buffer_uptodate(eb);
4478         btrfs_set_header_nritems(eb, 0);
4479         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4480
4481         return eb;
4482 err:
4483         for (; i > 0; i--)
4484                 __free_page(eb->pages[i - 1]);
4485         __free_extent_buffer(eb);
4486         return NULL;
4487 }
4488
4489 static void check_buffer_tree_ref(struct extent_buffer *eb)
4490 {
4491         int refs;
4492         /* the ref bit is tricky.  We have to make sure it is set
4493          * if we have the buffer dirty.   Otherwise the
4494          * code to free a buffer can end up dropping a dirty
4495          * page
4496          *
4497          * Once the ref bit is set, it won't go away while the
4498          * buffer is dirty or in writeback, and it also won't
4499          * go away while we have the reference count on the
4500          * eb bumped.
4501          *
4502          * We can't just set the ref bit without bumping the
4503          * ref on the eb because free_extent_buffer might
4504          * see the ref bit and try to clear it.  If this happens
4505          * free_extent_buffer might end up dropping our original
4506          * ref by mistake and freeing the page before we are able
4507          * to add one more ref.
4508          *
4509          * So bump the ref count first, then set the bit.  If someone
4510          * beat us to it, drop the ref we added.
4511          */
4512         refs = atomic_read(&eb->refs);
4513         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4514                 return;
4515
4516         spin_lock(&eb->refs_lock);
4517         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4518                 atomic_inc(&eb->refs);
4519         spin_unlock(&eb->refs_lock);
4520 }
4521
4522 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4523 {
4524         unsigned long num_pages, i;
4525
4526         check_buffer_tree_ref(eb);
4527
4528         num_pages = num_extent_pages(eb->start, eb->len);
4529         for (i = 0; i < num_pages; i++) {
4530                 struct page *p = extent_buffer_page(eb, i);
4531                 mark_page_accessed(p);
4532         }
4533 }
4534
4535 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4536                                          u64 start)
4537 {
4538         struct extent_buffer *eb;
4539
4540         rcu_read_lock();
4541         eb = radix_tree_lookup(&fs_info->buffer_radix,
4542                                start >> PAGE_CACHE_SHIFT);
4543         if (eb && atomic_inc_not_zero(&eb->refs)) {
4544                 rcu_read_unlock();
4545                 mark_extent_buffer_accessed(eb);
4546                 return eb;
4547         }
4548         rcu_read_unlock();
4549
4550         return NULL;
4551 }
4552
4553 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4554                                           u64 start, unsigned long len)
4555 {
4556         unsigned long num_pages = num_extent_pages(start, len);
4557         unsigned long i;
4558         unsigned long index = start >> PAGE_CACHE_SHIFT;
4559         struct extent_buffer *eb;
4560         struct extent_buffer *exists = NULL;
4561         struct page *p;
4562         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4563         int uptodate = 1;
4564         int ret;
4565
4566         eb = find_extent_buffer(fs_info, start);
4567         if (eb)
4568                 return eb;
4569
4570         eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4571         if (!eb)
4572                 return NULL;
4573
4574         for (i = 0; i < num_pages; i++, index++) {
4575                 p = find_or_create_page(mapping, index, GFP_NOFS);
4576                 if (!p)
4577                         goto free_eb;
4578
4579                 spin_lock(&mapping->private_lock);
4580                 if (PagePrivate(p)) {
4581                         /*
4582                          * We could have already allocated an eb for this page
4583                          * and attached one so lets see if we can get a ref on
4584                          * the existing eb, and if we can we know it's good and
4585                          * we can just return that one, else we know we can just
4586                          * overwrite page->private.
4587                          */
4588                         exists = (struct extent_buffer *)p->private;
4589                         if (atomic_inc_not_zero(&exists->refs)) {
4590                                 spin_unlock(&mapping->private_lock);
4591                                 unlock_page(p);
4592                                 page_cache_release(p);
4593                                 mark_extent_buffer_accessed(exists);
4594                                 goto free_eb;
4595                         }
4596
4597                         /*
4598                          * Do this so attach doesn't complain and we need to
4599                          * drop the ref the old guy had.
