]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/file.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30
31 static struct kmem_cache *btrfs_inode_defrag_cachep;
32 /*
33  * when auto defrag is enabled we
34  * queue up these defrag structs to remember which
35  * inodes need defragging passes
36  */
37 struct inode_defrag {
38         struct rb_node rb_node;
39         /* objectid */
40         u64 ino;
41         /*
42          * transid where the defrag was added, we search for
43          * extents newer than this
44          */
45         u64 transid;
46
47         /* root objectid */
48         u64 root;
49
50         /* last offset we were able to defrag */
51         u64 last_offset;
52
53         /* if we've wrapped around back to zero once already */
54         int cycled;
55 };
56
57 static int __compare_inode_defrag(struct inode_defrag *defrag1,
58                                   struct inode_defrag *defrag2)
59 {
60         if (defrag1->root > defrag2->root)
61                 return 1;
62         else if (defrag1->root < defrag2->root)
63                 return -1;
64         else if (defrag1->ino > defrag2->ino)
65                 return 1;
66         else if (defrag1->ino < defrag2->ino)
67                 return -1;
68         else
69                 return 0;
70 }
71
72 /* pop a record for an inode into the defrag tree.  The lock
73  * must be held already
74  *
75  * If you're inserting a record for an older transid than an
76  * existing record, the transid already in the tree is lowered
77  *
78  * If an existing record is found the defrag item you
79  * pass in is freed
80  */
81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
82                                     struct inode_defrag *defrag)
83 {
84         struct btrfs_fs_info *fs_info = inode->root->fs_info;
85         struct inode_defrag *entry;
86         struct rb_node **p;
87         struct rb_node *parent = NULL;
88         int ret;
89
90         p = &fs_info->defrag_inodes.rb_node;
91         while (*p) {
92                 parent = *p;
93                 entry = rb_entry(parent, struct inode_defrag, rb_node);
94
95                 ret = __compare_inode_defrag(defrag, entry);
96                 if (ret < 0)
97                         p = &parent->rb_left;
98                 else if (ret > 0)
99                         p = &parent->rb_right;
100                 else {
101                         /* if we're reinserting an entry for
102                          * an old defrag run, make sure to
103                          * lower the transid of our existing record
104                          */
105                         if (defrag->transid < entry->transid)
106                                 entry->transid = defrag->transid;
107                         if (defrag->last_offset > entry->last_offset)
108                                 entry->last_offset = defrag->last_offset;
109                         return -EEXIST;
110                 }
111         }
112         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
113         rb_link_node(&defrag->rb_node, parent, p);
114         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
115         return 0;
116 }
117
118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
119 {
120         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
121                 return 0;
122
123         if (btrfs_fs_closing(fs_info))
124                 return 0;
125
126         return 1;
127 }
128
129 /*
130  * insert a defrag record for this inode if auto defrag is
131  * enabled
132  */
133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
134                            struct btrfs_inode *inode)
135 {
136         struct btrfs_root *root = inode->root;
137         struct btrfs_fs_info *fs_info = root->fs_info;
138         struct inode_defrag *defrag;
139         u64 transid;
140         int ret;
141
142         if (!__need_auto_defrag(fs_info))
143                 return 0;
144
145         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
146                 return 0;
147
148         if (trans)
149                 transid = trans->transid;
150         else
151                 transid = inode->root->last_trans;
152
153         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
154         if (!defrag)
155                 return -ENOMEM;
156
157         defrag->ino = btrfs_ino(inode);
158         defrag->transid = transid;
159         defrag->root = root->root_key.objectid;
160
161         spin_lock(&fs_info->defrag_inodes_lock);
162         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
163                 /*
164                  * If we set IN_DEFRAG flag and evict the inode from memory,
165                  * and then re-read this inode, this new inode doesn't have
166                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
167                  */
168                 ret = __btrfs_add_inode_defrag(inode, defrag);
169                 if (ret)
170                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
171         } else {
172                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173         }
174         spin_unlock(&fs_info->defrag_inodes_lock);
175         return 0;
176 }
177
178 /*
179  * Requeue the defrag object. If there is a defrag object that points to
180  * the same inode in the tree, we will merge them together (by
181  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182  */
183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
184                                        struct inode_defrag *defrag)
185 {
186         struct btrfs_fs_info *fs_info = inode->root->fs_info;
187         int ret;
188
189         if (!__need_auto_defrag(fs_info))
190                 goto out;
191
192         /*
193          * Here we don't check the IN_DEFRAG flag, because we need merge
194          * them together.
195          */
196         spin_lock(&fs_info->defrag_inodes_lock);
197         ret = __btrfs_add_inode_defrag(inode, defrag);
198         spin_unlock(&fs_info->defrag_inodes_lock);
199         if (ret)
200                 goto out;
201         return;
202 out:
203         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
204 }
205
206 /*
207  * pick the defragable inode that we want, if it doesn't exist, we will get
208  * the next one.
209  */
210 static struct inode_defrag *
211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
212 {
213         struct inode_defrag *entry = NULL;
214         struct inode_defrag tmp;
215         struct rb_node *p;
216         struct rb_node *parent = NULL;
217         int ret;
218
219         tmp.ino = ino;
220         tmp.root = root;
221
222         spin_lock(&fs_info->defrag_inodes_lock);
223         p = fs_info->defrag_inodes.rb_node;
224         while (p) {
225                 parent = p;
226                 entry = rb_entry(parent, struct inode_defrag, rb_node);
227
228                 ret = __compare_inode_defrag(&tmp, entry);
229                 if (ret < 0)
230                         p = parent->rb_left;
231                 else if (ret > 0)
232                         p = parent->rb_right;
233                 else
234                         goto out;
235         }
236
237         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
238                 parent = rb_next(parent);
239                 if (parent)
240                         entry = rb_entry(parent, struct inode_defrag, rb_node);
241                 else
242                         entry = NULL;
243         }
244 out:
245         if (entry)
246                 rb_erase(parent, &fs_info->defrag_inodes);
247         spin_unlock(&fs_info->defrag_inodes_lock);
248         return entry;
249 }
250
251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
252 {
253         struct inode_defrag *defrag;
254         struct rb_node *node;
255
256         spin_lock(&fs_info->defrag_inodes_lock);
257         node = rb_first(&fs_info->defrag_inodes);
258         while (node) {
259                 rb_erase(node, &fs_info->defrag_inodes);
260                 defrag = rb_entry(node, struct inode_defrag, rb_node);
261                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
262
263                 cond_resched_lock(&fs_info->defrag_inodes_lock);
264
265                 node = rb_first(&fs_info->defrag_inodes);
266         }
267         spin_unlock(&fs_info->defrag_inodes_lock);
268 }
269
270 #define BTRFS_DEFRAG_BATCH      1024
271
272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
273                                     struct inode_defrag *defrag)
274 {
275         struct btrfs_root *inode_root;
276         struct inode *inode;
277         struct btrfs_key key;
278         struct btrfs_ioctl_defrag_range_args range;
279         int num_defrag;
280         int index;
281         int ret;
282
283         /* get the inode */
284         key.objectid = defrag->root;
285         key.type = BTRFS_ROOT_ITEM_KEY;
286         key.offset = (u64)-1;
287
288         index = srcu_read_lock(&fs_info->subvol_srcu);
289
290         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
291         if (IS_ERR(inode_root)) {
292                 ret = PTR_ERR(inode_root);
293                 goto cleanup;
294         }
295
296         key.objectid = defrag->ino;
297         key.type = BTRFS_INODE_ITEM_KEY;
298         key.offset = 0;
299         inode = btrfs_iget(fs_info->sb, &key, inode_root);
300         if (IS_ERR(inode)) {
301                 ret = PTR_ERR(inode);
302                 goto cleanup;
303         }
304         srcu_read_unlock(&fs_info->subvol_srcu, index);
305
306         /* do a chunk of defrag */
307         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
308         memset(&range, 0, sizeof(range));
309         range.len = (u64)-1;
310         range.start = defrag->last_offset;
311
312         sb_start_write(fs_info->sb);
313         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
314                                        BTRFS_DEFRAG_BATCH);
315         sb_end_write(fs_info->sb);
316         /*
317          * if we filled the whole defrag batch, there
318          * must be more work to do.  Queue this defrag
319          * again
320          */
321         if (num_defrag == BTRFS_DEFRAG_BATCH) {
322                 defrag->last_offset = range.start;
323                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324         } else if (defrag->last_offset && !defrag->cycled) {
325                 /*
326                  * we didn't fill our defrag batch, but
327                  * we didn't start at zero.  Make sure we loop
328                  * around to the start of the file.
329                  */
330                 defrag->last_offset = 0;
331                 defrag->cycled = 1;
332                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
333         } else {
334                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335         }
336
337         iput(inode);
338         return 0;
339 cleanup:
340         srcu_read_unlock(&fs_info->subvol_srcu, index);
341         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342         return ret;
343 }
344
345 /*
346  * run through the list of inodes in the FS that need
347  * defragging
348  */
349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
350 {
351         struct inode_defrag *defrag;
352         u64 first_ino = 0;
353         u64 root_objectid = 0;
354
355         atomic_inc(&fs_info->defrag_running);
356         while (1) {
357                 /* Pause the auto defragger. */
358                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
359                              &fs_info->fs_state))
360                         break;
361
362                 if (!__need_auto_defrag(fs_info))
363                         break;
364
365                 /* find an inode to defrag */
366                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
367                                                  first_ino);
368                 if (!defrag) {
369                         if (root_objectid || first_ino) {
370                                 root_objectid = 0;
371                                 first_ino = 0;
372                                 continue;
373                         } else {
374                                 break;
375                         }
376                 }
377
378                 first_ino = defrag->ino + 1;
379                 root_objectid = defrag->root;
380
381                 __btrfs_run_defrag_inode(fs_info, defrag);
382         }
383         atomic_dec(&fs_info->defrag_running);
384
385         /*
386          * during unmount, we use the transaction_wait queue to
387          * wait for the defragger to stop
388          */
389         wake_up(&fs_info->transaction_wait);
390         return 0;
391 }
392
393 /* simple helper to fault in pages and copy.  This should go away
394  * and be replaced with calls into generic code.
395  */
396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
397                                          struct page **prepared_pages,
398                                          struct iov_iter *i)
399 {
400         size_t copied = 0;
401         size_t total_copied = 0;
402         int pg = 0;
403         int offset = offset_in_page(pos);
404
405         while (write_bytes > 0) {
406                 size_t count = min_t(size_t,
407                                      PAGE_SIZE - offset, write_bytes);
408                 struct page *page = prepared_pages[pg];
409                 /*
410                  * Copy data from userspace to the current page
411                  */
412                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
413
414                 /* Flush processor's dcache for this page */
415                 flush_dcache_page(page);
416
417                 /*
418                  * if we get a partial write, we can end up with
419                  * partially up to date pages.  These add
420                  * a lot of complexity, so make sure they don't
421                  * happen by forcing this copy to be retried.
422                  *
423                  * The rest of the btrfs_file_write code will fall
424                  * back to page at a time copies after we return 0.
425                  */
426                 if (!PageUptodate(page) && copied < count)
427                         copied = 0;
428
429                 iov_iter_advance(i, copied);
430                 write_bytes -= copied;
431                 total_copied += copied;
432
433                 /* Return to btrfs_file_write_iter to fault page */
434                 if (unlikely(copied == 0))
435                         break;
436
437                 if (copied < PAGE_SIZE - offset) {
438                         offset += copied;
439                 } else {
440                         pg++;
441                         offset = 0;
442                 }
443         }
444         return total_copied;
445 }
446
447 /*
448  * unlocks pages after btrfs_file_write is done with them
449  */
450 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
451 {
452         size_t i;
453         for (i = 0; i < num_pages; i++) {
454                 /* page checked is some magic around finding pages that
455                  * have been modified without going through btrfs_set_page_dirty
456                  * clear it here. There should be no need to mark the pages
457                  * accessed as prepare_pages should have marked them accessed
458                  * in prepare_pages via find_or_create_page()
459                  */
460                 ClearPageChecked(pages[i]);
461                 unlock_page(pages[i]);
462                 put_page(pages[i]);
463         }
464 }
465
466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
467                                          const u64 start,
468                                          const u64 len,
469                                          struct extent_state **cached_state)
470 {
471         u64 search_start = start;
472         const u64 end = start + len - 1;
473
474         while (search_start < end) {
475                 const u64 search_len = end - search_start + 1;
476                 struct extent_map *em;
477                 u64 em_len;
478                 int ret = 0;
479
480                 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
481                 if (IS_ERR(em))
482                         return PTR_ERR(em);
483
484                 if (em->block_start != EXTENT_MAP_HOLE)
485                         goto next;
486
487                 em_len = em->len;
488                 if (em->start < search_start)
489                         em_len -= search_start - em->start;
490                 if (em_len > search_len)
491                         em_len = search_len;
492
493                 ret = set_extent_bit(&inode->io_tree, search_start,
494                                      search_start + em_len - 1,
495                                      EXTENT_DELALLOC_NEW,
496                                      NULL, cached_state, GFP_NOFS);
497 next:
498                 search_start = extent_map_end(em);
499                 free_extent_map(em);
500                 if (ret)
501                         return ret;
502         }
503         return 0;
504 }
505
506 /*
507  * after copy_from_user, pages need to be dirtied and we need to make
508  * sure holes are created between the current EOF and the start of
509  * any next extents (if required).
510  *
511  * this also makes the decision about creating an inline extent vs
512  * doing real data extents, marking pages dirty and delalloc as required.
