]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/btrfs/volumes.c
sparc,leon: Select USB_UHCI_BIG_ENDIAN_{MMIO,DESC}
[linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 /*
149  * Device locking
150  * ==============
151  *
152  * There are several mutexes that protect manipulation of devices and low-level
153  * structures like chunks but not block groups, extents or files
154  *
155  * uuid_mutex (global lock)
156  * ------------------------
157  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159  * device) or requested by the device= mount option
160  *
161  * the mutex can be very coarse and can cover long-running operations
162  *
163  * protects: updates to fs_devices counters like missing devices, rw devices,
164  * seeding, structure cloning, openning/closing devices at mount/umount time
165  *
166  * global::fs_devs - add, remove, updates to the global list
167  *
168  * does not protect: manipulation of the fs_devices::devices list!
169  *
170  * btrfs_device::name - renames (write side), read is RCU
171  *
172  * fs_devices::device_list_mutex (per-fs, with RCU)
173  * ------------------------------------------------
174  * protects updates to fs_devices::devices, ie. adding and deleting
175  *
176  * simple list traversal with read-only actions can be done with RCU protection
177  *
178  * may be used to exclude some operations from running concurrently without any
179  * modifications to the list (see write_all_supers)
180  *
181  * volume_mutex
182  * ------------
183  * coarse lock owned by a mounted filesystem; used to exclude some operations
184  * that cannot run in parallel and affect the higher-level properties of the
185  * filesystem like: device add/deleting/resize/replace, or balance
186  *
187  * balance_mutex
188  * -------------
189  * protects balance structures (status, state) and context accessed from
190  * several places (internally, ioctl)
191  *
192  * chunk_mutex
193  * -----------
194  * protects chunks, adding or removing during allocation, trim or when a new
195  * device is added/removed
196  *
197  * cleaner_mutex
198  * -------------
199  * a big lock that is held by the cleaner thread and prevents running subvolume
200  * cleaning together with relocation or delayed iputs
201  *
202  *
203  * Lock nesting
204  * ============
205  *
206  * uuid_mutex
207  *   volume_mutex
208  *     device_list_mutex
209  *       chunk_mutex
210  *     balance_mutex
211  */
212
213 DEFINE_MUTEX(uuid_mutex);
214 static LIST_HEAD(fs_uuids);
215 struct list_head *btrfs_get_fs_uuids(void)
216 {
217         return &fs_uuids;
218 }
219
220 /*
221  * alloc_fs_devices - allocate struct btrfs_fs_devices
222  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
223  *
224  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225  * The returned struct is not linked onto any lists and can be destroyed with
226  * kfree() right away.
227  */
228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
229 {
230         struct btrfs_fs_devices *fs_devs;
231
232         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
233         if (!fs_devs)
234                 return ERR_PTR(-ENOMEM);
235
236         mutex_init(&fs_devs->device_list_mutex);
237
238         INIT_LIST_HEAD(&fs_devs->devices);
239         INIT_LIST_HEAD(&fs_devs->resized_devices);
240         INIT_LIST_HEAD(&fs_devs->alloc_list);
241         INIT_LIST_HEAD(&fs_devs->list);
242         if (fsid)
243                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
244
245         return fs_devs;
246 }
247
248 static void free_device(struct btrfs_device *device)
249 {
250         rcu_string_free(device->name);
251         bio_put(device->flush_bio);
252         kfree(device);
253 }
254
255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
256 {
257         struct btrfs_device *device;
258         WARN_ON(fs_devices->opened);
259         while (!list_empty(&fs_devices->devices)) {
260                 device = list_entry(fs_devices->devices.next,
261                                     struct btrfs_device, dev_list);
262                 list_del(&device->dev_list);
263                 free_device(device);
264         }
265         kfree(fs_devices);
266 }
267
268 static void btrfs_kobject_uevent(struct block_device *bdev,
269                                  enum kobject_action action)
270 {
271         int ret;
272
273         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
274         if (ret)
275                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
276                         action,
277                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278                         &disk_to_dev(bdev->bd_disk)->kobj);
279 }
280
281 void btrfs_cleanup_fs_uuids(void)
282 {
283         struct btrfs_fs_devices *fs_devices;
284
285         while (!list_empty(&fs_uuids)) {
286                 fs_devices = list_entry(fs_uuids.next,
287                                         struct btrfs_fs_devices, list);
288                 list_del(&fs_devices->list);
289                 free_fs_devices(fs_devices);
290         }
291 }
292
293 /*
294  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295  * Returned struct is not linked onto any lists and must be destroyed using
296  * free_device.
297  */
298 static struct btrfs_device *__alloc_device(void)
299 {
300         struct btrfs_device *dev;
301
302         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
303         if (!dev)
304                 return ERR_PTR(-ENOMEM);
305
306         /*
307          * Preallocate a bio that's always going to be used for flushing device
308          * barriers and matches the device lifespan
309          */
310         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311         if (!dev->flush_bio) {
312                 kfree(dev);
313                 return ERR_PTR(-ENOMEM);
314         }
315
316         INIT_LIST_HEAD(&dev->dev_list);
317         INIT_LIST_HEAD(&dev->dev_alloc_list);
318         INIT_LIST_HEAD(&dev->resized_list);
319
320         spin_lock_init(&dev->io_lock);
321
322         atomic_set(&dev->reada_in_flight, 0);
323         atomic_set(&dev->dev_stats_ccnt, 0);
324         btrfs_device_data_ordered_init(dev);
325         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
326         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
327
328         return dev;
329 }
330
331 /*
332  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
333  * return NULL.
334  *
335  * If devid and uuid are both specified, the match must be exact, otherwise
336  * only devid is used.
337  */
338 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
339                 u64 devid, const u8 *uuid)
340 {
341         struct list_head *head = &fs_devices->devices;
342         struct btrfs_device *dev;
343
344         list_for_each_entry(dev, head, dev_list) {
345                 if (dev->devid == devid &&
346                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
347                         return dev;
348                 }
349         }
350         return NULL;
351 }
352
353 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
354 {
355         struct btrfs_fs_devices *fs_devices;
356
357         list_for_each_entry(fs_devices, &fs_uuids, list) {
358                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
359                         return fs_devices;
360         }
361         return NULL;
362 }
363
364 static int
365 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
366                       int flush, struct block_device **bdev,
367                       struct buffer_head **bh)
368 {
369         int ret;
370
371         *bdev = blkdev_get_by_path(device_path, flags, holder);
372
373         if (IS_ERR(*bdev)) {
374                 ret = PTR_ERR(*bdev);
375                 goto error;
376         }
377
378         if (flush)
379                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
380         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
381         if (ret) {
382                 blkdev_put(*bdev, flags);
383                 goto error;
384         }
385         invalidate_bdev(*bdev);
386         *bh = btrfs_read_dev_super(*bdev);
387         if (IS_ERR(*bh)) {
388                 ret = PTR_ERR(*bh);
389                 blkdev_put(*bdev, flags);
390                 goto error;
391         }
392
393         return 0;
394
395 error:
396         *bdev = NULL;
397         *bh = NULL;
398         return ret;
399 }
400
401 static void requeue_list(struct btrfs_pending_bios *pending_bios,
402                         struct bio *head, struct bio *tail)
403 {
404
405         struct bio *old_head;
406
407         old_head = pending_bios->head;
408         pending_bios->head = head;
409         if (pending_bios->tail)
410                 tail->bi_next = old_head;
411         else
412                 pending_bios->tail = tail;
413 }
414
415 /*
416  * we try to collect pending bios for a device so we don't get a large
417  * number of procs sending bios down to the same device.  This greatly
418  * improves the schedulers ability to collect and merge the bios.
419  *
420  * But, it also turns into a long list of bios to process and that is sure
421  * to eventually make the worker thread block.  The solution here is to
422  * make some progress and then put this work struct back at the end of
423  * the list if the block device is congested.  This way, multiple devices
424  * can make progress from a single worker thread.
425  */
426 static noinline void run_scheduled_bios(struct btrfs_device *device)
427 {
428         struct btrfs_fs_info *fs_info = device->fs_info;
429         struct bio *pending;
430         struct backing_dev_info *bdi;
431         struct btrfs_pending_bios *pending_bios;
432         struct bio *tail;
433         struct bio *cur;
434         int again = 0;
435         unsigned long num_run;
436         unsigned long batch_run = 0;
437         unsigned long last_waited = 0;
438         int force_reg = 0;
439         int sync_pending = 0;
440         struct blk_plug plug;
441
442         /*
443          * this function runs all the bios we've collected for
444          * a particular device.  We don't want to wander off to
445          * another device without first sending all of these down.
446          * So, setup a plug here and finish it off before we return
447          */
448         blk_start_plug(&plug);
449
450         bdi = device->bdev->bd_bdi;
451
452 loop:
453         spin_lock(&device->io_lock);
454
455 loop_lock:
456         num_run = 0;
457
458         /* take all the bios off the list at once and process them
459          * later on (without the lock held).  But, remember the
460          * tail and other pointers so the bios can be properly reinserted
461          * into the list if we hit congestion
462          */
463         if (!force_reg && device->pending_sync_bios.head) {
464                 pending_bios = &device->pending_sync_bios;
465                 force_reg = 1;
466         } else {
467                 pending_bios = &device->pending_bios;
468                 force_reg = 0;
469         }
470
471         pending = pending_bios->head;
472         tail = pending_bios->tail;
473         WARN_ON(pending && !tail);
474
475         /*
476          * if pending was null this time around, no bios need processing
477          * at all and we can stop.  Otherwise it'll loop back up again
478          * and do an additional check so no bios are missed.
479          *
480          * device->running_pending is used to synchronize with the
481          * schedule_bio code.
482          */
483         if (device->pending_sync_bios.head == NULL &&
484             device->pending_bios.head == NULL) {
485                 again = 0;
486                 device->running_pending = 0;
487         } else {
488                 again = 1;
489                 device->running_pending = 1;
490         }
491
492         pending_bios->head = NULL;
493         pending_bios->tail = NULL;
494
495         spin_unlock(&device->io_lock);
496
497         while (pending) {
498
499                 rmb();
500                 /* we want to work on both lists, but do more bios on the
501                  * sync list than the regular list
502                  */
503                 if ((num_run > 32 &&
504                     pending_bios != &device->pending_sync_bios &&
505                     device->pending_sync_bios.head) ||
506                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
507                     device->pending_bios.head)) {
508                         spin_lock(&device->io_lock);
509                         requeue_list(pending_bios, pending, tail);
510                         goto loop_lock;
511                 }
512
513                 cur = pending;
514                 pending = pending->bi_next;
515                 cur->bi_next = NULL;
516
517                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
518
519                 /*
520                  * if we're doing the sync list, record that our
521                  * plug has some sync requests on it
522                  *
523                  * If we're doing the regular list and there are
524                  * sync requests sitting around, unplug before
525                  * we add more
526                  */
527                 if (pending_bios == &device->pending_sync_bios) {
528                         sync_pending = 1;
529                 } else if (sync_pending) {
530                         blk_finish_plug(&plug);
531                         blk_start_plug(&plug);
532                         sync_pending = 0;
533                 }
534
535                 btrfsic_submit_bio(cur);
536                 num_run++;
537                 batch_run++;
538
539                 cond_resched();
540
541                 /*
542                  * we made progress, there is more work to do and the bdi
543                  * is now congested.  Back off and let other work structs
544                  * run instead
545                  */
546                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
547                     fs_info->fs_devices->open_devices > 1) {
548                         struct io_context *ioc;
549
550                         ioc = current->io_context;
551
552                         /*
553                          * the main goal here is that we don't want to
554                          * block if we're going to be able to submit
555                          * more requests without blocking.
556                          *
557                          * This code does two great things, it pokes into
558                          * the elevator code from a filesystem _and_
559                          * it makes assumptions about how batching works.
560                          */
561                         if (ioc && ioc->nr_batch_requests > 0 &&
562                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
563                             (last_waited == 0 ||
564                              ioc->last_waited == last_waited)) {
565                                 /*
566                                  * we want to go through our batch of
567                                  * requests and stop.  So, we copy out
568                                  * the ioc->last_waited time and test
569                                  * against it before looping
570                                  */
571                                 last_waited = ioc->last_waited;
572                                 cond_resched();
573                                 continue;
574                         }
575                         spin_lock(&device->io_lock);
576                         requeue_list(pending_bios, pending, tail);
577                         device->running_pending = 1;
578
579                         spin_unlock(&device->io_lock);
580                         btrfs_queue_work(fs_info->submit_workers,
581                                          &device->work);
582                         goto done;
583                 }
584         }
585
586         cond_resched();
587         if (again)
588                 goto loop;
589
590         spin_lock(&device->io_lock);
591         if (device->pending_bios.head || device->pending_sync_bios.head)
592                 goto loop_lock;
593         spin_unlock(&device->io_lock);
594
595 done:
596         blk_finish_plug(&plug);
597 }
598
599 static void pending_bios_fn(struct btrfs_work *work)
600 {
601         struct btrfs_device *device;
602
603         device = container_of(work, struct btrfs_device, work);
604         run_scheduled_bios(device);
605 }
606
607 /*
608  *  Search and remove all stale (devices which are not mounted) devices.
609  *  When both inputs are NULL, it will search and release all stale devices.
610  *  path:       Optional. When provided will it release all unmounted devices
611  *              matching this path only.
612  *  skip_dev:   Optional. Will skip this device when searching for the stale
613  *              devices.
614  */
615 static void btrfs_free_stale_devices(const char *path,
616                                      struct btrfs_device *skip_dev)
617 {
618         struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
619         struct btrfs_device *dev, *tmp_dev;
620
621         list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
622
623                 if (fs_devs->opened)
624                         continue;
625
626                 list_for_each_entry_safe(dev, tmp_dev,
627                                          &fs_devs->devices, dev_list) {
628                         int not_found = 0;
629
630                         if (skip_dev && skip_dev == dev)
631                                 continue;
632                         if (path && !dev->name)
633                                 continue;
634
635                         rcu_read_lock();
636                         if (path)
637                                 not_found = strcmp(rcu_str_deref(dev->name),
638                                                    path);
639                         rcu_read_unlock();
640                         if (not_found)
641                                 continue;
642
643                         /* delete the stale device */
644                         if (fs_devs->num_devices == 1) {
645                                 btrfs_sysfs_remove_fsid(fs_devs);
646                                 list_del(&fs_devs->list);
647                                 free_fs_devices(fs_devs);
648                         } else {
649                                 fs_devs->num_devices--;
650                                 list_del(&dev->dev_list);
651                                 free_device(dev);
652                         }
653                 }
654         }
655 }
656
657 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
658                         struct btrfs_device *device, fmode_t flags,
659                         void *holder)
660 {
661         struct request_queue *q;
662         struct block_device *bdev;
663         struct buffer_head *bh;
664         struct btrfs_super_block *disk_super;
665         u64 devid;
666         int ret;
667
668         if (device->bdev)
669                 return -EINVAL;
670         if (!device->name)
671                 return -EINVAL;
672
673         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
674                                     &bdev, &bh);
675         if (ret)
676                 return ret;
677
678         disk_super = (struct btrfs_super_block *)bh->b_data;
679         devid = btrfs_stack_device_id(&disk_super->dev_item);
680         if (devid != device->devid)
681                 goto error_brelse;
682
683         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
684                 goto error_brelse;
685
686         device->generation = btrfs_super_generation(disk_super);
687
688         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
689                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
690                 fs_devices->seeding = 1;
691         } else {
692                 if (bdev_read_only(bdev))
693                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
694                 else
695                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
696         }
697
698         q = bdev_get_queue(bdev);
699         if (!blk_queue_nonrot(q))
700                 fs_devices->rotating = 1;
701
702         device->bdev = bdev;
703         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
704         device->mode = flags;
705
706         fs_devices->open_devices++;
707         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
708             device->devid != BTRFS_DEV_REPLACE_DEVID) {
709                 fs_devices->rw_devices++;
710                 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
711         }
712         brelse(bh);
713
714         return 0;
715
716 error_brelse:
717         brelse(bh);
718         blkdev_put(bdev, flags);
719
720         return -EINVAL;
721 }
722
723 /*
724  * Add new device to list of registered devices
725  *
726  * Returns:
727  * device pointer which was just added or updated when successful
728  * error pointer when failed
729  */
730 static noinline struct btrfs_device *device_list_add(const char *path,
731                            struct btrfs_super_block *disk_super)
732 {
733         struct btrfs_device *device;
734         struct btrfs_fs_devices *fs_devices;
735         struct rcu_string *name;
736         u64 found_transid = btrfs_super_generation(disk_super);
737         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
738
739         fs_devices = find_fsid(disk_super->fsid);
740         if (!fs_devices) {
741                 fs_devices = alloc_fs_devices(disk_super->fsid);
742                 if (IS_ERR(fs_devices))
743                         return ERR_CAST(fs_devices);
744
745                 list_add(&fs_devices->list, &fs_uuids);
746
747                 device = NULL;
748         } else {
749                 device = find_device(fs_devices, devid,
750                                 disk_super->dev_item.uuid);
751         }
752
753         if (!device) {
754                 if (fs_devices->opened)
755                         return ERR_PTR(-EBUSY);
756
757                 device = btrfs_alloc_device(NULL, &devid,
758                                             disk_super->dev_item.uuid);
759                 if (IS_ERR(device)) {
760                         /* we can safely leave the fs_devices entry around */
761                         return device;
762                 }
763
764                 name = rcu_string_strdup(path, GFP_NOFS);
765                 if (!name) {
766                         free_device(device);
767                         return ERR_PTR(-ENOMEM);
768                 }
769                 rcu_assign_pointer(device->name, name);
770
771                 mutex_lock(&fs_devices->device_list_mutex);
772                 list_add_rcu(&device->dev_list, &fs_devices->devices);
773                 fs_devices->num_devices++;
774                 mutex_unlock(&fs_devices->device_list_mutex);
775
776                 device->fs_devices = fs_devices;
777                 btrfs_free_stale_devices(path, device);
778
779                 if (disk_super->label[0])
780                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
781                                 disk_super->label, devid, found_transid, path);
782                 else
783                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
784                                 disk_super->fsid, devid, found_transid, path);
785
786         } else if (!device->name || strcmp(device->name->str, path)) {
787                 /*
788                  * When FS is already mounted.
789                  * 1. If you are here and if the device->name is NULL that
790                  *    means this device was missing at time of FS mount.
791                  * 2. If you are here and if the device->name is different
792                  *    from 'path' that means either
793                  *      a. The same device disappeared and reappeared with
794                  *         different name. or
795                  *      b. The missing-disk-which-was-replaced, has
796                  *         reappeared now.
797                  *
798                  * We must allow 1 and 2a above. But 2b would be a spurious
799                  * and unintentional.
800                  *
801                  * Further in case of 1 and 2a above, the disk at 'path'
802                  * would have missed some transaction when it was away and
803                  * in case of 2a the stale bdev has to be updated as well.
804                  * 2b must not be allowed at all time.
805                  */
806
807                 /*
808                  * For now, we do allow update to btrfs_fs_device through the
809                  * btrfs dev scan cli after FS has been mounted.  We're still
810                  * tracking a problem where systems fail mount by subvolume id
811                  * when we reject replacement on a mounted FS.
812                  */
813                 if (!fs_devices->opened && found_transid < device->generation) {
814                         /*
815                          * That is if the FS is _not_ mounted and if you
816                          * are here, that means there is more than one
817                          * disk with same uuid and devid.We keep the one
818                          * with larger generation number or the last-in if
819                          * generation are equal.
820                          */
821                         return ERR_PTR(-EEXIST);
822                 }
823
824                 name = rcu_string_strdup(path, GFP_NOFS);
825                 if (!name)
826                         return ERR_PTR(-ENOMEM);
827                 rcu_string_free(device->name);
828                 rcu_assign_pointer(device->name, name);
829                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
830                         fs_devices->missing_devices--;
831                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
832                 }
833         }
834
835         /*
836          * Unmount does not free the btrfs_device struct but would zero
837          * generation along with most of the other members. So just update
838          * it back. We need it to pick the disk with largest generation
839          * (as above).
840          */
841         if (!fs_devices->opened)
842                 device->generation = found_transid;
843
844         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
845
846         return device;
847 }
848
849 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
850 {
851         struct btrfs_fs_devices *fs_devices;
852         struct btrfs_device *device;
853         struct btrfs_device *orig_dev;
854
855         fs_devices = alloc_fs_devices(orig->fsid);
856         if (IS_ERR(fs_devices))
857                 return fs_devices;
858
859         mutex_lock(&orig->device_list_mutex);
860         fs_devices->total_devices = orig->total_devices;
861
862         /* We have held the volume lock, it is safe to get the devices. */
863         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
864                 struct rcu_string *name;
865
866                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
867                                             orig_dev->uuid);
868                 if (IS_ERR(device))
869                         goto error;
870
871                 /*
872                  * This is ok to do without rcu read locked because we hold the
873                  * uuid mutex so nothing we touch in here is going to disappear.
874                  */
875                 if (orig_dev->name) {
876                         name = rcu_string_strdup(orig_dev->name->str,
877                                         GFP_KERNEL);
878                         if (!name) {
879                                 free_device(device);
880                                 goto error;
881                         }
882                         rcu_assign_pointer(device->name, name);
883                 }
884
885                 list_add(&device->dev_list, &fs_devices->devices);
886                 device->fs_devices = fs_devices;
887                 fs_devices->num_devices++;
888         }
889         mutex_unlock(&orig->device_list_mutex);
890         return fs_devices;
891 error:
892         mutex_unlock(&orig->device_list_mutex);
893         free_fs_devices(fs_devices);
894         return ERR_PTR(-ENOMEM);
895 }
896
897 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
898 {
899         struct btrfs_device *device, *next;
900         struct btrfs_device *latest_dev = NULL;
901
902         mutex_lock(&uuid_mutex);
903 again:
904         /* This is the initialized path, it is safe to release the devices. */
905         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
906                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
907                                                         &device->dev_state)) {
908                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
909                              &device->dev_state) &&
910                              (!latest_dev ||
911                               device->generation > latest_dev->generation)) {
912                                 latest_dev = device;
913                         }
914                         continue;
915                 }
916
917                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
918                         /*
919                          * In the first step, keep the device which has
920                          * the correct fsid and the devid that is used
921                          * for the dev_replace procedure.
922                          * In the second step, the dev_replace state is
923                          * read from the device tree and it is known
924                          * whether the procedure is really active or
925                          * not, which means whether this device is
926                          * used or whether it should be removed.
927                          */
928                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
929                                                   &device->dev_state)) {
930                                 continue;
931                         }
932                 }
933                 if (device->bdev) {
934                         blkdev_put(device->bdev, device->mode);
935                         device->bdev = NULL;
936                         fs_devices->open_devices--;
937                 }
938                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
939                         list_del_init(&device->dev_alloc_list);
940                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
941                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
942                                       &device->dev_state))
943                                 fs_devices->rw_devices--;
944                 }
945                 list_del_init(&device->dev_list);
946                 fs_devices->num_devices--;
947                 free_device(device);
948         }
949
950         if (fs_devices->seed) {
951                 fs_devices = fs_devices->seed;
952                 goto again;
953         }
954
955         fs_devices->latest_bdev = latest_dev->bdev;
956
957         mutex_unlock(&uuid_mutex);
958 }
959
960 static void free_device_rcu(struct rcu_head *head)
961 {
962         struct btrfs_device *device;
963
964         device = container_of(head, struct btrfs_device, rcu);
965         free_device(device);
966 }
967
968 static void btrfs_close_bdev(struct btrfs_device *device)
969 {
970         if (!device->bdev)
971                 return;
972
973         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
974                 sync_blockdev(device->bdev);
975                 invalidate_bdev(device->bdev);
976         }
977
978         blkdev_put(device->bdev, device->mode);
979 }
980
981 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
982 {
983         struct btrfs_fs_devices *fs_devices = device->fs_devices;
984         struct btrfs_device *new_device;
985         struct rcu_string *name;
986
987         if (device->bdev)
988                 fs_devices->open_devices--;
989
990         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
991             device->devid != BTRFS_DEV_REPLACE_DEVID) {
992                 list_del_init(&device->dev_alloc_list);
993                 fs_devices->rw_devices--;
994         }
995
996         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
997                 fs_devices->missing_devices--;
998
999         new_device = btrfs_alloc_device(NULL, &device->devid,
1000                                         device->uuid);
1001         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1002
1003         /* Safe because we are under uuid_mutex */
1004         if (device->name) {
1005                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1006                 BUG_ON(!name); /* -ENOMEM */
1007                 rcu_assign_pointer(new_device->name, name);
1008         }
1009
1010         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1011         new_device->fs_devices = device->fs_devices;
1012 }
1013
1014 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1015 {
1016         struct btrfs_device *device, *tmp;
1017         struct list_head pending_put;
1018
1019         INIT_LIST_HEAD(&pending_put);
1020
1021         if (--fs_devices->opened > 0)
1022                 return 0;
1023
1024         mutex_lock(&fs_devices->device_list_mutex);
1025         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1026                 btrfs_prepare_close_one_device(device);
1027                 list_add(&device->dev_list, &pending_put);
1028         }
1029         mutex_unlock(&fs_devices->device_list_mutex);
1030
1031         /*
1032          * btrfs_show_devname() is using the device_list_mutex,
1033          * sometimes call to blkdev_put() leads vfs calling
1034          * into this func. So do put outside of device_list_mutex,
1035          * as of now.
