]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/volumes.c
btrfs: ref-verify: fix memory leaks
[linux.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36         [BTRFS_RAID_RAID10] = {
37                 .sub_stripes    = 2,
38                 .dev_stripes    = 1,
39                 .devs_max       = 0,    /* 0 == as many as possible */
40                 .devs_min       = 4,
41                 .tolerated_failures = 1,
42                 .devs_increment = 2,
43                 .ncopies        = 2,
44                 .nparity        = 0,
45                 .raid_name      = "raid10",
46                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
47                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48         },
49         [BTRFS_RAID_RAID1] = {
50                 .sub_stripes    = 1,
51                 .dev_stripes    = 1,
52                 .devs_max       = 2,
53                 .devs_min       = 2,
54                 .tolerated_failures = 1,
55                 .devs_increment = 2,
56                 .ncopies        = 2,
57                 .nparity        = 0,
58                 .raid_name      = "raid1",
59                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
60                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61         },
62         [BTRFS_RAID_RAID1C3] = {
63                 .sub_stripes    = 1,
64                 .dev_stripes    = 1,
65                 .devs_max       = 3,
66                 .devs_min       = 3,
67                 .tolerated_failures = 2,
68                 .devs_increment = 3,
69                 .ncopies        = 3,
70                 .nparity        = 0,
71                 .raid_name      = "raid1c3",
72                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
73                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74         },
75         [BTRFS_RAID_RAID1C4] = {
76                 .sub_stripes    = 1,
77                 .dev_stripes    = 1,
78                 .devs_max       = 4,
79                 .devs_min       = 4,
80                 .tolerated_failures = 3,
81                 .devs_increment = 4,
82                 .ncopies        = 4,
83                 .nparity        = 0,
84                 .raid_name      = "raid1c4",
85                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
86                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87         },
88         [BTRFS_RAID_DUP] = {
89                 .sub_stripes    = 1,
90                 .dev_stripes    = 2,
91                 .devs_max       = 1,
92                 .devs_min       = 1,
93                 .tolerated_failures = 0,
94                 .devs_increment = 1,
95                 .ncopies        = 2,
96                 .nparity        = 0,
97                 .raid_name      = "dup",
98                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
99                 .mindev_error   = 0,
100         },
101         [BTRFS_RAID_RAID0] = {
102                 .sub_stripes    = 1,
103                 .dev_stripes    = 1,
104                 .devs_max       = 0,
105                 .devs_min       = 2,
106                 .tolerated_failures = 0,
107                 .devs_increment = 1,
108                 .ncopies        = 1,
109                 .nparity        = 0,
110                 .raid_name      = "raid0",
111                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
112                 .mindev_error   = 0,
113         },
114         [BTRFS_RAID_SINGLE] = {
115                 .sub_stripes    = 1,
116                 .dev_stripes    = 1,
117                 .devs_max       = 1,
118                 .devs_min       = 1,
119                 .tolerated_failures = 0,
120                 .devs_increment = 1,
121                 .ncopies        = 1,
122                 .nparity        = 0,
123                 .raid_name      = "single",
124                 .bg_flag        = 0,
125                 .mindev_error   = 0,
126         },
127         [BTRFS_RAID_RAID5] = {
128                 .sub_stripes    = 1,
129                 .dev_stripes    = 1,
130                 .devs_max       = 0,
131                 .devs_min       = 2,
132                 .tolerated_failures = 1,
133                 .devs_increment = 1,
134                 .ncopies        = 1,
135                 .nparity        = 1,
136                 .raid_name      = "raid5",
137                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
138                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139         },
140         [BTRFS_RAID_RAID6] = {
141                 .sub_stripes    = 1,
142                 .dev_stripes    = 1,
143                 .devs_max       = 0,
144                 .devs_min       = 3,
145                 .tolerated_failures = 2,
146                 .devs_increment = 1,
147                 .ncopies        = 1,
148                 .nparity        = 2,
149                 .raid_name      = "raid6",
150                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
151                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152         },
153 };
154
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157         const int index = btrfs_bg_flags_to_raid_index(flags);
158
159         if (index >= BTRFS_NR_RAID_TYPES)
160                 return NULL;
161
162         return btrfs_raid_array[index].raid_name;
163 }
164
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171         int i;
172         int ret;
173         char *bp = buf;
174         u64 flags = bg_flags;
175         u32 size_bp = size_buf;
176
177         if (!flags) {
178                 strcpy(bp, "NONE");
179                 return;
180         }
181
182 #define DESCRIBE_FLAG(flag, desc)                                               \
183         do {                                                            \
184                 if (flags & (flag)) {                                   \
185                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
186                         if (ret < 0 || ret >= size_bp)                  \
187                                 goto out_overflow;                      \
188                         size_bp -= ret;                                 \
189                         bp += ret;                                      \
190                         flags &= ~(flag);                               \
191                 }                                                       \
192         } while (0)
193
194         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201                               btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203
204         if (flags) {
205                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206                 size_bp -= ret;
207         }
208
209         if (size_bp < size_buf)
210                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212         /*
213          * The text is trimmed, it's up to the caller to provide sufficiently
214          * large buffer
215          */
216 out_overflow:;
217 }
218
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224                              enum btrfs_map_op op,
225                              u64 logical, u64 *length,
226                              struct btrfs_bio **bbio_ret,
227                              int mirror_num, int need_raid_map);
228
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list!
250  *
251  * btrfs_device::name - renames (write side), read is RCU
252  *
253  * fs_devices::device_list_mutex (per-fs, with RCU)
254  * ------------------------------------------------
255  * protects updates to fs_devices::devices, ie. adding and deleting
256  *
257  * simple list traversal with read-only actions can be done with RCU protection
258  *
259  * may be used to exclude some operations from running concurrently without any
260  * modifications to the list (see write_all_supers)
261  *
262  * balance_mutex
263  * -------------
264  * protects balance structures (status, state) and context accessed from
265  * several places (internally, ioctl)
266  *
267  * chunk_mutex
268  * -----------
269  * protects chunks, adding or removing during allocation, trim or when a new
270  * device is added/removed. Additionally it also protects post_commit_list of
271  * individual devices, since they can be added to the transaction's
272  * post_commit_list only with chunk_mutex held.
273  *
274  * cleaner_mutex
275  * -------------
276  * a big lock that is held by the cleaner thread and prevents running subvolume
277  * cleaning together with relocation or delayed iputs
278  *
279  *
280  * Lock nesting
281  * ============
282  *
283  * uuid_mutex
284  *   volume_mutex
285  *     device_list_mutex
286  *       chunk_mutex
287  *     balance_mutex
288  *
289  *
290  * Exclusive operations, BTRFS_FS_EXCL_OP
291  * ======================================
292  *
293  * Maintains the exclusivity of the following operations that apply to the
294  * whole filesystem and cannot run in parallel.
295  *
296  * - Balance (*)
297  * - Device add
298  * - Device remove
299  * - Device replace (*)
300  * - Resize
301  *
302  * The device operations (as above) can be in one of the following states:
303  *
304  * - Running state
305  * - Paused state
306  * - Completed state
307  *
308  * Only device operations marked with (*) can go into the Paused state for the
309  * following reasons:
310  *
311  * - ioctl (only Balance can be Paused through ioctl)
312  * - filesystem remounted as read-only
313  * - filesystem unmounted and mounted as read-only
314  * - system power-cycle and filesystem mounted as read-only
315  * - filesystem or device errors leading to forced read-only
316  *
317  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
318  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
319  * A device operation in Paused or Running state can be canceled or resumed
320  * either by ioctl (Balance only) or when remounted as read-write.
321  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
322  * completed.
323  */
324
325 DEFINE_MUTEX(uuid_mutex);
326 static LIST_HEAD(fs_uuids);
327 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
328 {
329         return &fs_uuids;
330 }
331
332 /*
333  * alloc_fs_devices - allocate struct btrfs_fs_devices
334  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
335  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
336  *
337  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
338  * The returned struct is not linked onto any lists and can be destroyed with
339  * kfree() right away.
340  */
341 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
342                                                  const u8 *metadata_fsid)
343 {
344         struct btrfs_fs_devices *fs_devs;
345
346         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
347         if (!fs_devs)
348                 return ERR_PTR(-ENOMEM);
349
350         mutex_init(&fs_devs->device_list_mutex);
351
352         INIT_LIST_HEAD(&fs_devs->devices);
353         INIT_LIST_HEAD(&fs_devs->alloc_list);
354         INIT_LIST_HEAD(&fs_devs->fs_list);
355         if (fsid)
356                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
357
358         if (metadata_fsid)
359                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
360         else if (fsid)
361                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
362
363         return fs_devs;
364 }
365
366 void btrfs_free_device(struct btrfs_device *device)
367 {
368         WARN_ON(!list_empty(&device->post_commit_list));
369         rcu_string_free(device->name);
370         extent_io_tree_release(&device->alloc_state);
371         bio_put(device->flush_bio);
372         kfree(device);
373 }
374
375 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
376 {
377         struct btrfs_device *device;
378         WARN_ON(fs_devices->opened);
379         while (!list_empty(&fs_devices->devices)) {
380                 device = list_entry(fs_devices->devices.next,
381                                     struct btrfs_device, dev_list);
382                 list_del(&device->dev_list);
383                 btrfs_free_device(device);
384         }
385         kfree(fs_devices);
386 }
387
388 void __exit btrfs_cleanup_fs_uuids(void)
389 {
390         struct btrfs_fs_devices *fs_devices;
391
392         while (!list_empty(&fs_uuids)) {
393                 fs_devices = list_entry(fs_uuids.next,
394                                         struct btrfs_fs_devices, fs_list);
395                 list_del(&fs_devices->fs_list);
396                 free_fs_devices(fs_devices);
397         }
398 }
399
400 /*
401  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
402  * Returned struct is not linked onto any lists and must be destroyed using
403  * btrfs_free_device.
404  */
405 static struct btrfs_device *__alloc_device(void)
406 {
407         struct btrfs_device *dev;
408
409         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
410         if (!dev)
411                 return ERR_PTR(-ENOMEM);
412
413         /*
414          * Preallocate a bio that's always going to be used for flushing device
415          * barriers and matches the device lifespan
416          */
417         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
418         if (!dev->flush_bio) {
419                 kfree(dev);
420                 return ERR_PTR(-ENOMEM);
421         }
422
423         INIT_LIST_HEAD(&dev->dev_list);
424         INIT_LIST_HEAD(&dev->dev_alloc_list);
425         INIT_LIST_HEAD(&dev->post_commit_list);
426
427         atomic_set(&dev->reada_in_flight, 0);
428         atomic_set(&dev->dev_stats_ccnt, 0);
429         btrfs_device_data_ordered_init(dev);
430         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
431         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
432         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
433
434         return dev;
435 }
436
437 static noinline struct btrfs_fs_devices *find_fsid(
438                 const u8 *fsid, const u8 *metadata_fsid)
439 {
440         struct btrfs_fs_devices *fs_devices;
441
442         ASSERT(fsid);
443
444         /* Handle non-split brain cases */
445         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
446                 if (metadata_fsid) {
447                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
448                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
449                                       BTRFS_FSID_SIZE) == 0)
450                                 return fs_devices;
451                 } else {
452                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
453                                 return fs_devices;
454                 }
455         }
456         return NULL;
457 }
458
459 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
460                                 struct btrfs_super_block *disk_super)
461 {
462
463         struct btrfs_fs_devices *fs_devices;
464
465         /*
466          * Handle scanned device having completed its fsid change but
467          * belonging to a fs_devices that was created by first scanning
468          * a device which didn't have its fsid/metadata_uuid changed
469          * at all and the CHANGING_FSID_V2 flag set.
470          */
471         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
472                 if (fs_devices->fsid_change &&
473                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
474                            BTRFS_FSID_SIZE) == 0 &&
475                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
476                            BTRFS_FSID_SIZE) == 0) {
477                         return fs_devices;
478                 }
479         }
480         /*
481          * Handle scanned device having completed its fsid change but
482          * belonging to a fs_devices that was created by a device that
483          * has an outdated pair of fsid/metadata_uuid and
484          * CHANGING_FSID_V2 flag set.
485          */
486         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
487                 if (fs_devices->fsid_change &&
488                     memcmp(fs_devices->metadata_uuid,
489                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
490                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
491                            BTRFS_FSID_SIZE) == 0) {
492                         return fs_devices;
493                 }
494         }
495
496         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
497 }
498
499
500 static int
501 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
502                       int flush, struct block_device **bdev,
503                       struct buffer_head **bh)
504 {
505         int ret;
506
507         *bdev = blkdev_get_by_path(device_path, flags, holder);
508
509         if (IS_ERR(*bdev)) {
510                 ret = PTR_ERR(*bdev);
511                 goto error;
512         }
513
514         if (flush)
515                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
516         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
517         if (ret) {
518                 blkdev_put(*bdev, flags);
519                 goto error;
520         }
521         invalidate_bdev(*bdev);
522         *bh = btrfs_read_dev_super(*bdev);
523         if (IS_ERR(*bh)) {
524                 ret = PTR_ERR(*bh);
525                 blkdev_put(*bdev, flags);
526                 goto error;
527         }
528
529         return 0;
530
531 error:
532         *bdev = NULL;
533         *bh = NULL;
534         return ret;
535 }
536
537 static bool device_path_matched(const char *path, struct btrfs_device *device)
538 {
539         int found;
540
541         rcu_read_lock();
542         found = strcmp(rcu_str_deref(device->name), path);
543         rcu_read_unlock();
544
545         return found == 0;
546 }
547
548 /*
549  *  Search and remove all stale (devices which are not mounted) devices.
550  *  When both inputs are NULL, it will search and release all stale devices.
551  *  path:       Optional. When provided will it release all unmounted devices
552  *              matching this path only.
553  *  skip_dev:   Optional. Will skip this device when searching for the stale
554  *              devices.
555  *  Return:     0 for success or if @path is NULL.
556  *              -EBUSY if @path is a mounted device.
557  *              -ENOENT if @path does not match any device in the list.
558  */
559 static int btrfs_free_stale_devices(const char *path,
560                                      struct btrfs_device *skip_device)
561 {
562         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
563         struct btrfs_device *device, *tmp_device;
564         int ret = 0;
565
566         if (path)
567                 ret = -ENOENT;
568
569         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
570
571                 mutex_lock(&fs_devices->device_list_mutex);
572                 list_for_each_entry_safe(device, tmp_device,
573                                          &fs_devices->devices, dev_list) {
574                         if (skip_device && skip_device == device)
575                                 continue;
576                         if (path && !device->name)
577                                 continue;
578                         if (path && !device_path_matched(path, device))
579                                 continue;
580                         if (fs_devices->opened) {
581                                 /* for an already deleted device return 0 */
582                                 if (path && ret != 0)
583                                         ret = -EBUSY;
584                                 break;
585                         }
586
587                         /* delete the stale device */
588                         fs_devices->num_devices--;
589                         list_del(&device->dev_list);
590                         btrfs_free_device(device);
591
592                         ret = 0;
593                         if (fs_devices->num_devices == 0)
594                                 break;
595                 }
596                 mutex_unlock(&fs_devices->device_list_mutex);
597
598                 if (fs_devices->num_devices == 0) {
599                         btrfs_sysfs_remove_fsid(fs_devices);
600                         list_del(&fs_devices->fs_list);
601                         free_fs_devices(fs_devices);
602                 }
603         }
604
605         return ret;
606 }
607
608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609                         struct btrfs_device *device, fmode_t flags,
610                         void *holder)
611 {
612         struct request_queue *q;
613         struct block_device *bdev;
614         struct buffer_head *bh;
615         struct btrfs_super_block *disk_super;
616         u64 devid;
617         int ret;
618
619         if (device->bdev)
620                 return -EINVAL;
621         if (!device->name)
622                 return -EINVAL;
623
624         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625                                     &bdev, &bh);
626         if (ret)
627                 return ret;
628
629         disk_super = (struct btrfs_super_block *)bh->b_data;
630         devid = btrfs_stack_device_id(&disk_super->dev_item);
631         if (devid != device->devid)
632                 goto error_brelse;
633
634         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
635                 goto error_brelse;
636
637         device->generation = btrfs_super_generation(disk_super);
638
639         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
640                 if (btrfs_super_incompat_flags(disk_super) &
641                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
642                         pr_err(
643                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
644                         goto error_brelse;
645                 }
646
647                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648                 fs_devices->seeding = true;
649         } else {
650                 if (bdev_read_only(bdev))
651                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652                 else
653                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654         }
655
656         q = bdev_get_queue(bdev);
657         if (!blk_queue_nonrot(q))
658                 fs_devices->rotating = true;
659
660         device->bdev = bdev;
661         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
662         device->mode = flags;
663
664         fs_devices->open_devices++;
665         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
666             device->devid != BTRFS_DEV_REPLACE_DEVID) {
667                 fs_devices->rw_devices++;
668                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
669         }
670         brelse(bh);
671
672         return 0;
673
674 error_brelse:
675         brelse(bh);
676         blkdev_put(bdev, flags);
677
678         return -EINVAL;
679 }
680
681 /*
682  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
683  * being created with a disk that has already completed its fsid change. Such
684  * disk can belong to an fs which has its FSID changed or to one which doesn't.
685  * Handle both cases here.
686  */
687 static struct btrfs_fs_devices *find_fsid_inprogress(
688                                         struct btrfs_super_block *disk_super)
689 {
690         struct btrfs_fs_devices *fs_devices;
691
692         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
693                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
694                            BTRFS_FSID_SIZE) != 0 &&
695                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
696                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
697                         return fs_devices;
698                 }
699         }
700
701         return find_fsid(disk_super->fsid, NULL);
702 }
703
704
705 static struct btrfs_fs_devices *find_fsid_changed(
706                                         struct btrfs_super_block *disk_super)
707 {
708         struct btrfs_fs_devices *fs_devices;
709
710         /*
711          * Handles the case where scanned device is part of an fs that had
712          * multiple successful changes of FSID but curently device didn't
713          * observe it. Meaning our fsid will be different than theirs. We need
714          * to handle two subcases :
715          *  1 - The fs still continues to have different METADATA/FSID uuids.
716          *  2 - The fs is switched back to its original FSID (METADATA/FSID
717          *  are equal).
718          */
719         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
720                 /* Changed UUIDs */
721                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
722                            BTRFS_FSID_SIZE) != 0 &&
723                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
724                            BTRFS_FSID_SIZE) == 0 &&
725                     memcmp(fs_devices->fsid, disk_super->fsid,
726                            BTRFS_FSID_SIZE) != 0)
727                         return fs_devices;
728
729                 /* Unchanged UUIDs */
730                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
731                            BTRFS_FSID_SIZE) == 0 &&
732                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
733                            BTRFS_FSID_SIZE) == 0)
734                         return fs_devices;
735         }
736
737         return NULL;
738 }
739
740 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
741                                 struct btrfs_super_block *disk_super)
742 {
743         struct btrfs_fs_devices *fs_devices;
744
745         /*
746          * Handle the case where the scanned device is part of an fs whose last
747          * metadata UUID change reverted it to the original FSID. At the same
748          * time * fs_devices was first created by another constitutent device
749          * which didn't fully observe the operation. This results in an
750          * btrfs_fs_devices created with metadata/fsid different AND
751          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
752          * fs_devices equal to the FSID of the disk.
753          */
754         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
755                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
756                            BTRFS_FSID_SIZE) != 0 &&
757                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
758                            BTRFS_FSID_SIZE) == 0 &&
759                     fs_devices->fsid_change)
760                         return fs_devices;
761         }
762
763         return NULL;
764 }
765 /*
766  * Add new device to list of registered devices
767  *
768  * Returns:
769  * device pointer which was just added or updated when successful
770  * error pointer when failed
771  */
772 static noinline struct btrfs_device *device_list_add(const char *path,
773                            struct btrfs_super_block *disk_super,
774                            bool *new_device_added)
775 {
776         struct btrfs_device *device;
777         struct btrfs_fs_devices *fs_devices = NULL;
778         struct rcu_string *name;
779         u64 found_transid = btrfs_super_generation(disk_super);
780         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
781         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
782                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
783         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
784                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
785
786         if (fsid_change_in_progress) {
787                 if (!has_metadata_uuid)
788                         fs_devices = find_fsid_inprogress(disk_super);
789                 else
790                         fs_devices = find_fsid_changed(disk_super);
791         } else if (has_metadata_uuid) {
792                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
793         } else {
794                 fs_devices = find_fsid_reverted_metadata(disk_super);
795                 if (!fs_devices)
796                         fs_devices = find_fsid(disk_super->fsid, NULL);
797         }
798
799
800         if (!fs_devices) {
801                 if (has_metadata_uuid)
802                         fs_devices = alloc_fs_devices(disk_super->fsid,
803                                                       disk_super->metadata_uuid);
804                 else
805                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
806
807                 if (IS_ERR(fs_devices))
808                         return ERR_CAST(fs_devices);
809
810                 fs_devices->fsid_change = fsid_change_in_progress;
811
812                 mutex_lock(&fs_devices->device_list_mutex);
813                 list_add(&fs_devices->fs_list, &fs_uuids);
814
815                 device = NULL;
816         } else {
817                 mutex_lock(&fs_devices->device_list_mutex);
818                 device = btrfs_find_device(fs_devices, devid,
819                                 disk_super->dev_item.uuid, NULL, false);
820
821                 /*
822                  * If this disk has been pulled into an fs devices created by
823                  * a device which had the CHANGING_FSID_V2 flag then replace the
824                  * metadata_uuid/fsid values of the fs_devices.
825                  */
826                 if (fs_devices->fsid_change &&
827                     found_transid > fs_devices->latest_generation) {
828                         memcpy(fs_devices->fsid, disk_super->fsid,
829                                         BTRFS_FSID_SIZE);
830
831                         if (has_metadata_uuid)
832                                 memcpy(fs_devices->metadata_uuid,
833                                        disk_super->metadata_uuid,
834                                        BTRFS_FSID_SIZE);
835                         else
836                                 memcpy(fs_devices->metadata_uuid,
837                                        disk_super->fsid, BTRFS_FSID_SIZE);
838
839                         fs_devices->fsid_change = false;
840                 }
841         }
842
843         if (!device) {
844                 if (fs_devices->opened) {
845                         mutex_unlock(&fs_devices->device_list_mutex);
846                         return ERR_PTR(-EBUSY);
847                 }
848
849                 device = btrfs_alloc_device(NULL, &devid,
850                                             disk_super->dev_item.uuid);
851                 if (IS_ERR(device)) {
852                         mutex_unlock(&fs_devices->device_list_mutex);
853                         /* we can safely leave the fs_devices entry around */
854                         return device;
855                 }
856
857                 name = rcu_string_strdup(path, GFP_NOFS);
858                 if (!name) {
859                         btrfs_free_device(device);
860                         mutex_unlock(&fs_devices->device_list_mutex);
861                         return ERR_PTR(-ENOMEM);
862                 }
863                 rcu_assign_pointer(device->name, name);
864
865                 list_add_rcu(&device->dev_list, &fs_devices->devices);
866                 fs_devices->num_devices++;
867
868                 device->fs_devices = fs_devices;
869                 *new_device_added = true;
870
871                 if (disk_super->label[0])
872                         pr_info(
873         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
874                                 disk_super->label, devid, found_transid, path,
875                                 current->comm, task_pid_nr(current));
876                 else
877                         pr_info(
878         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
879                                 disk_super->fsid, devid, found_transid, path,
880                                 current->comm, task_pid_nr(current));
881
882         } else if (!device->name || strcmp(device->name->str, path)) {
883                 /*
884                  * When FS is already mounted.
885                  * 1. If you are here and if the device->name is NULL that
886                  *    means this device was missing at time of FS mount.
887                  * 2. If you are here and if the device->name is different
888                  *    from 'path' that means either
889                  *      a. The same device disappeared and reappeared with
890                  *         different name. or
891                  *      b. The missing-disk-which-was-replaced, has
892                  *         reappeared now.
893                  *
894                  * We must allow 1 and 2a above. But 2b would be a spurious
895                  * and unintentional.
896                  *
897                  * Further in case of 1 and 2a above, the disk at 'path'
898                  * would have missed some transaction when it was away and
899                  * in case of 2a the stale bdev has to be updated as well.
900                  * 2b must not be allowed at all time.
901                  */
902
903                 /*
904                  * For now, we do allow update to btrfs_fs_device through the
905                  * btrfs dev scan cli after FS has been mounted.  We're still
906                  * tracking a problem where systems fail mount by subvolume id
907                  * when we reject replacement on a mounted FS.
908                  */
909                 if (!fs_devices->opened && found_transid < device->generation) {
910                         /*
911                          * That is if the FS is _not_ mounted and if you
912                          * are here, that means there is more than one
913                          * disk with same uuid and devid.We keep the one
914                          * with larger generation number or the last-in if
915                          * generation are equal.
916                          */
917                         mutex_unlock(&fs_devices->device_list_mutex);
918                         return ERR_PTR(-EEXIST);
919                 }
920
921                 /*
922                  * We are going to replace the device path for a given devid,
923                  * make sure it's the same device if the device is mounted
924                  */
925                 if (device->bdev) {
926                         struct block_device *path_bdev;
927
928                         path_bdev = lookup_bdev(path);
929                         if (IS_ERR(path_bdev)) {
930                                 mutex_unlock(&fs_devices->device_list_mutex);
931                                 return ERR_CAST(path_bdev);
932                         }
933
934                         if (device->bdev != path_bdev) {
935                                 bdput(path_bdev);
936                                 mutex_unlock(&fs_devices->device_list_mutex);
937                                 btrfs_warn_in_rcu(device->fs_info,
938                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
939                                         disk_super->fsid, devid,
940                                         rcu_str_deref(device->name), path);
941                                 return ERR_PTR(-EEXIST);
942                         }
943                         bdput(path_bdev);
944                         btrfs_info_in_rcu(device->fs_info,
945                                 "device fsid %pU devid %llu moved old:%s new:%s",
946                                 disk_super->fsid, devid,
947                                 rcu_str_deref(device->name), path);
948                 }
949
950                 name = rcu_string_strdup(path, GFP_NOFS);
951                 if (!name) {
952                         mutex_unlock(&fs_devices->device_list_mutex);
953                         return ERR_PTR(-ENOMEM);
954                 }
955                 rcu_string_free(device->name);
956                 rcu_assign_pointer(device->name, name);
957                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
958                         fs_devices->missing_devices--;
959                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
960                 }
961         }
962
963         /*
964          * Unmount does not free the btrfs_device struct but would zero
965          * generation along with most of the other members. So just update
966          * it back. We need it to pick the disk with largest generation
967          * (as above).
968          */
969         if (!fs_devices->opened) {
970                 device->generation = found_transid;
971                 fs_devices->latest_generation = max_t(u64, found_transid,
972                                                 fs_devices->latest_generation);
973         }
974
975         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
976
977         mutex_unlock(&fs_devices->device_list_mutex);
978         return device;
979 }
980
981 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
982 {
983         struct btrfs_fs_devices *fs_devices;
984         struct btrfs_device *device;
985         struct btrfs_device *orig_dev;
986         int ret = 0;
987
988         fs_devices = alloc_fs_devices(orig->fsid, NULL);
989         if (IS_ERR(fs_devices))
990                 return fs_devices;
991
992         mutex_lock(&orig->device_list_mutex);
993         fs_devices->total_devices = orig->total_devices;
994
995         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
996                 struct rcu_string *name;
997
998                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
999                                             orig_dev->uuid);
1000                 if (IS_ERR(device)) {
1001                         ret = PTR_ERR(device);
1002                         goto error;
1003                 }
1004
1005                 /*
1006                  * This is ok to do without rcu read locked because we hold the
1007                  * uuid mutex so nothing we touch in here is going to disappear.
1008                  */
1009                 if (orig_dev->name) {
1010                         name = rcu_string_strdup(orig_dev->name->str,
1011                                         GFP_KERNEL);
1012                         if (!name) {
1013                                 btrfs_free_device(device);
1014                                 ret = -ENOMEM;
1015                                 goto error;
1016                         }
1017                         rcu_assign_pointer(device->name, name);
1018                 }
1019
1020                 list_add(&device->dev_list, &fs_devices->devices);
1021                 device->fs_devices = fs_devices;
1022                 fs_devices->num_devices++;
1023         }
1024         mutex_unlock(&orig->device_list_mutex);
1025         return fs_devices;
1026 error:
1027         mutex_unlock(&orig->device_list_mutex);
1028         free_fs_devices(fs_devices);
1029         return ERR_PTR(ret);
1030 }
1031
1032 /*
1033  * After we have read the system tree and know devids belonging to
1034  * this filesystem, remove the device which does not belong there.
