]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/extent_io.c
btrfs: Correctly handle empty trees in find_first_clear_extent_bit
[linux.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(buffers);
39 static LIST_HEAD(states);
40
41 static DEFINE_SPINLOCK(leak_lock);
42
43 static inline
44 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45 {
46         unsigned long flags;
47
48         spin_lock_irqsave(&leak_lock, flags);
49         list_add(new, head);
50         spin_unlock_irqrestore(&leak_lock, flags);
51 }
52
53 static inline
54 void btrfs_leak_debug_del(struct list_head *entry)
55 {
56         unsigned long flags;
57
58         spin_lock_irqsave(&leak_lock, flags);
59         list_del(entry);
60         spin_unlock_irqrestore(&leak_lock, flags);
61 }
62
63 static inline void btrfs_extent_buffer_leak_debug_check(void)
64 {
65         struct extent_buffer *eb;
66
67         while (!list_empty(&buffers)) {
68                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
69                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
71                 list_del(&eb->leak_list);
72                 kmem_cache_free(extent_buffer_cache, eb);
73         }
74 }
75
76 static inline void btrfs_extent_state_leak_debug_check(void)
77 {
78         struct extent_state *state;
79
80         while (!list_empty(&states)) {
81                 state = list_entry(states.next, struct extent_state, leak_list);
82                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
83                        state->start, state->end, state->state,
84                        extent_state_in_tree(state),
85                        refcount_read(&state->refs));
86                 list_del(&state->leak_list);
87                 kmem_cache_free(extent_state_cache, state);
88         }
89 }
90
91 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
92         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
93 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
94                 struct extent_io_tree *tree, u64 start, u64 end)
95 {
96         struct inode *inode = tree->private_data;
97         u64 isize;
98
99         if (!inode || !is_data_inode(inode))
100                 return;
101
102         isize = i_size_read(inode);
103         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
104                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
105                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
106                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
107         }
108 }
109 #else
110 #define btrfs_leak_debug_add(new, head) do {} while (0)
111 #define btrfs_leak_debug_del(entry)     do {} while (0)
112 #define btrfs_extent_buffer_leak_debug_check()  do {} while (0)
113 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
114 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
115 #endif
116
117 struct tree_entry {
118         u64 start;
119         u64 end;
120         struct rb_node rb_node;
121 };
122
123 struct extent_page_data {
124         struct bio *bio;
125         struct extent_io_tree *tree;
126         /* tells writepage not to lock the state bits for this range
127          * it still does the unlocking
128          */
129         unsigned int extent_locked:1;
130
131         /* tells the submit_bio code to use REQ_SYNC */
132         unsigned int sync_io:1;
133 };
134
135 static int add_extent_changeset(struct extent_state *state, unsigned bits,
136                                  struct extent_changeset *changeset,
137                                  int set)
138 {
139         int ret;
140
141         if (!changeset)
142                 return 0;
143         if (set && (state->state & bits) == bits)
144                 return 0;
145         if (!set && (state->state & bits) == 0)
146                 return 0;
147         changeset->bytes_changed += state->end - state->start + 1;
148         ret = ulist_add(&changeset->range_changed, state->start, state->end,
149                         GFP_ATOMIC);
150         return ret;
151 }
152
153 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
154                                        unsigned long bio_flags)
155 {
156         blk_status_t ret = 0;
157         struct extent_io_tree *tree = bio->bi_private;
158
159         bio->bi_private = NULL;
160
161         if (tree->ops)
162                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
163                                                  mirror_num, bio_flags);
164         else
165                 btrfsic_submit_bio(bio);
166
167         return blk_status_to_errno(ret);
168 }
169
170 /* Cleanup unsubmitted bios */
171 static void end_write_bio(struct extent_page_data *epd, int ret)
172 {
173         if (epd->bio) {
174                 epd->bio->bi_status = errno_to_blk_status(ret);
175                 bio_endio(epd->bio);
176                 epd->bio = NULL;
177         }
178 }
179
180 /*
181  * Submit bio from extent page data via submit_one_bio
182  *
183  * Return 0 if everything is OK.
184  * Return <0 for error.
185  */
186 static int __must_check flush_write_bio(struct extent_page_data *epd)
187 {
188         int ret = 0;
189
190         if (epd->bio) {
191                 ret = submit_one_bio(epd->bio, 0, 0);
192                 /*
193                  * Clean up of epd->bio is handled by its endio function.
194                  * And endio is either triggered by successful bio execution
195                  * or the error handler of submit bio hook.
196                  * So at this point, no matter what happened, we don't need
197                  * to clean up epd->bio.
198                  */
199                 epd->bio = NULL;
200         }
201         return ret;
202 }
203
204 int __init extent_state_cache_init(void)
205 {
206         extent_state_cache = kmem_cache_create("btrfs_extent_state",
207                         sizeof(struct extent_state), 0,
208                         SLAB_MEM_SPREAD, NULL);
209         if (!extent_state_cache)
210                 return -ENOMEM;
211         return 0;
212 }
213
214 int __init extent_io_init(void)
215 {
216         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
217                         sizeof(struct extent_buffer), 0,
218                         SLAB_MEM_SPREAD, NULL);
219         if (!extent_buffer_cache)
220                 return -ENOMEM;
221
222         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
223                         offsetof(struct btrfs_io_bio, bio),
224                         BIOSET_NEED_BVECS))
225                 goto free_buffer_cache;
226
227         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
228                 goto free_bioset;
229
230         return 0;
231
232 free_bioset:
233         bioset_exit(&btrfs_bioset);
234
235 free_buffer_cache:
236         kmem_cache_destroy(extent_buffer_cache);
237         extent_buffer_cache = NULL;
238         return -ENOMEM;
239 }
240
241 void __cold extent_state_cache_exit(void)
242 {
243         btrfs_extent_state_leak_debug_check();
244         kmem_cache_destroy(extent_state_cache);
245 }
246
247 void __cold extent_io_exit(void)
248 {
249         btrfs_extent_buffer_leak_debug_check();
250
251         /*
252          * Make sure all delayed rcu free are flushed before we
253          * destroy caches.
254          */
255         rcu_barrier();
256         kmem_cache_destroy(extent_buffer_cache);
257         bioset_exit(&btrfs_bioset);
258 }
259
260 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
261                          struct extent_io_tree *tree, unsigned int owner,
262                          void *private_data)
263 {
264         tree->fs_info = fs_info;
265         tree->state = RB_ROOT;
266         tree->ops = NULL;
267         tree->dirty_bytes = 0;
268         spin_lock_init(&tree->lock);
269         tree->private_data = private_data;
270         tree->owner = owner;
271 }
272
273 void extent_io_tree_release(struct extent_io_tree *tree)
274 {
275         spin_lock(&tree->lock);
276         /*
277          * Do a single barrier for the waitqueue_active check here, the state
278          * of the waitqueue should not change once extent_io_tree_release is
279          * called.
280          */
281         smp_mb();
282         while (!RB_EMPTY_ROOT(&tree->state)) {
283                 struct rb_node *node;
284                 struct extent_state *state;
285
286                 node = rb_first(&tree->state);
287                 state = rb_entry(node, struct extent_state, rb_node);
288                 rb_erase(&state->rb_node, &tree->state);
289                 RB_CLEAR_NODE(&state->rb_node);
290                 /*
291                  * btree io trees aren't supposed to have tasks waiting for
292                  * changes in the flags of extent states ever.
293                  */
294                 ASSERT(!waitqueue_active(&state->wq));
295                 free_extent_state(state);
296
297                 cond_resched_lock(&tree->lock);
298         }
299         spin_unlock(&tree->lock);
300 }
301
302 static struct extent_state *alloc_extent_state(gfp_t mask)
303 {
304         struct extent_state *state;
305
306         /*
307          * The given mask might be not appropriate for the slab allocator,
308          * drop the unsupported bits
309          */
310         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
311         state = kmem_cache_alloc(extent_state_cache, mask);
312         if (!state)
313                 return state;
314         state->state = 0;
315         state->failrec = NULL;
316         RB_CLEAR_NODE(&state->rb_node);
317         btrfs_leak_debug_add(&state->leak_list, &states);
318         refcount_set(&state->refs, 1);
319         init_waitqueue_head(&state->wq);
320         trace_alloc_extent_state(state, mask, _RET_IP_);
321         return state;
322 }
323
324 void free_extent_state(struct extent_state *state)
325 {
326         if (!state)
327                 return;
328         if (refcount_dec_and_test(&state->refs)) {
329                 WARN_ON(extent_state_in_tree(state));
330                 btrfs_leak_debug_del(&state->leak_list);
331                 trace_free_extent_state(state, _RET_IP_);
332                 kmem_cache_free(extent_state_cache, state);
333         }
334 }
335
336 static struct rb_node *tree_insert(struct rb_root *root,
337                                    struct rb_node *search_start,
338                                    u64 offset,
339                                    struct rb_node *node,
340                                    struct rb_node ***p_in,
341                                    struct rb_node **parent_in)
342 {
343         struct rb_node **p;
344         struct rb_node *parent = NULL;
345         struct tree_entry *entry;
346
347         if (p_in && parent_in) {
348                 p = *p_in;
349                 parent = *parent_in;
350                 goto do_insert;
351         }
352
353         p = search_start ? &search_start : &root->rb_node;
354         while (*p) {
355                 parent = *p;
356                 entry = rb_entry(parent, struct tree_entry, rb_node);
357
358                 if (offset < entry->start)
359                         p = &(*p)->rb_left;
360                 else if (offset > entry->end)
361                         p = &(*p)->rb_right;
362                 else
363                         return parent;
364         }
365
366 do_insert:
367         rb_link_node(node, parent, p);
368         rb_insert_color(node, root);
369         return NULL;
370 }
371
372 /**
373  * __etree_search - searche @tree for an entry that contains @offset. Such
374  * entry would have entry->start <= offset && entry->end >= offset.
375  *
376  * @tree - the tree to search
377  * @offset - offset that should fall within an entry in @tree
378  * @next_ret - pointer to the first entry whose range ends after @offset
379  * @prev - pointer to the first entry whose range begins before @offset
380  * @p_ret - pointer where new node should be anchored (used when inserting an
381  *          entry in the tree)
382  * @parent_ret - points to entry which would have been the parent of the entry,
383  *               containing @offset
384  *
385  * This function returns a pointer to the entry that contains @offset byte
386  * address. If no such entry exists, then NULL is returned and the other
387  * pointer arguments to the function are filled, otherwise the found entry is
388  * returned and other pointers are left untouched.
389  */
390 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
391                                       struct rb_node **next_ret,
392                                       struct rb_node **prev_ret,
393                                       struct rb_node ***p_ret,
394                                       struct rb_node **parent_ret)
395 {
396         struct rb_root *root = &tree->state;
397         struct rb_node **n = &root->rb_node;
398         struct rb_node *prev = NULL;
399         struct rb_node *orig_prev = NULL;
400         struct tree_entry *entry;
401         struct tree_entry *prev_entry = NULL;
402
403         while (*n) {
404                 prev = *n;
405                 entry = rb_entry(prev, struct tree_entry, rb_node);
406                 prev_entry = entry;
407
408                 if (offset < entry->start)
409                         n = &(*n)->rb_left;
410                 else if (offset > entry->end)
411                         n = &(*n)->rb_right;
412                 else
413                         return *n;
414         }
415
416         if (p_ret)
417                 *p_ret = n;
418         if (parent_ret)
419                 *parent_ret = prev;
420
421         if (next_ret) {
422                 orig_prev = prev;
423                 while (prev && offset > prev_entry->end) {
424                         prev = rb_next(prev);
425                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426                 }
427                 *next_ret = prev;
428                 prev = orig_prev;
429         }
430
431         if (prev_ret) {
432                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
433                 while (prev && offset < prev_entry->start) {
434                         prev = rb_prev(prev);
435                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
436                 }
437                 *prev_ret = prev;
438         }
439         return NULL;
440 }
441
442 static inline struct rb_node *
443 tree_search_for_insert(struct extent_io_tree *tree,
444                        u64 offset,
445                        struct rb_node ***p_ret,
446                        struct rb_node **parent_ret)
447 {
448         struct rb_node *next= NULL;
449         struct rb_node *ret;
450
451         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
452         if (!ret)
453                 return next;
454         return ret;
455 }
456
457 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
458                                           u64 offset)
459 {
460         return tree_search_for_insert(tree, offset, NULL, NULL);
461 }
462
463 /*
464  * utility function to look for merge candidates inside a given range.
465  * Any extents with matching state are merged together into a single
466  * extent in the tree.  Extents with EXTENT_IO in their state field
467  * are not merged because the end_io handlers need to be able to do
468  * operations on them without sleeping (or doing allocations/splits).
469  *
470  * This should be called with the tree lock held.
471  */
472 static void merge_state(struct extent_io_tree *tree,
473                         struct extent_state *state)
474 {
475         struct extent_state *other;
476         struct rb_node *other_node;
477
478         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
479                 return;
480
481         other_node = rb_prev(&state->rb_node);
482         if (other_node) {
483                 other = rb_entry(other_node, struct extent_state, rb_node);
484                 if (other->end == state->start - 1 &&
485                     other->state == state->state) {
486                         if (tree->private_data &&
487                             is_data_inode(tree->private_data))
488                                 btrfs_merge_delalloc_extent(tree->private_data,
489                                                             state, other);
490                         state->start = other->start;
491                         rb_erase(&other->rb_node, &tree->state);
492                         RB_CLEAR_NODE(&other->rb_node);
493                         free_extent_state(other);
494                 }
495         }
496         other_node = rb_next(&state->rb_node);
497         if (other_node) {
498                 other = rb_entry(other_node, struct extent_state, rb_node);
499                 if (other->start == state->end + 1 &&
500                     other->state == state->state) {
501                         if (tree->private_data &&
502                             is_data_inode(tree->private_data))
503                                 btrfs_merge_delalloc_extent(tree->private_data,
504                                                             state, other);
505                         state->end = other->end;
506                         rb_erase(&other->rb_node, &tree->state);
507                         RB_CLEAR_NODE(&other->rb_node);
508                         free_extent_state(other);
509                 }
510         }
511 }
512
513 static void set_state_bits(struct extent_io_tree *tree,
514                            struct extent_state *state, unsigned *bits,
515                            struct extent_changeset *changeset);
516
517 /*
518  * insert an extent_state struct into the tree.  'bits' are set on the
519  * struct before it is inserted.
520  *
521  * This may return -EEXIST if the extent is already there, in which case the
522  * state struct is freed.
523  *
524  * The tree lock is not taken internally.  This is a utility function and
525  * probably isn't what you want to call (see set/clear_extent_bit).
526  */
527 static int insert_state(struct extent_io_tree *tree,
528                         struct extent_state *state, u64 start, u64 end,
529                         struct rb_node ***p,
530                         struct rb_node **parent,
531                         unsigned *bits, struct extent_changeset *changeset)
532 {
533         struct rb_node *node;
534
535         if (end < start) {
536                 btrfs_err(tree->fs_info,
537                         "insert state: end < start %llu %llu", end, start);
538                 WARN_ON(1);
539         }
540         state->start = start;
541         state->end = end;
542
543         set_state_bits(tree, state, bits, changeset);
544
545         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
546         if (node) {
547                 struct extent_state *found;
548                 found = rb_entry(node, struct extent_state, rb_node);
549                 btrfs_err(tree->fs_info,
550                        "found node %llu %llu on insert of %llu %llu",
551                        found->start, found->end, start, end);
552                 return -EEXIST;
553         }
554         merge_state(tree, state);
555         return 0;
556 }
557
558 /*
559  * split a given extent state struct in two, inserting the preallocated
560  * struct 'prealloc' as the newly created second half.  'split' indicates an
561  * offset inside 'orig' where it should be split.
562  *
563  * Before calling,
564  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
565  * are two extent state structs in the tree:
566  * prealloc: [orig->start, split - 1]
567  * orig: [ split, orig->end ]
568  *
569  * The tree locks are not taken by this function. They need to be held
570  * by the caller.
571  */
572 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
573                        struct extent_state *prealloc, u64 split)
574 {
575         struct rb_node *node;
576
577         if (tree->private_data && is_data_inode(tree->private_data))
578                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
579
580         prealloc->start = orig->start;
581         prealloc->end = split - 1;
582         prealloc->state = orig->state;
583         orig->start = split;
584
585         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
586                            &prealloc->rb_node, NULL, NULL);
587         if (node) {
588                 free_extent_state(prealloc);
589                 return -EEXIST;
590         }
591         return 0;
592 }
593
594 static struct extent_state *next_state(struct extent_state *state)
595 {
596         struct rb_node *next = rb_next(&state->rb_node);
597         if (next)
598                 return rb_entry(next, struct extent_state, rb_node);
599         else
600                 return NULL;
601 }
602
603 /*
604  * utility function to clear some bits in an extent state struct.
605  * it will optionally wake up anyone waiting on this state (wake == 1).
606  *
607  * If no bits are set on the state struct after clearing things, the
608  * struct is freed and removed from the tree
609  */
610 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
611                                             struct extent_state *state,
612                                             unsigned *bits, int wake,
613                                             struct extent_changeset *changeset)
614 {
615         struct extent_state *next;
616         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
617         int ret;
618
619         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
620                 u64 range = state->end - state->start + 1;
621                 WARN_ON(range > tree->dirty_bytes);
622                 tree->dirty_bytes -= range;
623         }
624
625         if (tree->private_data && is_data_inode(tree->private_data))
626                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
627
628         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
629         BUG_ON(ret < 0);
630         state->state &= ~bits_to_clear;
631         if (wake)
632                 wake_up(&state->wq);
633         if (state->state == 0) {
634                 next = next_state(state);
635                 if (extent_state_in_tree(state)) {
636                         rb_erase(&state->rb_node, &tree->state);
637                         RB_CLEAR_NODE(&state->rb_node);
638                         free_extent_state(state);
639                 } else {
640                         WARN_ON(1);
641                 }
642         } else {
643                 merge_state(tree, state);
644                 next = next_state(state);
645         }
646         return next;
647 }
648
649 static struct extent_state *
650 alloc_extent_state_atomic(struct extent_state *prealloc)
651 {
652         if (!prealloc)
653                 prealloc = alloc_extent_state(GFP_ATOMIC);
654
655         return prealloc;
656 }
657
658 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
659 {
660         struct inode *inode = tree->private_data;
661
662         btrfs_panic(btrfs_sb(inode->i_sb), err,
663         "locking error: extent tree was modified by another thread while locked");
664 }
665
666 /*
667  * clear some bits on a range in the tree.  This may require splitting
668  * or inserting elements in the tree, so the gfp mask is used to
669  * indicate which allocations or sleeping are allowed.
670  *
671  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672  * the given range from the tree regardless of state (ie for truncate).
673  *
674  * the range [start, end] is inclusive.
675  *
676  * This takes the tree lock, and returns 0 on success and < 0 on error.
677  */
678 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
679                               unsigned bits, int wake, int delete,
680                               struct extent_state **cached_state,
681                               gfp_t mask, struct extent_changeset *changeset)
682 {
683         struct extent_state *state;
684         struct extent_state *cached;
685         struct extent_state *prealloc = NULL;
686         struct rb_node *node;
687         u64 last_end;
688         int err;
689         int clear = 0;
690
691         btrfs_debug_check_extent_io_range(tree, start, end);
692         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
693
694         if (bits & EXTENT_DELALLOC)
695                 bits |= EXTENT_NORESERVE;
696
697         if (delete)
698                 bits |= ~EXTENT_CTLBITS;
699
700         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
701                 clear = 1;
702 again:
703         if (!prealloc && gfpflags_allow_blocking(mask)) {
704                 /*
705                  * Don't care for allocation failure here because we might end
706                  * up not needing the pre-allocated extent state at all, which
707                  * is the case if we only have in the tree extent states that
708                  * cover our input range and don't cover too any other range.
709                  * If we end up needing a new extent state we allocate it later.
710                  */
711                 prealloc = alloc_extent_state(mask);
712         }
713
714         spin_lock(&tree->lock);
715         if (cached_state) {
716                 cached = *cached_state;
717
718                 if (clear) {
719                         *cached_state = NULL;
720                         cached_state = NULL;
721                 }
722
723                 if (cached && extent_state_in_tree(cached) &&
724                     cached->start <= start && cached->end > start) {
725                         if (clear)
726                                 refcount_dec(&cached->refs);
727                         state = cached;
728                         goto hit_next;
729                 }
730                 if (clear)
731                         free_extent_state(cached);
732         }
733         /*
734          * this search will find the extents that end after
735          * our range starts
736          */
737         node = tree_search(tree, start);
738         if (!node)
739                 goto out;
740         state = rb_entry(node, struct extent_state, rb_node);
741 hit_next:
742         if (state->start > end)
743                 goto out;
744         WARN_ON(state->end < start);
745         last_end = state->end;
746
747         /* the state doesn't have the wanted bits, go ahead */
748         if (!(state->state & bits)) {
749                 state = next_state(state);
750                 goto next;
751         }
752
753         /*
754          *     | ---- desired range ---- |
755          *  | state | or
756          *  | ------------- state -------------- |
757          *
758          * We need to split the extent we found, and may flip
759          * bits on second half.
760          *
761          * If the extent we found extends past our range, we
762          * just split and search again.  It'll get split again
763          * the next time though.
764          *
765          * If the extent we found is inside our range, we clear
766          * the desired bit on it.
767          */
768
769         if (state->start < start) {
770                 prealloc = alloc_extent_state_atomic(prealloc);
771                 BUG_ON(!prealloc);
772                 err = split_state(tree, state, prealloc, start);
773                 if (err)
774                         extent_io_tree_panic(tree, err);
775
776                 prealloc = NULL;
777                 if (err)
778                         goto out;
779                 if (state->end <= end) {
780                         state = clear_state_bit(tree, state, &bits, wake,
781                                                 changeset);
782                         goto next;
783                 }
784                 goto search_again;
785         }
786         /*
787          * | ---- desired range ---- |
788          *                        | state |
789          * We need to split the extent, and clear the bit
790          * on the first half
791          */
792         if (state->start <= end && state->end > end) {
793                 prealloc = alloc_extent_state_atomic(prealloc);
794                 BUG_ON(!prealloc);
795                 err = split_state(tree, state, prealloc, end + 1);
796                 if (err)
797                         extent_io_tree_panic(tree, err);
798
799                 if (wake)
800                         wake_up(&state->wq);
801
802                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
803
804                 prealloc = NULL;
805                 goto out;
806         }
807
808         state = clear_state_bit(tree, state, &bits, wake, changeset);
809 next:
810         if (last_end == (u64)-1)
811                 goto out;
812         start = last_end + 1;
813         if (start <= end && state && !need_resched())
814                 goto hit_next;
815
816 search_again:
817         if (start > end)
818                 goto out;
819         spin_unlock(&tree->lock);
820         if (gfpflags_allow_blocking(mask))
821                 cond_resched();
822         goto again;
823
824 out:
825         spin_unlock(&tree->lock);
826         if (prealloc)
827                 free_extent_state(prealloc);
828
829         return 0;
830
831 }
832
833 static void wait_on_state(struct extent_io_tree *tree,
834                           struct extent_state *state)
835                 __releases(tree->lock)
836                 __acquires(tree->lock)
837 {
838         DEFINE_WAIT(wait);
839         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
840         spin_unlock(&tree->lock);
841         schedule();
842         spin_lock(&tree->lock);
843         finish_wait(&state->wq, &wait);
844 }
845
846 /*
847  * waits for one or more bits to clear on a range in the state tree.