4600                          */
4601                         ClearPagePrivate(p);
4602                         WARN_ON(PageDirty(p));
4603                         page_cache_release(p);
4604                 }
4605                 attach_extent_buffer_page(eb, p);
4606                 spin_unlock(&mapping->private_lock);
4607                 WARN_ON(PageDirty(p));
4608                 mark_page_accessed(p);
4609                 eb->pages[i] = p;
4610                 if (!PageUptodate(p))
4611                         uptodate = 0;
4612
4613                 /*
4614                  * see below about how we avoid a nasty race with release page
4615                  * and why we unlock later
4616                  */
4617         }
4618         if (uptodate)
4619                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4620 again:
4621         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4622         if (ret)
4623                 goto free_eb;
4624
4625         spin_lock(&fs_info->buffer_lock);
4626         ret = radix_tree_insert(&fs_info->buffer_radix,
4627                                 start >> PAGE_CACHE_SHIFT, eb);
4628         spin_unlock(&fs_info->buffer_lock);
4629         radix_tree_preload_end();
4630         if (ret == -EEXIST) {
4631                 exists = find_extent_buffer(fs_info, start);
4632                 if (exists)
4633                         goto free_eb;
4634                 else
4635                         goto again;
4636         }
4637         /* add one reference for the tree */
4638         check_buffer_tree_ref(eb);
4639         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4640
4641         /*
4642          * there is a race where release page may have
4643          * tried to find this extent buffer in the radix
4644          * but failed.  It will tell the VM it is safe to
4645          * reclaim the, and it will clear the page private bit.
4646          * We must make sure to set the page private bit properly
4647          * after the extent buffer is in the radix tree so
4648          * it doesn't get lost
4649          */
4650         SetPageChecked(eb->pages[0]);
4651         for (i = 1; i < num_pages; i++) {
4652                 p = extent_buffer_page(eb, i);
4653                 ClearPageChecked(p);
4654                 unlock_page(p);
4655         }
4656         unlock_page(eb->pages[0]);
4657         return eb;
4658
4659 free_eb:
4660         for (i = 0; i < num_pages; i++) {
4661                 if (eb->pages[i])
4662                         unlock_page(eb->pages[i]);
4663         }
4664
4665         WARN_ON(!atomic_dec_and_test(&eb->refs));
4666         btrfs_release_extent_buffer(eb);
4667         return exists;
4668 }
4669
4670 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4671 {
4672         struct extent_buffer *eb =
4673                         container_of(head, struct extent_buffer, rcu_head);
4674
4675         __free_extent_buffer(eb);
4676 }
4677
4678 /* Expects to have eb->eb_lock already held */
4679 static int release_extent_buffer(struct extent_buffer *eb)
4680 {
4681         WARN_ON(atomic_read(&eb->refs) == 0);
4682         if (atomic_dec_and_test(&eb->refs)) {
4683                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4684                         struct btrfs_fs_info *fs_info = eb->fs_info;
4685
4686                         spin_unlock(&eb->refs_lock);
4687
4688                         spin_lock(&fs_info->buffer_lock);
4689                         radix_tree_delete(&fs_info->buffer_radix,
4690                                           eb->start >> PAGE_CACHE_SHIFT);
4691                         spin_unlock(&fs_info->buffer_lock);
4692                 } else {
4693                         spin_unlock(&eb->refs_lock);
4694                 }
4695
4696                 /* Should be safe to release our pages at this point */
4697                 btrfs_release_extent_buffer_page(eb, 0);
4698                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4699                 return 1;
4700         }
4701         spin_unlock(&eb->refs_lock);
4702
4703         return 0;
4704 }
4705
4706 void free_extent_buffer(struct extent_buffer *eb)
4707 {
4708         int refs;
4709         int old;
4710         if (!eb)
4711                 return;
4712
4713         while (1) {
4714                 refs = atomic_read(&eb->refs);
4715                 if (refs <= 3)
4716                         break;
4717                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4718                 if (old == refs)
4719                         return;
4720         }
4721
4722         spin_lock(&eb->refs_lock);
4723         if (atomic_read(&eb->refs) == 2 &&
4724             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4725                 atomic_dec(&eb->refs);
4726
4727         if (atomic_read(&eb->refs) == 2 &&
4728             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4729             !extent_buffer_under_io(eb) &&
4730             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4731                 atomic_dec(&eb->refs);
4732
4733         /*
4734          * I know this is terrible, but it's temporary until we stop tracking
4735          * the uptodate bits and such for the extent buffers.