1036          */
1037         while (!list_empty(&pending_put)) {
1038                 device = list_first_entry(&pending_put,
1039                                 struct btrfs_device, dev_list);
1040                 list_del(&device->dev_list);
1041                 btrfs_close_bdev(device);
1042                 call_rcu(&device->rcu, free_device_rcu);
1043         }
1044
1045         WARN_ON(fs_devices->open_devices);
1046         WARN_ON(fs_devices->rw_devices);
1047         fs_devices->opened = 0;
1048         fs_devices->seeding = 0;
1049
1050         return 0;
1051 }
1052
1053 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1054 {
1055         struct btrfs_fs_devices *seed_devices = NULL;
1056         int ret;
1057
1058         mutex_lock(&uuid_mutex);
1059         ret = __btrfs_close_devices(fs_devices);
1060         if (!fs_devices->opened) {
1061                 seed_devices = fs_devices->seed;
1062                 fs_devices->seed = NULL;
1063         }
1064         mutex_unlock(&uuid_mutex);
1065
1066         while (seed_devices) {
1067                 fs_devices = seed_devices;
1068                 seed_devices = fs_devices->seed;
1069                 __btrfs_close_devices(fs_devices);
1070                 free_fs_devices(fs_devices);
1071         }
1072         return ret;
1073 }
1074
1075 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1076                                 fmode_t flags, void *holder)
1077 {
1078         struct list_head *head = &fs_devices->devices;
1079         struct btrfs_device *device;
1080         struct btrfs_device *latest_dev = NULL;
1081         int ret = 0;
1082
1083         flags |= FMODE_EXCL;
1084
1085         list_for_each_entry(device, head, dev_list) {
1086                 /* Just open everything we can; ignore failures here */
1087                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1088                         continue;
1089
1090                 if (!latest_dev ||
1091                     device->generation > latest_dev->generation)
1092                         latest_dev = device;
1093         }
1094         if (fs_devices->open_devices == 0) {
1095                 ret = -EINVAL;
1096                 goto out;
1097         }
1098         fs_devices->opened = 1;
1099         fs_devices->latest_bdev = latest_dev->bdev;
1100         fs_devices->total_rw_bytes = 0;
1101 out:
1102         return ret;
1103 }
1104
1105 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1106                        fmode_t flags, void *holder)
1107 {
1108         int ret;
1109
1110         mutex_lock(&uuid_mutex);
1111         if (fs_devices->opened) {
1112                 fs_devices->opened++;
1113                 ret = 0;
1114         } else {
1115                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1116         }
1117         mutex_unlock(&uuid_mutex);
1118         return ret;
1119 }
1120
1121 static void btrfs_release_disk_super(struct page *page)
1122 {
1123         kunmap(page);
1124         put_page(page);
1125 }
1126
1127 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1128                                  struct page **page,
1129                                  struct btrfs_super_block **disk_super)
1130 {
1131         void *p;
1132         pgoff_t index;
1133
1134         /* make sure our super fits in the device */
1135         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1136                 return 1;
1137
1138         /* make sure our super fits in the page */
1139         if (sizeof(**disk_super) > PAGE_SIZE)
1140                 return 1;
1141
1142         /* make sure our super doesn't straddle pages on disk */
1143         index = bytenr >> PAGE_SHIFT;
1144         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1145                 return 1;
1146
1147         /* pull in the page with our super */
1148         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1149                                    index, GFP_KERNEL);
1150
1151         if (IS_ERR_OR_NULL(*page))
1152                 return 1;
1153
1154         p = kmap(*page);
1155
1156         /* align our pointer to the offset of the super block */
1157         *disk_super = p + (bytenr & ~PAGE_MASK);
1158
1159         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1160             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1161                 btrfs_release_disk_super(*page);
1162                 return 1;
1163         }
1164
1165         if ((*disk_super)->label[0] &&
1166                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1167                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1168
1169         return 0;
1170 }
1171
1172 /*
1173  * Look for a btrfs signature on a device. This may be called out of the mount path
1174  * and we are not allowed to call set_blocksize during the scan. The superblock
1175  * is read via pagecache
1176  */
1177 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1178                           struct btrfs_fs_devices **fs_devices_ret)
1179 {
1180         struct btrfs_super_block *disk_super;
1181         struct btrfs_device *device;
1182         struct block_device *bdev;
1183         struct page *page;
1184         int ret = 0;
1185         u64 bytenr;
1186
1187         /*
1188          * we would like to check all the supers, but that would make
1189          * a btrfs mount succeed after a mkfs from a different FS.
1190          * So, we need to add a special mount option to scan for
1191          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1192          */
1193         bytenr = btrfs_sb_offset(0);
1194         flags |= FMODE_EXCL;
1195         mutex_lock(&uuid_mutex);
1196
1197         bdev = blkdev_get_by_path(path, flags, holder);
1198         if (IS_ERR(bdev)) {
1199                 ret = PTR_ERR(bdev);
1200                 goto error;
1201         }
1202
1203         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1204                 ret = -EINVAL;
1205                 goto error_bdev_put;
1206         }
1207
1208         device = device_list_add(path, disk_super);
1209         if (IS_ERR(device))
1210                 ret = PTR_ERR(device);
1211         else
1212                 *fs_devices_ret = device->fs_devices;
1213
1214         btrfs_release_disk_super(page);
1215
1216 error_bdev_put:
1217         blkdev_put(bdev, flags);
1218 error:
1219         mutex_unlock(&uuid_mutex);
1220         return ret;
1221 }
1222
1223 /* helper to account the used device space in the range */
1224 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1225                                    u64 end, u64 *length)
1226 {
1227         struct btrfs_key key;
1228         struct btrfs_root *root = device->fs_info->dev_root;
1229         struct btrfs_dev_extent *dev_extent;
1230         struct btrfs_path *path;
1231         u64 extent_end;
1232         int ret;
1233         int slot;
1234         struct extent_buffer *l;
1235
1236         *length = 0;
1237
1238         if (start >= device->total_bytes ||
1239                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1240                 return 0;
1241
1242         path = btrfs_alloc_path();
1243         if (!path)
1244                 return -ENOMEM;
1245         path->reada = READA_FORWARD;
1246
1247         key.objectid = device->devid;
1248         key.offset = start;
1249         key.type = BTRFS_DEV_EXTENT_KEY;
1250
1251         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1252         if (ret < 0)
1253                 goto out;
1254         if (ret > 0) {
1255                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1256                 if (ret < 0)
1257                         goto out;
1258         }
1259
1260         while (1) {
1261                 l = path->nodes[0];
1262                 slot = path->slots[0];
1263                 if (slot >= btrfs_header_nritems(l)) {
1264                         ret = btrfs_next_leaf(root, path);
1265                         if (ret == 0)
1266                                 continue;
1267                         if (ret < 0)
1268                                 goto out;
1269
1270                         break;
1271                 }
1272                 btrfs_item_key_to_cpu(l, &key, slot);
1273
1274                 if (key.objectid < device->devid)
1275                         goto next;
1276
1277                 if (key.objectid > device->devid)
1278                         break;
1279
1280                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1281                         goto next;
1282
1283                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1284                 extent_end = key.offset + btrfs_dev_extent_length(l,
1285                                                                   dev_extent);
1286                 if (key.offset <= start && extent_end > end) {
1287                         *length = end - start + 1;
1288                         break;
1289                 } else if (key.offset <= start && extent_end > start)
1290                         *length += extent_end - start;
1291                 else if (key.offset > start && extent_end <= end)
1292                         *length += extent_end - key.offset;
1293                 else if (key.offset > start && key.offset <= end) {
1294                         *length += end - key.offset + 1;
1295                         break;
1296                 } else if (key.offset > end)
1297                         break;
1298
1299 next:
1300                 path->slots[0]++;
1301         }
1302         ret = 0;
1303 out:
1304         btrfs_free_path(path);
1305         return ret;
1306 }
1307
1308 static int contains_pending_extent(struct btrfs_transaction *transaction,
1309                                    struct btrfs_device *device,
1310                                    u64 *start, u64 len)
1311 {
1312         struct btrfs_fs_info *fs_info = device->fs_info;
1313         struct extent_map *em;
1314         struct list_head *search_list = &fs_info->pinned_chunks;
1315         int ret = 0;
1316         u64 physical_start = *start;
1317
1318         if (transaction)
1319                 search_list = &transaction->pending_chunks;
1320 again:
1321         list_for_each_entry(em, search_list, list) {
1322                 struct map_lookup *map;
1323                 int i;
1324
1325                 map = em->map_lookup;
1326                 for (i = 0; i < map->num_stripes; i++) {
1327                         u64 end;
1328
1329                         if (map->stripes[i].dev != device)
1330                                 continue;
1331                         if (map->stripes[i].physical >= physical_start + len ||
1332                             map->stripes[i].physical + em->orig_block_len <=
1333                             physical_start)
1334                                 continue;
1335                         /*
1336                          * Make sure that while processing the pinned list we do
1337                          * not override our *start with a lower value, because
1338                          * we can have pinned chunks that fall within this
1339                          * device hole and that have lower physical addresses
1340                          * than the pending chunks we processed before. If we
1341                          * do not take this special care we can end up getting
1342                          * 2 pending chunks that start at the same physical
1343                          * device offsets because the end offset of a pinned
1344                          * chunk can be equal to the start offset of some
1345                          * pending chunk.
1346                          */
1347                         end = map->stripes[i].physical + em->orig_block_len;
1348                         if (end > *start) {
1349                                 *start = end;
1350                                 ret = 1;
1351                         }
1352                 }
1353         }
1354         if (search_list != &fs_info->pinned_chunks) {
1355                 search_list = &fs_info->pinned_chunks;
1356                 goto again;
1357         }
1358
1359         return ret;
1360 }
1361
1362
1363 /*
1364  * find_free_dev_extent_start - find free space in the specified device
1365  * @device:       the device which we search the free space in
1366  * @num_bytes:    the size of the free space that we need
1367  * @search_start: the position from which to begin the search
1368  * @start:        store the start of the free space.
1369  * @len:          the size of the free space. that we find, or the size
1370  *                of the max free space if we don't find suitable free space
1371  *
1372  * this uses a pretty simple search, the expectation is that it is
1373  * called very infrequently and that a given device has a small number
1374  * of extents
1375  *
1376  * @start is used to store the start of the free space if we find. But if we
1377  * don't find suitable free space, it will be used to store the start position
1378  * of the max free space.
1379  *
1380  * @len is used to store the size of the free space that we find.
1381  * But if we don't find suitable free space, it is used to store the size of
1382  * the max free space.
1383  */
1384 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1385                                struct btrfs_device *device, u64 num_bytes,
1386                                u64 search_start, u64 *start, u64 *len)
1387 {
1388         struct btrfs_fs_info *fs_info = device->fs_info;
1389         struct btrfs_root *root = fs_info->dev_root;
1390         struct btrfs_key key;
1391         struct btrfs_dev_extent *dev_extent;
1392         struct btrfs_path *path;
1393         u64 hole_size;
1394         u64 max_hole_start;
1395         u64 max_hole_size;
1396         u64 extent_end;
1397         u64 search_end = device->total_bytes;
1398         int ret;
1399         int slot;
1400         struct extent_buffer *l;
1401
1402         /*
1403          * We don't want to overwrite the superblock on the drive nor any area
1404          * used by the boot loader (grub for example), so we make sure to start
1405          * at an offset of at least 1MB.
1406          */
1407         search_start = max_t(u64, search_start, SZ_1M);
1408
1409         path = btrfs_alloc_path();
1410         if (!path)
1411                 return -ENOMEM;
1412
1413         max_hole_start = search_start;
1414         max_hole_size = 0;
1415
1416 again:
1417         if (search_start >= search_end ||
1418                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1419                 ret = -ENOSPC;
1420                 goto out;
1421         }
1422
1423         path->reada = READA_FORWARD;
1424         path->search_commit_root = 1;
1425         path->skip_locking = 1;
1426
1427         key.objectid = device->devid;
1428         key.offset = search_start;
1429         key.type = BTRFS_DEV_EXTENT_KEY;
1430
1431         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1432         if (ret < 0)
1433                 goto out;
1434         if (ret > 0) {
1435                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1436                 if (ret < 0)
1437                         goto out;
1438         }
1439
1440         while (1) {
1441                 l = path->nodes[0];
1442                 slot = path->slots[0];
1443                 if (slot >= btrfs_header_nritems(l)) {
1444                         ret = btrfs_next_leaf(root, path);
1445                         if (ret == 0)
1446                                 continue;
1447                         if (ret < 0)
1448                                 goto out;
1449
1450                         break;
1451                 }
1452                 btrfs_item_key_to_cpu(l, &key, slot);
1453
1454                 if (key.objectid < device->devid)
1455                         goto next;
1456
1457                 if (key.objectid > device->devid)
1458                         break;
1459
1460                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1461                         goto next;
1462
1463                 if (key.offset > search_start) {
1464                         hole_size = key.offset - search_start;
1465
1466                         /*
1467                          * Have to check before we set max_hole_start, otherwise
1468                          * we could end up sending back this offset anyway.
1469                          */
1470                         if (contains_pending_extent(transaction, device,
1471                                                     &search_start,
1472                                                     hole_size)) {
1473                                 if (key.offset >= search_start) {
1474                                         hole_size = key.offset - search_start;
1475                                 } else {
1476                                         WARN_ON_ONCE(1);
1477                                         hole_size = 0;
1478                                 }
1479                         }
1480
1481                         if (hole_size > max_hole_size) {
1482                                 max_hole_start = search_start;
1483                                 max_hole_size = hole_size;
1484                         }
1485
1486                         /*
1487                          * If this free space is greater than which we need,
1488                          * it must be the max free space that we have found
1489                          * until now, so max_hole_start must point to the start
1490                          * of this free space and the length of this free space
1491                          * is stored in max_hole_size. Thus, we return
1492                          * max_hole_start and max_hole_size and go back to the
1493                          * caller.
1494                          */
1495                         if (hole_size >= num_bytes) {
1496                                 ret = 0;
1497                                 goto out;
1498                         }
1499                 }
1500
1501                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1502                 extent_end = key.offset + btrfs_dev_extent_length(l,
1503                                                                   dev_extent);
1504                 if (extent_end > search_start)
1505                         search_start = extent_end;
1506 next:
1507                 path->slots[0]++;
1508                 cond_resched();
1509         }
1510
1511         /*
1512          * At this point, search_start should be the end of
1513          * allocated dev extents, and when shrinking the device,
1514          * search_end may be smaller than search_start.
1515          */
1516         if (search_end > search_start) {
1517                 hole_size = search_end - search_start;
1518
1519                 if (contains_pending_extent(transaction, device, &search_start,
1520                                             hole_size)) {
1521                         btrfs_release_path(path);
1522                         goto again;
1523                 }
1524
1525                 if (hole_size > max_hole_size) {
1526                         max_hole_start = search_start;
1527                         max_hole_size = hole_size;
1528                 }
1529         }
1530
1531         /* See above. */
1532         if (max_hole_size < num_bytes)
1533                 ret = -ENOSPC;
1534         else
1535                 ret = 0;
1536
1537 out:
1538         btrfs_free_path(path);
1539         *start = max_hole_start;
1540         if (len)
1541                 *len = max_hole_size;
1542         return ret;
1543 }
1544
1545 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1546                          struct btrfs_device *device, u64 num_bytes,
1547                          u64 *start, u64 *len)
1548 {
1549         /* FIXME use last free of some kind */
1550         return find_free_dev_extent_start(trans->transaction, device,
1551                                           num_bytes, 0, start, len);
1552 }
1553
1554 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1555                           struct btrfs_device *device,
1556                           u64 start, u64 *dev_extent_len)
1557 {
1558         struct btrfs_fs_info *fs_info = device->fs_info;
1559         struct btrfs_root *root = fs_info->dev_root;
1560         int ret;
1561         struct btrfs_path *path;
1562         struct btrfs_key key;
1563         struct btrfs_key found_key;
1564         struct extent_buffer *leaf = NULL;
1565         struct btrfs_dev_extent *extent = NULL;
1566
1567         path = btrfs_alloc_path();
1568         if (!path)
1569                 return -ENOMEM;
1570
1571         key.objectid = device->devid;
1572         key.offset = start;
1573         key.type = BTRFS_DEV_EXTENT_KEY;
1574 again:
1575         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1576         if (ret > 0) {
1577                 ret = btrfs_previous_item(root, path, key.objectid,
1578                                           BTRFS_DEV_EXTENT_KEY);
1579                 if (ret)
1580                         goto out;
1581                 leaf = path->nodes[0];
1582                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1583                 extent = btrfs_item_ptr(leaf, path->slots[0],
1584                                         struct btrfs_dev_extent);
1585                 BUG_ON(found_key.offset > start || found_key.offset +
1586                        btrfs_dev_extent_length(leaf, extent) < start);
1587                 key = found_key;
1588                 btrfs_release_path(path);
1589                 goto again;
1590         } else if (ret == 0) {
1591                 leaf = path->nodes[0];
1592                 extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                         struct btrfs_dev_extent);
1594         } else {
1595                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1596                 goto out;
1597         }
1598
1599         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1600
1601         ret = btrfs_del_item(trans, root, path);
1602         if (ret) {
1603                 btrfs_handle_fs_error(fs_info, ret,
1604                                       "Failed to remove dev extent item");
1605         } else {
1606                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1607         }
1608 out:
1609         btrfs_free_path(path);
1610         return ret;
1611 }
1612
1613 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1614                                   struct btrfs_device *device,
1615                                   u64 chunk_offset, u64 start, u64 num_bytes)
1616 {
1617         int ret;
1618         struct btrfs_path *path;
1619         struct btrfs_fs_info *fs_info = device->fs_info;
1620         struct btrfs_root *root = fs_info->dev_root;
1621         struct btrfs_dev_extent *extent;
1622         struct extent_buffer *leaf;
1623         struct btrfs_key key;
1624
1625         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1626         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1627         path = btrfs_alloc_path();
1628         if (!path)
1629                 return -ENOMEM;
1630
1631         key.objectid = device->devid;
1632         key.offset = start;
1633         key.type = BTRFS_DEV_EXTENT_KEY;
1634         ret = btrfs_insert_empty_item(trans, root, path, &key,
1635                                       sizeof(*extent));
1636         if (ret)
1637                 goto out;
1638
1639         leaf = path->nodes[0];
1640         extent = btrfs_item_ptr(leaf, path->slots[0],
1641                                 struct btrfs_dev_extent);
1642         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1643                                         BTRFS_CHUNK_TREE_OBJECTID);
1644         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1645                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1646         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1647
1648         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1649         btrfs_mark_buffer_dirty(leaf);
1650 out:
1651         btrfs_free_path(path);
1652         return ret;
1653 }
1654
1655 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1656 {
1657         struct extent_map_tree *em_tree;
1658         struct extent_map *em;
1659         struct rb_node *n;
1660         u64 ret = 0;
1661
1662         em_tree = &fs_info->mapping_tree.map_tree;
1663         read_lock(&em_tree->lock);
1664         n = rb_last(&em_tree->map);
1665         if (n) {
1666                 em = rb_entry(n, struct extent_map, rb_node);
1667                 ret = em->start + em->len;
1668         }
1669         read_unlock(&em_tree->lock);
1670
1671         return ret;
1672 }
1673
1674 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1675                                     u64 *devid_ret)
1676 {
1677         int ret;
1678         struct btrfs_key key;
1679         struct btrfs_key found_key;
1680         struct btrfs_path *path;
1681
1682         path = btrfs_alloc_path();
1683         if (!path)
1684                 return -ENOMEM;
1685
1686         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687         key.type = BTRFS_DEV_ITEM_KEY;
1688         key.offset = (u64)-1;
1689
1690         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1691         if (ret < 0)
1692                 goto error;
1693
1694         BUG_ON(ret == 0); /* Corruption */
1695
1696         ret = btrfs_previous_item(fs_info->chunk_root, path,
1697                                   BTRFS_DEV_ITEMS_OBJECTID,
1698                                   BTRFS_DEV_ITEM_KEY);
1699         if (ret) {
1700                 *devid_ret = 1;
1701         } else {
1702                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1703                                       path->slots[0]);
1704                 *devid_ret = found_key.offset + 1;
1705         }
1706         ret = 0;
1707 error:
1708         btrfs_free_path(path);
1709         return ret;
1710 }
1711
1712 /*
1713  * the device information is stored in the chunk root
1714  * the btrfs_device struct should be fully filled in
1715  */
1716 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1717                             struct btrfs_fs_info *fs_info,
1718                             struct btrfs_device *device)
1719 {
1720         struct btrfs_root *root = fs_info->chunk_root;
1721         int ret;
1722         struct btrfs_path *path;
1723         struct btrfs_dev_item *dev_item;
1724         struct extent_buffer *leaf;
1725         struct btrfs_key key;
1726         unsigned long ptr;
1727
1728         path = btrfs_alloc_path();
1729         if (!path)
1730                 return -ENOMEM;
1731
1732         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1733         key.type = BTRFS_DEV_ITEM_KEY;
1734         key.offset = device->devid;
1735
1736         ret = btrfs_insert_empty_item(trans, root, path, &key,
1737                                       sizeof(*dev_item));
1738         if (ret)
1739                 goto out;
1740
1741         leaf = path->nodes[0];
1742         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1743
1744         btrfs_set_device_id(leaf, dev_item, device->devid);
1745         btrfs_set_device_generation(leaf, dev_item, 0);
1746         btrfs_set_device_type(leaf, dev_item, device->type);
1747         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1748         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1749         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1750         btrfs_set_device_total_bytes(leaf, dev_item,
1751                                      btrfs_device_get_disk_total_bytes(device));
1752         btrfs_set_device_bytes_used(leaf, dev_item,
1753                                     btrfs_device_get_bytes_used(device));
1754         btrfs_set_device_group(leaf, dev_item, 0);
1755         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1756         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1757         btrfs_set_device_start_offset(leaf, dev_item, 0);
1758
1759         ptr = btrfs_device_uuid(dev_item);
1760         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1761         ptr = btrfs_device_fsid(dev_item);
1762         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1763         btrfs_mark_buffer_dirty(leaf);
1764
1765         ret = 0;
1766 out:
1767         btrfs_free_path(path);
1768         return ret;
1769 }
1770
1771 /*
1772  * Function to update ctime/mtime for a given device path.
1773  * Mainly used for ctime/mtime based probe like libblkid.
1774  */
1775 static void update_dev_time(const char *path_name)
1776 {
1777         struct file *filp;
1778
1779         filp = filp_open(path_name, O_RDWR, 0);
1780         if (IS_ERR(filp))
1781                 return;
1782         file_update_time(filp);
1783         filp_close(filp, NULL);
1784 }
1785
1786 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1787                              struct btrfs_device *device)
1788 {
1789         struct btrfs_root *root = fs_info->chunk_root;
1790         int ret;
1791         struct btrfs_path *path;
1792         struct btrfs_key key;
1793         struct btrfs_trans_handle *trans;
1794
1795         path = btrfs_alloc_path();
1796         if (!path)
1797                 return -ENOMEM;
1798
1799         trans = btrfs_start_transaction(root, 0);
1800         if (IS_ERR(trans)) {
1801                 btrfs_free_path(path);
1802                 return PTR_ERR(trans);
1803         }
1804         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805         key.type = BTRFS_DEV_ITEM_KEY;
1806         key.offset = device->devid;
1807
1808         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1809         if (ret) {
1810                 if (ret > 0)
1811                         ret = -ENOENT;
1812                 btrfs_abort_transaction(trans, ret);
1813                 btrfs_end_transaction(trans);
1814                 goto out;
1815         }
1816
1817         ret = btrfs_del_item(trans, root, path);
1818         if (ret) {
1819                 btrfs_abort_transaction(trans, ret);
1820                 btrfs_end_transaction(trans);
1821         }
1822
1823 out:
1824         btrfs_free_path(path);
1825         if (!ret)
1826                 ret = btrfs_commit_transaction(trans);
1827         return ret;
1828 }
1829
1830 /*
1831  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1832  * filesystem. It's up to the caller to adjust that number regarding eg. device
1833  * replace.
1834  */
1835 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1836                 u64 num_devices)
1837 {
1838         u64 all_avail;
1839         unsigned seq;
1840         int i;
1841
1842         do {
1843                 seq = read_seqbegin(&fs_info->profiles_lock);
1844
1845                 all_avail = fs_info->avail_data_alloc_bits |
1846                             fs_info->avail_system_alloc_bits |
1847                             fs_info->avail_metadata_alloc_bits;
1848         } while (read_seqretry(&fs_info->profiles_lock, seq));
1849
1850         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1851                 if (!(all_avail & btrfs_raid_group[i]))
1852                         continue;
1853
1854                 if (num_devices < btrfs_raid_array[i].devs_min) {
1855                         int ret = btrfs_raid_mindev_error[i];
1856
1857                         if (ret)
1858                                 return ret;
1859                 }
1860         }
1861
1862         return 0;
1863 }
1864
1865 static struct btrfs_device * btrfs_find_next_active_device(
1866                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1867 {
1868         struct btrfs_device *next_device;
1869
1870         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1871                 if (next_device != device &&
1872                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1873                     && next_device->bdev)
1874                         return next_device;
1875         }
1876
1877         return NULL;
1878 }
1879
1880 /*
1881  * Helper function to check if the given device is part of s_bdev / latest_bdev
1882  * and replace it with the provided or the next active device, in the context
1883  * where this function called, there should be always be another device (or
1884  * this_dev) which is active.
1885  */
1886 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1887                 struct btrfs_device *device, struct btrfs_device *this_dev)
1888 {
1889         struct btrfs_device *next_device;
1890
1891         if (this_dev)
1892                 next_device = this_dev;
1893         else
1894                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1895                                                                 device);
1896         ASSERT(next_device);
1897
1898         if (fs_info->sb->s_bdev &&
1899                         (fs_info->sb->s_bdev == device->bdev))
1900                 fs_info->sb->s_bdev = next_device->bdev;
1901
1902         if (fs_info->fs_devices->latest_bdev == device->bdev)
1903                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1904 }
1905
1906 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1907                 u64 devid)
1908 {
1909         struct btrfs_device *device;
1910         struct btrfs_fs_devices *cur_devices;
1911         u64 num_devices;
1912         int ret = 0;
1913
1914         mutex_lock(&fs_info->volume_mutex);
1915         mutex_lock(&uuid_mutex);
1916
1917         num_devices = fs_info->fs_devices->num_devices;
1918         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1919         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1920                 WARN_ON(num_devices < 1);
1921                 num_devices--;
1922         }
1923         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1924
1925         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1926         if (ret)
1927                 goto out;
1928
1929         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1930                                            &device);
1931         if (ret)
1932                 goto out;
1933
1934         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1935                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1936                 goto out;
1937         }
1938
1939         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1940             fs_info->fs_devices->rw_devices == 1) {
1941                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1942                 goto out;
1943         }
1944
1945         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1946                 mutex_lock(&fs_info->chunk_mutex);
1947                 list_del_init(&device->dev_alloc_list);
1948                 device->fs_devices->rw_devices--;
1949                 mutex_unlock(&fs_info->chunk_mutex);
1950         }
1951
1952         mutex_unlock(&uuid_mutex);
1953         ret = btrfs_shrink_device(device, 0);
1954         mutex_lock(&uuid_mutex);
1955         if (ret)
1956                 goto error_undo;
1957
1958         /*
1959          * TODO: the superblock still includes this device in its num_devices
1960          * counter although write_all_supers() is not locked out. This
1961          * could give a filesystem state which requires a degraded mount.
1962          */
1963         ret = btrfs_rm_dev_item(fs_info, device);
1964         if (ret)
1965                 goto error_undo;
1966
1967         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1968         btrfs_scrub_cancel_dev(fs_info, device);
1969
1970         /*
1971          * the device list mutex makes sure that we don't change
1972          * the device list while someone else is writing out all
1973          * the device supers. Whoever is writing all supers, should
1974          * lock the device list mutex before getting the number of
1975          * devices in the super block (super_copy). Conversely,
1976          * whoever updates the number of devices in the super block
1977          * (super_copy) should hold the device list mutex.
1978          */
1979
1980         cur_devices = device->fs_devices;
1981         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1982         list_del_rcu(&device->dev_list);
1983
1984         device->fs_devices->num_devices--;
1985         device->fs_devices->total_devices--;
1986
1987         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1988                 device->fs_devices->missing_devices--;
1989
1990         btrfs_assign_next_active_device(fs_info, device, NULL);
1991
1992         if (device->bdev) {
1993                 device->fs_devices->open_devices--;
1994                 /* remove sysfs entry */
1995                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1996         }
1997
1998         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1999         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2000         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2001
2002         /*
2003          * at this point, the device is zero sized and detached from
2004          * the devices list.  All that's left is to zero out the old
2005          * supers and free the device.