848  * The range [start, end] is inclusive.
849  * The tree lock is taken by this function
850  */
851 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
852                             unsigned long bits)
853 {
854         struct extent_state *state;
855         struct rb_node *node;
856
857         btrfs_debug_check_extent_io_range(tree, start, end);
858
859         spin_lock(&tree->lock);
860 again:
861         while (1) {
862                 /*
863                  * this search will find all the extents that end after
864                  * our range starts
865                  */
866                 node = tree_search(tree, start);
867 process_node:
868                 if (!node)
869                         break;
870
871                 state = rb_entry(node, struct extent_state, rb_node);
872
873                 if (state->start > end)
874                         goto out;
875
876                 if (state->state & bits) {
877                         start = state->start;
878                         refcount_inc(&state->refs);
879                         wait_on_state(tree, state);
880                         free_extent_state(state);
881                         goto again;
882                 }
883                 start = state->end + 1;
884
885                 if (start > end)
886                         break;
887
888                 if (!cond_resched_lock(&tree->lock)) {
889                         node = rb_next(node);
890                         goto process_node;
891                 }
892         }
893 out:
894         spin_unlock(&tree->lock);
895 }
896
897 static void set_state_bits(struct extent_io_tree *tree,
898                            struct extent_state *state,
899                            unsigned *bits, struct extent_changeset *changeset)
900 {
901         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
902         int ret;
903
904         if (tree->private_data && is_data_inode(tree->private_data))
905                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
906
907         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
908                 u64 range = state->end - state->start + 1;
909                 tree->dirty_bytes += range;
910         }
911         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
912         BUG_ON(ret < 0);
913         state->state |= bits_to_set;
914 }
915
916 static void cache_state_if_flags(struct extent_state *state,
917                                  struct extent_state **cached_ptr,
918                                  unsigned flags)
919 {
920         if (cached_ptr && !(*cached_ptr)) {
921                 if (!flags || (state->state & flags)) {
922                         *cached_ptr = state;
923                         refcount_inc(&state->refs);
924                 }
925         }
926 }
927
928 static void cache_state(struct extent_state *state,
929                         struct extent_state **cached_ptr)
930 {
931         return cache_state_if_flags(state, cached_ptr,
932                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
933 }
934
935 /*
936  * set some bits on a range in the tree.  This may require allocations or
937  * sleeping, so the gfp mask is used to indicate what is allowed.
938  *
939  * If any of the exclusive bits are set, this will fail with -EEXIST if some
940  * part of the range already has the desired bits set.  The start of the
941  * existing range is returned in failed_start in this case.
942  *
943  * [start, end] is inclusive This takes the tree lock.
944  */
945
946 static int __must_check
947 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948                  unsigned bits, unsigned exclusive_bits,
949                  u64 *failed_start, struct extent_state **cached_state,
950                  gfp_t mask, struct extent_changeset *changeset)
951 {
952         struct extent_state *state;
953         struct extent_state *prealloc = NULL;
954         struct rb_node *node;
955         struct rb_node **p;
956         struct rb_node *parent;
957         int err = 0;
958         u64 last_start;
959         u64 last_end;
960
961         btrfs_debug_check_extent_io_range(tree, start, end);
962         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
963
964 again:
965         if (!prealloc && gfpflags_allow_blocking(mask)) {
966                 /*
967                  * Don't care for allocation failure here because we might end
968                  * up not needing the pre-allocated extent state at all, which
969                  * is the case if we only have in the tree extent states that
970                  * cover our input range and don't cover too any other range.
971                  * If we end up needing a new extent state we allocate it later.
972                  */
973                 prealloc = alloc_extent_state(mask);
974         }
975
976         spin_lock(&tree->lock);
977         if (cached_state && *cached_state) {
978                 state = *cached_state;
979                 if (state->start <= start && state->end > start &&
980                     extent_state_in_tree(state)) {
981                         node = &state->rb_node;
982                         goto hit_next;
983                 }
984         }
985         /*
986          * this search will find all the extents that end after
987          * our range starts.
988          */
989         node = tree_search_for_insert(tree, start, &p, &parent);
990         if (!node) {
991                 prealloc = alloc_extent_state_atomic(prealloc);
992                 BUG_ON(!prealloc);
993                 err = insert_state(tree, prealloc, start, end,
994                                    &p, &parent, &bits, changeset);
995                 if (err)
996                         extent_io_tree_panic(tree, err);
997
998                 cache_state(prealloc, cached_state);
999                 prealloc = NULL;
1000                 goto out;
1001         }
1002         state = rb_entry(node, struct extent_state, rb_node);
1003 hit_next:
1004         last_start = state->start;
1005         last_end = state->end;
1006
1007         /*
1008          * | ---- desired range ---- |
1009          * | state |
1010          *
1011          * Just lock what we found and keep going
1012          */
1013         if (state->start == start && state->end <= end) {
1014                 if (state->state & exclusive_bits) {
1015                         *failed_start = state->start;
1016                         err = -EEXIST;
1017                         goto out;
1018                 }
1019
1020                 set_state_bits(tree, state, &bits, changeset);
1021                 cache_state(state, cached_state);
1022                 merge_state(tree, state);
1023                 if (last_end == (u64)-1)
1024                         goto out;
1025                 start = last_end + 1;
1026                 state = next_state(state);
1027                 if (start < end && state && state->start == start &&
1028                     !need_resched())
1029                         goto hit_next;
1030                 goto search_again;
1031         }
1032
1033         /*
1034          *     | ---- desired range ---- |
1035          * | state |
1036          *   or
1037          * | ------------- state -------------- |
1038          *
1039          * We need to split the extent we found, and may flip bits on
1040          * second half.
1041          *
1042          * If the extent we found extends past our
1043          * range, we just split and search again.  It'll get split
1044          * again the next time though.
1045          *
1046          * If the extent we found is inside our range, we set the
1047          * desired bit on it.
1048          */
1049         if (state->start < start) {
1050                 if (state->state & exclusive_bits) {
1051                         *failed_start = start;
1052                         err = -EEXIST;
1053                         goto out;
1054                 }
1055
1056                 prealloc = alloc_extent_state_atomic(prealloc);
1057                 BUG_ON(!prealloc);
1058                 err = split_state(tree, state, prealloc, start);
1059                 if (err)
1060                         extent_io_tree_panic(tree, err);
1061
1062                 prealloc = NULL;
1063                 if (err)
1064                         goto out;
1065                 if (state->end <= end) {
1066                         set_state_bits(tree, state, &bits, changeset);
1067                         cache_state(state, cached_state);
1068                         merge_state(tree, state);
1069                         if (last_end == (u64)-1)
1070                                 goto out;
1071                         start = last_end + 1;
1072                         state = next_state(state);
1073                         if (start < end && state && state->start == start &&
1074                             !need_resched())
1075                                 goto hit_next;
1076                 }
1077                 goto search_again;
1078         }
1079         /*
1080          * | ---- desired range ---- |
1081          *     | state | or               | state |
1082          *
1083          * There's a hole, we need to insert something in it and
1084          * ignore the extent we found.
1085          */
1086         if (state->start > start) {
1087                 u64 this_end;
1088                 if (end < last_start)
1089                         this_end = end;
1090                 else
1091                         this_end = last_start - 1;
1092
1093                 prealloc = alloc_extent_state_atomic(prealloc);
1094                 BUG_ON(!prealloc);
1095
1096                 /*
1097                  * Avoid to free 'prealloc' if it can be merged with
1098                  * the later extent.
1099                  */
1100                 err = insert_state(tree, prealloc, start, this_end,
1101                                    NULL, NULL, &bits, changeset);
1102                 if (err)
1103                         extent_io_tree_panic(tree, err);
1104
1105                 cache_state(prealloc, cached_state);
1106                 prealloc = NULL;
1107                 start = this_end + 1;
1108                 goto search_again;
1109         }
1110         /*
1111          * | ---- desired range ---- |
1112          *                        | state |
1113          * We need to split the extent, and set the bit
1114          * on the first half
1115          */
1116         if (state->start <= end && state->end > end) {
1117                 if (state->state & exclusive_bits) {
1118                         *failed_start = start;
1119                         err = -EEXIST;
1120                         goto out;
1121                 }
1122
1123                 prealloc = alloc_extent_state_atomic(prealloc);
1124                 BUG_ON(!prealloc);
1125                 err = split_state(tree, state, prealloc, end + 1);
1126                 if (err)
1127                         extent_io_tree_panic(tree, err);
1128
1129                 set_state_bits(tree, prealloc, &bits, changeset);
1130                 cache_state(prealloc, cached_state);
1131                 merge_state(tree, prealloc);
1132                 prealloc = NULL;
1133                 goto out;
1134         }
1135
1136 search_again:
1137         if (start > end)
1138                 goto out;
1139         spin_unlock(&tree->lock);
1140         if (gfpflags_allow_blocking(mask))
1141                 cond_resched();
1142         goto again;
1143
1144 out:
1145         spin_unlock(&tree->lock);
1146         if (prealloc)
1147                 free_extent_state(prealloc);
1148
1149         return err;
1150
1151 }
1152
1153 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1154                    unsigned bits, u64 * failed_start,
1155                    struct extent_state **cached_state, gfp_t mask)
1156 {
1157         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1158                                 cached_state, mask, NULL);
1159 }
1160
1161
1162 /**
1163  * convert_extent_bit - convert all bits in a given range from one bit to
1164  *                      another
1165  * @tree:       the io tree to search
1166  * @start:      the start offset in bytes
1167  * @end:        the end offset in bytes (inclusive)
1168  * @bits:       the bits to set in this range
1169  * @clear_bits: the bits to clear in this range
1170  * @cached_state:       state that we're going to cache
1171  *
1172  * This will go through and set bits for the given range.  If any states exist
1173  * already in this range they are set with the given bit and cleared of the
1174  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1175  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1176  * boundary bits like LOCK.
1177  *
1178  * All allocations are done with GFP_NOFS.
1179  */
1180 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181                        unsigned bits, unsigned clear_bits,
1182                        struct extent_state **cached_state)
1183 {
1184         struct extent_state *state;
1185         struct extent_state *prealloc = NULL;
1186         struct rb_node *node;
1187         struct rb_node **p;
1188         struct rb_node *parent;
1189         int err = 0;
1190         u64 last_start;
1191         u64 last_end;
1192         bool first_iteration = true;
1193
1194         btrfs_debug_check_extent_io_range(tree, start, end);
1195         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1196                                        clear_bits);
1197
1198 again:
1199         if (!prealloc) {
1200                 /*
1201                  * Best effort, don't worry if extent state allocation fails
1202                  * here for the first iteration. We might have a cached state
1203                  * that matches exactly the target range, in which case no
1204                  * extent state allocations are needed. We'll only know this
1205                  * after locking the tree.
1206                  */
1207                 prealloc = alloc_extent_state(GFP_NOFS);
1208                 if (!prealloc && !first_iteration)
1209                         return -ENOMEM;
1210         }
1211
1212         spin_lock(&tree->lock);
1213         if (cached_state && *cached_state) {
1214                 state = *cached_state;
1215                 if (state->start <= start && state->end > start &&
1216                     extent_state_in_tree(state)) {
1217                         node = &state->rb_node;
1218                         goto hit_next;
1219                 }
1220         }
1221
1222         /*
1223          * this search will find all the extents that end after
1224          * our range starts.
1225          */
1226         node = tree_search_for_insert(tree, start, &p, &parent);
1227         if (!node) {
1228                 prealloc = alloc_extent_state_atomic(prealloc);
1229                 if (!prealloc) {
1230                         err = -ENOMEM;
1231                         goto out;
1232                 }
1233                 err = insert_state(tree, prealloc, start, end,
1234                                    &p, &parent, &bits, NULL);
1235                 if (err)
1236                         extent_io_tree_panic(tree, err);
1237                 cache_state(prealloc, cached_state);
1238                 prealloc = NULL;
1239                 goto out;
1240         }
1241         state = rb_entry(node, struct extent_state, rb_node);
1242 hit_next:
1243         last_start = state->start;
1244         last_end = state->end;
1245
1246         /*
1247          * | ---- desired range ---- |
1248          * | state |
1249          *
1250          * Just lock what we found and keep going
1251          */
1252         if (state->start == start && state->end <= end) {
1253                 set_state_bits(tree, state, &bits, NULL);
1254                 cache_state(state, cached_state);
1255                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1256                 if (last_end == (u64)-1)
1257                         goto out;
1258                 start = last_end + 1;
1259                 if (start < end && state && state->start == start &&
1260                     !need_resched())
1261                         goto hit_next;
1262                 goto search_again;
1263         }
1264
1265         /*
1266          *     | ---- desired range ---- |
1267          * | state |
1268          *   or
1269          * | ------------- state -------------- |
1270          *
1271          * We need to split the extent we found, and may flip bits on
1272          * second half.
1273          *
1274          * If the extent we found extends past our
1275          * range, we just split and search again.  It'll get split
1276          * again the next time though.
1277          *
1278          * If the extent we found is inside our range, we set the
1279          * desired bit on it.
1280          */
1281         if (state->start < start) {
1282                 prealloc = alloc_extent_state_atomic(prealloc);
1283                 if (!prealloc) {
1284                         err = -ENOMEM;
1285                         goto out;
1286                 }
1287                 err = split_state(tree, state, prealloc, start);
1288                 if (err)
1289                         extent_io_tree_panic(tree, err);
1290                 prealloc = NULL;
1291                 if (err)
1292                         goto out;
1293                 if (state->end <= end) {
1294                         set_state_bits(tree, state, &bits, NULL);
1295                         cache_state(state, cached_state);
1296                         state = clear_state_bit(tree, state, &clear_bits, 0,
1297                                                 NULL);
1298                         if (last_end == (u64)-1)
1299                                 goto out;
1300                         start = last_end + 1;
1301                         if (start < end && state && state->start == start &&
1302                             !need_resched())
1303                                 goto hit_next;
1304                 }
1305                 goto search_again;
1306         }
1307         /*
1308          * | ---- desired range ---- |
1309          *     | state | or               | state |
1310          *
1311          * There's a hole, we need to insert something in it and
1312          * ignore the extent we found.
1313          */
1314         if (state->start > start) {
1315                 u64 this_end;
1316                 if (end < last_start)
1317                         this_end = end;
1318                 else
1319                         this_end = last_start - 1;
1320
1321                 prealloc = alloc_extent_state_atomic(prealloc);
1322                 if (!prealloc) {
1323                         err = -ENOMEM;
1324                         goto out;
1325                 }
1326
1327                 /*
1328                  * Avoid to free 'prealloc' if it can be merged with
1329                  * the later extent.
1330                  */
1331                 err = insert_state(tree, prealloc, start, this_end,
1332                                    NULL, NULL, &bits, NULL);
1333                 if (err)
1334                         extent_io_tree_panic(tree, err);
1335                 cache_state(prealloc, cached_state);
1336                 prealloc = NULL;
1337                 start = this_end + 1;
1338                 goto search_again;
1339         }
1340         /*
1341          * | ---- desired range ---- |
1342          *                        | state |
1343          * We need to split the extent, and set the bit
1344          * on the first half
1345          */
1346         if (state->start <= end && state->end > end) {
1347                 prealloc = alloc_extent_state_atomic(prealloc);
1348                 if (!prealloc) {
1349                         err = -ENOMEM;
1350                         goto out;
1351                 }
1352
1353                 err = split_state(tree, state, prealloc, end + 1);
1354                 if (err)
1355                         extent_io_tree_panic(tree, err);
1356
1357                 set_state_bits(tree, prealloc, &bits, NULL);
1358                 cache_state(prealloc, cached_state);
1359                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1360                 prealloc = NULL;
1361                 goto out;
1362         }
1363
1364 search_again:
1365         if (start > end)
1366                 goto out;
1367         spin_unlock(&tree->lock);
1368         cond_resched();
1369         first_iteration = false;
1370         goto again;
1371
1372 out:
1373         spin_unlock(&tree->lock);
1374         if (prealloc)
1375                 free_extent_state(prealloc);
1376
1377         return err;
1378 }
1379
1380 /* wrappers around set/clear extent bit */
1381 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1382                            unsigned bits, struct extent_changeset *changeset)
1383 {
1384         /*
1385          * We don't support EXTENT_LOCKED yet, as current changeset will
1386          * record any bits changed, so for EXTENT_LOCKED case, it will
1387          * either fail with -EEXIST or changeset will record the whole
1388          * range.
1389          */
1390         BUG_ON(bits & EXTENT_LOCKED);
1391
1392         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1393                                 changeset);
1394 }
1395
1396 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1397                            unsigned bits)
1398 {
1399         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1400                                 GFP_NOWAIT, NULL);
1401 }
1402
1403 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1404                      unsigned bits, int wake, int delete,
1405                      struct extent_state **cached)
1406 {
1407         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1408                                   cached, GFP_NOFS, NULL);
1409 }
1410
1411 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412                 unsigned bits, struct extent_changeset *changeset)
1413 {
1414         /*
1415          * Don't support EXTENT_LOCKED case, same reason as
1416          * set_record_extent_bits().
1417          */
1418         BUG_ON(bits & EXTENT_LOCKED);
1419
1420         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1421                                   changeset);
1422 }
1423
1424 /*
1425  * either insert or lock state struct between start and end use mask to tell
1426  * us if waiting is desired.
1427  */
1428 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1429                      struct extent_state **cached_state)
1430 {
1431         int err;
1432         u64 failed_start;
1433
1434         while (1) {
1435                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1436                                        EXTENT_LOCKED, &failed_start,
1437                                        cached_state, GFP_NOFS, NULL);
1438                 if (err == -EEXIST) {
1439                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1440                         start = failed_start;
1441                 } else
1442                         break;
1443                 WARN_ON(start > end);
1444         }
1445         return err;
1446 }
1447
1448 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450         int err;
1451         u64 failed_start;
1452
1453         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1454                                &failed_start, NULL, GFP_NOFS, NULL);
1455         if (err == -EEXIST) {
1456                 if (failed_start > start)
1457                         clear_extent_bit(tree, start, failed_start - 1,
1458                                          EXTENT_LOCKED, 1, 0, NULL);
1459                 return 0;
1460         }
1461         return 1;
1462 }
1463
1464 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1465 {
1466         unsigned long index = start >> PAGE_SHIFT;
1467         unsigned long end_index = end >> PAGE_SHIFT;
1468         struct page *page;
1469
1470         while (index <= end_index) {
1471                 page = find_get_page(inode->i_mapping, index);
1472                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1473                 clear_page_dirty_for_io(page);
1474                 put_page(page);
1475                 index++;
1476         }
1477 }
1478
1479 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1480 {
1481         unsigned long index = start >> PAGE_SHIFT;
1482         unsigned long end_index = end >> PAGE_SHIFT;
1483         struct page *page;
1484
1485         while (index <= end_index) {
1486                 page = find_get_page(inode->i_mapping, index);
1487                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1488                 __set_page_dirty_nobuffers(page);
1489                 account_page_redirty(page);
1490                 put_page(page);
1491                 index++;
1492         }
1493 }
1494
1495 /* find the first state struct with 'bits' set after 'start', and
1496  * return it.  tree->lock must be held.  NULL will returned if
1497  * nothing was found after 'start'
1498  */
1499 static struct extent_state *
1500 find_first_extent_bit_state(struct extent_io_tree *tree,
1501                             u64 start, unsigned bits)
1502 {
1503         struct rb_node *node;
1504         struct extent_state *state;
1505
1506         /*
1507          * this search will find all the extents that end after
1508          * our range starts.
1509          */
1510         node = tree_search(tree, start);
1511         if (!node)
1512                 goto out;
1513
1514         while (1) {
1515                 state = rb_entry(node, struct extent_state, rb_node);
1516                 if (state->end >= start && (state->state & bits))
1517                         return state;
1518
1519                 node = rb_next(node);
1520                 if (!node)
1521                         break;
1522         }
1523 out:
1524         return NULL;
1525 }
1526
1527 /*
1528  * find the first offset in the io tree with 'bits' set. zero is
1529  * returned if we find something, and *start_ret and *end_ret are
1530  * set to reflect the state struct that was found.
1531  *
1532  * If nothing was found, 1 is returned. If found something, return 0.
1533  */
1534 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1535                           u64 *start_ret, u64 *end_ret, unsigned bits,
1536                           struct extent_state **cached_state)
1537 {
1538         struct extent_state *state;
1539         int ret = 1;
1540
1541         spin_lock(&tree->lock);
1542         if (cached_state && *cached_state) {
1543                 state = *cached_state;
1544                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1545                         while ((state = next_state(state)) != NULL) {
1546                                 if (state->state & bits)
1547                                         goto got_it;
1548                         }
1549                         free_extent_state(*cached_state);
1550                         *cached_state = NULL;
1551                         goto out;
1552                 }
1553                 free_extent_state(*cached_state);
1554                 *cached_state = NULL;
1555         }
1556
1557         state = find_first_extent_bit_state(tree, start, bits);
1558 got_it:
1559         if (state) {
1560                 cache_state_if_flags(state, cached_state, 0);
1561                 *start_ret = state->start;
1562                 *end_ret = state->end;
1563                 ret = 0;
1564         }
1565 out:
1566         spin_unlock(&tree->lock);
1567         return ret;
1568 }
1569
1570 /**
1571  * find_first_clear_extent_bit - find the first range that has @bits not set.
1572  * This range could start before @start.
1573  *
1574  * @tree - the tree to search
1575  * @start - the offset at/after which the found extent should start
1576  * @start_ret - records the beginning of the range
1577  * @end_ret - records the end of the range (inclusive)
1578  * @bits - the set of bits which must be unset
1579  *
1580  * Since unallocated range is also considered one which doesn't have the bits
1581  * set it's possible that @end_ret contains -1, this happens in case the range
1582  * spans (last_range_end, end of device]. In this case it's up to the caller to
1583  * trim @end_ret to the appropriate size.
1584  */
1585 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1586                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1587 {
1588         struct extent_state *state;
1589         struct rb_node *node, *prev = NULL, *next;
1590
1591         spin_lock(&tree->lock);
1592
1593         /* Find first extent with bits cleared */
1594         while (1) {
1595                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1596                 if (!node && !next && !prev) {
1597                         /*
1598                          * Tree is completely empty, send full range and let
1599                          * caller deal with it
1600                          */
1601                         *start_ret = 0;
1602                         *end_ret = -1;
1603                         goto out;
1604                 } else if (!node && !next) {
1605                         /*
1606                          * We are past the last allocated chunk, set start at
1607                          * the end of the last extent.