513  */
514 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515                       size_t num_pages, loff_t pos, size_t write_bytes,
516                       struct extent_state **cached)
517 {
518         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
519         int err = 0;
520         int i;
521         u64 num_bytes;
522         u64 start_pos;
523         u64 end_of_last_block;
524         u64 end_pos = pos + write_bytes;
525         loff_t isize = i_size_read(inode);
526         unsigned int extra_bits = 0;
527
528         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
529         num_bytes = round_up(write_bytes + pos - start_pos,
530                              fs_info->sectorsize);
531
532         end_of_last_block = start_pos + num_bytes - 1;
533
534         /*
535          * The pages may have already been dirty, clear out old accounting so
536          * we can set things up properly
537          */
538         clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
539                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
540                          0, 0, cached);
541
542         if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
543                 if (start_pos >= isize &&
544                     !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
545                         /*
546                          * There can't be any extents following eof in this case
547                          * so just set the delalloc new bit for the range
548                          * directly.
549                          */
550                         extra_bits |= EXTENT_DELALLOC_NEW;
551                 } else {
552                         err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
553                                                             start_pos,
554                                                             num_bytes, cached);
555                         if (err)
556                                 return err;
557                 }
558         }
559
560         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
561                                         extra_bits, cached);
562         if (err)
563                 return err;
564
565         for (i = 0; i < num_pages; i++) {
566                 struct page *p = pages[i];
567                 SetPageUptodate(p);
568                 ClearPageChecked(p);
569                 set_page_dirty(p);
570         }
571
572         /*
573          * we've only changed i_size in ram, and we haven't updated
574          * the disk i_size.  There is no need to log the inode
575          * at this time.
576          */
577         if (end_pos > isize)
578                 i_size_write(inode, end_pos);
579         return 0;
580 }
581
582 /*
583  * this drops all the extents in the cache that intersect the range
584  * [start, end].  Existing extents are split as required.
585  */
586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
587                              int skip_pinned)
588 {
589         struct extent_map *em;
590         struct extent_map *split = NULL;
591         struct extent_map *split2 = NULL;
592         struct extent_map_tree *em_tree = &inode->extent_tree;
593         u64 len = end - start + 1;
594         u64 gen;
595         int ret;
596         int testend = 1;
597         unsigned long flags;
598         int compressed = 0;
599         bool modified;
600
601         WARN_ON(end < start);
602         if (end == (u64)-1) {
603                 len = (u64)-1;
604                 testend = 0;
605         }
606         while (1) {
607                 int no_splits = 0;
608
609                 modified = false;
610                 if (!split)
611                         split = alloc_extent_map();
612                 if (!split2)
613                         split2 = alloc_extent_map();
614                 if (!split || !split2)
615                         no_splits = 1;
616
617                 write_lock(&em_tree->lock);
618                 em = lookup_extent_mapping(em_tree, start, len);
619                 if (!em) {
620                         write_unlock(&em_tree->lock);
621                         break;
622                 }
623                 flags = em->flags;
624                 gen = em->generation;
625                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
626                         if (testend && em->start + em->len >= start + len) {
627                                 free_extent_map(em);
628                                 write_unlock(&em_tree->lock);
629                                 break;
630                         }
631                         start = em->start + em->len;
632                         if (testend)
633                                 len = start + len - (em->start + em->len);
634                         free_extent_map(em);
635                         write_unlock(&em_tree->lock);
636                         continue;
637                 }
638                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
639                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
640                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
641                 modified = !list_empty(&em->list);
642                 if (no_splits)
643                         goto next;
644
645                 if (em->start < start) {
646                         split->start = em->start;
647                         split->len = start - em->start;
648
649                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
650                                 split->orig_start = em->orig_start;
651                                 split->block_start = em->block_start;
652
653                                 if (compressed)
654                                         split->block_len = em->block_len;
655                                 else
656                                         split->block_len = split->len;
657                                 split->orig_block_len = max(split->block_len,
658                                                 em->orig_block_len);
659                                 split->ram_bytes = em->ram_bytes;
660                         } else {
661                                 split->orig_start = split->start;
662                                 split->block_len = 0;
663                                 split->block_start = em->block_start;
664                                 split->orig_block_len = 0;
665                                 split->ram_bytes = split->len;
666                         }
667
668                         split->generation = gen;
669                         split->flags = flags;
670                         split->compress_type = em->compress_type;
671                         replace_extent_mapping(em_tree, em, split, modified);
672                         free_extent_map(split);
673                         split = split2;
674                         split2 = NULL;
675                 }
676                 if (testend && em->start + em->len > start + len) {
677                         u64 diff = start + len - em->start;
678
679                         split->start = start + len;
680                         split->len = em->start + em->len - (start + len);
681                         split->flags = flags;
682                         split->compress_type = em->compress_type;
683                         split->generation = gen;
684
685                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
686                                 split->orig_block_len = max(em->block_len,
687                                                     em->orig_block_len);
688
689                                 split->ram_bytes = em->ram_bytes;
690                                 if (compressed) {
691                                         split->block_len = em->block_len;
692                                         split->block_start = em->block_start;
693                                         split->orig_start = em->orig_start;
694                                 } else {
695                                         split->block_len = split->len;
696                                         split->block_start = em->block_start
697                                                 + diff;
698                                         split->orig_start = em->orig_start;
699                                 }
700                         } else {
701                                 split->ram_bytes = split->len;
702                                 split->orig_start = split->start;
703                                 split->block_len = 0;
704                                 split->block_start = em->block_start;
705                                 split->orig_block_len = 0;
706                         }
707
708                         if (extent_map_in_tree(em)) {
709                                 replace_extent_mapping(em_tree, em, split,
710                                                        modified);
711                         } else {
712                                 ret = add_extent_mapping(em_tree, split,
713                                                          modified);
714                                 ASSERT(ret == 0); /* Logic error */
715                         }
716                         free_extent_map(split);
717                         split = NULL;
718                 }
719 next:
720                 if (extent_map_in_tree(em))
721                         remove_extent_mapping(em_tree, em);
722                 write_unlock(&em_tree->lock);
723
724                 /* once for us */
725                 free_extent_map(em);
726                 /* once for the tree*/
727                 free_extent_map(em);
728         }
729         if (split)
730                 free_extent_map(split);
731         if (split2)
732                 free_extent_map(split2);
733 }
734
735 /*
736  * this is very complex, but the basic idea is to drop all extents
737  * in the range start - end.  hint_block is filled in with a block number
738  * that would be a good hint to the block allocator for this file.
739  *
740  * If an extent intersects the range but is not entirely inside the range
741  * it is either truncated or split.  Anything entirely inside the range
742  * is deleted from the tree.
743  */
744 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
745                          struct btrfs_root *root, struct inode *inode,
746                          struct btrfs_path *path, u64 start, u64 end,
747                          u64 *drop_end, int drop_cache,
748                          int replace_extent,
749                          u32 extent_item_size,
750                          int *key_inserted)
751 {
752         struct btrfs_fs_info *fs_info = root->fs_info;
753         struct extent_buffer *leaf;
754         struct btrfs_file_extent_item *fi;
755         struct btrfs_ref ref = { 0 };
756         struct btrfs_key key;
757         struct btrfs_key new_key;
758         u64 ino = btrfs_ino(BTRFS_I(inode));
759         u64 search_start = start;
760         u64 disk_bytenr = 0;
761         u64 num_bytes = 0;
762         u64 extent_offset = 0;
763         u64 extent_end = 0;
764         u64 last_end = start;
765         int del_nr = 0;
766         int del_slot = 0;
767         int extent_type;
768         int recow;
769         int ret;
770         int modify_tree = -1;
771         int update_refs;
772         int found = 0;
773         int leafs_visited = 0;
774
775         if (drop_cache)
776                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
777
778         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
779                 modify_tree = 0;
780
781         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
782                        root == fs_info->tree_root);
783         while (1) {
784                 recow = 0;
785                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
786                                                search_start, modify_tree);
787                 if (ret < 0)
788                         break;
789                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
790                         leaf = path->nodes[0];
791                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
792                         if (key.objectid == ino &&
793                             key.type == BTRFS_EXTENT_DATA_KEY)
794                                 path->slots[0]--;
795                 }
796                 ret = 0;
797                 leafs_visited++;
798 next_slot:
799                 leaf = path->nodes[0];
800                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
801                         BUG_ON(del_nr > 0);
802                         ret = btrfs_next_leaf(root, path);
803                         if (ret < 0)
804                                 break;
805                         if (ret > 0) {
806                                 ret = 0;
807                                 break;
808                         }
809                         leafs_visited++;
810                         leaf = path->nodes[0];
811                         recow = 1;
812                 }
813
814                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
815
816                 if (key.objectid > ino)
817                         break;
818                 if (WARN_ON_ONCE(key.objectid < ino) ||
819                     key.type < BTRFS_EXTENT_DATA_KEY) {
820                         ASSERT(del_nr == 0);
821                         path->slots[0]++;
822                         goto next_slot;
823                 }
824                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
825                         break;
826
827                 fi = btrfs_item_ptr(leaf, path->slots[0],
828                                     struct btrfs_file_extent_item);
829                 extent_type = btrfs_file_extent_type(leaf, fi);
830
831                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
832                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
833                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
834                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
835                         extent_offset = btrfs_file_extent_offset(leaf, fi);
836                         extent_end = key.offset +
837                                 btrfs_file_extent_num_bytes(leaf, fi);
838                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
839                         extent_end = key.offset +
840                                 btrfs_file_extent_ram_bytes(leaf, fi);
841                 } else {
842                         /* can't happen */
843                         BUG();
844                 }
845
846                 /*
847                  * Don't skip extent items representing 0 byte lengths. They
848                  * used to be created (bug) if while punching holes we hit
849                  * -ENOSPC condition. So if we find one here, just ensure we
850                  * delete it, otherwise we would insert a new file extent item
851                  * with the same key (offset) as that 0 bytes length file
852                  * extent item in the call to setup_items_for_insert() later
853                  * in this function.
854                  */
855                 if (extent_end == key.offset && extent_end >= search_start) {
856                         last_end = extent_end;
857                         goto delete_extent_item;
858                 }
859
860                 if (extent_end <= search_start) {
861                         path->slots[0]++;
862                         goto next_slot;
863                 }
864
865                 found = 1;
866                 search_start = max(key.offset, start);
867                 if (recow || !modify_tree) {
868                         modify_tree = -1;
869                         btrfs_release_path(path);
870                         continue;
871                 }
872
873                 /*
874                  *     | - range to drop - |
875                  *  | -------- extent -------- |
876                  */
877                 if (start > key.offset && end < extent_end) {
878                         BUG_ON(del_nr > 0);
879                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
880                                 ret = -EOPNOTSUPP;
881                                 break;
882                         }
883
884                         memcpy(&new_key, &key, sizeof(new_key));
885                         new_key.offset = start;
886                         ret = btrfs_duplicate_item(trans, root, path,
887                                                    &new_key);
888                         if (ret == -EAGAIN) {
889                                 btrfs_release_path(path);
890                                 continue;
891                         }
892                         if (ret < 0)
893                                 break;
894
895                         leaf = path->nodes[0];
896                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
897                                             struct btrfs_file_extent_item);
898                         btrfs_set_file_extent_num_bytes(leaf, fi,
899                                                         start - key.offset);
900
901                         fi = btrfs_item_ptr(leaf, path->slots[0],
902                                             struct btrfs_file_extent_item);
903
904                         extent_offset += start - key.offset;
905                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
906                         btrfs_set_file_extent_num_bytes(leaf, fi,
907                                                         extent_end - start);
908                         btrfs_mark_buffer_dirty(leaf);
909
910                         if (update_refs && disk_bytenr > 0) {
911                                 btrfs_init_generic_ref(&ref,
912                                                 BTRFS_ADD_DELAYED_REF,
913                                                 disk_bytenr, num_bytes, 0);
914                                 btrfs_init_data_ref(&ref,
915                                                 root->root_key.objectid,
916                                                 new_key.objectid,
917                                                 start - extent_offset);
918                                 ret = btrfs_inc_extent_ref(trans, &ref);
919                                 BUG_ON(ret); /* -ENOMEM */
920                         }
921                         key.offset = start;
922                 }
923                 /*
924                  * From here on out we will have actually dropped something, so
925                  * last_end can be updated.