4736          */
4737         release_extent_buffer(eb);
4738 }
4739
4740 void free_extent_buffer_stale(struct extent_buffer *eb)
4741 {
4742         if (!eb)
4743                 return;
4744
4745         spin_lock(&eb->refs_lock);
4746         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4747
4748         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4749             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4750                 atomic_dec(&eb->refs);
4751         release_extent_buffer(eb);
4752 }
4753
4754 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4755 {
4756         unsigned long i;
4757         unsigned long num_pages;
4758         struct page *page;
4759
4760         num_pages = num_extent_pages(eb->start, eb->len);
4761
4762         for (i = 0; i < num_pages; i++) {
4763                 page = extent_buffer_page(eb, i);
4764                 if (!PageDirty(page))
4765                         continue;
4766
4767                 lock_page(page);
4768                 WARN_ON(!PagePrivate(page));
4769
4770                 clear_page_dirty_for_io(page);
4771                 spin_lock_irq(&page->mapping->tree_lock);
4772                 if (!PageDirty(page)) {
4773                         radix_tree_tag_clear(&page->mapping->page_tree,
4774                                                 page_index(page),
4775                                                 PAGECACHE_TAG_DIRTY);
4776                 }
4777                 spin_unlock_irq(&page->mapping->tree_lock);
4778                 ClearPageError(page);
4779                 unlock_page(page);
4780         }
4781         WARN_ON(atomic_read(&eb->refs) == 0);
4782 }
4783
4784 int set_extent_buffer_dirty(struct extent_buffer *eb)
4785 {
4786         unsigned long i;
4787         unsigned long num_pages;
4788         int was_dirty = 0;
4789
4790         check_buffer_tree_ref(eb);
4791
4792         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4793
4794         num_pages = num_extent_pages(eb->start, eb->len);
4795         WARN_ON(atomic_read(&eb->refs) == 0);
4796         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4797
4798         for (i = 0; i < num_pages; i++)
4799                 set_page_dirty(extent_buffer_page(eb, i));
4800         return was_dirty;
4801 }
4802
4803 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4804 {
4805         unsigned long i;
4806         struct page *page;
4807         unsigned long num_pages;
4808
4809         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4810         num_pages = num_extent_pages(eb->start, eb->len);
4811         for (i = 0; i < num_pages; i++) {
4812                 page = extent_buffer_page(eb, i);
4813                 if (page)
4814                         ClearPageUptodate(page);
4815         }
4816         return 0;
4817 }
4818
4819 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4820 {
4821         unsigned long i;
4822         struct page *page;
4823         unsigned long num_pages;
4824
4825         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4826         num_pages = num_extent_pages(eb->start, eb->len);
4827         for (i = 0; i < num_pages; i++) {
4828                 page = extent_buffer_page(eb, i);
4829                 SetPageUptodate(page);
4830         }
4831         return 0;
4832 }
4833
4834 int extent_buffer_uptodate(struct extent_buffer *eb)
4835 {
4836         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4837 }
4838
4839 int read_extent_buffer_pages(struct extent_io_tree *tree,
4840                              struct extent_buffer *eb, u64 start, int wait,
4841                              get_extent_t *get_extent, int mirror_num)
4842 {
4843         unsigned long i;
4844         unsigned long start_i;
4845         struct page *page;
4846         int err;
4847         int ret = 0;
4848         int locked_pages = 0;
4849         int all_uptodate = 1;
4850         unsigned long num_pages;
4851         unsigned long num_reads = 0;
4852         struct bio *bio = NULL;
4853         unsigned long bio_flags = 0;
4854
4855         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4856                 return 0;
4857
4858         if (start) {
4859                 WARN_ON(start < eb->start);
4860                 start_i = (start >> PAGE_CACHE_SHIFT) -
4861                         (eb->start >> PAGE_CACHE_SHIFT);
4862         } else {
4863                 start_i = 0;
4864         }
4865
4866         num_pages = num_extent_pages(eb->start, eb->len);
4867         for (i = start_i; i < num_pages; i++) {
4868                 page = extent_buffer_page(eb, i);
4869                 if (wait == WAIT_NONE) {
4870                         if (!trylock_page(page))
4871                                 goto unlock_exit;
4872                 } else {
4873                         lock_page(page);
4874                 }
4875                 locked_pages++;
4876                 if (!PageUptodate(page)) {
4877                         num_reads++;
4878                         all_uptodate = 0;
4879                 }
4880         }
4881         if (all_uptodate) {