1035  */
1036 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1037 {
1038         struct btrfs_device *device, *next;
1039         struct btrfs_device *latest_dev = NULL;
1040
1041         mutex_lock(&uuid_mutex);
1042 again:
1043         /* This is the initialized path, it is safe to release the devices. */
1044         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1045                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1046                                                         &device->dev_state)) {
1047                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1048                              &device->dev_state) &&
1049                              (!latest_dev ||
1050                               device->generation > latest_dev->generation)) {
1051                                 latest_dev = device;
1052                         }
1053                         continue;
1054                 }
1055
1056                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1057                         /*
1058                          * In the first step, keep the device which has
1059                          * the correct fsid and the devid that is used
1060                          * for the dev_replace procedure.
1061                          * In the second step, the dev_replace state is
1062                          * read from the device tree and it is known
1063                          * whether the procedure is really active or
1064                          * not, which means whether this device is
1065                          * used or whether it should be removed.
1066                          */
1067                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1068                                                   &device->dev_state)) {
1069                                 continue;
1070                         }
1071                 }
1072                 if (device->bdev) {
1073                         blkdev_put(device->bdev, device->mode);
1074                         device->bdev = NULL;
1075                         fs_devices->open_devices--;
1076                 }
1077                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1078                         list_del_init(&device->dev_alloc_list);
1079                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1080                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1081                                       &device->dev_state))
1082                                 fs_devices->rw_devices--;
1083                 }
1084                 list_del_init(&device->dev_list);
1085                 fs_devices->num_devices--;
1086                 btrfs_free_device(device);
1087         }
1088
1089         if (fs_devices->seed) {
1090                 fs_devices = fs_devices->seed;
1091                 goto again;
1092         }
1093
1094         fs_devices->latest_bdev = latest_dev->bdev;
1095
1096         mutex_unlock(&uuid_mutex);
1097 }
1098
1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101         if (!device->bdev)
1102                 return;
1103
1104         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105                 sync_blockdev(device->bdev);
1106                 invalidate_bdev(device->bdev);
1107         }
1108
1109         blkdev_put(device->bdev, device->mode);
1110 }
1111
1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115
1116         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118                 list_del_init(&device->dev_alloc_list);
1119                 fs_devices->rw_devices--;
1120         }
1121
1122         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1123                 fs_devices->missing_devices--;
1124
1125         btrfs_close_bdev(device);
1126         if (device->bdev) {
1127                 fs_devices->open_devices--;
1128                 device->bdev = NULL;
1129         }
1130         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1131
1132         device->fs_info = NULL;
1133         atomic_set(&device->dev_stats_ccnt, 0);
1134         extent_io_tree_release(&device->alloc_state);
1135
1136         /* Verify the device is back in a pristine state  */
1137         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1138         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1139         ASSERT(list_empty(&device->dev_alloc_list));
1140         ASSERT(list_empty(&device->post_commit_list));
1141         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1142 }
1143
1144 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1145 {
1146         struct btrfs_device *device, *tmp;
1147
1148         if (--fs_devices->opened > 0)
1149                 return 0;
1150
1151         mutex_lock(&fs_devices->device_list_mutex);
1152         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1153                 btrfs_close_one_device(device);
1154         }
1155         mutex_unlock(&fs_devices->device_list_mutex);
1156
1157         WARN_ON(fs_devices->open_devices);
1158         WARN_ON(fs_devices->rw_devices);
1159         fs_devices->opened = 0;
1160         fs_devices->seeding = false;
1161
1162         return 0;
1163 }
1164
1165 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1166 {
1167         struct btrfs_fs_devices *seed_devices = NULL;
1168         int ret;
1169
1170         mutex_lock(&uuid_mutex);
1171         ret = close_fs_devices(fs_devices);
1172         if (!fs_devices->opened) {
1173                 seed_devices = fs_devices->seed;
1174                 fs_devices->seed = NULL;
1175         }
1176         mutex_unlock(&uuid_mutex);
1177
1178         while (seed_devices) {
1179                 fs_devices = seed_devices;
1180                 seed_devices = fs_devices->seed;
1181                 close_fs_devices(fs_devices);
1182                 free_fs_devices(fs_devices);
1183         }
1184         return ret;
1185 }
1186
1187 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1188                                 fmode_t flags, void *holder)
1189 {
1190         struct btrfs_device *device;
1191         struct btrfs_device *latest_dev = NULL;
1192         int ret = 0;
1193
1194         flags |= FMODE_EXCL;
1195
1196         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1197                 /* Just open everything we can; ignore failures here */
1198                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1199                         continue;
1200
1201                 if (!latest_dev ||
1202                     device->generation > latest_dev->generation)
1203                         latest_dev = device;
1204         }
1205         if (fs_devices->open_devices == 0) {
1206                 ret = -EINVAL;
1207                 goto out;
1208         }
1209         fs_devices->opened = 1;
1210         fs_devices->latest_bdev = latest_dev->bdev;
1211         fs_devices->total_rw_bytes = 0;
1212 out:
1213         return ret;
1214 }
1215
1216 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1217 {
1218         struct btrfs_device *dev1, *dev2;
1219
1220         dev1 = list_entry(a, struct btrfs_device, dev_list);
1221         dev2 = list_entry(b, struct btrfs_device, dev_list);
1222
1223         if (dev1->devid < dev2->devid)
1224                 return -1;
1225         else if (dev1->devid > dev2->devid)
1226                 return 1;
1227         return 0;
1228 }
1229
1230 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1231                        fmode_t flags, void *holder)
1232 {
1233         int ret;
1234
1235         lockdep_assert_held(&uuid_mutex);
1236
1237         mutex_lock(&fs_devices->device_list_mutex);
1238         if (fs_devices->opened) {
1239                 fs_devices->opened++;
1240                 ret = 0;
1241         } else {
1242                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1243                 ret = open_fs_devices(fs_devices, flags, holder);
1244         }
1245         mutex_unlock(&fs_devices->device_list_mutex);
1246
1247         return ret;
1248 }
1249
1250 static void btrfs_release_disk_super(struct page *page)
1251 {
1252         kunmap(page);
1253         put_page(page);
1254 }
1255
1256 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1257                                  struct page **page,
1258                                  struct btrfs_super_block **disk_super)
1259 {
1260         void *p;
1261         pgoff_t index;
1262
1263         /* make sure our super fits in the device */
1264         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1265                 return 1;
1266
1267         /* make sure our super fits in the page */
1268         if (sizeof(**disk_super) > PAGE_SIZE)
1269                 return 1;
1270
1271         /* make sure our super doesn't straddle pages on disk */
1272         index = bytenr >> PAGE_SHIFT;
1273         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1274                 return 1;
1275
1276         /* pull in the page with our super */
1277         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1278                                    index, GFP_KERNEL);
1279
1280         if (IS_ERR_OR_NULL(*page))
1281                 return 1;
1282
1283         p = kmap(*page);
1284
1285         /* align our pointer to the offset of the super block */
1286         *disk_super = p + offset_in_page(bytenr);
1287
1288         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1289             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1290                 btrfs_release_disk_super(*page);
1291                 return 1;
1292         }
1293
1294         if ((*disk_super)->label[0] &&
1295                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1296                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1297
1298         return 0;
1299 }
1300
1301 int btrfs_forget_devices(const char *path)
1302 {
1303         int ret;
1304
1305         mutex_lock(&uuid_mutex);
1306         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1307         mutex_unlock(&uuid_mutex);
1308
1309         return ret;
1310 }
1311
1312 /*
1313  * Look for a btrfs signature on a device. This may be called out of the mount path
1314  * and we are not allowed to call set_blocksize during the scan. The superblock
1315  * is read via pagecache
1316  */
1317 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1318                                            void *holder)
1319 {
1320         struct btrfs_super_block *disk_super;
1321         bool new_device_added = false;
1322         struct btrfs_device *device = NULL;
1323         struct block_device *bdev;
1324         struct page *page;
1325         u64 bytenr;
1326
1327         lockdep_assert_held(&uuid_mutex);
1328
1329         /*
1330          * we would like to check all the supers, but that would make
1331          * a btrfs mount succeed after a mkfs from a different FS.
1332          * So, we need to add a special mount option to scan for
1333          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1334          */
1335         bytenr = btrfs_sb_offset(0);
1336         flags |= FMODE_EXCL;
1337
1338         bdev = blkdev_get_by_path(path, flags, holder);
1339         if (IS_ERR(bdev))
1340                 return ERR_CAST(bdev);
1341
1342         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1343                 device = ERR_PTR(-EINVAL);
1344                 goto error_bdev_put;
1345         }
1346
1347         device = device_list_add(path, disk_super, &new_device_added);
1348         if (!IS_ERR(device)) {
1349                 if (new_device_added)
1350                         btrfs_free_stale_devices(path, device);
1351         }
1352
1353         btrfs_release_disk_super(page);
1354
1355 error_bdev_put:
1356         blkdev_put(bdev, flags);
1357
1358         return device;
1359 }
1360
1361 /*
1362  * Try to find a chunk that intersects [start, start + len] range and when one
1363  * such is found, record the end of it in *start
1364  */
1365 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1366                                     u64 len)
1367 {
1368         u64 physical_start, physical_end;
1369
1370         lockdep_assert_held(&device->fs_info->chunk_mutex);
1371
1372         if (!find_first_extent_bit(&device->alloc_state, *start,
1373                                    &physical_start, &physical_end,
1374                                    CHUNK_ALLOCATED, NULL)) {
1375
1376                 if (in_range(physical_start, *start, len) ||
1377                     in_range(*start, physical_start,
1378                              physical_end - physical_start)) {
1379                         *start = physical_end + 1;
1380                         return true;
1381                 }
1382         }
1383         return false;
1384 }
1385
1386
1387 /*
1388  * find_free_dev_extent_start - find free space in the specified device
1389  * @device:       the device which we search the free space in
1390  * @num_bytes:    the size of the free space that we need
1391  * @search_start: the position from which to begin the search
1392  * @start:        store the start of the free space.
1393  * @len:          the size of the free space. that we find, or the size
1394  *                of the max free space if we don't find suitable free space
1395  *
1396  * this uses a pretty simple search, the expectation is that it is
1397  * called very infrequently and that a given device has a small number
1398  * of extents
1399  *
1400  * @start is used to store the start of the free space if we find. But if we
1401  * don't find suitable free space, it will be used to store the start position
1402  * of the max free space.
1403  *
1404  * @len is used to store the size of the free space that we find.
1405  * But if we don't find suitable free space, it is used to store the size of
1406  * the max free space.
1407  *
1408  * NOTE: This function will search *commit* root of device tree, and does extra
1409  * check to ensure dev extents are not double allocated.
1410  * This makes the function safe to allocate dev extents but may not report
1411  * correct usable device space, as device extent freed in current transaction
1412  * is not reported as avaiable.
1413  */
1414 static int find_free_dev_extent_start(struct btrfs_device *device,
1415                                 u64 num_bytes, u64 search_start, u64 *start,
1416                                 u64 *len)
1417 {
1418         struct btrfs_fs_info *fs_info = device->fs_info;
1419         struct btrfs_root *root = fs_info->dev_root;
1420         struct btrfs_key key;
1421         struct btrfs_dev_extent *dev_extent;
1422         struct btrfs_path *path;
1423         u64 hole_size;
1424         u64 max_hole_start;
1425         u64 max_hole_size;
1426         u64 extent_end;
1427         u64 search_end = device->total_bytes;
1428         int ret;
1429         int slot;
1430         struct extent_buffer *l;
1431
1432         /*
1433          * We don't want to overwrite the superblock on the drive nor any area
1434          * used by the boot loader (grub for example), so we make sure to start
1435          * at an offset of at least 1MB.
1436          */
1437         search_start = max_t(u64, search_start, SZ_1M);
1438
1439         path = btrfs_alloc_path();
1440         if (!path)
1441                 return -ENOMEM;
1442
1443         max_hole_start = search_start;
1444         max_hole_size = 0;
1445
1446 again:
1447         if (search_start >= search_end ||
1448                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1449                 ret = -ENOSPC;
1450                 goto out;
1451         }
1452
1453         path->reada = READA_FORWARD;
1454         path->search_commit_root = 1;
1455         path->skip_locking = 1;
1456
1457         key.objectid = device->devid;
1458         key.offset = search_start;
1459         key.type = BTRFS_DEV_EXTENT_KEY;
1460
1461         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1462         if (ret < 0)
1463                 goto out;
1464         if (ret > 0) {
1465                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1466                 if (ret < 0)
1467                         goto out;
1468         }
1469
1470         while (1) {
1471                 l = path->nodes[0];
1472                 slot = path->slots[0];
1473                 if (slot >= btrfs_header_nritems(l)) {
1474                         ret = btrfs_next_leaf(root, path);
1475                         if (ret == 0)
1476                                 continue;
1477                         if (ret < 0)
1478                                 goto out;
1479
1480                         break;
1481                 }
1482                 btrfs_item_key_to_cpu(l, &key, slot);
1483
1484                 if (key.objectid < device->devid)
1485                         goto next;
1486
1487                 if (key.objectid > device->devid)
1488                         break;
1489
1490                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1491                         goto next;
1492
1493                 if (key.offset > search_start) {
1494                         hole_size = key.offset - search_start;
1495
1496                         /*
1497                          * Have to check before we set max_hole_start, otherwise
1498                          * we could end up sending back this offset anyway.
1499                          */
1500                         if (contains_pending_extent(device, &search_start,
1501                                                     hole_size)) {
1502                                 if (key.offset >= search_start)
1503                                         hole_size = key.offset - search_start;
1504                                 else
1505                                         hole_size = 0;
1506                         }
1507
1508                         if (hole_size > max_hole_size) {
1509                                 max_hole_start = search_start;
1510                                 max_hole_size = hole_size;
1511                         }
1512
1513                         /*
1514                          * If this free space is greater than which we need,
1515                          * it must be the max free space that we have found
1516                          * until now, so max_hole_start must point to the start
1517                          * of this free space and the length of this free space
1518                          * is stored in max_hole_size. Thus, we return
1519                          * max_hole_start and max_hole_size and go back to the
1520                          * caller.
1521                          */
1522                         if (hole_size >= num_bytes) {
1523                                 ret = 0;
1524                                 goto out;
1525                         }
1526                 }
1527
1528                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1529                 extent_end = key.offset + btrfs_dev_extent_length(l,
1530                                                                   dev_extent);
1531                 if (extent_end > search_start)
1532                         search_start = extent_end;
1533 next:
1534                 path->slots[0]++;
1535                 cond_resched();
1536         }
1537
1538         /*
1539          * At this point, search_start should be the end of
1540          * allocated dev extents, and when shrinking the device,
1541          * search_end may be smaller than search_start.
1542          */
1543         if (search_end > search_start) {
1544                 hole_size = search_end - search_start;
1545
1546                 if (contains_pending_extent(device, &search_start, hole_size)) {
1547                         btrfs_release_path(path);
1548                         goto again;
1549                 }
1550
1551                 if (hole_size > max_hole_size) {
1552                         max_hole_start = search_start;
1553                         max_hole_size = hole_size;
1554                 }
1555         }
1556
1557         /* See above. */
1558         if (max_hole_size < num_bytes)
1559                 ret = -ENOSPC;
1560         else
1561                 ret = 0;
1562
1563 out:
1564         btrfs_free_path(path);
1565         *start = max_hole_start;
1566         if (len)
1567                 *len = max_hole_size;
1568         return ret;
1569 }
1570
1571 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1572                          u64 *start, u64 *len)
1573 {
1574         /* FIXME use last free of some kind */
1575         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1576 }
1577
1578 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1579                           struct btrfs_device *device,
1580                           u64 start, u64 *dev_extent_len)
1581 {
1582         struct btrfs_fs_info *fs_info = device->fs_info;
1583         struct btrfs_root *root = fs_info->dev_root;
1584         int ret;
1585         struct btrfs_path *path;
1586         struct btrfs_key key;
1587         struct btrfs_key found_key;
1588         struct extent_buffer *leaf = NULL;
1589         struct btrfs_dev_extent *extent = NULL;
1590
1591         path = btrfs_alloc_path();
1592         if (!path)
1593                 return -ENOMEM;
1594
1595         key.objectid = device->devid;
1596         key.offset = start;
1597         key.type = BTRFS_DEV_EXTENT_KEY;
1598 again:
1599         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1600         if (ret > 0) {
1601                 ret = btrfs_previous_item(root, path, key.objectid,
1602                                           BTRFS_DEV_EXTENT_KEY);
1603                 if (ret)
1604                         goto out;
1605                 leaf = path->nodes[0];
1606                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1607                 extent = btrfs_item_ptr(leaf, path->slots[0],
1608                                         struct btrfs_dev_extent);
1609                 BUG_ON(found_key.offset > start || found_key.offset +
1610                        btrfs_dev_extent_length(leaf, extent) < start);
1611                 key = found_key;
1612                 btrfs_release_path(path);
1613                 goto again;
1614         } else if (ret == 0) {
1615                 leaf = path->nodes[0];
1616                 extent = btrfs_item_ptr(leaf, path->slots[0],
1617                                         struct btrfs_dev_extent);
1618         } else {
1619                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1620                 goto out;
1621         }
1622
1623         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1624
1625         ret = btrfs_del_item(trans, root, path);
1626         if (ret) {
1627                 btrfs_handle_fs_error(fs_info, ret,
1628                                       "Failed to remove dev extent item");
1629         } else {
1630                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1631         }
1632 out:
1633         btrfs_free_path(path);
1634         return ret;
1635 }
1636
1637 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1638                                   struct btrfs_device *device,
1639                                   u64 chunk_offset, u64 start, u64 num_bytes)
1640 {
1641         int ret;
1642         struct btrfs_path *path;
1643         struct btrfs_fs_info *fs_info = device->fs_info;
1644         struct btrfs_root *root = fs_info->dev_root;
1645         struct btrfs_dev_extent *extent;
1646         struct extent_buffer *leaf;
1647         struct btrfs_key key;
1648
1649         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1650         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1651         path = btrfs_alloc_path();
1652         if (!path)
1653                 return -ENOMEM;
1654
1655         key.objectid = device->devid;
1656         key.offset = start;
1657         key.type = BTRFS_DEV_EXTENT_KEY;
1658         ret = btrfs_insert_empty_item(trans, root, path, &key,
1659                                       sizeof(*extent));
1660         if (ret)
1661                 goto out;
1662
1663         leaf = path->nodes[0];
1664         extent = btrfs_item_ptr(leaf, path->slots[0],
1665                                 struct btrfs_dev_extent);
1666         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1667                                         BTRFS_CHUNK_TREE_OBJECTID);
1668         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1669                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1670         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1671
1672         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1673         btrfs_mark_buffer_dirty(leaf);
1674 out:
1675         btrfs_free_path(path);
1676         return ret;
1677 }
1678
1679 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1680 {
1681         struct extent_map_tree *em_tree;
1682         struct extent_map *em;
1683         struct rb_node *n;
1684         u64 ret = 0;
1685
1686         em_tree = &fs_info->mapping_tree;
1687         read_lock(&em_tree->lock);
1688         n = rb_last(&em_tree->map.rb_root);
1689         if (n) {
1690                 em = rb_entry(n, struct extent_map, rb_node);
1691                 ret = em->start + em->len;
1692         }
1693         read_unlock(&em_tree->lock);
1694
1695         return ret;
1696 }
1697
1698 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1699                                     u64 *devid_ret)
1700 {
1701         int ret;
1702         struct btrfs_key key;
1703         struct btrfs_key found_key;
1704         struct btrfs_path *path;
1705
1706         path = btrfs_alloc_path();
1707         if (!path)
1708                 return -ENOMEM;
1709
1710         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1711         key.type = BTRFS_DEV_ITEM_KEY;
1712         key.offset = (u64)-1;
1713
1714         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1715         if (ret < 0)
1716                 goto error;
1717
1718         if (ret == 0) {
1719                 /* Corruption */
1720                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1721                 ret = -EUCLEAN;
1722                 goto error;
1723         }
1724
1725         ret = btrfs_previous_item(fs_info->chunk_root, path,
1726                                   BTRFS_DEV_ITEMS_OBJECTID,
1727                                   BTRFS_DEV_ITEM_KEY);
1728         if (ret) {
1729                 *devid_ret = 1;
1730         } else {
1731                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1732                                       path->slots[0]);
1733                 *devid_ret = found_key.offset + 1;
1734         }
1735         ret = 0;
1736 error:
1737         btrfs_free_path(path);
1738         return ret;
1739 }
1740
1741 /*
1742  * the device information is stored in the chunk root
1743  * the btrfs_device struct should be fully filled in
1744  */
1745 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1746                             struct btrfs_device *device)
1747 {
1748         int ret;
1749         struct btrfs_path *path;
1750         struct btrfs_dev_item *dev_item;
1751         struct extent_buffer *leaf;
1752         struct btrfs_key key;
1753         unsigned long ptr;
1754
1755         path = btrfs_alloc_path();
1756         if (!path)
1757                 return -ENOMEM;
1758
1759         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760         key.type = BTRFS_DEV_ITEM_KEY;
1761         key.offset = device->devid;
1762
1763         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1764                                       &key, sizeof(*dev_item));
1765         if (ret)
1766                 goto out;
1767
1768         leaf = path->nodes[0];
1769         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1770
1771         btrfs_set_device_id(leaf, dev_item, device->devid);
1772         btrfs_set_device_generation(leaf, dev_item, 0);
1773         btrfs_set_device_type(leaf, dev_item, device->type);
1774         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1775         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1776         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1777         btrfs_set_device_total_bytes(leaf, dev_item,
1778                                      btrfs_device_get_disk_total_bytes(device));
1779         btrfs_set_device_bytes_used(leaf, dev_item,
1780                                     btrfs_device_get_bytes_used(device));
1781         btrfs_set_device_group(leaf, dev_item, 0);
1782         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1783         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1784         btrfs_set_device_start_offset(leaf, dev_item, 0);
1785
1786         ptr = btrfs_device_uuid(dev_item);
1787         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1788         ptr = btrfs_device_fsid(dev_item);
1789         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1790                             ptr, BTRFS_FSID_SIZE);
1791         btrfs_mark_buffer_dirty(leaf);
1792
1793         ret = 0;
1794 out:
1795         btrfs_free_path(path);
1796         return ret;
1797 }
1798
1799 /*
1800  * Function to update ctime/mtime for a given device path.
1801  * Mainly used for ctime/mtime based probe like libblkid.
1802  */
1803 static void update_dev_time(const char *path_name)
1804 {
1805         struct file *filp;
1806
1807         filp = filp_open(path_name, O_RDWR, 0);
1808         if (IS_ERR(filp))
1809                 return;
1810         file_update_time(filp);
1811         filp_close(filp, NULL);
1812 }
1813
1814 static int btrfs_rm_dev_item(struct btrfs_device *device)
1815 {
1816         struct btrfs_root *root = device->fs_info->chunk_root;
1817         int ret;
1818         struct btrfs_path *path;
1819         struct btrfs_key key;
1820         struct btrfs_trans_handle *trans;
1821
1822         path = btrfs_alloc_path();
1823         if (!path)
1824                 return -ENOMEM;
1825
1826         trans = btrfs_start_transaction(root, 0);
1827         if (IS_ERR(trans)) {
1828                 btrfs_free_path(path);
1829                 return PTR_ERR(trans);
1830         }
1831         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1832         key.type = BTRFS_DEV_ITEM_KEY;
1833         key.offset = device->devid;
1834
1835         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1836         if (ret) {
1837                 if (ret > 0)
1838                         ret = -ENOENT;
1839                 btrfs_abort_transaction(trans, ret);
1840                 btrfs_end_transaction(trans);
1841                 goto out;
1842         }
1843
1844         ret = btrfs_del_item(trans, root, path);
1845         if (ret) {
1846                 btrfs_abort_transaction(trans, ret);
1847                 btrfs_end_transaction(trans);
1848         }
1849
1850 out:
1851         btrfs_free_path(path);
1852         if (!ret)
1853                 ret = btrfs_commit_transaction(trans);
1854         return ret;
1855 }
1856
1857 /*
1858  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1859  * filesystem. It's up to the caller to adjust that number regarding eg. device
1860  * replace.
1861  */
1862 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1863                 u64 num_devices)
1864 {
1865         u64 all_avail;
1866         unsigned seq;
1867         int i;
1868
1869         do {
1870                 seq = read_seqbegin(&fs_info->profiles_lock);
1871
1872                 all_avail = fs_info->avail_data_alloc_bits |
1873                             fs_info->avail_system_alloc_bits |
1874                             fs_info->avail_metadata_alloc_bits;
1875         } while (read_seqretry(&fs_info->profiles_lock, seq));
1876
1877         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1878                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1879                         continue;
1880
1881                 if (num_devices < btrfs_raid_array[i].devs_min) {
1882                         int ret = btrfs_raid_array[i].mindev_error;
1883
1884                         if (ret)
1885                                 return ret;
1886                 }
1887         }
1888
1889         return 0;
1890 }
1891
1892 static struct btrfs_device * btrfs_find_next_active_device(
1893                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1894 {
1895         struct btrfs_device *next_device;
1896
1897         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1898                 if (next_device != device &&
1899                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1900                     && next_device->bdev)
1901                         return next_device;
1902         }
1903
1904         return NULL;
1905 }
1906
1907 /*
1908  * Helper function to check if the given device is part of s_bdev / latest_bdev
1909  * and replace it with the provided or the next active device, in the context
1910  * where this function called, there should be always be another device (or
1911  * this_dev) which is active.
1912  */
1913 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1914                                      struct btrfs_device *this_dev)
1915 {
1916         struct btrfs_fs_info *fs_info = device->fs_info;
1917         struct btrfs_device *next_device;
1918
1919         if (this_dev)
1920                 next_device = this_dev;
1921         else
1922                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1923                                                                 device);
1924         ASSERT(next_device);
1925
1926         if (fs_info->sb->s_bdev &&
1927                         (fs_info->sb->s_bdev == device->bdev))
1928                 fs_info->sb->s_bdev = next_device->bdev;
1929
1930         if (fs_info->fs_devices->latest_bdev == device->bdev)
1931                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1932 }
1933
1934 /*
1935  * Return btrfs_fs_devices::num_devices excluding the device that's being
1936  * currently replaced.
1937  */
1938 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1939 {
1940         u64 num_devices = fs_info->fs_devices->num_devices;
1941
1942         down_read(&fs_info->dev_replace.rwsem);
1943         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1944                 ASSERT(num_devices > 1);
1945                 num_devices--;
1946         }
1947         up_read(&fs_info->dev_replace.rwsem);
1948
1949         return num_devices;
1950 }
1951
1952 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1953                 u64 devid)
1954 {
1955         struct btrfs_device *device;
1956         struct btrfs_fs_devices *cur_devices;
1957         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1958         u64 num_devices;
1959         int ret = 0;
1960
1961         mutex_lock(&uuid_mutex);
1962
1963         num_devices = btrfs_num_devices(fs_info);
1964
1965         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1966         if (ret)
1967                 goto out;
1968
1969         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1970
1971         if (IS_ERR(device)) {
1972                 if (PTR_ERR(device) == -ENOENT &&
1973                     strcmp(device_path, "missing") == 0)
1974                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1975                 else
1976                         ret = PTR_ERR(device);
1977                 goto out;
1978         }
1979
1980         if (btrfs_pinned_by_swapfile(fs_info, device)) {
1981                 btrfs_warn_in_rcu(fs_info,
1982                   "cannot remove device %s (devid %llu) due to active swapfile",
1983                                   rcu_str_deref(device->name), device->devid);
1984                 ret = -ETXTBSY;
1985                 goto out;
1986         }
1987
1988         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1989                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1990                 goto out;
1991         }
1992
1993         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1994             fs_info->fs_devices->rw_devices == 1) {
1995                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1996                 goto out;
1997         }
1998
1999         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2000                 mutex_lock(&fs_info->chunk_mutex);
2001                 list_del_init(&device->dev_alloc_list);
2002                 device->fs_devices->rw_devices--;
2003                 mutex_unlock(&fs_info->chunk_mutex);
2004         }
2005
2006         mutex_unlock(&uuid_mutex);
2007         ret = btrfs_shrink_device(device, 0);
2008         mutex_lock(&uuid_mutex);
2009         if (ret)
2010                 goto error_undo;
2011
2012         /*
2013          * TODO: the superblock still includes this device in its num_devices
2014          * counter although write_all_supers() is not locked out. This
2015          * could give a filesystem state which requires a degraded mount.
