]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/file.c
Merge tag 'tty-5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[linux.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30
31 static struct kmem_cache *btrfs_inode_defrag_cachep;
32 /*
33  * when auto defrag is enabled we
34  * queue up these defrag structs to remember which
35  * inodes need defragging passes
36  */
37 struct inode_defrag {
38         struct rb_node rb_node;
39         /* objectid */
40         u64 ino;
41         /*
42          * transid where the defrag was added, we search for
43          * extents newer than this
44          */
45         u64 transid;
46
47         /* root objectid */
48         u64 root;
49
50         /* last offset we were able to defrag */
51         u64 last_offset;
52
53         /* if we've wrapped around back to zero once already */
54         int cycled;
55 };
56
57 static int __compare_inode_defrag(struct inode_defrag *defrag1,
58                                   struct inode_defrag *defrag2)
59 {
60         if (defrag1->root > defrag2->root)
61                 return 1;
62         else if (defrag1->root < defrag2->root)
63                 return -1;
64         else if (defrag1->ino > defrag2->ino)
65                 return 1;
66         else if (defrag1->ino < defrag2->ino)
67                 return -1;
68         else
69                 return 0;
70 }
71
72 /* pop a record for an inode into the defrag tree.  The lock
73  * must be held already
74  *
75  * If you're inserting a record for an older transid than an
76  * existing record, the transid already in the tree is lowered
77  *
78  * If an existing record is found the defrag item you
79  * pass in is freed
80  */
81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
82                                     struct inode_defrag *defrag)
83 {
84         struct btrfs_fs_info *fs_info = inode->root->fs_info;
85         struct inode_defrag *entry;
86         struct rb_node **p;
87         struct rb_node *parent = NULL;
88         int ret;
89
90         p = &fs_info->defrag_inodes.rb_node;
91         while (*p) {
92                 parent = *p;
93                 entry = rb_entry(parent, struct inode_defrag, rb_node);
94
95                 ret = __compare_inode_defrag(defrag, entry);
96                 if (ret < 0)
97                         p = &parent->rb_left;
98                 else if (ret > 0)
99                         p = &parent->rb_right;
100                 else {
101                         /* if we're reinserting an entry for
102                          * an old defrag run, make sure to
103                          * lower the transid of our existing record
104                          */
105                         if (defrag->transid < entry->transid)
106                                 entry->transid = defrag->transid;
107                         if (defrag->last_offset > entry->last_offset)
108                                 entry->last_offset = defrag->last_offset;
109                         return -EEXIST;
110                 }
111         }
112         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
113         rb_link_node(&defrag->rb_node, parent, p);
114         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
115         return 0;
116 }
117
118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
119 {
120         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
121                 return 0;
122
123         if (btrfs_fs_closing(fs_info))
124                 return 0;
125
126         return 1;
127 }
128
129 /*
130  * insert a defrag record for this inode if auto defrag is
131  * enabled
132  */
133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
134                            struct btrfs_inode *inode)
135 {
136         struct btrfs_root *root = inode->root;
137         struct btrfs_fs_info *fs_info = root->fs_info;
138         struct inode_defrag *defrag;
139         u64 transid;
140         int ret;
141
142         if (!__need_auto_defrag(fs_info))
143                 return 0;
144
145         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
146                 return 0;
147
148         if (trans)
149                 transid = trans->transid;
150         else
151                 transid = inode->root->last_trans;
152
153         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
154         if (!defrag)
155                 return -ENOMEM;
156
157         defrag->ino = btrfs_ino(inode);
158         defrag->transid = transid;
159         defrag->root = root->root_key.objectid;
160
161         spin_lock(&fs_info->defrag_inodes_lock);
162         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
163                 /*
164                  * If we set IN_DEFRAG flag and evict the inode from memory,
165                  * and then re-read this inode, this new inode doesn't have
166                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
167                  */
168                 ret = __btrfs_add_inode_defrag(inode, defrag);
169                 if (ret)
170                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
171         } else {
172                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173         }
174         spin_unlock(&fs_info->defrag_inodes_lock);
175         return 0;
176 }
177
178 /*
179  * Requeue the defrag object. If there is a defrag object that points to
180  * the same inode in the tree, we will merge them together (by
181  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182  */
183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
184                                        struct inode_defrag *defrag)
185 {
186         struct btrfs_fs_info *fs_info = inode->root->fs_info;
187         int ret;
188
189         if (!__need_auto_defrag(fs_info))
190                 goto out;
191
192         /*
193          * Here we don't check the IN_DEFRAG flag, because we need merge
194          * them together.
195          */
196         spin_lock(&fs_info->defrag_inodes_lock);
197         ret = __btrfs_add_inode_defrag(inode, defrag);
198         spin_unlock(&fs_info->defrag_inodes_lock);
199         if (ret)
200                 goto out;
201         return;
202 out:
203         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
204 }
205
206 /*
207  * pick the defragable inode that we want, if it doesn't exist, we will get
208  * the next one.
209  */
210 static struct inode_defrag *
211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
212 {
213         struct inode_defrag *entry = NULL;
214         struct inode_defrag tmp;
215         struct rb_node *p;
216         struct rb_node *parent = NULL;
217         int ret;
218
219         tmp.ino = ino;
220         tmp.root = root;
221
222         spin_lock(&fs_info->defrag_inodes_lock);
223         p = fs_info->defrag_inodes.rb_node;
224         while (p) {
225                 parent = p;
226                 entry = rb_entry(parent, struct inode_defrag, rb_node);
227
228                 ret = __compare_inode_defrag(&tmp, entry);
229                 if (ret < 0)
230                         p = parent->rb_left;
231                 else if (ret > 0)
232                         p = parent->rb_right;
233                 else
234                         goto out;
235         }
236
237         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
238                 parent = rb_next(parent);
239                 if (parent)
240                         entry = rb_entry(parent, struct inode_defrag, rb_node);
241                 else
242                         entry = NULL;
243         }
244 out:
245         if (entry)
246                 rb_erase(parent, &fs_info->defrag_inodes);
247         spin_unlock(&fs_info->defrag_inodes_lock);
248         return entry;
249 }
250
251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
252 {
253         struct inode_defrag *defrag;
254         struct rb_node *node;
255
256         spin_lock(&fs_info->defrag_inodes_lock);
257         node = rb_first(&fs_info->defrag_inodes);
258         while (node) {
259                 rb_erase(node, &fs_info->defrag_inodes);
260                 defrag = rb_entry(node, struct inode_defrag, rb_node);
261                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
262
263                 cond_resched_lock(&fs_info->defrag_inodes_lock);
264
265                 node = rb_first(&fs_info->defrag_inodes);
266         }
267         spin_unlock(&fs_info->defrag_inodes_lock);
268 }
269
270 #define BTRFS_DEFRAG_BATCH      1024
271
272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
273                                     struct inode_defrag *defrag)
274 {
275         struct btrfs_root *inode_root;
276         struct inode *inode;
277         struct btrfs_key key;
278         struct btrfs_ioctl_defrag_range_args range;
279         int num_defrag;
280         int index;
281         int ret;
282
283         /* get the inode */
284         key.objectid = defrag->root;
285         key.type = BTRFS_ROOT_ITEM_KEY;
286         key.offset = (u64)-1;
287
288         index = srcu_read_lock(&fs_info->subvol_srcu);
289
290         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
291         if (IS_ERR(inode_root)) {
292                 ret = PTR_ERR(inode_root);
293                 goto cleanup;
294         }
295
296         key.objectid = defrag->ino;
297         key.type = BTRFS_INODE_ITEM_KEY;
298         key.offset = 0;
299         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
300         if (IS_ERR(inode)) {
301                 ret = PTR_ERR(inode);
302                 goto cleanup;
303         }
304         srcu_read_unlock(&fs_info->subvol_srcu, index);
305
306         /* do a chunk of defrag */
307         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
308         memset(&range, 0, sizeof(range));
309         range.len = (u64)-1;
310         range.start = defrag->last_offset;
311
312         sb_start_write(fs_info->sb);
313         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
314                                        BTRFS_DEFRAG_BATCH);
315         sb_end_write(fs_info->sb);
316         /*
317          * if we filled the whole defrag batch, there
318          * must be more work to do.  Queue this defrag
319          * again
320          */
321         if (num_defrag == BTRFS_DEFRAG_BATCH) {
322                 defrag->last_offset = range.start;
323                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324         } else if (defrag->last_offset && !defrag->cycled) {
325                 /*
326                  * we didn't fill our defrag batch, but
327                  * we didn't start at zero.  Make sure we loop
328                  * around to the start of the file.
329                  */
330                 defrag->last_offset = 0;
331                 defrag->cycled = 1;
332                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
333         } else {
334                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335         }
336
337         iput(inode);
338         return 0;
339 cleanup:
340         srcu_read_unlock(&fs_info->subvol_srcu, index);
341         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342         return ret;
343 }
344
345 /*
346  * run through the list of inodes in the FS that need
347  * defragging
348  */
349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
350 {
351         struct inode_defrag *defrag;
352         u64 first_ino = 0;
353         u64 root_objectid = 0;
354
355         atomic_inc(&fs_info->defrag_running);
356         while (1) {
357                 /* Pause the auto defragger. */
358                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
359                              &fs_info->fs_state))
360                         break;
361
362                 if (!__need_auto_defrag(fs_info))
363                         break;
364
365                 /* find an inode to defrag */
366                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
367                                                  first_ino);
368                 if (!defrag) {
369                         if (root_objectid || first_ino) {
370                                 root_objectid = 0;
371                                 first_ino = 0;
372                                 continue;
373                         } else {
374                                 break;
375                         }
376                 }
377
378                 first_ino = defrag->ino + 1;
379                 root_objectid = defrag->root;
380
381                 __btrfs_run_defrag_inode(fs_info, defrag);
382         }
383         atomic_dec(&fs_info->defrag_running);
384
385         /*
386          * during unmount, we use the transaction_wait queue to
387          * wait for the defragger to stop
388          */
389         wake_up(&fs_info->transaction_wait);
390         return 0;
391 }
392
393 /* simple helper to fault in pages and copy.  This should go away
394  * and be replaced with calls into generic code.
395  */
396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
397                                          struct page **prepared_pages,
398                                          struct iov_iter *i)
399 {
400         size_t copied = 0;
401         size_t total_copied = 0;
402         int pg = 0;
403         int offset = offset_in_page(pos);
404
405         while (write_bytes > 0) {
406                 size_t count = min_t(size_t,
407                                      PAGE_SIZE - offset, write_bytes);
408                 struct page *page = prepared_pages[pg];
409                 /*
410                  * Copy data from userspace to the current page
411                  */
412                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
413
414                 /* Flush processor's dcache for this page */
415                 flush_dcache_page(page);
416
417                 /*
418                  * if we get a partial write, we can end up with
419                  * partially up to date pages.  These add
420                  * a lot of complexity, so make sure they don't
421                  * happen by forcing this copy to be retried.
422                  *
423                  * The rest of the btrfs_file_write code will fall
424                  * back to page at a time copies after we return 0.
425                  */
426                 if (!PageUptodate(page) && copied < count)
427                         copied = 0;
428
429                 iov_iter_advance(i, copied);
430                 write_bytes -= copied;
431                 total_copied += copied;
432
433                 /* Return to btrfs_file_write_iter to fault page */
434                 if (unlikely(copied == 0))
435                         break;
436
437                 if (copied < PAGE_SIZE - offset) {
438                         offset += copied;
439                 } else {
440                         pg++;
441                         offset = 0;
442                 }
443         }
444         return total_copied;
445 }
446
447 /*
448  * unlocks pages after btrfs_file_write is done with them
449  */
450 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
451 {
452         size_t i;
453         for (i = 0; i < num_pages; i++) {
454                 /* page checked is some magic around finding pages that
455                  * have been modified without going through btrfs_set_page_dirty
456                  * clear it here. There should be no need to mark the pages
457                  * accessed as prepare_pages should have marked them accessed
458                  * in prepare_pages via find_or_create_page()
459                  */
460                 ClearPageChecked(pages[i]);
461                 unlock_page(pages[i]);
462                 put_page(pages[i]);
463         }
464 }
465
466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
467                                          const u64 start,
468                                          const u64 len,
469                                          struct extent_state **cached_state)
470 {
471         u64 search_start = start;
472         const u64 end = start + len - 1;
473
474         while (search_start < end) {
475                 const u64 search_len = end - search_start + 1;
476                 struct extent_map *em;
477                 u64 em_len;
478                 int ret = 0;
479
480                 em = btrfs_get_extent(inode, NULL, 0, search_start,
481                                       search_len, 0);
482                 if (IS_ERR(em))
483                         return PTR_ERR(em);
484
485                 if (em->block_start != EXTENT_MAP_HOLE)
486                         goto next;
487
488                 em_len = em->len;
489                 if (em->start < search_start)
490                         em_len -= search_start - em->start;
491                 if (em_len > search_len)
492                         em_len = search_len;
493
494                 ret = set_extent_bit(&inode->io_tree, search_start,
495                                      search_start + em_len - 1,
496                                      EXTENT_DELALLOC_NEW,
497                                      NULL, cached_state, GFP_NOFS);
498 next:
499                 search_start = extent_map_end(em);
500                 free_extent_map(em);
501                 if (ret)
502                         return ret;
503         }
504         return 0;
505 }
506
507 /*
508  * after copy_from_user, pages need to be dirtied and we need to make
509  * sure holes are created between the current EOF and the start of
510  * any next extents (if required).
