]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/tests/btrfs-tests.c
Merge branch 'pm-cpufreq'
[linux.git] / fs / btrfs / tests / btrfs-tests.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013 Fusion IO.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include "btrfs-tests.h"
11 #include "../ctree.h"
12 #include "../free-space-cache.h"
13 #include "../free-space-tree.h"
14 #include "../transaction.h"
15 #include "../volumes.h"
16 #include "../disk-io.h"
17 #include "../qgroup.h"
18 #include "../block-group.h"
19
20 static struct vfsmount *test_mnt = NULL;
21
22 const char *test_error[] = {
23         [TEST_ALLOC_FS_INFO]         = "cannot allocate fs_info",
24         [TEST_ALLOC_ROOT]            = "cannot allocate root",
25         [TEST_ALLOC_EXTENT_BUFFER]   = "cannot extent buffer",
26         [TEST_ALLOC_PATH]            = "cannot allocate path",
27         [TEST_ALLOC_INODE]           = "cannot allocate inode",
28         [TEST_ALLOC_BLOCK_GROUP]     = "cannot allocate block group",
29         [TEST_ALLOC_EXTENT_MAP]      = "cannot allocate extent map",
30 };
31
32 static const struct super_operations btrfs_test_super_ops = {
33         .alloc_inode    = btrfs_alloc_inode,
34         .destroy_inode  = btrfs_test_destroy_inode,
35 };
36
37
38 static int btrfs_test_init_fs_context(struct fs_context *fc)
39 {
40         struct pseudo_fs_context *ctx = init_pseudo(fc, BTRFS_TEST_MAGIC);
41         if (!ctx)
42                 return -ENOMEM;
43         ctx->ops = &btrfs_test_super_ops;
44         return 0;
45 }
46
47 static struct file_system_type test_type = {
48         .name           = "btrfs_test_fs",
49         .init_fs_context = btrfs_test_init_fs_context,
50         .kill_sb        = kill_anon_super,
51 };
52
53 struct inode *btrfs_new_test_inode(void)
54 {
55         struct inode *inode;
56
57         inode = new_inode(test_mnt->mnt_sb);
58         if (inode)
59                 inode_init_owner(inode, NULL, S_IFREG);
60
61         return inode;
62 }
63
64 static int btrfs_init_test_fs(void)
65 {
66         int ret;
67
68         ret = register_filesystem(&test_type);
69         if (ret) {
70                 printk(KERN_ERR "btrfs: cannot register test file system\n");
71                 return ret;
72         }
73
74         test_mnt = kern_mount(&test_type);
75         if (IS_ERR(test_mnt)) {
76                 printk(KERN_ERR "btrfs: cannot mount test file system\n");
77                 unregister_filesystem(&test_type);
78                 return PTR_ERR(test_mnt);
79         }
80         return 0;
81 }
82
83 static void btrfs_destroy_test_fs(void)
84 {
85         kern_unmount(test_mnt);
86         unregister_filesystem(&test_type);
87 }
88
89 struct btrfs_device *btrfs_alloc_dummy_device(struct btrfs_fs_info *fs_info)
90 {
91         struct btrfs_device *dev;
92
93         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
94         if (!dev)
95                 return ERR_PTR(-ENOMEM);
96
97         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
98         INIT_LIST_HEAD(&dev->dev_list);
99         list_add(&dev->dev_list, &fs_info->fs_devices->devices);
100
101         return dev;
102 }
103
104 static void btrfs_free_dummy_device(struct btrfs_device *dev)
105 {
106         extent_io_tree_release(&dev->alloc_state);
107         kfree(dev);
108 }
109
110 struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize)
111 {
112         struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info),
113                                                 GFP_KERNEL);
114
115         if (!fs_info)
116                 return fs_info;
117         fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices),
118                                       GFP_KERNEL);
119         if (!fs_info->fs_devices) {
120                 kfree(fs_info);
121                 return NULL;
122         }
123         fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block),
124                                       GFP_KERNEL);
125         if (!fs_info->super_copy) {
126                 kfree(fs_info->fs_devices);
127                 kfree(fs_info);
128                 return NULL;
129         }
130
131         fs_info->nodesize = nodesize;
132         fs_info->sectorsize = sectorsize;
133
134         if (init_srcu_struct(&fs_info->subvol_srcu)) {
135                 kfree(fs_info->fs_devices);
136                 kfree(fs_info->super_copy);
137                 kfree(fs_info);
138                 return NULL;
139         }
140
141         spin_lock_init(&fs_info->buffer_lock);
142         spin_lock_init(&fs_info->qgroup_lock);
143         spin_lock_init(&fs_info->super_lock);
144         spin_lock_init(&fs_info->fs_roots_radix_lock);
145         mutex_init(&fs_info->qgroup_ioctl_lock);
146         mutex_init(&fs_info->qgroup_rescan_lock);
147         rwlock_init(&fs_info->tree_mod_log_lock);
148         fs_info->running_transaction = NULL;
149         fs_info->qgroup_tree = RB_ROOT;
150         fs_info->qgroup_ulist = NULL;
151         atomic64_set(&fs_info->tree_mod_seq, 0);
152         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
153         INIT_LIST_HEAD(&fs_info->dead_roots);
154         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
155         INIT_LIST_HEAD(&fs_info->fs_devices->devices);
156         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
157         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
158         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
159                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
160         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
161                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
162         extent_map_tree_init(&fs_info->mapping_tree);
163         fs_info->pinned_extents = &fs_info->freed_extents[0];
164         set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
165