2006          */
2007         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2008                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2009
2010         btrfs_close_bdev(device);
2011         call_rcu(&device->rcu, free_device_rcu);
2012
2013         if (cur_devices->open_devices == 0) {
2014                 struct btrfs_fs_devices *fs_devices;
2015                 fs_devices = fs_info->fs_devices;
2016                 while (fs_devices) {
2017                         if (fs_devices->seed == cur_devices) {
2018                                 fs_devices->seed = cur_devices->seed;
2019                                 break;
2020                         }
2021                         fs_devices = fs_devices->seed;
2022                 }
2023                 cur_devices->seed = NULL;
2024                 __btrfs_close_devices(cur_devices);
2025                 free_fs_devices(cur_devices);
2026         }
2027
2028 out:
2029         mutex_unlock(&uuid_mutex);
2030         mutex_unlock(&fs_info->volume_mutex);
2031         return ret;
2032
2033 error_undo:
2034         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2035                 mutex_lock(&fs_info->chunk_mutex);
2036                 list_add(&device->dev_alloc_list,
2037                          &fs_info->fs_devices->alloc_list);
2038                 device->fs_devices->rw_devices++;
2039                 mutex_unlock(&fs_info->chunk_mutex);
2040         }
2041         goto out;
2042 }
2043
2044 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2045                                         struct btrfs_device *srcdev)
2046 {
2047         struct btrfs_fs_devices *fs_devices;
2048
2049         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2050
2051         /*
2052          * in case of fs with no seed, srcdev->fs_devices will point
2053          * to fs_devices of fs_info. However when the dev being replaced is
2054          * a seed dev it will point to the seed's local fs_devices. In short
2055          * srcdev will have its correct fs_devices in both the cases.
2056          */
2057         fs_devices = srcdev->fs_devices;
2058
2059         list_del_rcu(&srcdev->dev_list);
2060         list_del(&srcdev->dev_alloc_list);
2061         fs_devices->num_devices--;
2062         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2063                 fs_devices->missing_devices--;
2064
2065         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2066                 fs_devices->rw_devices--;
2067
2068         if (srcdev->bdev)
2069                 fs_devices->open_devices--;
2070 }
2071
2072 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2073                                       struct btrfs_device *srcdev)
2074 {
2075         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2076
2077         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2078                 /* zero out the old super if it is writable */
2079                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2080         }
2081
2082         btrfs_close_bdev(srcdev);
2083         call_rcu(&srcdev->rcu, free_device_rcu);
2084
2085         /* if this is no devs we rather delete the fs_devices */
2086         if (!fs_devices->num_devices) {
2087                 struct btrfs_fs_devices *tmp_fs_devices;
2088
2089                 /*
2090                  * On a mounted FS, num_devices can't be zero unless it's a
2091                  * seed. In case of a seed device being replaced, the replace
2092                  * target added to the sprout FS, so there will be no more
2093                  * device left under the seed FS.
2094                  */
2095                 ASSERT(fs_devices->seeding);
2096
2097                 tmp_fs_devices = fs_info->fs_devices;
2098                 while (tmp_fs_devices) {
2099                         if (tmp_fs_devices->seed == fs_devices) {
2100                                 tmp_fs_devices->seed = fs_devices->seed;
2101                                 break;
2102                         }
2103                         tmp_fs_devices = tmp_fs_devices->seed;
2104                 }
2105                 fs_devices->seed = NULL;
2106                 __btrfs_close_devices(fs_devices);
2107                 free_fs_devices(fs_devices);
2108         }
2109 }
2110
2111 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2112                                       struct btrfs_device *tgtdev)
2113 {
2114         mutex_lock(&uuid_mutex);
2115         WARN_ON(!tgtdev);
2116         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2117
2118         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2119
2120         if (tgtdev->bdev)
2121                 fs_info->fs_devices->open_devices--;
2122
2123         fs_info->fs_devices->num_devices--;
2124
2125         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2126
2127         list_del_rcu(&tgtdev->dev_list);
2128
2129         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2130         mutex_unlock(&uuid_mutex);
2131
2132         /*
2133          * The update_dev_time() with in btrfs_scratch_superblocks()
2134          * may lead to a call to btrfs_show_devname() which will try
2135          * to hold device_list_mutex. And here this device
2136          * is already out of device list, so we don't have to hold
2137          * the device_list_mutex lock.
2138          */
2139         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2140
2141         btrfs_close_bdev(tgtdev);
2142         call_rcu(&tgtdev->rcu, free_device_rcu);
2143 }
2144
2145 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2146                                      const char *device_path,
2147                                      struct btrfs_device **device)
2148 {
2149         int ret = 0;
2150         struct btrfs_super_block *disk_super;
2151         u64 devid;
2152         u8 *dev_uuid;
2153         struct block_device *bdev;
2154         struct buffer_head *bh;
2155
2156         *device = NULL;
2157         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2158                                     fs_info->bdev_holder, 0, &bdev, &bh);
2159         if (ret)
2160                 return ret;
2161         disk_super = (struct btrfs_super_block *)bh->b_data;
2162         devid = btrfs_stack_device_id(&disk_super->dev_item);
2163         dev_uuid = disk_super->dev_item.uuid;
2164         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2165         brelse(bh);
2166         if (!*device)
2167                 ret = -ENOENT;
2168         blkdev_put(bdev, FMODE_READ);
2169         return ret;
2170 }
2171
2172 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2173                                          const char *device_path,
2174                                          struct btrfs_device **device)
2175 {
2176         *device = NULL;
2177         if (strcmp(device_path, "missing") == 0) {
2178                 struct list_head *devices;
2179                 struct btrfs_device *tmp;
2180
2181                 devices = &fs_info->fs_devices->devices;
2182                 /*
2183                  * It is safe to read the devices since the volume_mutex
2184                  * is held by the caller.
2185                  */
2186                 list_for_each_entry(tmp, devices, dev_list) {
2187                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2188                                         &tmp->dev_state) && !tmp->bdev) {
2189                                 *device = tmp;
2190                                 break;
2191                         }
2192                 }
2193
2194                 if (!*device)
2195                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2196
2197                 return 0;
2198         } else {
2199                 return btrfs_find_device_by_path(fs_info, device_path, device);
2200         }
2201 }
2202
2203 /*
2204  * Lookup a device given by device id, or the path if the id is 0.
2205  */
2206 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2207                                  const char *devpath,
2208                                  struct btrfs_device **device)
2209 {
2210         int ret;
2211
2212         if (devid) {
2213                 ret = 0;
2214                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2215                 if (!*device)
2216                         ret = -ENOENT;
2217         } else {
2218                 if (!devpath || !devpath[0])
2219                         return -EINVAL;
2220
2221                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2222                                                            device);
2223         }
2224         return ret;
2225 }
2226
2227 /*
2228  * does all the dirty work required for changing file system's UUID.
2229  */
2230 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2231 {
2232         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2233         struct btrfs_fs_devices *old_devices;
2234         struct btrfs_fs_devices *seed_devices;
2235         struct btrfs_super_block *disk_super = fs_info->super_copy;
2236         struct btrfs_device *device;
2237         u64 super_flags;
2238
2239         BUG_ON(!mutex_is_locked(&uuid_mutex));
2240         if (!fs_devices->seeding)
2241                 return -EINVAL;
2242
2243         seed_devices = alloc_fs_devices(NULL);
2244         if (IS_ERR(seed_devices))
2245                 return PTR_ERR(seed_devices);
2246
2247         old_devices = clone_fs_devices(fs_devices);
2248         if (IS_ERR(old_devices)) {
2249                 kfree(seed_devices);
2250                 return PTR_ERR(old_devices);
2251         }
2252
2253         list_add(&old_devices->list, &fs_uuids);
2254
2255         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2256         seed_devices->opened = 1;
2257         INIT_LIST_HEAD(&seed_devices->devices);
2258         INIT_LIST_HEAD(&seed_devices->alloc_list);
2259         mutex_init(&seed_devices->device_list_mutex);
2260
2261         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2262         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2263                               synchronize_rcu);
2264         list_for_each_entry(device, &seed_devices->devices, dev_list)
2265                 device->fs_devices = seed_devices;
2266
2267         mutex_lock(&fs_info->chunk_mutex);
2268         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2269         mutex_unlock(&fs_info->chunk_mutex);
2270
2271         fs_devices->seeding = 0;
2272         fs_devices->num_devices = 0;
2273         fs_devices->open_devices = 0;
2274         fs_devices->missing_devices = 0;
2275         fs_devices->rotating = 0;
2276         fs_devices->seed = seed_devices;
2277
2278         generate_random_uuid(fs_devices->fsid);
2279         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2280         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2281         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2282
2283         super_flags = btrfs_super_flags(disk_super) &
2284                       ~BTRFS_SUPER_FLAG_SEEDING;
2285         btrfs_set_super_flags(disk_super, super_flags);
2286
2287         return 0;
2288 }
2289
2290 /*
2291  * Store the expected generation for seed devices in device items.
2292  */
2293 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2294                                struct btrfs_fs_info *fs_info)
2295 {
2296         struct btrfs_root *root = fs_info->chunk_root;
2297         struct btrfs_path *path;
2298         struct extent_buffer *leaf;
2299         struct btrfs_dev_item *dev_item;
2300         struct btrfs_device *device;
2301         struct btrfs_key key;
2302         u8 fs_uuid[BTRFS_FSID_SIZE];
2303         u8 dev_uuid[BTRFS_UUID_SIZE];
2304         u64 devid;
2305         int ret;
2306
2307         path = btrfs_alloc_path();
2308         if (!path)
2309                 return -ENOMEM;
2310
2311         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2312         key.offset = 0;
2313         key.type = BTRFS_DEV_ITEM_KEY;
2314
2315         while (1) {
2316                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2317                 if (ret < 0)
2318                         goto error;
2319
2320                 leaf = path->nodes[0];
2321 next_slot:
2322                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2323                         ret = btrfs_next_leaf(root, path);
2324                         if (ret > 0)
2325                                 break;
2326                         if (ret < 0)
2327                                 goto error;
2328                         leaf = path->nodes[0];
2329                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2330                         btrfs_release_path(path);
2331                         continue;
2332                 }
2333
2334                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2335                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2336                     key.type != BTRFS_DEV_ITEM_KEY)
2337                         break;
2338
2339                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2340                                           struct btrfs_dev_item);
2341                 devid = btrfs_device_id(leaf, dev_item);
2342                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2343                                    BTRFS_UUID_SIZE);
2344                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2345                                    BTRFS_FSID_SIZE);
2346                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2347                 BUG_ON(!device); /* Logic error */
2348
2349                 if (device->fs_devices->seeding) {
2350                         btrfs_set_device_generation(leaf, dev_item,
2351                                                     device->generation);
2352                         btrfs_mark_buffer_dirty(leaf);
2353                 }
2354
2355                 path->slots[0]++;
2356                 goto next_slot;
2357         }
2358         ret = 0;
2359 error:
2360         btrfs_free_path(path);
2361         return ret;
2362 }
2363
2364 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2365 {
2366         struct btrfs_root *root = fs_info->dev_root;
2367         struct request_queue *q;
2368         struct btrfs_trans_handle *trans;
2369         struct btrfs_device *device;
2370         struct block_device *bdev;
2371         struct list_head *devices;
2372         struct super_block *sb = fs_info->sb;
2373         struct rcu_string *name;
2374         u64 tmp;
2375         int seeding_dev = 0;
2376         int ret = 0;
2377         bool unlocked = false;
2378
2379         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2380                 return -EROFS;
2381
2382         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2383                                   fs_info->bdev_holder);
2384         if (IS_ERR(bdev))
2385                 return PTR_ERR(bdev);
2386
2387         if (fs_info->fs_devices->seeding) {
2388                 seeding_dev = 1;
2389                 down_write(&sb->s_umount);
2390                 mutex_lock(&uuid_mutex);
2391         }
2392
2393         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2394
2395         devices = &fs_info->fs_devices->devices;
2396
2397         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2398         list_for_each_entry(device, devices, dev_list) {
2399                 if (device->bdev == bdev) {
2400                         ret = -EEXIST;
2401                         mutex_unlock(
2402                                 &fs_info->fs_devices->device_list_mutex);
2403                         goto error;
2404                 }
2405         }
2406         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2407
2408         device = btrfs_alloc_device(fs_info, NULL, NULL);
2409         if (IS_ERR(device)) {
2410                 /* we can safely leave the fs_devices entry around */
2411                 ret = PTR_ERR(device);
2412                 goto error;
2413         }
2414
2415         name = rcu_string_strdup(device_path, GFP_KERNEL);
2416         if (!name) {
2417                 ret = -ENOMEM;
2418                 goto error_free_device;
2419         }
2420         rcu_assign_pointer(device->name, name);
2421
2422         trans = btrfs_start_transaction(root, 0);
2423         if (IS_ERR(trans)) {
2424                 ret = PTR_ERR(trans);
2425                 goto error_free_device;
2426         }
2427
2428         q = bdev_get_queue(bdev);
2429         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2430         device->generation = trans->transid;
2431         device->io_width = fs_info->sectorsize;
2432         device->io_align = fs_info->sectorsize;
2433         device->sector_size = fs_info->sectorsize;
2434         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2435                                          fs_info->sectorsize);
2436         device->disk_total_bytes = device->total_bytes;
2437         device->commit_total_bytes = device->total_bytes;
2438         device->fs_info = fs_info;
2439         device->bdev = bdev;
2440         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2441         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2442         device->mode = FMODE_EXCL;
2443         device->dev_stats_valid = 1;
2444         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2445
2446         if (seeding_dev) {
2447                 sb->s_flags &= ~SB_RDONLY;
2448                 ret = btrfs_prepare_sprout(fs_info);
2449                 if (ret) {
2450                         btrfs_abort_transaction(trans, ret);
2451                         goto error_trans;
2452                 }
2453         }
2454
2455         device->fs_devices = fs_info->fs_devices;
2456
2457         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2458         mutex_lock(&fs_info->chunk_mutex);
2459         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2460         list_add(&device->dev_alloc_list,
2461                  &fs_info->fs_devices->alloc_list);
2462         fs_info->fs_devices->num_devices++;
2463         fs_info->fs_devices->open_devices++;
2464         fs_info->fs_devices->rw_devices++;
2465         fs_info->fs_devices->total_devices++;
2466         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2467
2468         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2469
2470         if (!blk_queue_nonrot(q))
2471                 fs_info->fs_devices->rotating = 1;
2472
2473         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2474         btrfs_set_super_total_bytes(fs_info->super_copy,
2475                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2476
2477         tmp = btrfs_super_num_devices(fs_info->super_copy);
2478         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2479
2480         /* add sysfs device entry */
2481         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2482
2483         /*
2484          * we've got more storage, clear any full flags on the space
2485          * infos
2486          */
2487         btrfs_clear_space_info_full(fs_info);
2488
2489         mutex_unlock(&fs_info->chunk_mutex);
2490         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2491
2492         if (seeding_dev) {
2493                 mutex_lock(&fs_info->chunk_mutex);
2494                 ret = init_first_rw_device(trans, fs_info);
2495                 mutex_unlock(&fs_info->chunk_mutex);
2496                 if (ret) {
2497                         btrfs_abort_transaction(trans, ret);
2498                         goto error_sysfs;
2499                 }
2500         }
2501
2502         ret = btrfs_add_dev_item(trans, fs_info, device);
2503         if (ret) {
2504                 btrfs_abort_transaction(trans, ret);
2505                 goto error_sysfs;
2506         }
2507
2508         if (seeding_dev) {
2509                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2510
2511                 ret = btrfs_finish_sprout(trans, fs_info);
2512                 if (ret) {
2513                         btrfs_abort_transaction(trans, ret);
2514                         goto error_sysfs;
2515                 }
2516
2517                 /* Sprouting would change fsid of the mounted root,
2518                  * so rename the fsid on the sysfs
2519                  */
2520                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2521                                                 fs_info->fsid);
2522                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2523                         btrfs_warn(fs_info,
2524                                    "sysfs: failed to create fsid for sprout");
2525         }
2526
2527         ret = btrfs_commit_transaction(trans);
2528
2529         if (seeding_dev) {
2530                 mutex_unlock(&uuid_mutex);
2531                 up_write(&sb->s_umount);
2532                 unlocked = true;
2533
2534                 if (ret) /* transaction commit */
2535                         return ret;
2536
2537                 ret = btrfs_relocate_sys_chunks(fs_info);
2538                 if (ret < 0)
2539                         btrfs_handle_fs_error(fs_info, ret,
2540                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2541                 trans = btrfs_attach_transaction(root);
2542                 if (IS_ERR(trans)) {
2543                         if (PTR_ERR(trans) == -ENOENT)
2544                                 return 0;
2545                         ret = PTR_ERR(trans);
2546                         trans = NULL;
2547                         goto error_sysfs;
2548                 }
2549                 ret = btrfs_commit_transaction(trans);
2550         }
2551
2552         /* Update ctime/mtime for libblkid */
2553         update_dev_time(device_path);
2554         return ret;
2555
2556 error_sysfs:
2557         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2558 error_trans:
2559         if (seeding_dev)
2560                 sb->s_flags |= SB_RDONLY;
2561         if (trans)
2562                 btrfs_end_transaction(trans);
2563 error_free_device:
2564         free_device(device);
2565 error:
2566         blkdev_put(bdev, FMODE_EXCL);
2567         if (seeding_dev && !unlocked) {
2568                 mutex_unlock(&uuid_mutex);
2569                 up_write(&sb->s_umount);
2570         }
2571         return ret;
2572 }
2573
2574 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2575                                   const char *device_path,
2576                                   struct btrfs_device *srcdev,
2577                                   struct btrfs_device **device_out)
2578 {
2579         struct btrfs_device *device;
2580         struct block_device *bdev;
2581         struct list_head *devices;
2582         struct rcu_string *name;
2583         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2584         int ret = 0;
2585
2586         *device_out = NULL;
2587         if (fs_info->fs_devices->seeding) {
2588                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2589                 return -EINVAL;
2590         }
2591
2592         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2593                                   fs_info->bdev_holder);
2594         if (IS_ERR(bdev)) {
2595                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2596                 return PTR_ERR(bdev);
2597         }
2598
2599         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2600
2601         devices = &fs_info->fs_devices->devices;
2602         list_for_each_entry(device, devices, dev_list) {
2603                 if (device->bdev == bdev) {
2604                         btrfs_err(fs_info,
2605                                   "target device is in the filesystem!");
2606                         ret = -EEXIST;
2607                         goto error;
2608                 }
2609         }
2610
2611
2612         if (i_size_read(bdev->bd_inode) <
2613             btrfs_device_get_total_bytes(srcdev)) {
2614                 btrfs_err(fs_info,
2615                           "target device is smaller than source device!");
2616                 ret = -EINVAL;
2617                 goto error;
2618         }
2619
2620
2621         device = btrfs_alloc_device(NULL, &devid, NULL);
2622         if (IS_ERR(device)) {
2623                 ret = PTR_ERR(device);
2624                 goto error;
2625         }
2626
2627         name = rcu_string_strdup(device_path, GFP_KERNEL);
2628         if (!name) {
2629                 free_device(device);
2630                 ret = -ENOMEM;
2631                 goto error;
2632         }
2633         rcu_assign_pointer(device->name, name);
2634
2635         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2636         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2637         device->generation = 0;
2638         device->io_width = fs_info->sectorsize;
2639         device->io_align = fs_info->sectorsize;
2640         device->sector_size = fs_info->sectorsize;
2641         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2642         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2643         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2644         ASSERT(list_empty(&srcdev->resized_list));
2645         device->commit_total_bytes = srcdev->commit_total_bytes;
2646         device->commit_bytes_used = device->bytes_used;
2647         device->fs_info = fs_info;
2648         device->bdev = bdev;
2649         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2650         set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2651         device->mode = FMODE_EXCL;
2652         device->dev_stats_valid = 1;
2653         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2654         device->fs_devices = fs_info->fs_devices;
2655         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2656         fs_info->fs_devices->num_devices++;
2657         fs_info->fs_devices->open_devices++;
2658         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2659
2660         *device_out = device;
2661         return ret;
2662
2663 error:
2664         blkdev_put(bdev, FMODE_EXCL);
2665         return ret;
2666 }
2667
2668 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2669                                               struct btrfs_device *tgtdev)
2670 {
2671         u32 sectorsize = fs_info->sectorsize;
2672
2673         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2674         tgtdev->io_width = sectorsize;
2675         tgtdev->io_align = sectorsize;
2676         tgtdev->sector_size = sectorsize;
2677         tgtdev->fs_info = fs_info;
2678         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &tgtdev->dev_state);
2679 }
2680
2681 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2682                                         struct btrfs_device *device)
2683 {
2684         int ret;
2685         struct btrfs_path *path;
2686         struct btrfs_root *root = device->fs_info->chunk_root;
2687         struct btrfs_dev_item *dev_item;
2688         struct extent_buffer *leaf;
2689         struct btrfs_key key;
2690
2691         path = btrfs_alloc_path();
2692         if (!path)
2693                 return -ENOMEM;
2694
2695         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2696         key.type = BTRFS_DEV_ITEM_KEY;
2697         key.offset = device->devid;
2698
2699         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2700         if (ret < 0)
2701                 goto out;
2702
2703         if (ret > 0) {
2704                 ret = -ENOENT;
2705                 goto out;
2706         }
2707
2708         leaf = path->nodes[0];
2709         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2710
2711         btrfs_set_device_id(leaf, dev_item, device->devid);
2712         btrfs_set_device_type(leaf, dev_item, device->type);
2713         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2714         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2715         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2716         btrfs_set_device_total_bytes(leaf, dev_item,
2717                                      btrfs_device_get_disk_total_bytes(device));
2718         btrfs_set_device_bytes_used(leaf, dev_item,
2719                                     btrfs_device_get_bytes_used(device));
2720         btrfs_mark_buffer_dirty(leaf);
2721
2722 out:
2723         btrfs_free_path(path);
2724         return ret;
2725 }
2726
2727 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2728                       struct btrfs_device *device, u64 new_size)
2729 {
2730         struct btrfs_fs_info *fs_info = device->fs_info;
2731         struct btrfs_super_block *super_copy = fs_info->super_copy;
2732         struct btrfs_fs_devices *fs_devices;
2733         u64 old_total;
2734         u64 diff;
2735
2736         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2737                 return -EACCES;
2738
2739         new_size = round_down(new_size, fs_info->sectorsize);
2740
2741         mutex_lock(&fs_info->chunk_mutex);
2742         old_total = btrfs_super_total_bytes(super_copy);
2743         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2744
2745         if (new_size <= device->total_bytes ||
2746             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2747                 mutex_unlock(&fs_info->chunk_mutex);
2748                 return -EINVAL;
2749         }
2750
2751         fs_devices = fs_info->fs_devices;
2752
2753         btrfs_set_super_total_bytes(super_copy,
2754                         round_down(old_total + diff, fs_info->sectorsize));
2755         device->fs_devices->total_rw_bytes += diff;
2756
2757         btrfs_device_set_total_bytes(device, new_size);
2758         btrfs_device_set_disk_total_bytes(device, new_size);
2759         btrfs_clear_space_info_full(device->fs_info);
2760         if (list_empty(&device->resized_list))
2761                 list_add_tail(&device->resized_list,
2762                               &fs_devices->resized_devices);
2763         mutex_unlock(&fs_info->chunk_mutex);
2764
2765         return btrfs_update_device(trans, device);
2766 }
2767
2768 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2769                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2770 {
2771         struct btrfs_root *root = fs_info->chunk_root;
2772         int ret;
2773         struct btrfs_path *path;
2774         struct btrfs_key key;
2775
2776         path = btrfs_alloc_path();
2777         if (!path)
2778                 return -ENOMEM;
2779
2780         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2781         key.offset = chunk_offset;
2782         key.type = BTRFS_CHUNK_ITEM_KEY;
2783
2784         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2785         if (ret < 0)
2786                 goto out;
2787         else if (ret > 0) { /* Logic error or corruption */
2788                 btrfs_handle_fs_error(fs_info, -ENOENT,
2789                                       "Failed lookup while freeing chunk.");
2790                 ret = -ENOENT;
2791                 goto out;
2792         }
2793
2794         ret = btrfs_del_item(trans, root, path);
2795         if (ret < 0)
2796                 btrfs_handle_fs_error(fs_info, ret,
2797                                       "Failed to delete chunk item.");
2798 out:
2799         btrfs_free_path(path);
2800         return ret;
2801 }
2802
2803 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2804 {
2805         struct btrfs_super_block *super_copy = fs_info->super_copy;
2806         struct btrfs_disk_key *disk_key;
2807         struct btrfs_chunk *chunk;
2808         u8 *ptr;
2809         int ret = 0;
2810         u32 num_stripes;
2811         u32 array_size;
2812         u32 len = 0;
2813         u32 cur;
2814         struct btrfs_key key;
2815
2816         mutex_lock(&fs_info->chunk_mutex);
2817         array_size = btrfs_super_sys_array_size(super_copy);
2818
2819         ptr = super_copy->sys_chunk_array;
2820         cur = 0;
2821
2822         while (cur < array_size) {
2823                 disk_key = (struct btrfs_disk_key *)ptr;
2824                 btrfs_disk_key_to_cpu(&key, disk_key);
2825
2826                 len = sizeof(*disk_key);
2827
2828                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2829                         chunk = (struct btrfs_chunk *)(ptr + len);
2830                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2831                         len += btrfs_chunk_item_size(num_stripes);
2832                 } else {
2833                         ret = -EIO;
2834                         break;
2835                 }
2836                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2837                     key.offset == chunk_offset) {
2838                         memmove(ptr, ptr + len, array_size - (cur + len));
2839                         array_size -= len;
2840                         btrfs_set_super_sys_array_size(super_copy, array_size);
2841                 } else {
2842                         ptr += len;
2843                         cur += len;
2844                 }
2845         }
2846         mutex_unlock(&fs_info->chunk_mutex);
2847         return ret;
2848 }
2849
2850 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2851                                         u64 logical, u64 length)
2852 {
2853         struct extent_map_tree *em_tree;
2854         struct extent_map *em;
2855
2856         em_tree = &fs_info->mapping_tree.map_tree;
2857         read_lock(&em_tree->lock);
2858         em = lookup_extent_mapping(em_tree, logical, length);
2859         read_unlock(&em_tree->lock);
2860
2861         if (!em) {
2862                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2863                            logical, length);
2864                 return ERR_PTR(-EINVAL);
2865         }
2866
2867         if (em->start > logical || em->start + em->len < logical) {
2868                 btrfs_crit(fs_info,
2869                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2870                            logical, length, em->start, em->start + em->len);
2871                 free_extent_map(em);
2872                 return ERR_PTR(-EINVAL);
2873         }
2874
2875         /* callers are responsible for dropping em's ref. */
2876         return em;
2877 }
2878
2879 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2880                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2881 {
2882         struct extent_map *em;
2883         struct map_lookup *map;
2884         u64 dev_extent_len = 0;
2885         int i, ret = 0;
2886         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2887
2888         em = get_chunk_map(fs_info, chunk_offset, 1);
2889         if (IS_ERR(em)) {
2890                 /*
2891                  * This is a logic error, but we don't want to just rely on the
2892                  * user having built with ASSERT enabled, so if ASSERT doesn't
2893                  * do anything we still error out.