511  *
512  * this also makes the decision about creating an inline extent vs
513  * doing real data extents, marking pages dirty and delalloc as required.
514  */
515 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
516                       size_t num_pages, loff_t pos, size_t write_bytes,
517                       struct extent_state **cached)
518 {
519         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
520         int err = 0;
521         int i;
522         u64 num_bytes;
523         u64 start_pos;
524         u64 end_of_last_block;
525         u64 end_pos = pos + write_bytes;
526         loff_t isize = i_size_read(inode);
527         unsigned int extra_bits = 0;
528
529         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
530         num_bytes = round_up(write_bytes + pos - start_pos,
531                              fs_info->sectorsize);
532
533         end_of_last_block = start_pos + num_bytes - 1;
534
535         /*
536          * The pages may have already been dirty, clear out old accounting so
537          * we can set things up properly
538          */
539         clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
540                          EXTENT_DIRTY | EXTENT_DELALLOC |
541                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
542
543         if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
544                 if (start_pos >= isize &&
545                     !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
546                         /*
547                          * There can't be any extents following eof in this case
548                          * so just set the delalloc new bit for the range
549                          * directly.
550                          */
551                         extra_bits |= EXTENT_DELALLOC_NEW;
552                 } else {
553                         err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
554                                                             start_pos,
555                                                             num_bytes, cached);
556                         if (err)
557                                 return err;
558                 }
559         }
560
561         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
562                                         extra_bits, cached, 0);
563         if (err)
564                 return err;
565
566         for (i = 0; i < num_pages; i++) {
567                 struct page *p = pages[i];
568                 SetPageUptodate(p);
569                 ClearPageChecked(p);
570                 set_page_dirty(p);
571         }
572
573         /*
574          * we've only changed i_size in ram, and we haven't updated
575          * the disk i_size.  There is no need to log the inode
576          * at this time.
577          */
578         if (end_pos > isize)
579                 i_size_write(inode, end_pos);
580         return 0;
581 }
582
583 /*
584  * this drops all the extents in the cache that intersect the range
585  * [start, end].  Existing extents are split as required.
586  */
587 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
588                              int skip_pinned)
589 {
590         struct extent_map *em;
591         struct extent_map *split = NULL;
592         struct extent_map *split2 = NULL;
593         struct extent_map_tree *em_tree = &inode->extent_tree;
594         u64 len = end - start + 1;
595         u64 gen;
596         int ret;
597         int testend = 1;
598         unsigned long flags;
599         int compressed = 0;
600         bool modified;
601
602         WARN_ON(end < start);
603         if (end == (u64)-1) {
604                 len = (u64)-1;
605                 testend = 0;
606         }
607         while (1) {
608                 int no_splits = 0;
609
610                 modified = false;
611                 if (!split)
612                         split = alloc_extent_map();
613                 if (!split2)
614                         split2 = alloc_extent_map();
615                 if (!split || !split2)
616                         no_splits = 1;
617
618                 write_lock(&em_tree->lock);
619                 em = lookup_extent_mapping(em_tree, start, len);
620                 if (!em) {
621                         write_unlock(&em_tree->lock);
622                         break;
623                 }
624                 flags = em->flags;
625                 gen = em->generation;
626                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
627                         if (testend && em->start + em->len >= start + len) {
628                                 free_extent_map(em);
629                                 write_unlock(&em_tree->lock);
630                                 break;
631                         }
632                         start = em->start + em->len;
633                         if (testend)
634                                 len = start + len - (em->start + em->len);
635                         free_extent_map(em);
636                         write_unlock(&em_tree->lock);
637                         continue;
638                 }
639                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
640                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
641                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
642                 modified = !list_empty(&em->list);
643                 if (no_splits)
644                         goto next;
645
646                 if (em->start < start) {
647                         split->start = em->start;
648                         split->len = start - em->start;
649
650                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
651                                 split->orig_start = em->orig_start;
652                                 split->block_start = em->block_start;
653
654                                 if (compressed)
655                                         split->block_len = em->block_len;
656                                 else
657                                         split->block_len = split->len;
658                                 split->orig_block_len = max(split->block_len,
659                                                 em->orig_block_len);
660                                 split->ram_bytes = em->ram_bytes;
661                         } else {
662                                 split->orig_start = split->start;
663                                 split->block_len = 0;
664                                 split->block_start = em->block_start;
665                                 split->orig_block_len = 0;
666                                 split->ram_bytes = split->len;
667                         }
668
669                         split->generation = gen;
670                         split->bdev = em->bdev;
671                         split->flags = flags;
672                         split->compress_type = em->compress_type;
673                         replace_extent_mapping(em_tree, em, split, modified);
674                         free_extent_map(split);
675                         split = split2;
676                         split2 = NULL;
677                 }
678                 if (testend && em->start + em->len > start + len) {
679                         u64 diff = start + len - em->start;
680
681                         split->start = start + len;
682                         split->len = em->start + em->len - (start + len);
683                         split->bdev = em->bdev;
684                         split->flags = flags;
685                         split->compress_type = em->compress_type;
686                         split->generation = gen;
687
688                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
689                                 split->orig_block_len = max(em->block_len,
690                                                     em->orig_block_len);
691
692                                 split->ram_bytes = em->ram_bytes;
693                                 if (compressed) {
694                                         split->block_len = em->block_len;
695                                         split->block_start = em->block_start;
696                                         split->orig_start = em->orig_start;
697                                 } else {
698                                         split->block_len = split->len;
699                                         split->block_start = em->block_start
700                                                 + diff;
701                                         split->orig_start = em->orig_start;
702                                 }
703                         } else {
704                                 split->ram_bytes = split->len;
705                                 split->orig_start = split->start;
706                                 split->block_len = 0;
707                                 split->block_start = em->block_start;
708                                 split->orig_block_len = 0;
709                         }
710
711                         if (extent_map_in_tree(em)) {
712                                 replace_extent_mapping(em_tree, em, split,
713                                                        modified);
714                         } else {
715                                 ret = add_extent_mapping(em_tree, split,
716                                                          modified);
717                                 ASSERT(ret == 0); /* Logic error */
718                         }
719                         free_extent_map(split);
720                         split = NULL;
721                 }
722 next:
723                 if (extent_map_in_tree(em))
724                         remove_extent_mapping(em_tree, em);
725                 write_unlock(&em_tree->lock);
726
727                 /* once for us */
728                 free_extent_map(em);
729                 /* once for the tree*/
730                 free_extent_map(em);
731         }
732         if (split)
733                 free_extent_map(split);
734         if (split2)
735                 free_extent_map(split2);
736 }
737
738 /*
739  * this is very complex, but the basic idea is to drop all extents
740  * in the range start - end.  hint_block is filled in with a block number
741  * that would be a good hint to the block allocator for this file.
742  *
743  * If an extent intersects the range but is not entirely inside the range
744  * it is either truncated or split.  Anything entirely inside the range
745  * is deleted from the tree.
746  */
747 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
748                          struct btrfs_root *root, struct inode *inode,
749                          struct btrfs_path *path, u64 start, u64 end,
750                          u64 *drop_end, int drop_cache,
751                          int replace_extent,
752                          u32 extent_item_size,
753                          int *key_inserted)
754 {
755         struct btrfs_fs_info *fs_info = root->fs_info;
756         struct extent_buffer *leaf;
757         struct btrfs_file_extent_item *fi;
758         struct btrfs_ref ref = { 0 };
759         struct btrfs_key key;
760         struct btrfs_key new_key;
761         u64 ino = btrfs_ino(BTRFS_I(inode));
762         u64 search_start = start;
763         u64 disk_bytenr = 0;
764         u64 num_bytes = 0;
765         u64 extent_offset = 0;
766         u64 extent_end = 0;
767         u64 last_end = start;
768         int del_nr = 0;
769         int del_slot = 0;
770         int extent_type;
771         int recow;
772         int ret;
773         int modify_tree = -1;
774         int update_refs;
775         int found = 0;
776         int leafs_visited = 0;
777
778         if (drop_cache)
779                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
780
781         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
782                 modify_tree = 0;
783
784         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
785                        root == fs_info->tree_root);
786         while (1) {
787                 recow = 0;
788                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
789                                                search_start, modify_tree);
790                 if (ret < 0)
791                         break;
792                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
793                         leaf = path->nodes[0];
794                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
795                         if (key.objectid == ino &&
796                             key.type == BTRFS_EXTENT_DATA_KEY)
797                                 path->slots[0]--;
798                 }
799                 ret = 0;
800                 leafs_visited++;
801 next_slot:
802                 leaf = path->nodes[0];
803                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
804                         BUG_ON(del_nr > 0);
805                         ret = btrfs_next_leaf(root, path);
806                         if (ret < 0)
807                                 break;
808                         if (ret > 0) {
809                                 ret = 0;
810                                 break;
811                         }
812                         leafs_visited++;
813                         leaf = path->nodes[0];
814                         recow = 1;
815                 }
816
817                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
818
819                 if (key.objectid > ino)
820                         break;
821                 if (WARN_ON_ONCE(key.objectid < ino) ||
822                     key.type < BTRFS_EXTENT_DATA_KEY) {
823                         ASSERT(del_nr == 0);
824                         path->slots[0]++;
825                         goto next_slot;
826                 }
827                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
828                         break;
829
830                 fi = btrfs_item_ptr(leaf, path->slots[0],
831                                     struct btrfs_file_extent_item);
832                 extent_type = btrfs_file_extent_type(leaf, fi);
833
834                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
835                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
836                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
837                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
838                         extent_offset = btrfs_file_extent_offset(leaf, fi);
839                         extent_end = key.offset +
840                                 btrfs_file_extent_num_bytes(leaf, fi);
841                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842                         extent_end = key.offset +
843                                 btrfs_file_extent_ram_bytes(leaf, fi);
844                 } else {
845                         /* can't happen */
846                         BUG();
847                 }
848
849                 /*
850                  * Don't skip extent items representing 0 byte lengths. They
851                  * used to be created (bug) if while punching holes we hit
852                  * -ENOSPC condition. So if we find one here, just ensure we
853                  * delete it, otherwise we would insert a new file extent item
854                  * with the same key (offset) as that 0 bytes length file
855                  * extent item in the call to setup_items_for_insert() later
856                  * in this function.
857                  */
858                 if (extent_end == key.offset && extent_end >= search_start) {
859                         last_end = extent_end;
860                         goto delete_extent_item;
861                 }
862
863                 if (extent_end <= search_start) {
864                         path->slots[0]++;
865                         goto next_slot;
866                 }
867
868                 found = 1;
869                 search_start = max(key.offset, start);
870                 if (recow || !modify_tree) {
871                         modify_tree = -1;
872                         btrfs_release_path(path);
873                         continue;
874                 }
875
876                 /*
877                  *     | - range to drop - |
878                  *  | -------- extent -------- |
879                  */
880                 if (start > key.offset && end < extent_end) {
881                         BUG_ON(del_nr > 0);
882                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
883                                 ret = -EOPNOTSUPP;
884                                 break;
885                         }
886
887                         memcpy(&new_key, &key, sizeof(new_key));
888                         new_key.offset = start;
889                         ret = btrfs_duplicate_item(trans, root, path,
890                                                    &new_key);
891                         if (ret == -EAGAIN) {
892                                 btrfs_release_path(path);
893                                 continue;
894                         }
895                         if (ret < 0)
896                                 break;
897
898                         leaf = path->nodes[0];
899                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
900                                             struct btrfs_file_extent_item);
901                         btrfs_set_file_extent_num_bytes(leaf, fi,
902                                                         start - key.offset);
903
904                         fi = btrfs_item_ptr(leaf, path->slots[0],
905                                             struct btrfs_file_extent_item);
906
907                         extent_offset += start - key.offset;
908                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
909                         btrfs_set_file_extent_num_bytes(leaf, fi,
910                                                         extent_end - start);
911                         btrfs_mark_buffer_dirty(leaf);
912
913                         if (update_refs && disk_bytenr > 0) {
914                                 btrfs_init_generic_ref(&ref,
915                                                 BTRFS_ADD_DELAYED_REF,
916                                                 disk_bytenr, num_bytes, 0);
917                                 btrfs_init_data_ref(&ref,
918                                                 root->root_key.objectid,
919                                                 new_key.objectid,
920                                                 start - extent_offset);
921                                 ret = btrfs_inc_extent_ref(trans, &ref);
922                                 BUG_ON(ret); /* -ENOMEM */
923                         }
924                         key.offset = start;
925                 }
926                 /*
927                  * From here on out we will have actually dropped something, so
928                  * last_end can be updated.