2016          */
2017         ret = btrfs_rm_dev_item(device);
2018         if (ret)
2019                 goto error_undo;
2020
2021         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2022         btrfs_scrub_cancel_dev(device);
2023
2024         /*
2025          * the device list mutex makes sure that we don't change
2026          * the device list while someone else is writing out all
2027          * the device supers. Whoever is writing all supers, should
2028          * lock the device list mutex before getting the number of
2029          * devices in the super block (super_copy). Conversely,
2030          * whoever updates the number of devices in the super block
2031          * (super_copy) should hold the device list mutex.
2032          */
2033
2034         /*
2035          * In normal cases the cur_devices == fs_devices. But in case
2036          * of deleting a seed device, the cur_devices should point to
2037          * its own fs_devices listed under the fs_devices->seed.
2038          */
2039         cur_devices = device->fs_devices;
2040         mutex_lock(&fs_devices->device_list_mutex);
2041         list_del_rcu(&device->dev_list);
2042
2043         cur_devices->num_devices--;
2044         cur_devices->total_devices--;
2045         /* Update total_devices of the parent fs_devices if it's seed */
2046         if (cur_devices != fs_devices)
2047                 fs_devices->total_devices--;
2048
2049         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2050                 cur_devices->missing_devices--;
2051
2052         btrfs_assign_next_active_device(device, NULL);
2053
2054         if (device->bdev) {
2055                 cur_devices->open_devices--;
2056                 /* remove sysfs entry */
2057                 btrfs_sysfs_rm_device_link(fs_devices, device);
2058         }
2059
2060         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2061         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2062         mutex_unlock(&fs_devices->device_list_mutex);
2063
2064         /*
2065          * at this point, the device is zero sized and detached from
2066          * the devices list.  All that's left is to zero out the old
2067          * supers and free the device.
2068          */
2069         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2070                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2071
2072         btrfs_close_bdev(device);
2073         synchronize_rcu();
2074         btrfs_free_device(device);
2075
2076         if (cur_devices->open_devices == 0) {
2077                 while (fs_devices) {
2078                         if (fs_devices->seed == cur_devices) {
2079                                 fs_devices->seed = cur_devices->seed;
2080                                 break;
2081                         }
2082                         fs_devices = fs_devices->seed;
2083                 }
2084                 cur_devices->seed = NULL;
2085                 close_fs_devices(cur_devices);
2086                 free_fs_devices(cur_devices);
2087         }
2088
2089 out:
2090         mutex_unlock(&uuid_mutex);
2091         return ret;
2092
2093 error_undo:
2094         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2095                 mutex_lock(&fs_info->chunk_mutex);
2096                 list_add(&device->dev_alloc_list,
2097                          &fs_devices->alloc_list);
2098                 device->fs_devices->rw_devices++;
2099                 mutex_unlock(&fs_info->chunk_mutex);
2100         }
2101         goto out;
2102 }
2103
2104 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2105 {
2106         struct btrfs_fs_devices *fs_devices;
2107
2108         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2109
2110         /*
2111          * in case of fs with no seed, srcdev->fs_devices will point
2112          * to fs_devices of fs_info. However when the dev being replaced is
2113          * a seed dev it will point to the seed's local fs_devices. In short
2114          * srcdev will have its correct fs_devices in both the cases.
2115          */
2116         fs_devices = srcdev->fs_devices;
2117
2118         list_del_rcu(&srcdev->dev_list);
2119         list_del(&srcdev->dev_alloc_list);
2120         fs_devices->num_devices--;
2121         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2122                 fs_devices->missing_devices--;
2123
2124         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2125                 fs_devices->rw_devices--;
2126
2127         if (srcdev->bdev)
2128                 fs_devices->open_devices--;
2129 }
2130
2131 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2132 {
2133         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2134         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2135
2136         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2137                 /* zero out the old super if it is writable */
2138                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2139         }
2140
2141         btrfs_close_bdev(srcdev);
2142         synchronize_rcu();
2143         btrfs_free_device(srcdev);
2144
2145         /* if this is no devs we rather delete the fs_devices */
2146         if (!fs_devices->num_devices) {
2147                 struct btrfs_fs_devices *tmp_fs_devices;
2148
2149                 /*
2150                  * On a mounted FS, num_devices can't be zero unless it's a
2151                  * seed. In case of a seed device being replaced, the replace
2152                  * target added to the sprout FS, so there will be no more
2153                  * device left under the seed FS.
2154                  */
2155                 ASSERT(fs_devices->seeding);
2156
2157                 tmp_fs_devices = fs_info->fs_devices;
2158                 while (tmp_fs_devices) {
2159                         if (tmp_fs_devices->seed == fs_devices) {
2160                                 tmp_fs_devices->seed = fs_devices->seed;
2161                                 break;
2162                         }
2163                         tmp_fs_devices = tmp_fs_devices->seed;
2164                 }
2165                 fs_devices->seed = NULL;
2166                 close_fs_devices(fs_devices);
2167                 free_fs_devices(fs_devices);
2168         }
2169 }
2170
2171 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2172 {
2173         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2174
2175         mutex_lock(&fs_devices->device_list_mutex);
2176
2177         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2178
2179         if (tgtdev->bdev)
2180                 fs_devices->open_devices--;
2181
2182         fs_devices->num_devices--;
2183
2184         btrfs_assign_next_active_device(tgtdev, NULL);
2185
2186         list_del_rcu(&tgtdev->dev_list);
2187
2188         mutex_unlock(&fs_devices->device_list_mutex);
2189
2190         /*
2191          * The update_dev_time() with in btrfs_scratch_superblocks()
2192          * may lead to a call to btrfs_show_devname() which will try
2193          * to hold device_list_mutex. And here this device
2194          * is already out of device list, so we don't have to hold
2195          * the device_list_mutex lock.
2196          */
2197         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2198
2199         btrfs_close_bdev(tgtdev);
2200         synchronize_rcu();
2201         btrfs_free_device(tgtdev);
2202 }
2203
2204 static struct btrfs_device *btrfs_find_device_by_path(
2205                 struct btrfs_fs_info *fs_info, const char *device_path)
2206 {
2207         int ret = 0;
2208         struct btrfs_super_block *disk_super;
2209         u64 devid;
2210         u8 *dev_uuid;
2211         struct block_device *bdev;
2212         struct buffer_head *bh;
2213         struct btrfs_device *device;
2214
2215         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2216                                     fs_info->bdev_holder, 0, &bdev, &bh);
2217         if (ret)
2218                 return ERR_PTR(ret);
2219         disk_super = (struct btrfs_super_block *)bh->b_data;
2220         devid = btrfs_stack_device_id(&disk_super->dev_item);
2221         dev_uuid = disk_super->dev_item.uuid;
2222         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2223                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2224                                            disk_super->metadata_uuid, true);
2225         else
2226                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2227                                            disk_super->fsid, true);
2228
2229         brelse(bh);
2230         if (!device)
2231                 device = ERR_PTR(-ENOENT);
2232         blkdev_put(bdev, FMODE_READ);
2233         return device;
2234 }
2235
2236 /*
2237  * Lookup a device given by device id, or the path if the id is 0.
2238  */
2239 struct btrfs_device *btrfs_find_device_by_devspec(
2240                 struct btrfs_fs_info *fs_info, u64 devid,
2241                 const char *device_path)
2242 {
2243         struct btrfs_device *device;
2244
2245         if (devid) {
2246                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2247                                            NULL, true);
2248                 if (!device)
2249                         return ERR_PTR(-ENOENT);
2250                 return device;
2251         }
2252
2253         if (!device_path || !device_path[0])
2254                 return ERR_PTR(-EINVAL);
2255
2256         if (strcmp(device_path, "missing") == 0) {
2257                 /* Find first missing device */
2258                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2259                                     dev_list) {
2260                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2261                                      &device->dev_state) && !device->bdev)
2262                                 return device;
2263                 }
2264                 return ERR_PTR(-ENOENT);
2265         }
2266
2267         return btrfs_find_device_by_path(fs_info, device_path);
2268 }
2269
2270 /*
2271  * does all the dirty work required for changing file system's UUID.
2272  */
2273 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2274 {
2275         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2276         struct btrfs_fs_devices *old_devices;
2277         struct btrfs_fs_devices *seed_devices;
2278         struct btrfs_super_block *disk_super = fs_info->super_copy;
2279         struct btrfs_device *device;
2280         u64 super_flags;
2281
2282         lockdep_assert_held(&uuid_mutex);
2283         if (!fs_devices->seeding)
2284                 return -EINVAL;
2285
2286         seed_devices = alloc_fs_devices(NULL, NULL);
2287         if (IS_ERR(seed_devices))
2288                 return PTR_ERR(seed_devices);
2289
2290         old_devices = clone_fs_devices(fs_devices);
2291         if (IS_ERR(old_devices)) {
2292                 kfree(seed_devices);
2293                 return PTR_ERR(old_devices);
2294         }
2295
2296         list_add(&old_devices->fs_list, &fs_uuids);
2297
2298         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2299         seed_devices->opened = 1;
2300         INIT_LIST_HEAD(&seed_devices->devices);
2301         INIT_LIST_HEAD(&seed_devices->alloc_list);
2302         mutex_init(&seed_devices->device_list_mutex);
2303
2304         mutex_lock(&fs_devices->device_list_mutex);
2305         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2306                               synchronize_rcu);
2307         list_for_each_entry(device, &seed_devices->devices, dev_list)
2308                 device->fs_devices = seed_devices;
2309
2310         mutex_lock(&fs_info->chunk_mutex);
2311         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2312         mutex_unlock(&fs_info->chunk_mutex);
2313
2314         fs_devices->seeding = false;
2315         fs_devices->num_devices = 0;
2316         fs_devices->open_devices = 0;
2317         fs_devices->missing_devices = 0;
2318         fs_devices->rotating = false;
2319         fs_devices->seed = seed_devices;
2320
2321         generate_random_uuid(fs_devices->fsid);
2322         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2323         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2324         mutex_unlock(&fs_devices->device_list_mutex);
2325
2326         super_flags = btrfs_super_flags(disk_super) &
2327                       ~BTRFS_SUPER_FLAG_SEEDING;
2328         btrfs_set_super_flags(disk_super, super_flags);
2329
2330         return 0;
2331 }
2332
2333 /*
2334  * Store the expected generation for seed devices in device items.
2335  */
2336 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2337 {
2338         struct btrfs_fs_info *fs_info = trans->fs_info;
2339         struct btrfs_root *root = fs_info->chunk_root;
2340         struct btrfs_path *path;
2341         struct extent_buffer *leaf;
2342         struct btrfs_dev_item *dev_item;
2343         struct btrfs_device *device;
2344         struct btrfs_key key;
2345         u8 fs_uuid[BTRFS_FSID_SIZE];
2346         u8 dev_uuid[BTRFS_UUID_SIZE];
2347         u64 devid;
2348         int ret;
2349
2350         path = btrfs_alloc_path();
2351         if (!path)
2352                 return -ENOMEM;
2353
2354         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2355         key.offset = 0;
2356         key.type = BTRFS_DEV_ITEM_KEY;
2357
2358         while (1) {
2359                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360                 if (ret < 0)
2361                         goto error;
2362
2363                 leaf = path->nodes[0];
2364 next_slot:
2365                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2366                         ret = btrfs_next_leaf(root, path);
2367                         if (ret > 0)
2368                                 break;
2369                         if (ret < 0)
2370                                 goto error;
2371                         leaf = path->nodes[0];
2372                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373                         btrfs_release_path(path);
2374                         continue;
2375                 }
2376
2377                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2378                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2379                     key.type != BTRFS_DEV_ITEM_KEY)
2380                         break;
2381
2382                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2383                                           struct btrfs_dev_item);
2384                 devid = btrfs_device_id(leaf, dev_item);
2385                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2386                                    BTRFS_UUID_SIZE);
2387                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2388                                    BTRFS_FSID_SIZE);
2389                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2390                                            fs_uuid, true);
2391                 BUG_ON(!device); /* Logic error */
2392
2393                 if (device->fs_devices->seeding) {
2394                         btrfs_set_device_generation(leaf, dev_item,
2395                                                     device->generation);
2396                         btrfs_mark_buffer_dirty(leaf);
2397                 }
2398
2399                 path->slots[0]++;
2400                 goto next_slot;
2401         }
2402         ret = 0;
2403 error:
2404         btrfs_free_path(path);
2405         return ret;
2406 }
2407
2408 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2409 {
2410         struct btrfs_root *root = fs_info->dev_root;
2411         struct request_queue *q;
2412         struct btrfs_trans_handle *trans;
2413         struct btrfs_device *device;
2414         struct block_device *bdev;
2415         struct super_block *sb = fs_info->sb;
2416         struct rcu_string *name;
2417         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2418         u64 orig_super_total_bytes;
2419         u64 orig_super_num_devices;
2420         int seeding_dev = 0;
2421         int ret = 0;
2422         bool unlocked = false;
2423
2424         if (sb_rdonly(sb) && !fs_devices->seeding)
2425                 return -EROFS;
2426
2427         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2428                                   fs_info->bdev_holder);
2429         if (IS_ERR(bdev))
2430                 return PTR_ERR(bdev);
2431
2432         if (fs_devices->seeding) {
2433                 seeding_dev = 1;
2434                 down_write(&sb->s_umount);
2435                 mutex_lock(&uuid_mutex);
2436         }
2437
2438         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2439
2440         mutex_lock(&fs_devices->device_list_mutex);
2441         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2442                 if (device->bdev == bdev) {
2443                         ret = -EEXIST;
2444                         mutex_unlock(
2445                                 &fs_devices->device_list_mutex);
2446                         goto error;
2447                 }
2448         }
2449         mutex_unlock(&fs_devices->device_list_mutex);
2450
2451         device = btrfs_alloc_device(fs_info, NULL, NULL);
2452         if (IS_ERR(device)) {
2453                 /* we can safely leave the fs_devices entry around */
2454                 ret = PTR_ERR(device);
2455                 goto error;
2456         }
2457
2458         name = rcu_string_strdup(device_path, GFP_KERNEL);
2459         if (!name) {
2460                 ret = -ENOMEM;
2461                 goto error_free_device;
2462         }
2463         rcu_assign_pointer(device->name, name);
2464
2465         trans = btrfs_start_transaction(root, 0);
2466         if (IS_ERR(trans)) {
2467                 ret = PTR_ERR(trans);
2468                 goto error_free_device;
2469         }
2470
2471         q = bdev_get_queue(bdev);
2472         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2473         device->generation = trans->transid;
2474         device->io_width = fs_info->sectorsize;
2475         device->io_align = fs_info->sectorsize;
2476         device->sector_size = fs_info->sectorsize;
2477         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2478                                          fs_info->sectorsize);
2479         device->disk_total_bytes = device->total_bytes;
2480         device->commit_total_bytes = device->total_bytes;
2481         device->fs_info = fs_info;
2482         device->bdev = bdev;
2483         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2484         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2485         device->mode = FMODE_EXCL;
2486         device->dev_stats_valid = 1;
2487         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2488
2489         if (seeding_dev) {
2490                 sb->s_flags &= ~SB_RDONLY;
2491                 ret = btrfs_prepare_sprout(fs_info);
2492                 if (ret) {
2493                         btrfs_abort_transaction(trans, ret);
2494                         goto error_trans;
2495                 }
2496         }
2497
2498         device->fs_devices = fs_devices;
2499
2500         mutex_lock(&fs_devices->device_list_mutex);
2501         mutex_lock(&fs_info->chunk_mutex);
2502         list_add_rcu(&device->dev_list, &fs_devices->devices);
2503         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2504         fs_devices->num_devices++;
2505         fs_devices->open_devices++;
2506         fs_devices->rw_devices++;
2507         fs_devices->total_devices++;
2508         fs_devices->total_rw_bytes += device->total_bytes;
2509
2510         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2511
2512         if (!blk_queue_nonrot(q))
2513                 fs_devices->rotating = true;
2514
2515         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2516         btrfs_set_super_total_bytes(fs_info->super_copy,
2517                 round_down(orig_super_total_bytes + device->total_bytes,
2518                            fs_info->sectorsize));
2519
2520         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2521         btrfs_set_super_num_devices(fs_info->super_copy,
2522                                     orig_super_num_devices + 1);
2523
2524         /* add sysfs device entry */
2525         btrfs_sysfs_add_device_link(fs_devices, device);
2526
2527         /*
2528          * we've got more storage, clear any full flags on the space
2529          * infos
2530          */
2531         btrfs_clear_space_info_full(fs_info);
2532
2533         mutex_unlock(&fs_info->chunk_mutex);
2534         mutex_unlock(&fs_devices->device_list_mutex);
2535
2536         if (seeding_dev) {
2537                 mutex_lock(&fs_info->chunk_mutex);
2538                 ret = init_first_rw_device(trans);
2539                 mutex_unlock(&fs_info->chunk_mutex);
2540                 if (ret) {
2541                         btrfs_abort_transaction(trans, ret);
2542                         goto error_sysfs;
2543                 }
2544         }
2545
2546         ret = btrfs_add_dev_item(trans, device);
2547         if (ret) {
2548                 btrfs_abort_transaction(trans, ret);
2549                 goto error_sysfs;
2550         }
2551
2552         if (seeding_dev) {
2553                 ret = btrfs_finish_sprout(trans);
2554                 if (ret) {
2555                         btrfs_abort_transaction(trans, ret);
2556                         goto error_sysfs;
2557                 }
2558
2559                 btrfs_sysfs_update_sprout_fsid(fs_devices,
2560                                 fs_info->fs_devices->fsid);
2561         }
2562
2563         ret = btrfs_commit_transaction(trans);
2564
2565         if (seeding_dev) {
2566                 mutex_unlock(&uuid_mutex);
2567                 up_write(&sb->s_umount);
2568                 unlocked = true;
2569
2570                 if (ret) /* transaction commit */
2571                         return ret;
2572
2573                 ret = btrfs_relocate_sys_chunks(fs_info);
2574                 if (ret < 0)
2575                         btrfs_handle_fs_error(fs_info, ret,
2576                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2577                 trans = btrfs_attach_transaction(root);
2578                 if (IS_ERR(trans)) {
2579                         if (PTR_ERR(trans) == -ENOENT)
2580                                 return 0;
2581                         ret = PTR_ERR(trans);
2582                         trans = NULL;
2583                         goto error_sysfs;
2584                 }
2585                 ret = btrfs_commit_transaction(trans);
2586         }
2587
2588         /* Update ctime/mtime for libblkid */
2589         update_dev_time(device_path);
2590         return ret;
2591
2592 error_sysfs:
2593         btrfs_sysfs_rm_device_link(fs_devices, device);
2594         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2595         mutex_lock(&fs_info->chunk_mutex);
2596         list_del_rcu(&device->dev_list);
2597         list_del(&device->dev_alloc_list);
2598         fs_info->fs_devices->num_devices--;
2599         fs_info->fs_devices->open_devices--;
2600         fs_info->fs_devices->rw_devices--;
2601         fs_info->fs_devices->total_devices--;
2602         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2603         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2604         btrfs_set_super_total_bytes(fs_info->super_copy,
2605                                     orig_super_total_bytes);
2606         btrfs_set_super_num_devices(fs_info->super_copy,
2607                                     orig_super_num_devices);
2608         mutex_unlock(&fs_info->chunk_mutex);
2609         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2610 error_trans:
2611         if (seeding_dev)
2612                 sb->s_flags |= SB_RDONLY;
2613         if (trans)
2614                 btrfs_end_transaction(trans);
2615 error_free_device:
2616         btrfs_free_device(device);
2617 error:
2618         blkdev_put(bdev, FMODE_EXCL);
2619         if (seeding_dev && !unlocked) {
2620                 mutex_unlock(&uuid_mutex);
2621                 up_write(&sb->s_umount);
2622         }
2623         return ret;
2624 }
2625
2626 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2627                                         struct btrfs_device *device)
2628 {
2629         int ret;
2630         struct btrfs_path *path;
2631         struct btrfs_root *root = device->fs_info->chunk_root;
2632         struct btrfs_dev_item *dev_item;
2633         struct extent_buffer *leaf;
2634         struct btrfs_key key;
2635
2636         path = btrfs_alloc_path();
2637         if (!path)
2638                 return -ENOMEM;
2639
2640         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2641         key.type = BTRFS_DEV_ITEM_KEY;
2642         key.offset = device->devid;
2643
2644         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2645         if (ret < 0)
2646                 goto out;
2647
2648         if (ret > 0) {
2649                 ret = -ENOENT;
2650                 goto out;
2651         }
2652
2653         leaf = path->nodes[0];
2654         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2655
2656         btrfs_set_device_id(leaf, dev_item, device->devid);
2657         btrfs_set_device_type(leaf, dev_item, device->type);
2658         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2659         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2660         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2661         btrfs_set_device_total_bytes(leaf, dev_item,
2662                                      btrfs_device_get_disk_total_bytes(device));
2663         btrfs_set_device_bytes_used(leaf, dev_item,
2664                                     btrfs_device_get_bytes_used(device));
2665         btrfs_mark_buffer_dirty(leaf);
2666
2667 out:
2668         btrfs_free_path(path);
2669         return ret;
2670 }
2671
2672 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2673                       struct btrfs_device *device, u64 new_size)
2674 {
2675         struct btrfs_fs_info *fs_info = device->fs_info;
2676         struct btrfs_super_block *super_copy = fs_info->super_copy;
2677         u64 old_total;
2678         u64 diff;
2679
2680         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2681                 return -EACCES;
2682
2683         new_size = round_down(new_size, fs_info->sectorsize);
2684
2685         mutex_lock(&fs_info->chunk_mutex);
2686         old_total = btrfs_super_total_bytes(super_copy);
2687         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2688
2689         if (new_size <= device->total_bytes ||
2690             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2691                 mutex_unlock(&fs_info->chunk_mutex);
2692                 return -EINVAL;
2693         }
2694
2695         btrfs_set_super_total_bytes(super_copy,
2696                         round_down(old_total + diff, fs_info->sectorsize));
2697         device->fs_devices->total_rw_bytes += diff;
2698
2699         btrfs_device_set_total_bytes(device, new_size);
2700         btrfs_device_set_disk_total_bytes(device, new_size);
2701         btrfs_clear_space_info_full(device->fs_info);
2702         if (list_empty(&device->post_commit_list))
2703                 list_add_tail(&device->post_commit_list,
2704                               &trans->transaction->dev_update_list);
2705         mutex_unlock(&fs_info->chunk_mutex);
2706
2707         return btrfs_update_device(trans, device);
2708 }
2709
2710 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2711 {
2712         struct btrfs_fs_info *fs_info = trans->fs_info;
2713         struct btrfs_root *root = fs_info->chunk_root;
2714         int ret;
2715         struct btrfs_path *path;
2716         struct btrfs_key key;
2717
2718         path = btrfs_alloc_path();
2719         if (!path)
2720                 return -ENOMEM;
2721
2722         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2723         key.offset = chunk_offset;
2724         key.type = BTRFS_CHUNK_ITEM_KEY;
2725
2726         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2727         if (ret < 0)
2728                 goto out;
2729         else if (ret > 0) { /* Logic error or corruption */
2730                 btrfs_handle_fs_error(fs_info, -ENOENT,
2731                                       "Failed lookup while freeing chunk.");
2732                 ret = -ENOENT;
2733                 goto out;
2734         }
2735
2736         ret = btrfs_del_item(trans, root, path);
2737         if (ret < 0)
2738                 btrfs_handle_fs_error(fs_info, ret,
2739                                       "Failed to delete chunk item.");
2740 out:
2741         btrfs_free_path(path);
2742         return ret;
2743 }
2744
2745 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2746 {
2747         struct btrfs_super_block *super_copy = fs_info->super_copy;
2748         struct btrfs_disk_key *disk_key;
2749         struct btrfs_chunk *chunk;
2750         u8 *ptr;
2751         int ret = 0;
2752         u32 num_stripes;
2753         u32 array_size;
2754         u32 len = 0;
2755         u32 cur;
2756         struct btrfs_key key;
2757
2758         mutex_lock(&fs_info->chunk_mutex);
2759         array_size = btrfs_super_sys_array_size(super_copy);
2760
2761         ptr = super_copy->sys_chunk_array;
2762         cur = 0;
2763
2764         while (cur < array_size) {
2765                 disk_key = (struct btrfs_disk_key *)ptr;
2766                 btrfs_disk_key_to_cpu(&key, disk_key);
2767
2768                 len = sizeof(*disk_key);
2769
2770                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2771                         chunk = (struct btrfs_chunk *)(ptr + len);
2772                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2773                         len += btrfs_chunk_item_size(num_stripes);
2774                 } else {
2775                         ret = -EIO;
2776                         break;
2777                 }
2778                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2779                     key.offset == chunk_offset) {
2780                         memmove(ptr, ptr + len, array_size - (cur + len));
2781                         array_size -= len;
2782                         btrfs_set_super_sys_array_size(super_copy, array_size);
2783                 } else {
2784                         ptr += len;
2785                         cur += len;
2786                 }
2787         }
2788         mutex_unlock(&fs_info->chunk_mutex);
2789         return ret;
2790 }
2791
2792 /*
2793  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2794  * @logical: Logical block offset in bytes.
2795  * @length: Length of extent in bytes.
2796  *
2797  * Return: Chunk mapping or ERR_PTR.
2798  */
2799 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2800                                        u64 logical, u64 length)
2801 {
2802         struct extent_map_tree *em_tree;
2803         struct extent_map *em;
2804
2805         em_tree = &fs_info->mapping_tree;
2806         read_lock(&em_tree->lock);
2807         em = lookup_extent_mapping(em_tree, logical, length);
2808         read_unlock(&em_tree->lock);
2809
2810         if (!em) {
2811                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2812                            logical, length);
2813                 return ERR_PTR(-EINVAL);
2814         }
2815
2816         if (em->start > logical || em->start + em->len < logical) {
2817                 btrfs_crit(fs_info,
2818                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2819                            logical, length, em->start, em->start + em->len);
2820                 free_extent_map(em);
2821                 return ERR_PTR(-EINVAL);
2822         }
2823
2824         /* callers are responsible for dropping em's ref. */
2825         return em;
2826 }
2827
2828 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2829 {
2830         struct btrfs_fs_info *fs_info = trans->fs_info;
2831         struct extent_map *em;
2832         struct map_lookup *map;
2833         u64 dev_extent_len = 0;
2834         int i, ret = 0;
2835         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2836
2837         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2838         if (IS_ERR(em)) {
2839                 /*
2840                  * This is a logic error, but we don't want to just rely on the
2841                  * user having built with ASSERT enabled, so if ASSERT doesn't
2842                  * do anything we still error out.
2843                  */
2844                 ASSERT(0);
2845                 return PTR_ERR(em);
2846         }
2847         map = em->map_lookup;
2848         mutex_lock(&fs_info->chunk_mutex);
2849         check_system_chunk(trans, map->type);
2850         mutex_unlock(&fs_info->chunk_mutex);
2851
2852         /*
2853          * Take the device list mutex to prevent races with the final phase of
2854          * a device replace operation that replaces the device object associated
2855          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2856          */
2857         mutex_lock(&fs_devices->device_list_mutex);
2858         for (i = 0; i < map->num_stripes; i++) {
2859                 struct btrfs_device *device = map->stripes[i].dev;
2860                 ret = btrfs_free_dev_extent(trans, device,
2861                                             map->stripes[i].physical,
2862                                             &dev_extent_len);
2863                 if (ret) {
2864                         mutex_unlock(&fs_devices->device_list_mutex);
2865                         btrfs_abort_transaction(trans, ret);
2866                         goto out;
2867                 }
2868
2869                 if (device->bytes_used > 0) {
2870                         mutex_lock(&fs_info->chunk_mutex);
2871                         btrfs_device_set_bytes_used(device,
2872                                         device->bytes_used - dev_extent_len);
2873                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2874                         btrfs_clear_space_info_full(fs_info);
2875                         mutex_unlock(&fs_info->chunk_mutex);
2876                 }
2877
2878                 ret = btrfs_update_device(trans, device);
2879                 if (ret) {
2880                         mutex_unlock(&fs_devices->device_list_mutex);
2881                         btrfs_abort_transaction(trans, ret);
2882                         goto out;
2883                 }
2884         }
2885         mutex_unlock(&fs_devices->device_list_mutex);
2886
2887         ret = btrfs_free_chunk(trans, chunk_offset);
2888         if (ret) {
2889                 btrfs_abort_transaction(trans, ret);
2890                 goto out;
2891         }
2892
2893         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2894
2895         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2896                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2897                 if (ret) {
2898                         btrfs_abort_transaction(trans, ret);
2899                         goto out;
2900                 }
2901         }
2902
2903         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2904         if (ret) {
2905                 btrfs_abort_transaction(trans, ret);
2906                 goto out;
2907         }
2908
2909 out:
2910         /* once for us */
2911         free_extent_map(em);
2912         return ret;
2913 }
2914
2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2916 {
2917         struct btrfs_root *root = fs_info->chunk_root;
2918         struct btrfs_trans_handle *trans;
2919         struct btrfs_block_group *block_group;
2920         int ret;
2921
2922         /*
2923          * Prevent races with automatic removal of unused block groups.