2894                  */
2895                 ASSERT(0);
2896                 return PTR_ERR(em);
2897         }
2898         map = em->map_lookup;
2899         mutex_lock(&fs_info->chunk_mutex);
2900         check_system_chunk(trans, fs_info, map->type);
2901         mutex_unlock(&fs_info->chunk_mutex);
2902
2903         /*
2904          * Take the device list mutex to prevent races with the final phase of
2905          * a device replace operation that replaces the device object associated
2906          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2907          */
2908         mutex_lock(&fs_devices->device_list_mutex);
2909         for (i = 0; i < map->num_stripes; i++) {
2910                 struct btrfs_device *device = map->stripes[i].dev;
2911                 ret = btrfs_free_dev_extent(trans, device,
2912                                             map->stripes[i].physical,
2913                                             &dev_extent_len);
2914                 if (ret) {
2915                         mutex_unlock(&fs_devices->device_list_mutex);
2916                         btrfs_abort_transaction(trans, ret);
2917                         goto out;
2918                 }
2919
2920                 if (device->bytes_used > 0) {
2921                         mutex_lock(&fs_info->chunk_mutex);
2922                         btrfs_device_set_bytes_used(device,
2923                                         device->bytes_used - dev_extent_len);
2924                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2925                         btrfs_clear_space_info_full(fs_info);
2926                         mutex_unlock(&fs_info->chunk_mutex);
2927                 }
2928
2929                 if (map->stripes[i].dev) {
2930                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2931                         if (ret) {
2932                                 mutex_unlock(&fs_devices->device_list_mutex);
2933                                 btrfs_abort_transaction(trans, ret);
2934                                 goto out;
2935                         }
2936                 }
2937         }
2938         mutex_unlock(&fs_devices->device_list_mutex);
2939
2940         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2941         if (ret) {
2942                 btrfs_abort_transaction(trans, ret);
2943                 goto out;
2944         }
2945
2946         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2947
2948         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2949                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2950                 if (ret) {
2951                         btrfs_abort_transaction(trans, ret);
2952                         goto out;
2953                 }
2954         }
2955
2956         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2957         if (ret) {
2958                 btrfs_abort_transaction(trans, ret);
2959                 goto out;
2960         }
2961
2962 out:
2963         /* once for us */
2964         free_extent_map(em);
2965         return ret;
2966 }
2967
2968 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2969 {
2970         struct btrfs_root *root = fs_info->chunk_root;
2971         struct btrfs_trans_handle *trans;
2972         int ret;
2973
2974         /*
2975          * Prevent races with automatic removal of unused block groups.
2976          * After we relocate and before we remove the chunk with offset
2977          * chunk_offset, automatic removal of the block group can kick in,
2978          * resulting in a failure when calling btrfs_remove_chunk() below.
2979          *
2980          * Make sure to acquire this mutex before doing a tree search (dev
2981          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2982          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2983          * we release the path used to search the chunk/dev tree and before
2984          * the current task acquires this mutex and calls us.
2985          */
2986         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2987
2988         ret = btrfs_can_relocate(fs_info, chunk_offset);
2989         if (ret)
2990                 return -ENOSPC;
2991
2992         /* step one, relocate all the extents inside this chunk */
2993         btrfs_scrub_pause(fs_info);
2994         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2995         btrfs_scrub_continue(fs_info);
2996         if (ret)
2997                 return ret;
2998
2999         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3000                                                      chunk_offset);
3001         if (IS_ERR(trans)) {
3002                 ret = PTR_ERR(trans);
3003                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3004                 return ret;
3005         }
3006
3007         /*
3008          * step two, delete the device extents and the
3009          * chunk tree entries
3010          */
3011         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3012         btrfs_end_transaction(trans);
3013         return ret;
3014 }
3015
3016 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3017 {
3018         struct btrfs_root *chunk_root = fs_info->chunk_root;
3019         struct btrfs_path *path;
3020         struct extent_buffer *leaf;
3021         struct btrfs_chunk *chunk;
3022         struct btrfs_key key;
3023         struct btrfs_key found_key;
3024         u64 chunk_type;
3025         bool retried = false;
3026         int failed = 0;
3027         int ret;
3028
3029         path = btrfs_alloc_path();
3030         if (!path)
3031                 return -ENOMEM;
3032
3033 again:
3034         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3035         key.offset = (u64)-1;
3036         key.type = BTRFS_CHUNK_ITEM_KEY;
3037
3038         while (1) {
3039                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3040                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3041                 if (ret < 0) {
3042                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3043                         goto error;
3044                 }
3045                 BUG_ON(ret == 0); /* Corruption */
3046
3047                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3048                                           key.type);
3049                 if (ret)
3050                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3051                 if (ret < 0)
3052                         goto error;
3053                 if (ret > 0)
3054                         break;
3055
3056                 leaf = path->nodes[0];
3057                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3058
3059                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3060                                        struct btrfs_chunk);
3061                 chunk_type = btrfs_chunk_type(leaf, chunk);
3062                 btrfs_release_path(path);
3063
3064                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3065                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3066                         if (ret == -ENOSPC)
3067                                 failed++;
3068                         else
3069                                 BUG_ON(ret);
3070                 }
3071                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3072
3073                 if (found_key.offset == 0)
3074                         break;
3075                 key.offset = found_key.offset - 1;
3076         }
3077         ret = 0;
3078         if (failed && !retried) {
3079                 failed = 0;
3080                 retried = true;
3081                 goto again;
3082         } else if (WARN_ON(failed && retried)) {
3083                 ret = -ENOSPC;
3084         }
3085 error:
3086         btrfs_free_path(path);
3087         return ret;
3088 }
3089
3090 /*
3091  * return 1 : allocate a data chunk successfully,
3092  * return <0: errors during allocating a data chunk,
3093  * return 0 : no need to allocate a data chunk.
3094  */
3095 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3096                                       u64 chunk_offset)
3097 {
3098         struct btrfs_block_group_cache *cache;
3099         u64 bytes_used;
3100         u64 chunk_type;
3101
3102         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3103         ASSERT(cache);
3104         chunk_type = cache->flags;
3105         btrfs_put_block_group(cache);
3106
3107         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3108                 spin_lock(&fs_info->data_sinfo->lock);
3109                 bytes_used = fs_info->data_sinfo->bytes_used;
3110                 spin_unlock(&fs_info->data_sinfo->lock);
3111
3112                 if (!bytes_used) {
3113                         struct btrfs_trans_handle *trans;
3114                         int ret;
3115
3116                         trans = btrfs_join_transaction(fs_info->tree_root);
3117                         if (IS_ERR(trans))
3118                                 return PTR_ERR(trans);
3119
3120                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3121                                                       BTRFS_BLOCK_GROUP_DATA);
3122                         btrfs_end_transaction(trans);
3123                         if (ret < 0)
3124                                 return ret;
3125
3126                         return 1;
3127                 }
3128         }
3129         return 0;
3130 }
3131
3132 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3133                                struct btrfs_balance_control *bctl)
3134 {
3135         struct btrfs_root *root = fs_info->tree_root;
3136         struct btrfs_trans_handle *trans;
3137         struct btrfs_balance_item *item;
3138         struct btrfs_disk_balance_args disk_bargs;
3139         struct btrfs_path *path;
3140         struct extent_buffer *leaf;
3141         struct btrfs_key key;
3142         int ret, err;
3143
3144         path = btrfs_alloc_path();
3145         if (!path)
3146                 return -ENOMEM;
3147
3148         trans = btrfs_start_transaction(root, 0);
3149         if (IS_ERR(trans)) {
3150                 btrfs_free_path(path);
3151                 return PTR_ERR(trans);
3152         }
3153
3154         key.objectid = BTRFS_BALANCE_OBJECTID;
3155         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3156         key.offset = 0;
3157
3158         ret = btrfs_insert_empty_item(trans, root, path, &key,
3159                                       sizeof(*item));
3160         if (ret)
3161                 goto out;
3162
3163         leaf = path->nodes[0];
3164         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3165
3166         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3167
3168         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3169         btrfs_set_balance_data(leaf, item, &disk_bargs);
3170         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3171         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3172         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3173         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3174
3175         btrfs_set_balance_flags(leaf, item, bctl->flags);
3176
3177         btrfs_mark_buffer_dirty(leaf);
3178 out:
3179         btrfs_free_path(path);
3180         err = btrfs_commit_transaction(trans);
3181         if (err && !ret)
3182                 ret = err;
3183         return ret;
3184 }
3185
3186 static int del_balance_item(struct btrfs_fs_info *fs_info)
3187 {
3188         struct btrfs_root *root = fs_info->tree_root;
3189         struct btrfs_trans_handle *trans;
3190         struct btrfs_path *path;
3191         struct btrfs_key key;
3192         int ret, err;
3193
3194         path = btrfs_alloc_path();
3195         if (!path)
3196                 return -ENOMEM;
3197
3198         trans = btrfs_start_transaction(root, 0);
3199         if (IS_ERR(trans)) {
3200                 btrfs_free_path(path);
3201                 return PTR_ERR(trans);
3202         }
3203
3204         key.objectid = BTRFS_BALANCE_OBJECTID;
3205         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3206         key.offset = 0;
3207
3208         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3209         if (ret < 0)
3210                 goto out;
3211         if (ret > 0) {
3212                 ret = -ENOENT;
3213                 goto out;
3214         }
3215
3216         ret = btrfs_del_item(trans, root, path);
3217 out:
3218         btrfs_free_path(path);
3219         err = btrfs_commit_transaction(trans);
3220         if (err && !ret)
3221                 ret = err;
3222         return ret;
3223 }
3224
3225 /*
3226  * This is a heuristic used to reduce the number of chunks balanced on
3227  * resume after balance was interrupted.
3228  */
3229 static void update_balance_args(struct btrfs_balance_control *bctl)
3230 {
3231         /*
3232          * Turn on soft mode for chunk types that were being converted.
3233          */
3234         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3235                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3236         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3237                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3238         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3239                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3240
3241         /*
3242          * Turn on usage filter if is not already used.  The idea is
3243          * that chunks that we have already balanced should be
3244          * reasonably full.  Don't do it for chunks that are being
3245          * converted - that will keep us from relocating unconverted
3246          * (albeit full) chunks.
3247          */
3248         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3249             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3250             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3251                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3252                 bctl->data.usage = 90;
3253         }
3254         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3255             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3256             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3257                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3258                 bctl->sys.usage = 90;
3259         }
3260         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3261             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3262             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3263                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3264                 bctl->meta.usage = 90;
3265         }
3266 }
3267
3268 /*
3269  * Should be called with both balance and volume mutexes held to
3270  * serialize other volume operations (add_dev/rm_dev/resize) with
3271  * restriper.  Same goes for unset_balance_control.
3272  */
3273 static void set_balance_control(struct btrfs_balance_control *bctl)
3274 {
3275         struct btrfs_fs_info *fs_info = bctl->fs_info;
3276
3277         BUG_ON(fs_info->balance_ctl);
3278
3279         spin_lock(&fs_info->balance_lock);
3280         fs_info->balance_ctl = bctl;
3281         spin_unlock(&fs_info->balance_lock);
3282 }
3283
3284 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3285 {
3286         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3287
3288         BUG_ON(!fs_info->balance_ctl);
3289
3290         spin_lock(&fs_info->balance_lock);
3291         fs_info->balance_ctl = NULL;
3292         spin_unlock(&fs_info->balance_lock);
3293
3294         kfree(bctl);
3295 }
3296
3297 /*
3298  * Balance filters.  Return 1 if chunk should be filtered out
3299  * (should not be balanced).
3300  */
3301 static int chunk_profiles_filter(u64 chunk_type,
3302                                  struct btrfs_balance_args *bargs)
3303 {
3304         chunk_type = chunk_to_extended(chunk_type) &
3305                                 BTRFS_EXTENDED_PROFILE_MASK;
3306
3307         if (bargs->profiles & chunk_type)
3308                 return 0;
3309
3310         return 1;
3311 }
3312
3313 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3314                               struct btrfs_balance_args *bargs)
3315 {
3316         struct btrfs_block_group_cache *cache;
3317         u64 chunk_used;
3318         u64 user_thresh_min;
3319         u64 user_thresh_max;
3320         int ret = 1;
3321
3322         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3323         chunk_used = btrfs_block_group_used(&cache->item);
3324
3325         if (bargs->usage_min == 0)
3326                 user_thresh_min = 0;
3327         else
3328                 user_thresh_min = div_factor_fine(cache->key.offset,
3329                                         bargs->usage_min);
3330
3331         if (bargs->usage_max == 0)
3332                 user_thresh_max = 1;
3333         else if (bargs->usage_max > 100)
3334                 user_thresh_max = cache->key.offset;
3335         else
3336                 user_thresh_max = div_factor_fine(cache->key.offset,
3337                                         bargs->usage_max);
3338
3339         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3340                 ret = 0;
3341
3342         btrfs_put_block_group(cache);
3343         return ret;
3344 }
3345
3346 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3347                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3348 {
3349         struct btrfs_block_group_cache *cache;
3350         u64 chunk_used, user_thresh;
3351         int ret = 1;
3352
3353         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3354         chunk_used = btrfs_block_group_used(&cache->item);
3355
3356         if (bargs->usage_min == 0)
3357                 user_thresh = 1;
3358         else if (bargs->usage > 100)
3359                 user_thresh = cache->key.offset;
3360         else
3361                 user_thresh = div_factor_fine(cache->key.offset,
3362                                               bargs->usage);
3363
3364         if (chunk_used < user_thresh)
3365                 ret = 0;
3366
3367         btrfs_put_block_group(cache);
3368         return ret;
3369 }
3370
3371 static int chunk_devid_filter(struct extent_buffer *leaf,
3372                               struct btrfs_chunk *chunk,
3373                               struct btrfs_balance_args *bargs)
3374 {
3375         struct btrfs_stripe *stripe;
3376         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3377         int i;
3378
3379         for (i = 0; i < num_stripes; i++) {
3380                 stripe = btrfs_stripe_nr(chunk, i);
3381                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3382                         return 0;
3383         }
3384
3385         return 1;
3386 }
3387
3388 /* [pstart, pend) */
3389 static int chunk_drange_filter(struct extent_buffer *leaf,
3390                                struct btrfs_chunk *chunk,
3391                                struct btrfs_balance_args *bargs)
3392 {
3393         struct btrfs_stripe *stripe;
3394         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3395         u64 stripe_offset;
3396         u64 stripe_length;
3397         int factor;
3398         int i;
3399
3400         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3401                 return 0;
3402
3403         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3404              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3405                 factor = num_stripes / 2;
3406         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3407                 factor = num_stripes - 1;
3408         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3409                 factor = num_stripes - 2;
3410         } else {
3411                 factor = num_stripes;
3412         }
3413
3414         for (i = 0; i < num_stripes; i++) {
3415                 stripe = btrfs_stripe_nr(chunk, i);
3416                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3417                         continue;
3418
3419                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3420                 stripe_length = btrfs_chunk_length(leaf, chunk);
3421                 stripe_length = div_u64(stripe_length, factor);
3422
3423                 if (stripe_offset < bargs->pend &&
3424                     stripe_offset + stripe_length > bargs->pstart)
3425                         return 0;
3426         }
3427
3428         return 1;
3429 }
3430
3431 /* [vstart, vend) */
3432 static int chunk_vrange_filter(struct extent_buffer *leaf,
3433                                struct btrfs_chunk *chunk,
3434                                u64 chunk_offset,
3435                                struct btrfs_balance_args *bargs)
3436 {
3437         if (chunk_offset < bargs->vend &&
3438             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3439                 /* at least part of the chunk is inside this vrange */
3440                 return 0;
3441
3442         return 1;
3443 }
3444
3445 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3446                                struct btrfs_chunk *chunk,
3447                                struct btrfs_balance_args *bargs)
3448 {
3449         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3450
3451         if (bargs->stripes_min <= num_stripes
3452                         && num_stripes <= bargs->stripes_max)
3453                 return 0;
3454
3455         return 1;
3456 }
3457
3458 static int chunk_soft_convert_filter(u64 chunk_type,
3459                                      struct btrfs_balance_args *bargs)
3460 {
3461         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3462                 return 0;
3463
3464         chunk_type = chunk_to_extended(chunk_type) &
3465                                 BTRFS_EXTENDED_PROFILE_MASK;
3466
3467         if (bargs->target == chunk_type)
3468                 return 1;
3469
3470         return 0;
3471 }
3472
3473 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3474                                 struct extent_buffer *leaf,
3475                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3476 {
3477         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3478         struct btrfs_balance_args *bargs = NULL;
3479         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3480
3481         /* type filter */
3482         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3483               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3484                 return 0;
3485         }
3486
3487         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3488                 bargs = &bctl->data;
3489         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3490                 bargs = &bctl->sys;
3491         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3492                 bargs = &bctl->meta;
3493
3494         /* profiles filter */
3495         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3496             chunk_profiles_filter(chunk_type, bargs)) {
3497                 return 0;
3498         }
3499
3500         /* usage filter */
3501         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3502             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3503                 return 0;
3504         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3505             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3506                 return 0;
3507         }
3508
3509         /* devid filter */
3510         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3511             chunk_devid_filter(leaf, chunk, bargs)) {
3512                 return 0;
3513         }
3514
3515         /* drange filter, makes sense only with devid filter */
3516         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3517             chunk_drange_filter(leaf, chunk, bargs)) {
3518                 return 0;
3519         }
3520
3521         /* vrange filter */
3522         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3523             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3524                 return 0;
3525         }
3526
3527         /* stripes filter */
3528         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3529             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3530                 return 0;
3531         }
3532
3533         /* soft profile changing mode */
3534         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3535             chunk_soft_convert_filter(chunk_type, bargs)) {
3536                 return 0;
3537         }
3538
3539         /*
3540          * limited by count, must be the last filter
3541          */
3542         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3543                 if (bargs->limit == 0)
3544                         return 0;
3545                 else
3546                         bargs->limit--;
3547         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3548                 /*
3549                  * Same logic as the 'limit' filter; the minimum cannot be
3550                  * determined here because we do not have the global information
3551                  * about the count of all chunks that satisfy the filters.
3552                  */
3553                 if (bargs->limit_max == 0)
3554                         return 0;
3555                 else
3556                         bargs->limit_max--;
3557         }
3558
3559         return 1;
3560 }
3561
3562 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3563 {
3564         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3565         struct btrfs_root *chunk_root = fs_info->chunk_root;
3566         struct btrfs_root *dev_root = fs_info->dev_root;
3567         struct list_head *devices;
3568         struct btrfs_device *device;
3569         u64 old_size;
3570         u64 size_to_free;
3571         u64 chunk_type;
3572         struct btrfs_chunk *chunk;
3573         struct btrfs_path *path = NULL;
3574         struct btrfs_key key;
3575         struct btrfs_key found_key;
3576         struct btrfs_trans_handle *trans;
3577         struct extent_buffer *leaf;
3578         int slot;
3579         int ret;
3580         int enospc_errors = 0;
3581         bool counting = true;
3582         /* The single value limit and min/max limits use the same bytes in the */
3583         u64 limit_data = bctl->data.limit;
3584         u64 limit_meta = bctl->meta.limit;
3585         u64 limit_sys = bctl->sys.limit;
3586         u32 count_data = 0;
3587         u32 count_meta = 0;
3588         u32 count_sys = 0;
3589         int chunk_reserved = 0;
3590
3591         /* step one make some room on all the devices */
3592         devices = &fs_info->fs_devices->devices;
3593         list_for_each_entry(device, devices, dev_list) {
3594                 old_size = btrfs_device_get_total_bytes(device);
3595                 size_to_free = div_factor(old_size, 1);
3596                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3597                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3598                     btrfs_device_get_total_bytes(device) -
3599                     btrfs_device_get_bytes_used(device) > size_to_free ||
3600                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3601                         continue;
3602
3603                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3604                 if (ret == -ENOSPC)
3605                         break;
3606                 if (ret) {
3607                         /* btrfs_shrink_device never returns ret > 0 */
3608                         WARN_ON(ret > 0);
3609                         goto error;
3610                 }
3611
3612                 trans = btrfs_start_transaction(dev_root, 0);
3613                 if (IS_ERR(trans)) {
3614                         ret = PTR_ERR(trans);
3615                         btrfs_info_in_rcu(fs_info,
3616                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3617                                           rcu_str_deref(device->name), ret,
3618                                           old_size, old_size - size_to_free);
3619                         goto error;
3620                 }
3621
3622                 ret = btrfs_grow_device(trans, device, old_size);
3623                 if (ret) {
3624                         btrfs_end_transaction(trans);
3625                         /* btrfs_grow_device never returns ret > 0 */
3626                         WARN_ON(ret > 0);
3627                         btrfs_info_in_rcu(fs_info,
3628                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3629                                           rcu_str_deref(device->name), ret,
3630                                           old_size, old_size - size_to_free);
3631                         goto error;
3632                 }
3633
3634                 btrfs_end_transaction(trans);
3635         }
3636
3637         /* step two, relocate all the chunks */
3638         path = btrfs_alloc_path();
3639         if (!path) {
3640                 ret = -ENOMEM;
3641                 goto error;
3642         }
3643
3644         /* zero out stat counters */
3645         spin_lock(&fs_info->balance_lock);
3646         memset(&bctl->stat, 0, sizeof(bctl->stat));
3647         spin_unlock(&fs_info->balance_lock);
3648 again:
3649         if (!counting) {
3650                 /*
3651                  * The single value limit and min/max limits use the same bytes
3652                  * in the
3653                  */
3654                 bctl->data.limit = limit_data;
3655                 bctl->meta.limit = limit_meta;
3656                 bctl->sys.limit = limit_sys;
3657         }
3658         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3659         key.offset = (u64)-1;
3660         key.type = BTRFS_CHUNK_ITEM_KEY;
3661
3662         while (1) {
3663                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3664                     atomic_read(&fs_info->balance_cancel_req)) {
3665                         ret = -ECANCELED;
3666                         goto error;
3667                 }
3668
3669                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3670                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3671                 if (ret < 0) {
3672                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3673                         goto error;
3674                 }
3675
3676                 /*
3677                  * this shouldn't happen, it means the last relocate
3678                  * failed
3679                  */
3680                 if (ret == 0)
3681                         BUG(); /* FIXME break ? */
3682
3683                 ret = btrfs_previous_item(chunk_root, path, 0,
3684                                           BTRFS_CHUNK_ITEM_KEY);
3685                 if (ret) {
3686                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3687                         ret = 0;
3688                         break;
3689                 }
3690
3691                 leaf = path->nodes[0];
3692                 slot = path->slots[0];
3693                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3694
3695                 if (found_key.objectid != key.objectid) {
3696                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697                         break;
3698                 }
3699
3700                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3701                 chunk_type = btrfs_chunk_type(leaf, chunk);
3702
3703                 if (!counting) {
3704                         spin_lock(&fs_info->balance_lock);
3705                         bctl->stat.considered++;
3706                         spin_unlock(&fs_info->balance_lock);
3707                 }
3708
3709                 ret = should_balance_chunk(fs_info, leaf, chunk,
3710                                            found_key.offset);
3711
3712                 btrfs_release_path(path);
3713                 if (!ret) {
3714                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3715                         goto loop;
3716                 }
3717
3718                 if (counting) {
3719                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3720                         spin_lock(&fs_info->balance_lock);
3721                         bctl->stat.expected++;
3722                         spin_unlock(&fs_info->balance_lock);
3723
3724                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3725                                 count_data++;
3726                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3727                                 count_sys++;
3728                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3729                                 count_meta++;
3730
3731                         goto loop;
3732                 }
3733
3734                 /*
3735                  * Apply limit_min filter, no need to check if the LIMITS
3736                  * filter is used, limit_min is 0 by default
3737                  */
3738                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3739                                         count_data < bctl->data.limit_min)
3740                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3741                                         count_meta < bctl->meta.limit_min)
3742                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3743                                         count_sys < bctl->sys.limit_min)) {
3744                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3745                         goto loop;
3746                 }
3747
3748                 if (!chunk_reserved) {
3749                         /*
3750                          * We may be relocating the only data chunk we have,
3751                          * which could potentially end up with losing data's
3752                          * raid profile, so lets allocate an empty one in
3753                          * advance.
3754                          */
3755                         ret = btrfs_may_alloc_data_chunk(fs_info,
3756                                                          found_key.offset);
3757                         if (ret < 0) {
3758                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3759                                 goto error;
3760                         } else if (ret == 1) {
3761                                 chunk_reserved = 1;
3762                         }
3763                 }
3764
3765                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3766                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3767                 if (ret && ret != -ENOSPC)
3768                         goto error;
3769                 if (ret == -ENOSPC) {
3770                         enospc_errors++;
3771                 } else {
3772                         spin_lock(&fs_info->balance_lock);
3773                         bctl->stat.completed++;
3774                         spin_unlock(&fs_info->balance_lock);
3775                 }
3776 loop:
3777                 if (found_key.offset == 0)
3778                         break;
3779                 key.offset = found_key.offset - 1;
3780         }
3781
3782         if (counting) {
3783                 btrfs_release_path(path);
3784                 counting = false;
3785                 goto again;
3786         }
3787 error:
3788         btrfs_free_path(path);
3789         if (enospc_errors) {
3790                 btrfs_info(fs_info, "%d enospc errors during balance",
3791                            enospc_errors);
3792                 if (!ret)
3793                         ret = -ENOSPC;
3794         }
3795
3796         return ret;
3797 }
3798
3799 /**
3800  * alloc_profile_is_valid - see if a given profile is valid and reduced
3801  * @flags: profile to validate
3802  * @extended: if true @flags is treated as an extended profile
3803  */
3804 static int alloc_profile_is_valid(u64 flags, int extended)
3805 {
3806         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3807                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3808
3809         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3810
3811         /* 1) check that all other bits are zeroed */
3812         if (flags & ~mask)
3813                 return 0;
3814
3815         /* 2) see if profile is reduced */
3816         if (flags == 0)
3817                 return !extended; /* "0" is valid for usual profiles */
3818
3819         /* true if exactly one bit set */
3820         return (flags & (flags - 1)) == 0;
3821 }
3822
3823 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3824 {
3825         /* cancel requested || normal exit path */
3826         return atomic_read(&fs_info->balance_cancel_req) ||
3827                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3828                  atomic_read(&fs_info->balance_cancel_req) == 0);
3829 }
3830
3831 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3832 {
3833         int ret;
3834
3835         unset_balance_control(fs_info);
3836         ret = del_balance_item(fs_info);
3837         if (ret)
3838                 btrfs_handle_fs_error(fs_info, ret, NULL);
3839
3840         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3841 }
3842
3843 /* Non-zero return value signifies invalidity */
3844 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3845                 u64 allowed)
3846 {
3847         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3848                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3849                  (bctl_arg->target & ~allowed)));
3850 }
3851
3852 /*
3853  * Should be called with both balance and volume mutexes held
3854  */
3855 int btrfs_balance(struct btrfs_balance_control *bctl,
3856                   struct btrfs_ioctl_balance_args *bargs)
3857 {
3858         struct btrfs_fs_info *fs_info = bctl->fs_info;
3859         u64 meta_target, data_target;
3860         u64 allowed;
3861         int mixed = 0;
3862         int ret;
3863         u64 num_devices;
3864         unsigned seq;
3865
3866         if (btrfs_fs_closing(fs_info) ||
3867             atomic_read(&fs_info->balance_pause_req) ||
3868             atomic_read(&fs_info->balance_cancel_req)) {
3869                 ret = -EINVAL;
3870                 goto out;
3871         }
3872
3873         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3874         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3875                 mixed = 1;
3876
3877         /*
3878          * In case of mixed groups both data and meta should be picked,
3879          * and identical options should be given for both of them.