1608                          */
1609                         state = rb_entry(prev, struct extent_state, rb_node);
1610                         *start_ret = state->end + 1;
1611                         *end_ret = -1;
1612                         goto out;
1613                 } else if (!node) {
1614                         node = next;
1615                 }
1616                 /*
1617                  * At this point 'node' either contains 'start' or start is
1618                  * before 'node'
1619                  */
1620                 state = rb_entry(node, struct extent_state, rb_node);
1621
1622                 if (in_range(start, state->start, state->end - state->start + 1)) {
1623                         if (state->state & bits) {
1624                                 /*
1625                                  * |--range with bits sets--|
1626                                  *    |
1627                                  *    start
1628                                  */
1629                                 start = state->end + 1;
1630                         } else {
1631                                 /*
1632                                  * 'start' falls within a range that doesn't
1633                                  * have the bits set, so take its start as
1634                                  * the beginning of the desired range
1635                                  *
1636                                  * |--range with bits cleared----|
1637                                  *      |
1638                                  *      start
1639                                  */
1640                                 *start_ret = state->start;
1641                                 break;
1642                         }
1643                 } else {
1644                         /*
1645                          * |---prev range---|---hole/unset---|---node range---|
1646                          *                          |
1647                          *                        start
1648                          *
1649                          *                        or
1650                          *
1651                          * |---hole/unset--||--first node--|
1652                          * 0   |
1653                          *    start
1654                          */
1655                         if (prev) {
1656                                 state = rb_entry(prev, struct extent_state,
1657                                                  rb_node);
1658                                 *start_ret = state->end + 1;
1659                         } else {
1660                                 *start_ret = 0;
1661                         }
1662                         break;
1663                 }
1664         }
1665
1666         /*
1667          * Find the longest stretch from start until an entry which has the
1668          * bits set
1669          */
1670         while (1) {
1671                 state = rb_entry(node, struct extent_state, rb_node);
1672                 if (state->end >= start && !(state->state & bits)) {
1673                         *end_ret = state->end;
1674                 } else {
1675                         *end_ret = state->start - 1;
1676                         break;
1677                 }
1678
1679                 node = rb_next(node);
1680                 if (!node)
1681                         break;
1682         }
1683 out:
1684         spin_unlock(&tree->lock);
1685 }
1686
1687 /*
1688  * find a contiguous range of bytes in the file marked as delalloc, not
1689  * more than 'max_bytes'.  start and end are used to return the range,
1690  *
1691  * true is returned if we find something, false if nothing was in the tree
1692  */
1693 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1694                                u64 *end, u64 max_bytes,
1695                                struct extent_state **cached_state)
1696 {
1697         struct rb_node *node;
1698         struct extent_state *state;
1699         u64 cur_start = *start;
1700         bool found = false;
1701         u64 total_bytes = 0;
1702
1703         spin_lock(&tree->lock);
1704
1705         /*
1706          * this search will find all the extents that end after
1707          * our range starts.
1708          */
1709         node = tree_search(tree, cur_start);
1710         if (!node) {
1711                 *end = (u64)-1;
1712                 goto out;
1713         }
1714
1715         while (1) {
1716                 state = rb_entry(node, struct extent_state, rb_node);
1717                 if (found && (state->start != cur_start ||
1718                               (state->state & EXTENT_BOUNDARY))) {
1719                         goto out;
1720                 }
1721                 if (!(state->state & EXTENT_DELALLOC)) {
1722                         if (!found)
1723                                 *end = state->end;
1724                         goto out;
1725                 }
1726                 if (!found) {
1727                         *start = state->start;
1728                         *cached_state = state;
1729                         refcount_inc(&state->refs);
1730                 }
1731                 found = true;
1732                 *end = state->end;
1733                 cur_start = state->end + 1;
1734                 node = rb_next(node);
1735                 total_bytes += state->end - state->start + 1;
1736                 if (total_bytes >= max_bytes)
1737                         break;
1738                 if (!node)
1739                         break;
1740         }
1741 out:
1742         spin_unlock(&tree->lock);
1743         return found;
1744 }
1745
1746 static int __process_pages_contig(struct address_space *mapping,
1747                                   struct page *locked_page,
1748                                   pgoff_t start_index, pgoff_t end_index,
1749                                   unsigned long page_ops, pgoff_t *index_ret);
1750
1751 static noinline void __unlock_for_delalloc(struct inode *inode,
1752                                            struct page *locked_page,
1753                                            u64 start, u64 end)
1754 {
1755         unsigned long index = start >> PAGE_SHIFT;
1756         unsigned long end_index = end >> PAGE_SHIFT;
1757
1758         ASSERT(locked_page);
1759         if (index == locked_page->index && end_index == index)
1760                 return;
1761
1762         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1763                                PAGE_UNLOCK, NULL);
1764 }
1765
1766 static noinline int lock_delalloc_pages(struct inode *inode,
1767                                         struct page *locked_page,
1768                                         u64 delalloc_start,
1769                                         u64 delalloc_end)
1770 {
1771         unsigned long index = delalloc_start >> PAGE_SHIFT;
1772         unsigned long index_ret = index;
1773         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1774         int ret;
1775
1776         ASSERT(locked_page);
1777         if (index == locked_page->index && index == end_index)
1778                 return 0;
1779
1780         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1781                                      end_index, PAGE_LOCK, &index_ret);
1782         if (ret == -EAGAIN)
1783                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1784                                       (u64)index_ret << PAGE_SHIFT);
1785         return ret;
1786 }
1787
1788 /*
1789  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1790  * more than @max_bytes.  @Start and @end are used to return the range,
1791  *
1792  * Return: true if we find something
1793  *         false if nothing was in the tree
1794  */
1795 EXPORT_FOR_TESTS
1796 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1797                                     struct page *locked_page, u64 *start,
1798                                     u64 *end)
1799 {
1800         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1801         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1802         u64 delalloc_start;
1803         u64 delalloc_end;
1804         bool found;
1805         struct extent_state *cached_state = NULL;
1806         int ret;
1807         int loops = 0;
1808
1809 again:
1810         /* step one, find a bunch of delalloc bytes starting at start */
1811         delalloc_start = *start;
1812         delalloc_end = 0;
1813         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1814                                           max_bytes, &cached_state);
1815         if (!found || delalloc_end <= *start) {
1816                 *start = delalloc_start;
1817                 *end = delalloc_end;
1818                 free_extent_state(cached_state);
1819                 return false;
1820         }
1821
1822         /*
1823          * start comes from the offset of locked_page.  We have to lock
1824          * pages in order, so we can't process delalloc bytes before
1825          * locked_page
1826          */
1827         if (delalloc_start < *start)
1828                 delalloc_start = *start;
1829
1830         /*
1831          * make sure to limit the number of pages we try to lock down
1832          */
1833         if (delalloc_end + 1 - delalloc_start > max_bytes)
1834                 delalloc_end = delalloc_start + max_bytes - 1;
1835
1836         /* step two, lock all the pages after the page that has start */
1837         ret = lock_delalloc_pages(inode, locked_page,
1838                                   delalloc_start, delalloc_end);
1839         ASSERT(!ret || ret == -EAGAIN);
1840         if (ret == -EAGAIN) {
1841                 /* some of the pages are gone, lets avoid looping by
1842                  * shortening the size of the delalloc range we're searching
1843                  */
1844                 free_extent_state(cached_state);
1845                 cached_state = NULL;
1846                 if (!loops) {
1847                         max_bytes = PAGE_SIZE;
1848                         loops = 1;
1849                         goto again;
1850                 } else {
1851                         found = false;
1852                         goto out_failed;
1853                 }
1854         }
1855
1856         /* step three, lock the state bits for the whole range */
1857         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1858
1859         /* then test to make sure it is all still delalloc */
1860         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1861                              EXTENT_DELALLOC, 1, cached_state);
1862         if (!ret) {
1863                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1864                                      &cached_state);
1865                 __unlock_for_delalloc(inode, locked_page,
1866                               delalloc_start, delalloc_end);
1867                 cond_resched();
1868                 goto again;
1869         }
1870         free_extent_state(cached_state);
1871         *start = delalloc_start;
1872         *end = delalloc_end;
1873 out_failed:
1874         return found;
1875 }
1876
1877 static int __process_pages_contig(struct address_space *mapping,
1878                                   struct page *locked_page,
1879                                   pgoff_t start_index, pgoff_t end_index,
1880                                   unsigned long page_ops, pgoff_t *index_ret)
1881 {
1882         unsigned long nr_pages = end_index - start_index + 1;
1883         unsigned long pages_locked = 0;
1884         pgoff_t index = start_index;
1885         struct page *pages[16];
1886         unsigned ret;
1887         int err = 0;
1888         int i;
1889
1890         if (page_ops & PAGE_LOCK) {
1891                 ASSERT(page_ops == PAGE_LOCK);
1892                 ASSERT(index_ret && *index_ret == start_index);
1893         }
1894
1895         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1896                 mapping_set_error(mapping, -EIO);
1897
1898         while (nr_pages > 0) {
1899                 ret = find_get_pages_contig(mapping, index,
1900                                      min_t(unsigned long,
1901                                      nr_pages, ARRAY_SIZE(pages)), pages);
1902                 if (ret == 0) {
1903                         /*
1904                          * Only if we're going to lock these pages,
1905                          * can we find nothing at @index.
1906                          */
1907                         ASSERT(page_ops & PAGE_LOCK);
1908                         err = -EAGAIN;
1909                         goto out;
1910                 }
1911
1912                 for (i = 0; i < ret; i++) {
1913                         if (page_ops & PAGE_SET_PRIVATE2)
1914                                 SetPagePrivate2(pages[i]);
1915
1916                         if (locked_page && pages[i] == locked_page) {
1917                                 put_page(pages[i]);
1918                                 pages_locked++;
1919                                 continue;
1920                         }
1921                         if (page_ops & PAGE_CLEAR_DIRTY)
1922                                 clear_page_dirty_for_io(pages[i]);
1923                         if (page_ops & PAGE_SET_WRITEBACK)
1924                                 set_page_writeback(pages[i]);
1925                         if (page_ops & PAGE_SET_ERROR)
1926                                 SetPageError(pages[i]);
1927                         if (page_ops & PAGE_END_WRITEBACK)
1928                                 end_page_writeback(pages[i]);
1929                         if (page_ops & PAGE_UNLOCK)
1930                                 unlock_page(pages[i]);
1931                         if (page_ops & PAGE_LOCK) {
1932                                 lock_page(pages[i]);
1933                                 if (!PageDirty(pages[i]) ||
1934                                     pages[i]->mapping != mapping) {
1935                                         unlock_page(pages[i]);
1936                                         put_page(pages[i]);
1937                                         err = -EAGAIN;
1938                                         goto out;
1939                                 }
1940                         }
1941                         put_page(pages[i]);
1942                         pages_locked++;
1943                 }
1944                 nr_pages -= ret;
1945                 index += ret;
1946                 cond_resched();
1947         }
1948 out:
1949         if (err && index_ret)
1950                 *index_ret = start_index + pages_locked - 1;
1951         return err;
1952 }
1953
1954 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1955                                   struct page *locked_page,
1956                                   unsigned clear_bits,
1957                                   unsigned long page_ops)
1958 {
1959         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1960                          NULL);
1961
1962         __process_pages_contig(inode->i_mapping, locked_page,
1963                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1964                                page_ops, NULL);
1965 }
1966
1967 /*
1968  * count the number of bytes in the tree that have a given bit(s)
1969  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1970  * cached.  The total number found is returned.
1971  */
1972 u64 count_range_bits(struct extent_io_tree *tree,
1973                      u64 *start, u64 search_end, u64 max_bytes,
1974                      unsigned bits, int contig)
1975 {
1976         struct rb_node *node;
1977         struct extent_state *state;
1978         u64 cur_start = *start;
1979         u64 total_bytes = 0;
1980         u64 last = 0;
1981         int found = 0;
1982
1983         if (WARN_ON(search_end <= cur_start))
1984                 return 0;
1985
1986         spin_lock(&tree->lock);
1987         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1988                 total_bytes = tree->dirty_bytes;
1989                 goto out;
1990         }
1991         /*
1992          * this search will find all the extents that end after
1993          * our range starts.
1994          */
1995         node = tree_search(tree, cur_start);
1996         if (!node)
1997                 goto out;
1998
1999         while (1) {
2000                 state = rb_entry(node, struct extent_state, rb_node);
2001                 if (state->start > search_end)
2002                         break;
2003                 if (contig && found && state->start > last + 1)
2004                         break;
2005                 if (state->end >= cur_start && (state->state & bits) == bits) {
2006                         total_bytes += min(search_end, state->end) + 1 -
2007                                        max(cur_start, state->start);
2008                         if (total_bytes >= max_bytes)
2009                                 break;
2010                         if (!found) {
2011                                 *start = max(cur_start, state->start);
2012                                 found = 1;
2013                         }
2014                         last = state->end;
2015                 } else if (contig && found) {
2016                         break;
2017                 }
2018                 node = rb_next(node);
2019                 if (!node)
2020                         break;
2021         }
2022 out:
2023         spin_unlock(&tree->lock);
2024         return total_bytes;
2025 }
2026
2027 /*
2028  * set the private field for a given byte offset in the tree.  If there isn't
2029  * an extent_state there already, this does nothing.
2030  */
2031 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2032                       struct io_failure_record *failrec)
2033 {
2034         struct rb_node *node;
2035         struct extent_state *state;
2036         int ret = 0;
2037
2038         spin_lock(&tree->lock);
2039         /*
2040          * this search will find all the extents that end after
2041          * our range starts.
2042          */
2043         node = tree_search(tree, start);
2044         if (!node) {
2045                 ret = -ENOENT;
2046                 goto out;
2047         }
2048         state = rb_entry(node, struct extent_state, rb_node);
2049         if (state->start != start) {
2050                 ret = -ENOENT;
2051                 goto out;
2052         }
2053         state->failrec = failrec;
2054 out:
2055         spin_unlock(&tree->lock);
2056         return ret;
2057 }
2058
2059 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2060                       struct io_failure_record **failrec)
2061 {
2062         struct rb_node *node;
2063         struct extent_state *state;
2064         int ret = 0;
2065
2066         spin_lock(&tree->lock);
2067         /*
2068          * this search will find all the extents that end after
2069          * our range starts.
2070          */
2071         node = tree_search(tree, start);
2072         if (!node) {
2073                 ret = -ENOENT;
2074                 goto out;
2075         }
2076         state = rb_entry(node, struct extent_state, rb_node);
2077         if (state->start != start) {
2078                 ret = -ENOENT;
2079                 goto out;
2080         }
2081         *failrec = state->failrec;
2082 out:
2083         spin_unlock(&tree->lock);
2084         return ret;
2085 }
2086
2087 /*
2088  * searches a range in the state tree for a given mask.
2089  * If 'filled' == 1, this returns 1 only if every extent in the tree
2090  * has the bits set.  Otherwise, 1 is returned if any bit in the
2091  * range is found set.
2092  */
2093 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2094                    unsigned bits, int filled, struct extent_state *cached)
2095 {
2096         struct extent_state *state = NULL;
2097         struct rb_node *node;
2098         int bitset = 0;
2099
2100         spin_lock(&tree->lock);
2101         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2102             cached->end > start)
2103                 node = &cached->rb_node;
2104         else
2105                 node = tree_search(tree, start);
2106         while (node && start <= end) {
2107                 state = rb_entry(node, struct extent_state, rb_node);
2108
2109                 if (filled && state->start > start) {
2110                         bitset = 0;
2111                         break;
2112                 }
2113
2114                 if (state->start > end)
2115                         break;
2116
2117                 if (state->state & bits) {
2118                         bitset = 1;
2119                         if (!filled)
2120                                 break;
2121                 } else if (filled) {
2122                         bitset = 0;
2123                         break;
2124                 }
2125
2126                 if (state->end == (u64)-1)
2127                         break;
2128
2129                 start = state->end + 1;
2130                 if (start > end)
2131                         break;
2132                 node = rb_next(node);
2133                 if (!node) {
2134                         if (filled)
2135                                 bitset = 0;
2136                         break;
2137                 }
2138         }
2139         spin_unlock(&tree->lock);
2140         return bitset;
2141 }
2142
2143 /*
2144  * helper function to set a given page up to date if all the
2145  * extents in the tree for that page are up to date
2146  */
2147 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2148 {
2149         u64 start = page_offset(page);
2150         u64 end = start + PAGE_SIZE - 1;
2151         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2152                 SetPageUptodate(page);
2153 }
2154
2155 int free_io_failure(struct extent_io_tree *failure_tree,
2156                     struct extent_io_tree *io_tree,
2157                     struct io_failure_record *rec)
2158 {
2159         int ret;
2160         int err = 0;
2161
2162         set_state_failrec(failure_tree, rec->start, NULL);
2163         ret = clear_extent_bits(failure_tree, rec->start,
2164                                 rec->start + rec->len - 1,
2165                                 EXTENT_LOCKED | EXTENT_DIRTY);
2166         if (ret)
2167                 err = ret;
2168
2169         ret = clear_extent_bits(io_tree, rec->start,
2170                                 rec->start + rec->len - 1,
2171                                 EXTENT_DAMAGED);
2172         if (ret && !err)
2173                 err = ret;
2174
2175         kfree(rec);
2176         return err;
2177 }
2178
2179 /*
2180  * this bypasses the standard btrfs submit functions deliberately, as
2181  * the standard behavior is to write all copies in a raid setup. here we only
2182  * want to write the one bad copy. so we do the mapping for ourselves and issue
2183  * submit_bio directly.
2184  * to avoid any synchronization issues, wait for the data after writing, which
2185  * actually prevents the read that triggered the error from finishing.
2186  * currently, there can be no more than two copies of every data bit. thus,
2187  * exactly one rewrite is required.
2188  */
2189 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2190                       u64 length, u64 logical, struct page *page,
2191                       unsigned int pg_offset, int mirror_num)
2192 {
2193         struct bio *bio;
2194         struct btrfs_device *dev;
2195         u64 map_length = 0;
2196         u64 sector;
2197         struct btrfs_bio *bbio = NULL;
2198         int ret;
2199
2200         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2201         BUG_ON(!mirror_num);
2202
2203         bio = btrfs_io_bio_alloc(1);
2204         bio->bi_iter.bi_size = 0;
2205         map_length = length;
2206
2207         /*
2208          * Avoid races with device replace and make sure our bbio has devices
2209          * associated to its stripes that don't go away while we are doing the
2210          * read repair operation.
2211          */
2212         btrfs_bio_counter_inc_blocked(fs_info);
2213         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2214                 /*
2215                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2216                  * to update all raid stripes, but here we just want to correct
2217                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2218                  * stripe's dev and sector.
2219                  */
2220                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2221                                       &map_length, &bbio, 0);
2222                 if (ret) {
2223                         btrfs_bio_counter_dec(fs_info);
2224                         bio_put(bio);
2225                         return -EIO;
2226                 }
2227                 ASSERT(bbio->mirror_num == 1);
2228         } else {
2229                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2230                                       &map_length, &bbio, mirror_num);
2231                 if (ret) {
2232                         btrfs_bio_counter_dec(fs_info);
2233                         bio_put(bio);
2234                         return -EIO;
2235                 }
2236                 BUG_ON(mirror_num != bbio->mirror_num);
2237         }
2238
2239         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2240         bio->bi_iter.bi_sector = sector;
2241         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2242         btrfs_put_bbio(bbio);
2243         if (!dev || !dev->bdev ||
2244             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2245                 btrfs_bio_counter_dec(fs_info);
2246                 bio_put(bio);
2247                 return -EIO;
2248         }
2249         bio_set_dev(bio, dev->bdev);
2250         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2251         bio_add_page(bio, page, length, pg_offset);
2252
2253         if (btrfsic_submit_bio_wait(bio)) {
2254                 /* try to remap that extent elsewhere? */
2255                 btrfs_bio_counter_dec(fs_info);
2256                 bio_put(bio);
2257                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2258                 return -EIO;
2259         }
2260
2261         btrfs_info_rl_in_rcu(fs_info,
2262                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2263                                   ino, start,
2264                                   rcu_str_deref(dev->name), sector);
2265         btrfs_bio_counter_dec(fs_info);
2266         bio_put(bio);
2267         return 0;
2268 }
2269
2270 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2271 {
2272         struct btrfs_fs_info *fs_info = eb->fs_info;
2273         u64 start = eb->start;
2274         int i, num_pages = num_extent_pages(eb);
2275         int ret = 0;
2276
2277         if (sb_rdonly(fs_info->sb))
2278                 return -EROFS;
2279
2280         for (i = 0; i < num_pages; i++) {
2281                 struct page *p = eb->pages[i];
2282
2283                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2284                                         start - page_offset(p), mirror_num);
2285                 if (ret)
2286                         break;
2287                 start += PAGE_SIZE;
2288         }
2289
2290         return ret;
2291 }
2292
2293 /*
2294  * each time an IO finishes, we do a fast check in the IO failure tree
2295  * to see if we need to process or clean up an io_failure_record
2296  */
2297 int clean_io_failure(struct btrfs_fs_info *fs_info,
2298                      struct extent_io_tree *failure_tree,
2299                      struct extent_io_tree *io_tree, u64 start,
2300                      struct page *page, u64 ino, unsigned int pg_offset)
2301 {
2302         u64 private;
2303         struct io_failure_record *failrec;
2304         struct extent_state *state;
2305         int num_copies;
2306         int ret;
2307
2308         private = 0;
2309         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2310                                EXTENT_DIRTY, 0);
2311         if (!ret)
2312                 return 0;
2313
2314         ret = get_state_failrec(failure_tree, start, &failrec);
2315         if (ret)
2316                 return 0;
2317
2318         BUG_ON(!failrec->this_mirror);
2319
2320         if (failrec->in_validation) {
2321                 /* there was no real error, just free the record */
2322                 btrfs_debug(fs_info,
2323                         "clean_io_failure: freeing dummy error at %llu",
2324                         failrec->start);
2325                 goto out;
2326         }
2327         if (sb_rdonly(fs_info->sb))
2328                 goto out;
2329
2330         spin_lock(&io_tree->lock);
2331         state = find_first_extent_bit_state(io_tree,
2332                                             failrec->start,
2333                                             EXTENT_LOCKED);
2334         spin_unlock(&io_tree->lock);
2335
2336         if (state && state->start <= failrec->start &&
2337             state->end >= failrec->start + failrec->len - 1) {
2338                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2339                                               failrec->len);
2340                 if (num_copies > 1)  {
2341                         repair_io_failure(fs_info, ino, start, failrec->len,
2342                                           failrec->logical, page, pg_offset,
2343                                           failrec->failed_mirror);
2344                 }
2345         }
2346
2347 out:
2348         free_io_failure(failure_tree, io_tree, failrec);
2349
2350         return 0;
2351 }
2352
2353 /*
2354  * Can be called when
2355  * - hold extent lock
2356  * - under ordered extent
2357  * - the inode is freeing
2358  */
2359 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2360 {
2361         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2362         struct io_failure_record *failrec;
2363         struct extent_state *state, *next;
2364
2365         if (RB_EMPTY_ROOT(&failure_tree->state))
2366                 return;
2367
2368         spin_lock(&failure_tree->lock);
2369         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2370         while (state) {
2371                 if (state->start > end)
2372                         break;
2373
2374                 ASSERT(state->end <= end);
2375
2376                 next = next_state(state);
2377
2378                 failrec = state->failrec;
2379                 free_extent_state(state);
2380                 kfree(failrec);
2381
2382                 state = next;
2383         }
2384         spin_unlock(&failure_tree->lock);
2385 }
2386
2387 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2388                 struct io_failure_record **failrec_ret)
2389 {
2390         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2391         struct io_failure_record *failrec;
2392         struct extent_map *em;
2393         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2394         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2395         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2396         int ret;
2397         u64 logical;
2398
2399         ret = get_state_failrec(failure_tree, start, &failrec);
2400         if (ret) {
2401                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2402                 if (!failrec)
2403                         return -ENOMEM;
2404
2405                 failrec->start = start;
2406                 failrec->len = end - start + 1;
2407                 failrec->this_mirror = 0;
2408                 failrec->bio_flags = 0;
2409                 failrec->in_validation = 0;
2410
2411                 read_lock(&em_tree->lock);
2412                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2413                 if (!em) {
2414                         read_unlock(&em_tree->lock);
2415                         kfree(failrec);
2416                         return -EIO;
2417                 }
2418
2419                 if (em->start > start || em->start + em->len <= start) {
2420                         free_extent_map(em);
2421                         em = NULL;
2422                 }
2423                 read_unlock(&em_tree->lock);
2424                 if (!em) {
2425                         kfree(failrec);
2426                         return -EIO;
2427                 }
2428
2429                 logical = start - em->start;
2430                 logical = em->block_start + logical;
2431                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2432                         logical = em->block_start;
2433                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2434                         extent_set_compress_type(&failrec->bio_flags,
2435                                                  em->compress_type);
2436                 }
2437
2438                 btrfs_debug(fs_info,
2439                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2440                         logical, start, failrec->len);
2441
2442                 failrec->logical = logical;
2443                 free_extent_map(em);
2444
2445                 /* set the bits in the private failure tree */
2446                 ret = set_extent_bits(failure_tree, start, end,
2447                                         EXTENT_LOCKED | EXTENT_DIRTY);
2448                 if (ret >= 0)
2449                         ret = set_state_failrec(failure_tree, start, failrec);
2450                 /* set the bits in the inode's tree */
2451                 if (ret >= 0)
2452                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2453                 if (ret < 0) {
2454                         kfree(failrec);
2455                         return ret;
2456                 }
2457         } else {
2458                 btrfs_debug(fs_info,
2459                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2460                         failrec->logical, failrec->start, failrec->len,
2461                         failrec->in_validation);
2462                 /*
2463                  * when data can be on disk more than twice, add to failrec here
2464                  * (e.g. with a list for failed_mirror) to make
2465                  * clean_io_failure() clean all those errors at once.
