]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/buffer.c
buffer: set errors in mapping at the time that the error occurs
[linux.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52                          struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58         bh->b_end_io = handler;
59         bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65         trace_block_touch_buffer(bh);
66         mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
76 void unlock_buffer(struct buffer_head *bh)
77 {
78         clear_bit_unlock(BH_Lock, &bh->b_state);
79         smp_mb__after_atomic();
80         wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85  * Returns if the page has dirty or writeback buffers. If all the buffers
86  * are unlocked and clean then the PageDirty information is stale. If
87  * any of the pages are locked, it is assumed they are locked for IO.
88  */
89 void buffer_check_dirty_writeback(struct page *page,
90                                      bool *dirty, bool *writeback)
91 {
92         struct buffer_head *head, *bh;
93         *dirty = false;
94         *writeback = false;
95
96         BUG_ON(!PageLocked(page));
97
98         if (!page_has_buffers(page))
99                 return;
100
101         if (PageWriteback(page))
102                 *writeback = true;
103
104         head = page_buffers(page);
105         bh = head;
106         do {
107                 if (buffer_locked(bh))
108                         *writeback = true;
109
110                 if (buffer_dirty(bh))
111                         *dirty = true;
112
113                 bh = bh->b_this_page;
114         } while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118 /*
119  * Block until a buffer comes unlocked.  This doesn't stop it
120  * from becoming locked again - you have to lock it yourself
121  * if you want to preserve its state.
122  */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132         ClearPagePrivate(page);
133         set_page_private(page, 0);
134         put_page(page);
135 }
136
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139         if (!test_bit(BH_Quiet, &bh->b_state))
140                 printk_ratelimited(KERN_ERR
141                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
142                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144
145 /*
146  * End-of-IO handler helper function which does not touch the bh after
147  * unlocking it.
148  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149  * a race there is benign: unlock_buffer() only use the bh's address for
150  * hashing after unlocking the buffer, so it doesn't actually touch the bh
151  * itself.
152  */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155         if (uptodate) {
156                 set_buffer_uptodate(bh);
157         } else {
158                 /* This happens, due to failed read-ahead attempts. */
159                 clear_buffer_uptodate(bh);
160         }
161         unlock_buffer(bh);
162 }
163
164 /*
165  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
166  * unlock the buffer. This is what ll_rw_block uses too.
167  */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170         __end_buffer_read_notouch(bh, uptodate);
171         put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177         if (uptodate) {
178                 set_buffer_uptodate(bh);
179         } else {
180                 buffer_io_error(bh, ", lost sync page write");
181                 mark_buffer_write_io_error(bh);
182                 clear_buffer_uptodate(bh);
183         }
184         unlock_buffer(bh);
185         put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188
189 /*
190  * Various filesystems appear to want __find_get_block to be non-blocking.
191  * But it's the page lock which protects the buffers.  To get around this,
192  * we get exclusion from try_to_free_buffers with the blockdev mapping's
193  * private_lock.
194  *
195  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196  * may be quite high.  This code could TryLock the page, and if that
197  * succeeds, there is no need to take private_lock. (But if
198  * private_lock is contended then so is mapping->tree_lock).
199  */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203         struct inode *bd_inode = bdev->bd_inode;
204         struct address_space *bd_mapping = bd_inode->i_mapping;
205         struct buffer_head *ret = NULL;
206         pgoff_t index;
207         struct buffer_head *bh;
208         struct buffer_head *head;
209         struct page *page;
210         int all_mapped = 1;
211
212         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214         if (!page)
215                 goto out;
216
217         spin_lock(&bd_mapping->private_lock);
218         if (!page_has_buffers(page))
219                 goto out_unlock;
220         head = page_buffers(page);
221         bh = head;
222         do {
223                 if (!buffer_mapped(bh))
224                         all_mapped = 0;
225                 else if (bh->b_blocknr == block) {
226                         ret = bh;
227                         get_bh(bh);
228                         goto out_unlock;
229                 }
230                 bh = bh->b_this_page;
231         } while (bh != head);
232
233         /* we might be here because some of the buffers on this page are
234          * not mapped.  This is due to various races between
235          * file io on the block device and getblk.  It gets dealt with
236          * elsewhere, don't buffer_error if we had some unmapped buffers
237          */
238         if (all_mapped) {
239                 printk("__find_get_block_slow() failed. "
240                         "block=%llu, b_blocknr=%llu\n",
241                         (unsigned long long)block,
242                         (unsigned long long)bh->b_blocknr);
243                 printk("b_state=0x%08lx, b_size=%zu\n",
244                         bh->b_state, bh->b_size);
245                 printk("device %pg blocksize: %d\n", bdev,
246                         1 << bd_inode->i_blkbits);
247         }
248 out_unlock:
249         spin_unlock(&bd_mapping->private_lock);
250         put_page(page);
251 out:
252         return ret;
253 }
254
255 /*
256  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257  */
258 static void free_more_memory(void)
259 {
260         struct zoneref *z;
261         int nid;
262
263         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264         yield();
265
266         for_each_online_node(nid) {
267
268                 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269                                                 gfp_zone(GFP_NOFS), NULL);
270                 if (z->zone)
271                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272                                                 GFP_NOFS, NULL);
273         }
274 }
275
276 /*
277  * I/O completion handler for block_read_full_page() - pages
278  * which come unlocked at the end of I/O.
279  */
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281 {
282         unsigned long flags;
283         struct buffer_head *first;
284         struct buffer_head *tmp;
285         struct page *page;
286         int page_uptodate = 1;
287
288         BUG_ON(!buffer_async_read(bh));
289
290         page = bh->b_page;
291         if (uptodate) {
292                 set_buffer_uptodate(bh);
293         } else {
294                 clear_buffer_uptodate(bh);
295                 buffer_io_error(bh, ", async page read");
296                 SetPageError(page);
297         }
298
299         /*
300          * Be _very_ careful from here on. Bad things can happen if
301          * two buffer heads end IO at almost the same time and both
302          * decide that the page is now completely done.
303          */
304         first = page_buffers(page);
305         local_irq_save(flags);
306         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307         clear_buffer_async_read(bh);
308         unlock_buffer(bh);
309         tmp = bh;
310         do {
311                 if (!buffer_uptodate(tmp))
312                         page_uptodate = 0;
313                 if (buffer_async_read(tmp)) {
314                         BUG_ON(!buffer_locked(tmp));
315                         goto still_busy;
316                 }
317                 tmp = tmp->b_this_page;
318         } while (tmp != bh);
319         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320         local_irq_restore(flags);
321
322         /*
323          * If none of the buffers had errors and they are all
324          * uptodate then we can set the page uptodate.
325          */
326         if (page_uptodate && !PageError(page))
327                 SetPageUptodate(page);
328         unlock_page(page);
329         return;
330
331 still_busy:
332         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333         local_irq_restore(flags);
334         return;
335 }
336
337 /*
338  * Completion handler for block_write_full_page() - pages which are unlocked
339  * during I/O, and which have PageWriteback cleared upon I/O completion.
340  */
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342 {
343         unsigned long flags;
344         struct buffer_head *first;
345         struct buffer_head *tmp;
346         struct page *page;
347
348         BUG_ON(!buffer_async_write(bh));
349
350         page = bh->b_page;
351         if (uptodate) {
352                 set_buffer_uptodate(bh);
353         } else {
354                 buffer_io_error(bh, ", lost async page write");
355                 mark_buffer_write_io_error(bh);
356                 clear_buffer_uptodate(bh);
357                 SetPageError(page);
358         }
359
360         first = page_buffers(page);
361         local_irq_save(flags);
362         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375         local_irq_restore(flags);
376         end_page_writeback(page);
377         return;
378
379 still_busy:
380         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381         local_irq_restore(flags);
382         return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385
386 /*
387  * If a page's buffers are under async readin (end_buffer_async_read
388  * completion) then there is a possibility that another thread of
389  * control could lock one of the buffers after it has completed
390  * but while some of the other buffers have not completed.  This
391  * locked buffer would confuse end_buffer_async_read() into not unlocking
392  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
393  * that this buffer is not under async I/O.
394  *
395  * The page comes unlocked when it has no locked buffer_async buffers
396  * left.
397  *
398  * PageLocked prevents anyone starting new async I/O reads any of
399  * the buffers.
400  *
401  * PageWriteback is used to prevent simultaneous writeout of the same
402  * page.
403  *
404  * PageLocked prevents anyone from starting writeback of a page which is
405  * under read I/O (PageWriteback is only ever set against a locked page).