4882                 if (start_i == 0)
4883                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4884                 goto unlock_exit;
4885         }
4886
4887         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4888         eb->read_mirror = 0;
4889         atomic_set(&eb->io_pages, num_reads);
4890         for (i = start_i; i < num_pages; i++) {
4891                 page = extent_buffer_page(eb, i);
4892                 if (!PageUptodate(page)) {
4893                         ClearPageError(page);
4894                         err = __extent_read_full_page(tree, page,
4895                                                       get_extent, &bio,
4896                                                       mirror_num, &bio_flags,
4897                                                       READ | REQ_META);
4898                         if (err)
4899                                 ret = err;
4900                 } else {
4901                         unlock_page(page);
4902                 }
4903         }
4904
4905         if (bio) {
4906                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4907                                      bio_flags);
4908                 if (err)
4909                         return err;
4910         }
4911
4912         if (ret || wait != WAIT_COMPLETE)
4913                 return ret;
4914
4915         for (i = start_i; i < num_pages; i++) {
4916                 page = extent_buffer_page(eb, i);
4917                 wait_on_page_locked(page);
4918                 if (!PageUptodate(page))
4919                         ret = -EIO;
4920         }
4921
4922         return ret;
4923
4924 unlock_exit:
4925         i = start_i;
4926         while (locked_pages > 0) {
4927                 page = extent_buffer_page(eb, i);
4928                 i++;
4929                 unlock_page(page);
4930                 locked_pages--;
4931         }
4932         return ret;
4933 }
4934
4935 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4936                         unsigned long start,
4937                         unsigned long len)
4938 {
4939         size_t cur;
4940         size_t offset;
4941         struct page *page;
4942         char *kaddr;
4943         char *dst = (char *)dstv;
4944         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4945         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4946
4947         WARN_ON(start > eb->len);
4948         WARN_ON(start + len > eb->start + eb->len);
4949
4950         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4951
4952         while (len > 0) {
4953                 page = extent_buffer_page(eb, i);
4954
4955                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4956                 kaddr = page_address(page);
4957                 memcpy(dst, kaddr + offset, cur);
4958
4959                 dst += cur;
4960                 len -= cur;
4961                 offset = 0;
4962                 i++;
4963         }
4964 }
4965
4966 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4967                                unsigned long min_len, char **map,
4968                                unsigned long *map_start,
4969                                unsigned long *map_len)
4970 {
4971         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4972         char *kaddr;
4973         struct page *p;
4974         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4975         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4976         unsigned long end_i = (start_offset + start + min_len - 1) >>
4977                 PAGE_CACHE_SHIFT;
4978
4979         if (i != end_i)
4980                 return -EINVAL;
4981
4982         if (i == 0) {
4983                 offset = start_offset;
4984                 *map_start = 0;
4985         } else {
4986                 offset = 0;
4987                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4988         }
4989
4990         if (start + min_len > eb->len) {
4991                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4992                        "wanted %lu %lu\n",
4993                        eb->start, eb->len, start, min_len);
4994                 return -EINVAL;
4995         }
4996
4997         p = extent_buffer_page(eb, i);
4998         kaddr = page_address(p);
4999         *map = kaddr + offset;
5000         *map_len = PAGE_CACHE_SIZE - offset;
5001         return 0;
5002 }
5003
5004 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5005                           unsigned long start,
5006                           unsigned long len)
5007 {
5008         size_t cur;
5009         size_t offset;
5010         struct page *page;
5011         char *kaddr;
5012         char *ptr = (char *)ptrv;
5013         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5014         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5015         int ret = 0;
5016
5017         WARN_ON(start > eb->len);
5018         WARN_ON(start + len > eb->start + eb->len);
5019
5020         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5021