929                  */
930                 last_end = extent_end;
931
932                 /*
933                  *  | ---- range to drop ----- |
934                  *      | -------- extent -------- |
935                  */
936                 if (start <= key.offset && end < extent_end) {
937                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
938                                 ret = -EOPNOTSUPP;
939                                 break;
940                         }
941
942                         memcpy(&new_key, &key, sizeof(new_key));
943                         new_key.offset = end;
944                         btrfs_set_item_key_safe(fs_info, path, &new_key);
945
946                         extent_offset += end - key.offset;
947                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
948                         btrfs_set_file_extent_num_bytes(leaf, fi,
949                                                         extent_end - end);
950                         btrfs_mark_buffer_dirty(leaf);
951                         if (update_refs && disk_bytenr > 0)
952                                 inode_sub_bytes(inode, end - key.offset);
953                         break;
954                 }
955
956                 search_start = extent_end;
957                 /*
958                  *       | ---- range to drop ----- |
959                  *  | -------- extent -------- |
960                  */
961                 if (start > key.offset && end >= extent_end) {
962                         BUG_ON(del_nr > 0);
963                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
964                                 ret = -EOPNOTSUPP;
965                                 break;
966                         }
967
968                         btrfs_set_file_extent_num_bytes(leaf, fi,
969                                                         start - key.offset);
970                         btrfs_mark_buffer_dirty(leaf);
971                         if (update_refs && disk_bytenr > 0)
972                                 inode_sub_bytes(inode, extent_end - start);
973                         if (end == extent_end)
974                                 break;
975
976                         path->slots[0]++;
977                         goto next_slot;
978                 }
979
980                 /*
981                  *  | ---- range to drop ----- |
982                  *    | ------ extent ------ |
983                  */
984                 if (start <= key.offset && end >= extent_end) {
985 delete_extent_item:
986                         if (del_nr == 0) {
987                                 del_slot = path->slots[0];
988                                 del_nr = 1;
989                         } else {
990                                 BUG_ON(del_slot + del_nr != path->slots[0]);
991                                 del_nr++;
992                         }
993
994                         if (update_refs &&
995                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
996                                 inode_sub_bytes(inode,
997                                                 extent_end - key.offset);
998                                 extent_end = ALIGN(extent_end,
999                                                    fs_info->sectorsize);
1000                         } else if (update_refs && disk_bytenr > 0) {
1001                                 btrfs_init_generic_ref(&ref,
1002                                                 BTRFS_DROP_DELAYED_REF,
1003                                                 disk_bytenr, num_bytes, 0);
1004                                 btrfs_init_data_ref(&ref,
1005                                                 root->root_key.objectid,
1006                                                 key.objectid,
1007                                                 key.offset - extent_offset);
1008                                 ret = btrfs_free_extent(trans, &ref);
1009                                 BUG_ON(ret); /* -ENOMEM */
1010                                 inode_sub_bytes(inode,
1011                                                 extent_end - key.offset);
1012                         }
1013
1014                         if (end == extent_end)
1015                                 break;
1016
1017                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018                                 path->slots[0]++;
1019                                 goto next_slot;
1020                         }
1021
1022                         ret = btrfs_del_items(trans, root, path, del_slot,
1023                                               del_nr);
1024                         if (ret) {
1025                                 btrfs_abort_transaction(trans, ret);
1026                                 break;
1027                         }
1028
1029                         del_nr = 0;
1030                         del_slot = 0;
1031
1032                         btrfs_release_path(path);
1033                         continue;
1034                 }
1035
1036                 BUG();
1037         }
1038
1039         if (!ret && del_nr > 0) {
1040                 /*
1041                  * Set path->slots[0] to first slot, so that after the delete
1042                  * if items are move off from our leaf to its immediate left or
1043                  * right neighbor leafs, we end up with a correct and adjusted
1044                  * path->slots[0] for our insertion (if replace_extent != 0).
1045                  */
1046                 path->slots[0] = del_slot;
1047                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048                 if (ret)
1049                         btrfs_abort_transaction(trans, ret);
1050         }
1051
1052         leaf = path->nodes[0];
1053         /*
1054          * If btrfs_del_items() was called, it might have deleted a leaf, in
1055          * which case it unlocked our path, so check path->locks[0] matches a
1056          * write lock.
1057          */
1058         if (!ret && replace_extent && leafs_visited == 1 &&
1059             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060              path->locks[0] == BTRFS_WRITE_LOCK) &&
1061             btrfs_leaf_free_space(leaf) >=
1062             sizeof(struct btrfs_item) + extent_item_size) {
1063
1064                 key.objectid = ino;
1065                 key.type = BTRFS_EXTENT_DATA_KEY;
1066                 key.offset = start;
1067                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068                         struct btrfs_key slot_key;
1069
1070                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072                                 path->slots[0]++;
1073                 }
1074                 setup_items_for_insert(root, path, &key,
1075                                        &extent_item_size,
1076                                        extent_item_size,
1077                                        sizeof(struct btrfs_item) +
1078                                        extent_item_size, 1);
1079                 *key_inserted = 1;
1080         }
1081
1082         if (!replace_extent || !(*key_inserted))
1083                 btrfs_release_path(path);
1084         if (drop_end)
1085                 *drop_end = found ? min(end, last_end) : end;
1086         return ret;
1087 }
1088
1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090                        struct btrfs_root *root, struct inode *inode, u64 start,
1091                        u64 end, int drop_cache)
1092 {
1093         struct btrfs_path *path;
1094         int ret;
1095
1096         path = btrfs_alloc_path();
1097         if (!path)
1098                 return -ENOMEM;
1099         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100                                    drop_cache, 0, 0, NULL);
1101         btrfs_free_path(path);
1102         return ret;
1103 }
1104
1105 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106                             u64 objectid, u64 bytenr, u64 orig_offset,
1107                             u64 *start, u64 *end)
1108 {
1109         struct btrfs_file_extent_item *fi;
1110         struct btrfs_key key;
1111         u64 extent_end;
1112
1113         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114                 return 0;
1115
1116         btrfs_item_key_to_cpu(leaf, &key, slot);
1117         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118                 return 0;
1119
1120         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124             btrfs_file_extent_compression(leaf, fi) ||
1125             btrfs_file_extent_encryption(leaf, fi) ||
1126             btrfs_file_extent_other_encoding(leaf, fi))
1127                 return 0;
1128
1129         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131                 return 0;
1132
1133         *start = key.offset;
1134         *end = extent_end;
1135         return 1;
1136 }
1137
1138 /*
1139  * Mark extent in the range start - end as written.
1140  *
1141  * This changes extent type from 'pre-allocated' to 'regular'. If only
1142  * part of extent is marked as written, the extent will be split into
1143  * two or three.
1144  */
1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146                               struct btrfs_inode *inode, u64 start, u64 end)
1147 {
1148         struct btrfs_fs_info *fs_info = trans->fs_info;
1149         struct btrfs_root *root = inode->root;
1150         struct extent_buffer *leaf;
1151         struct btrfs_path *path;
1152         struct btrfs_file_extent_item *fi;
1153         struct btrfs_ref ref = { 0 };
1154         struct btrfs_key key;
1155         struct btrfs_key new_key;
1156         u64 bytenr;
1157         u64 num_bytes;
1158         u64 extent_end;
1159         u64 orig_offset;
1160         u64 other_start;
1161         u64 other_end;
1162         u64 split;
1163         int del_nr = 0;
1164         int del_slot = 0;
1165         int recow;
1166         int ret;
1167         u64 ino = btrfs_ino(inode);
1168
1169         path = btrfs_alloc_path();
1170         if (!path)
1171                 return -ENOMEM;
1172 again:
1173         recow = 0;
1174         split = start;
1175         key.objectid = ino;
1176         key.type = BTRFS_EXTENT_DATA_KEY;
1177         key.offset = split;
1178
1179         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180         if (ret < 0)
1181                 goto out;
1182         if (ret > 0 && path->slots[0] > 0)
1183                 path->slots[0]--;
1184
1185         leaf = path->nodes[0];
1186         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187         if (key.objectid != ino ||
1188             key.type != BTRFS_EXTENT_DATA_KEY) {
1189                 ret = -EINVAL;
1190                 btrfs_abort_transaction(trans, ret);
1191                 goto out;
1192         }
1193         fi = btrfs_item_ptr(leaf, path->slots[0],
1194                             struct btrfs_file_extent_item);
1195         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196                 ret = -EINVAL;
1197                 btrfs_abort_transaction(trans, ret);
1198                 goto out;
1199         }
1200         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201         if (key.offset > start || extent_end < end) {
1202                 ret = -EINVAL;
1203                 btrfs_abort_transaction(trans, ret);
1204                 goto out;
1205         }
1206
1207         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210         memcpy(&new_key, &key, sizeof(new_key));
1211
1212         if (start == key.offset && end < extent_end) {
1213                 other_start = 0;
1214                 other_end = start;
1215                 if (extent_mergeable(leaf, path->slots[0] - 1,
1216                                      ino, bytenr, orig_offset,
1217                                      &other_start, &other_end)) {
1218                         new_key.offset = end;
1219                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1220                         fi = btrfs_item_ptr(leaf, path->slots[0],
1221                                             struct btrfs_file_extent_item);
1222                         btrfs_set_file_extent_generation(leaf, fi,
1223                                                          trans->transid);
1224                         btrfs_set_file_extent_num_bytes(leaf, fi,
1225                                                         extent_end - end);
1226                         btrfs_set_file_extent_offset(leaf, fi,
1227                                                      end - orig_offset);
1228                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229                                             struct btrfs_file_extent_item);
1230                         btrfs_set_file_extent_generation(leaf, fi,
1231                                                          trans->transid);
1232                         btrfs_set_file_extent_num_bytes(leaf, fi,
1233                                                         end - other_start);
1234                         btrfs_mark_buffer_dirty(leaf);
1235                         goto out;
1236                 }
1237         }
1238
1239         if (start > key.offset && end == extent_end) {
1240                 other_start = end;
1241                 other_end = 0;
1242                 if (extent_mergeable(leaf, path->slots[0] + 1,
1243                                      ino, bytenr, orig_offset,
1244                                      &other_start, &other_end)) {
1245                         fi = btrfs_item_ptr(leaf, path->slots[0],
1246                                             struct btrfs_file_extent_item);
1247                         btrfs_set_file_extent_num_bytes(leaf, fi,
1248                                                         start - key.offset);
1249                         btrfs_set_file_extent_generation(leaf, fi,
1250                                                          trans->transid);
1251                         path->slots[0]++;
1252                         new_key.offset = start;
1253                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1254
1255                         fi = btrfs_item_ptr(leaf, path->slots[0],
1256                                             struct btrfs_file_extent_item);
1257                         btrfs_set_file_extent_generation(leaf, fi,
1258                                                          trans->transid);
1259                         btrfs_set_file_extent_num_bytes(leaf, fi,
1260                                                         other_end - start);
1261                         btrfs_set_file_extent_offset(leaf, fi,
1262                                                      start - orig_offset);
1263                         btrfs_mark_buffer_dirty(leaf);
1264                         goto out;
1265                 }
1266         }
1267
1268         while (start > key.offset || end < extent_end) {
1269                 if (key.offset == start)
1270                         split = end;
1271
1272                 new_key.offset = split;
1273                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274                 if (ret == -EAGAIN) {
1275                         btrfs_release_path(path);
1276                         goto again;
1277                 }
1278                 if (ret < 0) {
1279                         btrfs_abort_transaction(trans, ret);
1280                         goto out;
1281                 }
1282
1283                 leaf = path->nodes[0];
1284                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285                                     struct btrfs_file_extent_item);
1286                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287                 btrfs_set_file_extent_num_bytes(leaf, fi,
1288                                                 split - key.offset);
1289
1290                 fi = btrfs_item_ptr(leaf, path->slots[0],
1291                                     struct btrfs_file_extent_item);
1292
1293                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295                 btrfs_set_file_extent_num_bytes(leaf, fi,
1296                                                 extent_end - split);
1297                 btrfs_mark_buffer_dirty(leaf);
1298
1299                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1300                                        num_bytes, 0);
1301                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1302                                     orig_offset);
1303                 ret = btrfs_inc_extent_ref(trans, &ref);
1304                 if (ret) {
1305                         btrfs_abort_transaction(trans, ret);
1306                         goto out;
1307                 }
1308
1309                 if (split == start) {
1310                         key.offset = start;
1311                 } else {
1312                         if (start != key.offset) {
1313                                 ret = -EINVAL;
1314                                 btrfs_abort_transaction(trans, ret);
1315                                 goto out;
1316                         }
1317                         path->slots[0]--;
1318                         extent_end = end;
1319                 }
1320                 recow = 1;
1321         }
1322
1323         other_start = end;
1324         other_end = 0;
1325         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1326                                num_bytes, 0);
1327         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1328         if (extent_mergeable(leaf, path->slots[0] + 1,
1329                              ino, bytenr, orig_offset,
1330                              &other_start, &other_end)) {
1331                 if (recow) {
1332                         btrfs_release_path(path);
1333                         goto again;
1334                 }
1335                 extent_end = other_end;
1336                 del_slot = path->slots[0] + 1;
1337                 del_nr++;
1338                 ret = btrfs_free_extent(trans, &ref);
1339                 if (ret) {
1340                         btrfs_abort_transaction(trans, ret);
1341                         goto out;
1342                 }
1343         }
1344         other_start = 0;
1345         other_end = start;
1346         if (extent_mergeable(leaf, path->slots[0] - 1,
1347                              ino, bytenr, orig_offset,
1348                              &other_start, &other_end)) {
1349                 if (recow) {
1350                         btrfs_release_path(path);
1351                         goto again;
1352                 }
1353                 key.offset = other_start;
1354                 del_slot = path->slots[0];
1355                 del_nr++;
1356                 ret = btrfs_free_extent(trans, &ref);
1357                 if (ret) {
1358                         btrfs_abort_transaction(trans, ret);
1359                         goto out;
1360                 }
1361         }
1362         if (del_nr == 0) {
1363                 fi = btrfs_item_ptr(leaf, path->slots[0],
1364                            struct btrfs_file_extent_item);
1365                 btrfs_set_file_extent_type(leaf, fi,
1366                                            BTRFS_FILE_EXTENT_REG);
1367                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1368                 btrfs_mark_buffer_dirty(leaf);
1369         } else {
1370                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1371                            struct btrfs_file_extent_item);
1372                 btrfs_set_file_extent_type(leaf, fi,
1373                                            BTRFS_FILE_EXTENT_REG);
1374                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1375                 btrfs_set_file_extent_num_bytes(leaf, fi,
1376                                                 extent_end - key.offset);
1377                 btrfs_mark_buffer_dirty(leaf);
1378
1379                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1380                 if (ret < 0) {
1381                         btrfs_abort_transaction(trans, ret);
1382                         goto out;
1383                 }
1384         }
1385 out:
1386         btrfs_free_path(path);
1387         return 0;
1388 }
1389
1390 /*
1391  * on error we return an unlocked page and the error value
1392  * on success we return a locked page and 0
1393  */
1394 static int prepare_uptodate_page(struct inode *inode,
1395                                  struct page *page, u64 pos,
1396                                  bool force_uptodate)
1397 {
1398         int ret = 0;
1399
1400         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1401             !PageUptodate(page)) {
1402                 ret = btrfs_readpage(NULL, page);
1403                 if (ret)
1404                         return ret;
1405                 lock_page(page);
1406                 if (!PageUptodate(page)) {
1407                         unlock_page(page);
1408                         return -EIO;
1409                 }
1410                 if (page->mapping != inode->i_mapping) {
1411                         unlock_page(page);
1412                         return -EAGAIN;
1413                 }
1414         }
1415         return 0;
1416 }
1417
1418 /*
1419  * this just gets pages into the page cache and locks them down.