926                  */
927                 last_end = extent_end;
928
929                 /*
930                  *  | ---- range to drop ----- |
931                  *      | -------- extent -------- |
932                  */
933                 if (start <= key.offset && end < extent_end) {
934                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
935                                 ret = -EOPNOTSUPP;
936                                 break;
937                         }
938
939                         memcpy(&new_key, &key, sizeof(new_key));
940                         new_key.offset = end;
941                         btrfs_set_item_key_safe(fs_info, path, &new_key);
942
943                         extent_offset += end - key.offset;
944                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
945                         btrfs_set_file_extent_num_bytes(leaf, fi,
946                                                         extent_end - end);
947                         btrfs_mark_buffer_dirty(leaf);
948                         if (update_refs && disk_bytenr > 0)
949                                 inode_sub_bytes(inode, end - key.offset);
950                         break;
951                 }
952
953                 search_start = extent_end;
954                 /*
955                  *       | ---- range to drop ----- |
956                  *  | -------- extent -------- |
957                  */
958                 if (start > key.offset && end >= extent_end) {
959                         BUG_ON(del_nr > 0);
960                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
961                                 ret = -EOPNOTSUPP;
962                                 break;
963                         }
964
965                         btrfs_set_file_extent_num_bytes(leaf, fi,
966                                                         start - key.offset);
967                         btrfs_mark_buffer_dirty(leaf);
968                         if (update_refs && disk_bytenr > 0)
969                                 inode_sub_bytes(inode, extent_end - start);
970                         if (end == extent_end)
971                                 break;
972
973                         path->slots[0]++;
974                         goto next_slot;
975                 }
976
977                 /*
978                  *  | ---- range to drop ----- |
979                  *    | ------ extent ------ |
980                  */
981                 if (start <= key.offset && end >= extent_end) {
982 delete_extent_item:
983                         if (del_nr == 0) {
984                                 del_slot = path->slots[0];
985                                 del_nr = 1;
986                         } else {
987                                 BUG_ON(del_slot + del_nr != path->slots[0]);
988                                 del_nr++;
989                         }
990
991                         if (update_refs &&
992                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
993                                 inode_sub_bytes(inode,
994                                                 extent_end - key.offset);
995                                 extent_end = ALIGN(extent_end,
996                                                    fs_info->sectorsize);
997                         } else if (update_refs && disk_bytenr > 0) {
998                                 btrfs_init_generic_ref(&ref,
999                                                 BTRFS_DROP_DELAYED_REF,
1000                                                 disk_bytenr, num_bytes, 0);
1001                                 btrfs_init_data_ref(&ref,
1002                                                 root->root_key.objectid,
1003                                                 key.objectid,
1004                                                 key.offset - extent_offset);
1005                                 ret = btrfs_free_extent(trans, &ref);
1006                                 BUG_ON(ret); /* -ENOMEM */
1007                                 inode_sub_bytes(inode,
1008                                                 extent_end - key.offset);
1009                         }
1010
1011                         if (end == extent_end)
1012                                 break;
1013
1014                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1015                                 path->slots[0]++;
1016                                 goto next_slot;
1017                         }
1018
1019                         ret = btrfs_del_items(trans, root, path, del_slot,
1020                                               del_nr);
1021                         if (ret) {
1022                                 btrfs_abort_transaction(trans, ret);
1023                                 break;
1024                         }
1025
1026                         del_nr = 0;
1027                         del_slot = 0;
1028
1029                         btrfs_release_path(path);
1030                         continue;
1031                 }
1032
1033                 BUG();
1034         }
1035
1036         if (!ret && del_nr > 0) {
1037                 /*
1038                  * Set path->slots[0] to first slot, so that after the delete
1039                  * if items are move off from our leaf to its immediate left or
1040                  * right neighbor leafs, we end up with a correct and adjusted
1041                  * path->slots[0] for our insertion (if replace_extent != 0).
1042                  */
1043                 path->slots[0] = del_slot;
1044                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1045                 if (ret)
1046                         btrfs_abort_transaction(trans, ret);
1047         }
1048
1049         leaf = path->nodes[0];
1050         /*
1051          * If btrfs_del_items() was called, it might have deleted a leaf, in
1052          * which case it unlocked our path, so check path->locks[0] matches a
1053          * write lock.
1054          */
1055         if (!ret && replace_extent && leafs_visited == 1 &&
1056             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1057              path->locks[0] == BTRFS_WRITE_LOCK) &&
1058             btrfs_leaf_free_space(leaf) >=
1059             sizeof(struct btrfs_item) + extent_item_size) {
1060
1061                 key.objectid = ino;
1062                 key.type = BTRFS_EXTENT_DATA_KEY;
1063                 key.offset = start;
1064                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1065                         struct btrfs_key slot_key;
1066
1067                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1068                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1069                                 path->slots[0]++;
1070                 }
1071                 setup_items_for_insert(root, path, &key,
1072                                        &extent_item_size,
1073                                        extent_item_size,
1074                                        sizeof(struct btrfs_item) +
1075                                        extent_item_size, 1);
1076                 *key_inserted = 1;
1077         }
1078
1079         if (!replace_extent || !(*key_inserted))
1080                 btrfs_release_path(path);
1081         if (drop_end)
1082                 *drop_end = found ? min(end, last_end) : end;
1083         return ret;
1084 }
1085
1086 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1087                        struct btrfs_root *root, struct inode *inode, u64 start,
1088                        u64 end, int drop_cache)
1089 {
1090         struct btrfs_path *path;
1091         int ret;
1092
1093         path = btrfs_alloc_path();
1094         if (!path)
1095                 return -ENOMEM;
1096         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1097                                    drop_cache, 0, 0, NULL);
1098         btrfs_free_path(path);
1099         return ret;
1100 }
1101
1102 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1103                             u64 objectid, u64 bytenr, u64 orig_offset,
1104                             u64 *start, u64 *end)
1105 {
1106         struct btrfs_file_extent_item *fi;
1107         struct btrfs_key key;
1108         u64 extent_end;
1109
1110         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1111                 return 0;
1112
1113         btrfs_item_key_to_cpu(leaf, &key, slot);
1114         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1115                 return 0;
1116
1117         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1118         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1119             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1120             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1121             btrfs_file_extent_compression(leaf, fi) ||
1122             btrfs_file_extent_encryption(leaf, fi) ||
1123             btrfs_file_extent_other_encoding(leaf, fi))
1124                 return 0;
1125
1126         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1127         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1128                 return 0;
1129
1130         *start = key.offset;
1131         *end = extent_end;
1132         return 1;
1133 }
1134
1135 /*
1136  * Mark extent in the range start - end as written.
1137  *
1138  * This changes extent type from 'pre-allocated' to 'regular'. If only
1139  * part of extent is marked as written, the extent will be split into
1140  * two or three.
1141  */
1142 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1143                               struct btrfs_inode *inode, u64 start, u64 end)
1144 {
1145         struct btrfs_fs_info *fs_info = trans->fs_info;
1146         struct btrfs_root *root = inode->root;
1147         struct extent_buffer *leaf;
1148         struct btrfs_path *path;
1149         struct btrfs_file_extent_item *fi;
1150         struct btrfs_ref ref = { 0 };
1151         struct btrfs_key key;
1152         struct btrfs_key new_key;
1153         u64 bytenr;
1154         u64 num_bytes;
1155         u64 extent_end;
1156         u64 orig_offset;
1157         u64 other_start;
1158         u64 other_end;
1159         u64 split;
1160         int del_nr = 0;
1161         int del_slot = 0;
1162         int recow;
1163         int ret;
1164         u64 ino = btrfs_ino(inode);
1165
1166         path = btrfs_alloc_path();
1167         if (!path)
1168                 return -ENOMEM;
1169 again:
1170         recow = 0;
1171         split = start;
1172         key.objectid = ino;
1173         key.type = BTRFS_EXTENT_DATA_KEY;
1174         key.offset = split;
1175
1176         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1177         if (ret < 0)
1178                 goto out;
1179         if (ret > 0 && path->slots[0] > 0)
1180                 path->slots[0]--;
1181
1182         leaf = path->nodes[0];
1183         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1184         if (key.objectid != ino ||
1185             key.type != BTRFS_EXTENT_DATA_KEY) {
1186                 ret = -EINVAL;
1187                 btrfs_abort_transaction(trans, ret);
1188                 goto out;
1189         }
1190         fi = btrfs_item_ptr(leaf, path->slots[0],
1191                             struct btrfs_file_extent_item);
1192         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1193                 ret = -EINVAL;
1194                 btrfs_abort_transaction(trans, ret);
1195                 goto out;
1196         }
1197         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1198         if (key.offset > start || extent_end < end) {
1199                 ret = -EINVAL;
1200                 btrfs_abort_transaction(trans, ret);
1201                 goto out;
1202         }
1203
1204         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1205         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1206         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1207         memcpy(&new_key, &key, sizeof(new_key));
1208
1209         if (start == key.offset && end < extent_end) {
1210                 other_start = 0;
1211                 other_end = start;
1212                 if (extent_mergeable(leaf, path->slots[0] - 1,
1213                                      ino, bytenr, orig_offset,
1214                                      &other_start, &other_end)) {
1215                         new_key.offset = end;
1216                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1217                         fi = btrfs_item_ptr(leaf, path->slots[0],
1218                                             struct btrfs_file_extent_item);
1219                         btrfs_set_file_extent_generation(leaf, fi,
1220                                                          trans->transid);
1221                         btrfs_set_file_extent_num_bytes(leaf, fi,
1222                                                         extent_end - end);
1223                         btrfs_set_file_extent_offset(leaf, fi,
1224                                                      end - orig_offset);
1225                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1226                                             struct btrfs_file_extent_item);
1227                         btrfs_set_file_extent_generation(leaf, fi,
1228                                                          trans->transid);
1229                         btrfs_set_file_extent_num_bytes(leaf, fi,
1230                                                         end - other_start);
1231                         btrfs_mark_buffer_dirty(leaf);
1232                         goto out;
1233                 }
1234         }
1235
1236         if (start > key.offset && end == extent_end) {
1237                 other_start = end;
1238                 other_end = 0;
1239                 if (extent_mergeable(leaf, path->slots[0] + 1,
1240                                      ino, bytenr, orig_offset,
1241                                      &other_start, &other_end)) {
1242                         fi = btrfs_item_ptr(leaf, path->slots[0],
1243                                             struct btrfs_file_extent_item);
1244                         btrfs_set_file_extent_num_bytes(leaf, fi,
1245                                                         start - key.offset);
1246                         btrfs_set_file_extent_generation(leaf, fi,
1247                                                          trans->transid);
1248                         path->slots[0]++;
1249                         new_key.offset = start;
1250                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1251
1252                         fi = btrfs_item_ptr(leaf, path->slots[0],
1253                                             struct btrfs_file_extent_item);
1254                         btrfs_set_file_extent_generation(leaf, fi,
1255                                                          trans->transid);
1256                         btrfs_set_file_extent_num_bytes(leaf, fi,
1257                                                         other_end - start);
1258                         btrfs_set_file_extent_offset(leaf, fi,
1259                                                      start - orig_offset);
1260                         btrfs_mark_buffer_dirty(leaf);
1261                         goto out;
1262                 }
1263         }
1264
1265         while (start > key.offset || end < extent_end) {
1266                 if (key.offset == start)
1267                         split = end;
1268
1269                 new_key.offset = split;
1270                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1271                 if (ret == -EAGAIN) {
1272                         btrfs_release_path(path);
1273                         goto again;
1274                 }
1275                 if (ret < 0) {
1276                         btrfs_abort_transaction(trans, ret);
1277                         goto out;
1278                 }
1279
1280                 leaf = path->nodes[0];
1281                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1282                                     struct btrfs_file_extent_item);
1283                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1284                 btrfs_set_file_extent_num_bytes(leaf, fi,
1285                                                 split - key.offset);
1286
1287                 fi = btrfs_item_ptr(leaf, path->slots[0],
1288                                     struct btrfs_file_extent_item);
1289
1290                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1291                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1292                 btrfs_set_file_extent_num_bytes(leaf, fi,
1293                                                 extent_end - split);
1294                 btrfs_mark_buffer_dirty(leaf);
1295
1296                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1297                                        num_bytes, 0);
1298                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1299                                     orig_offset);
1300                 ret = btrfs_inc_extent_ref(trans, &ref);
1301                 if (ret) {
1302                         btrfs_abort_transaction(trans, ret);
1303                         goto out;
1304                 }
1305
1306                 if (split == start) {
1307                         key.offset = start;
1308                 } else {
1309                         if (start != key.offset) {
1310                                 ret = -EINVAL;
1311                                 btrfs_abort_transaction(trans, ret);
1312                                 goto out;
1313                         }
1314                         path->slots[0]--;
1315                         extent_end = end;
1316                 }
1317                 recow = 1;
1318         }
1319
1320         other_start = end;
1321         other_end = 0;
1322         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1323                                num_bytes, 0);
1324         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1325         if (extent_mergeable(leaf, path->slots[0] + 1,
1326                              ino, bytenr, orig_offset,
1327                              &other_start, &other_end)) {
1328                 if (recow) {
1329                         btrfs_release_path(path);
1330                         goto again;
1331                 }
1332                 extent_end = other_end;
1333                 del_slot = path->slots[0] + 1;
1334                 del_nr++;
1335                 ret = btrfs_free_extent(trans, &ref);
1336                 if (ret) {
1337                         btrfs_abort_transaction(trans, ret);
1338                         goto out;
1339                 }
1340         }
1341         other_start = 0;
1342         other_end = start;
1343         if (extent_mergeable(leaf, path->slots[0] - 1,
1344                              ino, bytenr, orig_offset,
1345                              &other_start, &other_end)) {
1346                 if (recow) {
1347                         btrfs_release_path(path);
1348                         goto again;
1349                 }
1350                 key.offset = other_start;
1351                 del_slot = path->slots[0];
1352                 del_nr++;
1353                 ret = btrfs_free_extent(trans, &ref);
1354                 if (ret) {
1355                         btrfs_abort_transaction(trans, ret);
1356                         goto out;
1357                 }
1358         }
1359         if (del_nr == 0) {
1360                 fi = btrfs_item_ptr(leaf, path->slots[0],
1361                            struct btrfs_file_extent_item);
1362                 btrfs_set_file_extent_type(leaf, fi,
1363                                            BTRFS_FILE_EXTENT_REG);
1364                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1365                 btrfs_mark_buffer_dirty(leaf);
1366         } else {
1367                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1368                            struct btrfs_file_extent_item);
1369                 btrfs_set_file_extent_type(leaf, fi,
1370                                            BTRFS_FILE_EXTENT_REG);
1371                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1372                 btrfs_set_file_extent_num_bytes(leaf, fi,
1373                                                 extent_end - key.offset);
1374                 btrfs_mark_buffer_dirty(leaf);
1375
1376                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1377                 if (ret < 0) {
1378                         btrfs_abort_transaction(trans, ret);
1379                         goto out;
1380                 }
1381         }
1382 out:
1383         btrfs_free_path(path);
1384         return 0;
1385 }
1386
1387 /*
1388  * on error we return an unlocked page and the error value
1389  * on success we return a locked page and 0
1390  */
1391 static int prepare_uptodate_page(struct inode *inode,
1392                                  struct page *page, u64 pos,
1393                                  bool force_uptodate)
1394 {
1395         int ret = 0;
1396
1397         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1398             !PageUptodate(page)) {
1399                 ret = btrfs_readpage(NULL, page);
1400                 if (ret)
1401                         return ret;
1402                 lock_page(page);
1403                 if (!PageUptodate(page)) {
1404                         unlock_page(page);
1405                         return -EIO;
1406                 }
1407                 if (page->mapping != inode->i_mapping) {
1408                         unlock_page(page);
1409                         return -EAGAIN;
1410                 }
1411         }
1412         return 0;
1413 }
1414
1415 /*
1416  * this just gets pages into the page cache and locks them down.