406  */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409         bh->b_end_io = end_buffer_async_read;
410         set_buffer_async_read(bh);
411 }
412
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414                                           bh_end_io_t *handler)
415 {
416         bh->b_end_io = handler;
417         set_buffer_async_write(bh);
418 }
419
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422         mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425
426
427 /*
428  * fs/buffer.c contains helper functions for buffer-backed address space's
429  * fsync functions.  A common requirement for buffer-based filesystems is
430  * that certain data from the backing blockdev needs to be written out for
431  * a successful fsync().  For example, ext2 indirect blocks need to be
432  * written back and waited upon before fsync() returns.
433  *
434  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436  * management of a list of dependent buffers at ->i_mapping->private_list.
437  *
438  * Locking is a little subtle: try_to_free_buffers() will remove buffers
439  * from their controlling inode's queue when they are being freed.  But
440  * try_to_free_buffers() will be operating against the *blockdev* mapping
441  * at the time, not against the S_ISREG file which depends on those buffers.
442  * So the locking for private_list is via the private_lock in the address_space
443  * which backs the buffers.  Which is different from the address_space 
444  * against which the buffers are listed.  So for a particular address_space,
445  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
446  * mapping->private_list will always be protected by the backing blockdev's
447  * ->private_lock.
448  *
449  * Which introduces a requirement: all buffers on an address_space's
450  * ->private_list must be from the same address_space: the blockdev's.
451  *
452  * address_spaces which do not place buffers at ->private_list via these
453  * utility functions are free to use private_lock and private_list for
454  * whatever they want.  The only requirement is that list_empty(private_list)
455  * be true at clear_inode() time.
456  *
457  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
458  * filesystems should do that.  invalidate_inode_buffers() should just go
459  * BUG_ON(!list_empty).
460  *
461  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
462  * take an address_space, not an inode.  And it should be called
463  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464  * queued up.
465  *
466  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467  * list if it is already on a list.  Because if the buffer is on a list,
468  * it *must* already be on the right one.  If not, the filesystem is being
469  * silly.  This will save a ton of locking.  But first we have to ensure
470  * that buffers are taken *off* the old inode's list when they are freed
471  * (presumably in truncate).  That requires careful auditing of all
472  * filesystems (do it inside bforget()).  It could also be done by bringing
473  * b_inode back.
474  */
475
476 /*
477  * The buffer's backing address_space's private_lock must be held
478  */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481         list_del_init(&bh->b_assoc_buffers);
482         WARN_ON(!bh->b_assoc_map);
483         bh->b_assoc_map = NULL;
484 }
485
486 int inode_has_buffers(struct inode *inode)
487 {
488         return !list_empty(&inode->i_data.private_list);
489 }
490
491 /*
492  * osync is designed to support O_SYNC io.  It waits synchronously for
493  * all already-submitted IO to complete, but does not queue any new
494  * writes to the disk.
495  *
496  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497  * you dirty the buffers, and then use osync_inode_buffers to wait for
498  * completion.  Any other dirty buffers which are not yet queued for
499  * write will not be flushed to disk by the osync.
500  */
501 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
502 {
503         struct buffer_head *bh;
504         struct list_head *p;
505         int err = 0;
506
507         spin_lock(lock);
508 repeat:
509         list_for_each_prev(p, list) {
510                 bh = BH_ENTRY(p);
511                 if (buffer_locked(bh)) {
512                         get_bh(bh);
513                         spin_unlock(lock);
514                         wait_on_buffer(bh);
515                         if (!buffer_uptodate(bh))
516                                 err = -EIO;
517                         brelse(bh);
518                         spin_lock(lock);
519                         goto repeat;
520                 }
521         }
522         spin_unlock(lock);
523         return err;
524 }
525
526 static void do_thaw_one(struct super_block *sb, void *unused)
527 {
528         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
529                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
530 }
531
532 static void do_thaw_all(struct work_struct *work)
533 {
534         iterate_supers(do_thaw_one, NULL);
535         kfree(work);
536         printk(KERN_WARNING "Emergency Thaw complete\n");
537 }
538
539 /**
540  * emergency_thaw_all -- forcibly thaw every frozen filesystem
541  *
542  * Used for emergency unfreeze of all filesystems via SysRq
543  */
544 void emergency_thaw_all(void)
545 {
546         struct work_struct *work;
547
548         work = kmalloc(sizeof(*work), GFP_ATOMIC);
549         if (work) {
550                 INIT_WORK(work, do_thaw_all);
551                 schedule_work(work);
552         }
553 }
554
555 /**
556  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
557  * @mapping: the mapping which wants those buffers written
558  *
559  * Starts I/O against the buffers at mapping->private_list, and waits upon
560  * that I/O.
561  *
562  * Basically, this is a convenience function for fsync().
563  * @mapping is a file or directory which needs those buffers to be written for
564  * a successful fsync().
565  */
566 int sync_mapping_buffers(struct address_space *mapping)
567 {
568         struct address_space *buffer_mapping = mapping->private_data;
569
570         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
571                 return 0;
572
573         return fsync_buffers_list(&buffer_mapping->private_lock,
574                                         &mapping->private_list);
575 }
576 EXPORT_SYMBOL(sync_mapping_buffers);
577
578 /*
579  * Called when we've recently written block `bblock', and it is known that
580  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
581  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
582  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
583  */
584 void write_boundary_block(struct block_device *bdev,
585                         sector_t bblock, unsigned blocksize)
586 {
587         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
588         if (bh) {
589                 if (buffer_dirty(bh))
590                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
591                 put_bh(bh);
592         }
593 }
594
595 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
596 {
597         struct address_space *mapping = inode->i_mapping;
598         struct address_space *buffer_mapping = bh->b_page->mapping;
599
600         mark_buffer_dirty(bh);
601         if (!mapping->private_data) {
602                 mapping->private_data = buffer_mapping;
603         } else {
604                 BUG_ON(mapping->private_data != buffer_mapping);
605         }
606         if (!bh->b_assoc_map) {
607                 spin_lock(&buffer_mapping->private_lock);
608                 list_move_tail(&bh->b_assoc_buffers,
609                                 &mapping->private_list);
610                 bh->b_assoc_map = mapping;
611                 spin_unlock(&buffer_mapping->private_lock);
612         }
613 }
614 EXPORT_SYMBOL(mark_buffer_dirty_inode);
615
616 /*
617  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
618  * dirty.
619  *
620  * If warn is true, then emit a warning if the page is not uptodate and has
621  * not been truncated.
622  *
623  * The caller must hold lock_page_memcg().
624  */
625 static void __set_page_dirty(struct page *page, struct address_space *mapping,
626                              int warn)
627 {
628         unsigned long flags;
629
630         spin_lock_irqsave(&mapping->tree_lock, flags);
631         if (page->mapping) {    /* Race with truncate? */
632                 WARN_ON_ONCE(warn && !PageUptodate(page));
633                 account_page_dirtied(page, mapping);
634                 radix_tree_tag_set(&mapping->page_tree,
635                                 page_index(page), PAGECACHE_TAG_DIRTY);
636         }
637         spin_unlock_irqrestore(&mapping->tree_lock, flags);
638 }
639
640 /*
641  * Add a page to the dirty page list.
642  *
643  * It is a sad fact of life that this function is called from several places
644  * deeply under spinlocking.  It may not sleep.
645  *
646  * If the page has buffers, the uptodate buffers are set dirty, to preserve
647  * dirty-state coherency between the page and the buffers.  It the page does
648  * not have buffers then when they are later attached they will all be set
649  * dirty.
650  *
651  * The buffers are dirtied before the page is dirtied.  There's a small race
652  * window in which a writepage caller may see the page cleanness but not the
653  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
654  * before the buffers, a concurrent writepage caller could clear the page dirty
655  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656  * page on the dirty page list.
657  *
658  * We use private_lock to lock against try_to_free_buffers while using the
659  * page's buffer list.  Also use this to protect against clean buffers being
660  * added to the page after it was set dirty.
661  *
662  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
663  * address_space though.
664  */
665 int __set_page_dirty_buffers(struct page *page)
666 {
667         int newly_dirty;
668         struct address_space *mapping = page_mapping(page);
669
670         if (unlikely(!mapping))
671                 return !TestSetPageDirty(page);
672
673         spin_lock(&mapping->private_lock);
674         if (page_has_buffers(page)) {
675                 struct buffer_head *head = page_buffers(page);
676                 struct buffer_head *bh = head;
677
678                 do {
679                         set_buffer_dirty(bh);
680                         bh = bh->b_this_page;
681                 } while (bh != head);
682         }
683         /*
684          * Lock out page->mem_cgroup migration to keep PageDirty
685          * synchronized with per-memcg dirty page counters.