1420  */
1421 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1422                                   size_t num_pages, loff_t pos,
1423                                   size_t write_bytes, bool force_uptodate)
1424 {
1425         int i;
1426         unsigned long index = pos >> PAGE_SHIFT;
1427         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1428         int err = 0;
1429         int faili;
1430
1431         for (i = 0; i < num_pages; i++) {
1432 again:
1433                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1434                                                mask | __GFP_WRITE);
1435                 if (!pages[i]) {
1436                         faili = i - 1;
1437                         err = -ENOMEM;
1438                         goto fail;
1439                 }
1440
1441                 if (i == 0)
1442                         err = prepare_uptodate_page(inode, pages[i], pos,
1443                                                     force_uptodate);
1444                 if (!err && i == num_pages - 1)
1445                         err = prepare_uptodate_page(inode, pages[i],
1446                                                     pos + write_bytes, false);
1447                 if (err) {
1448                         put_page(pages[i]);
1449                         if (err == -EAGAIN) {
1450                                 err = 0;
1451                                 goto again;
1452                         }
1453                         faili = i - 1;
1454                         goto fail;
1455                 }
1456                 wait_on_page_writeback(pages[i]);
1457         }
1458
1459         return 0;
1460 fail:
1461         while (faili >= 0) {
1462                 unlock_page(pages[faili]);
1463                 put_page(pages[faili]);
1464                 faili--;
1465         }
1466         return err;
1467
1468 }
1469
1470 /*
1471  * This function locks the extent and properly waits for data=ordered extents
1472  * to finish before allowing the pages to be modified if need.
1473  *
1474  * The return value:
1475  * 1 - the extent is locked
1476  * 0 - the extent is not locked, and everything is OK
1477  * -EAGAIN - need re-prepare the pages
1478  * the other < 0 number - Something wrong happens
1479  */
1480 static noinline int
1481 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1482                                 size_t num_pages, loff_t pos,
1483                                 size_t write_bytes,
1484                                 u64 *lockstart, u64 *lockend,
1485                                 struct extent_state **cached_state)
1486 {
1487         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488         u64 start_pos;
1489         u64 last_pos;
1490         int i;
1491         int ret = 0;
1492
1493         start_pos = round_down(pos, fs_info->sectorsize);
1494         last_pos = start_pos
1495                 + round_up(pos + write_bytes - start_pos,
1496                            fs_info->sectorsize) - 1;
1497
1498         if (start_pos < inode->vfs_inode.i_size) {
1499                 struct btrfs_ordered_extent *ordered;
1500
1501                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1502                                 cached_state);
1503                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1504                                                      last_pos - start_pos + 1);
1505                 if (ordered &&
1506                     ordered->file_offset + ordered->len > start_pos &&
1507                     ordered->file_offset <= last_pos) {
1508                         unlock_extent_cached(&inode->io_tree, start_pos,
1509                                         last_pos, cached_state);
1510                         for (i = 0; i < num_pages; i++) {
1511                                 unlock_page(pages[i]);
1512                                 put_page(pages[i]);
1513                         }
1514                         btrfs_start_ordered_extent(&inode->vfs_inode,
1515                                         ordered, 1);
1516                         btrfs_put_ordered_extent(ordered);
1517                         return -EAGAIN;
1518                 }
1519                 if (ordered)
1520                         btrfs_put_ordered_extent(ordered);
1521
1522                 *lockstart = start_pos;
1523                 *lockend = last_pos;
1524                 ret = 1;
1525         }
1526
1527         /*
1528          * It's possible the pages are dirty right now, but we don't want
1529          * to clean them yet because copy_from_user may catch a page fault
1530          * and we might have to fall back to one page at a time.  If that
1531          * happens, we'll unlock these pages and we'd have a window where
1532          * reclaim could sneak in and drop the once-dirty page on the floor
1533          * without writing it.
1534          *
1535          * We have the pages locked and the extent range locked, so there's
1536          * no way someone can start IO on any dirty pages in this range.
1537          *
1538          * We'll call btrfs_dirty_pages() later on, and that will flip around
1539          * delalloc bits and dirty the pages as required.
1540          */
1541         for (i = 0; i < num_pages; i++) {
1542                 set_page_extent_mapped(pages[i]);
1543                 WARN_ON(!PageLocked(pages[i]));
1544         }
1545
1546         return ret;
1547 }
1548
1549 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1550                                     size_t *write_bytes)
1551 {
1552         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1553         struct btrfs_root *root = inode->root;
1554         u64 lockstart, lockend;
1555         u64 num_bytes;
1556         int ret;
1557
1558         ret = btrfs_start_write_no_snapshotting(root);
1559         if (!ret)
1560                 return -EAGAIN;
1561
1562         lockstart = round_down(pos, fs_info->sectorsize);
1563         lockend = round_up(pos + *write_bytes,
1564                            fs_info->sectorsize) - 1;
1565
1566         btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1567                                            lockend, NULL);
1568
1569         num_bytes = lockend - lockstart + 1;
1570         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571                         NULL, NULL, NULL);
1572         if (ret <= 0) {
1573                 ret = 0;
1574                 btrfs_end_write_no_snapshotting(root);
1575         } else {
1576                 *write_bytes = min_t(size_t, *write_bytes ,
1577                                      num_bytes - pos + lockstart);
1578         }
1579
1580         unlock_extent(&inode->io_tree, lockstart, lockend);
1581
1582         return ret;
1583 }
1584
1585 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586                                                struct iov_iter *i)
1587 {
1588         struct file *file = iocb->ki_filp;
1589         loff_t pos = iocb->ki_pos;
1590         struct inode *inode = file_inode(file);
1591         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592         struct btrfs_root *root = BTRFS_I(inode)->root;
1593         struct page **pages = NULL;
1594         struct extent_state *cached_state = NULL;
1595         struct extent_changeset *data_reserved = NULL;
1596         u64 release_bytes = 0;
1597         u64 lockstart;
1598         u64 lockend;
1599         size_t num_written = 0;
1600         int nrptrs;
1601         int ret = 0;
1602         bool only_release_metadata = false;
1603         bool force_page_uptodate = false;
1604
1605         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1606                         PAGE_SIZE / (sizeof(struct page *)));
1607         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1608         nrptrs = max(nrptrs, 8);
1609         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1610         if (!pages)
1611                 return -ENOMEM;
1612
1613         while (iov_iter_count(i) > 0) {
1614                 size_t offset = offset_in_page(pos);
1615                 size_t sector_offset;
1616                 size_t write_bytes = min(iov_iter_count(i),
1617                                          nrptrs * (size_t)PAGE_SIZE -
1618                                          offset);
1619                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620                                                 PAGE_SIZE);
1621                 size_t reserve_bytes;
1622                 size_t dirty_pages;
1623                 size_t copied;
1624                 size_t dirty_sectors;
1625                 size_t num_sectors;
1626                 int extents_locked;
1627
1628                 WARN_ON(num_pages > nrptrs);
1629
1630                 /*
1631                  * Fault pages before locking them in prepare_pages
1632                  * to avoid recursive lock
1633                  */
1634                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1635                         ret = -EFAULT;
1636                         break;
1637                 }
1638
1639                 sector_offset = pos & (fs_info->sectorsize - 1);
1640                 reserve_bytes = round_up(write_bytes + sector_offset,
1641                                 fs_info->sectorsize);
1642
1643                 extent_changeset_release(data_reserved);
1644                 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1645                                                   write_bytes);
1646                 if (ret < 0) {
1647                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1648                                                       BTRFS_INODE_PREALLOC)) &&
1649                             check_can_nocow(BTRFS_I(inode), pos,
1650                                         &write_bytes) > 0) {
1651                                 /*
1652                                  * For nodata cow case, no need to reserve
1653                                  * data space.
1654                                  */
1655                                 only_release_metadata = true;
1656                                 /*
1657                                  * our prealloc extent may be smaller than
1658                                  * write_bytes, so scale down.