1417  */
1418 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1419                                   size_t num_pages, loff_t pos,
1420                                   size_t write_bytes, bool force_uptodate)
1421 {
1422         int i;
1423         unsigned long index = pos >> PAGE_SHIFT;
1424         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1425         int err = 0;
1426         int faili;
1427
1428         for (i = 0; i < num_pages; i++) {
1429 again:
1430                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1431                                                mask | __GFP_WRITE);
1432                 if (!pages[i]) {
1433                         faili = i - 1;
1434                         err = -ENOMEM;
1435                         goto fail;
1436                 }
1437
1438                 if (i == 0)
1439                         err = prepare_uptodate_page(inode, pages[i], pos,
1440                                                     force_uptodate);
1441                 if (!err && i == num_pages - 1)
1442                         err = prepare_uptodate_page(inode, pages[i],
1443                                                     pos + write_bytes, false);
1444                 if (err) {
1445                         put_page(pages[i]);
1446                         if (err == -EAGAIN) {
1447                                 err = 0;
1448                                 goto again;
1449                         }
1450                         faili = i - 1;
1451                         goto fail;
1452                 }
1453                 wait_on_page_writeback(pages[i]);
1454         }
1455
1456         return 0;
1457 fail:
1458         while (faili >= 0) {
1459                 unlock_page(pages[faili]);
1460                 put_page(pages[faili]);
1461                 faili--;
1462         }
1463         return err;
1464
1465 }
1466
1467 /*
1468  * This function locks the extent and properly waits for data=ordered extents
1469  * to finish before allowing the pages to be modified if need.
1470  *
1471  * The return value:
1472  * 1 - the extent is locked
1473  * 0 - the extent is not locked, and everything is OK
1474  * -EAGAIN - need re-prepare the pages
1475  * the other < 0 number - Something wrong happens
1476  */
1477 static noinline int
1478 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1479                                 size_t num_pages, loff_t pos,
1480                                 size_t write_bytes,
1481                                 u64 *lockstart, u64 *lockend,
1482                                 struct extent_state **cached_state)
1483 {
1484         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1485         u64 start_pos;
1486         u64 last_pos;
1487         int i;
1488         int ret = 0;
1489
1490         start_pos = round_down(pos, fs_info->sectorsize);
1491         last_pos = start_pos
1492                 + round_up(pos + write_bytes - start_pos,
1493                            fs_info->sectorsize) - 1;
1494
1495         if (start_pos < inode->vfs_inode.i_size) {
1496                 struct btrfs_ordered_extent *ordered;
1497
1498                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1499                                 cached_state);
1500                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1501                                                      last_pos - start_pos + 1);
1502                 if (ordered &&
1503                     ordered->file_offset + ordered->num_bytes > start_pos &&
1504                     ordered->file_offset <= last_pos) {
1505                         unlock_extent_cached(&inode->io_tree, start_pos,
1506                                         last_pos, cached_state);
1507                         for (i = 0; i < num_pages; i++) {
1508                                 unlock_page(pages[i]);
1509                                 put_page(pages[i]);
1510                         }
1511                         btrfs_start_ordered_extent(&inode->vfs_inode,
1512                                         ordered, 1);
1513                         btrfs_put_ordered_extent(ordered);
1514                         return -EAGAIN;
1515                 }
1516                 if (ordered)
1517                         btrfs_put_ordered_extent(ordered);
1518
1519                 *lockstart = start_pos;
1520                 *lockend = last_pos;
1521                 ret = 1;
1522         }
1523
1524         /*
1525          * It's possible the pages are dirty right now, but we don't want
1526          * to clean them yet because copy_from_user may catch a page fault
1527          * and we might have to fall back to one page at a time.  If that
1528          * happens, we'll unlock these pages and we'd have a window where
1529          * reclaim could sneak in and drop the once-dirty page on the floor
1530          * without writing it.
1531          *
1532          * We have the pages locked and the extent range locked, so there's
1533          * no way someone can start IO on any dirty pages in this range.
1534          *
1535          * We'll call btrfs_dirty_pages() later on, and that will flip around
1536          * delalloc bits and dirty the pages as required.
1537          */
1538         for (i = 0; i < num_pages; i++) {
1539                 set_page_extent_mapped(pages[i]);
1540                 WARN_ON(!PageLocked(pages[i]));
1541         }
1542
1543         return ret;
1544 }
1545
1546 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1547                                     size_t *write_bytes)
1548 {
1549         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1550         struct btrfs_root *root = inode->root;
1551         u64 lockstart, lockend;
1552         u64 num_bytes;
1553         int ret;
1554
1555         ret = btrfs_start_write_no_snapshotting(root);
1556         if (!ret)
1557                 return -EAGAIN;
1558
1559         lockstart = round_down(pos, fs_info->sectorsize);
1560         lockend = round_up(pos + *write_bytes,
1561                            fs_info->sectorsize) - 1;
1562
1563         btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1564                                            lockend, NULL);
1565
1566         num_bytes = lockend - lockstart + 1;
1567         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1568                         NULL, NULL, NULL);
1569         if (ret <= 0) {
1570                 ret = 0;
1571                 btrfs_end_write_no_snapshotting(root);
1572         } else {
1573                 *write_bytes = min_t(size_t, *write_bytes ,
1574                                      num_bytes - pos + lockstart);
1575         }
1576
1577         unlock_extent(&inode->io_tree, lockstart, lockend);
1578
1579         return ret;
1580 }
1581
1582 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1583                                                struct iov_iter *i)
1584 {
1585         struct file *file = iocb->ki_filp;
1586         loff_t pos = iocb->ki_pos;
1587         struct inode *inode = file_inode(file);
1588         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1589         struct btrfs_root *root = BTRFS_I(inode)->root;
1590         struct page **pages = NULL;
1591         struct extent_changeset *data_reserved = NULL;
1592         u64 release_bytes = 0;
1593         u64 lockstart;
1594         u64 lockend;
1595         size_t num_written = 0;
1596         int nrptrs;
1597         int ret = 0;
1598         bool only_release_metadata = false;
1599         bool force_page_uptodate = false;
1600
1601         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1602                         PAGE_SIZE / (sizeof(struct page *)));
1603         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1604         nrptrs = max(nrptrs, 8);
1605         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1606         if (!pages)
1607                 return -ENOMEM;
1608
1609         while (iov_iter_count(i) > 0) {
1610                 struct extent_state *cached_state = NULL;
1611                 size_t offset = offset_in_page(pos);
1612                 size_t sector_offset;
1613                 size_t write_bytes = min(iov_iter_count(i),
1614                                          nrptrs * (size_t)PAGE_SIZE -
1615                                          offset);
1616                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1617                                                 PAGE_SIZE);
1618                 size_t reserve_bytes;
1619                 size_t dirty_pages;
1620                 size_t copied;
1621                 size_t dirty_sectors;
1622                 size_t num_sectors;
1623                 int extents_locked;
1624
1625                 WARN_ON(num_pages > nrptrs);
1626
1627                 /*
1628                  * Fault pages before locking them in prepare_pages
1629                  * to avoid recursive lock
1630                  */
1631                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1632                         ret = -EFAULT;
1633                         break;
1634                 }
1635
1636                 only_release_metadata = false;
1637                 sector_offset = pos & (fs_info->sectorsize - 1);
1638                 reserve_bytes = round_up(write_bytes + sector_offset,
1639                                 fs_info->sectorsize);
1640
1641                 extent_changeset_release(data_reserved);
1642                 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1643                                                   write_bytes);
1644                 if (ret < 0) {
1645                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1646                                                       BTRFS_INODE_PREALLOC)) &&
1647                             check_can_nocow(BTRFS_I(inode), pos,
1648                                         &write_bytes) > 0) {
1649                                 /*
1650                                  * For nodata cow case, no need to reserve
1651                                  * data space.
1652                                  */
1653                                 only_release_metadata = true;
1654                                 /*
1655                                  * our prealloc extent may be smaller than
1656                                  * write_bytes, so scale down.
1657                                  */
1658                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1659                                                          PAGE_SIZE);
1660                                 reserve_bytes = round_up(write_bytes +
1661                                                          sector_offset,
1662                                                          fs_info->sectorsize);
1663                         } else {
1664                                 break;
1665                         }
1666                 }
1667
1668                 WARN_ON(reserve_bytes == 0);
1669                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1670                                 reserve_bytes);
1671                 if (ret) {
1672                         if (!only_release_metadata)
1673                                 btrfs_free_reserved_data_space(inode,
1674                                                 data_reserved, pos,
1675                                                 write_bytes);
1676                         else
1677                                 btrfs_end_write_no_snapshotting(root);
1678                         break;
1679                 }
1680
1681                 release_bytes = reserve_bytes;
1682 again:
1683                 /*
1684                  * This is going to setup the pages array with the number of
1685                  * pages we want, so we don't really need to worry about the
1686                  * contents of pages from loop to loop
1687                  */
1688                 ret = prepare_pages(inode, pages, num_pages,
1689                                     pos, write_bytes,
1690                                     force_page_uptodate);
1691                 if (ret) {
1692                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1693                                                        reserve_bytes);
1694                         break;
1695                 }
1696
1697                 extents_locked = lock_and_cleanup_extent_if_need(
1698                                 BTRFS_I(inode), pages,
1699                                 num_pages, pos, write_bytes, &lockstart,
1700                                 &lockend, &cached_state);
1701                 if (extents_locked < 0) {
1702                         if (extents_locked == -EAGAIN)
1703                                 goto again;
1704                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1705                                                        reserve_bytes);
1706                         ret = extents_locked;
1707                         break;
1708                 }
1709
1710                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1711
1712                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1713                 dirty_sectors = round_up(copied + sector_offset,
1714                                         fs_info->sectorsize);
1715                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1716
1717                 /*
1718                  * if we have trouble faulting in the pages, fall
1719                  * back to one page at a time
1720                  */
1721                 if (copied < write_bytes)
1722                         nrptrs = 1;
1723
1724                 if (copied == 0) {
1725                         force_page_uptodate = true;
1726                         dirty_sectors = 0;
1727                         dirty_pages = 0;
1728                 } else {
1729                         force_page_uptodate = false;
1730                         dirty_pages = DIV_ROUND_UP(copied + offset,
1731                                                    PAGE_SIZE);
1732                 }
1733
1734                 if (num_sectors > dirty_sectors) {
1735                         /* release everything except the sectors we dirtied */
1736                         release_bytes -= dirty_sectors <<
1737                                                 fs_info->sb->s_blocksize_bits;
1738                         if (only_release_metadata) {
1739                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1740                                                         release_bytes, true);
1741                         } else {
1742                                 u64 __pos;
1743
1744                                 __pos = round_down(pos,
1745                                                    fs_info->sectorsize) +
1746                                         (dirty_pages << PAGE_SHIFT);
1747                                 btrfs_delalloc_release_space(inode,
1748                                                 data_reserved, __pos,
1749                                                 release_bytes, true);
1750                         }
1751                 }
1752
1753                 release_bytes = round_up(copied + sector_offset,
1754                                         fs_info->sectorsize);
1755
1756                 if (copied > 0)
1757                         ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1758                                                 pos, copied, &cached_state);
1759
1760                 /*
1761                  * If we have not locked the extent range, because the range's
1762                  * start offset is >= i_size, we might still have a non-NULL
1763                  * cached extent state, acquired while marking the extent range
1764                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1765                  * possible cached extent state to avoid a memory leak.
1766                  */
1767                 if (extents_locked)
1768                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1769                                              lockstart, lockend, &cached_state);
1770                 else
1771                         free_extent_state(cached_state);
1772
1773                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1774                 if (ret) {
1775                         btrfs_drop_pages(pages, num_pages);
1776                         break;
1777                 }
1778
1779                 release_bytes = 0;
1780                 if (only_release_metadata)
1781                         btrfs_end_write_no_snapshotting(root);
1782
1783                 if (only_release_metadata && copied > 0) {
1784                         lockstart = round_down(pos,
1785                                                fs_info->sectorsize);
1786                         lockend = round_up(pos + copied,
1787                                            fs_info->sectorsize) - 1;
1788
1789                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1790                                        lockend, EXTENT_NORESERVE, NULL,
1791                                        NULL, GFP_NOFS);
1792                 }
1793
1794                 btrfs_drop_pages(pages, num_pages);
1795
1796                 cond_resched();
1797
1798                 balance_dirty_pages_ratelimited(inode->i_mapping);
1799                 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1800                         btrfs_btree_balance_dirty(fs_info);
1801
1802                 pos += copied;
1803                 num_written += copied;
1804         }
1805
1806         kfree(pages);
1807
1808         if (release_bytes) {
1809                 if (only_release_metadata) {
1810                         btrfs_end_write_no_snapshotting(root);
1811                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1812                                         release_bytes, true);
1813                 } else {
1814                         btrfs_delalloc_release_space(inode, data_reserved,
1815                                         round_down(pos, fs_info->sectorsize),
1816                                         release_bytes, true);
1817                 }
1818         }
1819
1820         extent_changeset_free(data_reserved);
1821         return num_written ? num_written : ret;
1822 }
1823
1824 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1825 {
1826         struct file *file = iocb->ki_filp;
1827         struct inode *inode = file_inode(file);
1828         loff_t pos;
1829         ssize_t written;
1830         ssize_t written_buffered;
1831         loff_t endbyte;
1832         int err;
1833
1834         written = generic_file_direct_write(iocb, from);
1835
1836         if (written < 0 || !iov_iter_count(from))
1837                 return written;
1838
1839         pos = iocb->ki_pos;
1840         written_buffered = btrfs_buffered_write(iocb, from);
1841         if (written_buffered < 0) {
1842                 err = written_buffered;
1843                 goto out;
1844         }
1845         /*
1846          * Ensure all data is persisted. We want the next direct IO read to be
1847          * able to read what was just written.