2466                  */
2467         }
2468
2469         *failrec_ret = failrec;
2470
2471         return 0;
2472 }
2473
2474 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2475                            struct io_failure_record *failrec, int failed_mirror)
2476 {
2477         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2478         int num_copies;
2479
2480         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2481         if (num_copies == 1) {
2482                 /*
2483                  * we only have a single copy of the data, so don't bother with
2484                  * all the retry and error correction code that follows. no
2485                  * matter what the error is, it is very likely to persist.
2486                  */
2487                 btrfs_debug(fs_info,
2488                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2489                         num_copies, failrec->this_mirror, failed_mirror);
2490                 return false;
2491         }
2492
2493         /*
2494          * there are two premises:
2495          *      a) deliver good data to the caller
2496          *      b) correct the bad sectors on disk
2497          */
2498         if (failed_bio_pages > 1) {
2499                 /*
2500                  * to fulfill b), we need to know the exact failing sectors, as
2501                  * we don't want to rewrite any more than the failed ones. thus,
2502                  * we need separate read requests for the failed bio
2503                  *
2504                  * if the following BUG_ON triggers, our validation request got
2505                  * merged. we need separate requests for our algorithm to work.
2506                  */
2507                 BUG_ON(failrec->in_validation);
2508                 failrec->in_validation = 1;
2509                 failrec->this_mirror = failed_mirror;
2510         } else {
2511                 /*
2512                  * we're ready to fulfill a) and b) alongside. get a good copy
2513                  * of the failed sector and if we succeed, we have setup
2514                  * everything for repair_io_failure to do the rest for us.
2515                  */
2516                 if (failrec->in_validation) {
2517                         BUG_ON(failrec->this_mirror != failed_mirror);
2518                         failrec->in_validation = 0;
2519                         failrec->this_mirror = 0;
2520                 }
2521                 failrec->failed_mirror = failed_mirror;
2522                 failrec->this_mirror++;
2523                 if (failrec->this_mirror == failed_mirror)
2524                         failrec->this_mirror++;
2525         }
2526
2527         if (failrec->this_mirror > num_copies) {
2528                 btrfs_debug(fs_info,
2529                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2530                         num_copies, failrec->this_mirror, failed_mirror);
2531                 return false;
2532         }
2533
2534         return true;
2535 }
2536
2537
2538 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2539                                     struct io_failure_record *failrec,
2540                                     struct page *page, int pg_offset, int icsum,
2541                                     bio_end_io_t *endio_func, void *data)
2542 {
2543         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2544         struct bio *bio;
2545         struct btrfs_io_bio *btrfs_failed_bio;
2546         struct btrfs_io_bio *btrfs_bio;
2547
2548         bio = btrfs_io_bio_alloc(1);
2549         bio->bi_end_io = endio_func;
2550         bio->bi_iter.bi_sector = failrec->logical >> 9;
2551         bio->bi_iter.bi_size = 0;
2552         bio->bi_private = data;
2553
2554         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2555         if (btrfs_failed_bio->csum) {
2556                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2557
2558                 btrfs_bio = btrfs_io_bio(bio);
2559                 btrfs_bio->csum = btrfs_bio->csum_inline;
2560                 icsum *= csum_size;
2561                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2562                        csum_size);
2563         }
2564
2565         bio_add_page(bio, page, failrec->len, pg_offset);
2566
2567         return bio;
2568 }
2569
2570 /*
2571  * This is a generic handler for readpage errors. If other copies exist, read
2572  * those and write back good data to the failed position. Does not investigate
2573  * in remapping the failed extent elsewhere, hoping the device will be smart
2574  * enough to do this as needed
2575  */
2576 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2577                               struct page *page, u64 start, u64 end,
2578                               int failed_mirror)
2579 {
2580         struct io_failure_record *failrec;
2581         struct inode *inode = page->mapping->host;
2582         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2583         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2584         struct bio *bio;
2585         int read_mode = 0;
2586         blk_status_t status;
2587         int ret;
2588         unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2589
2590         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2591
2592         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2593         if (ret)
2594                 return ret;
2595
2596         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2597                                     failed_mirror)) {
2598                 free_io_failure(failure_tree, tree, failrec);
2599                 return -EIO;
2600         }
2601
2602         if (failed_bio_pages > 1)
2603                 read_mode |= REQ_FAILFAST_DEV;
2604
2605         phy_offset >>= inode->i_sb->s_blocksize_bits;
2606         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2607                                       start - page_offset(page),
2608                                       (int)phy_offset, failed_bio->bi_end_io,
2609                                       NULL);
2610         bio->bi_opf = REQ_OP_READ | read_mode;
2611
2612         btrfs_debug(btrfs_sb(inode->i_sb),
2613                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2614                 read_mode, failrec->this_mirror, failrec->in_validation);
2615
2616         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2617                                          failrec->bio_flags);
2618         if (status) {
2619                 free_io_failure(failure_tree, tree, failrec);
2620                 bio_put(bio);
2621                 ret = blk_status_to_errno(status);
2622         }
2623
2624         return ret;
2625 }
2626
2627 /* lots and lots of room for performance fixes in the end_bio funcs */
2628
2629 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2630 {
2631         int uptodate = (err == 0);
2632         int ret = 0;
2633
2634         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2635
2636         if (!uptodate) {
2637                 ClearPageUptodate(page);
2638                 SetPageError(page);
2639                 ret = err < 0 ? err : -EIO;
2640                 mapping_set_error(page->mapping, ret);
2641         }
2642 }
2643
2644 /*
2645  * after a writepage IO is done, we need to:
2646  * clear the uptodate bits on error
2647  * clear the writeback bits in the extent tree for this IO
2648  * end_page_writeback if the page has no more pending IO
2649  *
2650  * Scheduling is not allowed, so the extent state tree is expected
2651  * to have one and only one object corresponding to this IO.
2652  */
2653 static void end_bio_extent_writepage(struct bio *bio)
2654 {
2655         int error = blk_status_to_errno(bio->bi_status);
2656         struct bio_vec *bvec;
2657         u64 start;
2658         u64 end;
2659         struct bvec_iter_all iter_all;
2660
2661         ASSERT(!bio_flagged(bio, BIO_CLONED));
2662         bio_for_each_segment_all(bvec, bio, iter_all) {
2663                 struct page *page = bvec->bv_page;
2664                 struct inode *inode = page->mapping->host;
2665                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2666
2667                 /* We always issue full-page reads, but if some block
2668                  * in a page fails to read, blk_update_request() will
2669                  * advance bv_offset and adjust bv_len to compensate.
2670                  * Print a warning for nonzero offsets, and an error
2671                  * if they don't add up to a full page.  */
2672                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2673                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2674                                 btrfs_err(fs_info,
2675                                    "partial page write in btrfs with offset %u and length %u",
2676                                         bvec->bv_offset, bvec->bv_len);
2677                         else
2678                                 btrfs_info(fs_info,
2679                                    "incomplete page write in btrfs with offset %u and length %u",
2680                                         bvec->bv_offset, bvec->bv_len);
2681                 }
2682
2683                 start = page_offset(page);
2684                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2685
2686                 end_extent_writepage(page, error, start, end);
2687                 end_page_writeback(page);
2688         }
2689
2690         bio_put(bio);
2691 }
2692
2693 static void
2694 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2695                               int uptodate)
2696 {
2697         struct extent_state *cached = NULL;
2698         u64 end = start + len - 1;
2699
2700         if (uptodate && tree->track_uptodate)
2701                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2702         unlock_extent_cached_atomic(tree, start, end, &cached);
2703 }
2704
2705 /*
2706  * after a readpage IO is done, we need to:
2707  * clear the uptodate bits on error
2708  * set the uptodate bits if things worked
2709  * set the page up to date if all extents in the tree are uptodate
2710  * clear the lock bit in the extent tree
2711  * unlock the page if there are no other extents locked for it
2712  *
2713  * Scheduling is not allowed, so the extent state tree is expected
2714  * to have one and only one object corresponding to this IO.
2715  */
2716 static void end_bio_extent_readpage(struct bio *bio)
2717 {
2718         struct bio_vec *bvec;
2719         int uptodate = !bio->bi_status;
2720         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2721         struct extent_io_tree *tree, *failure_tree;
2722         u64 offset = 0;
2723         u64 start;
2724         u64 end;
2725         u64 len;
2726         u64 extent_start = 0;
2727         u64 extent_len = 0;
2728         int mirror;
2729         int ret;
2730         struct bvec_iter_all iter_all;
2731
2732         ASSERT(!bio_flagged(bio, BIO_CLONED));
2733         bio_for_each_segment_all(bvec, bio, iter_all) {
2734                 struct page *page = bvec->bv_page;
2735                 struct inode *inode = page->mapping->host;
2736                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2737                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2738                         != BTRFS_BTREE_INODE_OBJECTID;
2739
2740                 btrfs_debug(fs_info,
2741                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2742                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2743                         io_bio->mirror_num);
2744                 tree = &BTRFS_I(inode)->io_tree;
2745                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2746
2747                 /* We always issue full-page reads, but if some block
2748                  * in a page fails to read, blk_update_request() will
2749                  * advance bv_offset and adjust bv_len to compensate.
2750                  * Print a warning for nonzero offsets, and an error
2751                  * if they don't add up to a full page.  */
2752                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2753                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2754                                 btrfs_err(fs_info,
2755                                         "partial page read in btrfs with offset %u and length %u",
2756                                         bvec->bv_offset, bvec->bv_len);
2757                         else
2758                                 btrfs_info(fs_info,
2759                                         "incomplete page read in btrfs with offset %u and length %u",
2760                                         bvec->bv_offset, bvec->bv_len);
2761                 }
2762
2763                 start = page_offset(page);
2764                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2765                 len = bvec->bv_len;
2766
2767                 mirror = io_bio->mirror_num;
2768                 if (likely(uptodate)) {
2769                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2770                                                               page, start, end,
2771                                                               mirror);
2772                         if (ret)
2773                                 uptodate = 0;
2774                         else
2775                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2776                                                  failure_tree, tree, start,
2777                                                  page,
2778                                                  btrfs_ino(BTRFS_I(inode)), 0);
2779                 }
2780
2781                 if (likely(uptodate))
2782                         goto readpage_ok;
2783
2784                 if (data_inode) {
2785
2786                         /*
2787                          * The generic bio_readpage_error handles errors the
2788                          * following way: If possible, new read requests are
2789                          * created and submitted and will end up in
2790                          * end_bio_extent_readpage as well (if we're lucky,
2791                          * not in the !uptodate case). In that case it returns
2792                          * 0 and we just go on with the next page in our bio.
2793                          * If it can't handle the error it will return -EIO and
2794                          * we remain responsible for that page.
2795                          */
2796                         ret = bio_readpage_error(bio, offset, page, start, end,
2797                                                  mirror);
2798                         if (ret == 0) {
2799                                 uptodate = !bio->bi_status;
2800                                 offset += len;
2801                                 continue;
2802                         }
2803                 } else {
2804                         struct extent_buffer *eb;
2805
2806                         eb = (struct extent_buffer *)page->private;
2807                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2808                         eb->read_mirror = mirror;
2809                         atomic_dec(&eb->io_pages);
2810                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2811                                                &eb->bflags))
2812                                 btree_readahead_hook(eb, -EIO);
2813                 }
2814 readpage_ok:
2815                 if (likely(uptodate)) {
2816                         loff_t i_size = i_size_read(inode);
2817                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2818                         unsigned off;
2819
2820                         /* Zero out the end if this page straddles i_size */
2821                         off = offset_in_page(i_size);
2822                         if (page->index == end_index && off)
2823                                 zero_user_segment(page, off, PAGE_SIZE);
2824                         SetPageUptodate(page);
2825                 } else {
2826                         ClearPageUptodate(page);
2827                         SetPageError(page);
2828                 }
2829                 unlock_page(page);
2830                 offset += len;
2831
2832                 if (unlikely(!uptodate)) {
2833                         if (extent_len) {
2834                                 endio_readpage_release_extent(tree,
2835                                                               extent_start,
2836                                                               extent_len, 1);
2837                                 extent_start = 0;
2838                                 extent_len = 0;
2839                         }
2840                         endio_readpage_release_extent(tree, start,
2841                                                       end - start + 1, 0);
2842                 } else if (!extent_len) {
2843                         extent_start = start;
2844                         extent_len = end + 1 - start;
2845                 } else if (extent_start + extent_len == start) {
2846                         extent_len += end + 1 - start;
2847                 } else {
2848                         endio_readpage_release_extent(tree, extent_start,
2849                                                       extent_len, uptodate);
2850                         extent_start = start;
2851                         extent_len = end + 1 - start;
2852                 }
2853         }
2854
2855         if (extent_len)
2856                 endio_readpage_release_extent(tree, extent_start, extent_len,
2857                                               uptodate);
2858         btrfs_io_bio_free_csum(io_bio);
2859         bio_put(bio);
2860 }
2861
2862 /*
2863  * Initialize the members up to but not including 'bio'. Use after allocating a
2864  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2865  * 'bio' because use of __GFP_ZERO is not supported.
2866  */
2867 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2868 {
2869         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2870 }
2871
2872 /*
2873  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2874  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2875  * for the appropriate container_of magic
2876  */
2877 struct bio *btrfs_bio_alloc(u64 first_byte)
2878 {
2879         struct bio *bio;
2880
2881         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2882         bio->bi_iter.bi_sector = first_byte >> 9;
2883         btrfs_io_bio_init(btrfs_io_bio(bio));
2884         return bio;
2885 }
2886
2887 struct bio *btrfs_bio_clone(struct bio *bio)
2888 {
2889         struct btrfs_io_bio *btrfs_bio;
2890         struct bio *new;
2891
2892         /* Bio allocation backed by a bioset does not fail */
2893         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2894         btrfs_bio = btrfs_io_bio(new);
2895         btrfs_io_bio_init(btrfs_bio);
2896         btrfs_bio->iter = bio->bi_iter;
2897         return new;
2898 }
2899
2900 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2901 {
2902         struct bio *bio;
2903
2904         /* Bio allocation backed by a bioset does not fail */
2905         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2906         btrfs_io_bio_init(btrfs_io_bio(bio));
2907         return bio;
2908 }
2909
2910 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2911 {
2912         struct bio *bio;
2913         struct btrfs_io_bio *btrfs_bio;
2914
2915         /* this will never fail when it's backed by a bioset */
2916         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2917         ASSERT(bio);
2918
2919         btrfs_bio = btrfs_io_bio(bio);
2920         btrfs_io_bio_init(btrfs_bio);
2921
2922         bio_trim(bio, offset >> 9, size >> 9);
2923         btrfs_bio->iter = bio->bi_iter;
2924         return bio;
2925 }
2926
2927 /*
2928  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2929  * @tree:       tree so we can call our merge_bio hook
2930  * @wbc:        optional writeback control for io accounting
2931  * @page:       page to add to the bio
2932  * @pg_offset:  offset of the new bio or to check whether we are adding
2933  *              a contiguous page to the previous one
2934  * @size:       portion of page that we want to write
2935  * @offset:     starting offset in the page
2936  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2937  * @end_io_func:     end_io callback for new bio
2938  * @mirror_num:      desired mirror to read/write
2939  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2940  * @bio_flags:  flags of the current bio to see if we can merge them
2941  */
2942 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2943                               struct writeback_control *wbc,
2944                               struct page *page, u64 offset,
2945                               size_t size, unsigned long pg_offset,
2946                               struct bio **bio_ret,
2947                               bio_end_io_t end_io_func,
2948                               int mirror_num,
2949                               unsigned long prev_bio_flags,
2950                               unsigned long bio_flags,
2951                               bool force_bio_submit)
2952 {
2953         int ret = 0;
2954         struct bio *bio;
2955         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2956         sector_t sector = offset >> 9;
2957
2958         ASSERT(bio_ret);
2959
2960         if (*bio_ret) {
2961                 bool contig;
2962                 bool can_merge = true;
2963
2964                 bio = *bio_ret;
2965                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2966                         contig = bio->bi_iter.bi_sector == sector;
2967                 else
2968                         contig = bio_end_sector(bio) == sector;
2969
2970                 ASSERT(tree->ops);
2971                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2972                         can_merge = false;
2973
2974                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2975                     force_bio_submit ||
2976                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2977                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2978                         if (ret < 0) {
2979                                 *bio_ret = NULL;
2980                                 return ret;
2981                         }
2982                         bio = NULL;
2983                 } else {
2984                         if (wbc)
2985                                 wbc_account_cgroup_owner(wbc, page, page_size);
2986                         return 0;
2987                 }
2988         }
2989
2990         bio = btrfs_bio_alloc(offset);
2991         bio_add_page(bio, page, page_size, pg_offset);
2992         bio->bi_end_io = end_io_func;
2993         bio->bi_private = tree;
2994         bio->bi_write_hint = page->mapping->host->i_write_hint;
2995         bio->bi_opf = opf;
2996         if (wbc) {
2997                 struct block_device *bdev;
2998
2999                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3000                 bio_set_dev(bio, bdev);
3001                 wbc_init_bio(wbc, bio);
3002                 wbc_account_cgroup_owner(wbc, page, page_size);
3003         }
3004
3005         *bio_ret = bio;
3006
3007         return ret;
3008 }
3009
3010 static void attach_extent_buffer_page(struct extent_buffer *eb,
3011                                       struct page *page)
3012 {
3013         if (!PagePrivate(page)) {
3014                 SetPagePrivate(page);
3015                 get_page(page);
3016                 set_page_private(page, (unsigned long)eb);
3017         } else {
3018                 WARN_ON(page->private != (unsigned long)eb);
3019         }
3020 }
3021
3022 void set_page_extent_mapped(struct page *page)
3023 {
3024         if (!PagePrivate(page)) {
3025                 SetPagePrivate(page);
3026                 get_page(page);
3027                 set_page_private(page, EXTENT_PAGE_PRIVATE);
3028         }
3029 }
3030
3031 static struct extent_map *
3032 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3033                  u64 start, u64 len, get_extent_t *get_extent,
3034                  struct extent_map **em_cached)
3035 {
3036         struct extent_map *em;
3037
3038         if (em_cached && *em_cached) {
3039                 em = *em_cached;
3040                 if (extent_map_in_tree(em) && start >= em->start &&
3041                     start < extent_map_end(em)) {
3042                         refcount_inc(&em->refs);
3043                         return em;
3044                 }
3045
3046                 free_extent_map(em);
3047                 *em_cached = NULL;
3048         }
3049
3050         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3051         if (em_cached && !IS_ERR_OR_NULL(em)) {
3052                 BUG_ON(*em_cached);
3053                 refcount_inc(&em->refs);
3054                 *em_cached = em;
3055         }
3056         return em;
3057 }
3058 /*
3059  * basic readpage implementation.  Locked extent state structs are inserted
3060  * into the tree that are removed when the IO is done (by the end_io
3061  * handlers)
3062  * XXX JDM: This needs looking at to ensure proper page locking
3063  * return 0 on success, otherwise return error
3064  */
3065 static int __do_readpage(struct extent_io_tree *tree,
3066                          struct page *page,
3067                          get_extent_t *get_extent,
3068                          struct extent_map **em_cached,
3069                          struct bio **bio, int mirror_num,
3070                          unsigned long *bio_flags, unsigned int read_flags,
3071                          u64 *prev_em_start)
3072 {
3073         struct inode *inode = page->mapping->host;
3074         u64 start = page_offset(page);
3075         const u64 end = start + PAGE_SIZE - 1;
3076         u64 cur = start;
3077         u64 extent_offset;
3078         u64 last_byte = i_size_read(inode);
3079         u64 block_start;
3080         u64 cur_end;
3081         struct extent_map *em;
3082         int ret = 0;
3083         int nr = 0;
3084         size_t pg_offset = 0;
3085         size_t iosize;
3086         size_t disk_io_size;
3087         size_t blocksize = inode->i_sb->s_blocksize;
3088         unsigned long this_bio_flag = 0;
3089
3090         set_page_extent_mapped(page);
3091
3092         if (!PageUptodate(page)) {
3093                 if (cleancache_get_page(page) == 0) {
3094                         BUG_ON(blocksize != PAGE_SIZE);
3095                         unlock_extent(tree, start, end);
3096                         goto out;
3097                 }
3098         }
3099
3100         if (page->index == last_byte >> PAGE_SHIFT) {
3101                 char *userpage;
3102                 size_t zero_offset = offset_in_page(last_byte);
3103
3104                 if (zero_offset) {
3105                         iosize = PAGE_SIZE - zero_offset;
3106                         userpage = kmap_atomic(page);
3107                         memset(userpage + zero_offset, 0, iosize);
3108                         flush_dcache_page(page);
3109                         kunmap_atomic(userpage);
3110                 }
3111         }
3112         while (cur <= end) {
3113                 bool force_bio_submit = false;
3114                 u64 offset;
3115
3116                 if (cur >= last_byte) {
3117                         char *userpage;
3118                         struct extent_state *cached = NULL;
3119
3120                         iosize = PAGE_SIZE - pg_offset;
3121                         userpage = kmap_atomic(page);
3122                         memset(userpage + pg_offset, 0, iosize);
3123                         flush_dcache_page(page);
3124                         kunmap_atomic(userpage);
3125                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3126                                             &cached, GFP_NOFS);
3127                         unlock_extent_cached(tree, cur,
3128                                              cur + iosize - 1, &cached);
3129                         break;
3130                 }
3131                 em = __get_extent_map(inode, page, pg_offset, cur,
3132                                       end - cur + 1, get_extent, em_cached);
3133                 if (IS_ERR_OR_NULL(em)) {
3134                         SetPageError(page);
3135                         unlock_extent(tree, cur, end);
3136                         break;
3137                 }
3138                 extent_offset = cur - em->start;
3139                 BUG_ON(extent_map_end(em) <= cur);
3140                 BUG_ON(end < cur);
3141
3142                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3143                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3144                         extent_set_compress_type(&this_bio_flag,
3145                                                  em->compress_type);
3146                 }
3147
3148                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3149                 cur_end = min(extent_map_end(em) - 1, end);
3150                 iosize = ALIGN(iosize, blocksize);
3151                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3152                         disk_io_size = em->block_len;
3153                         offset = em->block_start;
3154                 } else {
3155                         offset = em->block_start + extent_offset;
3156                         disk_io_size = iosize;
3157                 }
3158                 block_start = em->block_start;
3159                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3160                         block_start = EXTENT_MAP_HOLE;
3161
3162                 /*
3163                  * If we have a file range that points to a compressed extent
3164                  * and it's followed by a consecutive file range that points to
3165                  * to the same compressed extent (possibly with a different
3166                  * offset and/or length, so it either points to the whole extent
3167                  * or only part of it), we must make sure we do not submit a
3168                  * single bio to populate the pages for the 2 ranges because
3169                  * this makes the compressed extent read zero out the pages
3170                  * belonging to the 2nd range. Imagine the following scenario:
3171                  *
3172                  *  File layout
3173                  *  [0 - 8K]                     [8K - 24K]
3174                  *    |                               |
3175                  *    |                               |
3176                  * points to extent X,         points to extent X,
3177                  * offset 4K, length of 8K     offset 0, length 16K
3178                  *
3179                  * [extent X, compressed length = 4K uncompressed length = 16K]
3180                  *
3181                  * If the bio to read the compressed extent covers both ranges,
3182                  * it will decompress extent X into the pages belonging to the
3183                  * first range and then it will stop, zeroing out the remaining
3184                  * pages that belong to the other range that points to extent X.