166         test_mnt->mnt_sb->s_fs_info = fs_info;
167
168         return fs_info;
169 }
170
171 void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
172 {
173         struct radix_tree_iter iter;
174         void **slot;
175         struct btrfs_device *dev, *tmp;
176
177         if (!fs_info)
178                 return;
179
180         if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO,
181                               &fs_info->fs_state)))
182                 return;
183
184         test_mnt->mnt_sb->s_fs_info = NULL;
185
186         spin_lock(&fs_info->buffer_lock);
187         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) {
188                 struct extent_buffer *eb;
189
190                 eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock);
191                 if (!eb)
192                         continue;
193                 /* Shouldn't happen but that kind of thinking creates CVE's */
194                 if (radix_tree_exception(eb)) {
195                         if (radix_tree_deref_retry(eb))
196                                 slot = radix_tree_iter_retry(&iter);
197                         continue;
198                 }
199                 slot = radix_tree_iter_resume(slot, &iter);
200                 spin_unlock(&fs_info->buffer_lock);
201                 free_extent_buffer_stale(eb);
202                 spin_lock(&fs_info->buffer_lock);
203         }
204         spin_unlock(&fs_info->buffer_lock);
205
206         btrfs_mapping_tree_free(&fs_info->mapping_tree);
207         list_for_each_entry_safe(dev, tmp, &fs_info->fs_devices->devices,
208                                  dev_list) {
209                 btrfs_free_dummy_device(dev);
210         }
211         btrfs_free_qgroup_config(fs_info);
212         btrfs_free_fs_roots(fs_info);
213         cleanup_srcu_struct(&fs_info->subvol_srcu);
214         kfree(fs_info->super_copy);
215         kfree(fs_info->fs_devices);
216         kfree(fs_info);
217 }
218
219 void btrfs_free_dummy_root(struct btrfs_root *root)
220 {
221         if (!root)
222                 return;
223         /* Will be freed by btrfs_free_fs_roots */
224         if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state)))
225                 return;
226         if (root->node) {
227                 /* One for allocate_extent_buffer */
228                 free_extent_buffer(root->node);
229         }
230         kfree(root);
231 }
232
233 struct btrfs_block_group *
234 btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info,
235                               unsigned long length)
236 {
237         struct btrfs_block_group *cache;
238
239         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
240         if (!cache)
241                 return NULL;
242         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
243                                         GFP_KERNEL);
244         if (!cache->free_space_ctl) {
245                 kfree(cache);
246                 return NULL;
247         }
248
249         cache->start = 0;
250         cache->length = length;
251         cache->full_stripe_len = fs_info->sectorsize;
252         cache->fs_info = fs_info;
253
254         INIT_LIST_HEAD(&cache->list);
255         INIT_LIST_HEAD(&cache->cluster_list);
256         INIT_LIST_HEAD(&cache->bg_list);
257         btrfs_init_free_space_ctl(cache);
258         mutex_init(&cache->free_space_lock);
259
260         return cache;
261 }
262
263 void btrfs_free_dummy_block_group(struct btrfs_block_group *cache)
264 {
265         if (!cache)
266                 return;
267         __btrfs_remove_free_space_cache(cache->free_space_ctl);
268         kfree(cache->free_space_ctl);
269         kfree(cache);
270 }
271
272 void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans,
273                             struct btrfs_fs_info *fs_info)
274 {
275         memset(trans, 0, sizeof(*trans));
276         trans->transid = 1;
277         trans->type = __TRANS_DUMMY;
278         trans->fs_info = fs_info;
279 }
280
281 int btrfs_run_sanity_tests(void)
282 {
283         int ret, i;
284         u32 sectorsize, nodesize;
285         u32 test_sectorsize[] = {
286                 PAGE_SIZE,
287         };
288         ret = btrfs_init_test_fs();
289         if (ret)
290                 return ret;
291         for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) {
292                 sectorsize = test_sectorsize[i];
293                 for (nodesize = sectorsize;
294                      nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE;
295                      nodesize <<= 1) {
296                         pr_info("BTRFS: selftest: sectorsize: %u  nodesize: %u\n",
297                                 sectorsize, nodesize);
298                         ret = btrfs_test_free_space_cache(sectorsize, nodesize);
299                         if (ret)
300                                 goto out;
301                         ret = btrfs_test_extent_buffer_operations(sectorsize,
302                                 nodesize);
303                         if (ret)
304                                 goto out;
305                         ret = btrfs_test_extent_io(sectorsize, nodesize);
306                         if (ret)
307                                 goto out;
308                         ret = btrfs_test_inodes(sectorsize, nodesize);
309                         if (ret)
310                                 goto out;
311                         ret = btrfs_test_qgroups(sectorsize, nodesize);
312                         if (ret)
313                                 goto out;
314                         ret = btrfs_test_free_space_tree(sectorsize, nodesize);
315                         if (ret)
316                                 goto out;
317                 }
318         }
319         ret = btrfs_test_extent_map();
320
321 out:
322         btrfs_destroy_test_fs();
323         return ret;
324 }