686          */
687         lock_page_memcg(page);
688         newly_dirty = !TestSetPageDirty(page);
689         spin_unlock(&mapping->private_lock);
690
691         if (newly_dirty)
692                 __set_page_dirty(page, mapping, 1);
693
694         unlock_page_memcg(page);
695
696         if (newly_dirty)
697                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698
699         return newly_dirty;
700 }
701 EXPORT_SYMBOL(__set_page_dirty_buffers);
702
703 /*
704  * Write out and wait upon a list of buffers.
705  *
706  * We have conflicting pressures: we want to make sure that all
707  * initially dirty buffers get waited on, but that any subsequently
708  * dirtied buffers don't.  After all, we don't want fsync to last
709  * forever if somebody is actively writing to the file.
710  *
711  * Do this in two main stages: first we copy dirty buffers to a
712  * temporary inode list, queueing the writes as we go.  Then we clean
713  * up, waiting for those writes to complete.
714  * 
715  * During this second stage, any subsequent updates to the file may end
716  * up refiling the buffer on the original inode's dirty list again, so
717  * there is a chance we will end up with a buffer queued for write but
718  * not yet completed on that list.  So, as a final cleanup we go through
719  * the osync code to catch these locked, dirty buffers without requeuing
720  * any newly dirty buffers for write.
721  */
722 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
723 {
724         struct buffer_head *bh;
725         struct list_head tmp;
726         struct address_space *mapping;
727         int err = 0, err2;
728         struct blk_plug plug;
729
730         INIT_LIST_HEAD(&tmp);
731         blk_start_plug(&plug);
732
733         spin_lock(lock);
734         while (!list_empty(list)) {
735                 bh = BH_ENTRY(list->next);
736                 mapping = bh->b_assoc_map;
737                 __remove_assoc_queue(bh);
738                 /* Avoid race with mark_buffer_dirty_inode() which does
739                  * a lockless check and we rely on seeing the dirty bit */
740                 smp_mb();
741                 if (buffer_dirty(bh) || buffer_locked(bh)) {
742                         list_add(&bh->b_assoc_buffers, &tmp);
743                         bh->b_assoc_map = mapping;
744                         if (buffer_dirty(bh)) {
745                                 get_bh(bh);
746                                 spin_unlock(lock);
747                                 /*
748                                  * Ensure any pending I/O completes so that
749                                  * write_dirty_buffer() actually writes the
750                                  * current contents - it is a noop if I/O is
751                                  * still in flight on potentially older
752                                  * contents.
753                                  */
754                                 write_dirty_buffer(bh, REQ_SYNC);
755
756                                 /*
757                                  * Kick off IO for the previous mapping. Note
758                                  * that we will not run the very last mapping,
759                                  * wait_on_buffer() will do that for us
760                                  * through sync_buffer().
761                                  */
762                                 brelse(bh);
763                                 spin_lock(lock);
764                         }
765                 }
766         }
767
768         spin_unlock(lock);
769         blk_finish_plug(&plug);
770         spin_lock(lock);
771
772         while (!list_empty(&tmp)) {
773                 bh = BH_ENTRY(tmp.prev);
774                 get_bh(bh);
775                 mapping = bh->b_assoc_map;
776                 __remove_assoc_queue(bh);
777                 /* Avoid race with mark_buffer_dirty_inode() which does
778                  * a lockless check and we rely on seeing the dirty bit */
779                 smp_mb();
780                 if (buffer_dirty(bh)) {
781                         list_add(&bh->b_assoc_buffers,
782                                  &mapping->private_list);
783                         bh->b_assoc_map = mapping;
784                 }
785                 spin_unlock(lock);
786                 wait_on_buffer(bh);
787                 if (!buffer_uptodate(bh))
788                         err = -EIO;
789                 brelse(bh);
790                 spin_lock(lock);
791         }
792         
793         spin_unlock(lock);
794         err2 = osync_buffers_list(lock, list);
795         if (err)
796                 return err;
797         else
798                 return err2;
799 }
800
801 /*
802  * Invalidate any and all dirty buffers on a given inode.  We are
803  * probably unmounting the fs, but that doesn't mean we have already
804  * done a sync().  Just drop the buffers from the inode list.
805  *
806  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
807  * assumes that all the buffers are against the blockdev.  Not true
808  * for reiserfs.
809  */
810 void invalidate_inode_buffers(struct inode *inode)
811 {
812         if (inode_has_buffers(inode)) {
813                 struct address_space *mapping = &inode->i_data;
814                 struct list_head *list = &mapping->private_list;
815                 struct address_space *buffer_mapping = mapping->private_data;
816
817                 spin_lock(&buffer_mapping->private_lock);
818                 while (!list_empty(list))
819                         __remove_assoc_queue(BH_ENTRY(list->next));
820                 spin_unlock(&buffer_mapping->private_lock);
821         }
822 }
823 EXPORT_SYMBOL(invalidate_inode_buffers);
824
825 /*
826  * Remove any clean buffers from the inode's buffer list.  This is called
827  * when we're trying to free the inode itself.  Those buffers can pin it.
828  *
829  * Returns true if all buffers were removed.
830  */
831 int remove_inode_buffers(struct inode *inode)
832 {
833         int ret = 1;
834
835         if (inode_has_buffers(inode)) {
836                 struct address_space *mapping = &inode->i_data;
837                 struct list_head *list = &mapping->private_list;
838                 struct address_space *buffer_mapping = mapping->private_data;
839
840                 spin_lock(&buffer_mapping->private_lock);
841                 while (!list_empty(list)) {
842                         struct buffer_head *bh = BH_ENTRY(list->next);
843                         if (buffer_dirty(bh)) {
844                                 ret = 0;
845                                 break;
846                         }
847                         __remove_assoc_queue(bh);
848                 }
849                 spin_unlock(&buffer_mapping->private_lock);
850         }
851         return ret;
852 }
853
854 /*
855  * Create the appropriate buffers when given a page for data area and
856  * the size of each buffer.. Use the bh->b_this_page linked list to
857  * follow the buffers created.  Return NULL if unable to create more
858  * buffers.
859  *
860  * The retry flag is used to differentiate async IO (paging, swapping)
861  * which may not fail from ordinary buffer allocations.
862  */
863 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864                 int retry)
865 {
866         struct buffer_head *bh, *head;
867         long offset;
868
869 try_again:
870         head = NULL;
871         offset = PAGE_SIZE;
872         while ((offset -= size) >= 0) {
873                 bh = alloc_buffer_head(GFP_NOFS);
874                 if (!bh)
875                         goto no_grow;
876
877                 bh->b_this_page = head;
878                 bh->b_blocknr = -1;
879                 head = bh;
880
881                 bh->b_size = size;
882
883                 /* Link the buffer to its page */
884                 set_bh_page(bh, page, offset);
885         }
886         return head;
887 /*
888  * In case anything failed, we just free everything we got.
889  */
890 no_grow:
891         if (head) {
892                 do {
893                         bh = head;
894                         head = head->b_this_page;
895                         free_buffer_head(bh);
896                 } while (head);
897         }
898
899         /*
900          * Return failure for non-async IO requests.  Async IO requests
901          * are not allowed to fail, so we have to wait until buffer heads
902          * become available.  But we don't want tasks sleeping with 
903          * partially complete buffers, so all were released above.
904          */
905         if (!retry)
906                 return NULL;
907
908         /* We're _really_ low on memory. Now we just
909          * wait for old buffer heads to become free due to
910          * finishing IO.  Since this is an async request and
911          * the reserve list is empty, we're sure there are 
912          * async buffer heads in use.
913          */
914         free_more_memory();
915         goto try_again;
916 }
917 EXPORT_SYMBOL_GPL(alloc_page_buffers);
918
919 static inline void
920 link_dev_buffers(struct page *page, struct buffer_head *head)
921 {
922         struct buffer_head *bh, *tail;
923
924         bh = head;
925         do {
926                 tail = bh;
927                 bh = bh->b_this_page;
928         } while (bh);
929         tail->b_this_page = head;
930         attach_page_buffers(page, head);
931 }
932
933 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
934 {
935         sector_t retval = ~((sector_t)0);
936         loff_t sz = i_size_read(bdev->bd_inode);
937
938         if (sz) {
939                 unsigned int sizebits = blksize_bits(size);
940                 retval = (sz >> sizebits);
941         }
942         return retval;
943 }
944
945 /*
946  * Initialise the state of a blockdev page's buffers.