2924          * After we relocate and before we remove the chunk with offset
2925          * chunk_offset, automatic removal of the block group can kick in,
2926          * resulting in a failure when calling btrfs_remove_chunk() below.
2927          *
2928          * Make sure to acquire this mutex before doing a tree search (dev
2929          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2930          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2931          * we release the path used to search the chunk/dev tree and before
2932          * the current task acquires this mutex and calls us.
2933          */
2934         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2935
2936         /* step one, relocate all the extents inside this chunk */
2937         btrfs_scrub_pause(fs_info);
2938         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2939         btrfs_scrub_continue(fs_info);
2940         if (ret)
2941                 return ret;
2942
2943         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
2944         if (!block_group)
2945                 return -ENOENT;
2946         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
2947         btrfs_put_block_group(block_group);
2948
2949         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2950                                                      chunk_offset);
2951         if (IS_ERR(trans)) {
2952                 ret = PTR_ERR(trans);
2953                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2954                 return ret;
2955         }
2956
2957         /*
2958          * step two, delete the device extents and the
2959          * chunk tree entries
2960          */
2961         ret = btrfs_remove_chunk(trans, chunk_offset);
2962         btrfs_end_transaction(trans);
2963         return ret;
2964 }
2965
2966 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2967 {
2968         struct btrfs_root *chunk_root = fs_info->chunk_root;
2969         struct btrfs_path *path;
2970         struct extent_buffer *leaf;
2971         struct btrfs_chunk *chunk;
2972         struct btrfs_key key;
2973         struct btrfs_key found_key;
2974         u64 chunk_type;
2975         bool retried = false;
2976         int failed = 0;
2977         int ret;
2978
2979         path = btrfs_alloc_path();
2980         if (!path)
2981                 return -ENOMEM;
2982
2983 again:
2984         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2985         key.offset = (u64)-1;
2986         key.type = BTRFS_CHUNK_ITEM_KEY;
2987
2988         while (1) {
2989                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2990                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2991                 if (ret < 0) {
2992                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2993                         goto error;
2994                 }
2995                 BUG_ON(ret == 0); /* Corruption */
2996
2997                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2998                                           key.type);
2999                 if (ret)
3000                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3001                 if (ret < 0)
3002                         goto error;
3003                 if (ret > 0)
3004                         break;
3005
3006                 leaf = path->nodes[0];
3007                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3008
3009                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3010                                        struct btrfs_chunk);
3011                 chunk_type = btrfs_chunk_type(leaf, chunk);
3012                 btrfs_release_path(path);
3013
3014                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3015                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3016                         if (ret == -ENOSPC)
3017                                 failed++;
3018                         else
3019                                 BUG_ON(ret);
3020                 }
3021                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3022
3023                 if (found_key.offset == 0)
3024                         break;
3025                 key.offset = found_key.offset - 1;
3026         }
3027         ret = 0;
3028         if (failed && !retried) {
3029                 failed = 0;
3030                 retried = true;
3031                 goto again;
3032         } else if (WARN_ON(failed && retried)) {
3033                 ret = -ENOSPC;
3034         }
3035 error:
3036         btrfs_free_path(path);
3037         return ret;
3038 }
3039
3040 /*
3041  * return 1 : allocate a data chunk successfully,
3042  * return <0: errors during allocating a data chunk,
3043  * return 0 : no need to allocate a data chunk.
3044  */
3045 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3046                                       u64 chunk_offset)
3047 {
3048         struct btrfs_block_group *cache;
3049         u64 bytes_used;
3050         u64 chunk_type;
3051
3052         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3053         ASSERT(cache);
3054         chunk_type = cache->flags;
3055         btrfs_put_block_group(cache);
3056
3057         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3058                 return 0;
3059
3060         spin_lock(&fs_info->data_sinfo->lock);
3061         bytes_used = fs_info->data_sinfo->bytes_used;
3062         spin_unlock(&fs_info->data_sinfo->lock);
3063
3064         if (!bytes_used) {
3065                 struct btrfs_trans_handle *trans;
3066                 int ret;
3067
3068                 trans = btrfs_join_transaction(fs_info->tree_root);
3069                 if (IS_ERR(trans))
3070                         return PTR_ERR(trans);
3071
3072                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3073                 btrfs_end_transaction(trans);
3074                 if (ret < 0)
3075                         return ret;
3076                 return 1;
3077         }
3078
3079         return 0;
3080 }
3081
3082 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3083                                struct btrfs_balance_control *bctl)
3084 {
3085         struct btrfs_root *root = fs_info->tree_root;
3086         struct btrfs_trans_handle *trans;
3087         struct btrfs_balance_item *item;
3088         struct btrfs_disk_balance_args disk_bargs;
3089         struct btrfs_path *path;
3090         struct extent_buffer *leaf;
3091         struct btrfs_key key;
3092         int ret, err;
3093
3094         path = btrfs_alloc_path();
3095         if (!path)
3096                 return -ENOMEM;
3097
3098         trans = btrfs_start_transaction(root, 0);
3099         if (IS_ERR(trans)) {
3100                 btrfs_free_path(path);
3101                 return PTR_ERR(trans);
3102         }
3103
3104         key.objectid = BTRFS_BALANCE_OBJECTID;
3105         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3106         key.offset = 0;
3107
3108         ret = btrfs_insert_empty_item(trans, root, path, &key,
3109                                       sizeof(*item));
3110         if (ret)
3111                 goto out;
3112
3113         leaf = path->nodes[0];
3114         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3115
3116         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3117
3118         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3119         btrfs_set_balance_data(leaf, item, &disk_bargs);
3120         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3121         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3122         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3123         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3124
3125         btrfs_set_balance_flags(leaf, item, bctl->flags);
3126
3127         btrfs_mark_buffer_dirty(leaf);
3128 out:
3129         btrfs_free_path(path);
3130         err = btrfs_commit_transaction(trans);
3131         if (err && !ret)
3132                 ret = err;
3133         return ret;
3134 }
3135
3136 static int del_balance_item(struct btrfs_fs_info *fs_info)
3137 {
3138         struct btrfs_root *root = fs_info->tree_root;
3139         struct btrfs_trans_handle *trans;
3140         struct btrfs_path *path;
3141         struct btrfs_key key;
3142         int ret, err;
3143
3144         path = btrfs_alloc_path();
3145         if (!path)
3146                 return -ENOMEM;
3147
3148         trans = btrfs_start_transaction(root, 0);
3149         if (IS_ERR(trans)) {
3150                 btrfs_free_path(path);
3151                 return PTR_ERR(trans);
3152         }
3153
3154         key.objectid = BTRFS_BALANCE_OBJECTID;
3155         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3156         key.offset = 0;
3157
3158         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3159         if (ret < 0)
3160                 goto out;
3161         if (ret > 0) {
3162                 ret = -ENOENT;
3163                 goto out;
3164         }
3165
3166         ret = btrfs_del_item(trans, root, path);
3167 out:
3168         btrfs_free_path(path);
3169         err = btrfs_commit_transaction(trans);
3170         if (err && !ret)
3171                 ret = err;
3172         return ret;
3173 }
3174
3175 /*
3176  * This is a heuristic used to reduce the number of chunks balanced on
3177  * resume after balance was interrupted.
3178  */
3179 static void update_balance_args(struct btrfs_balance_control *bctl)
3180 {
3181         /*
3182          * Turn on soft mode for chunk types that were being converted.
3183          */
3184         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3185                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3186         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3187                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3188         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3189                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3190
3191         /*
3192          * Turn on usage filter if is not already used.  The idea is
3193          * that chunks that we have already balanced should be
3194          * reasonably full.  Don't do it for chunks that are being
3195          * converted - that will keep us from relocating unconverted
3196          * (albeit full) chunks.
3197          */
3198         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3199             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3200             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3201                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3202                 bctl->data.usage = 90;
3203         }
3204         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3205             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3206             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3207                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3208                 bctl->sys.usage = 90;
3209         }
3210         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3211             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3212             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3213                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3214                 bctl->meta.usage = 90;
3215         }
3216 }
3217
3218 /*
3219  * Clear the balance status in fs_info and delete the balance item from disk.
3220  */
3221 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3222 {
3223         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3224         int ret;
3225
3226         BUG_ON(!fs_info->balance_ctl);
3227
3228         spin_lock(&fs_info->balance_lock);
3229         fs_info->balance_ctl = NULL;
3230         spin_unlock(&fs_info->balance_lock);
3231
3232         kfree(bctl);
3233         ret = del_balance_item(fs_info);
3234         if (ret)
3235                 btrfs_handle_fs_error(fs_info, ret, NULL);
3236 }
3237
3238 /*
3239  * Balance filters.  Return 1 if chunk should be filtered out
3240  * (should not be balanced).
3241  */
3242 static int chunk_profiles_filter(u64 chunk_type,
3243                                  struct btrfs_balance_args *bargs)
3244 {
3245         chunk_type = chunk_to_extended(chunk_type) &
3246                                 BTRFS_EXTENDED_PROFILE_MASK;
3247
3248         if (bargs->profiles & chunk_type)
3249                 return 0;
3250
3251         return 1;
3252 }
3253
3254 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3255                               struct btrfs_balance_args *bargs)
3256 {
3257         struct btrfs_block_group *cache;
3258         u64 chunk_used;
3259         u64 user_thresh_min;
3260         u64 user_thresh_max;
3261         int ret = 1;
3262
3263         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3264         chunk_used = cache->used;
3265
3266         if (bargs->usage_min == 0)
3267                 user_thresh_min = 0;
3268         else
3269                 user_thresh_min = div_factor_fine(cache->length,
3270                                                   bargs->usage_min);
3271
3272         if (bargs->usage_max == 0)
3273                 user_thresh_max = 1;
3274         else if (bargs->usage_max > 100)
3275                 user_thresh_max = cache->length;
3276         else
3277                 user_thresh_max = div_factor_fine(cache->length,
3278                                                   bargs->usage_max);
3279
3280         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3281                 ret = 0;
3282
3283         btrfs_put_block_group(cache);
3284         return ret;
3285 }
3286
3287 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3288                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3289 {
3290         struct btrfs_block_group *cache;
3291         u64 chunk_used, user_thresh;
3292         int ret = 1;
3293
3294         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3295         chunk_used = cache->used;
3296
3297         if (bargs->usage_min == 0)
3298                 user_thresh = 1;
3299         else if (bargs->usage > 100)
3300                 user_thresh = cache->length;
3301         else
3302                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3303
3304         if (chunk_used < user_thresh)
3305                 ret = 0;
3306
3307         btrfs_put_block_group(cache);
3308         return ret;
3309 }
3310
3311 static int chunk_devid_filter(struct extent_buffer *leaf,
3312                               struct btrfs_chunk *chunk,
3313                               struct btrfs_balance_args *bargs)
3314 {
3315         struct btrfs_stripe *stripe;
3316         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3317         int i;
3318
3319         for (i = 0; i < num_stripes; i++) {
3320                 stripe = btrfs_stripe_nr(chunk, i);
3321                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3322                         return 0;
3323         }
3324
3325         return 1;
3326 }
3327
3328 static u64 calc_data_stripes(u64 type, int num_stripes)
3329 {
3330         const int index = btrfs_bg_flags_to_raid_index(type);
3331         const int ncopies = btrfs_raid_array[index].ncopies;
3332         const int nparity = btrfs_raid_array[index].nparity;
3333
3334         if (nparity)
3335                 return num_stripes - nparity;
3336         else
3337                 return num_stripes / ncopies;
3338 }
3339
3340 /* [pstart, pend) */
3341 static int chunk_drange_filter(struct extent_buffer *leaf,
3342                                struct btrfs_chunk *chunk,
3343                                struct btrfs_balance_args *bargs)
3344 {
3345         struct btrfs_stripe *stripe;
3346         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3347         u64 stripe_offset;
3348         u64 stripe_length;
3349         u64 type;
3350         int factor;
3351         int i;
3352
3353         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3354                 return 0;
3355
3356         type = btrfs_chunk_type(leaf, chunk);
3357         factor = calc_data_stripes(type, num_stripes);
3358
3359         for (i = 0; i < num_stripes; i++) {
3360                 stripe = btrfs_stripe_nr(chunk, i);
3361                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3362                         continue;
3363
3364                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3365                 stripe_length = btrfs_chunk_length(leaf, chunk);
3366                 stripe_length = div_u64(stripe_length, factor);
3367
3368                 if (stripe_offset < bargs->pend &&
3369                     stripe_offset + stripe_length > bargs->pstart)
3370                         return 0;
3371         }
3372
3373         return 1;
3374 }
3375
3376 /* [vstart, vend) */
3377 static int chunk_vrange_filter(struct extent_buffer *leaf,
3378                                struct btrfs_chunk *chunk,
3379                                u64 chunk_offset,
3380                                struct btrfs_balance_args *bargs)
3381 {
3382         if (chunk_offset < bargs->vend &&
3383             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3384                 /* at least part of the chunk is inside this vrange */
3385                 return 0;
3386
3387         return 1;
3388 }
3389
3390 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3391                                struct btrfs_chunk *chunk,
3392                                struct btrfs_balance_args *bargs)
3393 {
3394         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3395
3396         if (bargs->stripes_min <= num_stripes
3397                         && num_stripes <= bargs->stripes_max)
3398                 return 0;
3399
3400         return 1;
3401 }
3402
3403 static int chunk_soft_convert_filter(u64 chunk_type,
3404                                      struct btrfs_balance_args *bargs)
3405 {
3406         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3407                 return 0;
3408
3409         chunk_type = chunk_to_extended(chunk_type) &
3410                                 BTRFS_EXTENDED_PROFILE_MASK;
3411
3412         if (bargs->target == chunk_type)
3413                 return 1;
3414
3415         return 0;
3416 }
3417
3418 static int should_balance_chunk(struct extent_buffer *leaf,
3419                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3420 {
3421         struct btrfs_fs_info *fs_info = leaf->fs_info;
3422         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3423         struct btrfs_balance_args *bargs = NULL;
3424         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3425
3426         /* type filter */
3427         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3428               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3429                 return 0;
3430         }
3431
3432         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3433                 bargs = &bctl->data;
3434         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3435                 bargs = &bctl->sys;
3436         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3437                 bargs = &bctl->meta;
3438
3439         /* profiles filter */
3440         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3441             chunk_profiles_filter(chunk_type, bargs)) {
3442                 return 0;
3443         }
3444
3445         /* usage filter */
3446         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3447             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3448                 return 0;
3449         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3450             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3451                 return 0;
3452         }
3453
3454         /* devid filter */
3455         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3456             chunk_devid_filter(leaf, chunk, bargs)) {
3457                 return 0;
3458         }
3459
3460         /* drange filter, makes sense only with devid filter */
3461         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3462             chunk_drange_filter(leaf, chunk, bargs)) {
3463                 return 0;
3464         }
3465
3466         /* vrange filter */
3467         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3468             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3469                 return 0;
3470         }
3471
3472         /* stripes filter */
3473         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3474             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3475                 return 0;
3476         }
3477
3478         /* soft profile changing mode */
3479         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3480             chunk_soft_convert_filter(chunk_type, bargs)) {
3481                 return 0;
3482         }
3483
3484         /*
3485          * limited by count, must be the last filter
3486          */
3487         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3488                 if (bargs->limit == 0)
3489                         return 0;
3490                 else
3491                         bargs->limit--;
3492         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3493                 /*
3494                  * Same logic as the 'limit' filter; the minimum cannot be
3495                  * determined here because we do not have the global information
3496                  * about the count of all chunks that satisfy the filters.
3497                  */
3498                 if (bargs->limit_max == 0)
3499                         return 0;
3500                 else
3501                         bargs->limit_max--;
3502         }
3503
3504         return 1;
3505 }
3506
3507 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3508 {
3509         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3510         struct btrfs_root *chunk_root = fs_info->chunk_root;
3511         u64 chunk_type;
3512         struct btrfs_chunk *chunk;
3513         struct btrfs_path *path = NULL;
3514         struct btrfs_key key;
3515         struct btrfs_key found_key;
3516         struct extent_buffer *leaf;
3517         int slot;
3518         int ret;
3519         int enospc_errors = 0;
3520         bool counting = true;
3521         /* The single value limit and min/max limits use the same bytes in the */
3522         u64 limit_data = bctl->data.limit;
3523         u64 limit_meta = bctl->meta.limit;
3524         u64 limit_sys = bctl->sys.limit;
3525         u32 count_data = 0;
3526         u32 count_meta = 0;
3527         u32 count_sys = 0;
3528         int chunk_reserved = 0;
3529
3530         path = btrfs_alloc_path();
3531         if (!path) {
3532                 ret = -ENOMEM;
3533                 goto error;
3534         }
3535
3536         /* zero out stat counters */
3537         spin_lock(&fs_info->balance_lock);
3538         memset(&bctl->stat, 0, sizeof(bctl->stat));
3539         spin_unlock(&fs_info->balance_lock);
3540 again:
3541         if (!counting) {
3542                 /*
3543                  * The single value limit and min/max limits use the same bytes
3544                  * in the
3545                  */
3546                 bctl->data.limit = limit_data;
3547                 bctl->meta.limit = limit_meta;
3548                 bctl->sys.limit = limit_sys;
3549         }
3550         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3551         key.offset = (u64)-1;
3552         key.type = BTRFS_CHUNK_ITEM_KEY;
3553
3554         while (1) {
3555                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3556                     atomic_read(&fs_info->balance_cancel_req)) {
3557                         ret = -ECANCELED;
3558                         goto error;
3559                 }
3560
3561                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3562                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3563                 if (ret < 0) {
3564                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3565                         goto error;
3566                 }
3567
3568                 /*
3569                  * this shouldn't happen, it means the last relocate
3570                  * failed
3571                  */
3572                 if (ret == 0)
3573                         BUG(); /* FIXME break ? */
3574
3575                 ret = btrfs_previous_item(chunk_root, path, 0,
3576                                           BTRFS_CHUNK_ITEM_KEY);
3577                 if (ret) {
3578                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579                         ret = 0;
3580                         break;
3581                 }
3582
3583                 leaf = path->nodes[0];
3584                 slot = path->slots[0];
3585                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3586
3587                 if (found_key.objectid != key.objectid) {
3588                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589                         break;
3590                 }
3591
3592                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3593                 chunk_type = btrfs_chunk_type(leaf, chunk);
3594
3595                 if (!counting) {
3596                         spin_lock(&fs_info->balance_lock);
3597                         bctl->stat.considered++;
3598                         spin_unlock(&fs_info->balance_lock);
3599                 }
3600
3601                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3602
3603                 btrfs_release_path(path);
3604                 if (!ret) {
3605                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606                         goto loop;
3607                 }
3608
3609                 if (counting) {
3610                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3611                         spin_lock(&fs_info->balance_lock);
3612                         bctl->stat.expected++;
3613                         spin_unlock(&fs_info->balance_lock);
3614
3615                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3616                                 count_data++;
3617                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3618                                 count_sys++;
3619                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3620                                 count_meta++;
3621
3622                         goto loop;
3623                 }
3624
3625                 /*
3626                  * Apply limit_min filter, no need to check if the LIMITS
3627                  * filter is used, limit_min is 0 by default
3628                  */
3629                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3630                                         count_data < bctl->data.limit_min)
3631                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3632                                         count_meta < bctl->meta.limit_min)
3633                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3634                                         count_sys < bctl->sys.limit_min)) {
3635                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636                         goto loop;
3637                 }
3638
3639                 if (!chunk_reserved) {
3640                         /*
3641                          * We may be relocating the only data chunk we have,
3642                          * which could potentially end up with losing data's
3643                          * raid profile, so lets allocate an empty one in
3644                          * advance.
3645                          */
3646                         ret = btrfs_may_alloc_data_chunk(fs_info,
3647                                                          found_key.offset);
3648                         if (ret < 0) {
3649                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650                                 goto error;
3651                         } else if (ret == 1) {
3652                                 chunk_reserved = 1;
3653                         }
3654                 }
3655
3656                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3657                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658                 if (ret == -ENOSPC) {
3659                         enospc_errors++;
3660                 } else if (ret == -ETXTBSY) {
3661                         btrfs_info(fs_info,
3662            "skipping relocation of block group %llu due to active swapfile",
3663                                    found_key.offset);
3664                         ret = 0;
3665                 } else if (ret) {
3666                         goto error;
3667                 } else {
3668                         spin_lock(&fs_info->balance_lock);
3669                         bctl->stat.completed++;
3670                         spin_unlock(&fs_info->balance_lock);
3671                 }
3672 loop:
3673                 if (found_key.offset == 0)
3674                         break;
3675                 key.offset = found_key.offset - 1;
3676         }
3677
3678         if (counting) {
3679                 btrfs_release_path(path);
3680                 counting = false;
3681                 goto again;
3682         }
3683 error:
3684         btrfs_free_path(path);
3685         if (enospc_errors) {
3686                 btrfs_info(fs_info, "%d enospc errors during balance",
3687                            enospc_errors);
3688                 if (!ret)
3689                         ret = -ENOSPC;
3690         }
3691
3692         return ret;
3693 }
3694
3695 /**
3696  * alloc_profile_is_valid - see if a given profile is valid and reduced
3697  * @flags: profile to validate
3698  * @extended: if true @flags is treated as an extended profile
3699  */
3700 static int alloc_profile_is_valid(u64 flags, int extended)
3701 {
3702         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3703                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3704
3705         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3706
3707         /* 1) check that all other bits are zeroed */
3708         if (flags & ~mask)
3709                 return 0;
3710
3711         /* 2) see if profile is reduced */
3712         if (flags == 0)
3713                 return !extended; /* "0" is valid for usual profiles */
3714
3715         return has_single_bit_set(flags);
3716 }
3717
3718 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3719 {
3720         /* cancel requested || normal exit path */
3721         return atomic_read(&fs_info->balance_cancel_req) ||
3722                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3723                  atomic_read(&fs_info->balance_cancel_req) == 0);
3724 }
3725
3726 /* Non-zero return value signifies invalidity */
3727 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3728                 u64 allowed)
3729 {
3730         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3731                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3732                  (bctl_arg->target & ~allowed)));
3733 }
3734
3735 /*
3736  * Fill @buf with textual description of balance filter flags @bargs, up to
3737  * @size_buf including the terminating null. The output may be trimmed if it
3738  * does not fit into the provided buffer.
3739  */
3740 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3741                                  u32 size_buf)
3742 {
3743         int ret;
3744         u32 size_bp = size_buf;
3745         char *bp = buf;
3746         u64 flags = bargs->flags;
3747         char tmp_buf[128] = {'\0'};
3748
3749         if (!flags)
3750                 return;
3751
3752 #define CHECK_APPEND_NOARG(a)                                           \
3753         do {                                                            \
3754                 ret = snprintf(bp, size_bp, (a));                       \
3755                 if (ret < 0 || ret >= size_bp)                          \
3756                         goto out_overflow;                              \
3757                 size_bp -= ret;                                         \
3758                 bp += ret;                                              \
3759         } while (0)
3760
3761 #define CHECK_APPEND_1ARG(a, v1)                                        \
3762         do {                                                            \
3763                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3764                 if (ret < 0 || ret >= size_bp)                          \
3765                         goto out_overflow;                              \
3766                 size_bp -= ret;                                         \
3767                 bp += ret;                                              \
3768         } while (0)
3769
3770 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3771         do {                                                            \
3772                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3773                 if (ret < 0 || ret >= size_bp)                          \
3774                         goto out_overflow;                              \
3775                 size_bp -= ret;                                         \
3776                 bp += ret;                                              \
3777         } while (0)
3778
3779         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3780                 CHECK_APPEND_1ARG("convert=%s,",
3781                                   btrfs_bg_type_to_raid_name(bargs->target));
3782
3783         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3784                 CHECK_APPEND_NOARG("soft,");
3785
3786         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3787                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3788                                             sizeof(tmp_buf));
3789                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3790         }
3791
3792         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3793                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3794
3795         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3796                 CHECK_APPEND_2ARG("usage=%u..%u,",
3797                                   bargs->usage_min, bargs->usage_max);
3798
3799         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3800                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3801
3802         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3803                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3804                                   bargs->pstart, bargs->pend);
3805
3806         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3807                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3808                                   bargs->vstart, bargs->vend);
3809
3810         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3811                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3812
3813         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3814                 CHECK_APPEND_2ARG("limit=%u..%u,",
3815                                 bargs->limit_min, bargs->limit_max);
3816
3817         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3818                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3819                                   bargs->stripes_min, bargs->stripes_max);
3820
3821 #undef CHECK_APPEND_2ARG
3822 #undef CHECK_APPEND_1ARG
3823 #undef CHECK_APPEND_NOARG
3824
3825 out_overflow:
3826
3827         if (size_bp < size_buf)
3828                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3829         else
3830                 buf[0] = '\0';
3831 }
3832
3833 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3834 {
3835         u32 size_buf = 1024;
3836         char tmp_buf[192] = {'\0'};
3837         char *buf;
3838         char *bp;
3839         u32 size_bp = size_buf;
3840         int ret;
3841         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3842
3843         buf = kzalloc(size_buf, GFP_KERNEL);
3844         if (!buf)
3845                 return;
3846
3847         bp = buf;
3848
3849 #define CHECK_APPEND_1ARG(a, v1)                                        \
3850         do {                                                            \
3851                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3852                 if (ret < 0 || ret >= size_bp)                          \
3853                         goto out_overflow;                              \
3854                 size_bp -= ret;                                         \
3855                 bp += ret;                                              \
3856         } while (0)
3857
3858         if (bctl->flags & BTRFS_BALANCE_FORCE)
3859                 CHECK_APPEND_1ARG("%s", "-f ");
3860
3861         if (bctl->flags & BTRFS_BALANCE_DATA) {
3862                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3863                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3864         }
3865
3866         if (bctl->flags & BTRFS_BALANCE_METADATA) {
3867                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3868                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3869         }
3870
3871         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3872                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3873                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3874         }
3875
3876 #undef CHECK_APPEND_1ARG
3877
3878 out_overflow:
3879
3880         if (size_bp < size_buf)
3881                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3882         btrfs_info(fs_info, "balance: %s %s",
3883                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
3884                    "resume" : "start", buf);
3885
3886         kfree(buf);
3887 }
3888
3889 /*
3890  * Should be called with balance mutexe held
3891  */
3892 int btrfs_balance(struct btrfs_fs_info *fs_info,
3893                   struct btrfs_balance_control *bctl,
3894                   struct btrfs_ioctl_balance_args *bargs)
3895 {
3896         u64 meta_target, data_target;
3897         u64 allowed;
3898         int mixed = 0;
3899         int ret;
3900         u64 num_devices;
3901         unsigned seq;
3902         bool reducing_redundancy;
3903         int i;
3904
3905         if (btrfs_fs_closing(fs_info) ||
3906             atomic_read(&fs_info->balance_pause_req) ||
3907             atomic_read(&fs_info->balance_cancel_req)) {
3908                 ret = -EINVAL;
3909                 goto out;
3910         }
3911
3912         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3913         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3914                 mixed = 1;
3915
3916         /*
3917          * In case of mixed groups both data and meta should be picked,
3918          * and identical options should be given for both of them.