3880          */
3881         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3882         if (mixed && (bctl->flags & allowed)) {
3883                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3884                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3885                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3886                         btrfs_err(fs_info,
3887                                   "with mixed groups data and metadata balance options must be the same");
3888                         ret = -EINVAL;
3889                         goto out;
3890                 }
3891         }
3892
3893         num_devices = fs_info->fs_devices->num_devices;
3894         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3895         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3896                 BUG_ON(num_devices < 1);
3897                 num_devices--;
3898         }
3899         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3900         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3901         if (num_devices > 1)
3902                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3903         if (num_devices > 2)
3904                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3905         if (num_devices > 3)
3906                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3907                             BTRFS_BLOCK_GROUP_RAID6);
3908         if (validate_convert_profile(&bctl->data, allowed)) {
3909                 btrfs_err(fs_info,
3910                           "unable to start balance with target data profile %llu",
3911                           bctl->data.target);
3912                 ret = -EINVAL;
3913                 goto out;
3914         }
3915         if (validate_convert_profile(&bctl->meta, allowed)) {
3916                 btrfs_err(fs_info,
3917                           "unable to start balance with target metadata profile %llu",
3918                           bctl->meta.target);
3919                 ret = -EINVAL;
3920                 goto out;
3921         }
3922         if (validate_convert_profile(&bctl->sys, allowed)) {
3923                 btrfs_err(fs_info,
3924                           "unable to start balance with target system profile %llu",
3925                           bctl->sys.target);
3926                 ret = -EINVAL;
3927                 goto out;
3928         }
3929
3930         /* allow to reduce meta or sys integrity only if force set */
3931         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3932                         BTRFS_BLOCK_GROUP_RAID10 |
3933                         BTRFS_BLOCK_GROUP_RAID5 |
3934                         BTRFS_BLOCK_GROUP_RAID6;
3935         do {
3936                 seq = read_seqbegin(&fs_info->profiles_lock);
3937
3938                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3939                      (fs_info->avail_system_alloc_bits & allowed) &&
3940                      !(bctl->sys.target & allowed)) ||
3941                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3942                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3943                      !(bctl->meta.target & allowed))) {
3944                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3945                                 btrfs_info(fs_info,
3946                                            "force reducing metadata integrity");
3947                         } else {
3948                                 btrfs_err(fs_info,
3949                                           "balance will reduce metadata integrity, use force if you want this");
3950                                 ret = -EINVAL;
3951                                 goto out;
3952                         }
3953                 }
3954         } while (read_seqretry(&fs_info->profiles_lock, seq));
3955
3956         /* if we're not converting, the target field is uninitialized */
3957         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3958                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3959         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3960                 bctl->data.target : fs_info->avail_data_alloc_bits;
3961         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3962                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3963                 btrfs_warn(fs_info,
3964                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3965                            meta_target, data_target);
3966         }
3967
3968         ret = insert_balance_item(fs_info, bctl);
3969         if (ret && ret != -EEXIST)
3970                 goto out;
3971
3972         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3973                 BUG_ON(ret == -EEXIST);
3974                 set_balance_control(bctl);
3975         } else {
3976                 BUG_ON(ret != -EEXIST);
3977                 spin_lock(&fs_info->balance_lock);
3978                 update_balance_args(bctl);
3979                 spin_unlock(&fs_info->balance_lock);
3980         }
3981
3982         atomic_inc(&fs_info->balance_running);
3983         mutex_unlock(&fs_info->balance_mutex);
3984
3985         ret = __btrfs_balance(fs_info);
3986
3987         mutex_lock(&fs_info->balance_mutex);
3988         atomic_dec(&fs_info->balance_running);
3989
3990         if (bargs) {
3991                 memset(bargs, 0, sizeof(*bargs));
3992                 update_ioctl_balance_args(fs_info, 0, bargs);
3993         }
3994
3995         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3996             balance_need_close(fs_info)) {
3997                 __cancel_balance(fs_info);
3998         }
3999
4000         wake_up(&fs_info->balance_wait_q);
4001
4002         return ret;
4003 out:
4004         if (bctl->flags & BTRFS_BALANCE_RESUME)
4005                 __cancel_balance(fs_info);
4006         else {
4007                 kfree(bctl);
4008                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4009         }
4010         return ret;
4011 }
4012
4013 static int balance_kthread(void *data)
4014 {
4015         struct btrfs_fs_info *fs_info = data;
4016         int ret = 0;
4017
4018         mutex_lock(&fs_info->volume_mutex);
4019         mutex_lock(&fs_info->balance_mutex);
4020
4021         if (fs_info->balance_ctl) {
4022                 btrfs_info(fs_info, "continuing balance");
4023                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
4024         }
4025
4026         mutex_unlock(&fs_info->balance_mutex);
4027         mutex_unlock(&fs_info->volume_mutex);
4028
4029         return ret;
4030 }
4031
4032 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4033 {
4034         struct task_struct *tsk;
4035
4036         spin_lock(&fs_info->balance_lock);
4037         if (!fs_info->balance_ctl) {
4038                 spin_unlock(&fs_info->balance_lock);
4039                 return 0;
4040         }
4041         spin_unlock(&fs_info->balance_lock);
4042
4043         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4044                 btrfs_info(fs_info, "force skipping balance");
4045                 return 0;
4046         }
4047
4048         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4049         return PTR_ERR_OR_ZERO(tsk);
4050 }
4051
4052 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4053 {
4054         struct btrfs_balance_control *bctl;
4055         struct btrfs_balance_item *item;
4056         struct btrfs_disk_balance_args disk_bargs;
4057         struct btrfs_path *path;
4058         struct extent_buffer *leaf;
4059         struct btrfs_key key;
4060         int ret;
4061
4062         path = btrfs_alloc_path();
4063         if (!path)
4064                 return -ENOMEM;
4065
4066         key.objectid = BTRFS_BALANCE_OBJECTID;
4067         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4068         key.offset = 0;
4069
4070         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4071         if (ret < 0)
4072                 goto out;
4073         if (ret > 0) { /* ret = -ENOENT; */
4074                 ret = 0;
4075                 goto out;
4076         }
4077
4078         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4079         if (!bctl) {
4080                 ret = -ENOMEM;
4081                 goto out;
4082         }
4083
4084         leaf = path->nodes[0];
4085         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4086
4087         bctl->fs_info = fs_info;
4088         bctl->flags = btrfs_balance_flags(leaf, item);
4089         bctl->flags |= BTRFS_BALANCE_RESUME;
4090
4091         btrfs_balance_data(leaf, item, &disk_bargs);
4092         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4093         btrfs_balance_meta(leaf, item, &disk_bargs);
4094         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4095         btrfs_balance_sys(leaf, item, &disk_bargs);
4096         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4097
4098         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4099
4100         mutex_lock(&fs_info->volume_mutex);
4101         mutex_lock(&fs_info->balance_mutex);
4102
4103         set_balance_control(bctl);
4104
4105         mutex_unlock(&fs_info->balance_mutex);
4106         mutex_unlock(&fs_info->volume_mutex);
4107 out:
4108         btrfs_free_path(path);
4109         return ret;
4110 }
4111
4112 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4113 {
4114         int ret = 0;
4115
4116         mutex_lock(&fs_info->balance_mutex);
4117         if (!fs_info->balance_ctl) {
4118                 mutex_unlock(&fs_info->balance_mutex);
4119                 return -ENOTCONN;
4120         }
4121
4122         if (atomic_read(&fs_info->balance_running)) {
4123                 atomic_inc(&fs_info->balance_pause_req);
4124                 mutex_unlock(&fs_info->balance_mutex);
4125
4126                 wait_event(fs_info->balance_wait_q,
4127                            atomic_read(&fs_info->balance_running) == 0);
4128
4129                 mutex_lock(&fs_info->balance_mutex);
4130                 /* we are good with balance_ctl ripped off from under us */
4131                 BUG_ON(atomic_read(&fs_info->balance_running));
4132                 atomic_dec(&fs_info->balance_pause_req);
4133         } else {
4134                 ret = -ENOTCONN;
4135         }
4136
4137         mutex_unlock(&fs_info->balance_mutex);
4138         return ret;
4139 }
4140
4141 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4142 {
4143         if (sb_rdonly(fs_info->sb))
4144                 return -EROFS;
4145
4146         mutex_lock(&fs_info->balance_mutex);
4147         if (!fs_info->balance_ctl) {
4148                 mutex_unlock(&fs_info->balance_mutex);
4149                 return -ENOTCONN;
4150         }
4151
4152         atomic_inc(&fs_info->balance_cancel_req);
4153         /*
4154          * if we are running just wait and return, balance item is
4155          * deleted in btrfs_balance in this case
4156          */
4157         if (atomic_read(&fs_info->balance_running)) {
4158                 mutex_unlock(&fs_info->balance_mutex);
4159                 wait_event(fs_info->balance_wait_q,
4160                            atomic_read(&fs_info->balance_running) == 0);
4161                 mutex_lock(&fs_info->balance_mutex);
4162         } else {
4163                 /* __cancel_balance needs volume_mutex */
4164                 mutex_unlock(&fs_info->balance_mutex);
4165                 mutex_lock(&fs_info->volume_mutex);
4166                 mutex_lock(&fs_info->balance_mutex);
4167
4168                 if (fs_info->balance_ctl)
4169                         __cancel_balance(fs_info);
4170
4171                 mutex_unlock(&fs_info->volume_mutex);
4172         }
4173
4174         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4175         atomic_dec(&fs_info->balance_cancel_req);
4176         mutex_unlock(&fs_info->balance_mutex);
4177         return 0;
4178 }
4179
4180 static int btrfs_uuid_scan_kthread(void *data)
4181 {
4182         struct btrfs_fs_info *fs_info = data;
4183         struct btrfs_root *root = fs_info->tree_root;
4184         struct btrfs_key key;
4185         struct btrfs_path *path = NULL;
4186         int ret = 0;
4187         struct extent_buffer *eb;
4188         int slot;
4189         struct btrfs_root_item root_item;
4190         u32 item_size;
4191         struct btrfs_trans_handle *trans = NULL;
4192
4193         path = btrfs_alloc_path();
4194         if (!path) {
4195                 ret = -ENOMEM;
4196                 goto out;
4197         }
4198
4199         key.objectid = 0;
4200         key.type = BTRFS_ROOT_ITEM_KEY;
4201         key.offset = 0;
4202
4203         while (1) {
4204                 ret = btrfs_search_forward(root, &key, path, 0);
4205                 if (ret) {
4206                         if (ret > 0)
4207                                 ret = 0;
4208                         break;
4209                 }
4210
4211                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4212                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4213                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4214                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4215                         goto skip;
4216
4217                 eb = path->nodes[0];
4218                 slot = path->slots[0];
4219                 item_size = btrfs_item_size_nr(eb, slot);
4220                 if (item_size < sizeof(root_item))
4221                         goto skip;
4222
4223                 read_extent_buffer(eb, &root_item,
4224                                    btrfs_item_ptr_offset(eb, slot),
4225                                    (int)sizeof(root_item));
4226                 if (btrfs_root_refs(&root_item) == 0)
4227                         goto skip;
4228
4229                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4230                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4231                         if (trans)
4232                                 goto update_tree;
4233
4234                         btrfs_release_path(path);
4235                         /*
4236                          * 1 - subvol uuid item
4237                          * 1 - received_subvol uuid item
4238                          */
4239                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4240                         if (IS_ERR(trans)) {
4241                                 ret = PTR_ERR(trans);
4242                                 break;
4243                         }
4244                         continue;
4245                 } else {
4246                         goto skip;
4247                 }
4248 update_tree:
4249                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4250                         ret = btrfs_uuid_tree_add(trans, fs_info,
4251                                                   root_item.uuid,
4252                                                   BTRFS_UUID_KEY_SUBVOL,
4253                                                   key.objectid);
4254                         if (ret < 0) {
4255                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4256                                         ret);
4257                                 break;
4258                         }
4259                 }
4260
4261                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4262                         ret = btrfs_uuid_tree_add(trans, fs_info,
4263                                                   root_item.received_uuid,
4264                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4265                                                   key.objectid);
4266                         if (ret < 0) {
4267                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4268                                         ret);
4269                                 break;
4270                         }
4271                 }
4272
4273 skip:
4274                 if (trans) {
4275                         ret = btrfs_end_transaction(trans);
4276                         trans = NULL;
4277                         if (ret)
4278                                 break;
4279                 }
4280
4281                 btrfs_release_path(path);
4282                 if (key.offset < (u64)-1) {
4283                         key.offset++;
4284                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4285                         key.offset = 0;
4286                         key.type = BTRFS_ROOT_ITEM_KEY;
4287                 } else if (key.objectid < (u64)-1) {
4288                         key.offset = 0;
4289                         key.type = BTRFS_ROOT_ITEM_KEY;
4290                         key.objectid++;
4291                 } else {
4292                         break;
4293                 }
4294                 cond_resched();
4295         }
4296
4297 out:
4298         btrfs_free_path(path);
4299         if (trans && !IS_ERR(trans))
4300                 btrfs_end_transaction(trans);
4301         if (ret)
4302                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4303         else
4304                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4305         up(&fs_info->uuid_tree_rescan_sem);
4306         return 0;
4307 }
4308
4309 /*
4310  * Callback for btrfs_uuid_tree_iterate().
4311  * returns:
4312  * 0    check succeeded, the entry is not outdated.
4313  * < 0  if an error occurred.
4314  * > 0  if the check failed, which means the caller shall remove the entry.
4315  */
4316 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4317                                        u8 *uuid, u8 type, u64 subid)
4318 {
4319         struct btrfs_key key;
4320         int ret = 0;
4321         struct btrfs_root *subvol_root;
4322
4323         if (type != BTRFS_UUID_KEY_SUBVOL &&
4324             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4325                 goto out;
4326
4327         key.objectid = subid;
4328         key.type = BTRFS_ROOT_ITEM_KEY;
4329         key.offset = (u64)-1;
4330         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4331         if (IS_ERR(subvol_root)) {
4332                 ret = PTR_ERR(subvol_root);
4333                 if (ret == -ENOENT)
4334                         ret = 1;
4335                 goto out;
4336         }
4337
4338         switch (type) {
4339         case BTRFS_UUID_KEY_SUBVOL:
4340                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4341                         ret = 1;
4342                 break;
4343         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4344                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4345                            BTRFS_UUID_SIZE))
4346                         ret = 1;
4347                 break;
4348         }
4349
4350 out:
4351         return ret;
4352 }
4353
4354 static int btrfs_uuid_rescan_kthread(void *data)
4355 {
4356         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4357         int ret;
4358
4359         /*
4360          * 1st step is to iterate through the existing UUID tree and
4361          * to delete all entries that contain outdated data.
4362          * 2nd step is to add all missing entries to the UUID tree.
4363          */
4364         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4365         if (ret < 0) {
4366                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4367                 up(&fs_info->uuid_tree_rescan_sem);
4368                 return ret;
4369         }
4370         return btrfs_uuid_scan_kthread(data);
4371 }
4372
4373 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4374 {
4375         struct btrfs_trans_handle *trans;
4376         struct btrfs_root *tree_root = fs_info->tree_root;
4377         struct btrfs_root *uuid_root;
4378         struct task_struct *task;
4379         int ret;
4380
4381         /*
4382          * 1 - root node
4383          * 1 - root item
4384          */
4385         trans = btrfs_start_transaction(tree_root, 2);
4386         if (IS_ERR(trans))
4387                 return PTR_ERR(trans);
4388
4389         uuid_root = btrfs_create_tree(trans, fs_info,
4390                                       BTRFS_UUID_TREE_OBJECTID);
4391         if (IS_ERR(uuid_root)) {
4392                 ret = PTR_ERR(uuid_root);
4393                 btrfs_abort_transaction(trans, ret);
4394                 btrfs_end_transaction(trans);
4395                 return ret;
4396         }
4397
4398         fs_info->uuid_root = uuid_root;
4399
4400         ret = btrfs_commit_transaction(trans);
4401         if (ret)
4402                 return ret;
4403
4404         down(&fs_info->uuid_tree_rescan_sem);
4405         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4406         if (IS_ERR(task)) {
4407                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4408                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4409                 up(&fs_info->uuid_tree_rescan_sem);
4410                 return PTR_ERR(task);
4411         }
4412
4413         return 0;
4414 }
4415
4416 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4417 {
4418         struct task_struct *task;
4419
4420         down(&fs_info->uuid_tree_rescan_sem);
4421         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4422         if (IS_ERR(task)) {
4423                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4424                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4425                 up(&fs_info->uuid_tree_rescan_sem);
4426                 return PTR_ERR(task);
4427         }
4428
4429         return 0;
4430 }
4431
4432 /*
4433  * shrinking a device means finding all of the device extents past
4434  * the new size, and then following the back refs to the chunks.
4435  * The chunk relocation code actually frees the device extent
4436  */
4437 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4438 {
4439         struct btrfs_fs_info *fs_info = device->fs_info;
4440         struct btrfs_root *root = fs_info->dev_root;
4441         struct btrfs_trans_handle *trans;
4442         struct btrfs_dev_extent *dev_extent = NULL;
4443         struct btrfs_path *path;
4444         u64 length;
4445         u64 chunk_offset;
4446         int ret;
4447         int slot;
4448         int failed = 0;
4449         bool retried = false;
4450         bool checked_pending_chunks = false;
4451         struct extent_buffer *l;
4452         struct btrfs_key key;
4453         struct btrfs_super_block *super_copy = fs_info->super_copy;
4454         u64 old_total = btrfs_super_total_bytes(super_copy);
4455         u64 old_size = btrfs_device_get_total_bytes(device);
4456         u64 diff;
4457
4458         new_size = round_down(new_size, fs_info->sectorsize);
4459         diff = round_down(old_size - new_size, fs_info->sectorsize);
4460
4461         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4462                 return -EINVAL;
4463
4464         path = btrfs_alloc_path();
4465         if (!path)
4466                 return -ENOMEM;
4467
4468         path->reada = READA_FORWARD;
4469
4470         mutex_lock(&fs_info->chunk_mutex);
4471
4472         btrfs_device_set_total_bytes(device, new_size);
4473         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4474                 device->fs_devices->total_rw_bytes -= diff;
4475                 atomic64_sub(diff, &fs_info->free_chunk_space);
4476         }
4477         mutex_unlock(&fs_info->chunk_mutex);
4478
4479 again:
4480         key.objectid = device->devid;
4481         key.offset = (u64)-1;
4482         key.type = BTRFS_DEV_EXTENT_KEY;
4483
4484         do {
4485                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4486                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4487                 if (ret < 0) {
4488                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4489                         goto done;
4490                 }
4491
4492                 ret = btrfs_previous_item(root, path, 0, key.type);
4493                 if (ret)
4494                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4495                 if (ret < 0)
4496                         goto done;
4497                 if (ret) {
4498                         ret = 0;
4499                         btrfs_release_path(path);
4500                         break;
4501                 }
4502
4503                 l = path->nodes[0];
4504                 slot = path->slots[0];
4505                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4506
4507                 if (key.objectid != device->devid) {
4508                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4509                         btrfs_release_path(path);
4510                         break;
4511                 }
4512
4513                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4514                 length = btrfs_dev_extent_length(l, dev_extent);
4515
4516                 if (key.offset + length <= new_size) {
4517                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4518                         btrfs_release_path(path);
4519                         break;
4520                 }
4521
4522                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4523                 btrfs_release_path(path);
4524
4525                 /*
4526                  * We may be relocating the only data chunk we have,
4527                  * which could potentially end up with losing data's
4528                  * raid profile, so lets allocate an empty one in
4529                  * advance.
4530                  */
4531                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4532                 if (ret < 0) {
4533                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4534                         goto done;
4535                 }
4536
4537                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4538                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4539                 if (ret && ret != -ENOSPC)
4540                         goto done;
4541                 if (ret == -ENOSPC)
4542                         failed++;
4543         } while (key.offset-- > 0);
4544
4545         if (failed && !retried) {
4546                 failed = 0;
4547                 retried = true;
4548                 goto again;
4549         } else if (failed && retried) {
4550                 ret = -ENOSPC;
4551                 goto done;
4552         }
4553
4554         /* Shrinking succeeded, else we would be at "done". */
4555         trans = btrfs_start_transaction(root, 0);
4556         if (IS_ERR(trans)) {
4557                 ret = PTR_ERR(trans);
4558                 goto done;
4559         }
4560
4561         mutex_lock(&fs_info->chunk_mutex);
4562
4563         /*
4564          * We checked in the above loop all device extents that were already in
4565          * the device tree. However before we have updated the device's
4566          * total_bytes to the new size, we might have had chunk allocations that
4567          * have not complete yet (new block groups attached to transaction
4568          * handles), and therefore their device extents were not yet in the
4569          * device tree and we missed them in the loop above. So if we have any
4570          * pending chunk using a device extent that overlaps the device range
4571          * that we can not use anymore, commit the current transaction and
4572          * repeat the search on the device tree - this way we guarantee we will
4573          * not have chunks using device extents that end beyond 'new_size'.
4574          */
4575         if (!checked_pending_chunks) {
4576                 u64 start = new_size;
4577                 u64 len = old_size - new_size;
4578
4579                 if (contains_pending_extent(trans->transaction, device,
4580                                             &start, len)) {
4581                         mutex_unlock(&fs_info->chunk_mutex);
4582                         checked_pending_chunks = true;
4583                         failed = 0;
4584                         retried = false;
4585                         ret = btrfs_commit_transaction(trans);
4586                         if (ret)
4587                                 goto done;
4588                         goto again;
4589                 }
4590         }
4591
4592         btrfs_device_set_disk_total_bytes(device, new_size);
4593         if (list_empty(&device->resized_list))
4594                 list_add_tail(&device->resized_list,
4595                               &fs_info->fs_devices->resized_devices);
4596
4597         WARN_ON(diff > old_total);
4598         btrfs_set_super_total_bytes(super_copy,
4599                         round_down(old_total - diff, fs_info->sectorsize));
4600         mutex_unlock(&fs_info->chunk_mutex);
4601
4602         /* Now btrfs_update_device() will change the on-disk size. */
4603         ret = btrfs_update_device(trans, device);
4604         btrfs_end_transaction(trans);
4605 done:
4606         btrfs_free_path(path);
4607         if (ret) {
4608                 mutex_lock(&fs_info->chunk_mutex);
4609                 btrfs_device_set_total_bytes(device, old_size);
4610                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4611                         device->fs_devices->total_rw_bytes += diff;
4612                 atomic64_add(diff, &fs_info->free_chunk_space);
4613                 mutex_unlock(&fs_info->chunk_mutex);
4614         }
4615         return ret;
4616 }
4617
4618 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4619                            struct btrfs_key *key,
4620                            struct btrfs_chunk *chunk, int item_size)
4621 {
4622         struct btrfs_super_block *super_copy = fs_info->super_copy;
4623         struct btrfs_disk_key disk_key;
4624         u32 array_size;
4625         u8 *ptr;
4626
4627         mutex_lock(&fs_info->chunk_mutex);
4628         array_size = btrfs_super_sys_array_size(super_copy);
4629         if (array_size + item_size + sizeof(disk_key)
4630                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4631                 mutex_unlock(&fs_info->chunk_mutex);
4632                 return -EFBIG;
4633         }
4634
4635         ptr = super_copy->sys_chunk_array + array_size;
4636         btrfs_cpu_key_to_disk(&disk_key, key);
4637         memcpy(ptr, &disk_key, sizeof(disk_key));
4638         ptr += sizeof(disk_key);
4639         memcpy(ptr, chunk, item_size);
4640         item_size += sizeof(disk_key);
4641         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4642         mutex_unlock(&fs_info->chunk_mutex);
4643
4644         return 0;
4645 }
4646
4647 /*
4648  * sort the devices in descending order by max_avail, total_avail
4649  */
4650 static int btrfs_cmp_device_info(const void *a, const void *b)
4651 {
4652         const struct btrfs_device_info *di_a = a;
4653         const struct btrfs_device_info *di_b = b;
4654
4655         if (di_a->max_avail > di_b->max_avail)
4656                 return -1;
4657         if (di_a->max_avail < di_b->max_avail)
4658                 return 1;
4659         if (di_a->total_avail > di_b->total_avail)
4660                 return -1;
4661         if (di_a->total_avail < di_b->total_avail)
4662                 return 1;
4663         return 0;
4664 }
4665
4666 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4667 {
4668         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4669                 return;
4670
4671         btrfs_set_fs_incompat(info, RAID56);
4672 }
4673
4674 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4675                         - sizeof(struct btrfs_chunk))           \
4676                         / sizeof(struct btrfs_stripe) + 1)
4677
4678 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4679                                 - 2 * sizeof(struct btrfs_disk_key)     \
4680                                 - 2 * sizeof(struct btrfs_chunk))       \
4681                                 / sizeof(struct btrfs_stripe) + 1)
4682
4683 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4684                                u64 start, u64 type)
4685 {
4686         struct btrfs_fs_info *info = trans->fs_info;
4687         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4688         struct btrfs_device *device;
4689         struct map_lookup *map = NULL;
4690         struct extent_map_tree *em_tree;
4691         struct extent_map *em;
4692         struct btrfs_device_info *devices_info = NULL;
4693         u64 total_avail;
4694         int num_stripes;        /* total number of stripes to allocate */
4695         int data_stripes;       /* number of stripes that count for
4696                                    block group size */
4697         int sub_stripes;        /* sub_stripes info for map */
4698         int dev_stripes;        /* stripes per dev */
4699         int devs_max;           /* max devs to use */
4700         int devs_min;           /* min devs needed */
4701         int devs_increment;     /* ndevs has to be a multiple of this */
4702         int ncopies;            /* how many copies to data has */
4703         int ret;
4704         u64 max_stripe_size;
4705         u64 max_chunk_size;
4706         u64 stripe_size;
4707         u64 num_bytes;
4708         int ndevs;
4709         int i;
4710         int j;
4711         int index;
4712
4713         BUG_ON(!alloc_profile_is_valid(type, 0));
4714
4715         if (list_empty(&fs_devices->alloc_list))
4716                 return -ENOSPC;
4717
4718         index = __get_raid_index(type);
4719
4720         sub_stripes = btrfs_raid_array[index].sub_stripes;
4721         dev_stripes = btrfs_raid_array[index].dev_stripes;
4722         devs_max = btrfs_raid_array[index].devs_max;
4723         devs_min = btrfs_raid_array[index].devs_min;
4724         devs_increment = btrfs_raid_array[index].devs_increment;
4725         ncopies = btrfs_raid_array[index].ncopies;
4726
4727         if (type & BTRFS_BLOCK_GROUP_DATA) {
4728                 max_stripe_size = SZ_1G;
4729                 max_chunk_size = 10 * max_stripe_size;
4730                 if (!devs_max)
4731                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4732         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4733                 /* for larger filesystems, use larger metadata chunks */
4734                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4735                         max_stripe_size = SZ_1G;
4736                 else
4737                         max_stripe_size = SZ_256M;
4738                 max_chunk_size = max_stripe_size;
4739                 if (!devs_max)
4740                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4741         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4742                 max_stripe_size = SZ_32M;
4743                 max_chunk_size = 2 * max_stripe_size;
4744                 if (!devs_max)
4745                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4746         } else {
4747                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4748                        type);
4749                 BUG_ON(1);
4750         }
4751
4752         /* we don't want a chunk larger than 10% of writeable space */
4753         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4754                              max_chunk_size);
4755
4756         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4757                                GFP_NOFS);
4758         if (!devices_info)
4759                 return -ENOMEM;
4760
4761         /*
4762          * in the first pass through the devices list, we gather information
4763          * about the available holes on each device.