3185                  * So here we make sure we submit 2 bios, one for the first
3186                  * range and another one for the third range. Both will target
3187                  * the same physical extent from disk, but we can't currently
3188                  * make the compressed bio endio callback populate the pages
3189                  * for both ranges because each compressed bio is tightly
3190                  * coupled with a single extent map, and each range can have
3191                  * an extent map with a different offset value relative to the
3192                  * uncompressed data of our extent and different lengths. This
3193                  * is a corner case so we prioritize correctness over
3194                  * non-optimal behavior (submitting 2 bios for the same extent).
3195                  */
3196                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3197                     prev_em_start && *prev_em_start != (u64)-1 &&
3198                     *prev_em_start != em->start)
3199                         force_bio_submit = true;
3200
3201                 if (prev_em_start)
3202                         *prev_em_start = em->start;
3203
3204                 free_extent_map(em);
3205                 em = NULL;
3206
3207                 /* we've found a hole, just zero and go on */
3208                 if (block_start == EXTENT_MAP_HOLE) {
3209                         char *userpage;
3210                         struct extent_state *cached = NULL;
3211
3212                         userpage = kmap_atomic(page);
3213                         memset(userpage + pg_offset, 0, iosize);
3214                         flush_dcache_page(page);
3215                         kunmap_atomic(userpage);
3216
3217                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3218                                             &cached, GFP_NOFS);
3219                         unlock_extent_cached(tree, cur,
3220                                              cur + iosize - 1, &cached);
3221                         cur = cur + iosize;
3222                         pg_offset += iosize;
3223                         continue;
3224                 }
3225                 /* the get_extent function already copied into the page */
3226                 if (test_range_bit(tree, cur, cur_end,
3227                                    EXTENT_UPTODATE, 1, NULL)) {
3228                         check_page_uptodate(tree, page);
3229                         unlock_extent(tree, cur, cur + iosize - 1);
3230                         cur = cur + iosize;
3231                         pg_offset += iosize;
3232                         continue;
3233                 }
3234                 /* we have an inline extent but it didn't get marked up
3235                  * to date.  Error out
3236                  */
3237                 if (block_start == EXTENT_MAP_INLINE) {
3238                         SetPageError(page);
3239                         unlock_extent(tree, cur, cur + iosize - 1);
3240                         cur = cur + iosize;
3241                         pg_offset += iosize;
3242                         continue;
3243                 }
3244
3245                 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3246                                          page, offset, disk_io_size,
3247                                          pg_offset, bio,
3248                                          end_bio_extent_readpage, mirror_num,
3249                                          *bio_flags,
3250                                          this_bio_flag,
3251                                          force_bio_submit);
3252                 if (!ret) {
3253                         nr++;
3254                         *bio_flags = this_bio_flag;
3255                 } else {
3256                         SetPageError(page);
3257                         unlock_extent(tree, cur, cur + iosize - 1);
3258                         goto out;
3259                 }
3260                 cur = cur + iosize;
3261                 pg_offset += iosize;
3262         }
3263 out:
3264         if (!nr) {
3265                 if (!PageError(page))
3266                         SetPageUptodate(page);
3267                 unlock_page(page);
3268         }
3269         return ret;
3270 }
3271
3272 static inline void contiguous_readpages(struct extent_io_tree *tree,
3273                                              struct page *pages[], int nr_pages,
3274                                              u64 start, u64 end,
3275                                              struct extent_map **em_cached,
3276                                              struct bio **bio,
3277                                              unsigned long *bio_flags,
3278                                              u64 *prev_em_start)
3279 {
3280         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3281         int index;
3282
3283         btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3284
3285         for (index = 0; index < nr_pages; index++) {
3286                 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3287                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3288                 put_page(pages[index]);
3289         }
3290 }
3291
3292 static int __extent_read_full_page(struct extent_io_tree *tree,
3293                                    struct page *page,
3294                                    get_extent_t *get_extent,
3295                                    struct bio **bio, int mirror_num,
3296                                    unsigned long *bio_flags,
3297                                    unsigned int read_flags)
3298 {
3299         struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3300         u64 start = page_offset(page);
3301         u64 end = start + PAGE_SIZE - 1;
3302         int ret;
3303
3304         btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3305
3306         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3307                             bio_flags, read_flags, NULL);
3308         return ret;
3309 }
3310
3311 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3312                             get_extent_t *get_extent, int mirror_num)
3313 {
3314         struct bio *bio = NULL;
3315         unsigned long bio_flags = 0;
3316         int ret;
3317
3318         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3319                                       &bio_flags, 0);
3320         if (bio)
3321                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3322         return ret;
3323 }
3324
3325 static void update_nr_written(struct writeback_control *wbc,
3326                               unsigned long nr_written)
3327 {
3328         wbc->nr_to_write -= nr_written;
3329 }
3330
3331 /*
3332  * helper for __extent_writepage, doing all of the delayed allocation setup.
3333  *
3334  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3335  * to write the page (copy into inline extent).  In this case the IO has
3336  * been started and the page is already unlocked.
3337  *
3338  * This returns 0 if all went well (page still locked)
3339  * This returns < 0 if there were errors (page still locked)
3340  */
3341 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3342                 struct page *page, struct writeback_control *wbc,
3343                 u64 delalloc_start, unsigned long *nr_written)
3344 {
3345         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3346         bool found;
3347         u64 delalloc_to_write = 0;
3348         u64 delalloc_end = 0;
3349         int ret;
3350         int page_started = 0;
3351
3352
3353         while (delalloc_end < page_end) {
3354                 found = find_lock_delalloc_range(inode, page,
3355                                                &delalloc_start,
3356                                                &delalloc_end);
3357                 if (!found) {
3358                         delalloc_start = delalloc_end + 1;
3359                         continue;
3360                 }
3361                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3362                                 delalloc_end, &page_started, nr_written, wbc);
3363                 if (ret) {
3364                         SetPageError(page);
3365                         /*
3366                          * btrfs_run_delalloc_range should return < 0 for error
3367                          * but just in case, we use > 0 here meaning the IO is
3368                          * started, so we don't want to return > 0 unless
3369                          * things are going well.
3370                          */
3371                         ret = ret < 0 ? ret : -EIO;
3372                         goto done;
3373                 }
3374                 /*
3375                  * delalloc_end is already one less than the total length, so
3376                  * we don't subtract one from PAGE_SIZE
3377                  */
3378                 delalloc_to_write += (delalloc_end - delalloc_start +
3379                                       PAGE_SIZE) >> PAGE_SHIFT;
3380                 delalloc_start = delalloc_end + 1;
3381         }
3382         if (wbc->nr_to_write < delalloc_to_write) {
3383                 int thresh = 8192;
3384
3385                 if (delalloc_to_write < thresh * 2)
3386                         thresh = delalloc_to_write;
3387                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3388                                          thresh);
3389         }
3390
3391         /* did the fill delalloc function already unlock and start
3392          * the IO?
3393          */
3394         if (page_started) {
3395                 /*
3396                  * we've unlocked the page, so we can't update
3397                  * the mapping's writeback index, just update
3398                  * nr_to_write.
3399                  */
3400                 wbc->nr_to_write -= *nr_written;
3401                 return 1;
3402         }
3403
3404         ret = 0;
3405
3406 done:
3407         return ret;
3408 }
3409
3410 /*
3411  * helper for __extent_writepage.  This calls the writepage start hooks,
3412  * and does the loop to map the page into extents and bios.
3413  *
3414  * We return 1 if the IO is started and the page is unlocked,
3415  * 0 if all went well (page still locked)
3416  * < 0 if there were errors (page still locked)
3417  */
3418 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3419                                  struct page *page,
3420                                  struct writeback_control *wbc,
3421                                  struct extent_page_data *epd,
3422                                  loff_t i_size,
3423                                  unsigned long nr_written,
3424                                  int *nr_ret)
3425 {
3426         struct extent_io_tree *tree = epd->tree;
3427         u64 start = page_offset(page);
3428         u64 page_end = start + PAGE_SIZE - 1;
3429         u64 end;
3430         u64 cur = start;
3431         u64 extent_offset;
3432         u64 block_start;
3433         u64 iosize;
3434         struct extent_map *em;
3435         size_t pg_offset = 0;
3436         size_t blocksize;
3437         int ret = 0;
3438         int nr = 0;
3439         const unsigned int write_flags = wbc_to_write_flags(wbc);
3440         bool compressed;
3441
3442         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3443         if (ret) {
3444                 /* Fixup worker will requeue */
3445                 if (ret == -EBUSY)
3446                         wbc->pages_skipped++;
3447                 else
3448                         redirty_page_for_writepage(wbc, page);
3449
3450                 update_nr_written(wbc, nr_written);
3451                 unlock_page(page);
3452                 return 1;
3453         }
3454
3455         /*
3456          * we don't want to touch the inode after unlocking the page,
3457          * so we update the mapping writeback index now
3458          */
3459         update_nr_written(wbc, nr_written + 1);
3460
3461         end = page_end;
3462         blocksize = inode->i_sb->s_blocksize;
3463
3464         while (cur <= end) {
3465                 u64 em_end;
3466                 u64 offset;
3467
3468                 if (cur >= i_size) {
3469                         btrfs_writepage_endio_finish_ordered(page, cur,
3470                                                              page_end, 1);
3471                         break;
3472                 }
3473                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3474                                       end - cur + 1);
3475                 if (IS_ERR_OR_NULL(em)) {
3476                         SetPageError(page);
3477                         ret = PTR_ERR_OR_ZERO(em);
3478                         break;
3479                 }
3480
3481                 extent_offset = cur - em->start;
3482                 em_end = extent_map_end(em);
3483                 BUG_ON(em_end <= cur);
3484                 BUG_ON(end < cur);
3485                 iosize = min(em_end - cur, end - cur + 1);
3486                 iosize = ALIGN(iosize, blocksize);
3487                 offset = em->block_start + extent_offset;
3488                 block_start = em->block_start;
3489                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3490                 free_extent_map(em);
3491                 em = NULL;
3492
3493                 /*
3494                  * compressed and inline extents are written through other
3495                  * paths in the FS
3496                  */
3497                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3498                     block_start == EXTENT_MAP_INLINE) {
3499                         if (compressed)
3500                                 nr++;
3501                         else
3502                                 btrfs_writepage_endio_finish_ordered(page, cur,
3503                                                         cur + iosize - 1, 1);
3504                         cur += iosize;
3505                         pg_offset += iosize;
3506                         continue;
3507                 }
3508
3509                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3510                 if (!PageWriteback(page)) {
3511                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3512                                    "page %lu not writeback, cur %llu end %llu",
3513                                page->index, cur, end);
3514                 }
3515
3516                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3517                                          page, offset, iosize, pg_offset,
3518                                          &epd->bio,
3519                                          end_bio_extent_writepage,
3520                                          0, 0, 0, false);
3521                 if (ret) {
3522                         SetPageError(page);
3523                         if (PageWriteback(page))
3524                                 end_page_writeback(page);
3525                 }
3526
3527                 cur = cur + iosize;
3528                 pg_offset += iosize;
3529                 nr++;
3530         }
3531         *nr_ret = nr;
3532         return ret;
3533 }
3534
3535 /*
3536  * the writepage semantics are similar to regular writepage.  extent
3537  * records are inserted to lock ranges in the tree, and as dirty areas
3538  * are found, they are marked writeback.  Then the lock bits are removed
3539  * and the end_io handler clears the writeback ranges
3540  *
3541  * Return 0 if everything goes well.
3542  * Return <0 for error.
3543  */
3544 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3545                               struct extent_page_data *epd)
3546 {
3547         struct inode *inode = page->mapping->host;
3548         u64 start = page_offset(page);
3549         u64 page_end = start + PAGE_SIZE - 1;
3550         int ret;
3551         int nr = 0;
3552         size_t pg_offset;
3553         loff_t i_size = i_size_read(inode);
3554         unsigned long end_index = i_size >> PAGE_SHIFT;
3555         unsigned long nr_written = 0;
3556
3557         trace___extent_writepage(page, inode, wbc);
3558
3559         WARN_ON(!PageLocked(page));
3560
3561         ClearPageError(page);
3562
3563         pg_offset = offset_in_page(i_size);
3564         if (page->index > end_index ||
3565            (page->index == end_index && !pg_offset)) {
3566                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3567                 unlock_page(page);
3568                 return 0;
3569         }
3570
3571         if (page->index == end_index) {
3572                 char *userpage;
3573
3574                 userpage = kmap_atomic(page);
3575                 memset(userpage + pg_offset, 0,
3576                        PAGE_SIZE - pg_offset);
3577                 kunmap_atomic(userpage);
3578                 flush_dcache_page(page);
3579         }
3580
3581         set_page_extent_mapped(page);
3582
3583         if (!epd->extent_locked) {
3584                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3585                 if (ret == 1)
3586                         return 0;
3587                 if (ret)
3588                         goto done;
3589         }
3590
3591         ret = __extent_writepage_io(inode, page, wbc, epd,
3592                                     i_size, nr_written, &nr);
3593         if (ret == 1)
3594                 return 0;
3595
3596 done:
3597         if (nr == 0) {
3598                 /* make sure the mapping tag for page dirty gets cleared */
3599                 set_page_writeback(page);
3600                 end_page_writeback(page);
3601         }
3602         if (PageError(page)) {
3603                 ret = ret < 0 ? ret : -EIO;
3604                 end_extent_writepage(page, ret, start, page_end);
3605         }
3606         unlock_page(page);
3607         ASSERT(ret <= 0);
3608         return ret;
3609 }
3610
3611 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3612 {
3613         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3614                        TASK_UNINTERRUPTIBLE);
3615 }
3616
3617 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3618 {
3619         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3620         smp_mb__after_atomic();
3621         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3622 }
3623
3624 /*
3625  * Lock eb pages and flush the bio if we can't the locks
3626  *
3627  * Return  0 if nothing went wrong
3628  * Return >0 is same as 0, except bio is not submitted
3629  * Return <0 if something went wrong, no page is locked
3630  */
3631 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3632                           struct extent_page_data *epd)
3633 {
3634         struct btrfs_fs_info *fs_info = eb->fs_info;
3635         int i, num_pages, failed_page_nr;
3636         int flush = 0;
3637         int ret = 0;
3638
3639         if (!btrfs_try_tree_write_lock(eb)) {
3640                 ret = flush_write_bio(epd);
3641                 if (ret < 0)
3642                         return ret;
3643                 flush = 1;
3644                 btrfs_tree_lock(eb);
3645         }
3646
3647         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3648                 btrfs_tree_unlock(eb);
3649                 if (!epd->sync_io)
3650                         return 0;
3651                 if (!flush) {
3652                         ret = flush_write_bio(epd);
3653                         if (ret < 0)
3654                                 return ret;
3655                         flush = 1;
3656                 }
3657                 while (1) {
3658                         wait_on_extent_buffer_writeback(eb);
3659                         btrfs_tree_lock(eb);
3660                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3661                                 break;
3662                         btrfs_tree_unlock(eb);
3663                 }
3664         }
3665
3666         /*
3667          * We need to do this to prevent races in people who check if the eb is
3668          * under IO since we can end up having no IO bits set for a short period
3669          * of time.
3670          */
3671         spin_lock(&eb->refs_lock);
3672         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3673                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3674                 spin_unlock(&eb->refs_lock);
3675                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3676                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3677                                          -eb->len,
3678                                          fs_info->dirty_metadata_batch);
3679                 ret = 1;
3680         } else {
3681                 spin_unlock(&eb->refs_lock);
3682         }
3683
3684         btrfs_tree_unlock(eb);
3685
3686         if (!ret)
3687                 return ret;
3688
3689         num_pages = num_extent_pages(eb);
3690         for (i = 0; i < num_pages; i++) {
3691                 struct page *p = eb->pages[i];
3692
3693                 if (!trylock_page(p)) {
3694                         if (!flush) {
3695                                 int err;
3696
3697                                 err = flush_write_bio(epd);
3698                                 if (err < 0) {
3699                                         ret = err;
3700                                         failed_page_nr = i;
3701                                         goto err_unlock;
3702                                 }
3703                                 flush = 1;
3704                         }
3705                         lock_page(p);
3706                 }
3707         }
3708
3709         return ret;
3710 err_unlock:
3711         /* Unlock already locked pages */
3712         for (i = 0; i < failed_page_nr; i++)
3713                 unlock_page(eb->pages[i]);
3714         /*
3715          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3716          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3717          * be made and undo everything done before.
3718          */
3719         btrfs_tree_lock(eb);
3720         spin_lock(&eb->refs_lock);
3721         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3722         end_extent_buffer_writeback(eb);
3723         spin_unlock(&eb->refs_lock);
3724         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3725                                  fs_info->dirty_metadata_batch);
3726         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3727         btrfs_tree_unlock(eb);
3728         return ret;
3729 }
3730
3731 static void set_btree_ioerr(struct page *page)
3732 {
3733         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3734         struct btrfs_fs_info *fs_info;
3735
3736         SetPageError(page);
3737         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3738                 return;
3739
3740         /*
3741          * If we error out, we should add back the dirty_metadata_bytes
3742          * to make it consistent.
3743          */
3744         fs_info = eb->fs_info;
3745         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3746                                  eb->len, fs_info->dirty_metadata_batch);
3747
3748         /*
3749          * If writeback for a btree extent that doesn't belong to a log tree
3750          * failed, increment the counter transaction->eb_write_errors.
3751          * We do this because while the transaction is running and before it's
3752          * committing (when we call filemap_fdata[write|wait]_range against
3753          * the btree inode), we might have
3754          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3755          * returns an error or an error happens during writeback, when we're
3756          * committing the transaction we wouldn't know about it, since the pages
3757          * can be no longer dirty nor marked anymore for writeback (if a
3758          * subsequent modification to the extent buffer didn't happen before the
3759          * transaction commit), which makes filemap_fdata[write|wait]_range not
3760          * able to find the pages tagged with SetPageError at transaction
3761          * commit time. So if this happens we must abort the transaction,
3762          * otherwise we commit a super block with btree roots that point to
3763          * btree nodes/leafs whose content on disk is invalid - either garbage
3764          * or the content of some node/leaf from a past generation that got
3765          * cowed or deleted and is no longer valid.
3766          *
3767          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3768          * not be enough - we need to distinguish between log tree extents vs
3769          * non-log tree extents, and the next filemap_fdatawait_range() call
3770          * will catch and clear such errors in the mapping - and that call might
3771          * be from a log sync and not from a transaction commit. Also, checking
3772          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3773          * not done and would not be reliable - the eb might have been released
3774          * from memory and reading it back again means that flag would not be
3775          * set (since it's a runtime flag, not persisted on disk).
3776          *
3777          * Using the flags below in the btree inode also makes us achieve the
3778          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3779          * writeback for all dirty pages and before filemap_fdatawait_range()
3780          * is called, the writeback for all dirty pages had already finished
3781          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3782          * filemap_fdatawait_range() would return success, as it could not know
3783          * that writeback errors happened (the pages were no longer tagged for
3784          * writeback).