3919          */
3920         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3921         if (mixed && (bctl->flags & allowed)) {
3922                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3923                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3924                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3925                         btrfs_err(fs_info,
3926           "balance: mixed groups data and metadata options must be the same");
3927                         ret = -EINVAL;
3928                         goto out;
3929                 }
3930         }
3931
3932         /*
3933          * rw_devices will not change at the moment, device add/delete/replace
3934          * are excluded by EXCL_OP
3935          */
3936         num_devices = fs_info->fs_devices->rw_devices;
3937
3938         /*
3939          * SINGLE profile on-disk has no profile bit, but in-memory we have a
3940          * special bit for it, to make it easier to distinguish.  Thus we need
3941          * to set it manually, or balance would refuse the profile.
3942          */
3943         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3944         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
3945                 if (num_devices >= btrfs_raid_array[i].devs_min)
3946                         allowed |= btrfs_raid_array[i].bg_flag;
3947
3948         if (validate_convert_profile(&bctl->data, allowed)) {
3949                 btrfs_err(fs_info,
3950                           "balance: invalid convert data profile %s",
3951                           btrfs_bg_type_to_raid_name(bctl->data.target));
3952                 ret = -EINVAL;
3953                 goto out;
3954         }
3955         if (validate_convert_profile(&bctl->meta, allowed)) {
3956                 btrfs_err(fs_info,
3957                           "balance: invalid convert metadata profile %s",
3958                           btrfs_bg_type_to_raid_name(bctl->meta.target));
3959                 ret = -EINVAL;
3960                 goto out;
3961         }
3962         if (validate_convert_profile(&bctl->sys, allowed)) {
3963                 btrfs_err(fs_info,
3964                           "balance: invalid convert system profile %s",
3965                           btrfs_bg_type_to_raid_name(bctl->sys.target));
3966                 ret = -EINVAL;
3967                 goto out;
3968         }
3969
3970         /*
3971          * Allow to reduce metadata or system integrity only if force set for
3972          * profiles with redundancy (copies, parity)
3973          */
3974         allowed = 0;
3975         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
3976                 if (btrfs_raid_array[i].ncopies >= 2 ||
3977                     btrfs_raid_array[i].tolerated_failures >= 1)
3978                         allowed |= btrfs_raid_array[i].bg_flag;
3979         }
3980         do {
3981                 seq = read_seqbegin(&fs_info->profiles_lock);
3982
3983                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3984                      (fs_info->avail_system_alloc_bits & allowed) &&
3985                      !(bctl->sys.target & allowed)) ||
3986                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3987                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3988                      !(bctl->meta.target & allowed)))
3989                         reducing_redundancy = true;
3990                 else
3991                         reducing_redundancy = false;
3992
3993                 /* if we're not converting, the target field is uninitialized */
3994                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3995                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3996                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3997                         bctl->data.target : fs_info->avail_data_alloc_bits;
3998         } while (read_seqretry(&fs_info->profiles_lock, seq));
3999
4000         if (reducing_redundancy) {
4001                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4002                         btrfs_info(fs_info,
4003                            "balance: force reducing metadata redundancy");
4004                 } else {
4005                         btrfs_err(fs_info,
4006         "balance: reduces metadata redundancy, use --force if you want this");
4007                         ret = -EINVAL;
4008                         goto out;
4009                 }
4010         }
4011
4012         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4013                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4014                 btrfs_warn(fs_info,
4015         "balance: metadata profile %s has lower redundancy than data profile %s",
4016                                 btrfs_bg_type_to_raid_name(meta_target),
4017                                 btrfs_bg_type_to_raid_name(data_target));
4018         }
4019
4020         if (fs_info->send_in_progress) {
4021                 btrfs_warn_rl(fs_info,
4022 "cannot run balance while send operations are in progress (%d in progress)",
4023                               fs_info->send_in_progress);
4024                 ret = -EAGAIN;
4025                 goto out;
4026         }
4027
4028         ret = insert_balance_item(fs_info, bctl);
4029         if (ret && ret != -EEXIST)
4030                 goto out;
4031
4032         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4033                 BUG_ON(ret == -EEXIST);
4034                 BUG_ON(fs_info->balance_ctl);
4035                 spin_lock(&fs_info->balance_lock);
4036                 fs_info->balance_ctl = bctl;
4037                 spin_unlock(&fs_info->balance_lock);
4038         } else {
4039                 BUG_ON(ret != -EEXIST);
4040                 spin_lock(&fs_info->balance_lock);
4041                 update_balance_args(bctl);
4042                 spin_unlock(&fs_info->balance_lock);
4043         }
4044
4045         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4046         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4047         describe_balance_start_or_resume(fs_info);
4048         mutex_unlock(&fs_info->balance_mutex);
4049
4050         ret = __btrfs_balance(fs_info);
4051
4052         mutex_lock(&fs_info->balance_mutex);
4053         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4054                 btrfs_info(fs_info, "balance: paused");
4055         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4056                 btrfs_info(fs_info, "balance: canceled");
4057         else
4058                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4059
4060         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4061
4062         if (bargs) {
4063                 memset(bargs, 0, sizeof(*bargs));
4064                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4065         }
4066
4067         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4068             balance_need_close(fs_info)) {
4069                 reset_balance_state(fs_info);
4070                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4071         }
4072
4073         wake_up(&fs_info->balance_wait_q);
4074
4075         return ret;
4076 out:
4077         if (bctl->flags & BTRFS_BALANCE_RESUME)
4078                 reset_balance_state(fs_info);
4079         else
4080                 kfree(bctl);
4081         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4082
4083         return ret;
4084 }
4085
4086 static int balance_kthread(void *data)
4087 {
4088         struct btrfs_fs_info *fs_info = data;
4089         int ret = 0;
4090
4091         mutex_lock(&fs_info->balance_mutex);
4092         if (fs_info->balance_ctl)
4093                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4094         mutex_unlock(&fs_info->balance_mutex);
4095
4096         return ret;
4097 }
4098
4099 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4100 {
4101         struct task_struct *tsk;
4102
4103         mutex_lock(&fs_info->balance_mutex);
4104         if (!fs_info->balance_ctl) {
4105                 mutex_unlock(&fs_info->balance_mutex);
4106                 return 0;
4107         }
4108         mutex_unlock(&fs_info->balance_mutex);
4109
4110         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4111                 btrfs_info(fs_info, "balance: resume skipped");
4112                 return 0;
4113         }
4114
4115         /*
4116          * A ro->rw remount sequence should continue with the paused balance
4117          * regardless of who pauses it, system or the user as of now, so set
4118          * the resume flag.
4119          */
4120         spin_lock(&fs_info->balance_lock);
4121         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4122         spin_unlock(&fs_info->balance_lock);
4123
4124         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4125         return PTR_ERR_OR_ZERO(tsk);
4126 }
4127
4128 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4129 {
4130         struct btrfs_balance_control *bctl;
4131         struct btrfs_balance_item *item;
4132         struct btrfs_disk_balance_args disk_bargs;
4133         struct btrfs_path *path;
4134         struct extent_buffer *leaf;
4135         struct btrfs_key key;
4136         int ret;
4137
4138         path = btrfs_alloc_path();
4139         if (!path)
4140                 return -ENOMEM;
4141
4142         key.objectid = BTRFS_BALANCE_OBJECTID;
4143         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4144         key.offset = 0;
4145
4146         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4147         if (ret < 0)
4148                 goto out;
4149         if (ret > 0) { /* ret = -ENOENT; */
4150                 ret = 0;
4151                 goto out;
4152         }
4153
4154         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4155         if (!bctl) {
4156                 ret = -ENOMEM;
4157                 goto out;
4158         }
4159
4160         leaf = path->nodes[0];
4161         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4162
4163         bctl->flags = btrfs_balance_flags(leaf, item);
4164         bctl->flags |= BTRFS_BALANCE_RESUME;
4165
4166         btrfs_balance_data(leaf, item, &disk_bargs);
4167         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4168         btrfs_balance_meta(leaf, item, &disk_bargs);
4169         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4170         btrfs_balance_sys(leaf, item, &disk_bargs);
4171         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4172
4173         /*
4174          * This should never happen, as the paused balance state is recovered
4175          * during mount without any chance of other exclusive ops to collide.
4176          *
4177          * This gives the exclusive op status to balance and keeps in paused
4178          * state until user intervention (cancel or umount). If the ownership
4179          * cannot be assigned, show a message but do not fail. The balance
4180          * is in a paused state and must have fs_info::balance_ctl properly
4181          * set up.
4182          */
4183         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4184                 btrfs_warn(fs_info,
4185         "balance: cannot set exclusive op status, resume manually");
4186
4187         mutex_lock(&fs_info->balance_mutex);
4188         BUG_ON(fs_info->balance_ctl);
4189         spin_lock(&fs_info->balance_lock);
4190         fs_info->balance_ctl = bctl;
4191         spin_unlock(&fs_info->balance_lock);
4192         mutex_unlock(&fs_info->balance_mutex);
4193 out:
4194         btrfs_free_path(path);
4195         return ret;
4196 }
4197
4198 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4199 {
4200         int ret = 0;
4201
4202         mutex_lock(&fs_info->balance_mutex);
4203         if (!fs_info->balance_ctl) {
4204                 mutex_unlock(&fs_info->balance_mutex);
4205                 return -ENOTCONN;
4206         }
4207
4208         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4209                 atomic_inc(&fs_info->balance_pause_req);
4210                 mutex_unlock(&fs_info->balance_mutex);
4211
4212                 wait_event(fs_info->balance_wait_q,
4213                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4214
4215                 mutex_lock(&fs_info->balance_mutex);
4216                 /* we are good with balance_ctl ripped off from under us */
4217                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4218                 atomic_dec(&fs_info->balance_pause_req);
4219         } else {
4220                 ret = -ENOTCONN;
4221         }
4222
4223         mutex_unlock(&fs_info->balance_mutex);
4224         return ret;
4225 }
4226
4227 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4228 {
4229         mutex_lock(&fs_info->balance_mutex);
4230         if (!fs_info->balance_ctl) {
4231                 mutex_unlock(&fs_info->balance_mutex);
4232                 return -ENOTCONN;
4233         }
4234
4235         /*
4236          * A paused balance with the item stored on disk can be resumed at
4237          * mount time if the mount is read-write. Otherwise it's still paused
4238          * and we must not allow cancelling as it deletes the item.
4239          */
4240         if (sb_rdonly(fs_info->sb)) {
4241                 mutex_unlock(&fs_info->balance_mutex);
4242                 return -EROFS;
4243         }
4244
4245         atomic_inc(&fs_info->balance_cancel_req);
4246         /*
4247          * if we are running just wait and return, balance item is
4248          * deleted in btrfs_balance in this case
4249          */
4250         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4251                 mutex_unlock(&fs_info->balance_mutex);
4252                 wait_event(fs_info->balance_wait_q,
4253                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4254                 mutex_lock(&fs_info->balance_mutex);
4255         } else {
4256                 mutex_unlock(&fs_info->balance_mutex);
4257                 /*
4258                  * Lock released to allow other waiters to continue, we'll
4259                  * reexamine the status again.
4260                  */
4261                 mutex_lock(&fs_info->balance_mutex);
4262
4263                 if (fs_info->balance_ctl) {
4264                         reset_balance_state(fs_info);
4265                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4266                         btrfs_info(fs_info, "balance: canceled");
4267                 }
4268         }
4269
4270         BUG_ON(fs_info->balance_ctl ||
4271                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4272         atomic_dec(&fs_info->balance_cancel_req);
4273         mutex_unlock(&fs_info->balance_mutex);
4274         return 0;
4275 }
4276
4277 static int btrfs_uuid_scan_kthread(void *data)
4278 {
4279         struct btrfs_fs_info *fs_info = data;
4280         struct btrfs_root *root = fs_info->tree_root;
4281         struct btrfs_key key;
4282         struct btrfs_path *path = NULL;
4283         int ret = 0;
4284         struct extent_buffer *eb;
4285         int slot;
4286         struct btrfs_root_item root_item;
4287         u32 item_size;
4288         struct btrfs_trans_handle *trans = NULL;
4289
4290         path = btrfs_alloc_path();
4291         if (!path) {
4292                 ret = -ENOMEM;
4293                 goto out;
4294         }
4295
4296         key.objectid = 0;
4297         key.type = BTRFS_ROOT_ITEM_KEY;
4298         key.offset = 0;
4299
4300         while (1) {
4301                 ret = btrfs_search_forward(root, &key, path,
4302                                 BTRFS_OLDEST_GENERATION);
4303                 if (ret) {
4304                         if (ret > 0)
4305                                 ret = 0;
4306                         break;
4307                 }
4308
4309                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4310                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4311                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4312                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4313                         goto skip;
4314
4315                 eb = path->nodes[0];
4316                 slot = path->slots[0];
4317                 item_size = btrfs_item_size_nr(eb, slot);
4318                 if (item_size < sizeof(root_item))
4319                         goto skip;
4320
4321                 read_extent_buffer(eb, &root_item,
4322                                    btrfs_item_ptr_offset(eb, slot),
4323                                    (int)sizeof(root_item));
4324                 if (btrfs_root_refs(&root_item) == 0)
4325                         goto skip;
4326
4327                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4328                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4329                         if (trans)
4330                                 goto update_tree;
4331
4332                         btrfs_release_path(path);
4333                         /*
4334                          * 1 - subvol uuid item
4335                          * 1 - received_subvol uuid item
4336                          */
4337                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4338                         if (IS_ERR(trans)) {
4339                                 ret = PTR_ERR(trans);
4340                                 break;
4341                         }
4342                         continue;
4343                 } else {
4344                         goto skip;
4345                 }
4346 update_tree:
4347                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4348                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4349                                                   BTRFS_UUID_KEY_SUBVOL,
4350                                                   key.objectid);
4351                         if (ret < 0) {
4352                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4353                                         ret);
4354                                 break;
4355                         }
4356                 }
4357
4358                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4359                         ret = btrfs_uuid_tree_add(trans,
4360                                                   root_item.received_uuid,
4361                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4362                                                   key.objectid);
4363                         if (ret < 0) {
4364                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4365                                         ret);
4366                                 break;
4367                         }
4368                 }
4369
4370 skip:
4371                 if (trans) {
4372                         ret = btrfs_end_transaction(trans);
4373                         trans = NULL;
4374                         if (ret)
4375                                 break;
4376                 }
4377
4378                 btrfs_release_path(path);
4379                 if (key.offset < (u64)-1) {
4380                         key.offset++;
4381                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4382                         key.offset = 0;
4383                         key.type = BTRFS_ROOT_ITEM_KEY;
4384                 } else if (key.objectid < (u64)-1) {
4385                         key.offset = 0;
4386                         key.type = BTRFS_ROOT_ITEM_KEY;
4387                         key.objectid++;
4388                 } else {
4389                         break;
4390                 }
4391                 cond_resched();
4392         }
4393
4394 out:
4395         btrfs_free_path(path);
4396         if (trans && !IS_ERR(trans))
4397                 btrfs_end_transaction(trans);
4398         if (ret)
4399                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4400         else
4401                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4402         up(&fs_info->uuid_tree_rescan_sem);
4403         return 0;
4404 }
4405
4406 /*
4407  * Callback for btrfs_uuid_tree_iterate().
4408  * returns:
4409  * 0    check succeeded, the entry is not outdated.
4410  * < 0  if an error occurred.
4411  * > 0  if the check failed, which means the caller shall remove the entry.
4412  */
4413 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4414                                        u8 *uuid, u8 type, u64 subid)
4415 {
4416         struct btrfs_key key;
4417         int ret = 0;
4418         struct btrfs_root *subvol_root;
4419
4420         if (type != BTRFS_UUID_KEY_SUBVOL &&
4421             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4422                 goto out;
4423
4424         key.objectid = subid;
4425         key.type = BTRFS_ROOT_ITEM_KEY;
4426         key.offset = (u64)-1;
4427         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4428         if (IS_ERR(subvol_root)) {
4429                 ret = PTR_ERR(subvol_root);
4430                 if (ret == -ENOENT)
4431                         ret = 1;
4432                 goto out;
4433         }
4434
4435         switch (type) {
4436         case BTRFS_UUID_KEY_SUBVOL:
4437                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4438                         ret = 1;
4439                 break;
4440         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4441                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4442                            BTRFS_UUID_SIZE))
4443                         ret = 1;
4444                 break;
4445         }
4446
4447 out:
4448         return ret;
4449 }
4450
4451 static int btrfs_uuid_rescan_kthread(void *data)
4452 {
4453         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4454         int ret;
4455
4456         /*
4457          * 1st step is to iterate through the existing UUID tree and
4458          * to delete all entries that contain outdated data.
4459          * 2nd step is to add all missing entries to the UUID tree.
4460          */
4461         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4462         if (ret < 0) {
4463                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4464                 up(&fs_info->uuid_tree_rescan_sem);
4465                 return ret;
4466         }
4467         return btrfs_uuid_scan_kthread(data);
4468 }
4469
4470 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4471 {
4472         struct btrfs_trans_handle *trans;
4473         struct btrfs_root *tree_root = fs_info->tree_root;
4474         struct btrfs_root *uuid_root;
4475         struct task_struct *task;
4476         int ret;
4477
4478         /*
4479          * 1 - root node
4480          * 1 - root item
4481          */
4482         trans = btrfs_start_transaction(tree_root, 2);
4483         if (IS_ERR(trans))
4484                 return PTR_ERR(trans);
4485
4486         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4487         if (IS_ERR(uuid_root)) {
4488                 ret = PTR_ERR(uuid_root);
4489                 btrfs_abort_transaction(trans, ret);
4490                 btrfs_end_transaction(trans);
4491                 return ret;
4492         }
4493
4494         fs_info->uuid_root = uuid_root;
4495
4496         ret = btrfs_commit_transaction(trans);
4497         if (ret)
4498                 return ret;
4499
4500         down(&fs_info->uuid_tree_rescan_sem);
4501         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4502         if (IS_ERR(task)) {
4503                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4504                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4505                 up(&fs_info->uuid_tree_rescan_sem);
4506                 return PTR_ERR(task);
4507         }
4508
4509         return 0;
4510 }
4511
4512 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4513 {
4514         struct task_struct *task;
4515
4516         down(&fs_info->uuid_tree_rescan_sem);
4517         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4518         if (IS_ERR(task)) {
4519                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4520                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4521                 up(&fs_info->uuid_tree_rescan_sem);
4522                 return PTR_ERR(task);
4523         }
4524
4525         return 0;
4526 }
4527
4528 /*
4529  * shrinking a device means finding all of the device extents past
4530  * the new size, and then following the back refs to the chunks.
4531  * The chunk relocation code actually frees the device extent
4532  */
4533 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4534 {
4535         struct btrfs_fs_info *fs_info = device->fs_info;
4536         struct btrfs_root *root = fs_info->dev_root;
4537         struct btrfs_trans_handle *trans;
4538         struct btrfs_dev_extent *dev_extent = NULL;
4539         struct btrfs_path *path;
4540         u64 length;
4541         u64 chunk_offset;
4542         int ret;
4543         int slot;
4544         int failed = 0;
4545         bool retried = false;
4546         struct extent_buffer *l;
4547         struct btrfs_key key;
4548         struct btrfs_super_block *super_copy = fs_info->super_copy;
4549         u64 old_total = btrfs_super_total_bytes(super_copy);
4550         u64 old_size = btrfs_device_get_total_bytes(device);
4551         u64 diff;
4552         u64 start;
4553
4554         new_size = round_down(new_size, fs_info->sectorsize);
4555         start = new_size;
4556         diff = round_down(old_size - new_size, fs_info->sectorsize);
4557
4558         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4559                 return -EINVAL;
4560
4561         path = btrfs_alloc_path();
4562         if (!path)
4563                 return -ENOMEM;
4564
4565         path->reada = READA_BACK;
4566
4567         trans = btrfs_start_transaction(root, 0);
4568         if (IS_ERR(trans)) {
4569                 btrfs_free_path(path);
4570                 return PTR_ERR(trans);
4571         }
4572
4573         mutex_lock(&fs_info->chunk_mutex);
4574
4575         btrfs_device_set_total_bytes(device, new_size);
4576         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4577                 device->fs_devices->total_rw_bytes -= diff;
4578                 atomic64_sub(diff, &fs_info->free_chunk_space);
4579         }
4580
4581         /*
4582          * Once the device's size has been set to the new size, ensure all
4583          * in-memory chunks are synced to disk so that the loop below sees them
4584          * and relocates them accordingly.
4585          */
4586         if (contains_pending_extent(device, &start, diff)) {
4587                 mutex_unlock(&fs_info->chunk_mutex);
4588                 ret = btrfs_commit_transaction(trans);
4589                 if (ret)
4590                         goto done;
4591         } else {
4592                 mutex_unlock(&fs_info->chunk_mutex);
4593                 btrfs_end_transaction(trans);
4594         }
4595
4596 again:
4597         key.objectid = device->devid;
4598         key.offset = (u64)-1;
4599         key.type = BTRFS_DEV_EXTENT_KEY;
4600
4601         do {
4602                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4603                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604                 if (ret < 0) {
4605                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4606                         goto done;
4607                 }
4608
4609                 ret = btrfs_previous_item(root, path, 0, key.type);
4610                 if (ret)
4611                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4612                 if (ret < 0)
4613                         goto done;
4614                 if (ret) {
4615                         ret = 0;
4616                         btrfs_release_path(path);
4617                         break;
4618                 }
4619
4620                 l = path->nodes[0];
4621                 slot = path->slots[0];
4622                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4623
4624                 if (key.objectid != device->devid) {
4625                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4626                         btrfs_release_path(path);
4627                         break;
4628                 }
4629
4630                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4631                 length = btrfs_dev_extent_length(l, dev_extent);
4632
4633                 if (key.offset + length <= new_size) {
4634                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4635                         btrfs_release_path(path);
4636                         break;
4637                 }
4638
4639                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4640                 btrfs_release_path(path);
4641
4642                 /*
4643                  * We may be relocating the only data chunk we have,
4644                  * which could potentially end up with losing data's
4645                  * raid profile, so lets allocate an empty one in
4646                  * advance.
4647                  */
4648                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4649                 if (ret < 0) {
4650                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4651                         goto done;
4652                 }
4653
4654                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4655                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4656                 if (ret == -ENOSPC) {
4657                         failed++;
4658                 } else if (ret) {
4659                         if (ret == -ETXTBSY) {
4660                                 btrfs_warn(fs_info,
4661                    "could not shrink block group %llu due to active swapfile",
4662                                            chunk_offset);
4663                         }
4664                         goto done;
4665                 }
4666         } while (key.offset-- > 0);
4667
4668         if (failed && !retried) {
4669                 failed = 0;
4670                 retried = true;
4671                 goto again;
4672         } else if (failed && retried) {
4673                 ret = -ENOSPC;
4674                 goto done;
4675         }
4676
4677         /* Shrinking succeeded, else we would be at "done". */
4678         trans = btrfs_start_transaction(root, 0);
4679         if (IS_ERR(trans)) {
4680                 ret = PTR_ERR(trans);
4681                 goto done;
4682         }
4683
4684         mutex_lock(&fs_info->chunk_mutex);
4685         btrfs_device_set_disk_total_bytes(device, new_size);
4686         if (list_empty(&device->post_commit_list))
4687                 list_add_tail(&device->post_commit_list,
4688                               &trans->transaction->dev_update_list);
4689
4690         WARN_ON(diff > old_total);
4691         btrfs_set_super_total_bytes(super_copy,
4692                         round_down(old_total - diff, fs_info->sectorsize));
4693         mutex_unlock(&fs_info->chunk_mutex);
4694
4695         /* Now btrfs_update_device() will change the on-disk size. */
4696         ret = btrfs_update_device(trans, device);
4697         if (ret < 0) {
4698                 btrfs_abort_transaction(trans, ret);
4699                 btrfs_end_transaction(trans);
4700         } else {
4701                 ret = btrfs_commit_transaction(trans);
4702         }
4703 done:
4704         btrfs_free_path(path);
4705         if (ret) {
4706                 mutex_lock(&fs_info->chunk_mutex);
4707                 btrfs_device_set_total_bytes(device, old_size);
4708                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4709                         device->fs_devices->total_rw_bytes += diff;
4710                 atomic64_add(diff, &fs_info->free_chunk_space);
4711                 mutex_unlock(&fs_info->chunk_mutex);
4712         }
4713         return ret;
4714 }
4715
4716 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4717                            struct btrfs_key *key,
4718                            struct btrfs_chunk *chunk, int item_size)
4719 {
4720         struct btrfs_super_block *super_copy = fs_info->super_copy;
4721         struct btrfs_disk_key disk_key;
4722         u32 array_size;
4723         u8 *ptr;
4724
4725         mutex_lock(&fs_info->chunk_mutex);
4726         array_size = btrfs_super_sys_array_size(super_copy);
4727         if (array_size + item_size + sizeof(disk_key)
4728                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4729                 mutex_unlock(&fs_info->chunk_mutex);
4730                 return -EFBIG;
4731         }
4732
4733         ptr = super_copy->sys_chunk_array + array_size;
4734         btrfs_cpu_key_to_disk(&disk_key, key);
4735         memcpy(ptr, &disk_key, sizeof(disk_key));
4736         ptr += sizeof(disk_key);
4737         memcpy(ptr, chunk, item_size);
4738         item_size += sizeof(disk_key);
4739         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4740         mutex_unlock(&fs_info->chunk_mutex);
4741
4742         return 0;
4743 }
4744
4745 /*
4746  * sort the devices in descending order by max_avail, total_avail
4747  */
4748 static int btrfs_cmp_device_info(const void *a, const void *b)
4749 {
4750         const struct btrfs_device_info *di_a = a;
4751         const struct btrfs_device_info *di_b = b;
4752
4753         if (di_a->max_avail > di_b->max_avail)
4754                 return -1;
4755         if (di_a->max_avail < di_b->max_avail)
4756                 return 1;
4757         if (di_a->total_avail > di_b->total_avail)
4758                 return -1;
4759         if (di_a->total_avail < di_b->total_avail)
4760                 return 1;
4761         return 0;
4762 }
4763
4764 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4765 {
4766         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4767                 return;
4768
4769         btrfs_set_fs_incompat(info, RAID56);
4770 }
4771
4772 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4773 {
4774         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4775                 return;
4776
4777         btrfs_set_fs_incompat(info, RAID1C34);
4778 }
4779
4780 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4781                                u64 start, u64 type)
4782 {
4783         struct btrfs_fs_info *info = trans->fs_info;
4784         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4785         struct btrfs_device *device;
4786         struct map_lookup *map = NULL;
4787         struct extent_map_tree *em_tree;
4788         struct extent_map *em;
4789         struct btrfs_device_info *devices_info = NULL;
4790         u64 total_avail;
4791         int num_stripes;        /* total number of stripes to allocate */
4792         int data_stripes;       /* number of stripes that count for
4793                                    block group size */
4794         int sub_stripes;        /* sub_stripes info for map */
4795         int dev_stripes;        /* stripes per dev */
4796         int devs_max;           /* max devs to use */
4797         int devs_min;           /* min devs needed */
4798         int devs_increment;     /* ndevs has to be a multiple of this */
4799         int ncopies;            /* how many copies to data has */
4800         int nparity;            /* number of stripes worth of bytes to
4801                                    store parity information */
4802         int ret;
4803         u64 max_stripe_size;
4804         u64 max_chunk_size;
4805         u64 stripe_size;
4806         u64 chunk_size;
4807         int ndevs;
4808         int i;
4809         int j;
4810         int index;
4811
4812         BUG_ON(!alloc_profile_is_valid(type, 0));
4813
4814         if (list_empty(&fs_devices->alloc_list)) {
4815                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4816                         btrfs_debug(info, "%s: no writable device", __func__);
4817                 return -ENOSPC;
4818         }
4819
4820         index = btrfs_bg_flags_to_raid_index(type);
4821
4822         sub_stripes = btrfs_raid_array[index].sub_stripes;
4823         dev_stripes = btrfs_raid_array[index].dev_stripes;
4824         devs_max = btrfs_raid_array[index].devs_max;
4825         if (!devs_max)
4826                 devs_max = BTRFS_MAX_DEVS(info);
4827         devs_min = btrfs_raid_array[index].devs_min;
4828         devs_increment = btrfs_raid_array[index].devs_increment;
4829         ncopies = btrfs_raid_array[index].ncopies;
4830         nparity = btrfs_raid_array[index].nparity;
4831
4832         if (type & BTRFS_BLOCK_GROUP_DATA) {
4833                 max_stripe_size = SZ_1G;
4834                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4835         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4836                 /* for larger filesystems, use larger metadata chunks */
4837                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4838                         max_stripe_size = SZ_1G;
4839                 else
4840                         max_stripe_size = SZ_256M;
4841                 max_chunk_size = max_stripe_size;
4842         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4843                 max_stripe_size = SZ_32M;
4844                 max_chunk_size = 2 * max_stripe_size;
4845                 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4846         } else {
4847                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4848                        type);
4849                 BUG();
4850         }
4851
4852         /* We don't want a chunk larger than 10% of writable space */
4853         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4854                              max_chunk_size);
4855
4856         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4857                                GFP_NOFS);
4858         if (!devices_info)
4859                 return -ENOMEM;
4860
4861         /*
4862          * in the first pass through the devices list, we gather information
4863          * about the available holes on each device.