947  */ 
948 static sector_t
949 init_page_buffers(struct page *page, struct block_device *bdev,
950                         sector_t block, int size)
951 {
952         struct buffer_head *head = page_buffers(page);
953         struct buffer_head *bh = head;
954         int uptodate = PageUptodate(page);
955         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
956
957         do {
958                 if (!buffer_mapped(bh)) {
959                         init_buffer(bh, NULL, NULL);
960                         bh->b_bdev = bdev;
961                         bh->b_blocknr = block;
962                         if (uptodate)
963                                 set_buffer_uptodate(bh);
964                         if (block < end_block)
965                                 set_buffer_mapped(bh);
966                 }
967                 block++;
968                 bh = bh->b_this_page;
969         } while (bh != head);
970
971         /*
972          * Caller needs to validate requested block against end of device.
973          */
974         return end_block;
975 }
976
977 /*
978  * Create the page-cache page that contains the requested block.
979  *
980  * This is used purely for blockdev mappings.
981  */
982 static int
983 grow_dev_page(struct block_device *bdev, sector_t block,
984               pgoff_t index, int size, int sizebits, gfp_t gfp)
985 {
986         struct inode *inode = bdev->bd_inode;
987         struct page *page;
988         struct buffer_head *bh;
989         sector_t end_block;
990         int ret = 0;            /* Will call free_more_memory() */
991         gfp_t gfp_mask;
992
993         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
994
995         /*
996          * XXX: __getblk_slow() can not really deal with failure and
997          * will endlessly loop on improvised global reclaim.  Prefer
998          * looping in the allocator rather than here, at least that
999          * code knows what it's doing.
1000          */
1001         gfp_mask |= __GFP_NOFAIL;
1002
1003         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1004         if (!page)
1005                 return ret;
1006
1007         BUG_ON(!PageLocked(page));
1008
1009         if (page_has_buffers(page)) {
1010                 bh = page_buffers(page);
1011                 if (bh->b_size == size) {
1012                         end_block = init_page_buffers(page, bdev,
1013                                                 (sector_t)index << sizebits,
1014                                                 size);
1015                         goto done;
1016                 }
1017                 if (!try_to_free_buffers(page))
1018                         goto failed;
1019         }
1020
1021         /*
1022          * Allocate some buffers for this page
1023          */
1024         bh = alloc_page_buffers(page, size, 0);
1025         if (!bh)
1026                 goto failed;
1027
1028         /*
1029          * Link the page to the buffers and initialise them.  Take the
1030          * lock to be atomic wrt __find_get_block(), which does not
1031          * run under the page lock.
1032          */
1033         spin_lock(&inode->i_mapping->private_lock);
1034         link_dev_buffers(page, bh);
1035         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1036                         size);
1037         spin_unlock(&inode->i_mapping->private_lock);
1038 done:
1039         ret = (block < end_block) ? 1 : -ENXIO;
1040 failed:
1041         unlock_page(page);
1042         put_page(page);
1043         return ret;
1044 }
1045
1046 /*
1047  * Create buffers for the specified block device block's page.  If
1048  * that page was dirty, the buffers are set dirty also.
1049  */
1050 static int
1051 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1052 {
1053         pgoff_t index;
1054         int sizebits;
1055
1056         sizebits = -1;
1057         do {
1058                 sizebits++;
1059         } while ((size << sizebits) < PAGE_SIZE);
1060
1061         index = block >> sizebits;
1062
1063         /*
1064          * Check for a block which wants to lie outside our maximum possible
1065          * pagecache index.  (this comparison is done using sector_t types).
1066          */
1067         if (unlikely(index != block >> sizebits)) {
1068                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069                         "device %pg\n",
1070                         __func__, (unsigned long long)block,
1071                         bdev);
1072                 return -EIO;
1073         }
1074
1075         /* Create a page with the proper size buffers.. */
1076         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1077 }
1078
1079 static struct buffer_head *
1080 __getblk_slow(struct block_device *bdev, sector_t block,
1081              unsigned size, gfp_t gfp)
1082 {
1083         /* Size must be multiple of hard sectorsize */
1084         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1085                         (size < 512 || size > PAGE_SIZE))) {
1086                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1087                                         size);
1088                 printk(KERN_ERR "logical block size: %d\n",
1089                                         bdev_logical_block_size(bdev));
1090
1091                 dump_stack();
1092                 return NULL;
1093         }
1094
1095         for (;;) {
1096                 struct buffer_head *bh;
1097                 int ret;
1098
1099                 bh = __find_get_block(bdev, block, size);
1100                 if (bh)
1101                         return bh;
1102
1103                 ret = grow_buffers(bdev, block, size, gfp);
1104                 if (ret < 0)
1105                         return NULL;
1106                 if (ret == 0)
1107                         free_more_memory();
1108         }
1109 }
1110
1111 /*
1112  * The relationship between dirty buffers and dirty pages:
1113  *
1114  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115  * the page is tagged dirty in its radix tree.
1116  *
1117  * At all times, the dirtiness of the buffers represents the dirtiness of
1118  * subsections of the page.  If the page has buffers, the page dirty bit is
1119  * merely a hint about the true dirty state.
1120  *
1121  * When a page is set dirty in its entirety, all its buffers are marked dirty
1122  * (if the page has buffers).
1123  *
1124  * When a buffer is marked dirty, its page is dirtied, but the page's other
1125  * buffers are not.
1126  *
1127  * Also.  When blockdev buffers are explicitly read with bread(), they
1128  * individually become uptodate.  But their backing page remains not
1129  * uptodate - even if all of its buffers are uptodate.  A subsequent
1130  * block_read_full_page() against that page will discover all the uptodate
1131  * buffers, will set the page uptodate and will perform no I/O.
1132  */
1133
1134 /**
1135  * mark_buffer_dirty - mark a buffer_head as needing writeout
1136  * @bh: the buffer_head to mark dirty
1137  *
1138  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139  * backing page dirty, then tag the page as dirty in its address_space's radix
1140  * tree and then attach the address_space's inode to its superblock's dirty
1141  * inode list.
1142  *
1143  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1144  * mapping->tree_lock and mapping->host->i_lock.
1145  */
1146 void mark_buffer_dirty(struct buffer_head *bh)
1147 {
1148         WARN_ON_ONCE(!buffer_uptodate(bh));
1149
1150         trace_block_dirty_buffer(bh);
1151
1152         /*
1153          * Very *carefully* optimize the it-is-already-dirty case.
1154          *
1155          * Don't let the final "is it dirty" escape to before we
1156          * perhaps modified the buffer.
1157          */
1158         if (buffer_dirty(bh)) {
1159                 smp_mb();
1160                 if (buffer_dirty(bh))
1161                         return;
1162         }
1163
1164         if (!test_set_buffer_dirty(bh)) {
1165                 struct page *page = bh->b_page;
1166                 struct address_space *mapping = NULL;
1167
1168                 lock_page_memcg(page);
1169                 if (!TestSetPageDirty(page)) {
1170                         mapping = page_mapping(page);
1171                         if (mapping)
1172                                 __set_page_dirty(page, mapping, 0);
1173                 }
1174                 unlock_page_memcg(page);
1175                 if (mapping)
1176                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1177         }
1178 }
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1180
1181 void mark_buffer_write_io_error(struct buffer_head *bh)
1182 {
1183         set_buffer_write_io_error(bh);
1184         /* FIXME: do we need to set this in both places? */
1185         if (bh->b_page && bh->b_page->mapping)
1186                 mapping_set_error(bh->b_page->mapping, -EIO);
1187         if (bh->b_assoc_map)
1188                 mapping_set_error(bh->b_assoc_map, -EIO);
1189 }
1190 EXPORT_SYMBOL(mark_buffer_write_io_error);
1191
1192 /*
1193  * Decrement a buffer_head's reference count.  If all buffers against a page
1194  * have zero reference count, are clean and unlocked, and if the page is clean
1195  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1196  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1197  * a page but it ends up not being freed, and buffers may later be reattached).
1198  */
1199 void __brelse(struct buffer_head * buf)
1200 {
1201         if (atomic_read(&buf->b_count)) {
1202                 put_bh(buf);
1203                 return;
1204         }
1205         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1206 }
1207 EXPORT_SYMBOL(__brelse);
1208
1209 /*
1210  * bforget() is like brelse(), except it discards any
1211  * potentially dirty data.