4764          */
4765         ndevs = 0;
4766         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4767                 u64 max_avail;
4768                 u64 dev_offset;
4769
4770                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4771                         WARN(1, KERN_ERR
4772                                "BTRFS: read-only device in alloc_list\n");
4773                         continue;
4774                 }
4775
4776                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4777                                         &device->dev_state) ||
4778                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4779                         continue;
4780
4781                 if (device->total_bytes > device->bytes_used)
4782                         total_avail = device->total_bytes - device->bytes_used;
4783                 else
4784                         total_avail = 0;
4785
4786                 /* If there is no space on this device, skip it. */
4787                 if (total_avail == 0)
4788                         continue;
4789
4790                 ret = find_free_dev_extent(trans, device,
4791                                            max_stripe_size * dev_stripes,
4792                                            &dev_offset, &max_avail);
4793                 if (ret && ret != -ENOSPC)
4794                         goto error;
4795
4796                 if (ret == 0)
4797                         max_avail = max_stripe_size * dev_stripes;
4798
4799                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4800                         continue;
4801
4802                 if (ndevs == fs_devices->rw_devices) {
4803                         WARN(1, "%s: found more than %llu devices\n",
4804                              __func__, fs_devices->rw_devices);
4805                         break;
4806                 }
4807                 devices_info[ndevs].dev_offset = dev_offset;
4808                 devices_info[ndevs].max_avail = max_avail;
4809                 devices_info[ndevs].total_avail = total_avail;
4810                 devices_info[ndevs].dev = device;
4811                 ++ndevs;
4812         }
4813
4814         /*
4815          * now sort the devices by hole size / available space
4816          */
4817         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4818              btrfs_cmp_device_info, NULL);
4819
4820         /* round down to number of usable stripes */
4821         ndevs = round_down(ndevs, devs_increment);
4822
4823         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4824                 ret = -ENOSPC;
4825                 goto error;
4826         }
4827
4828         ndevs = min(ndevs, devs_max);
4829
4830         /*
4831          * the primary goal is to maximize the number of stripes, so use as many
4832          * devices as possible, even if the stripes are not maximum sized.
4833          */
4834         stripe_size = devices_info[ndevs-1].max_avail;
4835         num_stripes = ndevs * dev_stripes;
4836
4837         /*
4838          * this will have to be fixed for RAID1 and RAID10 over
4839          * more drives
4840          */
4841         data_stripes = num_stripes / ncopies;
4842
4843         if (type & BTRFS_BLOCK_GROUP_RAID5)
4844                 data_stripes = num_stripes - 1;
4845
4846         if (type & BTRFS_BLOCK_GROUP_RAID6)
4847                 data_stripes = num_stripes - 2;
4848
4849         /*
4850          * Use the number of data stripes to figure out how big this chunk
4851          * is really going to be in terms of logical address space,
4852          * and compare that answer with the max chunk size
4853          */
4854         if (stripe_size * data_stripes > max_chunk_size) {
4855                 u64 mask = (1ULL << 24) - 1;
4856
4857                 stripe_size = div_u64(max_chunk_size, data_stripes);
4858
4859                 /* bump the answer up to a 16MB boundary */
4860                 stripe_size = (stripe_size + mask) & ~mask;
4861
4862                 /* but don't go higher than the limits we found
4863                  * while searching for free extents
4864                  */
4865                 if (stripe_size > devices_info[ndevs-1].max_avail)
4866                         stripe_size = devices_info[ndevs-1].max_avail;
4867         }
4868
4869         stripe_size = div_u64(stripe_size, dev_stripes);
4870
4871         /* align to BTRFS_STRIPE_LEN */
4872         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4873
4874         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4875         if (!map) {
4876                 ret = -ENOMEM;
4877                 goto error;
4878         }
4879         map->num_stripes = num_stripes;
4880
4881         for (i = 0; i < ndevs; ++i) {
4882                 for (j = 0; j < dev_stripes; ++j) {
4883                         int s = i * dev_stripes + j;
4884                         map->stripes[s].dev = devices_info[i].dev;
4885                         map->stripes[s].physical = devices_info[i].dev_offset +
4886                                                    j * stripe_size;
4887                 }
4888         }
4889         map->stripe_len = BTRFS_STRIPE_LEN;
4890         map->io_align = BTRFS_STRIPE_LEN;
4891         map->io_width = BTRFS_STRIPE_LEN;
4892         map->type = type;
4893         map->sub_stripes = sub_stripes;
4894
4895         num_bytes = stripe_size * data_stripes;
4896
4897         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4898
4899         em = alloc_extent_map();
4900         if (!em) {
4901                 kfree(map);
4902                 ret = -ENOMEM;
4903                 goto error;
4904         }
4905         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4906         em->map_lookup = map;
4907         em->start = start;
4908         em->len = num_bytes;
4909         em->block_start = 0;
4910         em->block_len = em->len;
4911         em->orig_block_len = stripe_size;
4912
4913         em_tree = &info->mapping_tree.map_tree;
4914         write_lock(&em_tree->lock);
4915         ret = add_extent_mapping(em_tree, em, 0);
4916         if (ret) {
4917                 write_unlock(&em_tree->lock);
4918                 free_extent_map(em);
4919                 goto error;
4920         }
4921
4922         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4923         refcount_inc(&em->refs);
4924         write_unlock(&em_tree->lock);
4925
4926         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4927         if (ret)
4928                 goto error_del_extent;
4929
4930         for (i = 0; i < map->num_stripes; i++) {
4931                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4932                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4933         }
4934
4935         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4936
4937         free_extent_map(em);
4938         check_raid56_incompat_flag(info, type);
4939
4940         kfree(devices_info);
4941         return 0;
4942
4943 error_del_extent:
4944         write_lock(&em_tree->lock);
4945         remove_extent_mapping(em_tree, em);
4946         write_unlock(&em_tree->lock);
4947
4948         /* One for our allocation */
4949         free_extent_map(em);
4950         /* One for the tree reference */
4951         free_extent_map(em);
4952         /* One for the pending_chunks list reference */
4953         free_extent_map(em);
4954 error:
4955         kfree(devices_info);
4956         return ret;
4957 }
4958
4959 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4960                                 struct btrfs_fs_info *fs_info,
4961                                 u64 chunk_offset, u64 chunk_size)
4962 {
4963         struct btrfs_root *extent_root = fs_info->extent_root;
4964         struct btrfs_root *chunk_root = fs_info->chunk_root;
4965         struct btrfs_key key;
4966         struct btrfs_device *device;
4967         struct btrfs_chunk *chunk;
4968         struct btrfs_stripe *stripe;
4969         struct extent_map *em;
4970         struct map_lookup *map;
4971         size_t item_size;
4972         u64 dev_offset;
4973         u64 stripe_size;
4974         int i = 0;
4975         int ret = 0;
4976
4977         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4978         if (IS_ERR(em))
4979                 return PTR_ERR(em);
4980
4981         map = em->map_lookup;
4982         item_size = btrfs_chunk_item_size(map->num_stripes);
4983         stripe_size = em->orig_block_len;
4984
4985         chunk = kzalloc(item_size, GFP_NOFS);
4986         if (!chunk) {
4987                 ret = -ENOMEM;
4988                 goto out;
4989         }
4990
4991         /*
4992          * Take the device list mutex to prevent races with the final phase of
4993          * a device replace operation that replaces the device object associated
4994          * with the map's stripes, because the device object's id can change
4995          * at any time during that final phase of the device replace operation
4996          * (dev-replace.c:btrfs_dev_replace_finishing()).
4997          */
4998         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4999         for (i = 0; i < map->num_stripes; i++) {
5000                 device = map->stripes[i].dev;
5001                 dev_offset = map->stripes[i].physical;
5002
5003                 ret = btrfs_update_device(trans, device);
5004                 if (ret)
5005                         break;
5006                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5007                                              dev_offset, stripe_size);
5008                 if (ret)
5009                         break;
5010         }
5011         if (ret) {
5012                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5013                 goto out;
5014         }
5015
5016         stripe = &chunk->stripe;
5017         for (i = 0; i < map->num_stripes; i++) {
5018                 device = map->stripes[i].dev;
5019                 dev_offset = map->stripes[i].physical;
5020
5021                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5022                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5023                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5024                 stripe++;
5025         }
5026         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5027
5028         btrfs_set_stack_chunk_length(chunk, chunk_size);
5029         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5030         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5031         btrfs_set_stack_chunk_type(chunk, map->type);
5032         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5033         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5034         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5035         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5036         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5037
5038         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5039         key.type = BTRFS_CHUNK_ITEM_KEY;
5040         key.offset = chunk_offset;
5041
5042         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5043         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5044                 /*
5045                  * TODO: Cleanup of inserted chunk root in case of
5046                  * failure.
5047                  */
5048                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5049         }
5050
5051 out:
5052         kfree(chunk);
5053         free_extent_map(em);
5054         return ret;
5055 }
5056
5057 /*
5058  * Chunk allocation falls into two parts. The first part does works
5059  * that make the new allocated chunk useable, but not do any operation
5060  * that modifies the chunk tree. The second part does the works that
5061  * require modifying the chunk tree. This division is important for the
5062  * bootstrap process of adding storage to a seed btrfs.
5063  */
5064 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5065                       struct btrfs_fs_info *fs_info, u64 type)
5066 {
5067         u64 chunk_offset;
5068
5069         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5070         chunk_offset = find_next_chunk(fs_info);
5071         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5072 }
5073
5074 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5075                                          struct btrfs_fs_info *fs_info)
5076 {
5077         u64 chunk_offset;
5078         u64 sys_chunk_offset;
5079         u64 alloc_profile;
5080         int ret;
5081
5082         chunk_offset = find_next_chunk(fs_info);
5083         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5084         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5085         if (ret)
5086                 return ret;
5087
5088         sys_chunk_offset = find_next_chunk(fs_info);
5089         alloc_profile = btrfs_system_alloc_profile(fs_info);
5090         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5091         return ret;
5092 }
5093
5094 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5095 {
5096         int max_errors;
5097
5098         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5099                          BTRFS_BLOCK_GROUP_RAID10 |
5100                          BTRFS_BLOCK_GROUP_RAID5 |
5101                          BTRFS_BLOCK_GROUP_DUP)) {
5102                 max_errors = 1;
5103         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5104                 max_errors = 2;
5105         } else {
5106                 max_errors = 0;
5107         }
5108
5109         return max_errors;
5110 }
5111
5112 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5113 {
5114         struct extent_map *em;
5115         struct map_lookup *map;
5116         int readonly = 0;
5117         int miss_ndevs = 0;
5118         int i;
5119
5120         em = get_chunk_map(fs_info, chunk_offset, 1);
5121         if (IS_ERR(em))
5122                 return 1;
5123
5124         map = em->map_lookup;
5125         for (i = 0; i < map->num_stripes; i++) {
5126                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5127                                         &map->stripes[i].dev->dev_state)) {
5128                         miss_ndevs++;
5129                         continue;
5130                 }
5131                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5132                                         &map->stripes[i].dev->dev_state)) {
5133                         readonly = 1;
5134                         goto end;
5135                 }
5136         }
5137
5138         /*
5139          * If the number of missing devices is larger than max errors,
5140          * we can not write the data into that chunk successfully, so
5141          * set it readonly.
5142          */
5143         if (miss_ndevs > btrfs_chunk_max_errors(map))
5144                 readonly = 1;
5145 end:
5146         free_extent_map(em);
5147         return readonly;
5148 }
5149
5150 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5151 {
5152         extent_map_tree_init(&tree->map_tree);
5153 }
5154
5155 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5156 {
5157         struct extent_map *em;
5158
5159         while (1) {
5160                 write_lock(&tree->map_tree.lock);
5161                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5162                 if (em)
5163                         remove_extent_mapping(&tree->map_tree, em);
5164                 write_unlock(&tree->map_tree.lock);
5165                 if (!em)
5166                         break;
5167                 /* once for us */
5168                 free_extent_map(em);
5169                 /* once for the tree */
5170                 free_extent_map(em);
5171         }
5172 }
5173
5174 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5175 {
5176         struct extent_map *em;
5177         struct map_lookup *map;
5178         int ret;
5179
5180         em = get_chunk_map(fs_info, logical, len);
5181         if (IS_ERR(em))
5182                 /*
5183                  * We could return errors for these cases, but that could get
5184                  * ugly and we'd probably do the same thing which is just not do
5185                  * anything else and exit, so return 1 so the callers don't try
5186                  * to use other copies.
5187                  */
5188                 return 1;
5189
5190         map = em->map_lookup;
5191         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5192                 ret = map->num_stripes;
5193         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5194                 ret = map->sub_stripes;
5195         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5196                 ret = 2;
5197         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5198                 /*
5199                  * There could be two corrupted data stripes, we need
5200                  * to loop retry in order to rebuild the correct data.
5201                  * 
5202                  * Fail a stripe at a time on every retry except the
5203                  * stripe under reconstruction.
5204                  */
5205                 ret = map->num_stripes;
5206         else
5207                 ret = 1;
5208         free_extent_map(em);
5209
5210         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5211         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5212             fs_info->dev_replace.tgtdev)
5213                 ret++;
5214         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5215
5216         return ret;
5217 }
5218
5219 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5220                                     u64 logical)
5221 {
5222         struct extent_map *em;
5223         struct map_lookup *map;
5224         unsigned long len = fs_info->sectorsize;
5225
5226         em = get_chunk_map(fs_info, logical, len);
5227
5228         if (!WARN_ON(IS_ERR(em))) {
5229                 map = em->map_lookup;
5230                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5231                         len = map->stripe_len * nr_data_stripes(map);
5232                 free_extent_map(em);
5233         }
5234         return len;
5235 }
5236
5237 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5238 {
5239         struct extent_map *em;
5240         struct map_lookup *map;
5241         int ret = 0;
5242
5243         em = get_chunk_map(fs_info, logical, len);
5244
5245         if(!WARN_ON(IS_ERR(em))) {
5246                 map = em->map_lookup;
5247                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5248                         ret = 1;
5249                 free_extent_map(em);
5250         }
5251         return ret;
5252 }
5253
5254 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5255                             struct map_lookup *map, int first, int num,
5256                             int optimal, int dev_replace_is_ongoing)
5257 {
5258         int i;
5259         int tolerance;
5260         struct btrfs_device *srcdev;
5261
5262         if (dev_replace_is_ongoing &&
5263             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5264              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5265                 srcdev = fs_info->dev_replace.srcdev;
5266         else
5267                 srcdev = NULL;
5268
5269         /*
5270          * try to avoid the drive that is the source drive for a
5271          * dev-replace procedure, only choose it if no other non-missing
5272          * mirror is available
5273          */
5274         for (tolerance = 0; tolerance < 2; tolerance++) {
5275                 if (map->stripes[optimal].dev->bdev &&
5276                     (tolerance || map->stripes[optimal].dev != srcdev))
5277                         return optimal;
5278                 for (i = first; i < first + num; i++) {
5279                         if (map->stripes[i].dev->bdev &&
5280                             (tolerance || map->stripes[i].dev != srcdev))
5281                                 return i;
5282                 }
5283         }
5284
5285         /* we couldn't find one that doesn't fail.  Just return something
5286          * and the io error handling code will clean up eventually
5287          */
5288         return optimal;
5289 }
5290
5291 static inline int parity_smaller(u64 a, u64 b)
5292 {
5293         return a > b;
5294 }
5295
5296 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5297 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5298 {
5299         struct btrfs_bio_stripe s;
5300         int i;
5301         u64 l;
5302         int again = 1;
5303
5304         while (again) {
5305                 again = 0;
5306                 for (i = 0; i < num_stripes - 1; i++) {
5307                         if (parity_smaller(bbio->raid_map[i],
5308                                            bbio->raid_map[i+1])) {
5309                                 s = bbio->stripes[i];
5310                                 l = bbio->raid_map[i];
5311                                 bbio->stripes[i] = bbio->stripes[i+1];
5312                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5313                                 bbio->stripes[i+1] = s;
5314                                 bbio->raid_map[i+1] = l;
5315
5316                                 again = 1;
5317                         }
5318                 }
5319         }
5320 }
5321
5322 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5323 {
5324         struct btrfs_bio *bbio = kzalloc(
5325                  /* the size of the btrfs_bio */
5326                 sizeof(struct btrfs_bio) +
5327                 /* plus the variable array for the stripes */
5328                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5329                 /* plus the variable array for the tgt dev */
5330                 sizeof(int) * (real_stripes) +
5331                 /*
5332                  * plus the raid_map, which includes both the tgt dev
5333                  * and the stripes
5334                  */
5335                 sizeof(u64) * (total_stripes),
5336                 GFP_NOFS|__GFP_NOFAIL);
5337
5338         atomic_set(&bbio->error, 0);
5339         refcount_set(&bbio->refs, 1);
5340
5341         return bbio;
5342 }
5343
5344 void btrfs_get_bbio(struct btrfs_bio *bbio)
5345 {
5346         WARN_ON(!refcount_read(&bbio->refs));
5347         refcount_inc(&bbio->refs);
5348 }
5349
5350 void btrfs_put_bbio(struct btrfs_bio *bbio)
5351 {
5352         if (!bbio)
5353                 return;
5354         if (refcount_dec_and_test(&bbio->refs))
5355                 kfree(bbio);
5356 }
5357
5358 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5359 /*
5360  * Please note that, discard won't be sent to target device of device
5361  * replace.
5362  */
5363 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5364                                          u64 logical, u64 length,
5365                                          struct btrfs_bio **bbio_ret)
5366 {
5367         struct extent_map *em;
5368         struct map_lookup *map;
5369         struct btrfs_bio *bbio;
5370         u64 offset;
5371         u64 stripe_nr;
5372         u64 stripe_nr_end;
5373         u64 stripe_end_offset;
5374         u64 stripe_cnt;
5375         u64 stripe_len;
5376         u64 stripe_offset;
5377         u64 num_stripes;
5378         u32 stripe_index;
5379         u32 factor = 0;
5380         u32 sub_stripes = 0;
5381         u64 stripes_per_dev = 0;
5382         u32 remaining_stripes = 0;
5383         u32 last_stripe = 0;
5384         int ret = 0;
5385         int i;
5386
5387         /* discard always return a bbio */
5388         ASSERT(bbio_ret);
5389
5390         em = get_chunk_map(fs_info, logical, length);
5391         if (IS_ERR(em))
5392                 return PTR_ERR(em);
5393
5394         map = em->map_lookup;
5395         /* we don't discard raid56 yet */
5396         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5397                 ret = -EOPNOTSUPP;
5398                 goto out;
5399         }
5400
5401         offset = logical - em->start;
5402         length = min_t(u64, em->len - offset, length);
5403
5404         stripe_len = map->stripe_len;
5405         /*
5406          * stripe_nr counts the total number of stripes we have to stride
5407          * to get to this block
5408          */
5409         stripe_nr = div64_u64(offset, stripe_len);
5410
5411         /* stripe_offset is the offset of this block in its stripe */
5412         stripe_offset = offset - stripe_nr * stripe_len;
5413
5414         stripe_nr_end = round_up(offset + length, map->stripe_len);
5415         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5416         stripe_cnt = stripe_nr_end - stripe_nr;
5417         stripe_end_offset = stripe_nr_end * map->stripe_len -
5418                             (offset + length);
5419         /*
5420          * after this, stripe_nr is the number of stripes on this
5421          * device we have to walk to find the data, and stripe_index is
5422          * the number of our device in the stripe array
5423          */
5424         num_stripes = 1;
5425         stripe_index = 0;
5426         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5427                          BTRFS_BLOCK_GROUP_RAID10)) {
5428                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5429                         sub_stripes = 1;
5430                 else
5431                         sub_stripes = map->sub_stripes;
5432
5433                 factor = map->num_stripes / sub_stripes;
5434                 num_stripes = min_t(u64, map->num_stripes,
5435                                     sub_stripes * stripe_cnt);
5436                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5437                 stripe_index *= sub_stripes;
5438                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5439                                               &remaining_stripes);
5440                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5441                 last_stripe *= sub_stripes;
5442         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5443                                 BTRFS_BLOCK_GROUP_DUP)) {
5444                 num_stripes = map->num_stripes;
5445         } else {
5446                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5447                                         &stripe_index);
5448         }
5449
5450         bbio = alloc_btrfs_bio(num_stripes, 0);
5451         if (!bbio) {
5452                 ret = -ENOMEM;
5453                 goto out;
5454         }
5455
5456         for (i = 0; i < num_stripes; i++) {
5457                 bbio->stripes[i].physical =
5458                         map->stripes[stripe_index].physical +
5459                         stripe_offset + stripe_nr * map->stripe_len;
5460                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5461
5462                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5463                                  BTRFS_BLOCK_GROUP_RAID10)) {
5464                         bbio->stripes[i].length = stripes_per_dev *
5465                                 map->stripe_len;
5466
5467                         if (i / sub_stripes < remaining_stripes)
5468                                 bbio->stripes[i].length +=
5469                                         map->stripe_len;
5470
5471                         /*
5472                          * Special for the first stripe and
5473                          * the last stripe:
5474                          *
5475                          * |-------|...|-------|
5476                          *     |----------|
5477                          *    off     end_off
5478                          */
5479                         if (i < sub_stripes)
5480                                 bbio->stripes[i].length -=
5481                                         stripe_offset;
5482
5483                         if (stripe_index >= last_stripe &&
5484                             stripe_index <= (last_stripe +
5485                                              sub_stripes - 1))
5486                                 bbio->stripes[i].length -=
5487                                         stripe_end_offset;
5488
5489                         if (i == sub_stripes - 1)
5490                                 stripe_offset = 0;
5491                 } else {
5492                         bbio->stripes[i].length = length;
5493                 }
5494
5495                 stripe_index++;
5496                 if (stripe_index == map->num_stripes) {
5497                         stripe_index = 0;
5498                         stripe_nr++;
5499                 }
5500         }
5501
5502         *bbio_ret = bbio;
5503         bbio->map_type = map->type;
5504         bbio->num_stripes = num_stripes;
5505 out:
5506         free_extent_map(em);
5507         return ret;
5508 }
5509
5510 /*
5511  * In dev-replace case, for repair case (that's the only case where the mirror
5512  * is selected explicitly when calling btrfs_map_block), blocks left of the
5513  * left cursor can also be read from the target drive.
5514  *
5515  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5516  * array of stripes.
5517  * For READ, it also needs to be supported using the same mirror number.
5518  *
5519  * If the requested block is not left of the left cursor, EIO is returned. This
5520  * can happen because btrfs_num_copies() returns one more in the dev-replace
5521  * case.
5522  */
5523 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5524                                          u64 logical, u64 length,
5525                                          u64 srcdev_devid, int *mirror_num,
5526                                          u64 *physical)
5527 {
5528         struct btrfs_bio *bbio = NULL;
5529         int num_stripes;
5530         int index_srcdev = 0;
5531         int found = 0;
5532         u64 physical_of_found = 0;
5533         int i;
5534         int ret = 0;
5535
5536         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5537                                 logical, &length, &bbio, 0, 0);
5538         if (ret) {
5539                 ASSERT(bbio == NULL);
5540                 return ret;
5541         }
5542
5543         num_stripes = bbio->num_stripes;
5544         if (*mirror_num > num_stripes) {
5545                 /*
5546                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5547                  * that means that the requested area is not left of the left
5548                  * cursor
5549                  */
5550                 btrfs_put_bbio(bbio);
5551                 return -EIO;
5552         }
5553
5554         /*
5555          * process the rest of the function using the mirror_num of the source
5556          * drive. Therefore look it up first.  At the end, patch the device
5557          * pointer to the one of the target drive.
5558          */
5559         for (i = 0; i < num_stripes; i++) {
5560                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5561                         continue;
5562
5563                 /*
5564                  * In case of DUP, in order to keep it simple, only add the
5565                  * mirror with the lowest physical address
5566                  */
5567                 if (found &&
5568                     physical_of_found <= bbio->stripes[i].physical)
5569                         continue;
5570
5571                 index_srcdev = i;
5572                 found = 1;
5573                 physical_of_found = bbio->stripes[i].physical;
5574         }
5575
5576         btrfs_put_bbio(bbio);
5577
5578         ASSERT(found);
5579         if (!found)
5580                 return -EIO;
5581
5582         *mirror_num = index_srcdev + 1;
5583         *physical = physical_of_found;
5584         return ret;
5585 }
5586
5587 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5588                                       struct btrfs_bio **bbio_ret,
5589                                       struct btrfs_dev_replace *dev_replace,
5590                                       int *num_stripes_ret, int *max_errors_ret)
5591 {
5592         struct btrfs_bio *bbio = *bbio_ret;
5593         u64 srcdev_devid = dev_replace->srcdev->devid;
5594         int tgtdev_indexes = 0;
5595         int num_stripes = *num_stripes_ret;
5596         int max_errors = *max_errors_ret;
5597         int i;
5598
5599         if (op == BTRFS_MAP_WRITE) {
5600                 int index_where_to_add;
5601
5602                 /*
5603                  * duplicate the write operations while the dev replace
5604                  * procedure is running. Since the copying of the old disk to
5605                  * the new disk takes place at run time while the filesystem is
5606                  * mounted writable, the regular write operations to the old
5607                  * disk have to be duplicated to go to the new disk as well.
5608                  *
5609                  * Note that device->missing is handled by the caller, and that
5610                  * the write to the old disk is already set up in the stripes
5611                  * array.