4864          */
4865         ndevs = 0;
4866         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4867                 u64 max_avail;
4868                 u64 dev_offset;
4869
4870                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4871                         WARN(1, KERN_ERR
4872                                "BTRFS: read-only device in alloc_list\n");
4873                         continue;
4874                 }
4875
4876                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4877                                         &device->dev_state) ||
4878                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4879                         continue;
4880
4881                 if (device->total_bytes > device->bytes_used)
4882                         total_avail = device->total_bytes - device->bytes_used;
4883                 else
4884                         total_avail = 0;
4885
4886                 /* If there is no space on this device, skip it. */
4887                 if (total_avail == 0)
4888                         continue;
4889
4890                 ret = find_free_dev_extent(device,
4891                                            max_stripe_size * dev_stripes,
4892                                            &dev_offset, &max_avail);
4893                 if (ret && ret != -ENOSPC)
4894                         goto error;
4895
4896                 if (ret == 0)
4897                         max_avail = max_stripe_size * dev_stripes;
4898
4899                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4900                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4901                                 btrfs_debug(info,
4902                         "%s: devid %llu has no free space, have=%llu want=%u",
4903                                             __func__, device->devid, max_avail,
4904                                             BTRFS_STRIPE_LEN * dev_stripes);
4905                         continue;
4906                 }
4907
4908                 if (ndevs == fs_devices->rw_devices) {
4909                         WARN(1, "%s: found more than %llu devices\n",
4910                              __func__, fs_devices->rw_devices);
4911                         break;
4912                 }
4913                 devices_info[ndevs].dev_offset = dev_offset;
4914                 devices_info[ndevs].max_avail = max_avail;
4915                 devices_info[ndevs].total_avail = total_avail;
4916                 devices_info[ndevs].dev = device;
4917                 ++ndevs;
4918         }
4919
4920         /*
4921          * now sort the devices by hole size / available space
4922          */
4923         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4924              btrfs_cmp_device_info, NULL);
4925
4926         /*
4927          * Round down to number of usable stripes, devs_increment can be any
4928          * number so we can't use round_down()
4929          */
4930         ndevs -= ndevs % devs_increment;
4931
4932         if (ndevs < devs_min) {
4933                 ret = -ENOSPC;
4934                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4935                         btrfs_debug(info,
4936         "%s: not enough devices with free space: have=%d minimum required=%d",
4937                                     __func__, ndevs, devs_min);
4938                 }
4939                 goto error;
4940         }
4941
4942         ndevs = min(ndevs, devs_max);
4943
4944         /*
4945          * The primary goal is to maximize the number of stripes, so use as
4946          * many devices as possible, even if the stripes are not maximum sized.
4947          *
4948          * The DUP profile stores more than one stripe per device, the
4949          * max_avail is the total size so we have to adjust.
4950          */
4951         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4952         num_stripes = ndevs * dev_stripes;
4953
4954         /*
4955          * this will have to be fixed for RAID1 and RAID10 over
4956          * more drives
4957          */
4958         data_stripes = (num_stripes - nparity) / ncopies;
4959
4960         /*
4961          * Use the number of data stripes to figure out how big this chunk
4962          * is really going to be in terms of logical address space,
4963          * and compare that answer with the max chunk size. If it's higher,
4964          * we try to reduce stripe_size.
4965          */
4966         if (stripe_size * data_stripes > max_chunk_size) {
4967                 /*
4968                  * Reduce stripe_size, round it up to a 16MB boundary again and
4969                  * then use it, unless it ends up being even bigger than the
4970                  * previous value we had already.
4971                  */
4972                 stripe_size = min(round_up(div_u64(max_chunk_size,
4973                                                    data_stripes), SZ_16M),
4974                                   stripe_size);
4975         }
4976
4977         /* align to BTRFS_STRIPE_LEN */
4978         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4979
4980         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4981         if (!map) {
4982                 ret = -ENOMEM;
4983                 goto error;
4984         }
4985         map->num_stripes = num_stripes;
4986
4987         for (i = 0; i < ndevs; ++i) {
4988                 for (j = 0; j < dev_stripes; ++j) {
4989                         int s = i * dev_stripes + j;
4990                         map->stripes[s].dev = devices_info[i].dev;
4991                         map->stripes[s].physical = devices_info[i].dev_offset +
4992                                                    j * stripe_size;
4993                 }
4994         }
4995         map->stripe_len = BTRFS_STRIPE_LEN;
4996         map->io_align = BTRFS_STRIPE_LEN;
4997         map->io_width = BTRFS_STRIPE_LEN;
4998         map->type = type;
4999         map->sub_stripes = sub_stripes;
5000
5001         chunk_size = stripe_size * data_stripes;
5002
5003         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5004
5005         em = alloc_extent_map();
5006         if (!em) {
5007                 kfree(map);
5008                 ret = -ENOMEM;
5009                 goto error;
5010         }
5011         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5012         em->map_lookup = map;
5013         em->start = start;
5014         em->len = chunk_size;
5015         em->block_start = 0;
5016         em->block_len = em->len;
5017         em->orig_block_len = stripe_size;
5018
5019         em_tree = &info->mapping_tree;
5020         write_lock(&em_tree->lock);
5021         ret = add_extent_mapping(em_tree, em, 0);
5022         if (ret) {
5023                 write_unlock(&em_tree->lock);
5024                 free_extent_map(em);
5025                 goto error;
5026         }
5027         write_unlock(&em_tree->lock);
5028
5029         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5030         if (ret)
5031                 goto error_del_extent;
5032
5033         for (i = 0; i < map->num_stripes; i++) {
5034                 struct btrfs_device *dev = map->stripes[i].dev;
5035
5036                 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5037                 if (list_empty(&dev->post_commit_list))
5038                         list_add_tail(&dev->post_commit_list,
5039                                       &trans->transaction->dev_update_list);
5040         }
5041
5042         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5043
5044         free_extent_map(em);
5045         check_raid56_incompat_flag(info, type);
5046         check_raid1c34_incompat_flag(info, type);
5047
5048         kfree(devices_info);
5049         return 0;
5050
5051 error_del_extent:
5052         write_lock(&em_tree->lock);
5053         remove_extent_mapping(em_tree, em);
5054         write_unlock(&em_tree->lock);
5055
5056         /* One for our allocation */
5057         free_extent_map(em);
5058         /* One for the tree reference */
5059         free_extent_map(em);
5060 error:
5061         kfree(devices_info);
5062         return ret;
5063 }
5064
5065 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5066                              u64 chunk_offset, u64 chunk_size)
5067 {
5068         struct btrfs_fs_info *fs_info = trans->fs_info;
5069         struct btrfs_root *extent_root = fs_info->extent_root;
5070         struct btrfs_root *chunk_root = fs_info->chunk_root;
5071         struct btrfs_key key;
5072         struct btrfs_device *device;
5073         struct btrfs_chunk *chunk;
5074         struct btrfs_stripe *stripe;
5075         struct extent_map *em;
5076         struct map_lookup *map;
5077         size_t item_size;
5078         u64 dev_offset;
5079         u64 stripe_size;
5080         int i = 0;
5081         int ret = 0;
5082
5083         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5084         if (IS_ERR(em))
5085                 return PTR_ERR(em);
5086
5087         map = em->map_lookup;
5088         item_size = btrfs_chunk_item_size(map->num_stripes);
5089         stripe_size = em->orig_block_len;
5090
5091         chunk = kzalloc(item_size, GFP_NOFS);
5092         if (!chunk) {
5093                 ret = -ENOMEM;
5094                 goto out;
5095         }
5096
5097         /*
5098          * Take the device list mutex to prevent races with the final phase of
5099          * a device replace operation that replaces the device object associated
5100          * with the map's stripes, because the device object's id can change
5101          * at any time during that final phase of the device replace operation
5102          * (dev-replace.c:btrfs_dev_replace_finishing()).
5103          */
5104         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5105         for (i = 0; i < map->num_stripes; i++) {
5106                 device = map->stripes[i].dev;
5107                 dev_offset = map->stripes[i].physical;
5108
5109                 ret = btrfs_update_device(trans, device);
5110                 if (ret)
5111                         break;
5112                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5113                                              dev_offset, stripe_size);
5114                 if (ret)
5115                         break;
5116         }
5117         if (ret) {
5118                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5119                 goto out;
5120         }
5121
5122         stripe = &chunk->stripe;
5123         for (i = 0; i < map->num_stripes; i++) {
5124                 device = map->stripes[i].dev;
5125                 dev_offset = map->stripes[i].physical;
5126
5127                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5128                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5129                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5130                 stripe++;
5131         }
5132         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5133
5134         btrfs_set_stack_chunk_length(chunk, chunk_size);
5135         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5136         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5137         btrfs_set_stack_chunk_type(chunk, map->type);
5138         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5139         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5140         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5141         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5142         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5143
5144         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5145         key.type = BTRFS_CHUNK_ITEM_KEY;
5146         key.offset = chunk_offset;
5147
5148         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5149         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5150                 /*
5151                  * TODO: Cleanup of inserted chunk root in case of
5152                  * failure.
5153                  */
5154                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5155         }
5156
5157 out:
5158         kfree(chunk);
5159         free_extent_map(em);
5160         return ret;
5161 }
5162
5163 /*
5164  * Chunk allocation falls into two parts. The first part does work
5165  * that makes the new allocated chunk usable, but does not do any operation
5166  * that modifies the chunk tree. The second part does the work that
5167  * requires modifying the chunk tree. This division is important for the
5168  * bootstrap process of adding storage to a seed btrfs.
5169  */
5170 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5171 {
5172         u64 chunk_offset;
5173
5174         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5175         chunk_offset = find_next_chunk(trans->fs_info);
5176         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5177 }
5178
5179 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5180 {
5181         struct btrfs_fs_info *fs_info = trans->fs_info;
5182         u64 chunk_offset;
5183         u64 sys_chunk_offset;
5184         u64 alloc_profile;
5185         int ret;
5186
5187         chunk_offset = find_next_chunk(fs_info);
5188         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5189         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5190         if (ret)
5191                 return ret;
5192
5193         sys_chunk_offset = find_next_chunk(fs_info);
5194         alloc_profile = btrfs_system_alloc_profile(fs_info);
5195         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5196         return ret;
5197 }
5198
5199 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5200 {
5201         const int index = btrfs_bg_flags_to_raid_index(map->type);
5202
5203         return btrfs_raid_array[index].tolerated_failures;
5204 }
5205
5206 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5207 {
5208         struct extent_map *em;
5209         struct map_lookup *map;
5210         int readonly = 0;
5211         int miss_ndevs = 0;
5212         int i;
5213
5214         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5215         if (IS_ERR(em))
5216                 return 1;
5217
5218         map = em->map_lookup;
5219         for (i = 0; i < map->num_stripes; i++) {
5220                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5221                                         &map->stripes[i].dev->dev_state)) {
5222                         miss_ndevs++;
5223                         continue;
5224                 }
5225                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5226                                         &map->stripes[i].dev->dev_state)) {
5227                         readonly = 1;
5228                         goto end;
5229                 }
5230         }
5231
5232         /*
5233          * If the number of missing devices is larger than max errors,
5234          * we can not write the data into that chunk successfully, so
5235          * set it readonly.
5236          */
5237         if (miss_ndevs > btrfs_chunk_max_errors(map))
5238                 readonly = 1;
5239 end:
5240         free_extent_map(em);
5241         return readonly;
5242 }
5243
5244 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5245 {
5246         struct extent_map *em;
5247
5248         while (1) {
5249                 write_lock(&tree->lock);
5250                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5251                 if (em)
5252                         remove_extent_mapping(tree, em);
5253                 write_unlock(&tree->lock);
5254                 if (!em)
5255                         break;
5256                 /* once for us */
5257                 free_extent_map(em);
5258                 /* once for the tree */
5259                 free_extent_map(em);
5260         }
5261 }
5262
5263 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5264 {
5265         struct extent_map *em;
5266         struct map_lookup *map;
5267         int ret;
5268
5269         em = btrfs_get_chunk_map(fs_info, logical, len);
5270         if (IS_ERR(em))
5271                 /*
5272                  * We could return errors for these cases, but that could get
5273                  * ugly and we'd probably do the same thing which is just not do
5274                  * anything else and exit, so return 1 so the callers don't try
5275                  * to use other copies.
5276                  */
5277                 return 1;
5278
5279         map = em->map_lookup;
5280         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5281                 ret = map->num_stripes;
5282         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5283                 ret = map->sub_stripes;
5284         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5285                 ret = 2;
5286         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5287                 /*
5288                  * There could be two corrupted data stripes, we need
5289                  * to loop retry in order to rebuild the correct data.
5290                  *
5291                  * Fail a stripe at a time on every retry except the
5292                  * stripe under reconstruction.
5293                  */
5294                 ret = map->num_stripes;
5295         else
5296                 ret = 1;
5297         free_extent_map(em);
5298
5299         down_read(&fs_info->dev_replace.rwsem);
5300         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5301             fs_info->dev_replace.tgtdev)
5302                 ret++;
5303         up_read(&fs_info->dev_replace.rwsem);
5304
5305         return ret;
5306 }
5307
5308 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5309                                     u64 logical)
5310 {
5311         struct extent_map *em;
5312         struct map_lookup *map;
5313         unsigned long len = fs_info->sectorsize;
5314
5315         em = btrfs_get_chunk_map(fs_info, logical, len);
5316
5317         if (!WARN_ON(IS_ERR(em))) {
5318                 map = em->map_lookup;
5319                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5320                         len = map->stripe_len * nr_data_stripes(map);
5321                 free_extent_map(em);
5322         }
5323         return len;
5324 }
5325
5326 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5327 {
5328         struct extent_map *em;
5329         struct map_lookup *map;
5330         int ret = 0;
5331
5332         em = btrfs_get_chunk_map(fs_info, logical, len);
5333
5334         if(!WARN_ON(IS_ERR(em))) {
5335                 map = em->map_lookup;
5336                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5337                         ret = 1;
5338                 free_extent_map(em);
5339         }
5340         return ret;
5341 }
5342
5343 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5344                             struct map_lookup *map, int first,
5345                             int dev_replace_is_ongoing)
5346 {
5347         int i;
5348         int num_stripes;
5349         int preferred_mirror;
5350         int tolerance;
5351         struct btrfs_device *srcdev;
5352
5353         ASSERT((map->type &
5354                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5355
5356         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5357                 num_stripes = map->sub_stripes;
5358         else
5359                 num_stripes = map->num_stripes;
5360
5361         preferred_mirror = first + current->pid % num_stripes;
5362
5363         if (dev_replace_is_ongoing &&
5364             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5365              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5366                 srcdev = fs_info->dev_replace.srcdev;
5367         else
5368                 srcdev = NULL;
5369
5370         /*
5371          * try to avoid the drive that is the source drive for a
5372          * dev-replace procedure, only choose it if no other non-missing
5373          * mirror is available
5374          */
5375         for (tolerance = 0; tolerance < 2; tolerance++) {
5376                 if (map->stripes[preferred_mirror].dev->bdev &&
5377                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5378                         return preferred_mirror;
5379                 for (i = first; i < first + num_stripes; i++) {
5380                         if (map->stripes[i].dev->bdev &&
5381                             (tolerance || map->stripes[i].dev != srcdev))
5382                                 return i;
5383                 }
5384         }
5385
5386         /* we couldn't find one that doesn't fail.  Just return something
5387          * and the io error handling code will clean up eventually
5388          */
5389         return preferred_mirror;
5390 }
5391
5392 static inline int parity_smaller(u64 a, u64 b)
5393 {
5394         return a > b;
5395 }
5396
5397 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5398 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5399 {
5400         struct btrfs_bio_stripe s;
5401         int i;
5402         u64 l;
5403         int again = 1;
5404
5405         while (again) {
5406                 again = 0;
5407                 for (i = 0; i < num_stripes - 1; i++) {
5408                         if (parity_smaller(bbio->raid_map[i],
5409                                            bbio->raid_map[i+1])) {
5410                                 s = bbio->stripes[i];
5411                                 l = bbio->raid_map[i];
5412                                 bbio->stripes[i] = bbio->stripes[i+1];
5413                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5414                                 bbio->stripes[i+1] = s;
5415                                 bbio->raid_map[i+1] = l;
5416
5417                                 again = 1;
5418                         }
5419                 }
5420         }
5421 }
5422
5423 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5424 {
5425         struct btrfs_bio *bbio = kzalloc(
5426                  /* the size of the btrfs_bio */
5427                 sizeof(struct btrfs_bio) +
5428                 /* plus the variable array for the stripes */
5429                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5430                 /* plus the variable array for the tgt dev */
5431                 sizeof(int) * (real_stripes) +
5432                 /*
5433                  * plus the raid_map, which includes both the tgt dev
5434                  * and the stripes
5435                  */
5436                 sizeof(u64) * (total_stripes),
5437                 GFP_NOFS|__GFP_NOFAIL);
5438
5439         atomic_set(&bbio->error, 0);
5440         refcount_set(&bbio->refs, 1);
5441
5442         return bbio;
5443 }
5444
5445 void btrfs_get_bbio(struct btrfs_bio *bbio)
5446 {
5447         WARN_ON(!refcount_read(&bbio->refs));
5448         refcount_inc(&bbio->refs);
5449 }
5450
5451 void btrfs_put_bbio(struct btrfs_bio *bbio)
5452 {
5453         if (!bbio)
5454                 return;
5455         if (refcount_dec_and_test(&bbio->refs))
5456                 kfree(bbio);
5457 }
5458
5459 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5460 /*
5461  * Please note that, discard won't be sent to target device of device
5462  * replace.
5463  */
5464 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5465                                          u64 logical, u64 *length_ret,
5466                                          struct btrfs_bio **bbio_ret)
5467 {
5468         struct extent_map *em;
5469         struct map_lookup *map;
5470         struct btrfs_bio *bbio;
5471         u64 length = *length_ret;
5472         u64 offset;
5473         u64 stripe_nr;
5474         u64 stripe_nr_end;
5475         u64 stripe_end_offset;
5476         u64 stripe_cnt;
5477         u64 stripe_len;
5478         u64 stripe_offset;
5479         u64 num_stripes;
5480         u32 stripe_index;
5481         u32 factor = 0;
5482         u32 sub_stripes = 0;
5483         u64 stripes_per_dev = 0;
5484         u32 remaining_stripes = 0;
5485         u32 last_stripe = 0;
5486         int ret = 0;
5487         int i;
5488
5489         /* discard always return a bbio */
5490         ASSERT(bbio_ret);
5491
5492         em = btrfs_get_chunk_map(fs_info, logical, length);
5493         if (IS_ERR(em))
5494                 return PTR_ERR(em);
5495
5496         map = em->map_lookup;
5497         /* we don't discard raid56 yet */
5498         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5499                 ret = -EOPNOTSUPP;
5500                 goto out;
5501         }
5502
5503         offset = logical - em->start;
5504         length = min_t(u64, em->start + em->len - logical, length);
5505         *length_ret = length;
5506
5507         stripe_len = map->stripe_len;
5508         /*
5509          * stripe_nr counts the total number of stripes we have to stride
5510          * to get to this block
5511          */
5512         stripe_nr = div64_u64(offset, stripe_len);
5513
5514         /* stripe_offset is the offset of this block in its stripe */
5515         stripe_offset = offset - stripe_nr * stripe_len;
5516
5517         stripe_nr_end = round_up(offset + length, map->stripe_len);
5518         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5519         stripe_cnt = stripe_nr_end - stripe_nr;
5520         stripe_end_offset = stripe_nr_end * map->stripe_len -
5521                             (offset + length);
5522         /*
5523          * after this, stripe_nr is the number of stripes on this
5524          * device we have to walk to find the data, and stripe_index is
5525          * the number of our device in the stripe array
5526          */
5527         num_stripes = 1;
5528         stripe_index = 0;
5529         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5530                          BTRFS_BLOCK_GROUP_RAID10)) {
5531                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5532                         sub_stripes = 1;
5533                 else
5534                         sub_stripes = map->sub_stripes;
5535
5536                 factor = map->num_stripes / sub_stripes;
5537                 num_stripes = min_t(u64, map->num_stripes,
5538                                     sub_stripes * stripe_cnt);
5539                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5540                 stripe_index *= sub_stripes;
5541                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5542                                               &remaining_stripes);
5543                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5544                 last_stripe *= sub_stripes;
5545         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5546                                 BTRFS_BLOCK_GROUP_DUP)) {
5547                 num_stripes = map->num_stripes;
5548         } else {
5549                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5550                                         &stripe_index);
5551         }
5552
5553         bbio = alloc_btrfs_bio(num_stripes, 0);
5554         if (!bbio) {
5555                 ret = -ENOMEM;
5556                 goto out;
5557         }
5558
5559         for (i = 0; i < num_stripes; i++) {
5560                 bbio->stripes[i].physical =
5561                         map->stripes[stripe_index].physical +
5562                         stripe_offset + stripe_nr * map->stripe_len;
5563                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5564
5565                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5566                                  BTRFS_BLOCK_GROUP_RAID10)) {
5567                         bbio->stripes[i].length = stripes_per_dev *
5568                                 map->stripe_len;
5569
5570                         if (i / sub_stripes < remaining_stripes)
5571                                 bbio->stripes[i].length +=
5572                                         map->stripe_len;
5573
5574                         /*
5575                          * Special for the first stripe and
5576                          * the last stripe:
5577                          *
5578                          * |-------|...|-------|
5579                          *     |----------|
5580                          *    off     end_off
5581                          */
5582                         if (i < sub_stripes)
5583                                 bbio->stripes[i].length -=
5584                                         stripe_offset;
5585
5586                         if (stripe_index >= last_stripe &&
5587                             stripe_index <= (last_stripe +
5588                                              sub_stripes - 1))
5589                                 bbio->stripes[i].length -=
5590                                         stripe_end_offset;
5591
5592                         if (i == sub_stripes - 1)
5593                                 stripe_offset = 0;
5594                 } else {
5595                         bbio->stripes[i].length = length;
5596                 }
5597
5598                 stripe_index++;
5599                 if (stripe_index == map->num_stripes) {
5600                         stripe_index = 0;
5601                         stripe_nr++;
5602                 }
5603         }
5604
5605         *bbio_ret = bbio;
5606         bbio->map_type = map->type;
5607         bbio->num_stripes = num_stripes;
5608 out:
5609         free_extent_map(em);
5610         return ret;
5611 }
5612
5613 /*
5614  * In dev-replace case, for repair case (that's the only case where the mirror
5615  * is selected explicitly when calling btrfs_map_block), blocks left of the
5616  * left cursor can also be read from the target drive.
5617  *
5618  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5619  * array of stripes.
5620  * For READ, it also needs to be supported using the same mirror number.
5621  *
5622  * If the requested block is not left of the left cursor, EIO is returned. This
5623  * can happen because btrfs_num_copies() returns one more in the dev-replace
5624  * case.
5625  */
5626 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5627                                          u64 logical, u64 length,
5628                                          u64 srcdev_devid, int *mirror_num,
5629                                          u64 *physical)
5630 {
5631         struct btrfs_bio *bbio = NULL;
5632         int num_stripes;
5633         int index_srcdev = 0;
5634         int found = 0;
5635         u64 physical_of_found = 0;
5636         int i;
5637         int ret = 0;
5638
5639         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5640                                 logical, &length, &bbio, 0, 0);
5641         if (ret) {
5642                 ASSERT(bbio == NULL);
5643                 return ret;
5644         }
5645
5646         num_stripes = bbio->num_stripes;
5647         if (*mirror_num > num_stripes) {
5648                 /*
5649                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5650                  * that means that the requested area is not left of the left
5651                  * cursor
5652                  */
5653                 btrfs_put_bbio(bbio);
5654                 return -EIO;
5655         }
5656
5657         /*
5658          * process the rest of the function using the mirror_num of the source
5659          * drive. Therefore look it up first.  At the end, patch the device
5660          * pointer to the one of the target drive.
5661          */
5662         for (i = 0; i < num_stripes; i++) {
5663                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5664                         continue;
5665
5666                 /*
5667                  * In case of DUP, in order to keep it simple, only add the
5668                  * mirror with the lowest physical address
5669                  */
5670                 if (found &&
5671                     physical_of_found <= bbio->stripes[i].physical)
5672                         continue;
5673
5674                 index_srcdev = i;
5675                 found = 1;
5676                 physical_of_found = bbio->stripes[i].physical;
5677         }
5678
5679         btrfs_put_bbio(bbio);
5680
5681         ASSERT(found);
5682         if (!found)
5683                 return -EIO;
5684
5685         *mirror_num = index_srcdev + 1;
5686         *physical = physical_of_found;
5687         return ret;
5688 }
5689
5690 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5691                                       struct btrfs_bio **bbio_ret,
5692                                       struct btrfs_dev_replace *dev_replace,
5693                                       int *num_stripes_ret, int *max_errors_ret)
5694 {
5695         struct btrfs_bio *bbio = *bbio_ret;
5696         u64 srcdev_devid = dev_replace->srcdev->devid;
5697         int tgtdev_indexes = 0;
5698         int num_stripes = *num_stripes_ret;
5699         int max_errors = *max_errors_ret;
5700         int i;
5701
5702         if (op == BTRFS_MAP_WRITE) {
5703                 int index_where_to_add;
5704
5705                 /*
5706                  * duplicate the write operations while the dev replace
5707                  * procedure is running. Since the copying of the old disk to
5708                  * the new disk takes place at run time while the filesystem is
5709                  * mounted writable, the regular write operations to the old
5710                  * disk have to be duplicated to go to the new disk as well.
5711                  *
5712                  * Note that device->missing is handled by the caller, and that
5713                  * the write to the old disk is already set up in the stripes
5714                  * array.
5715                  */
5716                 index_where_to_add = num_stripes;
5717                 for (i = 0; i < num_stripes; i++) {
5718                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5719                                 /* write to new disk, too */
5720                                 struct btrfs_bio_stripe *new =
5721                                         bbio->stripes + index_where_to_add;
5722                                 struct btrfs_bio_stripe *old =
5723                                         bbio->stripes + i;
5724
5725                                 new->physical = old->physical;
5726                                 new->length = old->length;
5727                                 new->dev = dev_replace->tgtdev;
5728                                 bbio->tgtdev_map[i] = index_where_to_add;
5729                                 index_where_to_add++;
5730                                 max_errors++;
5731                                 tgtdev_indexes++;
5732                         }
5733                 }
5734                 num_stripes = index_where_to_add;
5735         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5736                 int index_srcdev = 0;
5737                 int found = 0;
5738                 u64 physical_of_found = 0;
5739
5740                 /*
5741                  * During the dev-replace procedure, the target drive can also
5742                  * be used to read data in case it is needed to repair a corrupt
5743                  * block elsewhere. This is possible if the requested area is
5744                  * left of the left cursor. In this area, the target drive is a
5745                  * full copy of the source drive.
5746                  */
5747                 for (i = 0; i < num_stripes; i++) {
5748                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5749                                 /*
5750                                  * In case of DUP, in order to keep it simple,
5751                                  * only add the mirror with the lowest physical
5752                                  * address
5753                                  */
5754                                 if (found &&
5755                                     physical_of_found <=
5756                                      bbio->stripes[i].physical)
5757                                         continue;
5758                                 index_srcdev = i;
5759                                 found = 1;
5760                                 physical_of_found = bbio->stripes[i].physical;
5761                         }
5762                 }
5763                 if (found) {
5764                         struct btrfs_bio_stripe *tgtdev_stripe =
5765                                 bbio->stripes + num_stripes;
5766
5767                         tgtdev_stripe->physical = physical_of_found;
5768                         tgtdev_stripe->length =
5769                                 bbio->stripes[index_srcdev].length;
5770                         tgtdev_stripe->dev = dev_replace->tgtdev;
5771                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5772
5773                         tgtdev_indexes++;
5774                         num_stripes++;
5775                 }
5776         }
5777
5778         *num_stripes_ret = num_stripes;
5779         *max_errors_ret = max_errors;
5780         bbio->num_tgtdevs = tgtdev_indexes;
5781         *bbio_ret = bbio;
5782 }
5783
5784 static bool need_full_stripe(enum btrfs_map_op op)
5785 {
5786         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5787 }
5788
5789 /*
5790  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5791  *                     tuple. This information is used to calculate how big a
5792  *                     particular bio can get before it straddles a stripe.