3785          */
3786         switch (eb->log_index) {
3787         case -1:
3788                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3789                 break;
3790         case 0:
3791                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3792                 break;
3793         case 1:
3794                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3795                 break;
3796         default:
3797                 BUG(); /* unexpected, logic error */
3798         }
3799 }
3800
3801 static void end_bio_extent_buffer_writepage(struct bio *bio)
3802 {
3803         struct bio_vec *bvec;
3804         struct extent_buffer *eb;
3805         int done;
3806         struct bvec_iter_all iter_all;
3807
3808         ASSERT(!bio_flagged(bio, BIO_CLONED));
3809         bio_for_each_segment_all(bvec, bio, iter_all) {
3810                 struct page *page = bvec->bv_page;
3811
3812                 eb = (struct extent_buffer *)page->private;
3813                 BUG_ON(!eb);
3814                 done = atomic_dec_and_test(&eb->io_pages);
3815
3816                 if (bio->bi_status ||
3817                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3818                         ClearPageUptodate(page);
3819                         set_btree_ioerr(page);
3820                 }
3821
3822                 end_page_writeback(page);
3823
3824                 if (!done)
3825                         continue;
3826
3827                 end_extent_buffer_writeback(eb);
3828         }
3829
3830         bio_put(bio);
3831 }
3832
3833 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3834                         struct writeback_control *wbc,
3835                         struct extent_page_data *epd)
3836 {
3837         struct btrfs_fs_info *fs_info = eb->fs_info;
3838         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3839         u64 offset = eb->start;
3840         u32 nritems;
3841         int i, num_pages;
3842         unsigned long start, end;
3843         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3844         int ret = 0;
3845
3846         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3847         num_pages = num_extent_pages(eb);
3848         atomic_set(&eb->io_pages, num_pages);
3849
3850         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3851         nritems = btrfs_header_nritems(eb);
3852         if (btrfs_header_level(eb) > 0) {
3853                 end = btrfs_node_key_ptr_offset(nritems);
3854
3855                 memzero_extent_buffer(eb, end, eb->len - end);
3856         } else {
3857                 /*
3858                  * leaf:
3859                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3860                  */
3861                 start = btrfs_item_nr_offset(nritems);
3862                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3863                 memzero_extent_buffer(eb, start, end - start);
3864         }
3865
3866         for (i = 0; i < num_pages; i++) {
3867                 struct page *p = eb->pages[i];
3868
3869                 clear_page_dirty_for_io(p);
3870                 set_page_writeback(p);
3871                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3872                                          p, offset, PAGE_SIZE, 0,
3873                                          &epd->bio,
3874                                          end_bio_extent_buffer_writepage,
3875                                          0, 0, 0, false);
3876                 if (ret) {
3877                         set_btree_ioerr(p);
3878                         if (PageWriteback(p))
3879                                 end_page_writeback(p);
3880                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3881                                 end_extent_buffer_writeback(eb);
3882                         ret = -EIO;
3883                         break;
3884                 }
3885                 offset += PAGE_SIZE;
3886                 update_nr_written(wbc, 1);
3887                 unlock_page(p);
3888         }
3889
3890         if (unlikely(ret)) {
3891                 for (; i < num_pages; i++) {
3892                         struct page *p = eb->pages[i];
3893                         clear_page_dirty_for_io(p);
3894                         unlock_page(p);
3895                 }
3896         }
3897
3898         return ret;
3899 }
3900
3901 int btree_write_cache_pages(struct address_space *mapping,
3902                                    struct writeback_control *wbc)
3903 {
3904         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3905         struct extent_buffer *eb, *prev_eb = NULL;
3906         struct extent_page_data epd = {
3907                 .bio = NULL,
3908                 .tree = tree,
3909                 .extent_locked = 0,
3910                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3911         };
3912         int ret = 0;
3913         int done = 0;
3914         int nr_to_write_done = 0;
3915         struct pagevec pvec;
3916         int nr_pages;
3917         pgoff_t index;
3918         pgoff_t end;            /* Inclusive */
3919         int scanned = 0;
3920         xa_mark_t tag;
3921
3922         pagevec_init(&pvec);
3923         if (wbc->range_cyclic) {
3924                 index = mapping->writeback_index; /* Start from prev offset */
3925                 end = -1;
3926                 /*
3927                  * Start from the beginning does not need to cycle over the
3928                  * range, mark it as scanned.
3929                  */
3930                 scanned = (index == 0);
3931         } else {
3932                 index = wbc->range_start >> PAGE_SHIFT;
3933                 end = wbc->range_end >> PAGE_SHIFT;
3934                 scanned = 1;
3935         }
3936         if (wbc->sync_mode == WB_SYNC_ALL)
3937                 tag = PAGECACHE_TAG_TOWRITE;
3938         else
3939                 tag = PAGECACHE_TAG_DIRTY;
3940 retry:
3941         if (wbc->sync_mode == WB_SYNC_ALL)
3942                 tag_pages_for_writeback(mapping, index, end);
3943         while (!done && !nr_to_write_done && (index <= end) &&
3944                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3945                         tag))) {
3946                 unsigned i;
3947
3948                 for (i = 0; i < nr_pages; i++) {
3949                         struct page *page = pvec.pages[i];
3950
3951                         if (!PagePrivate(page))
3952                                 continue;
3953
3954                         spin_lock(&mapping->private_lock);
3955                         if (!PagePrivate(page)) {
3956                                 spin_unlock(&mapping->private_lock);
3957                                 continue;
3958                         }
3959
3960                         eb = (struct extent_buffer *)page->private;
3961
3962                         /*
3963                          * Shouldn't happen and normally this would be a BUG_ON
3964                          * but no sense in crashing the users box for something
3965                          * we can survive anyway.
3966                          */
3967                         if (WARN_ON(!eb)) {
3968                                 spin_unlock(&mapping->private_lock);
3969                                 continue;
3970                         }
3971
3972                         if (eb == prev_eb) {
3973                                 spin_unlock(&mapping->private_lock);
3974                                 continue;
3975                         }
3976
3977                         ret = atomic_inc_not_zero(&eb->refs);
3978                         spin_unlock(&mapping->private_lock);
3979                         if (!ret)
3980                                 continue;
3981
3982                         prev_eb = eb;
3983                         ret = lock_extent_buffer_for_io(eb, &epd);
3984                         if (!ret) {
3985                                 free_extent_buffer(eb);
3986                                 continue;
3987                         } else if (ret < 0) {
3988                                 done = 1;
3989                                 free_extent_buffer(eb);
3990                                 break;
3991                         }
3992
3993                         ret = write_one_eb(eb, wbc, &epd);
3994                         if (ret) {
3995                                 done = 1;
3996                                 free_extent_buffer(eb);
3997                                 break;
3998                         }
3999                         free_extent_buffer(eb);
4000
4001                         /*
4002                          * the filesystem may choose to bump up nr_to_write.
4003                          * We have to make sure to honor the new nr_to_write
4004                          * at any time
4005                          */
4006                         nr_to_write_done = wbc->nr_to_write <= 0;
4007                 }
4008                 pagevec_release(&pvec);
4009                 cond_resched();
4010         }
4011         if (!scanned && !done) {
4012                 /*
4013                  * We hit the last page and there is more work to be done: wrap
4014                  * back to the start of the file
4015                  */
4016                 scanned = 1;
4017                 index = 0;
4018                 goto retry;
4019         }
4020         ASSERT(ret <= 0);
4021         if (ret < 0) {
4022                 end_write_bio(&epd, ret);
4023                 return ret;
4024         }
4025         ret = flush_write_bio(&epd);
4026         return ret;
4027 }
4028
4029 /**
4030  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4031  * @mapping: address space structure to write
4032  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4033  * @data: data passed to __extent_writepage function
4034  *
4035  * If a page is already under I/O, write_cache_pages() skips it, even
4036  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4037  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4038  * and msync() need to guarantee that all the data which was dirty at the time
4039  * the call was made get new I/O started against them.  If wbc->sync_mode is
4040  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4041  * existing IO to complete.
4042  */
4043 static int extent_write_cache_pages(struct address_space *mapping,
4044                              struct writeback_control *wbc,
4045                              struct extent_page_data *epd)
4046 {
4047         struct inode *inode = mapping->host;
4048         int ret = 0;
4049         int done = 0;
4050         int nr_to_write_done = 0;
4051         struct pagevec pvec;
4052         int nr_pages;
4053         pgoff_t index;
4054         pgoff_t end;            /* Inclusive */
4055         pgoff_t done_index;
4056         int range_whole = 0;
4057         int scanned = 0;
4058         xa_mark_t tag;
4059
4060         /*
4061          * We have to hold onto the inode so that ordered extents can do their
4062          * work when the IO finishes.  The alternative to this is failing to add
4063          * an ordered extent if the igrab() fails there and that is a huge pain
4064          * to deal with, so instead just hold onto the inode throughout the
4065          * writepages operation.  If it fails here we are freeing up the inode
4066          * anyway and we'd rather not waste our time writing out stuff that is
4067          * going to be truncated anyway.
4068          */
4069         if (!igrab(inode))
4070                 return 0;
4071
4072         pagevec_init(&pvec);
4073         if (wbc->range_cyclic) {
4074                 index = mapping->writeback_index; /* Start from prev offset */
4075                 end = -1;
4076                 /*
4077                  * Start from the beginning does not need to cycle over the
4078                  * range, mark it as scanned.
4079                  */
4080                 scanned = (index == 0);
4081         } else {
4082                 index = wbc->range_start >> PAGE_SHIFT;
4083                 end = wbc->range_end >> PAGE_SHIFT;
4084                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4085                         range_whole = 1;
4086                 scanned = 1;
4087         }
4088
4089         /*
4090          * We do the tagged writepage as long as the snapshot flush bit is set
4091          * and we are the first one who do the filemap_flush() on this inode.
4092          *
4093          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4094          * not race in and drop the bit.
4095          */
4096         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4097             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4098                                &BTRFS_I(inode)->runtime_flags))
4099                 wbc->tagged_writepages = 1;
4100
4101         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4102                 tag = PAGECACHE_TAG_TOWRITE;
4103         else
4104                 tag = PAGECACHE_TAG_DIRTY;
4105 retry:
4106         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4107                 tag_pages_for_writeback(mapping, index, end);
4108         done_index = index;
4109         while (!done && !nr_to_write_done && (index <= end) &&
4110                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4111                                                 &index, end, tag))) {
4112                 unsigned i;
4113
4114                 for (i = 0; i < nr_pages; i++) {
4115                         struct page *page = pvec.pages[i];
4116
4117                         done_index = page->index + 1;
4118                         /*
4119                          * At this point we hold neither the i_pages lock nor
4120                          * the page lock: the page may be truncated or
4121                          * invalidated (changing page->mapping to NULL),
4122                          * or even swizzled back from swapper_space to
4123                          * tmpfs file mapping
4124                          */
4125                         if (!trylock_page(page)) {
4126                                 ret = flush_write_bio(epd);
4127                                 BUG_ON(ret < 0);
4128                                 lock_page(page);
4129                         }
4130
4131                         if (unlikely(page->mapping != mapping)) {
4132                                 unlock_page(page);
4133                                 continue;
4134                         }
4135
4136                         if (wbc->sync_mode != WB_SYNC_NONE) {
4137                                 if (PageWriteback(page)) {
4138                                         ret = flush_write_bio(epd);
4139                                         BUG_ON(ret < 0);
4140                                 }
4141                                 wait_on_page_writeback(page);
4142                         }
4143
4144                         if (PageWriteback(page) ||
4145                             !clear_page_dirty_for_io(page)) {
4146                                 unlock_page(page);
4147                                 continue;
4148                         }
4149
4150                         ret = __extent_writepage(page, wbc, epd);
4151                         if (ret < 0) {
4152                                 done = 1;
4153                                 break;
4154                         }
4155
4156                         /*
4157                          * the filesystem may choose to bump up nr_to_write.
4158                          * We have to make sure to honor the new nr_to_write
4159                          * at any time
4160                          */
4161                         nr_to_write_done = wbc->nr_to_write <= 0;
4162                 }
4163                 pagevec_release(&pvec);
4164                 cond_resched();
4165         }
4166         if (!scanned && !done) {
4167                 /*
4168                  * We hit the last page and there is more work to be done: wrap
4169                  * back to the start of the file
4170                  */
4171                 scanned = 1;
4172                 index = 0;
4173
4174                 /*
4175                  * If we're looping we could run into a page that is locked by a
4176                  * writer and that writer could be waiting on writeback for a
4177                  * page in our current bio, and thus deadlock, so flush the
4178                  * write bio here.
4179                  */
4180                 ret = flush_write_bio(epd);
4181                 if (!ret)
4182                         goto retry;
4183         }
4184
4185         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4186                 mapping->writeback_index = done_index;
4187
4188         btrfs_add_delayed_iput(inode);
4189         return ret;
4190 }
4191
4192 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4193 {
4194         int ret;
4195         struct extent_page_data epd = {
4196                 .bio = NULL,
4197                 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4198                 .extent_locked = 0,
4199                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4200         };
4201
4202         ret = __extent_writepage(page, wbc, &epd);
4203         ASSERT(ret <= 0);
4204         if (ret < 0) {
4205                 end_write_bio(&epd, ret);
4206                 return ret;
4207         }
4208
4209         ret = flush_write_bio(&epd);
4210         ASSERT(ret <= 0);
4211         return ret;
4212 }
4213
4214 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4215                               int mode)
4216 {
4217         int ret = 0;
4218         struct address_space *mapping = inode->i_mapping;
4219         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4220         struct page *page;
4221         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4222                 PAGE_SHIFT;
4223
4224         struct extent_page_data epd = {
4225                 .bio = NULL,
4226                 .tree = tree,
4227                 .extent_locked = 1,
4228                 .sync_io = mode == WB_SYNC_ALL,
4229         };
4230         struct writeback_control wbc_writepages = {
4231                 .sync_mode      = mode,
4232                 .nr_to_write    = nr_pages * 2,
4233                 .range_start    = start,
4234                 .range_end      = end + 1,
4235                 /* We're called from an async helper function */
4236                 .punt_to_cgroup = 1,
4237                 .no_cgroup_owner = 1,
4238         };
4239
4240         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4241         while (start <= end) {
4242                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4243                 if (clear_page_dirty_for_io(page))
4244                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4245                 else {
4246                         btrfs_writepage_endio_finish_ordered(page, start,
4247                                                     start + PAGE_SIZE - 1, 1);
4248                         unlock_page(page);
4249                 }
4250                 put_page(page);
4251                 start += PAGE_SIZE;
4252         }
4253
4254         ASSERT(ret <= 0);
4255         if (ret == 0)
4256                 ret = flush_write_bio(&epd);
4257         else
4258                 end_write_bio(&epd, ret);
4259
4260         wbc_detach_inode(&wbc_writepages);
4261         return ret;
4262 }
4263
4264 int extent_writepages(struct address_space *mapping,
4265                       struct writeback_control *wbc)
4266 {
4267         int ret = 0;
4268         struct extent_page_data epd = {
4269                 .bio = NULL,
4270                 .tree = &BTRFS_I(mapping->host)->io_tree,
4271                 .extent_locked = 0,
4272                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4273         };
4274
4275         ret = extent_write_cache_pages(mapping, wbc, &epd);
4276         ASSERT(ret <= 0);
4277         if (ret < 0) {
4278                 end_write_bio(&epd, ret);
4279                 return ret;
4280         }
4281         ret = flush_write_bio(&epd);
4282         return ret;
4283 }
4284
4285 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4286                      unsigned nr_pages)
4287 {
4288         struct bio *bio = NULL;
4289         unsigned long bio_flags = 0;
4290         struct page *pagepool[16];
4291         struct extent_map *em_cached = NULL;
4292         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4293         int nr = 0;
4294         u64 prev_em_start = (u64)-1;
4295
4296         while (!list_empty(pages)) {
4297                 u64 contig_end = 0;
4298
4299                 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4300                         struct page *page = lru_to_page(pages);
4301
4302                         prefetchw(&page->flags);
4303                         list_del(&page->lru);
4304                         if (add_to_page_cache_lru(page, mapping, page->index,
4305                                                 readahead_gfp_mask(mapping))) {
4306                                 put_page(page);
4307                                 break;
4308                         }
4309
4310                         pagepool[nr++] = page;
4311                         contig_end = page_offset(page) + PAGE_SIZE - 1;
4312                 }
4313
4314                 if (nr) {
4315                         u64 contig_start = page_offset(pagepool[0]);
4316
4317                         ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4318
4319                         contiguous_readpages(tree, pagepool, nr, contig_start,
4320                                      contig_end, &em_cached, &bio, &bio_flags,
4321                                      &prev_em_start);
4322                 }
4323         }
4324
4325         if (em_cached)
4326                 free_extent_map(em_cached);
4327
4328         if (bio)
4329                 return submit_one_bio(bio, 0, bio_flags);
4330         return 0;
4331 }
4332
4333 /*
4334  * basic invalidatepage code, this waits on any locked or writeback
4335  * ranges corresponding to the page, and then deletes any extent state
4336  * records from the tree
4337  */
4338 int extent_invalidatepage(struct extent_io_tree *tree,
4339                           struct page *page, unsigned long offset)
4340 {
4341         struct extent_state *cached_state = NULL;
4342         u64 start = page_offset(page);
4343         u64 end = start + PAGE_SIZE - 1;
4344         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4345
4346         start += ALIGN(offset, blocksize);
4347         if (start > end)
4348                 return 0;
4349
4350         lock_extent_bits(tree, start, end, &cached_state);
4351         wait_on_page_writeback(page);
4352         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4353                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4354         return 0;
4355 }
4356
4357 /*
4358  * a helper for releasepage, this tests for areas of the page that
4359  * are locked or under IO and drops the related state bits if it is safe
4360  * to drop the page.
4361  */
4362 static int try_release_extent_state(struct extent_io_tree *tree,
4363                                     struct page *page, gfp_t mask)
4364 {
4365         u64 start = page_offset(page);
4366         u64 end = start + PAGE_SIZE - 1;
4367         int ret = 1;
4368
4369         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4370                 ret = 0;
4371         } else {
4372                 /*
4373                  * at this point we can safely clear everything except the
4374                  * locked bit and the nodatasum bit
4375                  */
4376                 ret = __clear_extent_bit(tree, start, end,
4377                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4378                                  0, 0, NULL, mask, NULL);
4379
4380                 /* if clear_extent_bit failed for enomem reasons,
4381                  * we can't allow the release to continue.
4382                  */
4383                 if (ret < 0)
4384                         ret = 0;
4385                 else
4386                         ret = 1;
4387         }
4388         return ret;
4389 }
4390
4391 /*
4392  * a helper for releasepage.  As long as there are no locked extents
4393  * in the range corresponding to the page, both state records and extent
4394  * map records are removed
4395  */
4396 int try_release_extent_mapping(struct page *page, gfp_t mask)
4397 {
4398         struct extent_map *em;
4399         u64 start = page_offset(page);
4400         u64 end = start + PAGE_SIZE - 1;
4401         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4402         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4403         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4404
4405         if (gfpflags_allow_blocking(mask) &&
4406             page->mapping->host->i_size > SZ_16M) {
4407                 u64 len;
4408                 while (start <= end) {
4409                         len = end - start + 1;
4410                         write_lock(&map->lock);
4411                         em = lookup_extent_mapping(map, start, len);
4412                         if (!em) {
4413                                 write_unlock(&map->lock);
4414                                 break;
4415                         }
4416                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4417                             em->start != start) {
4418                                 write_unlock(&map->lock);
4419                                 free_extent_map(em);
4420                                 break;
4421                         }
4422                         if (!test_range_bit(tree, em->start,
4423                                             extent_map_end(em) - 1,
4424                                             EXTENT_LOCKED, 0, NULL)) {
4425                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4426                                         &btrfs_inode->runtime_flags);
4427                                 remove_extent_mapping(map, em);
4428                                 /* once for the rb tree */
4429                                 free_extent_map(em);
4430                         }
4431                         start = extent_map_end(em);
4432                         write_unlock(&map->lock);
4433
4434                         /* once for us */
4435                         free_extent_map(em);
4436                 }
4437         }
4438         return try_release_extent_state(tree, page, mask);
4439 }
4440
4441 /*
4442  * helper function for fiemap, which doesn't want to see any holes.
4443  * This maps until we find something past 'last'
4444  */
4445 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4446                                                 u64 offset, u64 last)
4447 {
4448         u64 sectorsize = btrfs_inode_sectorsize(inode);
4449         struct extent_map *em;
4450         u64 len;
4451
4452         if (offset >= last)
4453                 return NULL;
4454
4455         while (1) {
4456                 len = last - offset;
4457                 if (len == 0)
4458                         break;
4459                 len = ALIGN(len, sectorsize);
4460                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4461                 if (IS_ERR_OR_NULL(em))
4462                         return em;
4463
4464                 /* if this isn't a hole return it */
4465                 if (em->block_start != EXTENT_MAP_HOLE)
4466                         return em;
4467
4468                 /* this is a hole, advance to the next extent */
4469                 offset = extent_map_end(em);
4470                 free_extent_map(em);
4471                 if (offset >= last)
4472                         break;
4473         }
4474         return NULL;
4475 }
4476
4477 /*
4478  * To cache previous fiemap extent
4479  *
4480  * Will be used for merging fiemap extent
4481  */
4482 struct fiemap_cache {
4483         u64 offset;
4484         u64 phys;
4485         u64 len;
4486         u32 flags;
4487         bool cached;
4488 };
4489
4490 /*
4491  * Helper to submit fiemap extent.
4492  *
4493  * Will try to merge current fiemap extent specified by @offset, @phys,
4494  * @len and @flags with cached one.
4495  * And only when we fails to merge, cached one will be submitted as
4496  * fiemap extent.
4497  *
4498  * Return value is the same as fiemap_fill_next_extent().
4499  */
4500 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4501                                 struct fiemap_cache *cache,
4502                                 u64 offset, u64 phys, u64 len, u32 flags)
4503 {
4504         int ret = 0;
4505
4506         if (!cache->cached)
4507                 goto assign;
4508
4509         /*
4510          * Sanity check, extent_fiemap() should have ensured that new
4511          * fiemap extent won't overlap with cached one.
4512          * Not recoverable.