5612                  */
5613                 index_where_to_add = num_stripes;
5614                 for (i = 0; i < num_stripes; i++) {
5615                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5616                                 /* write to new disk, too */
5617                                 struct btrfs_bio_stripe *new =
5618                                         bbio->stripes + index_where_to_add;
5619                                 struct btrfs_bio_stripe *old =
5620                                         bbio->stripes + i;
5621
5622                                 new->physical = old->physical;
5623                                 new->length = old->length;
5624                                 new->dev = dev_replace->tgtdev;
5625                                 bbio->tgtdev_map[i] = index_where_to_add;
5626                                 index_where_to_add++;
5627                                 max_errors++;
5628                                 tgtdev_indexes++;
5629                         }
5630                 }
5631                 num_stripes = index_where_to_add;
5632         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5633                 int index_srcdev = 0;
5634                 int found = 0;
5635                 u64 physical_of_found = 0;
5636
5637                 /*
5638                  * During the dev-replace procedure, the target drive can also
5639                  * be used to read data in case it is needed to repair a corrupt
5640                  * block elsewhere. This is possible if the requested area is
5641                  * left of the left cursor. In this area, the target drive is a
5642                  * full copy of the source drive.
5643                  */
5644                 for (i = 0; i < num_stripes; i++) {
5645                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5646                                 /*
5647                                  * In case of DUP, in order to keep it simple,
5648                                  * only add the mirror with the lowest physical
5649                                  * address
5650                                  */
5651                                 if (found &&
5652                                     physical_of_found <=
5653                                      bbio->stripes[i].physical)
5654                                         continue;
5655                                 index_srcdev = i;
5656                                 found = 1;
5657                                 physical_of_found = bbio->stripes[i].physical;
5658                         }
5659                 }
5660                 if (found) {
5661                         struct btrfs_bio_stripe *tgtdev_stripe =
5662                                 bbio->stripes + num_stripes;
5663
5664                         tgtdev_stripe->physical = physical_of_found;
5665                         tgtdev_stripe->length =
5666                                 bbio->stripes[index_srcdev].length;
5667                         tgtdev_stripe->dev = dev_replace->tgtdev;
5668                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5669
5670                         tgtdev_indexes++;
5671                         num_stripes++;
5672                 }
5673         }
5674
5675         *num_stripes_ret = num_stripes;
5676         *max_errors_ret = max_errors;
5677         bbio->num_tgtdevs = tgtdev_indexes;
5678         *bbio_ret = bbio;
5679 }
5680
5681 static bool need_full_stripe(enum btrfs_map_op op)
5682 {
5683         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5684 }
5685
5686 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5687                              enum btrfs_map_op op,
5688                              u64 logical, u64 *length,
5689                              struct btrfs_bio **bbio_ret,
5690                              int mirror_num, int need_raid_map)
5691 {
5692         struct extent_map *em;
5693         struct map_lookup *map;
5694         u64 offset;
5695         u64 stripe_offset;
5696         u64 stripe_nr;
5697         u64 stripe_len;
5698         u32 stripe_index;
5699         int i;
5700         int ret = 0;
5701         int num_stripes;
5702         int max_errors = 0;
5703         int tgtdev_indexes = 0;
5704         struct btrfs_bio *bbio = NULL;
5705         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5706         int dev_replace_is_ongoing = 0;
5707         int num_alloc_stripes;
5708         int patch_the_first_stripe_for_dev_replace = 0;
5709         u64 physical_to_patch_in_first_stripe = 0;
5710         u64 raid56_full_stripe_start = (u64)-1;
5711
5712         if (op == BTRFS_MAP_DISCARD)
5713                 return __btrfs_map_block_for_discard(fs_info, logical,
5714                                                      *length, bbio_ret);
5715
5716         em = get_chunk_map(fs_info, logical, *length);
5717         if (IS_ERR(em))
5718                 return PTR_ERR(em);
5719
5720         map = em->map_lookup;
5721         offset = logical - em->start;
5722
5723         stripe_len = map->stripe_len;
5724         stripe_nr = offset;
5725         /*
5726          * stripe_nr counts the total number of stripes we have to stride
5727          * to get to this block
5728          */
5729         stripe_nr = div64_u64(stripe_nr, stripe_len);
5730
5731         stripe_offset = stripe_nr * stripe_len;
5732         if (offset < stripe_offset) {
5733                 btrfs_crit(fs_info,
5734                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5735                            stripe_offset, offset, em->start, logical,
5736                            stripe_len);
5737                 free_extent_map(em);
5738                 return -EINVAL;
5739         }
5740
5741         /* stripe_offset is the offset of this block in its stripe*/
5742         stripe_offset = offset - stripe_offset;
5743
5744         /* if we're here for raid56, we need to know the stripe aligned start */
5745         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5746                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5747                 raid56_full_stripe_start = offset;
5748
5749                 /* allow a write of a full stripe, but make sure we don't
5750                  * allow straddling of stripes
5751                  */
5752                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5753                                 full_stripe_len);
5754                 raid56_full_stripe_start *= full_stripe_len;
5755         }
5756
5757         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5758                 u64 max_len;
5759                 /* For writes to RAID[56], allow a full stripeset across all disks.
5760                    For other RAID types and for RAID[56] reads, just allow a single
5761                    stripe (on a single disk). */
5762                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5763                     (op == BTRFS_MAP_WRITE)) {
5764                         max_len = stripe_len * nr_data_stripes(map) -
5765                                 (offset - raid56_full_stripe_start);
5766                 } else {
5767                         /* we limit the length of each bio to what fits in a stripe */
5768                         max_len = stripe_len - stripe_offset;
5769                 }
5770                 *length = min_t(u64, em->len - offset, max_len);
5771         } else {
5772                 *length = em->len - offset;
5773         }
5774
5775         /* This is for when we're called from btrfs_merge_bio_hook() and all
5776            it cares about is the length */
5777         if (!bbio_ret)
5778                 goto out;
5779
5780         btrfs_dev_replace_lock(dev_replace, 0);
5781         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5782         if (!dev_replace_is_ongoing)
5783                 btrfs_dev_replace_unlock(dev_replace, 0);
5784         else
5785                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5786
5787         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5788             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5789                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5790                                                     dev_replace->srcdev->devid,
5791                                                     &mirror_num,
5792                                             &physical_to_patch_in_first_stripe);
5793                 if (ret)
5794                         goto out;
5795                 else
5796                         patch_the_first_stripe_for_dev_replace = 1;
5797         } else if (mirror_num > map->num_stripes) {
5798                 mirror_num = 0;
5799         }
5800
5801         num_stripes = 1;
5802         stripe_index = 0;
5803         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5804                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5805                                 &stripe_index);
5806                 if (!need_full_stripe(op))
5807                         mirror_num = 1;
5808         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5809                 if (need_full_stripe(op))
5810                         num_stripes = map->num_stripes;
5811                 else if (mirror_num)
5812                         stripe_index = mirror_num - 1;
5813                 else {
5814                         stripe_index = find_live_mirror(fs_info, map, 0,
5815                                             map->num_stripes,
5816                                             current->pid % map->num_stripes,
5817                                             dev_replace_is_ongoing);
5818                         mirror_num = stripe_index + 1;
5819                 }
5820
5821         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5822                 if (need_full_stripe(op)) {
5823                         num_stripes = map->num_stripes;
5824                 } else if (mirror_num) {
5825                         stripe_index = mirror_num - 1;
5826                 } else {
5827                         mirror_num = 1;
5828                 }
5829
5830         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5831                 u32 factor = map->num_stripes / map->sub_stripes;
5832
5833                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5834                 stripe_index *= map->sub_stripes;
5835
5836                 if (need_full_stripe(op))
5837                         num_stripes = map->sub_stripes;
5838                 else if (mirror_num)
5839                         stripe_index += mirror_num - 1;
5840                 else {
5841                         int old_stripe_index = stripe_index;
5842                         stripe_index = find_live_mirror(fs_info, map,
5843                                               stripe_index,
5844                                               map->sub_stripes, stripe_index +
5845                                               current->pid % map->sub_stripes,
5846                                               dev_replace_is_ongoing);
5847                         mirror_num = stripe_index - old_stripe_index + 1;
5848                 }
5849
5850         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5851                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5852                         /* push stripe_nr back to the start of the full stripe */
5853                         stripe_nr = div64_u64(raid56_full_stripe_start,
5854                                         stripe_len * nr_data_stripes(map));
5855
5856                         /* RAID[56] write or recovery. Return all stripes */
5857                         num_stripes = map->num_stripes;
5858                         max_errors = nr_parity_stripes(map);
5859
5860                         *length = map->stripe_len;
5861                         stripe_index = 0;
5862                         stripe_offset = 0;
5863                 } else {
5864                         /*
5865                          * Mirror #0 or #1 means the original data block.
5866                          * Mirror #2 is RAID5 parity block.
5867                          * Mirror #3 is RAID6 Q block.
5868                          */
5869                         stripe_nr = div_u64_rem(stripe_nr,
5870                                         nr_data_stripes(map), &stripe_index);
5871                         if (mirror_num > 1)
5872                                 stripe_index = nr_data_stripes(map) +
5873                                                 mirror_num - 2;
5874
5875                         /* We distribute the parity blocks across stripes */
5876                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5877                                         &stripe_index);
5878                         if (!need_full_stripe(op) && mirror_num <= 1)
5879                                 mirror_num = 1;
5880                 }
5881         } else {
5882                 /*
5883                  * after this, stripe_nr is the number of stripes on this
5884                  * device we have to walk to find the data, and stripe_index is
5885                  * the number of our device in the stripe array
5886                  */
5887                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5888                                 &stripe_index);
5889                 mirror_num = stripe_index + 1;
5890         }
5891         if (stripe_index >= map->num_stripes) {
5892                 btrfs_crit(fs_info,
5893                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5894                            stripe_index, map->num_stripes);
5895                 ret = -EINVAL;
5896                 goto out;
5897         }
5898
5899         num_alloc_stripes = num_stripes;
5900         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5901                 if (op == BTRFS_MAP_WRITE)
5902                         num_alloc_stripes <<= 1;
5903                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5904                         num_alloc_stripes++;
5905                 tgtdev_indexes = num_stripes;
5906         }
5907
5908         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5909         if (!bbio) {
5910                 ret = -ENOMEM;
5911                 goto out;
5912         }
5913         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5914                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5915
5916         /* build raid_map */
5917         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5918             (need_full_stripe(op) || mirror_num > 1)) {
5919                 u64 tmp;
5920                 unsigned rot;
5921
5922                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5923                                  sizeof(struct btrfs_bio_stripe) *
5924                                  num_alloc_stripes +
5925                                  sizeof(int) * tgtdev_indexes);
5926
5927                 /* Work out the disk rotation on this stripe-set */
5928                 div_u64_rem(stripe_nr, num_stripes, &rot);
5929
5930                 /* Fill in the logical address of each stripe */
5931                 tmp = stripe_nr * nr_data_stripes(map);
5932                 for (i = 0; i < nr_data_stripes(map); i++)
5933                         bbio->raid_map[(i+rot) % num_stripes] =
5934                                 em->start + (tmp + i) * map->stripe_len;
5935
5936                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5937                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5938                         bbio->raid_map[(i+rot+1) % num_stripes] =
5939                                 RAID6_Q_STRIPE;
5940         }
5941
5942
5943         for (i = 0; i < num_stripes; i++) {
5944                 bbio->stripes[i].physical =
5945                         map->stripes[stripe_index].physical +
5946                         stripe_offset +
5947                         stripe_nr * map->stripe_len;
5948                 bbio->stripes[i].dev =
5949                         map->stripes[stripe_index].dev;
5950                 stripe_index++;
5951         }
5952
5953         if (need_full_stripe(op))
5954                 max_errors = btrfs_chunk_max_errors(map);
5955
5956         if (bbio->raid_map)
5957                 sort_parity_stripes(bbio, num_stripes);
5958
5959         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5960             need_full_stripe(op)) {
5961                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5962                                           &max_errors);
5963         }
5964
5965         *bbio_ret = bbio;
5966         bbio->map_type = map->type;
5967         bbio->num_stripes = num_stripes;
5968         bbio->max_errors = max_errors;
5969         bbio->mirror_num = mirror_num;
5970
5971         /*
5972          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5973          * mirror_num == num_stripes + 1 && dev_replace target drive is
5974          * available as a mirror
5975          */
5976         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5977                 WARN_ON(num_stripes > 1);
5978                 bbio->stripes[0].dev = dev_replace->tgtdev;
5979                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5980                 bbio->mirror_num = map->num_stripes + 1;
5981         }
5982 out:
5983         if (dev_replace_is_ongoing) {
5984                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5985                 btrfs_dev_replace_unlock(dev_replace, 0);
5986         }
5987         free_extent_map(em);
5988         return ret;
5989 }
5990
5991 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5992                       u64 logical, u64 *length,
5993                       struct btrfs_bio **bbio_ret, int mirror_num)
5994 {
5995         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5996                                  mirror_num, 0);
5997 }
5998
5999 /* For Scrub/replace */
6000 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6001                      u64 logical, u64 *length,
6002                      struct btrfs_bio **bbio_ret)
6003 {
6004         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6005 }
6006
6007 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6008                      u64 chunk_start, u64 physical, u64 devid,
6009                      u64 **logical, int *naddrs, int *stripe_len)
6010 {
6011         struct extent_map *em;
6012         struct map_lookup *map;
6013         u64 *buf;
6014         u64 bytenr;
6015         u64 length;
6016         u64 stripe_nr;
6017         u64 rmap_len;
6018         int i, j, nr = 0;
6019
6020         em = get_chunk_map(fs_info, chunk_start, 1);
6021         if (IS_ERR(em))
6022                 return -EIO;
6023
6024         map = em->map_lookup;
6025         length = em->len;
6026         rmap_len = map->stripe_len;
6027
6028         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6029                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6030         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6031                 length = div_u64(length, map->num_stripes);
6032         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6033                 length = div_u64(length, nr_data_stripes(map));
6034                 rmap_len = map->stripe_len * nr_data_stripes(map);
6035         }
6036
6037         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6038         BUG_ON(!buf); /* -ENOMEM */
6039
6040         for (i = 0; i < map->num_stripes; i++) {
6041                 if (devid && map->stripes[i].dev->devid != devid)
6042                         continue;
6043                 if (map->stripes[i].physical > physical ||
6044                     map->stripes[i].physical + length <= physical)
6045                         continue;
6046
6047                 stripe_nr = physical - map->stripes[i].physical;
6048                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6049
6050                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6051                         stripe_nr = stripe_nr * map->num_stripes + i;
6052                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6053                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6054                         stripe_nr = stripe_nr * map->num_stripes + i;
6055                 } /* else if RAID[56], multiply by nr_data_stripes().
6056                    * Alternatively, just use rmap_len below instead of
6057                    * map->stripe_len */
6058
6059                 bytenr = chunk_start + stripe_nr * rmap_len;
6060                 WARN_ON(nr >= map->num_stripes);
6061                 for (j = 0; j < nr; j++) {
6062                         if (buf[j] == bytenr)
6063                                 break;
6064                 }
6065                 if (j == nr) {
6066                         WARN_ON(nr >= map->num_stripes);
6067                         buf[nr++] = bytenr;
6068                 }
6069         }
6070
6071         *logical = buf;
6072         *naddrs = nr;
6073         *stripe_len = rmap_len;
6074
6075         free_extent_map(em);
6076         return 0;
6077 }
6078
6079 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6080 {
6081         bio->bi_private = bbio->private;
6082         bio->bi_end_io = bbio->end_io;
6083         bio_endio(bio);
6084
6085         btrfs_put_bbio(bbio);
6086 }
6087
6088 static void btrfs_end_bio(struct bio *bio)
6089 {
6090         struct btrfs_bio *bbio = bio->bi_private;
6091         int is_orig_bio = 0;
6092
6093         if (bio->bi_status) {
6094                 atomic_inc(&bbio->error);
6095                 if (bio->bi_status == BLK_STS_IOERR ||
6096                     bio->bi_status == BLK_STS_TARGET) {
6097                         unsigned int stripe_index =
6098                                 btrfs_io_bio(bio)->stripe_index;
6099                         struct btrfs_device *dev;
6100
6101                         BUG_ON(stripe_index >= bbio->num_stripes);
6102                         dev = bbio->stripes[stripe_index].dev;
6103                         if (dev->bdev) {
6104                                 if (bio_op(bio) == REQ_OP_WRITE)
6105                                         btrfs_dev_stat_inc_and_print(dev,
6106                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6107                                 else
6108                                         btrfs_dev_stat_inc_and_print(dev,
6109                                                 BTRFS_DEV_STAT_READ_ERRS);
6110                                 if (bio->bi_opf & REQ_PREFLUSH)
6111                                         btrfs_dev_stat_inc_and_print(dev,
6112                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6113                         }
6114                 }
6115         }
6116
6117         if (bio == bbio->orig_bio)
6118                 is_orig_bio = 1;
6119
6120         btrfs_bio_counter_dec(bbio->fs_info);
6121
6122         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6123                 if (!is_orig_bio) {
6124                         bio_put(bio);
6125                         bio = bbio->orig_bio;
6126                 }
6127
6128                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6129                 /* only send an error to the higher layers if it is
6130                  * beyond the tolerance of the btrfs bio
6131                  */
6132                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6133                         bio->bi_status = BLK_STS_IOERR;
6134                 } else {
6135                         /*
6136                          * this bio is actually up to date, we didn't
6137                          * go over the max number of errors
6138                          */
6139                         bio->bi_status = BLK_STS_OK;
6140                 }
6141
6142                 btrfs_end_bbio(bbio, bio);
6143         } else if (!is_orig_bio) {
6144                 bio_put(bio);
6145         }
6146 }
6147
6148 /*
6149  * see run_scheduled_bios for a description of why bios are collected for
6150  * async submit.
6151  *
6152  * This will add one bio to the pending list for a device and make sure
6153  * the work struct is scheduled.
6154  */
6155 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6156                                         struct bio *bio)
6157 {
6158         struct btrfs_fs_info *fs_info = device->fs_info;
6159         int should_queue = 1;
6160         struct btrfs_pending_bios *pending_bios;
6161
6162         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6163             !device->bdev) {
6164                 bio_io_error(bio);
6165                 return;
6166         }
6167
6168         /* don't bother with additional async steps for reads, right now */
6169         if (bio_op(bio) == REQ_OP_READ) {
6170                 btrfsic_submit_bio(bio);
6171                 return;
6172         }
6173
6174         WARN_ON(bio->bi_next);
6175         bio->bi_next = NULL;
6176
6177         spin_lock(&device->io_lock);
6178         if (op_is_sync(bio->bi_opf))
6179                 pending_bios = &device->pending_sync_bios;
6180         else
6181                 pending_bios = &device->pending_bios;
6182
6183         if (pending_bios->tail)
6184                 pending_bios->tail->bi_next = bio;
6185
6186         pending_bios->tail = bio;
6187         if (!pending_bios->head)
6188                 pending_bios->head = bio;
6189         if (device->running_pending)
6190                 should_queue = 0;
6191
6192         spin_unlock(&device->io_lock);
6193
6194         if (should_queue)
6195                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6196 }
6197
6198 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6199                               u64 physical, int dev_nr, int async)
6200 {
6201         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6202         struct btrfs_fs_info *fs_info = bbio->fs_info;
6203
6204         bio->bi_private = bbio;
6205         btrfs_io_bio(bio)->stripe_index = dev_nr;
6206         bio->bi_end_io = btrfs_end_bio;
6207         bio->bi_iter.bi_sector = physical >> 9;
6208 #ifdef DEBUG
6209         {
6210                 struct rcu_string *name;
6211
6212                 rcu_read_lock();
6213                 name = rcu_dereference(dev->name);
6214                 btrfs_debug(fs_info,
6215                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6216                         bio_op(bio), bio->bi_opf,
6217                         (u64)bio->bi_iter.bi_sector,
6218                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6219                         bio->bi_iter.bi_size);
6220                 rcu_read_unlock();
6221         }
6222 #endif
6223         bio_set_dev(bio, dev->bdev);
6224
6225         btrfs_bio_counter_inc_noblocked(fs_info);
6226
6227         if (async)
6228                 btrfs_schedule_bio(dev, bio);
6229         else
6230                 btrfsic_submit_bio(bio);
6231 }
6232
6233 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6234 {
6235         atomic_inc(&bbio->error);
6236         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6237                 /* Should be the original bio. */
6238                 WARN_ON(bio != bbio->orig_bio);
6239
6240                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6241                 bio->bi_iter.bi_sector = logical >> 9;
6242                 if (atomic_read(&bbio->error) > bbio->max_errors)
6243                         bio->bi_status = BLK_STS_IOERR;
6244                 else
6245                         bio->bi_status = BLK_STS_OK;
6246                 btrfs_end_bbio(bbio, bio);
6247         }
6248 }
6249
6250 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6251                            int mirror_num, int async_submit)
6252 {
6253         struct btrfs_device *dev;
6254         struct bio *first_bio = bio;
6255         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6256         u64 length = 0;
6257         u64 map_length;
6258         int ret;
6259         int dev_nr;
6260         int total_devs;
6261         struct btrfs_bio *bbio = NULL;
6262
6263         length = bio->bi_iter.bi_size;
6264         map_length = length;
6265
6266         btrfs_bio_counter_inc_blocked(fs_info);
6267         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6268                                 &map_length, &bbio, mirror_num, 1);
6269         if (ret) {
6270                 btrfs_bio_counter_dec(fs_info);
6271                 return errno_to_blk_status(ret);
6272         }
6273
6274         total_devs = bbio->num_stripes;
6275         bbio->orig_bio = first_bio;
6276         bbio->private = first_bio->bi_private;
6277         bbio->end_io = first_bio->bi_end_io;
6278         bbio->fs_info = fs_info;
6279         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6280
6281         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6282             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6283                 /* In this case, map_length has been set to the length of
6284                    a single stripe; not the whole write */
6285                 if (bio_op(bio) == REQ_OP_WRITE) {
6286                         ret = raid56_parity_write(fs_info, bio, bbio,
6287                                                   map_length);
6288                 } else {
6289                         ret = raid56_parity_recover(fs_info, bio, bbio,
6290                                                     map_length, mirror_num, 1);
6291                 }
6292
6293                 btrfs_bio_counter_dec(fs_info);
6294                 return errno_to_blk_status(ret);
6295         }
6296
6297         if (map_length < length) {
6298                 btrfs_crit(fs_info,
6299                            "mapping failed logical %llu bio len %llu len %llu",
6300                            logical, length, map_length);
6301                 BUG();
6302         }
6303
6304         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6305                 dev = bbio->stripes[dev_nr].dev;
6306                 if (!dev || !dev->bdev ||
6307                     (bio_op(first_bio) == REQ_OP_WRITE &&
6308                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6309                         bbio_error(bbio, first_bio, logical);
6310                         continue;
6311                 }
6312
6313                 if (dev_nr < total_devs - 1)
6314                         bio = btrfs_bio_clone(first_bio);
6315                 else
6316                         bio = first_bio;
6317
6318                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6319                                   dev_nr, async_submit);
6320         }
6321         btrfs_bio_counter_dec(fs_info);
6322         return BLK_STS_OK;
6323 }
6324
6325 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6326                                        u8 *uuid, u8 *fsid)
6327 {
6328         struct btrfs_device *device;
6329         struct btrfs_fs_devices *cur_devices;
6330
6331         cur_devices = fs_info->fs_devices;
6332         while (cur_devices) {
6333                 if (!fsid ||
6334                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6335                         device = find_device(cur_devices, devid, uuid);
6336                         if (device)
6337                                 return device;
6338                 }
6339                 cur_devices = cur_devices->seed;
6340         }
6341         return NULL;
6342 }
6343
6344 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6345                                             u64 devid, u8 *dev_uuid)
6346 {
6347         struct btrfs_device *device;
6348
6349         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6350         if (IS_ERR(device))
6351                 return device;
6352
6353         list_add(&device->dev_list, &fs_devices->devices);
6354         device->fs_devices = fs_devices;
6355         fs_devices->num_devices++;
6356
6357         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6358         fs_devices->missing_devices++;
6359
6360         return device;
6361 }
6362
6363 /**
6364  * btrfs_alloc_device - allocate struct btrfs_device
6365  * @fs_info:    used only for generating a new devid, can be NULL if
6366  *              devid is provided (i.e. @devid != NULL).
6367  * @devid:      a pointer to devid for this device.  If NULL a new devid
6368  *              is generated.
6369  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6370  *              is generated.
6371  *
6372  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6373  * on error.  Returned struct is not linked onto any lists and must be
6374  * destroyed with free_device.