1212  */
1213 void __bforget(struct buffer_head *bh)
1214 {
1215         clear_buffer_dirty(bh);
1216         if (bh->b_assoc_map) {
1217                 struct address_space *buffer_mapping = bh->b_page->mapping;
1218
1219                 spin_lock(&buffer_mapping->private_lock);
1220                 list_del_init(&bh->b_assoc_buffers);
1221                 bh->b_assoc_map = NULL;
1222                 spin_unlock(&buffer_mapping->private_lock);
1223         }
1224         __brelse(bh);
1225 }
1226 EXPORT_SYMBOL(__bforget);
1227
1228 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1229 {
1230         lock_buffer(bh);
1231         if (buffer_uptodate(bh)) {
1232                 unlock_buffer(bh);
1233                 return bh;
1234         } else {
1235                 get_bh(bh);
1236                 bh->b_end_io = end_buffer_read_sync;
1237                 submit_bh(REQ_OP_READ, 0, bh);
1238                 wait_on_buffer(bh);
1239                 if (buffer_uptodate(bh))
1240                         return bh;
1241         }
1242         brelse(bh);
1243         return NULL;
1244 }
1245
1246 /*
1247  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1248  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1249  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1250  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1251  * CPU's LRUs at the same time.
1252  *
1253  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1254  * sb_find_get_block().
1255  *
1256  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1257  * a local interrupt disable for that.
1258  */
1259
1260 #define BH_LRU_SIZE     16
1261
1262 struct bh_lru {
1263         struct buffer_head *bhs[BH_LRU_SIZE];
1264 };
1265
1266 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1267
1268 #ifdef CONFIG_SMP
1269 #define bh_lru_lock()   local_irq_disable()
1270 #define bh_lru_unlock() local_irq_enable()
1271 #else
1272 #define bh_lru_lock()   preempt_disable()
1273 #define bh_lru_unlock() preempt_enable()
1274 #endif
1275
1276 static inline void check_irqs_on(void)
1277 {
1278 #ifdef irqs_disabled
1279         BUG_ON(irqs_disabled());
1280 #endif
1281 }
1282
1283 /*
1284  * The LRU management algorithm is dopey-but-simple.  Sorry.
1285  */
1286 static void bh_lru_install(struct buffer_head *bh)
1287 {
1288         struct buffer_head *evictee = NULL;
1289
1290         check_irqs_on();
1291         bh_lru_lock();
1292         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1293                 struct buffer_head *bhs[BH_LRU_SIZE];
1294                 int in;
1295                 int out = 0;
1296
1297                 get_bh(bh);
1298                 bhs[out++] = bh;
1299                 for (in = 0; in < BH_LRU_SIZE; in++) {
1300                         struct buffer_head *bh2 =
1301                                 __this_cpu_read(bh_lrus.bhs[in]);
1302
1303                         if (bh2 == bh) {
1304                                 __brelse(bh2);
1305                         } else {
1306                                 if (out >= BH_LRU_SIZE) {
1307                                         BUG_ON(evictee != NULL);
1308                                         evictee = bh2;
1309                                 } else {
1310                                         bhs[out++] = bh2;
1311                                 }
1312                         }
1313                 }
1314                 while (out < BH_LRU_SIZE)
1315                         bhs[out++] = NULL;
1316                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1317         }
1318         bh_lru_unlock();
1319
1320         if (evictee)
1321                 __brelse(evictee);
1322 }
1323
1324 /*
1325  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1326  */
1327 static struct buffer_head *
1328 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1329 {
1330         struct buffer_head *ret = NULL;
1331         unsigned int i;
1332
1333         check_irqs_on();
1334         bh_lru_lock();
1335         for (i = 0; i < BH_LRU_SIZE; i++) {
1336                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1337
1338                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1339                     bh->b_size == size) {
1340                         if (i) {
1341                                 while (i) {
1342                                         __this_cpu_write(bh_lrus.bhs[i],
1343                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1344                                         i--;
1345                                 }
1346                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1347                         }
1348                         get_bh(bh);
1349                         ret = bh;
1350                         break;
1351                 }
1352         }
1353         bh_lru_unlock();
1354         return ret;
1355 }
1356
1357 /*
1358  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1359  * it in the LRU and mark it as accessed.  If it is not present then return
1360  * NULL
1361  */
1362 struct buffer_head *
1363 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1366
1367         if (bh == NULL) {
1368                 /* __find_get_block_slow will mark the page accessed */
1369                 bh = __find_get_block_slow(bdev, block);
1370                 if (bh)
1371                         bh_lru_install(bh);
1372         } else
1373                 touch_buffer(bh);
1374
1375         return bh;
1376 }
1377 EXPORT_SYMBOL(__find_get_block);
1378
1379 /*
1380  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1381  * which corresponds to the passed block_device, block and size. The
1382  * returned buffer has its reference count incremented.
1383  *
1384  * __getblk_gfp() will lock up the machine if grow_dev_page's
1385  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1386  */
1387 struct buffer_head *
1388 __getblk_gfp(struct block_device *bdev, sector_t block,
1389              unsigned size, gfp_t gfp)
1390 {
1391         struct buffer_head *bh = __find_get_block(bdev, block, size);
1392
1393         might_sleep();
1394         if (bh == NULL)
1395                 bh = __getblk_slow(bdev, block, size, gfp);
1396         return bh;
1397 }
1398 EXPORT_SYMBOL(__getblk_gfp);
1399
1400 /*
1401  * Do async read-ahead on a buffer..
1402  */
1403 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405         struct buffer_head *bh = __getblk(bdev, block, size);
1406         if (likely(bh)) {
1407                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1408                 brelse(bh);
1409         }
1410 }
1411 EXPORT_SYMBOL(__breadahead);
1412
1413 /**
1414  *  __bread_gfp() - reads a specified block and returns the bh
1415  *  @bdev: the block_device to read from
1416  *  @block: number of block
1417  *  @size: size (in bytes) to read
1418  *  @gfp: page allocation flag
1419  *
1420  *  Reads a specified block, and returns buffer head that contains it.
1421  *  The page cache can be allocated from non-movable area
1422  *  not to prevent page migration if you set gfp to zero.
1423  *  It returns NULL if the block was unreadable.
1424  */
1425 struct buffer_head *
1426 __bread_gfp(struct block_device *bdev, sector_t block,
1427                    unsigned size, gfp_t gfp)
1428 {
1429         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1430
1431         if (likely(bh) && !buffer_uptodate(bh))
1432                 bh = __bread_slow(bh);
1433         return bh;
1434 }
1435 EXPORT_SYMBOL(__bread_gfp);
1436
1437 /*
1438  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1439  * This doesn't race because it runs in each cpu either in irq
1440  * or with preempt disabled.
1441  */
1442 static void invalidate_bh_lru(void *arg)
1443 {
1444         struct bh_lru *b = &get_cpu_var(bh_lrus);
1445         int i;
1446
1447         for (i = 0; i < BH_LRU_SIZE; i++) {
1448                 brelse(b->bhs[i]);
1449                 b->bhs[i] = NULL;
1450         }
1451         put_cpu_var(bh_lrus);
1452 }
1453
1454 static bool has_bh_in_lru(int cpu, void *dummy)
1455 {
1456         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1457         int i;
1458         
1459         for (i = 0; i < BH_LRU_SIZE; i++) {
1460                 if (b->bhs[i])
1461                         return 1;
1462         }
1463
1464         return 0;
1465 }
1466
1467 void invalidate_bh_lrus(void)
1468 {
1469         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1470 }
1471 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1472
1473 void set_bh_page(struct buffer_head *bh,
1474                 struct page *page, unsigned long offset)
1475 {
1476         bh->b_page = page;
1477         BUG_ON(offset >= PAGE_SIZE);
1478         if (PageHighMem(page))
1479                 /*
1480                  * This catches illegal uses and preserves the offset:
1481                  */
1482                 bh->b_data = (char *)(0 + offset);
1483         else
1484                 bh->b_data = page_address(page) + offset;
1485 }
1486 EXPORT_SYMBOL(set_bh_page);
1487
1488 /*
1489  * Called when truncating a buffer on a page completely.