4513          *
4514          * NOTE: Physical address can overlap, due to compression
4515          */
4516         if (cache->offset + cache->len > offset) {
4517                 WARN_ON(1);
4518                 return -EINVAL;
4519         }
4520
4521         /*
4522          * Only merges fiemap extents if
4523          * 1) Their logical addresses are continuous
4524          *
4525          * 2) Their physical addresses are continuous
4526          *    So truly compressed (physical size smaller than logical size)
4527          *    extents won't get merged with each other
4528          *
4529          * 3) Share same flags except FIEMAP_EXTENT_LAST
4530          *    So regular extent won't get merged with prealloc extent
4531          */
4532         if (cache->offset + cache->len  == offset &&
4533             cache->phys + cache->len == phys  &&
4534             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4535                         (flags & ~FIEMAP_EXTENT_LAST)) {
4536                 cache->len += len;
4537                 cache->flags |= flags;
4538                 goto try_submit_last;
4539         }
4540
4541         /* Not mergeable, need to submit cached one */
4542         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4543                                       cache->len, cache->flags);
4544         cache->cached = false;
4545         if (ret)
4546                 return ret;
4547 assign:
4548         cache->cached = true;
4549         cache->offset = offset;
4550         cache->phys = phys;
4551         cache->len = len;
4552         cache->flags = flags;
4553 try_submit_last:
4554         if (cache->flags & FIEMAP_EXTENT_LAST) {
4555                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4556                                 cache->phys, cache->len, cache->flags);
4557                 cache->cached = false;
4558         }
4559         return ret;
4560 }
4561
4562 /*
4563  * Emit last fiemap cache
4564  *
4565  * The last fiemap cache may still be cached in the following case:
4566  * 0                  4k                    8k
4567  * |<- Fiemap range ->|
4568  * |<------------  First extent ----------->|
4569  *
4570  * In this case, the first extent range will be cached but not emitted.
4571  * So we must emit it before ending extent_fiemap().
4572  */
4573 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4574                                   struct fiemap_cache *cache)
4575 {
4576         int ret;
4577
4578         if (!cache->cached)
4579                 return 0;
4580
4581         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4582                                       cache->len, cache->flags);
4583         cache->cached = false;
4584         if (ret > 0)
4585                 ret = 0;
4586         return ret;
4587 }
4588
4589 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4590                 __u64 start, __u64 len)
4591 {
4592         int ret = 0;
4593         u64 off = start;
4594         u64 max = start + len;
4595         u32 flags = 0;
4596         u32 found_type;
4597         u64 last;
4598         u64 last_for_get_extent = 0;
4599         u64 disko = 0;
4600         u64 isize = i_size_read(inode);
4601         struct btrfs_key found_key;
4602         struct extent_map *em = NULL;
4603         struct extent_state *cached_state = NULL;
4604         struct btrfs_path *path;
4605         struct btrfs_root *root = BTRFS_I(inode)->root;
4606         struct fiemap_cache cache = { 0 };
4607         struct ulist *roots;
4608         struct ulist *tmp_ulist;
4609         int end = 0;
4610         u64 em_start = 0;
4611         u64 em_len = 0;
4612         u64 em_end = 0;
4613
4614         if (len == 0)
4615                 return -EINVAL;
4616
4617         path = btrfs_alloc_path();
4618         if (!path)
4619                 return -ENOMEM;
4620         path->leave_spinning = 1;
4621
4622         roots = ulist_alloc(GFP_KERNEL);
4623         tmp_ulist = ulist_alloc(GFP_KERNEL);
4624         if (!roots || !tmp_ulist) {
4625                 ret = -ENOMEM;
4626                 goto out_free_ulist;
4627         }
4628
4629         start = round_down(start, btrfs_inode_sectorsize(inode));
4630         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4631
4632         /*
4633          * lookup the last file extent.  We're not using i_size here
4634          * because there might be preallocation past i_size
4635          */
4636         ret = btrfs_lookup_file_extent(NULL, root, path,
4637                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4638         if (ret < 0) {
4639                 goto out_free_ulist;
4640         } else {
4641                 WARN_ON(!ret);
4642                 if (ret == 1)
4643                         ret = 0;
4644         }
4645
4646         path->slots[0]--;
4647         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4648         found_type = found_key.type;
4649
4650         /* No extents, but there might be delalloc bits */
4651         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4652             found_type != BTRFS_EXTENT_DATA_KEY) {
4653                 /* have to trust i_size as the end */
4654                 last = (u64)-1;
4655                 last_for_get_extent = isize;
4656         } else {
4657                 /*
4658                  * remember the start of the last extent.  There are a
4659                  * bunch of different factors that go into the length of the
4660                  * extent, so its much less complex to remember where it started
4661                  */
4662                 last = found_key.offset;
4663                 last_for_get_extent = last + 1;
4664         }
4665         btrfs_release_path(path);
4666
4667         /*
4668          * we might have some extents allocated but more delalloc past those
4669          * extents.  so, we trust isize unless the start of the last extent is
4670          * beyond isize
4671          */
4672         if (last < isize) {
4673                 last = (u64)-1;
4674                 last_for_get_extent = isize;
4675         }
4676
4677         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4678                          &cached_state);
4679
4680         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4681         if (!em)
4682                 goto out;
4683         if (IS_ERR(em)) {
4684                 ret = PTR_ERR(em);
4685                 goto out;
4686         }
4687
4688         while (!end) {
4689                 u64 offset_in_extent = 0;
4690
4691                 /* break if the extent we found is outside the range */
4692                 if (em->start >= max || extent_map_end(em) < off)
4693                         break;
4694
4695                 /*
4696                  * get_extent may return an extent that starts before our
4697                  * requested range.  We have to make sure the ranges
4698                  * we return to fiemap always move forward and don't
4699                  * overlap, so adjust the offsets here
4700                  */
4701                 em_start = max(em->start, off);
4702
4703                 /*
4704                  * record the offset from the start of the extent
4705                  * for adjusting the disk offset below.  Only do this if the
4706                  * extent isn't compressed since our in ram offset may be past
4707                  * what we have actually allocated on disk.
4708                  */
4709                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4710                         offset_in_extent = em_start - em->start;
4711                 em_end = extent_map_end(em);
4712                 em_len = em_end - em_start;
4713                 flags = 0;
4714                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4715                         disko = em->block_start + offset_in_extent;
4716                 else
4717                         disko = 0;
4718
4719                 /*
4720                  * bump off for our next call to get_extent
4721                  */
4722                 off = extent_map_end(em);
4723                 if (off >= max)
4724                         end = 1;
4725
4726                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4727                         end = 1;
4728                         flags |= FIEMAP_EXTENT_LAST;
4729                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4730                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4731                                   FIEMAP_EXTENT_NOT_ALIGNED);
4732                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4733                         flags |= (FIEMAP_EXTENT_DELALLOC |
4734                                   FIEMAP_EXTENT_UNKNOWN);
4735                 } else if (fieinfo->fi_extents_max) {
4736                         u64 bytenr = em->block_start -
4737                                 (em->start - em->orig_start);
4738
4739                         /*
4740                          * As btrfs supports shared space, this information
4741                          * can be exported to userspace tools via
4742                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4743                          * then we're just getting a count and we can skip the
4744                          * lookup stuff.
4745                          */
4746                         ret = btrfs_check_shared(root,
4747                                                  btrfs_ino(BTRFS_I(inode)),
4748                                                  bytenr, roots, tmp_ulist);
4749                         if (ret < 0)
4750                                 goto out_free;
4751                         if (ret)
4752                                 flags |= FIEMAP_EXTENT_SHARED;
4753                         ret = 0;
4754                 }
4755                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4756                         flags |= FIEMAP_EXTENT_ENCODED;
4757                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4758                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4759
4760                 free_extent_map(em);
4761                 em = NULL;
4762                 if ((em_start >= last) || em_len == (u64)-1 ||
4763                    (last == (u64)-1 && isize <= em_end)) {
4764                         flags |= FIEMAP_EXTENT_LAST;
4765                         end = 1;
4766                 }
4767
4768                 /* now scan forward to see if this is really the last extent. */
4769                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4770                 if (IS_ERR(em)) {
4771                         ret = PTR_ERR(em);
4772                         goto out;
4773                 }
4774                 if (!em) {
4775                         flags |= FIEMAP_EXTENT_LAST;
4776                         end = 1;
4777                 }
4778                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4779                                            em_len, flags);
4780                 if (ret) {
4781                         if (ret == 1)
4782                                 ret = 0;
4783                         goto out_free;
4784                 }
4785         }
4786 out_free:
4787         if (!ret)
4788                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4789         free_extent_map(em);
4790 out:
4791         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4792                              &cached_state);
4793
4794 out_free_ulist:
4795         btrfs_free_path(path);
4796         ulist_free(roots);
4797         ulist_free(tmp_ulist);
4798         return ret;
4799 }
4800
4801 static void __free_extent_buffer(struct extent_buffer *eb)
4802 {
4803         btrfs_leak_debug_del(&eb->leak_list);
4804         kmem_cache_free(extent_buffer_cache, eb);
4805 }
4806
4807 int extent_buffer_under_io(struct extent_buffer *eb)
4808 {
4809         return (atomic_read(&eb->io_pages) ||
4810                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4811                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4812 }
4813
4814 /*
4815  * Release all pages attached to the extent buffer.
4816  */
4817 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4818 {
4819         int i;
4820         int num_pages;
4821         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4822
4823         BUG_ON(extent_buffer_under_io(eb));
4824
4825         num_pages = num_extent_pages(eb);
4826         for (i = 0; i < num_pages; i++) {
4827                 struct page *page = eb->pages[i];
4828
4829                 if (!page)
4830                         continue;
4831                 if (mapped)
4832                         spin_lock(&page->mapping->private_lock);
4833                 /*
4834                  * We do this since we'll remove the pages after we've
4835                  * removed the eb from the radix tree, so we could race
4836                  * and have this page now attached to the new eb.  So
4837                  * only clear page_private if it's still connected to
4838                  * this eb.
4839                  */
4840                 if (PagePrivate(page) &&
4841                     page->private == (unsigned long)eb) {
4842                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4843                         BUG_ON(PageDirty(page));
4844                         BUG_ON(PageWriteback(page));
4845                         /*
4846                          * We need to make sure we haven't be attached
4847                          * to a new eb.
4848                          */
4849                         ClearPagePrivate(page);
4850                         set_page_private(page, 0);
4851                         /* One for the page private */
4852                         put_page(page);
4853                 }
4854
4855                 if (mapped)
4856                         spin_unlock(&page->mapping->private_lock);
4857
4858                 /* One for when we allocated the page */
4859                 put_page(page);
4860         }
4861 }
4862
4863 /*
4864  * Helper for releasing the extent buffer.
4865  */
4866 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4867 {
4868         btrfs_release_extent_buffer_pages(eb);
4869         __free_extent_buffer(eb);
4870 }
4871
4872 static struct extent_buffer *
4873 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4874                       unsigned long len)
4875 {
4876         struct extent_buffer *eb = NULL;
4877
4878         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4879         eb->start = start;
4880         eb->len = len;
4881         eb->fs_info = fs_info;
4882         eb->bflags = 0;
4883         rwlock_init(&eb->lock);
4884         atomic_set(&eb->blocking_readers, 0);
4885         eb->blocking_writers = 0;
4886         eb->lock_nested = false;
4887         init_waitqueue_head(&eb->write_lock_wq);
4888         init_waitqueue_head(&eb->read_lock_wq);
4889
4890         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4891
4892         spin_lock_init(&eb->refs_lock);
4893         atomic_set(&eb->refs, 1);
4894         atomic_set(&eb->io_pages, 0);
4895
4896         /*
4897          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4898          */
4899         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4900                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4901         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4902
4903 #ifdef CONFIG_BTRFS_DEBUG
4904         eb->spinning_writers = 0;
4905         atomic_set(&eb->spinning_readers, 0);
4906         atomic_set(&eb->read_locks, 0);
4907         eb->write_locks = 0;
4908 #endif
4909
4910         return eb;
4911 }
4912
4913 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4914 {
4915         int i;
4916         struct page *p;
4917         struct extent_buffer *new;
4918         int num_pages = num_extent_pages(src);
4919
4920         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4921         if (new == NULL)
4922                 return NULL;
4923
4924         for (i = 0; i < num_pages; i++) {
4925                 p = alloc_page(GFP_NOFS);
4926                 if (!p) {
4927                         btrfs_release_extent_buffer(new);
4928                         return NULL;
4929                 }
4930                 attach_extent_buffer_page(new, p);
4931                 WARN_ON(PageDirty(p));
4932                 SetPageUptodate(p);
4933                 new->pages[i] = p;
4934                 copy_page(page_address(p), page_address(src->pages[i]));
4935         }
4936
4937         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4938         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4939
4940         return new;
4941 }
4942
4943 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4944                                                   u64 start, unsigned long len)
4945 {
4946         struct extent_buffer *eb;
4947         int num_pages;
4948         int i;
4949
4950         eb = __alloc_extent_buffer(fs_info, start, len);
4951         if (!eb)
4952                 return NULL;
4953
4954         num_pages = num_extent_pages(eb);
4955         for (i = 0; i < num_pages; i++) {
4956                 eb->pages[i] = alloc_page(GFP_NOFS);
4957                 if (!eb->pages[i])
4958                         goto err;
4959         }
4960         set_extent_buffer_uptodate(eb);
4961         btrfs_set_header_nritems(eb, 0);
4962         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4963
4964         return eb;
4965 err:
4966         for (; i > 0; i--)
4967                 __free_page(eb->pages[i - 1]);
4968         __free_extent_buffer(eb);
4969         return NULL;
4970 }
4971
4972 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4973                                                 u64 start)
4974 {
4975         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4976 }
4977
4978 static void check_buffer_tree_ref(struct extent_buffer *eb)
4979 {
4980         int refs;
4981         /* the ref bit is tricky.  We have to make sure it is set
4982          * if we have the buffer dirty.   Otherwise the
4983          * code to free a buffer can end up dropping a dirty
4984          * page
4985          *
4986          * Once the ref bit is set, it won't go away while the
4987          * buffer is dirty or in writeback, and it also won't
4988          * go away while we have the reference count on the
4989          * eb bumped.
4990          *
4991          * We can't just set the ref bit without bumping the
4992          * ref on the eb because free_extent_buffer might
4993          * see the ref bit and try to clear it.  If this happens
4994          * free_extent_buffer might end up dropping our original
4995          * ref by mistake and freeing the page before we are able
4996          * to add one more ref.
4997          *
4998          * So bump the ref count first, then set the bit.  If someone
4999          * beat us to it, drop the ref we added.
5000          */
5001         refs = atomic_read(&eb->refs);
5002         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5003                 return;
5004
5005         spin_lock(&eb->refs_lock);
5006         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5007                 atomic_inc(&eb->refs);
5008         spin_unlock(&eb->refs_lock);
5009 }
5010
5011 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5012                 struct page *accessed)
5013 {
5014         int num_pages, i;
5015
5016         check_buffer_tree_ref(eb);
5017
5018         num_pages = num_extent_pages(eb);
5019         for (i = 0; i < num_pages; i++) {
5020                 struct page *p = eb->pages[i];
5021
5022                 if (p != accessed)
5023                         mark_page_accessed(p);
5024         }
5025 }
5026
5027 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5028                                          u64 start)
5029 {
5030         struct extent_buffer *eb;
5031
5032         rcu_read_lock();
5033         eb = radix_tree_lookup(&fs_info->buffer_radix,
5034                                start >> PAGE_SHIFT);
5035         if (eb && atomic_inc_not_zero(&eb->refs)) {
5036                 rcu_read_unlock();
5037                 /*
5038                  * Lock our eb's refs_lock to avoid races with
5039                  * free_extent_buffer. When we get our eb it might be flagged
5040                  * with EXTENT_BUFFER_STALE and another task running
5041                  * free_extent_buffer might have seen that flag set,
5042                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5043                  * writeback flags not set) and it's still in the tree (flag
5044                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5045                  * of decrementing the extent buffer's reference count twice.
5046                  * So here we could race and increment the eb's reference count,
5047                  * clear its stale flag, mark it as dirty and drop our reference
5048                  * before the other task finishes executing free_extent_buffer,
5049                  * which would later result in an attempt to free an extent
5050                  * buffer that is dirty.
5051                  */
5052                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5053                         spin_lock(&eb->refs_lock);
5054                         spin_unlock(&eb->refs_lock);
5055                 }
5056                 mark_extent_buffer_accessed(eb, NULL);
5057                 return eb;
5058         }
5059         rcu_read_unlock();
5060
5061         return NULL;
5062 }
5063
5064 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5065 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5066                                         u64 start)
5067 {
5068         struct extent_buffer *eb, *exists = NULL;
5069         int ret;
5070
5071         eb = find_extent_buffer(fs_info, start);
5072         if (eb)
5073                 return eb;
5074         eb = alloc_dummy_extent_buffer(fs_info, start);
5075         if (!eb)
5076                 return ERR_PTR(-ENOMEM);
5077         eb->fs_info = fs_info;
5078 again:
5079         ret = radix_tree_preload(GFP_NOFS);
5080         if (ret) {
5081                 exists = ERR_PTR(ret);
5082                 goto free_eb;
5083         }
5084         spin_lock(&fs_info->buffer_lock);
5085         ret = radix_tree_insert(&fs_info->buffer_radix,
5086                                 start >> PAGE_SHIFT, eb);
5087         spin_unlock(&fs_info->buffer_lock);
5088         radix_tree_preload_end();
5089         if (ret == -EEXIST) {
5090                 exists = find_extent_buffer(fs_info, start);
5091                 if (exists)
5092                         goto free_eb;
5093                 else
5094                         goto again;
5095         }
5096         check_buffer_tree_ref(eb);
5097         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5098
5099         return eb;
5100 free_eb:
5101         btrfs_release_extent_buffer(eb);
5102         return exists;
5103 }
5104 #endif
5105
5106 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5107                                           u64 start)
5108 {
5109         unsigned long len = fs_info->nodesize;
5110         int num_pages;
5111         int i;
5112         unsigned long index = start >> PAGE_SHIFT;
5113         struct extent_buffer *eb;
5114         struct extent_buffer *exists = NULL;
5115         struct page *p;
5116         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5117         int uptodate = 1;
5118         int ret;
5119
5120         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5121                 btrfs_err(fs_info, "bad tree block start %llu", start);
5122                 return ERR_PTR(-EINVAL);
5123         }
5124
5125         eb = find_extent_buffer(fs_info, start);
5126         if (eb)
5127                 return eb;
5128
5129         eb = __alloc_extent_buffer(fs_info, start, len);
5130         if (!eb)
5131                 return ERR_PTR(-ENOMEM);
5132
5133         num_pages = num_extent_pages(eb);
5134         for (i = 0; i < num_pages; i++, index++) {
5135                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5136                 if (!p) {
5137                         exists = ERR_PTR(-ENOMEM);
5138                         goto free_eb;
5139                 }
5140
5141                 spin_lock(&mapping->private_lock);
5142                 if (PagePrivate(p)) {
5143                         /*
5144                          * We could have already allocated an eb for this page
5145                          * and attached one so lets see if we can get a ref on
5146                          * the existing eb, and if we can we know it's good and
5147                          * we can just return that one, else we know we can just
5148                          * overwrite page->private.
5149                          */
5150                         exists = (struct extent_buffer *)p->private;
5151                         if (atomic_inc_not_zero(&exists->refs)) {
5152                                 spin_unlock(&mapping->private_lock);
5153                                 unlock_page(p);
5154                                 put_page(p);
5155                                 mark_extent_buffer_accessed(exists, p);
5156                                 goto free_eb;
5157                         }
5158                         exists = NULL;
5159
5160                         /*
5161                          * Do this so attach doesn't complain and we need to
5162                          * drop the ref the old guy had.
5163                          */
5164                         ClearPagePrivate(p);
5165                         WARN_ON(PageDirty(p));
5166                         put_page(p);
5167                 }
5168                 attach_extent_buffer_page(eb, p);
5169                 spin_unlock(&mapping->private_lock);
5170                 WARN_ON(PageDirty(p));
5171                 eb->pages[i] = p;
5172                 if (!PageUptodate(p))
5173                         uptodate = 0;
5174
5175                 /*
5176                  * We can't unlock the pages just yet since the extent buffer
5177                  * hasn't been properly inserted in the radix tree, this
5178                  * opens a race with btree_releasepage which can free a page
5179                  * while we are still filling in all pages for the buffer and
5180                  * we could crash.
5181                  */
5182         }
5183         if (uptodate)
5184                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5185 again:
5186         ret = radix_tree_preload(GFP_NOFS);
5187         if (ret) {
5188                 exists = ERR_PTR(ret);
5189                 goto free_eb;
5190         }
5191
5192         spin_lock(&fs_info->buffer_lock);
5193         ret = radix_tree_insert(&fs_info->buffer_radix,
5194                                 start >> PAGE_SHIFT, eb);
5195         spin_unlock(&fs_info->buffer_lock);
5196         radix_tree_preload_end();
5197         if (ret == -EEXIST) {
5198                 exists = find_extent_buffer(fs_info, start);
5199                 if (exists)
5200                         goto free_eb;
5201                 else
5202                         goto again;
5203         }
5204         /* add one reference for the tree */
5205         check_buffer_tree_ref(eb);
5206         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5207
5208         /*
5209          * Now it's safe to unlock the pages because any calls to
5210          * btree_releasepage will correctly detect that a page belongs to a
5211          * live buffer and won't free them prematurely.
5212          */
5213         for (i = 0; i < num_pages; i++)
5214                 unlock_page(eb->pages[i]);
5215         return eb;
5216
5217 free_eb:
5218         WARN_ON(!atomic_dec_and_test(&eb->refs));
5219         for (i = 0; i < num_pages; i++) {
5220                 if (eb->pages[i])
5221                         unlock_page(eb->pages[i]);
5222         }
5223
5224         btrfs_release_extent_buffer(eb);
5225         return exists;
5226 }
5227
5228 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5229 {
5230         struct extent_buffer *eb =
5231                         container_of(head, struct extent_buffer, rcu_head);
5232
5233         __free_extent_buffer(eb);
5234 }
5235
5236 static int release_extent_buffer(struct extent_buffer *eb)
5237 {
5238         lockdep_assert_held(&eb->refs_lock);
5239
5240         WARN_ON(atomic_read(&eb->refs) == 0);
5241         if (atomic_dec_and_test(&eb->refs)) {
5242                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5243                         struct btrfs_fs_info *fs_info = eb->fs_info;
5244
5245                         spin_unlock(&eb->refs_lock);
5246
5247                         spin_lock(&fs_info->buffer_lock);
5248                         radix_tree_delete(&fs_info->buffer_radix,
5249                                           eb->start >> PAGE_SHIFT);
5250                         spin_unlock(&fs_info->buffer_lock);
5251                 } else {
5252                         spin_unlock(&eb->refs_lock);
5253                 }
5254
5255                 /* Should be safe to release our pages at this point */
5256                 btrfs_release_extent_buffer_pages(eb);
5257 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5258                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5259                         __free_extent_buffer(eb);
5260                         return 1;
5261                 }
5262 #endif
5263                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5264                 return 1;
5265         }
5266         spin_unlock(&eb->refs_lock);
5267
5268         return 0;
5269 }
5270
5271 void free_extent_buffer(struct extent_buffer *eb)
5272 {
5273         int refs;
5274         int old;
5275         if (!eb)
5276                 return;
5277
5278         while (1) {
5279                 refs = atomic_read(&eb->refs);
5280                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5281                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5282                         refs == 1))
5283                         break;
5284                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5285                 if (old == refs)
5286                         return;
5287         }
5288
5289         spin_lock(&eb->refs_lock);
5290         if (atomic_read(&eb->refs) == 2 &&
5291             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5292             !extent_buffer_under_io(eb) &&
5293             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5294                 atomic_dec(&eb->refs);
5295
5296         /*
5297          * I know this is terrible, but it's temporary until we stop tracking
5298          * the uptodate bits and such for the extent buffers.