1848          */
1849         endbyte = pos + written_buffered - 1;
1850         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1851         if (err)
1852                 goto out;
1853         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1854         if (err)
1855                 goto out;
1856         written += written_buffered;
1857         iocb->ki_pos = pos + written_buffered;
1858         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1859                                  endbyte >> PAGE_SHIFT);
1860 out:
1861         return written ? written : err;
1862 }
1863
1864 static void update_time_for_write(struct inode *inode)
1865 {
1866         struct timespec64 now;
1867
1868         if (IS_NOCMTIME(inode))
1869                 return;
1870
1871         now = current_time(inode);
1872         if (!timespec64_equal(&inode->i_mtime, &now))
1873                 inode->i_mtime = now;
1874
1875         if (!timespec64_equal(&inode->i_ctime, &now))
1876                 inode->i_ctime = now;
1877
1878         if (IS_I_VERSION(inode))
1879                 inode_inc_iversion(inode);
1880 }
1881
1882 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1883                                     struct iov_iter *from)
1884 {
1885         struct file *file = iocb->ki_filp;
1886         struct inode *inode = file_inode(file);
1887         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1888         struct btrfs_root *root = BTRFS_I(inode)->root;
1889         u64 start_pos;
1890         u64 end_pos;
1891         ssize_t num_written = 0;
1892         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1893         ssize_t err;
1894         loff_t pos;
1895         size_t count;
1896         loff_t oldsize;
1897         int clean_page = 0;
1898
1899         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1900             (iocb->ki_flags & IOCB_NOWAIT))
1901                 return -EOPNOTSUPP;
1902
1903         if (iocb->ki_flags & IOCB_NOWAIT) {
1904                 if (!inode_trylock(inode))
1905                         return -EAGAIN;
1906         } else {
1907                 inode_lock(inode);
1908         }
1909
1910         err = generic_write_checks(iocb, from);
1911         if (err <= 0) {
1912                 inode_unlock(inode);
1913                 return err;
1914         }
1915
1916         pos = iocb->ki_pos;
1917         count = iov_iter_count(from);
1918         if (iocb->ki_flags & IOCB_NOWAIT) {
1919                 /*
1920                  * We will allocate space in case nodatacow is not set,
1921                  * so bail
1922                  */
1923                 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1924                                               BTRFS_INODE_PREALLOC)) ||
1925                     check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1926                         inode_unlock(inode);
1927                         return -EAGAIN;
1928                 }
1929         }
1930
1931         current->backing_dev_info = inode_to_bdi(inode);
1932         err = file_remove_privs(file);
1933         if (err) {
1934                 inode_unlock(inode);
1935                 goto out;
1936         }
1937
1938         /*
1939          * If BTRFS flips readonly due to some impossible error
1940          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1941          * although we have opened a file as writable, we have
1942          * to stop this write operation to ensure FS consistency.
1943          */
1944         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1945                 inode_unlock(inode);
1946                 err = -EROFS;
1947                 goto out;
1948         }
1949
1950         /*
1951          * We reserve space for updating the inode when we reserve space for the
1952          * extent we are going to write, so we will enospc out there.  We don't
1953          * need to start yet another transaction to update the inode as we will
1954          * update the inode when we finish writing whatever data we write.
1955          */
1956         update_time_for_write(inode);
1957
1958         start_pos = round_down(pos, fs_info->sectorsize);
1959         oldsize = i_size_read(inode);
1960         if (start_pos > oldsize) {
1961                 /* Expand hole size to cover write data, preventing empty gap */
1962                 end_pos = round_up(pos + count,
1963                                    fs_info->sectorsize);
1964                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1965                 if (err) {
1966                         inode_unlock(inode);
1967                         goto out;
1968                 }
1969                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1970                         clean_page = 1;
1971         }
1972
1973         if (sync)
1974                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1975
1976         if (iocb->ki_flags & IOCB_DIRECT) {
1977                 num_written = __btrfs_direct_write(iocb, from);
1978         } else {
1979                 num_written = btrfs_buffered_write(iocb, from);
1980                 if (num_written > 0)
1981                         iocb->ki_pos = pos + num_written;
1982                 if (clean_page)
1983                         pagecache_isize_extended(inode, oldsize,
1984                                                 i_size_read(inode));
1985         }
1986
1987         inode_unlock(inode);
1988
1989         /*
1990          * We also have to set last_sub_trans to the current log transid,
1991          * otherwise subsequent syncs to a file that's been synced in this
1992          * transaction will appear to have already occurred.
1993          */
1994         spin_lock(&BTRFS_I(inode)->lock);
1995         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1996         spin_unlock(&BTRFS_I(inode)->lock);
1997         if (num_written > 0)
1998                 num_written = generic_write_sync(iocb, num_written);
1999
2000         if (sync)
2001                 atomic_dec(&BTRFS_I(inode)->sync_writers);
2002 out:
2003         current->backing_dev_info = NULL;
2004         return num_written ? num_written : err;
2005 }
2006
2007 int btrfs_release_file(struct inode *inode, struct file *filp)
2008 {
2009         struct btrfs_file_private *private = filp->private_data;
2010
2011         if (private && private->filldir_buf)
2012                 kfree(private->filldir_buf);
2013         kfree(private);
2014         filp->private_data = NULL;
2015
2016         /*
2017          * ordered_data_close is set by setattr when we are about to truncate
2018          * a file from a non-zero size to a zero size.  This tries to
2019          * flush down new bytes that may have been written if the
2020          * application were using truncate to replace a file in place.
2021          */
2022         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2023                                &BTRFS_I(inode)->runtime_flags))
2024                         filemap_flush(inode->i_mapping);
2025         return 0;
2026 }
2027
2028 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2029 {
2030         int ret;
2031         struct blk_plug plug;
2032
2033         /*
2034          * This is only called in fsync, which would do synchronous writes, so
2035          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2036          * multiple disks using raid profile, a large IO can be split to
2037          * several segments of stripe length (currently 64K).
2038          */
2039         blk_start_plug(&plug);
2040         atomic_inc(&BTRFS_I(inode)->sync_writers);
2041         ret = btrfs_fdatawrite_range(inode, start, end);
2042         atomic_dec(&BTRFS_I(inode)->sync_writers);
2043         blk_finish_plug(&plug);
2044
2045         return ret;
2046 }
2047
2048 /*
2049  * fsync call for both files and directories.  This logs the inode into
2050  * the tree log instead of forcing full commits whenever possible.
2051  *
2052  * It needs to call filemap_fdatawait so that all ordered extent updates are
2053  * in the metadata btree are up to date for copying to the log.
2054  *
2055  * It drops the inode mutex before doing the tree log commit.  This is an
2056  * important optimization for directories because holding the mutex prevents
2057  * new operations on the dir while we write to disk.
2058  */
2059 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2060 {
2061         struct dentry *dentry = file_dentry(file);
2062         struct inode *inode = d_inode(dentry);
2063         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2064         struct btrfs_root *root = BTRFS_I(inode)->root;
2065         struct btrfs_trans_handle *trans;
2066         struct btrfs_log_ctx ctx;
2067         int ret = 0, err;
2068
2069         trace_btrfs_sync_file(file, datasync);
2070
2071         btrfs_init_log_ctx(&ctx, inode);
2072
2073         /*
2074          * We write the dirty pages in the range and wait until they complete
2075          * out of the ->i_mutex. If so, we can flush the dirty pages by
2076          * multi-task, and make the performance up.  See
2077          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2078          */
2079         ret = start_ordered_ops(inode, start, end);
2080         if (ret)
2081                 goto out;
2082
2083         inode_lock(inode);
2084
2085         /*
2086          * We take the dio_sem here because the tree log stuff can race with
2087          * lockless dio writes and get an extent map logged for an extent we
2088          * never waited on.  We need it this high up for lockdep reasons.
2089          */
2090         down_write(&BTRFS_I(inode)->dio_sem);
2091
2092         atomic_inc(&root->log_batch);
2093
2094         /*
2095          * If the inode needs a full sync, make sure we use a full range to
2096          * avoid log tree corruption, due to hole detection racing with ordered
2097          * extent completion for adjacent ranges, and assertion failures during
2098          * hole detection. Do this while holding the inode lock, to avoid races
2099          * with other tasks.
2100          */
2101         if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2102                      &BTRFS_I(inode)->runtime_flags)) {
2103                 start = 0;
2104                 end = LLONG_MAX;
2105         }
2106
2107         /*
2108          * Before we acquired the inode's lock, someone may have dirtied more
2109          * pages in the target range. We need to make sure that writeback for
2110          * any such pages does not start while we are logging the inode, because
2111          * if it does, any of the following might happen when we are not doing a
2112          * full inode sync:
2113          *
2114          * 1) We log an extent after its writeback finishes but before its
2115          *    checksums are added to the csum tree, leading to -EIO errors
2116          *    when attempting to read the extent after a log replay.
2117          *
2118          * 2) We can end up logging an extent before its writeback finishes.
2119          *    Therefore after the log replay we will have a file extent item
2120          *    pointing to an unwritten extent (and no data checksums as well).
2121          *
2122          * So trigger writeback for any eventual new dirty pages and then we
2123          * wait for all ordered extents to complete below.
2124          */
2125         ret = start_ordered_ops(inode, start, end);
2126         if (ret) {
2127                 inode_unlock(inode);
2128                 goto out;
2129         }
2130
2131         /*
2132          * We have to do this here to avoid the priority inversion of waiting on
2133          * IO of a lower priority task while holding a transaction open.
2134          *
2135          * Also, the range length can be represented by u64, we have to do the
2136          * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2137          */
2138         ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2139         if (ret) {
2140                 up_write(&BTRFS_I(inode)->dio_sem);
2141                 inode_unlock(inode);
2142                 goto out;
2143         }
2144         atomic_inc(&root->log_batch);
2145
2146         smp_mb();
2147         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2148             BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2149                 /*
2150                  * We've had everything committed since the last time we were
2151                  * modified so clear this flag in case it was set for whatever
2152                  * reason, it's no longer relevant.
2153                  */
2154                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2155                           &BTRFS_I(inode)->runtime_flags);
2156                 /*
2157                  * An ordered extent might have started before and completed
2158                  * already with io errors, in which case the inode was not
2159                  * updated and we end up here. So check the inode's mapping
2160                  * for any errors that might have happened since we last
2161                  * checked called fsync.
2162                  */
2163                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2164                 up_write(&BTRFS_I(inode)->dio_sem);
2165                 inode_unlock(inode);
2166                 goto out;
2167         }
2168
2169         /*
2170          * We use start here because we will need to wait on the IO to complete
2171          * in btrfs_sync_log, which could require joining a transaction (for
2172          * example checking cross references in the nocow path).  If we use join
2173          * here we could get into a situation where we're waiting on IO to
2174          * happen that is blocked on a transaction trying to commit.  With start
2175          * we inc the extwriter counter, so we wait for all extwriters to exit
2176          * before we start blocking joiners.  This comment is to keep somebody
2177          * from thinking they are super smart and changing this to
2178          * btrfs_join_transaction *cough*Josef*cough*.
2179          */
2180         trans = btrfs_start_transaction(root, 0);
2181         if (IS_ERR(trans)) {
2182                 ret = PTR_ERR(trans);
2183                 up_write(&BTRFS_I(inode)->dio_sem);
2184                 inode_unlock(inode);
2185                 goto out;
2186         }
2187
2188         ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2189         if (ret < 0) {
2190                 /* Fallthrough and commit/free transaction. */
2191                 ret = 1;
2192         }
2193
2194         /* we've logged all the items and now have a consistent
2195          * version of the file in the log.  It is possible that
2196          * someone will come in and modify the file, but that's
2197          * fine because the log is consistent on disk, and we
2198          * have references to all of the file's extents
2199          *
2200          * It is possible that someone will come in and log the
2201          * file again, but that will end up using the synchronization
2202          * inside btrfs_sync_log to keep things safe.