5793  *
5794  * @fs_info - the filesystem
5795  * @logical - address that we want to figure out the geometry of
5796  * @len     - the length of IO we are going to perform, starting at @logical
5797  * @op      - type of operation - write or read
5798  * @io_geom - pointer used to return values
5799  *
5800  * Returns < 0 in case a chunk for the given logical address cannot be found,
5801  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5802  */
5803 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5804                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5805 {
5806         struct extent_map *em;
5807         struct map_lookup *map;
5808         u64 offset;
5809         u64 stripe_offset;
5810         u64 stripe_nr;
5811         u64 stripe_len;
5812         u64 raid56_full_stripe_start = (u64)-1;
5813         int data_stripes;
5814         int ret = 0;
5815
5816         ASSERT(op != BTRFS_MAP_DISCARD);
5817
5818         em = btrfs_get_chunk_map(fs_info, logical, len);
5819         if (IS_ERR(em))
5820                 return PTR_ERR(em);
5821
5822         map = em->map_lookup;
5823         /* Offset of this logical address in the chunk */
5824         offset = logical - em->start;
5825         /* Len of a stripe in a chunk */
5826         stripe_len = map->stripe_len;
5827         /* Stripe wher this block falls in */
5828         stripe_nr = div64_u64(offset, stripe_len);
5829         /* Offset of stripe in the chunk */
5830         stripe_offset = stripe_nr * stripe_len;
5831         if (offset < stripe_offset) {
5832                 btrfs_crit(fs_info,
5833 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5834                         stripe_offset, offset, em->start, logical, stripe_len);
5835                 ret = -EINVAL;
5836                 goto out;
5837         }
5838
5839         /* stripe_offset is the offset of this block in its stripe */
5840         stripe_offset = offset - stripe_offset;
5841         data_stripes = nr_data_stripes(map);
5842
5843         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5844                 u64 max_len = stripe_len - stripe_offset;
5845
5846                 /*
5847                  * In case of raid56, we need to know the stripe aligned start
5848                  */
5849                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5850                         unsigned long full_stripe_len = stripe_len * data_stripes;
5851                         raid56_full_stripe_start = offset;
5852
5853                         /*
5854                          * Allow a write of a full stripe, but make sure we
5855                          * don't allow straddling of stripes
5856                          */
5857                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5858                                         full_stripe_len);
5859                         raid56_full_stripe_start *= full_stripe_len;
5860
5861                         /*
5862                          * For writes to RAID[56], allow a full stripeset across
5863                          * all disks. For other RAID types and for RAID[56]
5864                          * reads, just allow a single stripe (on a single disk).
5865                          */
5866                         if (op == BTRFS_MAP_WRITE) {
5867                                 max_len = stripe_len * data_stripes -
5868                                           (offset - raid56_full_stripe_start);
5869                         }
5870                 }
5871                 len = min_t(u64, em->len - offset, max_len);
5872         } else {
5873                 len = em->len - offset;
5874         }
5875
5876         io_geom->len = len;
5877         io_geom->offset = offset;
5878         io_geom->stripe_len = stripe_len;
5879         io_geom->stripe_nr = stripe_nr;
5880         io_geom->stripe_offset = stripe_offset;
5881         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5882
5883 out:
5884         /* once for us */
5885         free_extent_map(em);
5886         return ret;
5887 }
5888
5889 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5890                              enum btrfs_map_op op,
5891                              u64 logical, u64 *length,
5892                              struct btrfs_bio **bbio_ret,
5893                              int mirror_num, int need_raid_map)
5894 {
5895         struct extent_map *em;
5896         struct map_lookup *map;
5897         u64 stripe_offset;
5898         u64 stripe_nr;
5899         u64 stripe_len;
5900         u32 stripe_index;
5901         int data_stripes;
5902         int i;
5903         int ret = 0;
5904         int num_stripes;
5905         int max_errors = 0;
5906         int tgtdev_indexes = 0;
5907         struct btrfs_bio *bbio = NULL;
5908         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5909         int dev_replace_is_ongoing = 0;
5910         int num_alloc_stripes;
5911         int patch_the_first_stripe_for_dev_replace = 0;
5912         u64 physical_to_patch_in_first_stripe = 0;
5913         u64 raid56_full_stripe_start = (u64)-1;
5914         struct btrfs_io_geometry geom;
5915
5916         ASSERT(bbio_ret);
5917
5918         if (op == BTRFS_MAP_DISCARD)
5919                 return __btrfs_map_block_for_discard(fs_info, logical,
5920                                                      length, bbio_ret);
5921
5922         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5923         if (ret < 0)
5924                 return ret;
5925
5926         em = btrfs_get_chunk_map(fs_info, logical, *length);
5927         ASSERT(!IS_ERR(em));
5928         map = em->map_lookup;
5929
5930         *length = geom.len;
5931         stripe_len = geom.stripe_len;
5932         stripe_nr = geom.stripe_nr;
5933         stripe_offset = geom.stripe_offset;
5934         raid56_full_stripe_start = geom.raid56_stripe_offset;
5935         data_stripes = nr_data_stripes(map);
5936
5937         down_read(&dev_replace->rwsem);
5938         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5939         /*
5940          * Hold the semaphore for read during the whole operation, write is
5941          * requested at commit time but must wait.
5942          */
5943         if (!dev_replace_is_ongoing)
5944                 up_read(&dev_replace->rwsem);
5945
5946         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5947             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5948                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5949                                                     dev_replace->srcdev->devid,
5950                                                     &mirror_num,
5951                                             &physical_to_patch_in_first_stripe);
5952                 if (ret)
5953                         goto out;
5954                 else
5955                         patch_the_first_stripe_for_dev_replace = 1;
5956         } else if (mirror_num > map->num_stripes) {
5957                 mirror_num = 0;
5958         }
5959
5960         num_stripes = 1;
5961         stripe_index = 0;
5962         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5963                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5964                                 &stripe_index);
5965                 if (!need_full_stripe(op))
5966                         mirror_num = 1;
5967         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
5968                 if (need_full_stripe(op))
5969                         num_stripes = map->num_stripes;
5970                 else if (mirror_num)
5971                         stripe_index = mirror_num - 1;
5972                 else {
5973                         stripe_index = find_live_mirror(fs_info, map, 0,
5974                                             dev_replace_is_ongoing);
5975                         mirror_num = stripe_index + 1;
5976                 }
5977
5978         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5979                 if (need_full_stripe(op)) {
5980                         num_stripes = map->num_stripes;
5981                 } else if (mirror_num) {
5982                         stripe_index = mirror_num - 1;
5983                 } else {
5984                         mirror_num = 1;
5985                 }
5986
5987         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5988                 u32 factor = map->num_stripes / map->sub_stripes;
5989
5990                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5991                 stripe_index *= map->sub_stripes;
5992
5993                 if (need_full_stripe(op))
5994                         num_stripes = map->sub_stripes;
5995                 else if (mirror_num)
5996                         stripe_index += mirror_num - 1;
5997                 else {
5998                         int old_stripe_index = stripe_index;
5999                         stripe_index = find_live_mirror(fs_info, map,
6000                                               stripe_index,
6001                                               dev_replace_is_ongoing);
6002                         mirror_num = stripe_index - old_stripe_index + 1;
6003                 }
6004
6005         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6006                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6007                         /* push stripe_nr back to the start of the full stripe */
6008                         stripe_nr = div64_u64(raid56_full_stripe_start,
6009                                         stripe_len * data_stripes);
6010
6011                         /* RAID[56] write or recovery. Return all stripes */
6012                         num_stripes = map->num_stripes;
6013                         max_errors = nr_parity_stripes(map);
6014
6015                         *length = map->stripe_len;
6016                         stripe_index = 0;
6017                         stripe_offset = 0;
6018                 } else {
6019                         /*
6020                          * Mirror #0 or #1 means the original data block.
6021                          * Mirror #2 is RAID5 parity block.
6022                          * Mirror #3 is RAID6 Q block.
6023                          */
6024                         stripe_nr = div_u64_rem(stripe_nr,
6025                                         data_stripes, &stripe_index);
6026                         if (mirror_num > 1)
6027                                 stripe_index = data_stripes + mirror_num - 2;
6028
6029                         /* We distribute the parity blocks across stripes */
6030                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6031                                         &stripe_index);
6032                         if (!need_full_stripe(op) && mirror_num <= 1)
6033                                 mirror_num = 1;
6034                 }
6035         } else {
6036                 /*
6037                  * after this, stripe_nr is the number of stripes on this
6038                  * device we have to walk to find the data, and stripe_index is
6039                  * the number of our device in the stripe array
6040                  */
6041                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6042                                 &stripe_index);
6043                 mirror_num = stripe_index + 1;
6044         }
6045         if (stripe_index >= map->num_stripes) {
6046                 btrfs_crit(fs_info,
6047                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6048                            stripe_index, map->num_stripes);
6049                 ret = -EINVAL;
6050                 goto out;
6051         }
6052
6053         num_alloc_stripes = num_stripes;
6054         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6055                 if (op == BTRFS_MAP_WRITE)
6056                         num_alloc_stripes <<= 1;
6057                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6058                         num_alloc_stripes++;
6059                 tgtdev_indexes = num_stripes;
6060         }
6061
6062         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6063         if (!bbio) {
6064                 ret = -ENOMEM;
6065                 goto out;
6066         }
6067         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6068                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6069
6070         /* build raid_map */
6071         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6072             (need_full_stripe(op) || mirror_num > 1)) {
6073                 u64 tmp;
6074                 unsigned rot;
6075
6076                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6077                                  sizeof(struct btrfs_bio_stripe) *
6078                                  num_alloc_stripes +
6079                                  sizeof(int) * tgtdev_indexes);
6080
6081                 /* Work out the disk rotation on this stripe-set */
6082                 div_u64_rem(stripe_nr, num_stripes, &rot);
6083
6084                 /* Fill in the logical address of each stripe */
6085                 tmp = stripe_nr * data_stripes;
6086                 for (i = 0; i < data_stripes; i++)
6087                         bbio->raid_map[(i+rot) % num_stripes] =
6088                                 em->start + (tmp + i) * map->stripe_len;
6089
6090                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6091                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6092                         bbio->raid_map[(i+rot+1) % num_stripes] =
6093                                 RAID6_Q_STRIPE;
6094         }
6095
6096
6097         for (i = 0; i < num_stripes; i++) {
6098                 bbio->stripes[i].physical =
6099                         map->stripes[stripe_index].physical +
6100                         stripe_offset +
6101                         stripe_nr * map->stripe_len;
6102                 bbio->stripes[i].dev =
6103                         map->stripes[stripe_index].dev;
6104                 stripe_index++;
6105         }
6106
6107         if (need_full_stripe(op))
6108                 max_errors = btrfs_chunk_max_errors(map);
6109
6110         if (bbio->raid_map)
6111                 sort_parity_stripes(bbio, num_stripes);
6112
6113         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6114             need_full_stripe(op)) {
6115                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6116                                           &max_errors);
6117         }
6118
6119         *bbio_ret = bbio;
6120         bbio->map_type = map->type;
6121         bbio->num_stripes = num_stripes;
6122         bbio->max_errors = max_errors;
6123         bbio->mirror_num = mirror_num;
6124
6125         /*
6126          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6127          * mirror_num == num_stripes + 1 && dev_replace target drive is
6128          * available as a mirror
6129          */
6130         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6131                 WARN_ON(num_stripes > 1);
6132                 bbio->stripes[0].dev = dev_replace->tgtdev;
6133                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6134                 bbio->mirror_num = map->num_stripes + 1;
6135         }
6136 out:
6137         if (dev_replace_is_ongoing) {
6138                 lockdep_assert_held(&dev_replace->rwsem);
6139                 /* Unlock and let waiting writers proceed */
6140                 up_read(&dev_replace->rwsem);
6141         }
6142         free_extent_map(em);
6143         return ret;
6144 }
6145
6146 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6147                       u64 logical, u64 *length,
6148                       struct btrfs_bio **bbio_ret, int mirror_num)
6149 {
6150         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6151                                  mirror_num, 0);
6152 }
6153
6154 /* For Scrub/replace */
6155 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6156                      u64 logical, u64 *length,
6157                      struct btrfs_bio **bbio_ret)
6158 {
6159         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6160 }
6161
6162 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6163 {
6164         bio->bi_private = bbio->private;
6165         bio->bi_end_io = bbio->end_io;
6166         bio_endio(bio);
6167
6168         btrfs_put_bbio(bbio);
6169 }
6170
6171 static void btrfs_end_bio(struct bio *bio)
6172 {
6173         struct btrfs_bio *bbio = bio->bi_private;
6174         int is_orig_bio = 0;
6175
6176         if (bio->bi_status) {
6177                 atomic_inc(&bbio->error);
6178                 if (bio->bi_status == BLK_STS_IOERR ||
6179                     bio->bi_status == BLK_STS_TARGET) {
6180                         unsigned int stripe_index =
6181                                 btrfs_io_bio(bio)->stripe_index;
6182                         struct btrfs_device *dev;
6183
6184                         BUG_ON(stripe_index >= bbio->num_stripes);
6185                         dev = bbio->stripes[stripe_index].dev;
6186                         if (dev->bdev) {
6187                                 if (bio_op(bio) == REQ_OP_WRITE)
6188                                         btrfs_dev_stat_inc_and_print(dev,
6189                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6190                                 else if (!(bio->bi_opf & REQ_RAHEAD))
6191                                         btrfs_dev_stat_inc_and_print(dev,
6192                                                 BTRFS_DEV_STAT_READ_ERRS);
6193                                 if (bio->bi_opf & REQ_PREFLUSH)
6194                                         btrfs_dev_stat_inc_and_print(dev,
6195                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6196                         }
6197                 }
6198         }
6199
6200         if (bio == bbio->orig_bio)
6201                 is_orig_bio = 1;
6202
6203         btrfs_bio_counter_dec(bbio->fs_info);
6204
6205         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6206                 if (!is_orig_bio) {
6207                         bio_put(bio);
6208                         bio = bbio->orig_bio;
6209                 }
6210
6211                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6212                 /* only send an error to the higher layers if it is
6213                  * beyond the tolerance of the btrfs bio
6214                  */
6215                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6216                         bio->bi_status = BLK_STS_IOERR;
6217                 } else {
6218                         /*
6219                          * this bio is actually up to date, we didn't
6220                          * go over the max number of errors
6221                          */
6222                         bio->bi_status = BLK_STS_OK;
6223                 }
6224
6225                 btrfs_end_bbio(bbio, bio);
6226         } else if (!is_orig_bio) {
6227                 bio_put(bio);
6228         }
6229 }
6230
6231 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6232                               u64 physical, int dev_nr)
6233 {
6234         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6235         struct btrfs_fs_info *fs_info = bbio->fs_info;
6236
6237         bio->bi_private = bbio;
6238         btrfs_io_bio(bio)->stripe_index = dev_nr;
6239         bio->bi_end_io = btrfs_end_bio;
6240         bio->bi_iter.bi_sector = physical >> 9;
6241         btrfs_debug_in_rcu(fs_info,
6242         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6243                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6244                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6245                 bio->bi_iter.bi_size);
6246         bio_set_dev(bio, dev->bdev);
6247
6248         btrfs_bio_counter_inc_noblocked(fs_info);
6249
6250         btrfsic_submit_bio(bio);
6251 }
6252
6253 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6254 {
6255         atomic_inc(&bbio->error);
6256         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6257                 /* Should be the original bio. */
6258                 WARN_ON(bio != bbio->orig_bio);
6259
6260                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6261                 bio->bi_iter.bi_sector = logical >> 9;
6262                 if (atomic_read(&bbio->error) > bbio->max_errors)
6263                         bio->bi_status = BLK_STS_IOERR;
6264                 else
6265                         bio->bi_status = BLK_STS_OK;
6266                 btrfs_end_bbio(bbio, bio);
6267         }
6268 }
6269
6270 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6271                            int mirror_num)
6272 {
6273         struct btrfs_device *dev;
6274         struct bio *first_bio = bio;
6275         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6276         u64 length = 0;
6277         u64 map_length;
6278         int ret;
6279         int dev_nr;
6280         int total_devs;
6281         struct btrfs_bio *bbio = NULL;
6282
6283         length = bio->bi_iter.bi_size;
6284         map_length = length;
6285
6286         btrfs_bio_counter_inc_blocked(fs_info);
6287         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6288                                 &map_length, &bbio, mirror_num, 1);
6289         if (ret) {
6290                 btrfs_bio_counter_dec(fs_info);
6291                 return errno_to_blk_status(ret);
6292         }
6293
6294         total_devs = bbio->num_stripes;
6295         bbio->orig_bio = first_bio;
6296         bbio->private = first_bio->bi_private;
6297         bbio->end_io = first_bio->bi_end_io;
6298         bbio->fs_info = fs_info;
6299         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6300
6301         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6302             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6303                 /* In this case, map_length has been set to the length of
6304                    a single stripe; not the whole write */
6305                 if (bio_op(bio) == REQ_OP_WRITE) {
6306                         ret = raid56_parity_write(fs_info, bio, bbio,
6307                                                   map_length);
6308                 } else {
6309                         ret = raid56_parity_recover(fs_info, bio, bbio,
6310                                                     map_length, mirror_num, 1);
6311                 }
6312
6313                 btrfs_bio_counter_dec(fs_info);
6314                 return errno_to_blk_status(ret);
6315         }
6316
6317         if (map_length < length) {
6318                 btrfs_crit(fs_info,
6319                            "mapping failed logical %llu bio len %llu len %llu",
6320                            logical, length, map_length);
6321                 BUG();
6322         }
6323
6324         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6325                 dev = bbio->stripes[dev_nr].dev;
6326                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6327                                                    &dev->dev_state) ||
6328                     (bio_op(first_bio) == REQ_OP_WRITE &&
6329                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6330                         bbio_error(bbio, first_bio, logical);
6331                         continue;
6332                 }
6333
6334                 if (dev_nr < total_devs - 1)
6335                         bio = btrfs_bio_clone(first_bio);
6336                 else
6337                         bio = first_bio;
6338
6339                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6340                                   dev_nr);
6341         }
6342         btrfs_bio_counter_dec(fs_info);
6343         return BLK_STS_OK;
6344 }
6345
6346 /*
6347  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6348  * return NULL.
6349  *
6350  * If devid and uuid are both specified, the match must be exact, otherwise
6351  * only devid is used.
6352  *
6353  * If @seed is true, traverse through the seed devices.
6354  */
6355 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6356                                        u64 devid, u8 *uuid, u8 *fsid,
6357                                        bool seed)
6358 {
6359         struct btrfs_device *device;
6360
6361         while (fs_devices) {
6362                 if (!fsid ||
6363                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6364                         list_for_each_entry(device, &fs_devices->devices,
6365                                             dev_list) {
6366                                 if (device->devid == devid &&
6367                                     (!uuid || memcmp(device->uuid, uuid,
6368                                                      BTRFS_UUID_SIZE) == 0))
6369                                         return device;
6370                         }
6371                 }
6372                 if (seed)
6373                         fs_devices = fs_devices->seed;
6374                 else
6375                         return NULL;
6376         }
6377         return NULL;
6378 }
6379
6380 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6381                                             u64 devid, u8 *dev_uuid)
6382 {
6383         struct btrfs_device *device;
6384
6385         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6386         if (IS_ERR(device))
6387                 return device;
6388
6389         list_add(&device->dev_list, &fs_devices->devices);
6390         device->fs_devices = fs_devices;
6391         fs_devices->num_devices++;
6392
6393         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6394         fs_devices->missing_devices++;
6395
6396         return device;
6397 }
6398
6399 /**
6400  * btrfs_alloc_device - allocate struct btrfs_device
6401  * @fs_info:    used only for generating a new devid, can be NULL if
6402  *              devid is provided (i.e. @devid != NULL).
6403  * @devid:      a pointer to devid for this device.  If NULL a new devid
6404  *              is generated.
6405  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6406  *              is generated.
6407  *
6408  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6409  * on error.  Returned struct is not linked onto any lists and must be
6410  * destroyed with btrfs_free_device.
6411  */
6412 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6413                                         const u64 *devid,
6414                                         const u8 *uuid)
6415 {
6416         struct btrfs_device *dev;
6417         u64 tmp;
6418
6419         if (WARN_ON(!devid && !fs_info))
6420                 return ERR_PTR(-EINVAL);
6421
6422         dev = __alloc_device();
6423         if (IS_ERR(dev))
6424                 return dev;
6425
6426         if (devid)
6427                 tmp = *devid;
6428         else {
6429                 int ret;
6430
6431                 ret = find_next_devid(fs_info, &tmp);
6432                 if (ret) {
6433                         btrfs_free_device(dev);
6434                         return ERR_PTR(ret);
6435                 }
6436         }
6437         dev->devid = tmp;
6438
6439         if (uuid)
6440                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6441         else
6442                 generate_random_uuid(dev->uuid);
6443
6444         return dev;
6445 }
6446
6447 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6448                                         u64 devid, u8 *uuid, bool error)
6449 {
6450         if (error)
6451                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6452                               devid, uuid);
6453         else
6454                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6455                               devid, uuid);
6456 }
6457
6458 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6459 {
6460         int index = btrfs_bg_flags_to_raid_index(type);
6461         int ncopies = btrfs_raid_array[index].ncopies;
6462         const int nparity = btrfs_raid_array[index].nparity;
6463         int data_stripes;
6464
6465         if (nparity)
6466                 data_stripes = num_stripes - nparity;
6467         else
6468                 data_stripes = num_stripes / ncopies;
6469
6470         return div_u64(chunk_len, data_stripes);
6471 }
6472
6473 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6474                           struct btrfs_chunk *chunk)
6475 {
6476         struct btrfs_fs_info *fs_info = leaf->fs_info;
6477         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6478         struct map_lookup *map;
6479         struct extent_map *em;
6480         u64 logical;
6481         u64 length;
6482         u64 devid;
6483         u8 uuid[BTRFS_UUID_SIZE];
6484         int num_stripes;
6485         int ret;
6486         int i;
6487
6488         logical = key->offset;
6489         length = btrfs_chunk_length(leaf, chunk);
6490         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6491
6492         /*
6493          * Only need to verify chunk item if we're reading from sys chunk array,
6494          * as chunk item in tree block is already verified by tree-checker.
6495          */
6496         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6497                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6498                 if (ret)
6499                         return ret;
6500         }
6501
6502         read_lock(&map_tree->lock);
6503         em = lookup_extent_mapping(map_tree, logical, 1);
6504         read_unlock(&map_tree->lock);
6505
6506         /* already mapped? */
6507         if (em && em->start <= logical && em->start + em->len > logical) {
6508                 free_extent_map(em);
6509                 return 0;
6510         } else if (em) {
6511                 free_extent_map(em);
6512         }
6513
6514         em = alloc_extent_map();
6515         if (!em)
6516                 return -ENOMEM;
6517         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6518         if (!map) {
6519                 free_extent_map(em);
6520                 return -ENOMEM;
6521         }
6522
6523         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6524         em->map_lookup = map;
6525         em->start = logical;
6526         em->len = length;
6527         em->orig_start = 0;
6528         em->block_start = 0;
6529         em->block_len = em->len;
6530
6531         map->num_stripes = num_stripes;
6532         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6533         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6534         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6535         map->type = btrfs_chunk_type(leaf, chunk);
6536         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6537         map->verified_stripes = 0;
6538         em->orig_block_len = calc_stripe_length(map->type, em->len,
6539                                                 map->num_stripes);
6540         for (i = 0; i < num_stripes; i++) {
6541                 map->stripes[i].physical =
6542                         btrfs_stripe_offset_nr(leaf, chunk, i);
6543                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6544                 read_extent_buffer(leaf, uuid, (unsigned long)
6545                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6546                                    BTRFS_UUID_SIZE);
6547                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6548                                                         devid, uuid, NULL, true);
6549                 if (!map->stripes[i].dev &&
6550                     !btrfs_test_opt(fs_info, DEGRADED)) {
6551                         free_extent_map(em);
6552                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6553                         return -ENOENT;
6554                 }
6555                 if (!map->stripes[i].dev) {
6556                         map->stripes[i].dev =
6557                                 add_missing_dev(fs_info->fs_devices, devid,
6558                                                 uuid);
6559                         if (IS_ERR(map->stripes[i].dev)) {
6560                                 free_extent_map(em);
6561                                 btrfs_err(fs_info,
6562                                         "failed to init missing dev %llu: %ld",
6563                                         devid, PTR_ERR(map->stripes[i].dev));
6564                                 return PTR_ERR(map->stripes[i].dev);
6565                         }
6566                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6567                 }
6568                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6569                                 &(map->stripes[i].dev->dev_state));
6570
6571         }
6572
6573         write_lock(&map_tree->lock);
6574         ret = add_extent_mapping(map_tree, em, 0);
6575         write_unlock(&map_tree->lock);
6576         if (ret < 0) {
6577                 btrfs_err(fs_info,
6578                           "failed to add chunk map, start=%llu len=%llu: %d",
6579                           em->start, em->len, ret);
6580         }
6581         free_extent_map(em);
6582
6583         return ret;
6584 }
6585
6586 static void fill_device_from_item(struct extent_buffer *leaf,
6587                                  struct btrfs_dev_item *dev_item,
6588                                  struct btrfs_device *device)
6589 {
6590         unsigned long ptr;
6591
6592         device->devid = btrfs_device_id(leaf, dev_item);
6593         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6594         device->total_bytes = device->disk_total_bytes;
6595         device->commit_total_bytes = device->disk_total_bytes;
6596         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6597         device->commit_bytes_used = device->bytes_used;
6598         device->type = btrfs_device_type(leaf, dev_item);
6599         device->io_align = btrfs_device_io_align(leaf, dev_item);
6600         device->io_width = btrfs_device_io_width(leaf, dev_item);
6601         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6602         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6603         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6604
6605         ptr = btrfs_device_uuid(dev_item);
6606         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6607 }
6608
6609 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6610                                                   u8 *fsid)
6611 {
6612         struct btrfs_fs_devices *fs_devices;
6613         int ret;
6614
6615         lockdep_assert_held(&uuid_mutex);
6616         ASSERT(fsid);
6617
6618         fs_devices = fs_info->fs_devices->seed;
6619         while (fs_devices) {
6620                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6621                         return fs_devices;
6622
6623                 fs_devices = fs_devices->seed;
6624         }
6625
6626         fs_devices = find_fsid(fsid, NULL);
6627         if (!fs_devices) {
6628                 if (!btrfs_test_opt(fs_info, DEGRADED))
6629                         return ERR_PTR(-ENOENT);
6630
6631                 fs_devices = alloc_fs_devices(fsid, NULL);
6632                 if (IS_ERR(fs_devices))
6633                         return fs_devices;
6634
6635                 fs_devices->seeding = true;
6636                 fs_devices->opened = 1;
6637                 return fs_devices;
6638         }
6639
6640         fs_devices = clone_fs_devices(fs_devices);
6641         if (IS_ERR(fs_devices))
6642                 return fs_devices;
6643
6644         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6645         if (ret) {
6646                 free_fs_devices(fs_devices);
6647                 fs_devices = ERR_PTR(ret);
6648                 goto out;
6649         }
6650
6651         if (!fs_devices->seeding) {
6652                 close_fs_devices(fs_devices);
6653                 free_fs_devices(fs_devices);
6654                 fs_devices = ERR_PTR(-EINVAL);
6655                 goto out;
6656         }
6657
6658         fs_devices->seed = fs_info->fs_devices->seed;
6659         fs_info->fs_devices->seed = fs_devices;
6660 out:
6661         return fs_devices;
6662 }
6663
6664 static int read_one_dev(struct extent_buffer *leaf,
6665                         struct btrfs_dev_item *dev_item)
6666 {
6667         struct btrfs_fs_info *fs_info = leaf->fs_info;
6668         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669         struct btrfs_device *device;
6670         u64 devid;
6671         int ret;
6672         u8 fs_uuid[BTRFS_FSID_SIZE];
6673         u8 dev_uuid[BTRFS_UUID_SIZE];
6674
6675         devid = btrfs_device_id(leaf, dev_item);
6676         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6677                            BTRFS_UUID_SIZE);
6678         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6679                            BTRFS_FSID_SIZE);
6680
6681         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6682                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6683                 if (IS_ERR(fs_devices))
6684                         return PTR_ERR(fs_devices);
6685         }
6686
6687         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6688                                    fs_uuid, true);
6689         if (!device) {
6690                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6691                         btrfs_report_missing_device(fs_info, devid,
6692                                                         dev_uuid, true);
6693                         return -ENOENT;
6694                 }
6695
6696                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6697                 if (IS_ERR(device)) {
6698                         btrfs_err(fs_info,
6699                                 "failed to add missing dev %llu: %ld",
6700                                 devid, PTR_ERR(device));
6701                         return PTR_ERR(device);
6702                 }
6703                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6704         } else {
6705                 if (!device->bdev) {
6706                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6707                                 btrfs_report_missing_device(fs_info,
6708                                                 devid, dev_uuid, true);
6709                                 return -ENOENT;
6710                         }
6711                         btrfs_report_missing_device(fs_info, devid,
6712                                                         dev_uuid, false);
6713                 }
6714
6715                 if (!device->bdev &&
6716                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6717                         /*
6718                          * this happens when a device that was properly setup
6719                          * in the device info lists suddenly goes bad.