1490  */
1491
1492 /* Bits that are cleared during an invalidate */
1493 #define BUFFER_FLAGS_DISCARD \
1494         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1495          1 << BH_Delay | 1 << BH_Unwritten)
1496
1497 static void discard_buffer(struct buffer_head * bh)
1498 {
1499         unsigned long b_state, b_state_old;
1500
1501         lock_buffer(bh);
1502         clear_buffer_dirty(bh);
1503         bh->b_bdev = NULL;
1504         b_state = bh->b_state;
1505         for (;;) {
1506                 b_state_old = cmpxchg(&bh->b_state, b_state,
1507                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1508                 if (b_state_old == b_state)
1509                         break;
1510                 b_state = b_state_old;
1511         }
1512         unlock_buffer(bh);
1513 }
1514
1515 /**
1516  * block_invalidatepage - invalidate part or all of a buffer-backed page
1517  *
1518  * @page: the page which is affected
1519  * @offset: start of the range to invalidate
1520  * @length: length of the range to invalidate
1521  *
1522  * block_invalidatepage() is called when all or part of the page has become
1523  * invalidated by a truncate operation.
1524  *
1525  * block_invalidatepage() does not have to release all buffers, but it must
1526  * ensure that no dirty buffer is left outside @offset and that no I/O
1527  * is underway against any of the blocks which are outside the truncation
1528  * point.  Because the caller is about to free (and possibly reuse) those
1529  * blocks on-disk.
1530  */
1531 void block_invalidatepage(struct page *page, unsigned int offset,
1532                           unsigned int length)
1533 {
1534         struct buffer_head *head, *bh, *next;
1535         unsigned int curr_off = 0;
1536         unsigned int stop = length + offset;
1537
1538         BUG_ON(!PageLocked(page));
1539         if (!page_has_buffers(page))
1540                 goto out;
1541
1542         /*
1543          * Check for overflow
1544          */
1545         BUG_ON(stop > PAGE_SIZE || stop < length);
1546
1547         head = page_buffers(page);
1548         bh = head;
1549         do {
1550                 unsigned int next_off = curr_off + bh->b_size;
1551                 next = bh->b_this_page;
1552
1553                 /*
1554                  * Are we still fully in range ?
1555                  */
1556                 if (next_off > stop)
1557                         goto out;
1558
1559                 /*
1560                  * is this block fully invalidated?
1561                  */
1562                 if (offset <= curr_off)
1563                         discard_buffer(bh);
1564                 curr_off = next_off;
1565                 bh = next;
1566         } while (bh != head);
1567
1568         /*
1569          * We release buffers only if the entire page is being invalidated.
1570          * The get_block cached value has been unconditionally invalidated,
1571          * so real IO is not possible anymore.
1572          */
1573         if (offset == 0)
1574                 try_to_release_page(page, 0);
1575 out:
1576         return;
1577 }
1578 EXPORT_SYMBOL(block_invalidatepage);
1579
1580
1581 /*
1582  * We attach and possibly dirty the buffers atomically wrt
1583  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1584  * is already excluded via the page lock.
1585  */
1586 void create_empty_buffers(struct page *page,
1587                         unsigned long blocksize, unsigned long b_state)
1588 {
1589         struct buffer_head *bh, *head, *tail;
1590
1591         head = alloc_page_buffers(page, blocksize, 1);
1592         bh = head;
1593         do {
1594                 bh->b_state |= b_state;
1595                 tail = bh;
1596                 bh = bh->b_this_page;
1597         } while (bh);
1598         tail->b_this_page = head;
1599
1600         spin_lock(&page->mapping->private_lock);
1601         if (PageUptodate(page) || PageDirty(page)) {
1602                 bh = head;
1603                 do {
1604                         if (PageDirty(page))
1605                                 set_buffer_dirty(bh);
1606                         if (PageUptodate(page))
1607                                 set_buffer_uptodate(bh);
1608                         bh = bh->b_this_page;
1609                 } while (bh != head);
1610         }
1611         attach_page_buffers(page, head);
1612         spin_unlock(&page->mapping->private_lock);
1613 }
1614 EXPORT_SYMBOL(create_empty_buffers);
1615
1616 /**
1617  * clean_bdev_aliases: clean a range of buffers in block device
1618  * @bdev: Block device to clean buffers in
1619  * @block: Start of a range of blocks to clean
1620  * @len: Number of blocks to clean
1621  *
1622  * We are taking a range of blocks for data and we don't want writeback of any
1623  * buffer-cache aliases starting from return from this function and until the
1624  * moment when something will explicitly mark the buffer dirty (hopefully that
1625  * will not happen until we will free that block ;-) We don't even need to mark
1626  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1627  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1628  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1629  * would confuse anyone who might pick it with bread() afterwards...
1630  *
1631  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1632  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1633  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1634  * need to.  That happens here.
1635  */
1636 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1637 {
1638         struct inode *bd_inode = bdev->bd_inode;
1639         struct address_space *bd_mapping = bd_inode->i_mapping;
1640         struct pagevec pvec;
1641         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1642         pgoff_t end;
1643         int i;
1644         struct buffer_head *bh;
1645         struct buffer_head *head;
1646
1647         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1648         pagevec_init(&pvec, 0);
1649         while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1650                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1651                 for (i = 0; i < pagevec_count(&pvec); i++) {
1652                         struct page *page = pvec.pages[i];
1653
1654                         index = page->index;
1655                         if (index > end)
1656                                 break;
1657                         if (!page_has_buffers(page))
1658                                 continue;
1659                         /*
1660                          * We use page lock instead of bd_mapping->private_lock
1661                          * to pin buffers here since we can afford to sleep and
1662                          * it scales better than a global spinlock lock.
1663                          */
1664                         lock_page(page);
1665                         /* Recheck when the page is locked which pins bhs */
1666                         if (!page_has_buffers(page))
1667                                 goto unlock_page;
1668                         head = page_buffers(page);
1669                         bh = head;
1670                         do {
1671                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1672                                         goto next;
1673                                 if (bh->b_blocknr >= block + len)
1674                                         break;
1675                                 clear_buffer_dirty(bh);
1676                                 wait_on_buffer(bh);
1677                                 clear_buffer_req(bh);
1678 next:
1679                                 bh = bh->b_this_page;
1680                         } while (bh != head);
1681 unlock_page:
1682                         unlock_page(page);
1683                 }
1684                 pagevec_release(&pvec);
1685                 cond_resched();
1686                 index++;
1687         }
1688 }
1689 EXPORT_SYMBOL(clean_bdev_aliases);
1690
1691 /*
1692  * Size is a power-of-two in the range 512..PAGE_SIZE,
1693  * and the case we care about most is PAGE_SIZE.
1694  *
1695  * So this *could* possibly be written with those
1696  * constraints in mind (relevant mostly if some
1697  * architecture has a slow bit-scan instruction)
1698  */
1699 static inline int block_size_bits(unsigned int blocksize)
1700 {
1701         return ilog2(blocksize);
1702 }
1703
1704 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1705 {
1706         BUG_ON(!PageLocked(page));
1707
1708         if (!page_has_buffers(page))
1709                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1710         return page_buffers(page);
1711 }
1712
1713 /*
1714  * NOTE! All mapped/uptodate combinations are valid:
1715  *
1716  *      Mapped  Uptodate        Meaning
1717  *
1718  *      No      No              "unknown" - must do get_block()
1719  *      No      Yes             "hole" - zero-filled
1720  *      Yes     No              "allocated" - allocated on disk, not read in
1721  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1722  *
1723  * "Dirty" is valid only with the last case (mapped+uptodate).
1724  */
1725
1726 /*
1727  * While block_write_full_page is writing back the dirty buffers under
1728  * the page lock, whoever dirtied the buffers may decide to clean them
1729  * again at any time.  We handle that by only looking at the buffer
1730  * state inside lock_buffer().
1731  *
1732  * If block_write_full_page() is called for regular writeback
1733  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1734  * locked buffer.   This only can happen if someone has written the buffer
1735  * directly, with submit_bh().  At the address_space level PageWriteback
1736  * prevents this contention from occurring.
1737  *
1738  * If block_write_full_page() is called with wbc->sync_mode ==
1739  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1740  * causes the writes to be flagged as synchronous writes.
1741  */
1742 int __block_write_full_page(struct inode *inode, struct page *page,
1743                         get_block_t *get_block, struct writeback_control *wbc,
1744                         bh_end_io_t *handler)
1745 {
1746         int err;
1747         sector_t block;
1748         sector_t last_block;
1749         struct buffer_head *bh, *head;
1750         unsigned int blocksize, bbits;
1751         int nr_underway = 0;
1752         int write_flags = wbc_to_write_flags(wbc);
1753
1754         head = create_page_buffers(page, inode,
1755                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1756
1757         /*
1758          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1759          * here, and the (potentially unmapped) buffers may become dirty at
1760          * any time.  If a buffer becomes dirty here after we've inspected it
1761          * then we just miss that fact, and the page stays dirty.