5022         while (len > 0) {
5023                 page = extent_buffer_page(eb, i);
5024
5025                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5026
5027                 kaddr = page_address(page);
5028                 ret = memcmp(ptr, kaddr + offset, cur);
5029                 if (ret)
5030                         break;
5031
5032                 ptr += cur;
5033                 len -= cur;
5034                 offset = 0;
5035                 i++;
5036         }
5037         return ret;
5038 }
5039
5040 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5041                          unsigned long start, unsigned long len)
5042 {
5043         size_t cur;
5044         size_t offset;
5045         struct page *page;
5046         char *kaddr;
5047         char *src = (char *)srcv;
5048         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5049         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5050
5051         WARN_ON(start > eb->len);
5052         WARN_ON(start + len > eb->start + eb->len);
5053
5054         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5055
5056         while (len > 0) {
5057                 page = extent_buffer_page(eb, i);
5058                 WARN_ON(!PageUptodate(page));
5059
5060                 cur = min(len, PAGE_CACHE_SIZE - offset);
5061                 kaddr = page_address(page);
5062                 memcpy(kaddr + offset, src, cur);
5063
5064                 src += cur;
5065                 len -= cur;
5066                 offset = 0;
5067                 i++;
5068         }
5069 }
5070
5071 void memset_extent_buffer(struct extent_buffer *eb, char c,
5072                           unsigned long start, unsigned long len)
5073 {
5074         size_t cur;
5075         size_t offset;
5076         struct page *page;
5077         char *kaddr;
5078         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5079         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5080
5081         WARN_ON(start > eb->len);
5082         WARN_ON(start + len > eb->start + eb->len);
5083
5084         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5085
5086         while (len > 0) {
5087                 page = extent_buffer_page(eb, i);
5088                 WARN_ON(!PageUptodate(page));
5089
5090                 cur = min(len, PAGE_CACHE_SIZE - offset);
5091                 kaddr = page_address(page);
5092                 memset(kaddr + offset, c, cur);
5093
5094                 len -= cur;
5095                 offset = 0;
5096                 i++;
5097         }
5098 }
5099
5100 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5101                         unsigned long dst_offset, unsigned long src_offset,
5102                         unsigned long len)
5103 {
5104         u64 dst_len = dst->len;
5105         size_t cur;
5106         size_t offset;
5107         struct page *page;
5108         char *kaddr;
5109         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5110         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5111
5112         WARN_ON(src->len != dst_len);
5113
5114         offset = (start_offset + dst_offset) &
5115                 (PAGE_CACHE_SIZE - 1);
5116
5117         while (len > 0) {
5118                 page = extent_buffer_page(dst, i);
5119                 WARN_ON(!PageUptodate(page));
5120
5121                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5122
5123                 kaddr = page_address(page);
5124                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5125
5126                 src_offset += cur;
5127                 len -= cur;
5128                 offset = 0;
5129                 i++;
5130         }
5131 }
5132
5133 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5134 {
5135         unsigned long distance = (src > dst) ? src - dst : dst - src;
5136         return distance < len;
5137 }
5138
5139 static void copy_pages(struct page *dst_page, struct page *src_page,
5140                        unsigned long dst_off, unsigned long src_off,
5141                        unsigned long len)
5142 {
5143         char *dst_kaddr = page_address(dst_page);
5144         char *src_kaddr;
5145         int must_memmove = 0;
5146
5147         if (dst_page != src_page) {
5148                 src_kaddr = page_address(src_page);
5149         } else {
5150                 src_kaddr = dst_kaddr;
5151                 if (areas_overlap(src_off, dst_off, len))
5152                         must_memmove = 1;
5153         }
5154
5155         if (must_memmove)
5156                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5157         else
5158                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5159 }
5160
5161 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5162                            unsigned long src_offset, unsigned long len)
5163 {
5164         size_t cur;
5165         size_t dst_off_in_page;
5166         size_t src_off_in_page;
5167         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5168         unsigned long dst_i;
5169         unsigned long src_i;
5170