1659                                  */
1660                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1661                                                          PAGE_SIZE);
1662                                 reserve_bytes = round_up(write_bytes +
1663                                                          sector_offset,
1664                                                          fs_info->sectorsize);
1665                         } else {
1666                                 break;
1667                         }
1668                 }
1669
1670                 WARN_ON(reserve_bytes == 0);
1671                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1672                                 reserve_bytes);
1673                 if (ret) {
1674                         if (!only_release_metadata)
1675                                 btrfs_free_reserved_data_space(inode,
1676                                                 data_reserved, pos,
1677                                                 write_bytes);
1678                         else
1679                                 btrfs_end_write_no_snapshotting(root);
1680                         break;
1681                 }
1682
1683                 release_bytes = reserve_bytes;
1684 again:
1685                 /*
1686                  * This is going to setup the pages array with the number of
1687                  * pages we want, so we don't really need to worry about the
1688                  * contents of pages from loop to loop
1689                  */
1690                 ret = prepare_pages(inode, pages, num_pages,
1691                                     pos, write_bytes,
1692                                     force_page_uptodate);
1693                 if (ret) {
1694                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1695                                                        reserve_bytes, true);
1696                         break;
1697                 }
1698
1699                 extents_locked = lock_and_cleanup_extent_if_need(
1700                                 BTRFS_I(inode), pages,
1701                                 num_pages, pos, write_bytes, &lockstart,
1702                                 &lockend, &cached_state);
1703                 if (extents_locked < 0) {
1704                         if (extents_locked == -EAGAIN)
1705                                 goto again;
1706                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1707                                                        reserve_bytes, true);
1708                         ret = extents_locked;
1709                         break;
1710                 }
1711
1712                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1713
1714                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1715                 dirty_sectors = round_up(copied + sector_offset,
1716                                         fs_info->sectorsize);
1717                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1718
1719                 /*
1720                  * if we have trouble faulting in the pages, fall
1721                  * back to one page at a time
1722                  */
1723                 if (copied < write_bytes)
1724                         nrptrs = 1;
1725
1726                 if (copied == 0) {
1727                         force_page_uptodate = true;
1728                         dirty_sectors = 0;
1729                         dirty_pages = 0;
1730                 } else {
1731                         force_page_uptodate = false;
1732                         dirty_pages = DIV_ROUND_UP(copied + offset,
1733                                                    PAGE_SIZE);
1734                 }
1735
1736                 if (num_sectors > dirty_sectors) {
1737                         /* release everything except the sectors we dirtied */
1738                         release_bytes -= dirty_sectors <<
1739                                                 fs_info->sb->s_blocksize_bits;
1740                         if (only_release_metadata) {
1741                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1742                                                         release_bytes, true);
1743                         } else {
1744                                 u64 __pos;
1745
1746                                 __pos = round_down(pos,
1747                                                    fs_info->sectorsize) +
1748                                         (dirty_pages << PAGE_SHIFT);
1749                                 btrfs_delalloc_release_space(inode,
1750                                                 data_reserved, __pos,
1751                                                 release_bytes, true);
1752                         }
1753                 }
1754
1755                 release_bytes = round_up(copied + sector_offset,
1756                                         fs_info->sectorsize);
1757
1758                 if (copied > 0)
1759                         ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1760                                                 pos, copied, &cached_state);
1761                 if (extents_locked)
1762                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1763                                              lockstart, lockend, &cached_state);
1764                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1765                                                true);
1766                 if (ret) {
1767                         btrfs_drop_pages(pages, num_pages);
1768                         break;
1769                 }
1770
1771                 release_bytes = 0;
1772                 if (only_release_metadata)
1773                         btrfs_end_write_no_snapshotting(root);
1774
1775                 if (only_release_metadata && copied > 0) {
1776                         lockstart = round_down(pos,
1777                                                fs_info->sectorsize);
1778                         lockend = round_up(pos + copied,
1779                                            fs_info->sectorsize) - 1;
1780
1781                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1782                                        lockend, EXTENT_NORESERVE, NULL,
1783                                        NULL, GFP_NOFS);
1784                         only_release_metadata = false;
1785                 }
1786
1787                 btrfs_drop_pages(pages, num_pages);
1788
1789                 cond_resched();
1790
1791                 balance_dirty_pages_ratelimited(inode->i_mapping);
1792                 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1793                         btrfs_btree_balance_dirty(fs_info);
1794
1795                 pos += copied;
1796                 num_written += copied;
1797         }
1798
1799         kfree(pages);
1800
1801         if (release_bytes) {
1802                 if (only_release_metadata) {
1803                         btrfs_end_write_no_snapshotting(root);
1804                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1805                                         release_bytes, true);
1806                 } else {
1807                         btrfs_delalloc_release_space(inode, data_reserved,
1808                                         round_down(pos, fs_info->sectorsize),
1809                                         release_bytes, true);
1810                 }
1811         }
1812
1813         extent_changeset_free(data_reserved);
1814         return num_written ? num_written : ret;
1815 }
1816
1817 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1818 {
1819         struct file *file = iocb->ki_filp;
1820         struct inode *inode = file_inode(file);
1821         loff_t pos;
1822         ssize_t written;
1823         ssize_t written_buffered;
1824         loff_t endbyte;
1825         int err;
1826
1827         written = generic_file_direct_write(iocb, from);
1828
1829         if (written < 0 || !iov_iter_count(from))
1830                 return written;
1831
1832         pos = iocb->ki_pos;
1833         written_buffered = btrfs_buffered_write(iocb, from);
1834         if (written_buffered < 0) {
1835                 err = written_buffered;
1836                 goto out;
1837         }
1838         /*
1839          * Ensure all data is persisted. We want the next direct IO read to be
1840          * able to read what was just written.
1841          */
1842         endbyte = pos + written_buffered - 1;
1843         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1844         if (err)
1845                 goto out;
1846         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1847         if (err)
1848                 goto out;
1849         written += written_buffered;
1850         iocb->ki_pos = pos + written_buffered;
1851         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1852                                  endbyte >> PAGE_SHIFT);
1853 out:
1854         return written ? written : err;
1855 }
1856
1857 static void update_time_for_write(struct inode *inode)
1858 {
1859         struct timespec64 now;
1860
1861         if (IS_NOCMTIME(inode))
1862                 return;
1863
1864         now = current_time(inode);
1865         if (!timespec64_equal(&inode->i_mtime, &now))
1866                 inode->i_mtime = now;
1867
1868         if (!timespec64_equal(&inode->i_ctime, &now))
1869                 inode->i_ctime = now;
1870
1871         if (IS_I_VERSION(inode))
1872                 inode_inc_iversion(inode);
1873 }
1874
1875 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1876                                     struct iov_iter *from)
1877 {
1878         struct file *file = iocb->ki_filp;
1879         struct inode *inode = file_inode(file);
1880         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1881         struct btrfs_root *root = BTRFS_I(inode)->root;
1882         u64 start_pos;
1883         u64 end_pos;
1884         ssize_t num_written = 0;
1885         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1886         ssize_t err;
1887         loff_t pos;
1888         size_t count = iov_iter_count(from);
1889         loff_t oldsize;
1890         int clean_page = 0;
1891
1892         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1893             (iocb->ki_flags & IOCB_NOWAIT))
1894                 return -EOPNOTSUPP;
1895
1896         if (!inode_trylock(inode)) {
1897                 if (iocb->ki_flags & IOCB_NOWAIT)
1898                         return -EAGAIN;
1899                 inode_lock(inode);
1900         }
1901
1902         err = generic_write_checks(iocb, from);
1903         if (err <= 0) {
1904                 inode_unlock(inode);
1905                 return err;
1906         }
1907
1908         pos = iocb->ki_pos;
1909         if (iocb->ki_flags & IOCB_NOWAIT) {
1910                 /*
1911                  * We will allocate space in case nodatacow is not set,
1912                  * so bail
1913                  */
1914                 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1915                                               BTRFS_INODE_PREALLOC)) ||
1916                     check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1917                         inode_unlock(inode);
1918                         return -EAGAIN;
1919                 }
1920         }
1921
1922         current->backing_dev_info = inode_to_bdi(inode);
1923         err = file_remove_privs(file);
1924         if (err) {
1925                 inode_unlock(inode);
1926                 goto out;
1927         }
1928
1929         /*
1930          * If BTRFS flips readonly due to some impossible error
1931          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1932          * although we have opened a file as writable, we have
1933          * to stop this write operation to ensure FS consistency.
1934          */
1935         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1936                 inode_unlock(inode);
1937                 err = -EROFS;
1938                 goto out;
1939         }
1940
1941         /*
1942          * We reserve space for updating the inode when we reserve space for the
1943          * extent we are going to write, so we will enospc out there.  We don't
1944          * need to start yet another transaction to update the inode as we will
1945          * update the inode when we finish writing whatever data we write.
1946          */
1947         update_time_for_write(inode);
1948
1949         start_pos = round_down(pos, fs_info->sectorsize);
1950         oldsize = i_size_read(inode);
1951         if (start_pos > oldsize) {
1952                 /* Expand hole size to cover write data, preventing empty gap */
1953                 end_pos = round_up(pos + count,
1954                                    fs_info->sectorsize);
1955                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1956                 if (err) {
1957                         inode_unlock(inode);
1958                         goto out;
1959                 }
1960                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1961                         clean_page = 1;
1962         }
1963
1964         if (sync)
1965                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1966
1967         if (iocb->ki_flags & IOCB_DIRECT) {
1968                 num_written = __btrfs_direct_write(iocb, from);
1969         } else {
1970                 num_written = btrfs_buffered_write(iocb, from);
1971                 if (num_written > 0)
1972                         iocb->ki_pos = pos + num_written;
1973                 if (clean_page)
1974                         pagecache_isize_extended(inode, oldsize,
1975                                                 i_size_read(inode));
1976         }
1977
1978         inode_unlock(inode);
1979
1980         /*
1981          * We also have to set last_sub_trans to the current log transid,
1982          * otherwise subsequent syncs to a file that's been synced in this
1983          * transaction will appear to have already occurred.
1984          */
1985         spin_lock(&BTRFS_I(inode)->lock);
1986         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1987         spin_unlock(&BTRFS_I(inode)->lock);
1988         if (num_written > 0)
1989                 num_written = generic_write_sync(iocb, num_written);
1990
1991         if (sync)
1992                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1993 out:
1994         current->backing_dev_info = NULL;
1995         return num_written ? num_written : err;
1996 }
1997
1998 int btrfs_release_file(struct inode *inode, struct file *filp)
1999 {
2000         struct btrfs_file_private *private = filp->private_data;
2001
2002         if (private && private->filldir_buf)
2003                 kfree(private->filldir_buf);
2004         kfree(private);
2005         filp->private_data = NULL;
2006
2007         /*
2008          * ordered_data_close is set by setattr when we are about to truncate
2009          * a file from a non-zero size to a zero size.  This tries to
2010          * flush down new bytes that may have been written if the
2011          * application were using truncate to replace a file in place.
2012          */
2013         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014                                &BTRFS_I(inode)->runtime_flags))
2015                         filemap_flush(inode->i_mapping);
2016         return 0;
2017 }
2018
2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020 {
2021         int ret;
2022         struct blk_plug plug;
2023
2024         /*
2025          * This is only called in fsync, which would do synchronous writes, so
2026          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2027          * multiple disks using raid profile, a large IO can be split to
2028          * several segments of stripe length (currently 64K).
2029          */
2030         blk_start_plug(&plug);
2031         atomic_inc(&BTRFS_I(inode)->sync_writers);
2032         ret = btrfs_fdatawrite_range(inode, start, end);
2033         atomic_dec(&BTRFS_I(inode)->sync_writers);
2034         blk_finish_plug(&plug);
2035
2036         return ret;
2037 }
2038
2039 /*
2040  * fsync call for both files and directories.  This logs the inode into
2041  * the tree log instead of forcing full commits whenever possible.
2042  *
2043  * It needs to call filemap_fdatawait so that all ordered extent updates are
2044  * in the metadata btree are up to date for copying to the log.
2045  *
2046  * It drops the inode mutex before doing the tree log commit.  This is an
2047  * important optimization for directories because holding the mutex prevents
2048  * new operations on the dir while we write to disk.
2049  */
2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2051 {
2052         struct dentry *dentry = file_dentry(file);
2053         struct inode *inode = d_inode(dentry);
2054         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055         struct btrfs_root *root = BTRFS_I(inode)->root;
2056         struct btrfs_trans_handle *trans;
2057         struct btrfs_log_ctx ctx;
2058         int ret = 0, err;
2059         u64 len;
2060
2061         /*
2062          * If the inode needs a full sync, make sure we use a full range to
2063          * avoid log tree corruption, due to hole detection racing with ordered
2064          * extent completion for adjacent ranges, and assertion failures during
2065          * hole detection.
2066          */
2067         if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2068                      &BTRFS_I(inode)->runtime_flags)) {
2069                 start = 0;
2070                 end = LLONG_MAX;
2071         }
2072
2073         /*
2074          * The range length can be represented by u64, we have to do the typecasts
2075          * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2076          */
2077         len = (u64)end - (u64)start + 1;
2078         trace_btrfs_sync_file(file, datasync);
2079
2080         btrfs_init_log_ctx(&ctx, inode);
2081
2082         /*
2083          * We write the dirty pages in the range and wait until they complete
2084          * out of the ->i_mutex. If so, we can flush the dirty pages by
2085          * multi-task, and make the performance up.  See
2086          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2087          */
2088         ret = start_ordered_ops(inode, start, end);
2089         if (ret)
2090                 goto out;
2091
2092         inode_lock(inode);
2093
2094         /*
2095          * We take the dio_sem here because the tree log stuff can race with
2096          * lockless dio writes and get an extent map logged for an extent we
2097          * never waited on.  We need it this high up for lockdep reasons.
2098          */
2099         down_write(&BTRFS_I(inode)->dio_sem);
2100
2101         atomic_inc(&root->log_batch);
2102
2103         /*
2104          * Before we acquired the inode's lock, someone may have dirtied more
2105          * pages in the target range. We need to make sure that writeback for
2106          * any such pages does not start while we are logging the inode, because
2107          * if it does, any of the following might happen when we are not doing a
2108          * full inode sync:
2109          *
2110          * 1) We log an extent after its writeback finishes but before its
2111          *    checksums are added to the csum tree, leading to -EIO errors
2112          *    when attempting to read the extent after a log replay.
2113          *
2114          * 2) We can end up logging an extent before its writeback finishes.
2115          *    Therefore after the log replay we will have a file extent item
2116          *    pointing to an unwritten extent (and no data checksums as well).
2117          *
2118          * So trigger writeback for any eventual new dirty pages and then we
2119          * wait for all ordered extents to complete below.
2120          */
2121         ret = start_ordered_ops(inode, start, end);
2122         if (ret) {
2123                 inode_unlock(inode);
2124                 goto out;
2125         }
2126
2127         /*
2128          * We have to do this here to avoid the priority inversion of waiting on
2129          * IO of a lower priority task while holding a transaction open.
2130          */
2131         ret = btrfs_wait_ordered_range(inode, start, len);
2132         if (ret) {
2133                 up_write(&BTRFS_I(inode)->dio_sem);
2134                 inode_unlock(inode);
2135                 goto out;
2136         }
2137         atomic_inc(&root->log_batch);
2138
2139         smp_mb();
2140         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2141             BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2142                 /*
2143                  * We've had everything committed since the last time we were
2144                  * modified so clear this flag in case it was set for whatever
2145                  * reason, it's no longer relevant.