1762          *
1763          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1764          * handle that here by just cleaning them.
1765          */
1766
1767         bh = head;
1768         blocksize = bh->b_size;
1769         bbits = block_size_bits(blocksize);
1770
1771         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1772         last_block = (i_size_read(inode) - 1) >> bbits;
1773
1774         /*
1775          * Get all the dirty buffers mapped to disk addresses and
1776          * handle any aliases from the underlying blockdev's mapping.
1777          */
1778         do {
1779                 if (block > last_block) {
1780                         /*
1781                          * mapped buffers outside i_size will occur, because
1782                          * this page can be outside i_size when there is a
1783                          * truncate in progress.
1784                          */
1785                         /*
1786                          * The buffer was zeroed by block_write_full_page()
1787                          */
1788                         clear_buffer_dirty(bh);
1789                         set_buffer_uptodate(bh);
1790                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1791                            buffer_dirty(bh)) {
1792                         WARN_ON(bh->b_size != blocksize);
1793                         err = get_block(inode, block, bh, 1);
1794                         if (err)
1795                                 goto recover;
1796                         clear_buffer_delay(bh);
1797                         if (buffer_new(bh)) {
1798                                 /* blockdev mappings never come here */
1799                                 clear_buffer_new(bh);
1800                                 clean_bdev_bh_alias(bh);
1801                         }
1802                 }
1803                 bh = bh->b_this_page;
1804                 block++;
1805         } while (bh != head);
1806
1807         do {
1808                 if (!buffer_mapped(bh))
1809                         continue;
1810                 /*
1811                  * If it's a fully non-blocking write attempt and we cannot
1812                  * lock the buffer then redirty the page.  Note that this can
1813                  * potentially cause a busy-wait loop from writeback threads
1814                  * and kswapd activity, but those code paths have their own
1815                  * higher-level throttling.
1816                  */
1817                 if (wbc->sync_mode != WB_SYNC_NONE) {
1818                         lock_buffer(bh);
1819                 } else if (!trylock_buffer(bh)) {
1820                         redirty_page_for_writepage(wbc, page);
1821                         continue;
1822                 }
1823                 if (test_clear_buffer_dirty(bh)) {
1824                         mark_buffer_async_write_endio(bh, handler);
1825                 } else {
1826                         unlock_buffer(bh);
1827                 }
1828         } while ((bh = bh->b_this_page) != head);
1829
1830         /*
1831          * The page and its buffers are protected by PageWriteback(), so we can
1832          * drop the bh refcounts early.
1833          */
1834         BUG_ON(PageWriteback(page));
1835         set_page_writeback(page);
1836
1837         do {
1838                 struct buffer_head *next = bh->b_this_page;
1839                 if (buffer_async_write(bh)) {
1840                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1841                         nr_underway++;
1842                 }
1843                 bh = next;
1844         } while (bh != head);
1845         unlock_page(page);
1846
1847         err = 0;
1848 done:
1849         if (nr_underway == 0) {
1850                 /*
1851                  * The page was marked dirty, but the buffers were
1852                  * clean.  Someone wrote them back by hand with
1853                  * ll_rw_block/submit_bh.  A rare case.
1854                  */
1855                 end_page_writeback(page);
1856
1857                 /*
1858                  * The page and buffer_heads can be released at any time from
1859                  * here on.
1860                  */
1861         }
1862         return err;
1863
1864 recover:
1865         /*
1866          * ENOSPC, or some other error.  We may already have added some
1867          * blocks to the file, so we need to write these out to avoid
1868          * exposing stale data.
1869          * The page is currently locked and not marked for writeback
1870          */
1871         bh = head;
1872         /* Recovery: lock and submit the mapped buffers */
1873         do {
1874                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1875                     !buffer_delay(bh)) {
1876                         lock_buffer(bh);
1877                         mark_buffer_async_write_endio(bh, handler);
1878                 } else {
1879                         /*
1880                          * The buffer may have been set dirty during
1881                          * attachment to a dirty page.
1882                          */
1883                         clear_buffer_dirty(bh);
1884                 }
1885         } while ((bh = bh->b_this_page) != head);
1886         SetPageError(page);
1887         BUG_ON(PageWriteback(page));
1888         mapping_set_error(page->mapping, err);
1889         set_page_writeback(page);
1890         do {
1891                 struct buffer_head *next = bh->b_this_page;
1892                 if (buffer_async_write(bh)) {
1893                         clear_buffer_dirty(bh);
1894                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1895                         nr_underway++;
1896                 }
1897                 bh = next;
1898         } while (bh != head);
1899         unlock_page(page);
1900         goto done;
1901 }
1902 EXPORT_SYMBOL(__block_write_full_page);
1903
1904 /*
1905  * If a page has any new buffers, zero them out here, and mark them uptodate
1906  * and dirty so they'll be written out (in order to prevent uninitialised
1907  * block data from leaking). And clear the new bit.
1908  */
1909 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1910 {
1911         unsigned int block_start, block_end;
1912         struct buffer_head *head, *bh;
1913
1914         BUG_ON(!PageLocked(page));
1915         if (!page_has_buffers(page))
1916                 return;
1917
1918         bh = head = page_buffers(page);
1919         block_start = 0;
1920         do {
1921                 block_end = block_start + bh->b_size;
1922
1923                 if (buffer_new(bh)) {
1924                         if (block_end > from && block_start < to) {
1925                                 if (!PageUptodate(page)) {
1926                                         unsigned start, size;
1927
1928                                         start = max(from, block_start);
1929                                         size = min(to, block_end) - start;
1930
1931                                         zero_user(page, start, size);
1932                                         set_buffer_uptodate(bh);
1933                                 }
1934
1935                                 clear_buffer_new(bh);
1936                                 mark_buffer_dirty(bh);
1937                         }
1938                 }
1939
1940                 block_start = block_end;
1941                 bh = bh->b_this_page;
1942         } while (bh != head);
1943 }
1944 EXPORT_SYMBOL(page_zero_new_buffers);
1945
1946 static void
1947 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1948                 struct iomap *iomap)
1949 {
1950         loff_t offset = block << inode->i_blkbits;
1951
1952         bh->b_bdev = iomap->bdev;
1953
1954         /*
1955          * Block points to offset in file we need to map, iomap contains
1956          * the offset at which the map starts. If the map ends before the
1957          * current block, then do not map the buffer and let the caller
1958          * handle it.
1959          */
1960         BUG_ON(offset >= iomap->offset + iomap->length);
1961
1962         switch (iomap->type) {
1963         case IOMAP_HOLE:
1964                 /*
1965                  * If the buffer is not up to date or beyond the current EOF,
1966                  * we need to mark it as new to ensure sub-block zeroing is
1967                  * executed if necessary.
1968                  */
1969                 if (!buffer_uptodate(bh) ||
1970                     (offset >= i_size_read(inode)))
1971                         set_buffer_new(bh);
1972                 break;
1973         case IOMAP_DELALLOC:
1974                 if (!buffer_uptodate(bh) ||
1975                     (offset >= i_size_read(inode)))
1976                         set_buffer_new(bh);
1977                 set_buffer_uptodate(bh);
1978                 set_buffer_mapped(bh);
1979                 set_buffer_delay(bh);
1980                 break;
1981         case IOMAP_UNWRITTEN:
1982                 /*
1983                  * For unwritten regions, we always need to ensure that
1984                  * sub-block writes cause the regions in the block we are not
1985                  * writing to are zeroed. Set the buffer as new to ensure this.