5171         if (src_offset + len > dst->len) {
5172                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5173                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5174                 BUG_ON(1);
5175         }
5176         if (dst_offset + len > dst->len) {
5177                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5178                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5179                 BUG_ON(1);
5180         }
5181
5182         while (len > 0) {
5183                 dst_off_in_page = (start_offset + dst_offset) &
5184                         (PAGE_CACHE_SIZE - 1);
5185                 src_off_in_page = (start_offset + src_offset) &
5186                         (PAGE_CACHE_SIZE - 1);
5187
5188                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5189                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5190
5191                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5192                                                src_off_in_page));
5193                 cur = min_t(unsigned long, cur,
5194                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5195
5196                 copy_pages(extent_buffer_page(dst, dst_i),
5197                            extent_buffer_page(dst, src_i),
5198                            dst_off_in_page, src_off_in_page, cur);
5199
5200                 src_offset += cur;
5201                 dst_offset += cur;
5202                 len -= cur;
5203         }
5204 }
5205
5206 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5207                            unsigned long src_offset, unsigned long len)
5208 {
5209         size_t cur;
5210         size_t dst_off_in_page;
5211         size_t src_off_in_page;
5212         unsigned long dst_end = dst_offset + len - 1;
5213         unsigned long src_end = src_offset + len - 1;
5214         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5215         unsigned long dst_i;
5216         unsigned long src_i;
5217
5218         if (src_offset + len > dst->len) {
5219                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5220                        "len %lu len %lu\n", src_offset, len, dst->len);
5221                 BUG_ON(1);
5222         }
5223         if (dst_offset + len > dst->len) {
5224                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5225                        "len %lu len %lu\n", dst_offset, len, dst->len);
5226                 BUG_ON(1);
5227         }
5228         if (dst_offset < src_offset) {
5229                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5230                 return;
5231         }
5232         while (len > 0) {
5233                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5234                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5235
5236                 dst_off_in_page = (start_offset + dst_end) &
5237                         (PAGE_CACHE_SIZE - 1);
5238                 src_off_in_page = (start_offset + src_end) &
5239                         (PAGE_CACHE_SIZE - 1);
5240
5241                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5242                 cur = min(cur, dst_off_in_page + 1);
5243                 copy_pages(extent_buffer_page(dst, dst_i),
5244                            extent_buffer_page(dst, src_i),
5245                            dst_off_in_page - cur + 1,
5246                            src_off_in_page - cur + 1, cur);
5247
5248                 dst_end -= cur;
5249                 src_end -= cur;
5250                 len -= cur;
5251         }
5252 }
5253
5254 int try_release_extent_buffer(struct page *page)
5255 {
5256         struct extent_buffer *eb;
5257
5258         /*
5259          * We need to make sure noboody is attaching this page to an eb right
5260          * now.
5261          */
5262         spin_lock(&page->mapping->private_lock);
5263         if (!PagePrivate(page)) {
5264                 spin_unlock(&page->mapping->private_lock);
5265                 return 1;
5266         }
5267
5268         eb = (struct extent_buffer *)page->private;
5269         BUG_ON(!eb);
5270
5271         /*
5272          * This is a little awful but should be ok, we need to make sure that
5273          * the eb doesn't disappear out from under us while we're looking at
5274          * this page.
5275          */
5276         spin_lock(&eb->refs_lock);
5277         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5278                 spin_unlock(&eb->refs_lock);
5279                 spin_unlock(&page->mapping->private_lock);
5280                 return 0;
5281         }
5282         spin_unlock(&page->mapping->private_lock);
5283
5284         /*
5285          * If tree ref isn't set then we know the ref on this eb is a real ref,
5286          * so just return, this page will likely be freed soon anyway.
5287          */
5288         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5289                 spin_unlock(&eb->refs_lock);
5290                 return 0;
5291         }
5292
5293         return release_extent_buffer(eb);
5294 }