2203          */
2204         up_write(&BTRFS_I(inode)->dio_sem);
2205         inode_unlock(inode);
2206
2207         if (ret != BTRFS_NO_LOG_SYNC) {
2208                 if (!ret) {
2209                         ret = btrfs_sync_log(trans, root, &ctx);
2210                         if (!ret) {
2211                                 ret = btrfs_end_transaction(trans);
2212                                 goto out;
2213                         }
2214                 }
2215                 ret = btrfs_commit_transaction(trans);
2216         } else {
2217                 ret = btrfs_end_transaction(trans);
2218         }
2219 out:
2220         ASSERT(list_empty(&ctx.list));
2221         err = file_check_and_advance_wb_err(file);
2222         if (!ret)
2223                 ret = err;
2224         return ret > 0 ? -EIO : ret;
2225 }
2226
2227 static const struct vm_operations_struct btrfs_file_vm_ops = {
2228         .fault          = filemap_fault,
2229         .map_pages      = filemap_map_pages,
2230         .page_mkwrite   = btrfs_page_mkwrite,
2231 };
2232
2233 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2234 {
2235         struct address_space *mapping = filp->f_mapping;
2236
2237         if (!mapping->a_ops->readpage)
2238                 return -ENOEXEC;
2239
2240         file_accessed(filp);
2241         vma->vm_ops = &btrfs_file_vm_ops;
2242
2243         return 0;
2244 }
2245
2246 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2247                           int slot, u64 start, u64 end)
2248 {
2249         struct btrfs_file_extent_item *fi;
2250         struct btrfs_key key;
2251
2252         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2253                 return 0;
2254
2255         btrfs_item_key_to_cpu(leaf, &key, slot);
2256         if (key.objectid != btrfs_ino(inode) ||
2257             key.type != BTRFS_EXTENT_DATA_KEY)
2258                 return 0;
2259
2260         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2261
2262         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2263                 return 0;
2264
2265         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2266                 return 0;
2267
2268         if (key.offset == end)
2269                 return 1;
2270         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2271                 return 1;
2272         return 0;
2273 }
2274
2275 static int fill_holes(struct btrfs_trans_handle *trans,
2276                 struct btrfs_inode *inode,
2277                 struct btrfs_path *path, u64 offset, u64 end)
2278 {
2279         struct btrfs_fs_info *fs_info = trans->fs_info;
2280         struct btrfs_root *root = inode->root;
2281         struct extent_buffer *leaf;
2282         struct btrfs_file_extent_item *fi;
2283         struct extent_map *hole_em;
2284         struct extent_map_tree *em_tree = &inode->extent_tree;
2285         struct btrfs_key key;
2286         int ret;
2287
2288         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2289                 goto out;
2290
2291         key.objectid = btrfs_ino(inode);
2292         key.type = BTRFS_EXTENT_DATA_KEY;
2293         key.offset = offset;
2294
2295         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2296         if (ret <= 0) {
2297                 /*
2298                  * We should have dropped this offset, so if we find it then
2299                  * something has gone horribly wrong.
2300                  */
2301                 if (ret == 0)
2302                         ret = -EINVAL;
2303                 return ret;
2304         }
2305
2306         leaf = path->nodes[0];
2307         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2308                 u64 num_bytes;
2309
2310                 path->slots[0]--;
2311                 fi = btrfs_item_ptr(leaf, path->slots[0],
2312                                     struct btrfs_file_extent_item);
2313                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2314                         end - offset;
2315                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2316                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2317                 btrfs_set_file_extent_offset(leaf, fi, 0);
2318                 btrfs_mark_buffer_dirty(leaf);
2319                 goto out;
2320         }
2321
2322         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2323                 u64 num_bytes;
2324
2325                 key.offset = offset;
2326                 btrfs_set_item_key_safe(fs_info, path, &key);
2327                 fi = btrfs_item_ptr(leaf, path->slots[0],
2328                                     struct btrfs_file_extent_item);
2329                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2330                         offset;
2331                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2332                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2333                 btrfs_set_file_extent_offset(leaf, fi, 0);
2334                 btrfs_mark_buffer_dirty(leaf);
2335                 goto out;
2336         }
2337         btrfs_release_path(path);
2338
2339         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2340                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2341         if (ret)
2342                 return ret;
2343
2344 out:
2345         btrfs_release_path(path);
2346
2347         hole_em = alloc_extent_map();
2348         if (!hole_em) {
2349                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2350                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2351         } else {
2352                 hole_em->start = offset;
2353                 hole_em->len = end - offset;
2354                 hole_em->ram_bytes = hole_em->len;
2355                 hole_em->orig_start = offset;
2356
2357                 hole_em->block_start = EXTENT_MAP_HOLE;
2358                 hole_em->block_len = 0;
2359                 hole_em->orig_block_len = 0;
2360                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2361                 hole_em->generation = trans->transid;
2362
2363                 do {
2364                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2365                         write_lock(&em_tree->lock);
2366                         ret = add_extent_mapping(em_tree, hole_em, 1);
2367                         write_unlock(&em_tree->lock);
2368                 } while (ret == -EEXIST);
2369                 free_extent_map(hole_em);
2370                 if (ret)
2371                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2372                                         &inode->runtime_flags);
2373         }
2374
2375         return 0;
2376 }
2377
2378 /*
2379  * Find a hole extent on given inode and change start/len to the end of hole
2380  * extent.(hole/vacuum extent whose em->start <= start &&
2381  *         em->start + em->len > start)
2382  * When a hole extent is found, return 1 and modify start/len.
2383  */
2384 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2385 {
2386         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2387         struct extent_map *em;
2388         int ret = 0;
2389
2390         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2391                               round_down(*start, fs_info->sectorsize),
2392                               round_up(*len, fs_info->sectorsize));
2393         if (IS_ERR(em))
2394                 return PTR_ERR(em);
2395
2396         /* Hole or vacuum extent(only exists in no-hole mode) */
2397         if (em->block_start == EXTENT_MAP_HOLE) {
2398                 ret = 1;
2399                 *len = em->start + em->len > *start + *len ?
2400                        0 : *start + *len - em->start - em->len;
2401                 *start = em->start + em->len;
2402         }
2403         free_extent_map(em);
2404         return ret;
2405 }
2406
2407 static int btrfs_punch_hole_lock_range(struct inode *inode,
2408                                        const u64 lockstart,
2409                                        const u64 lockend,
2410                                        struct extent_state **cached_state)
2411 {
2412         while (1) {
2413                 struct btrfs_ordered_extent *ordered;
2414                 int ret;
2415
2416                 truncate_pagecache_range(inode, lockstart, lockend);
2417
2418                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2419                                  cached_state);
2420                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2421
2422                 /*
2423                  * We need to make sure we have no ordered extents in this range
2424                  * and nobody raced in and read a page in this range, if we did
2425                  * we need to try again.
2426                  */
2427                 if ((!ordered ||
2428                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2429                      ordered->file_offset > lockend)) &&
2430                      !filemap_range_has_page(inode->i_mapping,
2431                                              lockstart, lockend)) {
2432                         if (ordered)
2433                                 btrfs_put_ordered_extent(ordered);
2434                         break;
2435                 }
2436                 if (ordered)
2437                         btrfs_put_ordered_extent(ordered);
2438                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2439                                      lockend, cached_state);
2440                 ret = btrfs_wait_ordered_range(inode, lockstart,
2441                                                lockend - lockstart + 1);
2442                 if (ret)
2443                         return ret;
2444         }
2445         return 0;
2446 }
2447
2448 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2449                                      struct inode *inode,
2450                                      struct btrfs_path *path,
2451                                      struct btrfs_clone_extent_info *clone_info,
2452                                      const u64 clone_len)
2453 {
2454         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455         struct btrfs_root *root = BTRFS_I(inode)->root;
2456         struct btrfs_file_extent_item *extent;
2457         struct extent_buffer *leaf;
2458         struct btrfs_key key;
2459         int slot;
2460         struct btrfs_ref ref = { 0 };
2461         u64 ref_offset;
2462         int ret;
2463
2464         if (clone_len == 0)
2465                 return 0;
2466
2467         if (clone_info->disk_offset == 0 &&
2468             btrfs_fs_incompat(fs_info, NO_HOLES))
2469                 return 0;
2470
2471         key.objectid = btrfs_ino(BTRFS_I(inode));
2472         key.type = BTRFS_EXTENT_DATA_KEY;
2473         key.offset = clone_info->file_offset;
2474         ret = btrfs_insert_empty_item(trans, root, path, &key,
2475                                       clone_info->item_size);
2476         if (ret)
2477                 return ret;
2478         leaf = path->nodes[0];
2479         slot = path->slots[0];
2480         write_extent_buffer(leaf, clone_info->extent_buf,
2481                             btrfs_item_ptr_offset(leaf, slot),
2482                             clone_info->item_size);
2483         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2484         btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2485         btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2486         btrfs_mark_buffer_dirty(leaf);
2487         btrfs_release_path(path);
2488
2489         /* If it's a hole, nothing more needs to be done. */
2490         if (clone_info->disk_offset == 0)
2491                 return 0;
2492
2493         inode_add_bytes(inode, clone_len);
2494         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2495                                clone_info->disk_offset,
2496                                clone_info->disk_len, 0);
2497         ref_offset = clone_info->file_offset - clone_info->data_offset;
2498         btrfs_init_data_ref(&ref, root->root_key.objectid,
2499                             btrfs_ino(BTRFS_I(inode)), ref_offset);
2500         ret = btrfs_inc_extent_ref(trans, &ref);
2501
2502         return ret;
2503 }
2504
2505 /*
2506  * The respective range must have been previously locked, as well as the inode.
2507  * The end offset is inclusive (last byte of the range).
2508  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2509  * cloning.
2510  * When cloning, we don't want to end up in a state where we dropped extents
2511  * without inserting a new one, so we must abort the transaction to avoid a
2512  * corruption.
2513  */
2514 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2515                            const u64 start, const u64 end,
2516                            struct btrfs_clone_extent_info *clone_info,
2517                            struct btrfs_trans_handle **trans_out)
2518 {
2519         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2520         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2521         u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2522         struct btrfs_root *root = BTRFS_I(inode)->root;
2523         struct btrfs_trans_handle *trans = NULL;
2524         struct btrfs_block_rsv *rsv;
2525         unsigned int rsv_count;
2526         u64 cur_offset;
2527         u64 drop_end;
2528         u64 len = end - start;
2529         int ret = 0;
2530
2531         if (end <= start)
2532                 return -EINVAL;
2533
2534         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2535         if (!rsv) {
2536                 ret = -ENOMEM;
2537                 goto out;
2538         }
2539         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2540         rsv->failfast = 1;
2541
2542         /*
2543          * 1 - update the inode
2544          * 1 - removing the extents in the range
2545          * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2546          *     an extent
2547          */
2548         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2549                 rsv_count = 3;
2550         else
2551                 rsv_count = 2;
2552
2553         trans = btrfs_start_transaction(root, rsv_count);
2554         if (IS_ERR(trans)) {
2555                 ret = PTR_ERR(trans);
2556                 trans = NULL;
2557                 goto out_free;
2558         }
2559
2560         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2561                                       min_size, false);
2562         BUG_ON(ret);
2563         trans->block_rsv = rsv;
2564
2565         cur_offset = start;
2566         while (cur_offset < end) {
2567                 ret = __btrfs_drop_extents(trans, root, inode, path,
2568                                            cur_offset, end + 1, &drop_end,
2569                                            1, 0, 0, NULL);
2570                 if (ret != -ENOSPC) {
2571                         /*
2572                          * When cloning we want to avoid transaction aborts when
2573                          * nothing was done and we are attempting to clone parts
2574                          * of inline extents, in such cases -EOPNOTSUPP is
2575                          * returned by __btrfs_drop_extents() without having
2576                          * changed anything in the file.
2577                          */
2578                         if (clone_info && ret && ret != -EOPNOTSUPP)
2579                                 btrfs_abort_transaction(trans, ret);
2580                         break;
2581                 }
2582
2583                 trans->block_rsv = &fs_info->trans_block_rsv;
2584
2585                 if (!clone_info && cur_offset < drop_end &&
2586                     cur_offset < ino_size) {
2587                         ret = fill_holes(trans, BTRFS_I(inode), path,
2588                                         cur_offset, drop_end);
2589                         if (ret) {
2590                                 /*
2591                                  * If we failed then we didn't insert our hole
2592                                  * entries for the area we dropped, so now the
2593                                  * fs is corrupted, so we must abort the
2594                                  * transaction.
2595                                  */
2596                                 btrfs_abort_transaction(trans, ret);
2597                                 break;
2598                         }
2599                 }
2600
2601                 if (clone_info && drop_end > clone_info->file_offset) {
2602                         u64 clone_len = drop_end - clone_info->file_offset;
2603
2604                         ret = btrfs_insert_clone_extent(trans, inode, path,
2605                                                         clone_info, clone_len);
2606                         if (ret) {
2607                                 btrfs_abort_transaction(trans, ret);
2608                                 break;
2609                         }
2610                         clone_info->data_len -= clone_len;
2611                         clone_info->data_offset += clone_len;
2612                         clone_info->file_offset += clone_len;
2613                 }
2614
2615                 cur_offset = drop_end;
2616
2617                 ret = btrfs_update_inode(trans, root, inode);
2618                 if (ret)
2619                         break;
2620
2621                 btrfs_end_transaction(trans);
2622                 btrfs_btree_balance_dirty(fs_info);
2623
2624                 trans = btrfs_start_transaction(root, rsv_count);
2625                 if (IS_ERR(trans)) {
2626                         ret = PTR_ERR(trans);
2627                         trans = NULL;
2628                         break;
2629                 }
2630
2631                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2632                                               rsv, min_size, false);
2633                 BUG_ON(ret);    /* shouldn't happen */
2634                 trans->block_rsv = rsv;
2635
2636                 if (!clone_info) {
2637                         ret = find_first_non_hole(inode, &cur_offset, &len);
2638                         if (unlikely(ret < 0))
2639                                 break;
2640                         if (ret && !len) {
2641                                 ret = 0;
2642                                 break;
2643                         }
2644                 }
2645         }
2646
2647         /*
2648          * If we were cloning, force the next fsync to be a full one since we
2649          * we replaced (or just dropped in the case of cloning holes when
2650          * NO_HOLES is enabled) extents and extent maps.