2146                  */
2147                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2148                           &BTRFS_I(inode)->runtime_flags);
2149                 /*
2150                  * An ordered extent might have started before and completed
2151                  * already with io errors, in which case the inode was not
2152                  * updated and we end up here. So check the inode's mapping
2153                  * for any errors that might have happened since we last
2154                  * checked called fsync.
2155                  */
2156                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2157                 up_write(&BTRFS_I(inode)->dio_sem);
2158                 inode_unlock(inode);
2159                 goto out;
2160         }
2161
2162         /*
2163          * We use start here because we will need to wait on the IO to complete
2164          * in btrfs_sync_log, which could require joining a transaction (for
2165          * example checking cross references in the nocow path).  If we use join
2166          * here we could get into a situation where we're waiting on IO to
2167          * happen that is blocked on a transaction trying to commit.  With start
2168          * we inc the extwriter counter, so we wait for all extwriters to exit
2169          * before we start blocking joiners.  This comment is to keep somebody
2170          * from thinking they are super smart and changing this to
2171          * btrfs_join_transaction *cough*Josef*cough*.
2172          */
2173         trans = btrfs_start_transaction(root, 0);
2174         if (IS_ERR(trans)) {
2175                 ret = PTR_ERR(trans);
2176                 up_write(&BTRFS_I(inode)->dio_sem);
2177                 inode_unlock(inode);
2178                 goto out;
2179         }
2180
2181         ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2182         if (ret < 0) {
2183                 /* Fallthrough and commit/free transaction. */
2184                 ret = 1;
2185         }
2186
2187         /* we've logged all the items and now have a consistent
2188          * version of the file in the log.  It is possible that
2189          * someone will come in and modify the file, but that's
2190          * fine because the log is consistent on disk, and we
2191          * have references to all of the file's extents
2192          *
2193          * It is possible that someone will come in and log the
2194          * file again, but that will end up using the synchronization
2195          * inside btrfs_sync_log to keep things safe.
2196          */
2197         up_write(&BTRFS_I(inode)->dio_sem);
2198         inode_unlock(inode);
2199
2200         if (ret != BTRFS_NO_LOG_SYNC) {
2201                 if (!ret) {
2202                         ret = btrfs_sync_log(trans, root, &ctx);
2203                         if (!ret) {
2204                                 ret = btrfs_end_transaction(trans);
2205                                 goto out;
2206                         }
2207                 }
2208                 ret = btrfs_commit_transaction(trans);
2209         } else {
2210                 ret = btrfs_end_transaction(trans);
2211         }
2212 out:
2213         ASSERT(list_empty(&ctx.list));
2214         err = file_check_and_advance_wb_err(file);
2215         if (!ret)
2216                 ret = err;
2217         return ret > 0 ? -EIO : ret;
2218 }
2219
2220 static const struct vm_operations_struct btrfs_file_vm_ops = {
2221         .fault          = filemap_fault,
2222         .map_pages      = filemap_map_pages,
2223         .page_mkwrite   = btrfs_page_mkwrite,
2224 };
2225
2226 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2227 {
2228         struct address_space *mapping = filp->f_mapping;
2229
2230         if (!mapping->a_ops->readpage)
2231                 return -ENOEXEC;
2232
2233         file_accessed(filp);
2234         vma->vm_ops = &btrfs_file_vm_ops;
2235
2236         return 0;
2237 }
2238
2239 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2240                           int slot, u64 start, u64 end)
2241 {
2242         struct btrfs_file_extent_item *fi;
2243         struct btrfs_key key;
2244
2245         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2246                 return 0;
2247
2248         btrfs_item_key_to_cpu(leaf, &key, slot);
2249         if (key.objectid != btrfs_ino(inode) ||
2250             key.type != BTRFS_EXTENT_DATA_KEY)
2251                 return 0;
2252
2253         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2254
2255         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2256                 return 0;
2257
2258         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2259                 return 0;
2260
2261         if (key.offset == end)
2262                 return 1;
2263         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2264                 return 1;
2265         return 0;
2266 }
2267
2268 static int fill_holes(struct btrfs_trans_handle *trans,
2269                 struct btrfs_inode *inode,
2270                 struct btrfs_path *path, u64 offset, u64 end)
2271 {
2272         struct btrfs_fs_info *fs_info = trans->fs_info;
2273         struct btrfs_root *root = inode->root;
2274         struct extent_buffer *leaf;
2275         struct btrfs_file_extent_item *fi;
2276         struct extent_map *hole_em;
2277         struct extent_map_tree *em_tree = &inode->extent_tree;
2278         struct btrfs_key key;
2279         int ret;
2280
2281         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2282                 goto out;
2283
2284         key.objectid = btrfs_ino(inode);
2285         key.type = BTRFS_EXTENT_DATA_KEY;
2286         key.offset = offset;
2287
2288         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2289         if (ret <= 0) {
2290                 /*
2291                  * We should have dropped this offset, so if we find it then
2292                  * something has gone horribly wrong.
2293                  */
2294                 if (ret == 0)
2295                         ret = -EINVAL;
2296                 return ret;
2297         }
2298
2299         leaf = path->nodes[0];
2300         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2301                 u64 num_bytes;
2302
2303                 path->slots[0]--;
2304                 fi = btrfs_item_ptr(leaf, path->slots[0],
2305                                     struct btrfs_file_extent_item);
2306                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2307                         end - offset;
2308                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2309                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2310                 btrfs_set_file_extent_offset(leaf, fi, 0);
2311                 btrfs_mark_buffer_dirty(leaf);
2312                 goto out;
2313         }
2314
2315         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2316                 u64 num_bytes;
2317
2318                 key.offset = offset;
2319                 btrfs_set_item_key_safe(fs_info, path, &key);
2320                 fi = btrfs_item_ptr(leaf, path->slots[0],
2321                                     struct btrfs_file_extent_item);
2322                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2323                         offset;
2324                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2325                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2326                 btrfs_set_file_extent_offset(leaf, fi, 0);
2327                 btrfs_mark_buffer_dirty(leaf);
2328                 goto out;
2329         }
2330         btrfs_release_path(path);
2331
2332         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2333                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2334         if (ret)
2335                 return ret;
2336
2337 out:
2338         btrfs_release_path(path);
2339
2340         hole_em = alloc_extent_map();
2341         if (!hole_em) {
2342                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2343                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2344         } else {
2345                 hole_em->start = offset;
2346                 hole_em->len = end - offset;
2347                 hole_em->ram_bytes = hole_em->len;
2348                 hole_em->orig_start = offset;
2349
2350                 hole_em->block_start = EXTENT_MAP_HOLE;
2351                 hole_em->block_len = 0;
2352                 hole_em->orig_block_len = 0;
2353                 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2354                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2355                 hole_em->generation = trans->transid;
2356
2357                 do {
2358                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2359                         write_lock(&em_tree->lock);
2360                         ret = add_extent_mapping(em_tree, hole_em, 1);
2361                         write_unlock(&em_tree->lock);
2362                 } while (ret == -EEXIST);
2363                 free_extent_map(hole_em);
2364                 if (ret)
2365                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2366                                         &inode->runtime_flags);
2367         }
2368
2369         return 0;
2370 }
2371
2372 /*
2373  * Find a hole extent on given inode and change start/len to the end of hole
2374  * extent.(hole/vacuum extent whose em->start <= start &&
2375  *         em->start + em->len > start)
2376  * When a hole extent is found, return 1 and modify start/len.
2377  */
2378 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2379 {
2380         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2381         struct extent_map *em;
2382         int ret = 0;
2383
2384         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2385                               round_down(*start, fs_info->sectorsize),
2386                               round_up(*len, fs_info->sectorsize), 0);
2387         if (IS_ERR(em))
2388                 return PTR_ERR(em);
2389
2390         /* Hole or vacuum extent(only exists in no-hole mode) */
2391         if (em->block_start == EXTENT_MAP_HOLE) {
2392                 ret = 1;
2393                 *len = em->start + em->len > *start + *len ?
2394                        0 : *start + *len - em->start - em->len;
2395                 *start = em->start + em->len;
2396         }
2397         free_extent_map(em);
2398         return ret;
2399 }
2400
2401 static int btrfs_punch_hole_lock_range(struct inode *inode,
2402                                        const u64 lockstart,
2403                                        const u64 lockend,
2404                                        struct extent_state **cached_state)
2405 {
2406         while (1) {
2407                 struct btrfs_ordered_extent *ordered;
2408                 int ret;
2409
2410                 truncate_pagecache_range(inode, lockstart, lockend);
2411
2412                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2413                                  cached_state);
2414                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2415
2416                 /*
2417                  * We need to make sure we have no ordered extents in this range
2418                  * and nobody raced in and read a page in this range, if we did
2419                  * we need to try again.
2420                  */
2421                 if ((!ordered ||
2422                     (ordered->file_offset + ordered->len <= lockstart ||
2423                      ordered->file_offset > lockend)) &&
2424                      !filemap_range_has_page(inode->i_mapping,
2425                                              lockstart, lockend)) {
2426                         if (ordered)
2427                                 btrfs_put_ordered_extent(ordered);
2428                         break;
2429                 }
2430                 if (ordered)
2431                         btrfs_put_ordered_extent(ordered);
2432                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2433                                      lockend, cached_state);
2434                 ret = btrfs_wait_ordered_range(inode, lockstart,
2435                                                lockend - lockstart + 1);
2436                 if (ret)
2437                         return ret;
2438         }
2439         return 0;
2440 }
2441
2442 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2443 {
2444         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2445         struct btrfs_root *root = BTRFS_I(inode)->root;
2446         struct extent_state *cached_state = NULL;
2447         struct btrfs_path *path;
2448         struct btrfs_block_rsv *rsv;
2449         struct btrfs_trans_handle *trans;
2450         u64 lockstart;
2451         u64 lockend;
2452         u64 tail_start;
2453         u64 tail_len;
2454         u64 orig_start = offset;
2455         u64 cur_offset;
2456         u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2457         u64 drop_end;
2458         int ret = 0;
2459         int err = 0;
2460         unsigned int rsv_count;
2461         bool same_block;
2462         bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2463         u64 ino_size;
2464         bool truncated_block = false;
2465         bool updated_inode = false;
2466
2467         ret = btrfs_wait_ordered_range(inode, offset, len);
2468         if (ret)
2469                 return ret;
2470
2471         inode_lock(inode);
2472         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2473         ret = find_first_non_hole(inode, &offset, &len);
2474         if (ret < 0)
2475                 goto out_only_mutex;
2476         if (ret && !len) {
2477                 /* Already in a large hole */
2478                 ret = 0;
2479                 goto out_only_mutex;
2480         }
2481
2482         lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2483         lockend = round_down(offset + len,
2484                              btrfs_inode_sectorsize(inode)) - 1;
2485         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2486                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2487         /*
2488          * We needn't truncate any block which is beyond the end of the file
2489          * because we are sure there is no data there.
2490          */
2491         /*
2492          * Only do this if we are in the same block and we aren't doing the
2493          * entire block.
2494          */
2495         if (same_block && len < fs_info->sectorsize) {
2496                 if (offset < ino_size) {
2497                         truncated_block = true;
2498                         ret = btrfs_truncate_block(inode, offset, len, 0);
2499                 } else {
2500                         ret = 0;
2501                 }
2502                 goto out_only_mutex;
2503         }
2504
2505         /* zero back part of the first block */
2506         if (offset < ino_size) {
2507                 truncated_block = true;
2508                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2509                 if (ret) {
2510                         inode_unlock(inode);
2511                         return ret;
2512                 }
2513         }
2514
2515         /* Check the aligned pages after the first unaligned page,
2516          * if offset != orig_start, which means the first unaligned page
2517          * including several following pages are already in holes,
2518          * the extra check can be skipped */
2519         if (offset == orig_start) {
2520                 /* after truncate page, check hole again */
2521                 len = offset + len - lockstart;
2522                 offset = lockstart;
2523                 ret = find_first_non_hole(inode, &offset, &len);
2524                 if (ret < 0)
2525                         goto out_only_mutex;
2526                 if (ret && !len) {
2527                         ret = 0;
2528                         goto out_only_mutex;
2529                 }
2530                 lockstart = offset;
2531         }
2532
2533         /* Check the tail unaligned part is in a hole */
2534         tail_start = lockend + 1;
2535         tail_len = offset + len - tail_start;
2536         if (tail_len) {
2537                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2538                 if (unlikely(ret < 0))
2539                         goto out_only_mutex;
2540                 if (!ret) {
2541                         /* zero the front end of the last page */
2542                         if (tail_start + tail_len < ino_size) {
2543                                 truncated_block = true;
2544                                 ret = btrfs_truncate_block(inode,
2545                                                         tail_start + tail_len,
2546                                                         0, 1);
2547                                 if (ret)
2548                                         goto out_only_mutex;
2549                         }
2550                 }
2551         }
2552
2553         if (lockend < lockstart) {
2554                 ret = 0;
2555                 goto out_only_mutex;
2556         }
2557
2558         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2559                                           &cached_state);
2560         if (ret)
2561                 goto out_only_mutex;
2562
2563         path = btrfs_alloc_path();
2564         if (!path) {
2565                 ret = -ENOMEM;
2566                 goto out;
2567         }
2568
2569         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2570         if (!rsv) {
2571                 ret = -ENOMEM;
2572                 goto out_free;
2573         }
2574         rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2575         rsv->failfast = 1;
2576
2577         /*
2578          * 1 - update the inode
2579          * 1 - removing the extents in the range
2580          * 1 - adding the hole extent if no_holes isn't set
2581          */
2582         rsv_count = no_holes ? 2 : 3;
2583         trans = btrfs_start_transaction(root, rsv_count);
2584         if (IS_ERR(trans)) {
2585                 err = PTR_ERR(trans);
2586                 goto out_free;
2587         }
2588
2589         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2590                                       min_size, false);
2591         BUG_ON(ret);
2592         trans->block_rsv = rsv;
2593
2594         cur_offset = lockstart;
2595         len = lockend - cur_offset;
2596         while (cur_offset < lockend) {
2597                 ret = __btrfs_drop_extents(trans, root, inode, path,
2598                                            cur_offset, lockend + 1,
2599                                            &drop_end, 1, 0, 0, NULL);
2600                 if (ret != -ENOSPC)
2601                         break;
2602
2603                 trans->block_rsv = &fs_info->trans_block_rsv;
2604
2605                 if (cur_offset < drop_end && cur_offset < ino_size) {
2606                         ret = fill_holes(trans, BTRFS_I(inode), path,
2607                                         cur_offset, drop_end);
2608                         if (ret) {
2609                                 /*
2610                                  * If we failed then we didn't insert our hole
2611                                  * entries for the area we dropped, so now the
2612                                  * fs is corrupted, so we must abort the
2613                                  * transaction.