5299          */
5300         release_extent_buffer(eb);
5301 }
5302
5303 void free_extent_buffer_stale(struct extent_buffer *eb)
5304 {
5305         if (!eb)
5306                 return;
5307
5308         spin_lock(&eb->refs_lock);
5309         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5310
5311         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5312             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5313                 atomic_dec(&eb->refs);
5314         release_extent_buffer(eb);
5315 }
5316
5317 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5318 {
5319         int i;
5320         int num_pages;
5321         struct page *page;
5322
5323         num_pages = num_extent_pages(eb);
5324
5325         for (i = 0; i < num_pages; i++) {
5326                 page = eb->pages[i];
5327                 if (!PageDirty(page))
5328                         continue;
5329
5330                 lock_page(page);
5331                 WARN_ON(!PagePrivate(page));
5332
5333                 clear_page_dirty_for_io(page);
5334                 xa_lock_irq(&page->mapping->i_pages);
5335                 if (!PageDirty(page))
5336                         __xa_clear_mark(&page->mapping->i_pages,
5337                                         page_index(page), PAGECACHE_TAG_DIRTY);
5338                 xa_unlock_irq(&page->mapping->i_pages);
5339                 ClearPageError(page);
5340                 unlock_page(page);
5341         }
5342         WARN_ON(atomic_read(&eb->refs) == 0);
5343 }
5344
5345 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5346 {
5347         int i;
5348         int num_pages;
5349         bool was_dirty;
5350
5351         check_buffer_tree_ref(eb);
5352
5353         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5354
5355         num_pages = num_extent_pages(eb);
5356         WARN_ON(atomic_read(&eb->refs) == 0);
5357         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5358
5359         if (!was_dirty)
5360                 for (i = 0; i < num_pages; i++)
5361                         set_page_dirty(eb->pages[i]);
5362
5363 #ifdef CONFIG_BTRFS_DEBUG
5364         for (i = 0; i < num_pages; i++)
5365                 ASSERT(PageDirty(eb->pages[i]));
5366 #endif
5367
5368         return was_dirty;
5369 }
5370
5371 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5372 {
5373         int i;
5374         struct page *page;
5375         int num_pages;
5376
5377         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5378         num_pages = num_extent_pages(eb);
5379         for (i = 0; i < num_pages; i++) {
5380                 page = eb->pages[i];
5381                 if (page)
5382                         ClearPageUptodate(page);
5383         }
5384 }
5385
5386 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5387 {
5388         int i;
5389         struct page *page;
5390         int num_pages;
5391
5392         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5393         num_pages = num_extent_pages(eb);
5394         for (i = 0; i < num_pages; i++) {
5395                 page = eb->pages[i];
5396                 SetPageUptodate(page);
5397         }
5398 }
5399
5400 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5401 {
5402         int i;
5403         struct page *page;
5404         int err;
5405         int ret = 0;
5406         int locked_pages = 0;
5407         int all_uptodate = 1;
5408         int num_pages;
5409         unsigned long num_reads = 0;
5410         struct bio *bio = NULL;
5411         unsigned long bio_flags = 0;
5412         struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5413
5414         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5415                 return 0;
5416
5417         num_pages = num_extent_pages(eb);
5418         for (i = 0; i < num_pages; i++) {
5419                 page = eb->pages[i];
5420                 if (wait == WAIT_NONE) {
5421                         if (!trylock_page(page))
5422                                 goto unlock_exit;
5423                 } else {
5424                         lock_page(page);
5425                 }
5426                 locked_pages++;
5427         }
5428         /*
5429          * We need to firstly lock all pages to make sure that
5430          * the uptodate bit of our pages won't be affected by
5431          * clear_extent_buffer_uptodate().
5432          */
5433         for (i = 0; i < num_pages; i++) {
5434                 page = eb->pages[i];
5435                 if (!PageUptodate(page)) {
5436                         num_reads++;
5437                         all_uptodate = 0;
5438                 }
5439         }
5440
5441         if (all_uptodate) {
5442                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5443                 goto unlock_exit;
5444         }
5445
5446         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5447         eb->read_mirror = 0;
5448         atomic_set(&eb->io_pages, num_reads);
5449         for (i = 0; i < num_pages; i++) {
5450                 page = eb->pages[i];
5451
5452                 if (!PageUptodate(page)) {
5453                         if (ret) {
5454                                 atomic_dec(&eb->io_pages);
5455                                 unlock_page(page);
5456                                 continue;
5457                         }
5458
5459                         ClearPageError(page);
5460                         err = __extent_read_full_page(tree, page,
5461                                                       btree_get_extent, &bio,
5462                                                       mirror_num, &bio_flags,
5463                                                       REQ_META);
5464                         if (err) {
5465                                 ret = err;
5466                                 /*
5467                                  * We use &bio in above __extent_read_full_page,
5468                                  * so we ensure that if it returns error, the
5469                                  * current page fails to add itself to bio and
5470                                  * it's been unlocked.
5471                                  *
5472                                  * We must dec io_pages by ourselves.
5473                                  */
5474                                 atomic_dec(&eb->io_pages);
5475                         }
5476                 } else {
5477                         unlock_page(page);
5478                 }
5479         }
5480
5481         if (bio) {
5482                 err = submit_one_bio(bio, mirror_num, bio_flags);
5483                 if (err)
5484                         return err;
5485         }
5486
5487         if (ret || wait != WAIT_COMPLETE)
5488                 return ret;
5489
5490         for (i = 0; i < num_pages; i++) {
5491                 page = eb->pages[i];
5492                 wait_on_page_locked(page);
5493                 if (!PageUptodate(page))
5494                         ret = -EIO;
5495         }
5496
5497         return ret;
5498
5499 unlock_exit:
5500         while (locked_pages > 0) {
5501                 locked_pages--;
5502                 page = eb->pages[locked_pages];
5503                 unlock_page(page);
5504         }
5505         return ret;
5506 }
5507
5508 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5509                         unsigned long start, unsigned long len)
5510 {
5511         size_t cur;
5512         size_t offset;
5513         struct page *page;
5514         char *kaddr;
5515         char *dst = (char *)dstv;
5516         size_t start_offset = offset_in_page(eb->start);
5517         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5518
5519         if (start + len > eb->len) {
5520                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5521                      eb->start, eb->len, start, len);
5522                 memset(dst, 0, len);
5523                 return;
5524         }
5525
5526         offset = offset_in_page(start_offset + start);
5527
5528         while (len > 0) {
5529                 page = eb->pages[i];
5530
5531                 cur = min(len, (PAGE_SIZE - offset));
5532                 kaddr = page_address(page);
5533                 memcpy(dst, kaddr + offset, cur);
5534
5535                 dst += cur;
5536                 len -= cur;
5537                 offset = 0;
5538                 i++;
5539         }
5540 }
5541
5542 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5543                                void __user *dstv,
5544                                unsigned long start, unsigned long len)
5545 {
5546         size_t cur;
5547         size_t offset;
5548         struct page *page;
5549         char *kaddr;
5550         char __user *dst = (char __user *)dstv;
5551         size_t start_offset = offset_in_page(eb->start);
5552         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5553         int ret = 0;
5554
5555         WARN_ON(start > eb->len);
5556         WARN_ON(start + len > eb->start + eb->len);
5557
5558         offset = offset_in_page(start_offset + start);
5559
5560         while (len > 0) {
5561                 page = eb->pages[i];
5562
5563                 cur = min(len, (PAGE_SIZE - offset));
5564                 kaddr = page_address(page);
5565                 if (copy_to_user(dst, kaddr + offset, cur)) {
5566                         ret = -EFAULT;
5567                         break;
5568                 }
5569
5570                 dst += cur;
5571                 len -= cur;
5572                 offset = 0;
5573                 i++;
5574         }
5575
5576         return ret;
5577 }
5578
5579 /*
5580  * return 0 if the item is found within a page.
5581  * return 1 if the item spans two pages.
5582  * return -EINVAL otherwise.
5583  */
5584 int map_private_extent_buffer(const struct extent_buffer *eb,
5585                               unsigned long start, unsigned long min_len,
5586                               char **map, unsigned long *map_start,
5587                               unsigned long *map_len)
5588 {
5589         size_t offset;
5590         char *kaddr;
5591         struct page *p;
5592         size_t start_offset = offset_in_page(eb->start);
5593         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5594         unsigned long end_i = (start_offset + start + min_len - 1) >>
5595                 PAGE_SHIFT;
5596
5597         if (start + min_len > eb->len) {
5598                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5599                        eb->start, eb->len, start, min_len);
5600                 return -EINVAL;
5601         }
5602
5603         if (i != end_i)
5604                 return 1;
5605
5606         if (i == 0) {
5607                 offset = start_offset;
5608                 *map_start = 0;
5609         } else {
5610                 offset = 0;
5611                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5612         }
5613
5614         p = eb->pages[i];
5615         kaddr = page_address(p);
5616         *map = kaddr + offset;
5617         *map_len = PAGE_SIZE - offset;
5618         return 0;
5619 }
5620
5621 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5622                          unsigned long start, unsigned long len)
5623 {
5624         size_t cur;
5625         size_t offset;
5626         struct page *page;
5627         char *kaddr;
5628         char *ptr = (char *)ptrv;
5629         size_t start_offset = offset_in_page(eb->start);
5630         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5631         int ret = 0;
5632
5633         WARN_ON(start > eb->len);
5634         WARN_ON(start + len > eb->start + eb->len);
5635
5636         offset = offset_in_page(start_offset + start);
5637
5638         while (len > 0) {
5639                 page = eb->pages[i];
5640
5641                 cur = min(len, (PAGE_SIZE - offset));
5642
5643                 kaddr = page_address(page);
5644                 ret = memcmp(ptr, kaddr + offset, cur);
5645                 if (ret)
5646                         break;
5647
5648                 ptr += cur;
5649                 len -= cur;
5650                 offset = 0;
5651                 i++;
5652         }
5653         return ret;
5654 }
5655
5656 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5657                 const void *srcv)
5658 {
5659         char *kaddr;
5660
5661         WARN_ON(!PageUptodate(eb->pages[0]));
5662         kaddr = page_address(eb->pages[0]);
5663         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5664                         BTRFS_FSID_SIZE);
5665 }
5666
5667 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5668 {
5669         char *kaddr;
5670
5671         WARN_ON(!PageUptodate(eb->pages[0]));
5672         kaddr = page_address(eb->pages[0]);
5673         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5674                         BTRFS_FSID_SIZE);
5675 }
5676
5677 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5678                          unsigned long start, unsigned long len)
5679 {
5680         size_t cur;
5681         size_t offset;
5682         struct page *page;
5683         char *kaddr;
5684         char *src = (char *)srcv;
5685         size_t start_offset = offset_in_page(eb->start);
5686         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5687
5688         WARN_ON(start > eb->len);
5689         WARN_ON(start + len > eb->start + eb->len);
5690
5691         offset = offset_in_page(start_offset + start);
5692
5693         while (len > 0) {
5694                 page = eb->pages[i];
5695                 WARN_ON(!PageUptodate(page));
5696
5697                 cur = min(len, PAGE_SIZE - offset);
5698                 kaddr = page_address(page);
5699                 memcpy(kaddr + offset, src, cur);
5700
5701                 src += cur;
5702                 len -= cur;
5703                 offset = 0;
5704                 i++;
5705         }
5706 }
5707
5708 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5709                 unsigned long len)
5710 {
5711         size_t cur;
5712         size_t offset;
5713         struct page *page;
5714         char *kaddr;
5715         size_t start_offset = offset_in_page(eb->start);
5716         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5717
5718         WARN_ON(start > eb->len);
5719         WARN_ON(start + len > eb->start + eb->len);
5720
5721         offset = offset_in_page(start_offset + start);
5722
5723         while (len > 0) {
5724                 page = eb->pages[i];
5725                 WARN_ON(!PageUptodate(page));
5726
5727                 cur = min(len, PAGE_SIZE - offset);
5728                 kaddr = page_address(page);
5729                 memset(kaddr + offset, 0, cur);
5730
5731                 len -= cur;
5732                 offset = 0;
5733                 i++;
5734         }
5735 }
5736
5737 void copy_extent_buffer_full(struct extent_buffer *dst,
5738                              struct extent_buffer *src)
5739 {
5740         int i;
5741         int num_pages;
5742
5743         ASSERT(dst->len == src->len);
5744
5745         num_pages = num_extent_pages(dst);
5746         for (i = 0; i < num_pages; i++)
5747                 copy_page(page_address(dst->pages[i]),
5748                                 page_address(src->pages[i]));
5749 }
5750
5751 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5752                         unsigned long dst_offset, unsigned long src_offset,
5753                         unsigned long len)
5754 {
5755         u64 dst_len = dst->len;
5756         size_t cur;
5757         size_t offset;
5758         struct page *page;
5759         char *kaddr;
5760         size_t start_offset = offset_in_page(dst->start);
5761         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5762
5763         WARN_ON(src->len != dst_len);
5764
5765         offset = offset_in_page(start_offset + dst_offset);
5766
5767         while (len > 0) {
5768                 page = dst->pages[i];
5769                 WARN_ON(!PageUptodate(page));
5770
5771                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5772
5773                 kaddr = page_address(page);
5774                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5775
5776                 src_offset += cur;
5777                 len -= cur;
5778                 offset = 0;
5779                 i++;
5780         }
5781 }
5782
5783 /*
5784  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5785  * given bit number
5786  * @eb: the extent buffer
5787  * @start: offset of the bitmap item in the extent buffer
5788  * @nr: bit number
5789  * @page_index: return index of the page in the extent buffer that contains the
5790  * given bit number
5791  * @page_offset: return offset into the page given by page_index
5792  *
5793  * This helper hides the ugliness of finding the byte in an extent buffer which
5794  * contains a given bit.
5795  */
5796 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5797                                     unsigned long start, unsigned long nr,
5798                                     unsigned long *page_index,
5799                                     size_t *page_offset)
5800 {
5801         size_t start_offset = offset_in_page(eb->start);
5802         size_t byte_offset = BIT_BYTE(nr);
5803         size_t offset;
5804
5805         /*
5806          * The byte we want is the offset of the extent buffer + the offset of
5807          * the bitmap item in the extent buffer + the offset of the byte in the
5808          * bitmap item.
5809          */
5810         offset = start_offset + start + byte_offset;
5811
5812         *page_index = offset >> PAGE_SHIFT;
5813         *page_offset = offset_in_page(offset);
5814 }
5815
5816 /**
5817  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5818  * @eb: the extent buffer
5819  * @start: offset of the bitmap item in the extent buffer
5820  * @nr: bit number to test
5821  */
5822 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5823                            unsigned long nr)
5824 {
5825         u8 *kaddr;
5826         struct page *page;
5827         unsigned long i;
5828         size_t offset;
5829
5830         eb_bitmap_offset(eb, start, nr, &i, &offset);
5831         page = eb->pages[i];
5832         WARN_ON(!PageUptodate(page));
5833         kaddr = page_address(page);
5834         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5835 }
5836
5837 /**
5838  * extent_buffer_bitmap_set - set an area of a bitmap
5839  * @eb: the extent buffer
5840  * @start: offset of the bitmap item in the extent buffer
5841  * @pos: bit number of the first bit
5842  * @len: number of bits to set
5843  */
5844 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5845                               unsigned long pos, unsigned long len)
5846 {
5847         u8 *kaddr;
5848         struct page *page;
5849         unsigned long i;
5850         size_t offset;
5851         const unsigned int size = pos + len;
5852         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5853         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5854
5855         eb_bitmap_offset(eb, start, pos, &i, &offset);
5856         page = eb->pages[i];
5857         WARN_ON(!PageUptodate(page));
5858         kaddr = page_address(page);
5859
5860         while (len >= bits_to_set) {
5861                 kaddr[offset] |= mask_to_set;
5862                 len -= bits_to_set;
5863                 bits_to_set = BITS_PER_BYTE;
5864                 mask_to_set = ~0;
5865                 if (++offset >= PAGE_SIZE && len > 0) {
5866                         offset = 0;
5867                         page = eb->pages[++i];
5868                         WARN_ON(!PageUptodate(page));
5869                         kaddr = page_address(page);
5870                 }
5871         }
5872         if (len) {
5873                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5874                 kaddr[offset] |= mask_to_set;
5875         }
5876 }
5877
5878
5879 /**
5880  * extent_buffer_bitmap_clear - clear an area of a bitmap
5881  * @eb: the extent buffer
5882  * @start: offset of the bitmap item in the extent buffer
5883  * @pos: bit number of the first bit
5884  * @len: number of bits to clear
5885  */
5886 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5887                                 unsigned long pos, unsigned long len)
5888 {
5889         u8 *kaddr;
5890         struct page *page;
5891         unsigned long i;
5892         size_t offset;
5893         const unsigned int size = pos + len;
5894         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5895         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5896
5897         eb_bitmap_offset(eb, start, pos, &i, &offset);
5898         page = eb->pages[i];
5899         WARN_ON(!PageUptodate(page));
5900         kaddr = page_address(page);
5901
5902         while (len >= bits_to_clear) {
5903                 kaddr[offset] &= ~mask_to_clear;
5904                 len -= bits_to_clear;
5905                 bits_to_clear = BITS_PER_BYTE;
5906                 mask_to_clear = ~0;
5907                 if (++offset >= PAGE_SIZE && len > 0) {
5908                         offset = 0;
5909                         page = eb->pages[++i];
5910                         WARN_ON(!PageUptodate(page));
5911                         kaddr = page_address(page);
5912                 }
5913         }
5914         if (len) {
5915                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5916                 kaddr[offset] &= ~mask_to_clear;
5917         }
5918 }
5919
5920 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5921 {
5922         unsigned long distance = (src > dst) ? src - dst : dst - src;
5923         return distance < len;
5924 }
5925
5926 static void copy_pages(struct page *dst_page, struct page *src_page,
5927                        unsigned long dst_off, unsigned long src_off,
5928                        unsigned long len)
5929 {
5930         char *dst_kaddr = page_address(dst_page);
5931         char *src_kaddr;
5932         int must_memmove = 0;
5933
5934         if (dst_page != src_page) {
5935                 src_kaddr = page_address(src_page);
5936         } else {
5937                 src_kaddr = dst_kaddr;
5938                 if (areas_overlap(src_off, dst_off, len))
5939                         must_memmove = 1;
5940         }
5941
5942         if (must_memmove)
5943                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5944         else
5945                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5946 }
5947
5948 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5949                            unsigned long src_offset, unsigned long len)
5950 {
5951         struct btrfs_fs_info *fs_info = dst->fs_info;
5952         size_t cur;
5953         size_t dst_off_in_page;
5954         size_t src_off_in_page;
5955         size_t start_offset = offset_in_page(dst->start);
5956         unsigned long dst_i;
5957         unsigned long src_i;
5958
5959         if (src_offset + len > dst->len) {
5960                 btrfs_err(fs_info,
5961                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5962                          src_offset, len, dst->len);
5963                 BUG();
5964         }
5965         if (dst_offset + len > dst->len) {
5966                 btrfs_err(fs_info,
5967                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5968                          dst_offset, len, dst->len);
5969                 BUG();
5970         }
5971
5972         while (len > 0) {
5973                 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5974                 src_off_in_page = offset_in_page(start_offset + src_offset);
5975
5976                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5977                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5978
5979                 cur = min(len, (unsigned long)(PAGE_SIZE -
5980                                                src_off_in_page));
5981                 cur = min_t(unsigned long, cur,
5982                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5983
5984                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5985                            dst_off_in_page, src_off_in_page, cur);
5986
5987                 src_offset += cur;
5988                 dst_offset += cur;
5989                 len -= cur;
5990         }
5991 }
5992
5993 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5994                            unsigned long src_offset, unsigned long len)
5995 {
5996         struct btrfs_fs_info *fs_info = dst->fs_info;
5997         size_t cur;
5998         size_t dst_off_in_page;
5999         size_t src_off_in_page;
6000         unsigned long dst_end = dst_offset + len - 1;
6001         unsigned long src_end = src_offset + len - 1;
6002         size_t start_offset = offset_in_page(dst->start);
6003         unsigned long dst_i;
6004         unsigned long src_i;
6005
6006         if (src_offset + len > dst->len) {
6007                 btrfs_err(fs_info,
6008                           "memmove bogus src_offset %lu move len %lu len %lu",
6009                           src_offset, len, dst->len);
6010                 BUG();
6011         }
6012         if (dst_offset + len > dst->len) {
6013                 btrfs_err(fs_info,
6014                           "memmove bogus dst_offset %lu move len %lu len %lu",
6015                           dst_offset, len, dst->len);
6016                 BUG();
6017         }
6018         if (dst_offset < src_offset) {
6019                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6020                 return;
6021         }
6022         while (len > 0) {
6023                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6024                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6025
6026                 dst_off_in_page = offset_in_page(start_offset + dst_end);
6027                 src_off_in_page = offset_in_page(start_offset + src_end);
6028
6029                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6030                 cur = min(cur, dst_off_in_page + 1);
6031                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6032                            dst_off_in_page - cur + 1,
6033                            src_off_in_page - cur + 1, cur);
6034
6035                 dst_end -= cur;
6036                 src_end -= cur;
6037                 len -= cur;
6038         }
6039 }
6040
6041 int try_release_extent_buffer(struct page *page)
6042 {
6043         struct extent_buffer *eb;
6044
6045         /*
6046          * We need to make sure nobody is attaching this page to an eb right
6047          * now.
6048          */
6049         spin_lock(&page->mapping->private_lock);
6050         if (!PagePrivate(page)) {
6051                 spin_unlock(&page->mapping->private_lock);
6052                 return 1;
6053         }
6054
6055         eb = (struct extent_buffer *)page->private;
6056         BUG_ON(!eb);
6057
6058         /*
6059          * This is a little awful but should be ok, we need to make sure that
6060          * the eb doesn't disappear out from under us while we're looking at
6061          * this page.
6062          */
6063         spin_lock(&eb->refs_lock);
6064         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6065                 spin_unlock(&eb->refs_lock);
6066                 spin_unlock(&page->mapping->private_lock);
6067                 return 0;
6068         }
6069         spin_unlock(&page->mapping->private_lock);
6070
6071         /*
6072          * If tree ref isn't set then we know the ref on this eb is a real ref,
6073          * so just return, this page will likely be freed soon anyway.
6074          */
6075         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6076                 spin_unlock(&eb->refs_lock);
6077                 return 0;
6078         }
6079
6080         return release_extent_buffer(eb);
6081 }