2651          * This is for the sake of simplicity, and cloning into files larger
2652          * than 16Mb would force the full fsync any way (when
2653          * try_release_extent_mapping() is invoked during page cache truncation.
2654          */
2655         if (clone_info)
2656                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2657                         &BTRFS_I(inode)->runtime_flags);
2658
2659         if (ret)
2660                 goto out_trans;
2661
2662         trans->block_rsv = &fs_info->trans_block_rsv;
2663         /*
2664          * If we are using the NO_HOLES feature we might have had already an
2665          * hole that overlaps a part of the region [lockstart, lockend] and
2666          * ends at (or beyond) lockend. Since we have no file extent items to
2667          * represent holes, drop_end can be less than lockend and so we must
2668          * make sure we have an extent map representing the existing hole (the
2669          * call to __btrfs_drop_extents() might have dropped the existing extent
2670          * map representing the existing hole), otherwise the fast fsync path
2671          * will not record the existence of the hole region
2672          * [existing_hole_start, lockend].
2673          */
2674         if (drop_end <= end)
2675                 drop_end = end + 1;
2676         /*
2677          * Don't insert file hole extent item if it's for a range beyond eof
2678          * (because it's useless) or if it represents a 0 bytes range (when
2679          * cur_offset == drop_end).
2680          */
2681         if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2682                 ret = fill_holes(trans, BTRFS_I(inode), path,
2683                                 cur_offset, drop_end);
2684                 if (ret) {
2685                         /* Same comment as above. */
2686                         btrfs_abort_transaction(trans, ret);
2687                         goto out_trans;
2688                 }
2689         }
2690         if (clone_info) {
2691                 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2692                                                 clone_info->data_len);
2693                 if (ret) {
2694                         btrfs_abort_transaction(trans, ret);
2695                         goto out_trans;
2696                 }
2697         }
2698
2699 out_trans:
2700         if (!trans)
2701                 goto out_free;
2702
2703         trans->block_rsv = &fs_info->trans_block_rsv;
2704         if (ret)
2705                 btrfs_end_transaction(trans);
2706         else
2707                 *trans_out = trans;
2708 out_free:
2709         btrfs_free_block_rsv(fs_info, rsv);
2710 out:
2711         return ret;
2712 }
2713
2714 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2715 {
2716         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2717         struct btrfs_root *root = BTRFS_I(inode)->root;
2718         struct extent_state *cached_state = NULL;
2719         struct btrfs_path *path;
2720         struct btrfs_trans_handle *trans = NULL;
2721         u64 lockstart;
2722         u64 lockend;
2723         u64 tail_start;
2724         u64 tail_len;
2725         u64 orig_start = offset;
2726         int ret = 0;
2727         bool same_block;
2728         u64 ino_size;
2729         bool truncated_block = false;
2730         bool updated_inode = false;
2731
2732         ret = btrfs_wait_ordered_range(inode, offset, len);
2733         if (ret)
2734                 return ret;
2735
2736         inode_lock(inode);
2737         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2738         ret = find_first_non_hole(inode, &offset, &len);
2739         if (ret < 0)
2740                 goto out_only_mutex;
2741         if (ret && !len) {
2742                 /* Already in a large hole */
2743                 ret = 0;
2744                 goto out_only_mutex;
2745         }
2746
2747         lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2748         lockend = round_down(offset + len,
2749                              btrfs_inode_sectorsize(inode)) - 1;
2750         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2751                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2752         /*
2753          * We needn't truncate any block which is beyond the end of the file
2754          * because we are sure there is no data there.
2755          */
2756         /*
2757          * Only do this if we are in the same block and we aren't doing the
2758          * entire block.
2759          */
2760         if (same_block && len < fs_info->sectorsize) {
2761                 if (offset < ino_size) {
2762                         truncated_block = true;
2763                         ret = btrfs_truncate_block(inode, offset, len, 0);
2764                 } else {
2765                         ret = 0;
2766                 }
2767                 goto out_only_mutex;
2768         }
2769
2770         /* zero back part of the first block */
2771         if (offset < ino_size) {
2772                 truncated_block = true;
2773                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2774                 if (ret) {
2775                         inode_unlock(inode);
2776                         return ret;
2777                 }
2778         }
2779
2780         /* Check the aligned pages after the first unaligned page,
2781          * if offset != orig_start, which means the first unaligned page
2782          * including several following pages are already in holes,
2783          * the extra check can be skipped */
2784         if (offset == orig_start) {
2785                 /* after truncate page, check hole again */
2786                 len = offset + len - lockstart;
2787                 offset = lockstart;
2788                 ret = find_first_non_hole(inode, &offset, &len);
2789                 if (ret < 0)
2790                         goto out_only_mutex;
2791                 if (ret && !len) {
2792                         ret = 0;
2793                         goto out_only_mutex;
2794                 }
2795                 lockstart = offset;
2796         }
2797
2798         /* Check the tail unaligned part is in a hole */
2799         tail_start = lockend + 1;
2800         tail_len = offset + len - tail_start;
2801         if (tail_len) {
2802                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2803                 if (unlikely(ret < 0))
2804                         goto out_only_mutex;
2805                 if (!ret) {
2806                         /* zero the front end of the last page */
2807                         if (tail_start + tail_len < ino_size) {
2808                                 truncated_block = true;
2809                                 ret = btrfs_truncate_block(inode,
2810                                                         tail_start + tail_len,
2811                                                         0, 1);
2812                                 if (ret)
2813                                         goto out_only_mutex;
2814                         }
2815                 }
2816         }
2817
2818         if (lockend < lockstart) {
2819                 ret = 0;
2820                 goto out_only_mutex;
2821         }
2822
2823         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2824                                           &cached_state);
2825         if (ret)
2826                 goto out_only_mutex;
2827
2828         path = btrfs_alloc_path();
2829         if (!path) {
2830                 ret = -ENOMEM;
2831                 goto out;
2832         }
2833
2834         ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2835                                      &trans);
2836         btrfs_free_path(path);
2837         if (ret)
2838                 goto out;
2839
2840         ASSERT(trans != NULL);
2841         inode_inc_iversion(inode);
2842         inode->i_mtime = inode->i_ctime = current_time(inode);
2843         ret = btrfs_update_inode(trans, root, inode);
2844         updated_inode = true;
2845         btrfs_end_transaction(trans);
2846         btrfs_btree_balance_dirty(fs_info);
2847 out:
2848         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2849                              &cached_state);
2850 out_only_mutex:
2851         if (!updated_inode && truncated_block && !ret) {
2852                 /*
2853                  * If we only end up zeroing part of a page, we still need to
2854                  * update the inode item, so that all the time fields are
2855                  * updated as well as the necessary btrfs inode in memory fields
2856                  * for detecting, at fsync time, if the inode isn't yet in the
2857                  * log tree or it's there but not up to date.
2858                  */
2859                 struct timespec64 now = current_time(inode);
2860
2861                 inode_inc_iversion(inode);
2862                 inode->i_mtime = now;
2863                 inode->i_ctime = now;
2864                 trans = btrfs_start_transaction(root, 1);
2865                 if (IS_ERR(trans)) {
2866                         ret = PTR_ERR(trans);
2867                 } else {
2868                         int ret2;
2869
2870                         ret = btrfs_update_inode(trans, root, inode);
2871                         ret2 = btrfs_end_transaction(trans);
2872                         if (!ret)
2873                                 ret = ret2;
2874                 }
2875         }
2876         inode_unlock(inode);
2877         return ret;
2878 }
2879
2880 /* Helper structure to record which range is already reserved */
2881 struct falloc_range {
2882         struct list_head list;
2883         u64 start;
2884         u64 len;
2885 };
2886
2887 /*
2888  * Helper function to add falloc range
2889  *
2890  * Caller should have locked the larger range of extent containing
2891  * [start, len)
2892  */
2893 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2894 {
2895         struct falloc_range *prev = NULL;
2896         struct falloc_range *range = NULL;
2897
2898         if (list_empty(head))
2899                 goto insert;
2900
2901         /*
2902          * As fallocate iterate by bytenr order, we only need to check
2903          * the last range.
2904          */
2905         prev = list_entry(head->prev, struct falloc_range, list);
2906         if (prev->start + prev->len == start) {
2907                 prev->len += len;
2908                 return 0;
2909         }
2910 insert:
2911         range = kmalloc(sizeof(*range), GFP_KERNEL);
2912         if (!range)
2913                 return -ENOMEM;
2914         range->start = start;
2915         range->len = len;
2916         list_add_tail(&range->list, head);
2917         return 0;
2918 }
2919
2920 static int btrfs_fallocate_update_isize(struct inode *inode,
2921                                         const u64 end,
2922                                         const int mode)
2923 {
2924         struct btrfs_trans_handle *trans;
2925         struct btrfs_root *root = BTRFS_I(inode)->root;
2926         int ret;
2927         int ret2;
2928
2929         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2930                 return 0;
2931
2932         trans = btrfs_start_transaction(root, 1);
2933         if (IS_ERR(trans))
2934                 return PTR_ERR(trans);
2935
2936         inode->i_ctime = current_time(inode);
2937         i_size_write(inode, end);
2938         btrfs_ordered_update_i_size(inode, end, NULL);
2939         ret = btrfs_update_inode(trans, root, inode);
2940         ret2 = btrfs_end_transaction(trans);
2941
2942         return ret ? ret : ret2;
2943 }
2944
2945 enum {
2946         RANGE_BOUNDARY_WRITTEN_EXTENT,
2947         RANGE_BOUNDARY_PREALLOC_EXTENT,
2948         RANGE_BOUNDARY_HOLE,
2949 };
2950
2951 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2952                                                  u64 offset)
2953 {
2954         const u64 sectorsize = btrfs_inode_sectorsize(inode);
2955         struct extent_map *em;
2956         int ret;
2957
2958         offset = round_down(offset, sectorsize);
2959         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
2960         if (IS_ERR(em))
2961                 return PTR_ERR(em);
2962
2963         if (em->block_start == EXTENT_MAP_HOLE)
2964                 ret = RANGE_BOUNDARY_HOLE;
2965         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2966                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2967         else
2968                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2969
2970         free_extent_map(em);
2971         return ret;
2972 }
2973
2974 static int btrfs_zero_range(struct inode *inode,
2975                             loff_t offset,
2976                             loff_t len,
2977                             const int mode)
2978 {
2979         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2980         struct extent_map *em;
2981         struct extent_changeset *data_reserved = NULL;
2982         int ret;
2983         u64 alloc_hint = 0;
2984         const u64 sectorsize = btrfs_inode_sectorsize(inode);
2985         u64 alloc_start = round_down(offset, sectorsize);
2986         u64 alloc_end = round_up(offset + len, sectorsize);
2987         u64 bytes_to_reserve = 0;
2988         bool space_reserved = false;
2989
2990         inode_dio_wait(inode);
2991
2992         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2993                               alloc_end - alloc_start);
2994         if (IS_ERR(em)) {
2995                 ret = PTR_ERR(em);
2996                 goto out;
2997         }
2998
2999         /*
3000          * Avoid hole punching and extent allocation for some cases. More cases
3001          * could be considered, but these are unlikely common and we keep things
3002          * as simple as possible for now. Also, intentionally, if the target
3003          * range contains one or more prealloc extents together with regular
3004          * extents and holes, we drop all the existing extents and allocate a
3005          * new prealloc extent, so that we get a larger contiguous disk extent.
3006          */
3007         if (em->start <= alloc_start &&
3008             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3009                 const u64 em_end = em->start + em->len;
3010
3011                 if (em_end >= offset + len) {
3012                         /*
3013                          * The whole range is already a prealloc extent,
3014                          * do nothing except updating the inode's i_size if
3015                          * needed.
3016                          */
3017                         free_extent_map(em);
3018                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3019                                                            mode);
3020                         goto out;
3021                 }
3022                 /*
3023                  * Part of the range is already a prealloc extent, so operate
3024                  * only on the remaining part of the range.
3025                  */
3026                 alloc_start = em_end;
3027                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3028                 len = offset + len - alloc_start;
3029                 offset = alloc_start;
3030                 alloc_hint = em->block_start + em->len;
3031         }
3032         free_extent_map(em);
3033
3034         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3035             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3036                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3037                                       sectorsize);
3038                 if (IS_ERR(em)) {
3039                         ret = PTR_ERR(em);
3040                         goto out;
3041                 }
3042
3043                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3044                         free_extent_map(em);
3045                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3046                                                            mode);
3047                         goto out;
3048                 }
3049                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3050                         free_extent_map(em);
3051                         ret = btrfs_truncate_block(inode, offset, len, 0);
3052                         if (!ret)
3053                                 ret = btrfs_fallocate_update_isize(inode,
3054                                                                    offset + len,
3055                                                                    mode);
3056                         return ret;
3057                 }
3058                 free_extent_map(em);
3059                 alloc_start = round_down(offset, sectorsize);
3060                 alloc_end = alloc_start + sectorsize;
3061                 goto reserve_space;
3062         }
3063
3064         alloc_start = round_up(offset, sectorsize);
3065         alloc_end = round_down(offset + len, sectorsize);
3066
3067         /*
3068          * For unaligned ranges, check the pages at the boundaries, they might
3069          * map to an extent, in which case we need to partially zero them, or
3070          * they might map to a hole, in which case we need our allocation range
3071          * to cover them.