2614                                  */
2615                                 btrfs_abort_transaction(trans, ret);
2616                                 err = ret;
2617                                 break;
2618                         }
2619                 }
2620
2621                 cur_offset = drop_end;
2622
2623                 ret = btrfs_update_inode(trans, root, inode);
2624                 if (ret) {
2625                         err = ret;
2626                         break;
2627                 }
2628
2629                 btrfs_end_transaction(trans);
2630                 btrfs_btree_balance_dirty(fs_info);
2631
2632                 trans = btrfs_start_transaction(root, rsv_count);
2633                 if (IS_ERR(trans)) {
2634                         ret = PTR_ERR(trans);
2635                         trans = NULL;
2636                         break;
2637                 }
2638
2639                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2640                                               rsv, min_size, false);
2641                 BUG_ON(ret);    /* shouldn't happen */
2642                 trans->block_rsv = rsv;
2643
2644                 ret = find_first_non_hole(inode, &cur_offset, &len);
2645                 if (unlikely(ret < 0))
2646                         break;
2647                 if (ret && !len) {
2648                         ret = 0;
2649                         break;
2650                 }
2651         }
2652
2653         if (ret) {
2654                 err = ret;
2655                 goto out_trans;
2656         }
2657
2658         trans->block_rsv = &fs_info->trans_block_rsv;
2659         /*
2660          * If we are using the NO_HOLES feature we might have had already an
2661          * hole that overlaps a part of the region [lockstart, lockend] and
2662          * ends at (or beyond) lockend. Since we have no file extent items to
2663          * represent holes, drop_end can be less than lockend and so we must
2664          * make sure we have an extent map representing the existing hole (the
2665          * call to __btrfs_drop_extents() might have dropped the existing extent
2666          * map representing the existing hole), otherwise the fast fsync path
2667          * will not record the existence of the hole region
2668          * [existing_hole_start, lockend].
2669          */
2670         if (drop_end <= lockend)
2671                 drop_end = lockend + 1;
2672         /*
2673          * Don't insert file hole extent item if it's for a range beyond eof
2674          * (because it's useless) or if it represents a 0 bytes range (when
2675          * cur_offset == drop_end).
2676          */
2677         if (cur_offset < ino_size && cur_offset < drop_end) {
2678                 ret = fill_holes(trans, BTRFS_I(inode), path,
2679                                 cur_offset, drop_end);
2680                 if (ret) {
2681                         /* Same comment as above. */
2682                         btrfs_abort_transaction(trans, ret);
2683                         err = ret;
2684                         goto out_trans;
2685                 }
2686         }
2687
2688 out_trans:
2689         if (!trans)
2690                 goto out_free;
2691
2692         inode_inc_iversion(inode);
2693         inode->i_mtime = inode->i_ctime = current_time(inode);
2694
2695         trans->block_rsv = &fs_info->trans_block_rsv;
2696         ret = btrfs_update_inode(trans, root, inode);
2697         updated_inode = true;
2698         btrfs_end_transaction(trans);
2699         btrfs_btree_balance_dirty(fs_info);
2700 out_free:
2701         btrfs_free_path(path);
2702         btrfs_free_block_rsv(fs_info, rsv);
2703 out:
2704         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2705                              &cached_state);
2706 out_only_mutex:
2707         if (!updated_inode && truncated_block && !ret && !err) {
2708                 /*
2709                  * If we only end up zeroing part of a page, we still need to
2710                  * update the inode item, so that all the time fields are
2711                  * updated as well as the necessary btrfs inode in memory fields
2712                  * for detecting, at fsync time, if the inode isn't yet in the
2713                  * log tree or it's there but not up to date.
2714                  */
2715                 struct timespec64 now = current_time(inode);
2716
2717                 inode_inc_iversion(inode);
2718                 inode->i_mtime = now;
2719                 inode->i_ctime = now;
2720                 trans = btrfs_start_transaction(root, 1);
2721                 if (IS_ERR(trans)) {
2722                         err = PTR_ERR(trans);
2723                 } else {
2724                         err = btrfs_update_inode(trans, root, inode);
2725                         ret = btrfs_end_transaction(trans);
2726                 }
2727         }
2728         inode_unlock(inode);
2729         if (ret && !err)
2730                 err = ret;
2731         return err;
2732 }
2733
2734 /* Helper structure to record which range is already reserved */
2735 struct falloc_range {
2736         struct list_head list;
2737         u64 start;
2738         u64 len;
2739 };
2740
2741 /*
2742  * Helper function to add falloc range
2743  *
2744  * Caller should have locked the larger range of extent containing
2745  * [start, len)
2746  */
2747 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2748 {
2749         struct falloc_range *prev = NULL;
2750         struct falloc_range *range = NULL;
2751
2752         if (list_empty(head))
2753                 goto insert;
2754
2755         /*
2756          * As fallocate iterate by bytenr order, we only need to check
2757          * the last range.
2758          */
2759         prev = list_entry(head->prev, struct falloc_range, list);
2760         if (prev->start + prev->len == start) {
2761                 prev->len += len;
2762                 return 0;
2763         }
2764 insert:
2765         range = kmalloc(sizeof(*range), GFP_KERNEL);
2766         if (!range)
2767                 return -ENOMEM;
2768         range->start = start;
2769         range->len = len;
2770         list_add_tail(&range->list, head);
2771         return 0;
2772 }
2773
2774 static int btrfs_fallocate_update_isize(struct inode *inode,
2775                                         const u64 end,
2776                                         const int mode)
2777 {
2778         struct btrfs_trans_handle *trans;
2779         struct btrfs_root *root = BTRFS_I(inode)->root;
2780         int ret;
2781         int ret2;
2782
2783         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2784                 return 0;
2785
2786         trans = btrfs_start_transaction(root, 1);
2787         if (IS_ERR(trans))
2788                 return PTR_ERR(trans);
2789
2790         inode->i_ctime = current_time(inode);
2791         i_size_write(inode, end);
2792         btrfs_ordered_update_i_size(inode, end, NULL);
2793         ret = btrfs_update_inode(trans, root, inode);
2794         ret2 = btrfs_end_transaction(trans);
2795
2796         return ret ? ret : ret2;
2797 }
2798
2799 enum {
2800         RANGE_BOUNDARY_WRITTEN_EXTENT,
2801         RANGE_BOUNDARY_PREALLOC_EXTENT,
2802         RANGE_BOUNDARY_HOLE,
2803 };
2804
2805 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2806                                                  u64 offset)
2807 {
2808         const u64 sectorsize = btrfs_inode_sectorsize(inode);
2809         struct extent_map *em;
2810         int ret;
2811
2812         offset = round_down(offset, sectorsize);
2813         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2814         if (IS_ERR(em))
2815                 return PTR_ERR(em);
2816
2817         if (em->block_start == EXTENT_MAP_HOLE)
2818                 ret = RANGE_BOUNDARY_HOLE;
2819         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2820                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2821         else
2822                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2823
2824         free_extent_map(em);
2825         return ret;
2826 }
2827
2828 static int btrfs_zero_range(struct inode *inode,
2829                             loff_t offset,
2830                             loff_t len,
2831                             const int mode)
2832 {
2833         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2834         struct extent_map *em;
2835         struct extent_changeset *data_reserved = NULL;
2836         int ret;
2837         u64 alloc_hint = 0;
2838         const u64 sectorsize = btrfs_inode_sectorsize(inode);
2839         u64 alloc_start = round_down(offset, sectorsize);
2840         u64 alloc_end = round_up(offset + len, sectorsize);
2841         u64 bytes_to_reserve = 0;
2842         bool space_reserved = false;
2843
2844         inode_dio_wait(inode);
2845
2846         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2847                               alloc_start, alloc_end - alloc_start, 0);
2848         if (IS_ERR(em)) {
2849                 ret = PTR_ERR(em);
2850                 goto out;
2851         }
2852
2853         /*
2854          * Avoid hole punching and extent allocation for some cases. More cases
2855          * could be considered, but these are unlikely common and we keep things
2856          * as simple as possible for now. Also, intentionally, if the target
2857          * range contains one or more prealloc extents together with regular
2858          * extents and holes, we drop all the existing extents and allocate a
2859          * new prealloc extent, so that we get a larger contiguous disk extent.
2860          */
2861         if (em->start <= alloc_start &&
2862             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2863                 const u64 em_end = em->start + em->len;
2864
2865                 if (em_end >= offset + len) {
2866                         /*
2867                          * The whole range is already a prealloc extent,
2868                          * do nothing except updating the inode's i_size if
2869                          * needed.
2870                          */
2871                         free_extent_map(em);
2872                         ret = btrfs_fallocate_update_isize(inode, offset + len,
2873                                                            mode);
2874                         goto out;
2875                 }
2876                 /*
2877                  * Part of the range is already a prealloc extent, so operate
2878                  * only on the remaining part of the range.
2879                  */
2880                 alloc_start = em_end;
2881                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2882                 len = offset + len - alloc_start;
2883                 offset = alloc_start;
2884                 alloc_hint = em->block_start + em->len;
2885         }
2886         free_extent_map(em);
2887
2888         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2889             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2890                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2891                                       alloc_start, sectorsize, 0);
2892                 if (IS_ERR(em)) {
2893                         ret = PTR_ERR(em);
2894                         goto out;
2895                 }
2896
2897                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2898                         free_extent_map(em);
2899                         ret = btrfs_fallocate_update_isize(inode, offset + len,
2900                                                            mode);
2901                         goto out;
2902                 }
2903                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2904                         free_extent_map(em);
2905                         ret = btrfs_truncate_block(inode, offset, len, 0);
2906                         if (!ret)
2907                                 ret = btrfs_fallocate_update_isize(inode,
2908                                                                    offset + len,
2909                                                                    mode);
2910                         return ret;
2911                 }
2912                 free_extent_map(em);
2913                 alloc_start = round_down(offset, sectorsize);
2914                 alloc_end = alloc_start + sectorsize;
2915                 goto reserve_space;
2916         }
2917
2918         alloc_start = round_up(offset, sectorsize);
2919         alloc_end = round_down(offset + len, sectorsize);
2920
2921         /*
2922          * For unaligned ranges, check the pages at the boundaries, they might
2923          * map to an extent, in which case we need to partially zero them, or
2924          * they might map to a hole, in which case we need our allocation range
2925          * to cover them.