6720                          * device->bdev is NULL, and so we have to set
6721                          * device->missing to one here
6722                          */
6723                         device->fs_devices->missing_devices++;
6724                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6725                 }
6726
6727                 /* Move the device to its own fs_devices */
6728                 if (device->fs_devices != fs_devices) {
6729                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6730                                                         &device->dev_state));
6731
6732                         list_move(&device->dev_list, &fs_devices->devices);
6733                         device->fs_devices->num_devices--;
6734                         fs_devices->num_devices++;
6735
6736                         device->fs_devices->missing_devices--;
6737                         fs_devices->missing_devices++;
6738
6739                         device->fs_devices = fs_devices;
6740                 }
6741         }
6742
6743         if (device->fs_devices != fs_info->fs_devices) {
6744                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6745                 if (device->generation !=
6746                     btrfs_device_generation(leaf, dev_item))
6747                         return -EINVAL;
6748         }
6749
6750         fill_device_from_item(leaf, dev_item, device);
6751         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6752         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6753            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6754                 device->fs_devices->total_rw_bytes += device->total_bytes;
6755                 atomic64_add(device->total_bytes - device->bytes_used,
6756                                 &fs_info->free_chunk_space);
6757         }
6758         ret = 0;
6759         return ret;
6760 }
6761
6762 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6763 {
6764         struct btrfs_root *root = fs_info->tree_root;
6765         struct btrfs_super_block *super_copy = fs_info->super_copy;
6766         struct extent_buffer *sb;
6767         struct btrfs_disk_key *disk_key;
6768         struct btrfs_chunk *chunk;
6769         u8 *array_ptr;
6770         unsigned long sb_array_offset;
6771         int ret = 0;
6772         u32 num_stripes;
6773         u32 array_size;
6774         u32 len = 0;
6775         u32 cur_offset;
6776         u64 type;
6777         struct btrfs_key key;
6778
6779         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6780         /*
6781          * This will create extent buffer of nodesize, superblock size is
6782          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6783          * overallocate but we can keep it as-is, only the first page is used.
6784          */
6785         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6786         if (IS_ERR(sb))
6787                 return PTR_ERR(sb);
6788         set_extent_buffer_uptodate(sb);
6789         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6790         /*
6791          * The sb extent buffer is artificial and just used to read the system array.
6792          * set_extent_buffer_uptodate() call does not properly mark all it's
6793          * pages up-to-date when the page is larger: extent does not cover the
6794          * whole page and consequently check_page_uptodate does not find all
6795          * the page's extents up-to-date (the hole beyond sb),
6796          * write_extent_buffer then triggers a WARN_ON.
6797          *
6798          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6799          * but sb spans only this function. Add an explicit SetPageUptodate call
6800          * to silence the warning eg. on PowerPC 64.
6801          */
6802         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6803                 SetPageUptodate(sb->pages[0]);
6804
6805         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6806         array_size = btrfs_super_sys_array_size(super_copy);
6807
6808         array_ptr = super_copy->sys_chunk_array;
6809         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6810         cur_offset = 0;
6811
6812         while (cur_offset < array_size) {
6813                 disk_key = (struct btrfs_disk_key *)array_ptr;
6814                 len = sizeof(*disk_key);
6815                 if (cur_offset + len > array_size)
6816                         goto out_short_read;
6817
6818                 btrfs_disk_key_to_cpu(&key, disk_key);
6819
6820                 array_ptr += len;
6821                 sb_array_offset += len;
6822                 cur_offset += len;
6823
6824                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6825                         btrfs_err(fs_info,
6826                             "unexpected item type %u in sys_array at offset %u",
6827                                   (u32)key.type, cur_offset);
6828                         ret = -EIO;
6829                         break;
6830                 }
6831
6832                 chunk = (struct btrfs_chunk *)sb_array_offset;
6833                 /*
6834                  * At least one btrfs_chunk with one stripe must be present,
6835                  * exact stripe count check comes afterwards
6836                  */
6837                 len = btrfs_chunk_item_size(1);
6838                 if (cur_offset + len > array_size)
6839                         goto out_short_read;
6840
6841                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6842                 if (!num_stripes) {
6843                         btrfs_err(fs_info,
6844                         "invalid number of stripes %u in sys_array at offset %u",
6845                                   num_stripes, cur_offset);
6846                         ret = -EIO;
6847                         break;
6848                 }
6849
6850                 type = btrfs_chunk_type(sb, chunk);
6851                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6852                         btrfs_err(fs_info,
6853                         "invalid chunk type %llu in sys_array at offset %u",
6854                                   type, cur_offset);
6855                         ret = -EIO;
6856                         break;
6857                 }
6858
6859                 len = btrfs_chunk_item_size(num_stripes);
6860                 if (cur_offset + len > array_size)
6861                         goto out_short_read;
6862
6863                 ret = read_one_chunk(&key, sb, chunk);
6864                 if (ret)
6865                         break;
6866
6867                 array_ptr += len;
6868                 sb_array_offset += len;
6869                 cur_offset += len;
6870         }
6871         clear_extent_buffer_uptodate(sb);
6872         free_extent_buffer_stale(sb);
6873         return ret;
6874
6875 out_short_read:
6876         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6877                         len, cur_offset);
6878         clear_extent_buffer_uptodate(sb);
6879         free_extent_buffer_stale(sb);
6880         return -EIO;
6881 }
6882
6883 /*
6884  * Check if all chunks in the fs are OK for read-write degraded mount
6885  *
6886  * If the @failing_dev is specified, it's accounted as missing.
6887  *
6888  * Return true if all chunks meet the minimal RW mount requirements.
6889  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6890  */
6891 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6892                                         struct btrfs_device *failing_dev)
6893 {
6894         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6895         struct extent_map *em;
6896         u64 next_start = 0;
6897         bool ret = true;
6898
6899         read_lock(&map_tree->lock);
6900         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6901         read_unlock(&map_tree->lock);
6902         /* No chunk at all? Return false anyway */
6903         if (!em) {
6904                 ret = false;
6905                 goto out;
6906         }
6907         while (em) {
6908                 struct map_lookup *map;
6909                 int missing = 0;
6910                 int max_tolerated;
6911                 int i;
6912
6913                 map = em->map_lookup;
6914                 max_tolerated =
6915                         btrfs_get_num_tolerated_disk_barrier_failures(
6916                                         map->type);
6917                 for (i = 0; i < map->num_stripes; i++) {
6918                         struct btrfs_device *dev = map->stripes[i].dev;
6919
6920                         if (!dev || !dev->bdev ||
6921                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6922                             dev->last_flush_error)
6923                                 missing++;
6924                         else if (failing_dev && failing_dev == dev)
6925                                 missing++;
6926                 }
6927                 if (missing > max_tolerated) {
6928                         if (!failing_dev)
6929                                 btrfs_warn(fs_info,
6930         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
6931                                    em->start, missing, max_tolerated);
6932                         free_extent_map(em);
6933                         ret = false;
6934                         goto out;
6935                 }
6936                 next_start = extent_map_end(em);
6937                 free_extent_map(em);
6938
6939                 read_lock(&map_tree->lock);
6940                 em = lookup_extent_mapping(map_tree, next_start,
6941                                            (u64)(-1) - next_start);
6942                 read_unlock(&map_tree->lock);
6943         }
6944 out:
6945         return ret;
6946 }
6947
6948 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6949 {
6950         struct btrfs_root *root = fs_info->chunk_root;
6951         struct btrfs_path *path;
6952         struct extent_buffer *leaf;
6953         struct btrfs_key key;
6954         struct btrfs_key found_key;
6955         int ret;
6956         int slot;
6957         u64 total_dev = 0;
6958
6959         path = btrfs_alloc_path();
6960         if (!path)
6961                 return -ENOMEM;
6962
6963         /*
6964          * uuid_mutex is needed only if we are mounting a sprout FS
6965          * otherwise we don't need it.
6966          */
6967         mutex_lock(&uuid_mutex);
6968         mutex_lock(&fs_info->chunk_mutex);
6969
6970         /*
6971          * Read all device items, and then all the chunk items. All
6972          * device items are found before any chunk item (their object id
6973          * is smaller than the lowest possible object id for a chunk
6974          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6975          */
6976         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6977         key.offset = 0;
6978         key.type = 0;
6979         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6980         if (ret < 0)
6981                 goto error;
6982         while (1) {
6983                 leaf = path->nodes[0];
6984                 slot = path->slots[0];
6985                 if (slot >= btrfs_header_nritems(leaf)) {
6986                         ret = btrfs_next_leaf(root, path);
6987                         if (ret == 0)
6988                                 continue;
6989                         if (ret < 0)
6990                                 goto error;
6991                         break;
6992                 }
6993                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6994                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6995                         struct btrfs_dev_item *dev_item;
6996                         dev_item = btrfs_item_ptr(leaf, slot,
6997                                                   struct btrfs_dev_item);
6998                         ret = read_one_dev(leaf, dev_item);
6999                         if (ret)
7000                                 goto error;
7001                         total_dev++;
7002                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7003                         struct btrfs_chunk *chunk;
7004                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7005                         ret = read_one_chunk(&found_key, leaf, chunk);
7006                         if (ret)
7007                                 goto error;
7008                 }
7009                 path->slots[0]++;
7010         }
7011
7012         /*
7013          * After loading chunk tree, we've got all device information,
7014          * do another round of validation checks.
7015          */
7016         if (total_dev != fs_info->fs_devices->total_devices) {
7017                 btrfs_err(fs_info,
7018            "super_num_devices %llu mismatch with num_devices %llu found here",
7019                           btrfs_super_num_devices(fs_info->super_copy),
7020                           total_dev);
7021                 ret = -EINVAL;
7022                 goto error;
7023         }
7024         if (btrfs_super_total_bytes(fs_info->super_copy) <
7025             fs_info->fs_devices->total_rw_bytes) {
7026                 btrfs_err(fs_info,
7027         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7028                           btrfs_super_total_bytes(fs_info->super_copy),
7029                           fs_info->fs_devices->total_rw_bytes);
7030                 ret = -EINVAL;
7031                 goto error;
7032         }
7033         ret = 0;
7034 error:
7035         mutex_unlock(&fs_info->chunk_mutex);
7036         mutex_unlock(&uuid_mutex);
7037
7038         btrfs_free_path(path);
7039         return ret;
7040 }
7041
7042 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7043 {
7044         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7045         struct btrfs_device *device;
7046
7047         while (fs_devices) {
7048                 mutex_lock(&fs_devices->device_list_mutex);
7049                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7050                         device->fs_info = fs_info;
7051                 mutex_unlock(&fs_devices->device_list_mutex);
7052
7053                 fs_devices = fs_devices->seed;
7054         }
7055 }
7056
7057 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7058                                  const struct btrfs_dev_stats_item *ptr,
7059                                  int index)
7060 {
7061         u64 val;
7062
7063         read_extent_buffer(eb, &val,
7064                            offsetof(struct btrfs_dev_stats_item, values) +
7065                             ((unsigned long)ptr) + (index * sizeof(u64)),
7066                            sizeof(val));
7067         return val;
7068 }
7069
7070 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7071                                       struct btrfs_dev_stats_item *ptr,
7072                                       int index, u64 val)
7073 {
7074         write_extent_buffer(eb, &val,
7075                             offsetof(struct btrfs_dev_stats_item, values) +
7076                              ((unsigned long)ptr) + (index * sizeof(u64)),
7077                             sizeof(val));
7078 }
7079
7080 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7081 {
7082         struct btrfs_key key;
7083         struct btrfs_root *dev_root = fs_info->dev_root;
7084         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7085         struct extent_buffer *eb;
7086         int slot;
7087         int ret = 0;
7088         struct btrfs_device *device;
7089         struct btrfs_path *path = NULL;
7090         int i;
7091
7092         path = btrfs_alloc_path();
7093         if (!path)
7094                 return -ENOMEM;
7095
7096         mutex_lock(&fs_devices->device_list_mutex);
7097         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7098                 int item_size;
7099                 struct btrfs_dev_stats_item *ptr;
7100
7101                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7102                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7103                 key.offset = device->devid;
7104                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7105                 if (ret) {
7106                         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7107                                 btrfs_dev_stat_set(device, i, 0);
7108                         device->dev_stats_valid = 1;
7109                         btrfs_release_path(path);
7110                         continue;
7111                 }
7112                 slot = path->slots[0];
7113                 eb = path->nodes[0];
7114                 item_size = btrfs_item_size_nr(eb, slot);
7115
7116                 ptr = btrfs_item_ptr(eb, slot,
7117                                      struct btrfs_dev_stats_item);
7118
7119                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7120                         if (item_size >= (1 + i) * sizeof(__le64))
7121                                 btrfs_dev_stat_set(device, i,
7122                                         btrfs_dev_stats_value(eb, ptr, i));
7123                         else
7124                                 btrfs_dev_stat_set(device, i, 0);
7125                 }
7126
7127                 device->dev_stats_valid = 1;
7128                 btrfs_dev_stat_print_on_load(device);
7129                 btrfs_release_path(path);
7130         }
7131         mutex_unlock(&fs_devices->device_list_mutex);
7132
7133         btrfs_free_path(path);
7134         return ret < 0 ? ret : 0;
7135 }
7136
7137 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7138                                 struct btrfs_device *device)
7139 {
7140         struct btrfs_fs_info *fs_info = trans->fs_info;
7141         struct btrfs_root *dev_root = fs_info->dev_root;
7142         struct btrfs_path *path;
7143         struct btrfs_key key;
7144         struct extent_buffer *eb;
7145         struct btrfs_dev_stats_item *ptr;
7146         int ret;
7147         int i;
7148
7149         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7150         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7151         key.offset = device->devid;
7152
7153         path = btrfs_alloc_path();
7154         if (!path)
7155                 return -ENOMEM;
7156         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7157         if (ret < 0) {
7158                 btrfs_warn_in_rcu(fs_info,
7159                         "error %d while searching for dev_stats item for device %s",
7160                               ret, rcu_str_deref(device->name));
7161                 goto out;
7162         }
7163
7164         if (ret == 0 &&
7165             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7166                 /* need to delete old one and insert a new one */
7167                 ret = btrfs_del_item(trans, dev_root, path);
7168                 if (ret != 0) {
7169                         btrfs_warn_in_rcu(fs_info,
7170                                 "delete too small dev_stats item for device %s failed %d",
7171                                       rcu_str_deref(device->name), ret);
7172                         goto out;
7173                 }
7174                 ret = 1;
7175         }
7176
7177         if (ret == 1) {
7178                 /* need to insert a new item */
7179                 btrfs_release_path(path);
7180                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7181                                               &key, sizeof(*ptr));
7182                 if (ret < 0) {
7183                         btrfs_warn_in_rcu(fs_info,
7184                                 "insert dev_stats item for device %s failed %d",
7185                                 rcu_str_deref(device->name), ret);
7186                         goto out;
7187                 }
7188         }
7189
7190         eb = path->nodes[0];
7191         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7192         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7193                 btrfs_set_dev_stats_value(eb, ptr, i,
7194                                           btrfs_dev_stat_read(device, i));
7195         btrfs_mark_buffer_dirty(eb);
7196
7197 out:
7198         btrfs_free_path(path);
7199         return ret;
7200 }
7201
7202 /*
7203  * called from commit_transaction. Writes all changed device stats to disk.
7204  */
7205 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7206 {
7207         struct btrfs_fs_info *fs_info = trans->fs_info;
7208         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209         struct btrfs_device *device;
7210         int stats_cnt;
7211         int ret = 0;
7212
7213         mutex_lock(&fs_devices->device_list_mutex);
7214         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7215                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7216                 if (!device->dev_stats_valid || stats_cnt == 0)
7217                         continue;
7218
7219
7220                 /*
7221                  * There is a LOAD-LOAD control dependency between the value of
7222                  * dev_stats_ccnt and updating the on-disk values which requires
7223                  * reading the in-memory counters. Such control dependencies
7224                  * require explicit read memory barriers.
7225                  *
7226                  * This memory barriers pairs with smp_mb__before_atomic in
7227                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7228                  * barrier implied by atomic_xchg in
7229                  * btrfs_dev_stats_read_and_reset
7230                  */
7231                 smp_rmb();
7232
7233                 ret = update_dev_stat_item(trans, device);
7234                 if (!ret)
7235                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7236         }
7237         mutex_unlock(&fs_devices->device_list_mutex);
7238
7239         return ret;
7240 }
7241
7242 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7243 {
7244         btrfs_dev_stat_inc(dev, index);
7245         btrfs_dev_stat_print_on_error(dev);
7246 }
7247
7248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7249 {
7250         if (!dev->dev_stats_valid)
7251                 return;
7252         btrfs_err_rl_in_rcu(dev->fs_info,
7253                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7254                            rcu_str_deref(dev->name),
7255                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7256                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7257                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7258                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7259                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7260 }
7261
7262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7263 {
7264         int i;
7265
7266         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7267                 if (btrfs_dev_stat_read(dev, i) != 0)
7268                         break;
7269         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7270                 return; /* all values == 0, suppress message */
7271
7272         btrfs_info_in_rcu(dev->fs_info,
7273                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7274                rcu_str_deref(dev->name),
7275                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7276                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7277                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7278                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7279                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7280 }
7281
7282 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7283                         struct btrfs_ioctl_get_dev_stats *stats)
7284 {
7285         struct btrfs_device *dev;
7286         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287         int i;
7288
7289         mutex_lock(&fs_devices->device_list_mutex);
7290         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7291                                 true);
7292         mutex_unlock(&fs_devices->device_list_mutex);
7293
7294         if (!dev) {
7295                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7296                 return -ENODEV;
7297         } else if (!dev->dev_stats_valid) {
7298                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7299                 return -ENODEV;
7300         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7301                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7302                         if (stats->nr_items > i)
7303                                 stats->values[i] =
7304                                         btrfs_dev_stat_read_and_reset(dev, i);
7305                         else
7306                                 btrfs_dev_stat_set(dev, i, 0);
7307                 }
7308                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7309                            current->comm, task_pid_nr(current));
7310         } else {
7311                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7312                         if (stats->nr_items > i)
7313                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7314         }
7315         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7316                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7317         return 0;
7318 }
7319
7320 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7321 {
7322         struct buffer_head *bh;
7323         struct btrfs_super_block *disk_super;
7324         int copy_num;
7325
7326         if (!bdev)
7327                 return;
7328
7329         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7330                 copy_num++) {
7331
7332                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7333                         continue;
7334
7335                 disk_super = (struct btrfs_super_block *)bh->b_data;
7336
7337                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7338                 set_buffer_dirty(bh);
7339                 sync_dirty_buffer(bh);
7340                 brelse(bh);
7341         }
7342
7343         /* Notify udev that device has changed */
7344         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7345
7346         /* Update ctime/mtime for device path for libblkid */
7347         update_dev_time(device_path);
7348 }
7349
7350 /*
7351  * Update the size and bytes used for each device where it changed.  This is
7352  * delayed since we would otherwise get errors while writing out the
7353  * superblocks.
7354  *
7355  * Must be invoked during transaction commit.
7356  */
7357 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7358 {
7359         struct btrfs_device *curr, *next;
7360
7361         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7362
7363         if (list_empty(&trans->dev_update_list))
7364                 return;
7365
7366         /*
7367          * We don't need the device_list_mutex here.  This list is owned by the
7368          * transaction and the transaction must complete before the device is
7369          * released.
7370          */
7371         mutex_lock(&trans->fs_info->chunk_mutex);
7372         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7373                                  post_commit_list) {
7374                 list_del_init(&curr->post_commit_list);
7375                 curr->commit_total_bytes = curr->disk_total_bytes;
7376                 curr->commit_bytes_used = curr->bytes_used;
7377         }
7378         mutex_unlock(&trans->fs_info->chunk_mutex);
7379 }
7380
7381 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7382 {
7383         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7384         while (fs_devices) {
7385                 fs_devices->fs_info = fs_info;
7386                 fs_devices = fs_devices->seed;
7387         }
7388 }
7389
7390 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7391 {
7392         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7393         while (fs_devices) {
7394                 fs_devices->fs_info = NULL;
7395                 fs_devices = fs_devices->seed;
7396         }
7397 }
7398
7399 /*
7400  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7401  */
7402 int btrfs_bg_type_to_factor(u64 flags)
7403 {
7404         const int index = btrfs_bg_flags_to_raid_index(flags);
7405
7406         return btrfs_raid_array[index].ncopies;
7407 }
7408
7409
7410
7411 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7412                                  u64 chunk_offset, u64 devid,
7413                                  u64 physical_offset, u64 physical_len)
7414 {
7415         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7416         struct extent_map *em;
7417         struct map_lookup *map;
7418         struct btrfs_device *dev;
7419         u64 stripe_len;
7420         bool found = false;
7421         int ret = 0;
7422         int i;
7423
7424         read_lock(&em_tree->lock);
7425         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7426         read_unlock(&em_tree->lock);
7427
7428         if (!em) {
7429                 btrfs_err(fs_info,
7430 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7431                           physical_offset, devid);
7432                 ret = -EUCLEAN;
7433                 goto out;
7434         }
7435
7436         map = em->map_lookup;
7437         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7438         if (physical_len != stripe_len) {
7439                 btrfs_err(fs_info,
7440 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7441                           physical_offset, devid, em->start, physical_len,
7442                           stripe_len);
7443                 ret = -EUCLEAN;
7444                 goto out;
7445         }
7446
7447         for (i = 0; i < map->num_stripes; i++) {
7448                 if (map->stripes[i].dev->devid == devid &&
7449                     map->stripes[i].physical == physical_offset) {
7450                         found = true;
7451                         if (map->verified_stripes >= map->num_stripes) {
7452                                 btrfs_err(fs_info,
7453                                 "too many dev extents for chunk %llu found",
7454                                           em->start);
7455                                 ret = -EUCLEAN;
7456                                 goto out;
7457                         }
7458                         map->verified_stripes++;
7459                         break;
7460                 }
7461         }
7462         if (!found) {
7463                 btrfs_err(fs_info,
7464         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7465                         physical_offset, devid);
7466                 ret = -EUCLEAN;
7467         }
7468
7469         /* Make sure no dev extent is beyond device bondary */
7470         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7471         if (!dev) {
7472                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7473                 ret = -EUCLEAN;
7474                 goto out;
7475         }
7476
7477         /* It's possible this device is a dummy for seed device */
7478         if (dev->disk_total_bytes == 0) {
7479                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7480                                         NULL, false);
7481                 if (!dev) {
7482                         btrfs_err(fs_info, "failed to find seed devid %llu",
7483                                   devid);
7484                         ret = -EUCLEAN;
7485                         goto out;
7486                 }
7487         }
7488
7489         if (physical_offset + physical_len > dev->disk_total_bytes) {
7490                 btrfs_err(fs_info,
7491 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7492                           devid, physical_offset, physical_len,
7493                           dev->disk_total_bytes);
7494                 ret = -EUCLEAN;
7495                 goto out;
7496         }
7497 out:
7498         free_extent_map(em);
7499         return ret;
7500 }
7501
7502 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7503 {
7504         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7505         struct extent_map *em;
7506         struct rb_node *node;
7507         int ret = 0;
7508
7509         read_lock(&em_tree->lock);
7510         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7511                 em = rb_entry(node, struct extent_map, rb_node);
7512                 if (em->map_lookup->num_stripes !=
7513                     em->map_lookup->verified_stripes) {
7514                         btrfs_err(fs_info,
7515                         "chunk %llu has missing dev extent, have %d expect %d",
7516                                   em->start, em->map_lookup->verified_stripes,
7517                                   em->map_lookup->num_stripes);
7518                         ret = -EUCLEAN;
7519                         goto out;
7520                 }
7521         }
7522 out:
7523         read_unlock(&em_tree->lock);
7524         return ret;
7525 }
7526
7527 /*
7528  * Ensure that all dev extents are mapped to correct chunk, otherwise
7529  * later chunk allocation/free would cause unexpected behavior.
7530  *
7531  * NOTE: This will iterate through the whole device tree, which should be of
7532  * the same size level as the chunk tree.  This slightly increases mount time.
7533  */
7534 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7535 {
7536         struct btrfs_path *path;
7537         struct btrfs_root *root = fs_info->dev_root;
7538         struct btrfs_key key;
7539         u64 prev_devid = 0;
7540         u64 prev_dev_ext_end = 0;
7541         int ret = 0;
7542
7543         key.objectid = 1;
7544         key.type = BTRFS_DEV_EXTENT_KEY;
7545         key.offset = 0;
7546
7547         path = btrfs_alloc_path();
7548         if (!path)
7549                 return -ENOMEM;
7550
7551         path->reada = READA_FORWARD;
7552         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7553         if (ret < 0)
7554                 goto out;
7555
7556         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7557                 ret = btrfs_next_item(root, path);
7558                 if (ret < 0)
7559                         goto out;
7560                 /* No dev extents at all? Not good */
7561                 if (ret > 0) {
7562                         ret = -EUCLEAN;
7563                         goto out;
7564                 }
7565         }
7566         while (1) {
7567                 struct extent_buffer *leaf = path->nodes[0];
7568                 struct btrfs_dev_extent *dext;
7569                 int slot = path->slots[0];
7570                 u64 chunk_offset;
7571                 u64 physical_offset;
7572                 u64 physical_len;
7573                 u64 devid;
7574
7575                 btrfs_item_key_to_cpu(leaf, &key, slot);
7576                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7577                         break;
7578                 devid = key.objectid;
7579                 physical_offset = key.offset;
7580
7581                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7582                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7583                 physical_len = btrfs_dev_extent_length(leaf, dext);
7584
7585                 /* Check if this dev extent overlaps with the previous one */
7586                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7587                         btrfs_err(fs_info,
7588 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7589                                   devid, physical_offset, prev_dev_ext_end);
7590                         ret = -EUCLEAN;
7591                         goto out;
7592                 }
7593
7594                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7595                                             physical_offset, physical_len);
7596                 if (ret < 0)
7597                         goto out;
7598                 prev_devid = devid;
7599                 prev_dev_ext_end = physical_offset + physical_len;
7600
7601                 ret = btrfs_next_item(root, path);
7602                 if (ret < 0)
7603                         goto out;
7604                 if (ret > 0) {
7605                         ret = 0;
7606                         break;
7607                 }
7608         }
7609
7610         /* Ensure all chunks have corresponding dev extents */
7611         ret = verify_chunk_dev_extent_mapping(fs_info);
7612 out:
7613         btrfs_free_path(path);
7614         return ret;
7615 }
7616
7617 /*
7618  * Check whether the given block group or device is pinned by any inode being
7619  * used as a swapfile.
7620  */
7621 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7622 {
7623         struct btrfs_swapfile_pin *sp;
7624         struct rb_node *node;
7625
7626         spin_lock(&fs_info->swapfile_pins_lock);
7627         node = fs_info->swapfile_pins.rb_node;
7628         while (node) {
7629                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7630                 if (ptr < sp->ptr)
7631                         node = node->rb_left;
7632                 else if (ptr > sp->ptr)
7633                         node = node->rb_right;
7634                 else
7635                         break;
7636         }
7637         spin_unlock(&fs_info->swapfile_pins_lock);
7638         return node != NULL;
7639 }