3072          */
3073         if (!IS_ALIGNED(offset, sectorsize)) {
3074                 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3075                 if (ret < 0)
3076                         goto out;
3077                 if (ret == RANGE_BOUNDARY_HOLE) {
3078                         alloc_start = round_down(offset, sectorsize);
3079                         ret = 0;
3080                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3081                         ret = btrfs_truncate_block(inode, offset, 0, 0);
3082                         if (ret)
3083                                 goto out;
3084                 } else {
3085                         ret = 0;
3086                 }
3087         }
3088
3089         if (!IS_ALIGNED(offset + len, sectorsize)) {
3090                 ret = btrfs_zero_range_check_range_boundary(inode,
3091                                                             offset + len);
3092                 if (ret < 0)
3093                         goto out;
3094                 if (ret == RANGE_BOUNDARY_HOLE) {
3095                         alloc_end = round_up(offset + len, sectorsize);
3096                         ret = 0;
3097                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3098                         ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3099                         if (ret)
3100                                 goto out;
3101                 } else {
3102                         ret = 0;
3103                 }
3104         }
3105
3106 reserve_space:
3107         if (alloc_start < alloc_end) {
3108                 struct extent_state *cached_state = NULL;
3109                 const u64 lockstart = alloc_start;
3110                 const u64 lockend = alloc_end - 1;
3111
3112                 bytes_to_reserve = alloc_end - alloc_start;
3113                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3114                                                       bytes_to_reserve);
3115                 if (ret < 0)
3116                         goto out;
3117                 space_reserved = true;
3118                 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3119                                                 alloc_start, bytes_to_reserve);
3120                 if (ret)
3121                         goto out;
3122                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3123                                                   &cached_state);
3124                 if (ret)
3125                         goto out;
3126                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3127                                                 alloc_end - alloc_start,
3128                                                 i_blocksize(inode),
3129                                                 offset + len, &alloc_hint);
3130                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3131                                      lockend, &cached_state);
3132                 /* btrfs_prealloc_file_range releases reserved space on error */
3133                 if (ret) {
3134                         space_reserved = false;
3135                         goto out;
3136                 }
3137         }
3138         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3139  out:
3140         if (ret && space_reserved)
3141                 btrfs_free_reserved_data_space(inode, data_reserved,
3142                                                alloc_start, bytes_to_reserve);
3143         extent_changeset_free(data_reserved);
3144
3145         return ret;
3146 }
3147
3148 static long btrfs_fallocate(struct file *file, int mode,
3149                             loff_t offset, loff_t len)
3150 {
3151         struct inode *inode = file_inode(file);
3152         struct extent_state *cached_state = NULL;
3153         struct extent_changeset *data_reserved = NULL;
3154         struct falloc_range *range;
3155         struct falloc_range *tmp;
3156         struct list_head reserve_list;
3157         u64 cur_offset;
3158         u64 last_byte;
3159         u64 alloc_start;
3160         u64 alloc_end;
3161         u64 alloc_hint = 0;
3162         u64 locked_end;
3163         u64 actual_end = 0;
3164         struct extent_map *em;
3165         int blocksize = btrfs_inode_sectorsize(inode);
3166         int ret;
3167
3168         alloc_start = round_down(offset, blocksize);
3169         alloc_end = round_up(offset + len, blocksize);
3170         cur_offset = alloc_start;
3171
3172         /* Make sure we aren't being give some crap mode */
3173         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3174                      FALLOC_FL_ZERO_RANGE))
3175                 return -EOPNOTSUPP;
3176
3177         if (mode & FALLOC_FL_PUNCH_HOLE)
3178                 return btrfs_punch_hole(inode, offset, len);
3179
3180         /*
3181          * Only trigger disk allocation, don't trigger qgroup reserve
3182          *
3183          * For qgroup space, it will be checked later.
3184          */
3185         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3186                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3187                                                       alloc_end - alloc_start);
3188                 if (ret < 0)
3189                         return ret;
3190         }
3191
3192         inode_lock(inode);
3193
3194         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3195                 ret = inode_newsize_ok(inode, offset + len);
3196                 if (ret)
3197                         goto out;
3198         }
3199
3200         /*
3201          * TODO: Move these two operations after we have checked
3202          * accurate reserved space, or fallocate can still fail but
3203          * with page truncated or size expanded.
3204          *
3205          * But that's a minor problem and won't do much harm BTW.
3206          */
3207         if (alloc_start > inode->i_size) {
3208                 ret = btrfs_cont_expand(inode, i_size_read(inode),
3209                                         alloc_start);
3210                 if (ret)
3211                         goto out;
3212         } else if (offset + len > inode->i_size) {
3213                 /*
3214                  * If we are fallocating from the end of the file onward we
3215                  * need to zero out the end of the block if i_size lands in the
3216                  * middle of a block.
3217                  */
3218                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3219                 if (ret)
3220                         goto out;
3221         }
3222
3223         /*
3224          * wait for ordered IO before we have any locks.  We'll loop again
3225          * below with the locks held.
3226          */
3227         ret = btrfs_wait_ordered_range(inode, alloc_start,
3228                                        alloc_end - alloc_start);
3229         if (ret)
3230                 goto out;
3231
3232         if (mode & FALLOC_FL_ZERO_RANGE) {
3233                 ret = btrfs_zero_range(inode, offset, len, mode);
3234                 inode_unlock(inode);
3235                 return ret;
3236         }
3237
3238         locked_end = alloc_end - 1;
3239         while (1) {
3240                 struct btrfs_ordered_extent *ordered;
3241
3242                 /* the extent lock is ordered inside the running
3243                  * transaction
3244                  */
3245                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3246                                  locked_end, &cached_state);
3247                 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3248
3249                 if (ordered &&
3250                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3251                     ordered->file_offset < alloc_end) {
3252                         btrfs_put_ordered_extent(ordered);
3253                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3254                                              alloc_start, locked_end,
3255                                              &cached_state);
3256                         /*
3257                          * we can't wait on the range with the transaction
3258                          * running or with the extent lock held
3259                          */
3260                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3261                                                        alloc_end - alloc_start);
3262                         if (ret)
3263                                 goto out;
3264                 } else {
3265                         if (ordered)
3266                                 btrfs_put_ordered_extent(ordered);
3267                         break;
3268                 }
3269         }
3270
3271         /* First, check if we exceed the qgroup limit */
3272         INIT_LIST_HEAD(&reserve_list);
3273         while (cur_offset < alloc_end) {
3274                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3275                                       alloc_end - cur_offset);
3276                 if (IS_ERR(em)) {
3277                         ret = PTR_ERR(em);
3278                         break;
3279                 }
3280                 last_byte = min(extent_map_end(em), alloc_end);
3281                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3282                 last_byte = ALIGN(last_byte, blocksize);
3283                 if (em->block_start == EXTENT_MAP_HOLE ||
3284                     (cur_offset >= inode->i_size &&
3285                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3286                         ret = add_falloc_range(&reserve_list, cur_offset,
3287                                                last_byte - cur_offset);
3288                         if (ret < 0) {
3289                                 free_extent_map(em);
3290                                 break;
3291                         }
3292                         ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3293                                         cur_offset, last_byte - cur_offset);
3294                         if (ret < 0) {
3295                                 cur_offset = last_byte;
3296                                 free_extent_map(em);
3297                                 break;
3298                         }
3299                 } else {
3300                         /*
3301                          * Do not need to reserve unwritten extent for this
3302                          * range, free reserved data space first, otherwise
3303                          * it'll result in false ENOSPC error.
3304                          */
3305                         btrfs_free_reserved_data_space(inode, data_reserved,
3306                                         cur_offset, last_byte - cur_offset);
3307                 }
3308                 free_extent_map(em);
3309                 cur_offset = last_byte;
3310         }
3311
3312         /*
3313          * If ret is still 0, means we're OK to fallocate.
3314          * Or just cleanup the list and exit.
3315          */
3316         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3317                 if (!ret)
3318                         ret = btrfs_prealloc_file_range(inode, mode,
3319                                         range->start,
3320                                         range->len, i_blocksize(inode),
3321                                         offset + len, &alloc_hint);
3322                 else
3323                         btrfs_free_reserved_data_space(inode,
3324                                         data_reserved, range->start,
3325                                         range->len);
3326                 list_del(&range->list);
3327                 kfree(range);
3328         }
3329         if (ret < 0)
3330                 goto out_unlock;
3331
3332         /*
3333          * We didn't need to allocate any more space, but we still extended the
3334          * size of the file so we need to update i_size and the inode item.
3335          */
3336         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3337 out_unlock:
3338         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3339                              &cached_state);
3340 out:
3341         inode_unlock(inode);
3342         /* Let go of our reservation. */
3343         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3344                 btrfs_free_reserved_data_space(inode, data_reserved,
3345                                 cur_offset, alloc_end - cur_offset);
3346         extent_changeset_free(data_reserved);
3347         return ret;
3348 }
3349
3350 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3351                                   int whence)
3352 {
3353         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3354         struct extent_map *em = NULL;
3355         struct extent_state *cached_state = NULL;
3356         loff_t i_size = inode->i_size;
3357         u64 lockstart;
3358         u64 lockend;
3359         u64 start;
3360         u64 len;
3361         int ret = 0;
3362
3363         if (i_size == 0 || offset >= i_size)
3364                 return -ENXIO;
3365
3366         /*
3367          * offset can be negative, in this case we start finding DATA/HOLE from
3368          * the very start of the file.
3369          */
3370         start = max_t(loff_t, 0, offset);
3371
3372         lockstart = round_down(start, fs_info->sectorsize);
3373         lockend = round_up(i_size, fs_info->sectorsize);
3374         if (lockend <= lockstart)
3375                 lockend = lockstart + fs_info->sectorsize;
3376         lockend--;
3377         len = lockend - lockstart + 1;
3378
3379         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3380                          &cached_state);
3381
3382         while (start < i_size) {
3383                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3384                 if (IS_ERR(em)) {
3385                         ret = PTR_ERR(em);
3386                         em = NULL;
3387                         break;
3388                 }
3389
3390                 if (whence == SEEK_HOLE &&
3391                     (em->block_start == EXTENT_MAP_HOLE ||
3392                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3393                         break;
3394                 else if (whence == SEEK_DATA &&
3395                            (em->block_start != EXTENT_MAP_HOLE &&
3396                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3397                         break;
3398
3399                 start = em->start + em->len;
3400                 free_extent_map(em);
3401                 em = NULL;
3402                 cond_resched();
3403         }
3404         free_extent_map(em);
3405         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3406                              &cached_state);
3407         if (ret) {
3408                 offset = ret;
3409         } else {
3410                 if (whence == SEEK_DATA && start >= i_size)
3411                         offset = -ENXIO;
3412                 else
3413                         offset = min_t(loff_t, start, i_size);
3414         }
3415
3416         return offset;
3417 }
3418
3419 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3420 {
3421         struct inode *inode = file->f_mapping->host;
3422
3423         switch (whence) {
3424         default:
3425                 return generic_file_llseek(file, offset, whence);
3426         case SEEK_DATA:
3427         case SEEK_HOLE:
3428                 inode_lock_shared(inode);
3429                 offset = find_desired_extent(inode, offset, whence);
3430                 inode_unlock_shared(inode);
3431                 break;
3432         }
3433
3434         if (offset < 0)
3435                 return offset;
3436
3437         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3438 }
3439
3440 static int btrfs_file_open(struct inode *inode, struct file *filp)
3441 {
3442         filp->f_mode |= FMODE_NOWAIT;
3443         return generic_file_open(inode, filp);
3444 }
3445
3446 const struct file_operations btrfs_file_operations = {
3447         .llseek         = btrfs_file_llseek,
3448         .read_iter      = generic_file_read_iter,
3449         .splice_read    = generic_file_splice_read,
3450         .write_iter     = btrfs_file_write_iter,
3451         .mmap           = btrfs_file_mmap,
3452         .open           = btrfs_file_open,
3453         .release        = btrfs_release_file,
3454         .fsync          = btrfs_sync_file,
3455         .fallocate      = btrfs_fallocate,
3456         .unlocked_ioctl = btrfs_ioctl,
3457 #ifdef CONFIG_COMPAT
3458         .compat_ioctl   = btrfs_compat_ioctl,
3459 #endif
3460         .remap_file_range = btrfs_remap_file_range,
3461 };
3462
3463 void __cold btrfs_auto_defrag_exit(void)
3464 {
3465         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3466 }
3467
3468 int __init btrfs_auto_defrag_init(void)
3469 {
3470         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3471                                         sizeof(struct inode_defrag), 0,
3472                                         SLAB_MEM_SPREAD,
3473                                         NULL);
3474         if (!btrfs_inode_defrag_cachep)
3475                 return -ENOMEM;
3476
3477         return 0;
3478 }
3479
3480 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3481 {
3482         int ret;
3483
3484         /*
3485          * So with compression we will find and lock a dirty page and clear the
3486          * first one as dirty, setup an async extent, and immediately return
3487          * with the entire range locked but with nobody actually marked with
3488          * writeback.  So we can't just filemap_write_and_wait_range() and
3489          * expect it to work since it will just kick off a thread to do the
3490          * actual work.  So we need to call filemap_fdatawrite_range _again_
3491          * since it will wait on the page lock, which won't be unlocked until
3492          * after the pages have been marked as writeback and so we're good to go
3493          * from there.  We have to do this otherwise we'll miss the ordered
3494          * extents and that results in badness.  Please Josef, do not think you
3495          * know better and pull this out at some point in the future, it is
3496          * right and you are wrong.
3497          */
3498         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3499         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3500                              &BTRFS_I(inode)->runtime_flags))
3501                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3502
3503         return ret;
3504 }