6375  */
6376 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6377                                         const u64 *devid,
6378                                         const u8 *uuid)
6379 {
6380         struct btrfs_device *dev;
6381         u64 tmp;
6382
6383         if (WARN_ON(!devid && !fs_info))
6384                 return ERR_PTR(-EINVAL);
6385
6386         dev = __alloc_device();
6387         if (IS_ERR(dev))
6388                 return dev;
6389
6390         if (devid)
6391                 tmp = *devid;
6392         else {
6393                 int ret;
6394
6395                 ret = find_next_devid(fs_info, &tmp);
6396                 if (ret) {
6397                         free_device(dev);
6398                         return ERR_PTR(ret);
6399                 }
6400         }
6401         dev->devid = tmp;
6402
6403         if (uuid)
6404                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6405         else
6406                 generate_random_uuid(dev->uuid);
6407
6408         btrfs_init_work(&dev->work, btrfs_submit_helper,
6409                         pending_bios_fn, NULL, NULL);
6410
6411         return dev;
6412 }
6413
6414 /* Return -EIO if any error, otherwise return 0. */
6415 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6416                                    struct extent_buffer *leaf,
6417                                    struct btrfs_chunk *chunk, u64 logical)
6418 {
6419         u64 length;
6420         u64 stripe_len;
6421         u16 num_stripes;
6422         u16 sub_stripes;
6423         u64 type;
6424
6425         length = btrfs_chunk_length(leaf, chunk);
6426         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6427         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6428         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6429         type = btrfs_chunk_type(leaf, chunk);
6430
6431         if (!num_stripes) {
6432                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6433                           num_stripes);
6434                 return -EIO;
6435         }
6436         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6437                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6438                 return -EIO;
6439         }
6440         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6441                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6442                           btrfs_chunk_sector_size(leaf, chunk));
6443                 return -EIO;
6444         }
6445         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6446                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6447                 return -EIO;
6448         }
6449         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6450                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6451                           stripe_len);
6452                 return -EIO;
6453         }
6454         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6455             type) {
6456                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6457                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6458                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6459                           btrfs_chunk_type(leaf, chunk));
6460                 return -EIO;
6461         }
6462         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6463             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6464             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6465             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6466             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6467             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6468              num_stripes != 1)) {
6469                 btrfs_err(fs_info,
6470                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6471                         num_stripes, sub_stripes,
6472                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6473                 return -EIO;
6474         }
6475
6476         return 0;
6477 }
6478
6479 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6480                                         u64 devid, u8 *uuid, bool error)
6481 {
6482         if (error)
6483                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6484                               devid, uuid);
6485         else
6486                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6487                               devid, uuid);
6488 }
6489
6490 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6491                           struct extent_buffer *leaf,
6492                           struct btrfs_chunk *chunk)
6493 {
6494         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6495         struct map_lookup *map;
6496         struct extent_map *em;
6497         u64 logical;
6498         u64 length;
6499         u64 devid;
6500         u8 uuid[BTRFS_UUID_SIZE];
6501         int num_stripes;
6502         int ret;
6503         int i;
6504
6505         logical = key->offset;
6506         length = btrfs_chunk_length(leaf, chunk);
6507         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6508
6509         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6510         if (ret)
6511                 return ret;
6512
6513         read_lock(&map_tree->map_tree.lock);
6514         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6515         read_unlock(&map_tree->map_tree.lock);
6516
6517         /* already mapped? */
6518         if (em && em->start <= logical && em->start + em->len > logical) {
6519                 free_extent_map(em);
6520                 return 0;
6521         } else if (em) {
6522                 free_extent_map(em);
6523         }
6524
6525         em = alloc_extent_map();
6526         if (!em)
6527                 return -ENOMEM;
6528         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6529         if (!map) {
6530                 free_extent_map(em);
6531                 return -ENOMEM;
6532         }
6533
6534         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6535         em->map_lookup = map;
6536         em->start = logical;
6537         em->len = length;
6538         em->orig_start = 0;
6539         em->block_start = 0;
6540         em->block_len = em->len;
6541
6542         map->num_stripes = num_stripes;
6543         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6544         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6545         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6546         map->type = btrfs_chunk_type(leaf, chunk);
6547         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6548         for (i = 0; i < num_stripes; i++) {
6549                 map->stripes[i].physical =
6550                         btrfs_stripe_offset_nr(leaf, chunk, i);
6551                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6552                 read_extent_buffer(leaf, uuid, (unsigned long)
6553                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6554                                    BTRFS_UUID_SIZE);
6555                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6556                                                         uuid, NULL);
6557                 if (!map->stripes[i].dev &&
6558                     !btrfs_test_opt(fs_info, DEGRADED)) {
6559                         free_extent_map(em);
6560                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6561                         return -ENOENT;
6562                 }
6563                 if (!map->stripes[i].dev) {
6564                         map->stripes[i].dev =
6565                                 add_missing_dev(fs_info->fs_devices, devid,
6566                                                 uuid);
6567                         if (IS_ERR(map->stripes[i].dev)) {
6568                                 free_extent_map(em);
6569                                 btrfs_err(fs_info,
6570                                         "failed to init missing dev %llu: %ld",
6571                                         devid, PTR_ERR(map->stripes[i].dev));
6572                                 return PTR_ERR(map->stripes[i].dev);
6573                         }
6574                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6575                 }
6576                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6577                                 &(map->stripes[i].dev->dev_state));
6578
6579         }
6580
6581         write_lock(&map_tree->map_tree.lock);
6582         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6583         write_unlock(&map_tree->map_tree.lock);
6584         BUG_ON(ret); /* Tree corruption */
6585         free_extent_map(em);
6586
6587         return 0;
6588 }
6589
6590 static void fill_device_from_item(struct extent_buffer *leaf,
6591                                  struct btrfs_dev_item *dev_item,
6592                                  struct btrfs_device *device)
6593 {
6594         unsigned long ptr;
6595
6596         device->devid = btrfs_device_id(leaf, dev_item);
6597         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6598         device->total_bytes = device->disk_total_bytes;
6599         device->commit_total_bytes = device->disk_total_bytes;
6600         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6601         device->commit_bytes_used = device->bytes_used;
6602         device->type = btrfs_device_type(leaf, dev_item);
6603         device->io_align = btrfs_device_io_align(leaf, dev_item);
6604         device->io_width = btrfs_device_io_width(leaf, dev_item);
6605         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6606         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6607         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6608
6609         ptr = btrfs_device_uuid(dev_item);
6610         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6611 }
6612
6613 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6614                                                   u8 *fsid)
6615 {
6616         struct btrfs_fs_devices *fs_devices;
6617         int ret;
6618
6619         BUG_ON(!mutex_is_locked(&uuid_mutex));
6620         ASSERT(fsid);
6621
6622         fs_devices = fs_info->fs_devices->seed;
6623         while (fs_devices) {
6624                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6625                         return fs_devices;
6626
6627                 fs_devices = fs_devices->seed;
6628         }
6629
6630         fs_devices = find_fsid(fsid);
6631         if (!fs_devices) {
6632                 if (!btrfs_test_opt(fs_info, DEGRADED))
6633                         return ERR_PTR(-ENOENT);
6634
6635                 fs_devices = alloc_fs_devices(fsid);
6636                 if (IS_ERR(fs_devices))
6637                         return fs_devices;
6638
6639                 fs_devices->seeding = 1;
6640                 fs_devices->opened = 1;
6641                 return fs_devices;
6642         }
6643
6644         fs_devices = clone_fs_devices(fs_devices);
6645         if (IS_ERR(fs_devices))
6646                 return fs_devices;
6647
6648         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6649                                    fs_info->bdev_holder);
6650         if (ret) {
6651                 free_fs_devices(fs_devices);
6652                 fs_devices = ERR_PTR(ret);
6653                 goto out;
6654         }
6655
6656         if (!fs_devices->seeding) {
6657                 __btrfs_close_devices(fs_devices);
6658                 free_fs_devices(fs_devices);
6659                 fs_devices = ERR_PTR(-EINVAL);
6660                 goto out;
6661         }
6662
6663         fs_devices->seed = fs_info->fs_devices->seed;
6664         fs_info->fs_devices->seed = fs_devices;
6665 out:
6666         return fs_devices;
6667 }
6668
6669 static int read_one_dev(struct btrfs_fs_info *fs_info,
6670                         struct extent_buffer *leaf,
6671                         struct btrfs_dev_item *dev_item)
6672 {
6673         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6674         struct btrfs_device *device;
6675         u64 devid;
6676         int ret;
6677         u8 fs_uuid[BTRFS_FSID_SIZE];
6678         u8 dev_uuid[BTRFS_UUID_SIZE];
6679
6680         devid = btrfs_device_id(leaf, dev_item);
6681         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6682                            BTRFS_UUID_SIZE);
6683         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6684                            BTRFS_FSID_SIZE);
6685
6686         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6687                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6688                 if (IS_ERR(fs_devices))
6689                         return PTR_ERR(fs_devices);
6690         }
6691
6692         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6693         if (!device) {
6694                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6695                         btrfs_report_missing_device(fs_info, devid,
6696                                                         dev_uuid, true);
6697                         return -ENOENT;
6698                 }
6699
6700                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6701                 if (IS_ERR(device)) {
6702                         btrfs_err(fs_info,
6703                                 "failed to add missing dev %llu: %ld",
6704                                 devid, PTR_ERR(device));
6705                         return PTR_ERR(device);
6706                 }
6707                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6708         } else {
6709                 if (!device->bdev) {
6710                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6711                                 btrfs_report_missing_device(fs_info,
6712                                                 devid, dev_uuid, true);
6713                                 return -ENOENT;
6714                         }
6715                         btrfs_report_missing_device(fs_info, devid,
6716                                                         dev_uuid, false);
6717                 }
6718
6719                 if (!device->bdev &&
6720                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6721                         /*
6722                          * this happens when a device that was properly setup
6723                          * in the device info lists suddenly goes bad.
6724                          * device->bdev is NULL, and so we have to set
6725                          * device->missing to one here
6726                          */
6727                         device->fs_devices->missing_devices++;
6728                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6729                 }
6730
6731                 /* Move the device to its own fs_devices */
6732                 if (device->fs_devices != fs_devices) {
6733                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6734                                                         &device->dev_state));
6735
6736                         list_move(&device->dev_list, &fs_devices->devices);
6737                         device->fs_devices->num_devices--;
6738                         fs_devices->num_devices++;
6739
6740                         device->fs_devices->missing_devices--;
6741                         fs_devices->missing_devices++;
6742
6743                         device->fs_devices = fs_devices;
6744                 }
6745         }
6746
6747         if (device->fs_devices != fs_info->fs_devices) {
6748                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6749                 if (device->generation !=
6750                     btrfs_device_generation(leaf, dev_item))
6751                         return -EINVAL;
6752         }
6753
6754         fill_device_from_item(leaf, dev_item, device);
6755         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6756         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6757            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6758                 device->fs_devices->total_rw_bytes += device->total_bytes;
6759                 atomic64_add(device->total_bytes - device->bytes_used,
6760                                 &fs_info->free_chunk_space);
6761         }
6762         ret = 0;
6763         return ret;
6764 }
6765
6766 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6767 {
6768         struct btrfs_root *root = fs_info->tree_root;
6769         struct btrfs_super_block *super_copy = fs_info->super_copy;
6770         struct extent_buffer *sb;
6771         struct btrfs_disk_key *disk_key;
6772         struct btrfs_chunk *chunk;
6773         u8 *array_ptr;
6774         unsigned long sb_array_offset;
6775         int ret = 0;
6776         u32 num_stripes;
6777         u32 array_size;
6778         u32 len = 0;
6779         u32 cur_offset;
6780         u64 type;
6781         struct btrfs_key key;
6782
6783         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6784         /*
6785          * This will create extent buffer of nodesize, superblock size is
6786          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6787          * overallocate but we can keep it as-is, only the first page is used.
6788          */
6789         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6790         if (IS_ERR(sb))
6791                 return PTR_ERR(sb);
6792         set_extent_buffer_uptodate(sb);
6793         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6794         /*
6795          * The sb extent buffer is artificial and just used to read the system array.
6796          * set_extent_buffer_uptodate() call does not properly mark all it's
6797          * pages up-to-date when the page is larger: extent does not cover the
6798          * whole page and consequently check_page_uptodate does not find all
6799          * the page's extents up-to-date (the hole beyond sb),
6800          * write_extent_buffer then triggers a WARN_ON.
6801          *
6802          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6803          * but sb spans only this function. Add an explicit SetPageUptodate call
6804          * to silence the warning eg. on PowerPC 64.
6805          */
6806         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6807                 SetPageUptodate(sb->pages[0]);
6808
6809         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6810         array_size = btrfs_super_sys_array_size(super_copy);
6811
6812         array_ptr = super_copy->sys_chunk_array;
6813         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6814         cur_offset = 0;
6815
6816         while (cur_offset < array_size) {
6817                 disk_key = (struct btrfs_disk_key *)array_ptr;
6818                 len = sizeof(*disk_key);
6819                 if (cur_offset + len > array_size)
6820                         goto out_short_read;
6821
6822                 btrfs_disk_key_to_cpu(&key, disk_key);
6823
6824                 array_ptr += len;
6825                 sb_array_offset += len;
6826                 cur_offset += len;
6827
6828                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6829                         chunk = (struct btrfs_chunk *)sb_array_offset;
6830                         /*
6831                          * At least one btrfs_chunk with one stripe must be
6832                          * present, exact stripe count check comes afterwards
6833                          */
6834                         len = btrfs_chunk_item_size(1);
6835                         if (cur_offset + len > array_size)
6836                                 goto out_short_read;
6837
6838                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6839                         if (!num_stripes) {
6840                                 btrfs_err(fs_info,
6841                                         "invalid number of stripes %u in sys_array at offset %u",
6842                                         num_stripes, cur_offset);
6843                                 ret = -EIO;
6844                                 break;
6845                         }
6846
6847                         type = btrfs_chunk_type(sb, chunk);
6848                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6849                                 btrfs_err(fs_info,
6850                             "invalid chunk type %llu in sys_array at offset %u",
6851                                         type, cur_offset);
6852                                 ret = -EIO;
6853                                 break;
6854                         }
6855
6856                         len = btrfs_chunk_item_size(num_stripes);
6857                         if (cur_offset + len > array_size)
6858                                 goto out_short_read;
6859
6860                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6861                         if (ret)
6862                                 break;
6863                 } else {
6864                         btrfs_err(fs_info,
6865                             "unexpected item type %u in sys_array at offset %u",
6866                                   (u32)key.type, cur_offset);
6867                         ret = -EIO;
6868                         break;
6869                 }
6870                 array_ptr += len;
6871                 sb_array_offset += len;
6872                 cur_offset += len;
6873         }
6874         clear_extent_buffer_uptodate(sb);
6875         free_extent_buffer_stale(sb);
6876         return ret;
6877
6878 out_short_read:
6879         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6880                         len, cur_offset);
6881         clear_extent_buffer_uptodate(sb);
6882         free_extent_buffer_stale(sb);
6883         return -EIO;
6884 }
6885
6886 /*
6887  * Check if all chunks in the fs are OK for read-write degraded mount
6888  *
6889  * If the @failing_dev is specified, it's accounted as missing.
6890  *
6891  * Return true if all chunks meet the minimal RW mount requirements.
6892  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6893  */
6894 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6895                                         struct btrfs_device *failing_dev)
6896 {
6897         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6898         struct extent_map *em;
6899         u64 next_start = 0;
6900         bool ret = true;
6901
6902         read_lock(&map_tree->map_tree.lock);
6903         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6904         read_unlock(&map_tree->map_tree.lock);
6905         /* No chunk at all? Return false anyway */
6906         if (!em) {
6907                 ret = false;
6908                 goto out;
6909         }
6910         while (em) {
6911                 struct map_lookup *map;
6912                 int missing = 0;
6913                 int max_tolerated;
6914                 int i;
6915
6916                 map = em->map_lookup;
6917                 max_tolerated =
6918                         btrfs_get_num_tolerated_disk_barrier_failures(
6919                                         map->type);
6920                 for (i = 0; i < map->num_stripes; i++) {
6921                         struct btrfs_device *dev = map->stripes[i].dev;
6922
6923                         if (!dev || !dev->bdev ||
6924                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6925                             dev->last_flush_error)
6926                                 missing++;
6927                         else if (failing_dev && failing_dev == dev)
6928                                 missing++;
6929                 }
6930                 if (missing > max_tolerated) {
6931                         if (!failing_dev)
6932                                 btrfs_warn(fs_info,
6933         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6934                                    em->start, missing, max_tolerated);
6935                         free_extent_map(em);
6936                         ret = false;
6937                         goto out;
6938                 }
6939                 next_start = extent_map_end(em);
6940                 free_extent_map(em);
6941
6942                 read_lock(&map_tree->map_tree.lock);
6943                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6944                                            (u64)(-1) - next_start);
6945                 read_unlock(&map_tree->map_tree.lock);
6946         }
6947 out:
6948         return ret;
6949 }
6950
6951 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6952 {
6953         struct btrfs_root *root = fs_info->chunk_root;
6954         struct btrfs_path *path;
6955         struct extent_buffer *leaf;
6956         struct btrfs_key key;
6957         struct btrfs_key found_key;
6958         int ret;
6959         int slot;
6960         u64 total_dev = 0;
6961
6962         path = btrfs_alloc_path();
6963         if (!path)
6964                 return -ENOMEM;
6965
6966         mutex_lock(&uuid_mutex);
6967         mutex_lock(&fs_info->chunk_mutex);
6968
6969         /*
6970          * Read all device items, and then all the chunk items. All
6971          * device items are found before any chunk item (their object id
6972          * is smaller than the lowest possible object id for a chunk
6973          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6974          */
6975         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6976         key.offset = 0;
6977         key.type = 0;
6978         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6979         if (ret < 0)
6980                 goto error;
6981         while (1) {
6982                 leaf = path->nodes[0];
6983                 slot = path->slots[0];
6984                 if (slot >= btrfs_header_nritems(leaf)) {
6985                         ret = btrfs_next_leaf(root, path);
6986                         if (ret == 0)
6987                                 continue;
6988                         if (ret < 0)
6989                                 goto error;
6990                         break;
6991                 }
6992                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6993                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6994                         struct btrfs_dev_item *dev_item;
6995                         dev_item = btrfs_item_ptr(leaf, slot,
6996                                                   struct btrfs_dev_item);
6997                         ret = read_one_dev(fs_info, leaf, dev_item);
6998                         if (ret)
6999                                 goto error;
7000                         total_dev++;
7001                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7002                         struct btrfs_chunk *chunk;
7003                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7004                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7005                         if (ret)
7006                                 goto error;
7007                 }
7008                 path->slots[0]++;
7009         }
7010
7011         /*
7012          * After loading chunk tree, we've got all device information,
7013          * do another round of validation checks.
7014          */
7015         if (total_dev != fs_info->fs_devices->total_devices) {
7016                 btrfs_err(fs_info,
7017            "super_num_devices %llu mismatch with num_devices %llu found here",
7018                           btrfs_super_num_devices(fs_info->super_copy),
7019                           total_dev);
7020                 ret = -EINVAL;
7021                 goto error;
7022         }
7023         if (btrfs_super_total_bytes(fs_info->super_copy) <
7024             fs_info->fs_devices->total_rw_bytes) {
7025                 btrfs_err(fs_info,
7026         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7027                           btrfs_super_total_bytes(fs_info->super_copy),
7028                           fs_info->fs_devices->total_rw_bytes);
7029                 ret = -EINVAL;
7030                 goto error;
7031         }
7032         ret = 0;
7033 error:
7034         mutex_unlock(&fs_info->chunk_mutex);
7035         mutex_unlock(&uuid_mutex);
7036
7037         btrfs_free_path(path);
7038         return ret;
7039 }
7040
7041 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7042 {
7043         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7044         struct btrfs_device *device;
7045
7046         while (fs_devices) {
7047                 mutex_lock(&fs_devices->device_list_mutex);
7048                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7049                         device->fs_info = fs_info;
7050                 mutex_unlock(&fs_devices->device_list_mutex);
7051
7052                 fs_devices = fs_devices->seed;
7053         }
7054 }
7055
7056 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7057 {
7058         int i;
7059
7060         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7061                 btrfs_dev_stat_reset(dev, i);
7062 }
7063
7064 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7065 {
7066         struct btrfs_key key;
7067         struct btrfs_key found_key;
7068         struct btrfs_root *dev_root = fs_info->dev_root;
7069         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7070         struct extent_buffer *eb;
7071         int slot;
7072         int ret = 0;
7073         struct btrfs_device *device;
7074         struct btrfs_path *path = NULL;
7075         int i;
7076
7077         path = btrfs_alloc_path();
7078         if (!path) {
7079                 ret = -ENOMEM;
7080                 goto out;
7081         }
7082
7083         mutex_lock(&fs_devices->device_list_mutex);
7084         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7085                 int item_size;
7086                 struct btrfs_dev_stats_item *ptr;
7087
7088                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7089                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7090                 key.offset = device->devid;
7091                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7092                 if (ret) {
7093                         __btrfs_reset_dev_stats(device);
7094                         device->dev_stats_valid = 1;
7095                         btrfs_release_path(path);
7096                         continue;
7097                 }
7098                 slot = path->slots[0];
7099                 eb = path->nodes[0];
7100                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7101                 item_size = btrfs_item_size_nr(eb, slot);
7102
7103                 ptr = btrfs_item_ptr(eb, slot,
7104                                      struct btrfs_dev_stats_item);
7105
7106                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7107                         if (item_size >= (1 + i) * sizeof(__le64))
7108                                 btrfs_dev_stat_set(device, i,
7109                                         btrfs_dev_stats_value(eb, ptr, i));
7110                         else
7111                                 btrfs_dev_stat_reset(device, i);
7112                 }
7113
7114                 device->dev_stats_valid = 1;
7115                 btrfs_dev_stat_print_on_load(device);
7116                 btrfs_release_path(path);
7117         }
7118         mutex_unlock(&fs_devices->device_list_mutex);
7119
7120 out:
7121         btrfs_free_path(path);
7122         return ret < 0 ? ret : 0;
7123 }
7124
7125 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7126                                 struct btrfs_fs_info *fs_info,
7127                                 struct btrfs_device *device)
7128 {
7129         struct btrfs_root *dev_root = fs_info->dev_root;
7130         struct btrfs_path *path;
7131         struct btrfs_key key;
7132         struct extent_buffer *eb;
7133         struct btrfs_dev_stats_item *ptr;
7134         int ret;
7135         int i;
7136
7137         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7138         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7139         key.offset = device->devid;
7140
7141         path = btrfs_alloc_path();
7142         if (!path)
7143                 return -ENOMEM;
7144         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7145         if (ret < 0) {
7146                 btrfs_warn_in_rcu(fs_info,
7147                         "error %d while searching for dev_stats item for device %s",
7148                               ret, rcu_str_deref(device->name));
7149                 goto out;
7150         }
7151
7152         if (ret == 0 &&
7153             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7154                 /* need to delete old one and insert a new one */
7155                 ret = btrfs_del_item(trans, dev_root, path);
7156                 if (ret != 0) {
7157                         btrfs_warn_in_rcu(fs_info,
7158                                 "delete too small dev_stats item for device %s failed %d",
7159                                       rcu_str_deref(device->name), ret);
7160                         goto out;
7161                 }
7162                 ret = 1;
7163         }
7164
7165         if (ret == 1) {
7166                 /* need to insert a new item */
7167                 btrfs_release_path(path);
7168                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7169                                               &key, sizeof(*ptr));
7170                 if (ret < 0) {
7171                         btrfs_warn_in_rcu(fs_info,
7172                                 "insert dev_stats item for device %s failed %d",
7173                                 rcu_str_deref(device->name), ret);
7174                         goto out;
7175                 }
7176         }
7177
7178         eb = path->nodes[0];
7179         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7180         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7181                 btrfs_set_dev_stats_value(eb, ptr, i,
7182                                           btrfs_dev_stat_read(device, i));
7183         btrfs_mark_buffer_dirty(eb);
7184
7185 out:
7186         btrfs_free_path(path);
7187         return ret;
7188 }
7189
7190 /*
7191  * called from commit_transaction. Writes all changed device stats to disk.
7192  */
7193 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7194                         struct btrfs_fs_info *fs_info)
7195 {
7196         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7197         struct btrfs_device *device;
7198         int stats_cnt;
7199         int ret = 0;
7200
7201         mutex_lock(&fs_devices->device_list_mutex);
7202         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7203                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7204                 if (!device->dev_stats_valid || stats_cnt == 0)
7205                         continue;
7206
7207
7208                 /*
7209                  * There is a LOAD-LOAD control dependency between the value of
7210                  * dev_stats_ccnt and updating the on-disk values which requires
7211                  * reading the in-memory counters. Such control dependencies
7212                  * require explicit read memory barriers.
7213                  *
7214                  * This memory barriers pairs with smp_mb__before_atomic in
7215                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7216                  * barrier implied by atomic_xchg in
7217                  * btrfs_dev_stats_read_and_reset
7218                  */
7219                 smp_rmb();
7220
7221                 ret = update_dev_stat_item(trans, fs_info, device);
7222                 if (!ret)
7223                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7224         }
7225         mutex_unlock(&fs_devices->device_list_mutex);
7226
7227         return ret;
7228 }
7229
7230 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7231 {
7232         btrfs_dev_stat_inc(dev, index);
7233         btrfs_dev_stat_print_on_error(dev);
7234 }
7235
7236 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7237 {
7238         if (!dev->dev_stats_valid)
7239                 return;
7240         btrfs_err_rl_in_rcu(dev->fs_info,
7241                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7242                            rcu_str_deref(dev->name),
7243                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7244                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7245                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7246                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7247                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7248 }
7249
7250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7251 {
7252         int i;
7253
7254         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7255                 if (btrfs_dev_stat_read(dev, i) != 0)
7256                         break;
7257         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7258                 return; /* all values == 0, suppress message */
7259
7260         btrfs_info_in_rcu(dev->fs_info,
7261                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7262                rcu_str_deref(dev->name),
7263                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7264                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7265                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7266                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7267                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7268 }
7269
7270 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7271                         struct btrfs_ioctl_get_dev_stats *stats)
7272 {
7273         struct btrfs_device *dev;
7274         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7275         int i;
7276
7277         mutex_lock(&fs_devices->device_list_mutex);
7278         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7279         mutex_unlock(&fs_devices->device_list_mutex);
7280
7281         if (!dev) {
7282                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7283                 return -ENODEV;
7284         } else if (!dev->dev_stats_valid) {
7285                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7286                 return -ENODEV;
7287         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7288                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7289                         if (stats->nr_items > i)
7290                                 stats->values[i] =
7291                                         btrfs_dev_stat_read_and_reset(dev, i);
7292                         else
7293                                 btrfs_dev_stat_reset(dev, i);
7294                 }
7295         } else {
7296                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7297                         if (stats->nr_items > i)
7298                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7299         }
7300         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7301                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7302         return 0;
7303 }
7304
7305 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7306 {
7307         struct buffer_head *bh;
7308         struct btrfs_super_block *disk_super;
7309         int copy_num;
7310
7311         if (!bdev)
7312                 return;
7313
7314         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7315                 copy_num++) {
7316
7317                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7318                         continue;
7319
7320                 disk_super = (struct btrfs_super_block *)bh->b_data;
7321
7322                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7323                 set_buffer_dirty(bh);
7324                 sync_dirty_buffer(bh);
7325                 brelse(bh);
7326         }
7327
7328         /* Notify udev that device has changed */
7329         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7330
7331         /* Update ctime/mtime for device path for libblkid */
7332         update_dev_time(device_path);
7333 }
7334
7335 /*
7336  * Update the size of all devices, which is used for writing out the
7337  * super blocks.
7338  */
7339 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7340 {
7341         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7342         struct btrfs_device *curr, *next;
7343
7344         if (list_empty(&fs_devices->resized_devices))
7345                 return;
7346
7347         mutex_lock(&fs_devices->device_list_mutex);
7348         mutex_lock(&fs_info->chunk_mutex);
7349         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7350                                  resized_list) {
7351                 list_del_init(&curr->resized_list);
7352                 curr->commit_total_bytes = curr->disk_total_bytes;
7353         }
7354         mutex_unlock(&fs_info->chunk_mutex);
7355         mutex_unlock(&fs_devices->device_list_mutex);
7356 }
7357
7358 /* Must be invoked during the transaction commit */
7359 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7360                                         struct btrfs_transaction *transaction)
7361 {
7362         struct extent_map *em;
7363         struct map_lookup *map;
7364         struct btrfs_device *dev;
7365         int i;
7366
7367         if (list_empty(&transaction->pending_chunks))
7368                 return;
7369
7370         /* In order to kick the device replace finish process */
7371         mutex_lock(&fs_info->chunk_mutex);
7372         list_for_each_entry(em, &transaction->pending_chunks, list) {
7373                 map = em->map_lookup;
7374
7375                 for (i = 0; i < map->num_stripes; i++) {
7376                         dev = map->stripes[i].dev;
7377                         dev->commit_bytes_used = dev->bytes_used;
7378                 }
7379         }
7380         mutex_unlock(&fs_info->chunk_mutex);
7381 }
7382
7383 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7384 {
7385         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7386         while (fs_devices) {
7387                 fs_devices->fs_info = fs_info;
7388                 fs_devices = fs_devices->seed;
7389         }
7390 }
7391
7392 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7393 {
7394         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7395         while (fs_devices) {
7396                 fs_devices->fs_info = NULL;
7397                 fs_devices = fs_devices->seed;
7398         }
7399 }