2926          */
2927         if (!IS_ALIGNED(offset, sectorsize)) {
2928                 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2929                 if (ret < 0)
2930                         goto out;
2931                 if (ret == RANGE_BOUNDARY_HOLE) {
2932                         alloc_start = round_down(offset, sectorsize);
2933                         ret = 0;
2934                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2935                         ret = btrfs_truncate_block(inode, offset, 0, 0);
2936                         if (ret)
2937                                 goto out;
2938                 } else {
2939                         ret = 0;
2940                 }
2941         }
2942
2943         if (!IS_ALIGNED(offset + len, sectorsize)) {
2944                 ret = btrfs_zero_range_check_range_boundary(inode,
2945                                                             offset + len);
2946                 if (ret < 0)
2947                         goto out;
2948                 if (ret == RANGE_BOUNDARY_HOLE) {
2949                         alloc_end = round_up(offset + len, sectorsize);
2950                         ret = 0;
2951                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2952                         ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2953                         if (ret)
2954                                 goto out;
2955                 } else {
2956                         ret = 0;
2957                 }
2958         }
2959
2960 reserve_space:
2961         if (alloc_start < alloc_end) {
2962                 struct extent_state *cached_state = NULL;
2963                 const u64 lockstart = alloc_start;
2964                 const u64 lockend = alloc_end - 1;
2965
2966                 bytes_to_reserve = alloc_end - alloc_start;
2967                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2968                                                       bytes_to_reserve);
2969                 if (ret < 0)
2970                         goto out;
2971                 space_reserved = true;
2972                 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2973                                                 alloc_start, bytes_to_reserve);
2974                 if (ret)
2975                         goto out;
2976                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2977                                                   &cached_state);
2978                 if (ret)
2979                         goto out;
2980                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2981                                                 alloc_end - alloc_start,
2982                                                 i_blocksize(inode),
2983                                                 offset + len, &alloc_hint);
2984                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2985                                      lockend, &cached_state);
2986                 /* btrfs_prealloc_file_range releases reserved space on error */
2987                 if (ret) {
2988                         space_reserved = false;
2989                         goto out;
2990                 }
2991         }
2992         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2993  out:
2994         if (ret && space_reserved)
2995                 btrfs_free_reserved_data_space(inode, data_reserved,
2996                                                alloc_start, bytes_to_reserve);
2997         extent_changeset_free(data_reserved);
2998
2999         return ret;
3000 }
3001
3002 static long btrfs_fallocate(struct file *file, int mode,
3003                             loff_t offset, loff_t len)
3004 {
3005         struct inode *inode = file_inode(file);
3006         struct extent_state *cached_state = NULL;
3007         struct extent_changeset *data_reserved = NULL;
3008         struct falloc_range *range;
3009         struct falloc_range *tmp;
3010         struct list_head reserve_list;
3011         u64 cur_offset;
3012         u64 last_byte;
3013         u64 alloc_start;
3014         u64 alloc_end;
3015         u64 alloc_hint = 0;
3016         u64 locked_end;
3017         u64 actual_end = 0;
3018         struct extent_map *em;
3019         int blocksize = btrfs_inode_sectorsize(inode);
3020         int ret;
3021
3022         alloc_start = round_down(offset, blocksize);
3023         alloc_end = round_up(offset + len, blocksize);
3024         cur_offset = alloc_start;
3025
3026         /* Make sure we aren't being give some crap mode */
3027         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3028                      FALLOC_FL_ZERO_RANGE))
3029                 return -EOPNOTSUPP;
3030
3031         if (mode & FALLOC_FL_PUNCH_HOLE)
3032                 return btrfs_punch_hole(inode, offset, len);
3033
3034         /*
3035          * Only trigger disk allocation, don't trigger qgroup reserve
3036          *
3037          * For qgroup space, it will be checked later.
3038          */
3039         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3040                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3041                                                       alloc_end - alloc_start);
3042                 if (ret < 0)
3043                         return ret;
3044         }
3045
3046         inode_lock(inode);
3047
3048         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3049                 ret = inode_newsize_ok(inode, offset + len);
3050                 if (ret)
3051                         goto out;
3052         }
3053
3054         /*
3055          * TODO: Move these two operations after we have checked
3056          * accurate reserved space, or fallocate can still fail but
3057          * with page truncated or size expanded.
3058          *
3059          * But that's a minor problem and won't do much harm BTW.
3060          */
3061         if (alloc_start > inode->i_size) {
3062                 ret = btrfs_cont_expand(inode, i_size_read(inode),
3063                                         alloc_start);
3064                 if (ret)
3065                         goto out;
3066         } else if (offset + len > inode->i_size) {
3067                 /*
3068                  * If we are fallocating from the end of the file onward we
3069                  * need to zero out the end of the block if i_size lands in the
3070                  * middle of a block.
3071                  */
3072                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3073                 if (ret)
3074                         goto out;
3075         }
3076
3077         /*
3078          * wait for ordered IO before we have any locks.  We'll loop again
3079          * below with the locks held.
3080          */
3081         ret = btrfs_wait_ordered_range(inode, alloc_start,
3082                                        alloc_end - alloc_start);
3083         if (ret)
3084                 goto out;
3085
3086         if (mode & FALLOC_FL_ZERO_RANGE) {
3087                 ret = btrfs_zero_range(inode, offset, len, mode);
3088                 inode_unlock(inode);
3089                 return ret;
3090         }
3091
3092         locked_end = alloc_end - 1;
3093         while (1) {
3094                 struct btrfs_ordered_extent *ordered;
3095
3096                 /* the extent lock is ordered inside the running
3097                  * transaction
3098                  */
3099                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3100                                  locked_end, &cached_state);
3101                 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3102
3103                 if (ordered &&
3104                     ordered->file_offset + ordered->len > alloc_start &&
3105                     ordered->file_offset < alloc_end) {
3106                         btrfs_put_ordered_extent(ordered);
3107                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3108                                              alloc_start, locked_end,
3109                                              &cached_state);
3110                         /*
3111                          * we can't wait on the range with the transaction
3112                          * running or with the extent lock held
3113                          */
3114                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3115                                                        alloc_end - alloc_start);
3116                         if (ret)
3117                                 goto out;
3118                 } else {
3119                         if (ordered)
3120                                 btrfs_put_ordered_extent(ordered);
3121                         break;
3122                 }
3123         }
3124
3125         /* First, check if we exceed the qgroup limit */
3126         INIT_LIST_HEAD(&reserve_list);
3127         while (cur_offset < alloc_end) {
3128                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3129                                       alloc_end - cur_offset, 0);
3130                 if (IS_ERR(em)) {
3131                         ret = PTR_ERR(em);
3132                         break;
3133                 }
3134                 last_byte = min(extent_map_end(em), alloc_end);
3135                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3136                 last_byte = ALIGN(last_byte, blocksize);
3137                 if (em->block_start == EXTENT_MAP_HOLE ||
3138                     (cur_offset >= inode->i_size &&
3139                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3140                         ret = add_falloc_range(&reserve_list, cur_offset,
3141                                                last_byte - cur_offset);
3142                         if (ret < 0) {
3143                                 free_extent_map(em);
3144                                 break;
3145                         }
3146                         ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3147                                         cur_offset, last_byte - cur_offset);
3148                         if (ret < 0) {
3149                                 cur_offset = last_byte;
3150                                 free_extent_map(em);
3151                                 break;
3152                         }
3153                 } else {
3154                         /*
3155                          * Do not need to reserve unwritten extent for this
3156                          * range, free reserved data space first, otherwise
3157                          * it'll result in false ENOSPC error.
3158                          */
3159                         btrfs_free_reserved_data_space(inode, data_reserved,
3160                                         cur_offset, last_byte - cur_offset);
3161                 }
3162                 free_extent_map(em);
3163                 cur_offset = last_byte;
3164         }
3165
3166         /*
3167          * If ret is still 0, means we're OK to fallocate.
3168          * Or just cleanup the list and exit.
3169          */
3170         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3171                 if (!ret)
3172                         ret = btrfs_prealloc_file_range(inode, mode,
3173                                         range->start,
3174                                         range->len, i_blocksize(inode),
3175                                         offset + len, &alloc_hint);
3176                 else
3177                         btrfs_free_reserved_data_space(inode,
3178                                         data_reserved, range->start,
3179                                         range->len);
3180                 list_del(&range->list);
3181                 kfree(range);
3182         }
3183         if (ret < 0)
3184                 goto out_unlock;
3185
3186         /*
3187          * We didn't need to allocate any more space, but we still extended the
3188          * size of the file so we need to update i_size and the inode item.
3189          */
3190         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3191 out_unlock:
3192         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3193                              &cached_state);
3194 out:
3195         inode_unlock(inode);
3196         /* Let go of our reservation. */
3197         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3198                 btrfs_free_reserved_data_space(inode, data_reserved,
3199                                 cur_offset, alloc_end - cur_offset);
3200         extent_changeset_free(data_reserved);
3201         return ret;
3202 }
3203
3204 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3205 {
3206         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207         struct extent_map *em = NULL;
3208         struct extent_state *cached_state = NULL;
3209         u64 lockstart;
3210         u64 lockend;
3211         u64 start;
3212         u64 len;
3213         int ret = 0;
3214
3215         if (inode->i_size == 0)
3216                 return -ENXIO;
3217
3218         /*
3219          * *offset can be negative, in this case we start finding DATA/HOLE from
3220          * the very start of the file.
3221          */
3222         start = max_t(loff_t, 0, *offset);
3223
3224         lockstart = round_down(start, fs_info->sectorsize);
3225         lockend = round_up(i_size_read(inode),
3226                            fs_info->sectorsize);
3227         if (lockend <= lockstart)
3228                 lockend = lockstart + fs_info->sectorsize;
3229         lockend--;
3230         len = lockend - lockstart + 1;
3231
3232         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3233                          &cached_state);
3234
3235         while (start < inode->i_size) {
3236                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3237                 if (IS_ERR(em)) {
3238                         ret = PTR_ERR(em);
3239                         em = NULL;
3240                         break;
3241                 }
3242
3243                 if (whence == SEEK_HOLE &&
3244                     (em->block_start == EXTENT_MAP_HOLE ||
3245                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3246                         break;
3247                 else if (whence == SEEK_DATA &&
3248                            (em->block_start != EXTENT_MAP_HOLE &&
3249                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3250                         break;
3251
3252                 start = em->start + em->len;
3253                 free_extent_map(em);
3254                 em = NULL;
3255                 cond_resched();
3256         }
3257         free_extent_map(em);
3258         if (!ret) {
3259                 if (whence == SEEK_DATA && start >= inode->i_size)
3260                         ret = -ENXIO;
3261                 else
3262                         *offset = min_t(loff_t, start, inode->i_size);
3263         }
3264         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3265                              &cached_state);
3266         return ret;
3267 }
3268
3269 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3270 {
3271         struct inode *inode = file->f_mapping->host;
3272         int ret;
3273
3274         inode_lock(inode);
3275         switch (whence) {
3276         case SEEK_END:
3277         case SEEK_CUR:
3278                 offset = generic_file_llseek(file, offset, whence);
3279                 goto out;
3280         case SEEK_DATA:
3281         case SEEK_HOLE:
3282                 if (offset >= i_size_read(inode)) {
3283                         inode_unlock(inode);
3284                         return -ENXIO;
3285                 }
3286
3287                 ret = find_desired_extent(inode, &offset, whence);
3288                 if (ret) {
3289                         inode_unlock(inode);
3290                         return ret;
3291                 }
3292         }
3293
3294         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3295 out:
3296         inode_unlock(inode);
3297         return offset;
3298 }
3299
3300 static int btrfs_file_open(struct inode *inode, struct file *filp)
3301 {
3302         filp->f_mode |= FMODE_NOWAIT;
3303         return generic_file_open(inode, filp);
3304 }
3305
3306 const struct file_operations btrfs_file_operations = {
3307         .llseek         = btrfs_file_llseek,
3308         .read_iter      = generic_file_read_iter,
3309         .splice_read    = generic_file_splice_read,
3310         .write_iter     = btrfs_file_write_iter,
3311         .mmap           = btrfs_file_mmap,
3312         .open           = btrfs_file_open,
3313         .release        = btrfs_release_file,
3314         .fsync          = btrfs_sync_file,
3315         .fallocate      = btrfs_fallocate,
3316         .unlocked_ioctl = btrfs_ioctl,
3317 #ifdef CONFIG_COMPAT
3318         .compat_ioctl   = btrfs_compat_ioctl,
3319 #endif
3320         .remap_file_range = btrfs_remap_file_range,
3321 };
3322
3323 void __cold btrfs_auto_defrag_exit(void)
3324 {
3325         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3326 }
3327
3328 int __init btrfs_auto_defrag_init(void)
3329 {
3330         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3331                                         sizeof(struct inode_defrag), 0,
3332                                         SLAB_MEM_SPREAD,
3333                                         NULL);
3334         if (!btrfs_inode_defrag_cachep)
3335                 return -ENOMEM;
3336
3337         return 0;
3338 }
3339
3340 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3341 {
3342         int ret;
3343
3344         /*
3345          * So with compression we will find and lock a dirty page and clear the
3346          * first one as dirty, setup an async extent, and immediately return
3347          * with the entire range locked but with nobody actually marked with
3348          * writeback.  So we can't just filemap_write_and_wait_range() and
3349          * expect it to work since it will just kick off a thread to do the
3350          * actual work.  So we need to call filemap_fdatawrite_range _again_
3351          * since it will wait on the page lock, which won't be unlocked until
3352          * after the pages have been marked as writeback and so we're good to go
3353          * from there.  We have to do this otherwise we'll miss the ordered
3354          * extents and that results in badness.  Please Josef, do not think you
3355          * know better and pull this out at some point in the future, it is
3356          * right and you are wrong.
3357          */
3358         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3359         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3360                              &BTRFS_I(inode)->runtime_flags))
3361                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3362
3363         return ret;
3364 }