1986                  */
1987                 set_buffer_new(bh);
1988                 set_buffer_unwritten(bh);
1989                 /* FALLTHRU */
1990         case IOMAP_MAPPED:
1991                 if (offset >= i_size_read(inode))
1992                         set_buffer_new(bh);
1993                 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1994                                 ((offset - iomap->offset) >> inode->i_blkbits);
1995                 set_buffer_mapped(bh);
1996                 break;
1997         }
1998 }
1999
2000 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2001                 get_block_t *get_block, struct iomap *iomap)
2002 {
2003         unsigned from = pos & (PAGE_SIZE - 1);
2004         unsigned to = from + len;
2005         struct inode *inode = page->mapping->host;
2006         unsigned block_start, block_end;
2007         sector_t block;
2008         int err = 0;
2009         unsigned blocksize, bbits;
2010         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2011
2012         BUG_ON(!PageLocked(page));
2013         BUG_ON(from > PAGE_SIZE);
2014         BUG_ON(to > PAGE_SIZE);
2015         BUG_ON(from > to);
2016
2017         head = create_page_buffers(page, inode, 0);
2018         blocksize = head->b_size;
2019         bbits = block_size_bits(blocksize);
2020
2021         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2022
2023         for(bh = head, block_start = 0; bh != head || !block_start;
2024             block++, block_start=block_end, bh = bh->b_this_page) {
2025                 block_end = block_start + blocksize;
2026                 if (block_end <= from || block_start >= to) {
2027                         if (PageUptodate(page)) {
2028                                 if (!buffer_uptodate(bh))
2029                                         set_buffer_uptodate(bh);
2030                         }
2031                         continue;
2032                 }
2033                 if (buffer_new(bh))
2034                         clear_buffer_new(bh);
2035                 if (!buffer_mapped(bh)) {
2036                         WARN_ON(bh->b_size != blocksize);
2037                         if (get_block) {
2038                                 err = get_block(inode, block, bh, 1);
2039                                 if (err)
2040                                         break;
2041                         } else {
2042                                 iomap_to_bh(inode, block, bh, iomap);
2043                         }
2044
2045                         if (buffer_new(bh)) {
2046                                 clean_bdev_bh_alias(bh);
2047                                 if (PageUptodate(page)) {
2048                                         clear_buffer_new(bh);
2049                                         set_buffer_uptodate(bh);
2050                                         mark_buffer_dirty(bh);
2051                                         continue;
2052                                 }
2053                                 if (block_end > to || block_start < from)
2054                                         zero_user_segments(page,
2055                                                 to, block_end,
2056                                                 block_start, from);
2057                                 continue;
2058                         }
2059                 }
2060                 if (PageUptodate(page)) {
2061                         if (!buffer_uptodate(bh))
2062                                 set_buffer_uptodate(bh);
2063                         continue; 
2064                 }
2065                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2066                     !buffer_unwritten(bh) &&
2067                      (block_start < from || block_end > to)) {
2068                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2069                         *wait_bh++=bh;
2070                 }
2071         }
2072         /*
2073          * If we issued read requests - let them complete.
2074          */
2075         while(wait_bh > wait) {
2076                 wait_on_buffer(*--wait_bh);
2077                 if (!buffer_uptodate(*wait_bh))
2078                         err = -EIO;
2079         }
2080         if (unlikely(err))
2081                 page_zero_new_buffers(page, from, to);
2082         return err;
2083 }
2084
2085 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2086                 get_block_t *get_block)
2087 {
2088         return __block_write_begin_int(page, pos, len, get_block, NULL);
2089 }
2090 EXPORT_SYMBOL(__block_write_begin);
2091
2092 static int __block_commit_write(struct inode *inode, struct page *page,
2093                 unsigned from, unsigned to)
2094 {
2095         unsigned block_start, block_end;
2096         int partial = 0;
2097         unsigned blocksize;
2098         struct buffer_head *bh, *head;
2099
2100         bh = head = page_buffers(page);
2101         blocksize = bh->b_size;
2102
2103         block_start = 0;
2104         do {
2105                 block_end = block_start + blocksize;
2106                 if (block_end <= from || block_start >= to) {
2107                         if (!buffer_uptodate(bh))
2108                                 partial = 1;
2109                 } else {
2110                         set_buffer_uptodate(bh);
2111                         mark_buffer_dirty(bh);
2112                 }
2113                 clear_buffer_new(bh);
2114
2115                 block_start = block_end;
2116                 bh = bh->b_this_page;
2117         } while (bh != head);
2118
2119         /*
2120          * If this is a partial write which happened to make all buffers
2121          * uptodate then we can optimize away a bogus readpage() for
2122          * the next read(). Here we 'discover' whether the page went
2123          * uptodate as a result of this (potentially partial) write.
2124          */
2125         if (!partial)
2126                 SetPageUptodate(page);
2127         return 0;
2128 }
2129
2130 /*
2131  * block_write_begin takes care of the basic task of block allocation and
2132  * bringing partial write blocks uptodate first.
2133  *
2134  * The filesystem needs to handle block truncation upon failure.
2135  */
2136 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2137                 unsigned flags, struct page **pagep, get_block_t *get_block)
2138 {
2139         pgoff_t index = pos >> PAGE_SHIFT;
2140         struct page *page;
2141         int status;
2142
2143         page = grab_cache_page_write_begin(mapping, index, flags);
2144         if (!page)
2145                 return -ENOMEM;
2146
2147         status = __block_write_begin(page, pos, len, get_block);
2148         if (unlikely(status)) {
2149                 unlock_page(page);
2150                 put_page(page);
2151                 page = NULL;
2152         }
2153
2154         *pagep = page;
2155         return status;
2156 }
2157 EXPORT_SYMBOL(block_write_begin);
2158
2159 int block_write_end(struct file *file, struct address_space *mapping,
2160                         loff_t pos, unsigned len, unsigned copied,
2161                         struct page *page, void *fsdata)
2162 {
2163         struct inode *inode = mapping->host;
2164         unsigned start;
2165
2166         start = pos & (PAGE_SIZE - 1);
2167
2168         if (unlikely(copied < len)) {
2169                 /*
2170                  * The buffers that were written will now be uptodate, so we
2171                  * don't have to worry about a readpage reading them and
2172                  * overwriting a partial write. However if we have encountered
2173                  * a short write and only partially written into a buffer, it
2174                  * will not be marked uptodate, so a readpage might come in and
2175                  * destroy our partial write.
2176                  *
2177                  * Do the simplest thing, and just treat any short write to a
2178                  * non uptodate page as a zero-length write, and force the
2179                  * caller to redo the whole thing.
2180                  */
2181                 if (!PageUptodate(page))
2182                         copied = 0;
2183
2184                 page_zero_new_buffers(page, start+copied, start+len);
2185         }
2186         flush_dcache_page(page);
2187
2188         /* This could be a short (even 0-length) commit */
2189         __block_commit_write(inode, page, start, start+copied);
2190
2191         return copied;
2192 }
2193 EXPORT_SYMBOL(block_write_end);
2194
2195 int generic_write_end(struct file *file, struct address_space *mapping,
2196                         loff_t pos, unsigned len, unsigned copied,
2197                         struct page *page, void *fsdata)
2198 {
2199         struct inode *inode = mapping->host;
2200         loff_t old_size = inode->i_size;
2201         int i_size_changed = 0;
2202
2203         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2204
2205         /*
2206          * No need to use i_size_read() here, the i_size
2207          * cannot change under us because we hold i_mutex.
2208          *
2209          * But it's important to update i_size while still holding page lock:
2210          * page writeout could otherwise come in and zero beyond i_size.
2211          */
2212         if (pos+copied > inode->i_size) {
2213                 i_size_write(inode, pos+copied);
2214                 i_size_changed = 1;
2215         }
2216
2217         unlock_page(page);
2218         put_page(page);
2219
2220         if (old_size < pos)
2221                 pagecache_isize_extended(inode, old_size, pos);
2222         /*
2223          * Don't mark the inode dirty under page lock. First, it unnecessarily
2224          * makes the holding time of page lock longer. Second, it forces lock
2225          * ordering of page lock and transaction start for journaling
2226          * filesystems.
2227          */
2228         if (i_size_changed)
2229                 mark_inode_dirty(inode);
2230
2231         return copied;
2232 }
2233 EXPORT_SYMBOL(generic_write_end);
2234
2235 /*
2236  * block_is_partially_uptodate checks whether buffers within a page are
2237  * uptodate or not.
2238  *
2239  * Returns true if all buffers which correspond to a file portion
2240  * we want to read are uptodate.
2241  */
2242 int block_is_partially_uptodate(struct page *page, unsigned long from,
2243                                         unsigned long count)
2244 {
2245         unsigned block_start, block_end, blocksize;
2246         unsigned to;
2247         struct buffer_head *bh, *head;
2248         int ret = 1;
2249
2250         if (!page_has_buffers(page))
2251                 return 0;
2252
2253         head = page_buffers(page);
2254         blocksize = head->b_size;
2255         to = min_t(unsigned, PAGE_SIZE - from, count);
2256         to = from + to;
2257         if (from < blocksize && to > PAGE_SIZE - blocksize)
2258                 return 0;
2259
2260         bh = head;
2261         block_start = 0;
2262         do {
2263                 block_end = block_start + blocksize;
2264                 if (block_end > from && block_start < to) {
2265                         if (!buffer_uptodate(bh)) {
2266                                 ret = 0;
2267                                 break;
2268                         }
2269                         if (block_end >= to)
2270                                 break;
2271                 }
2272                 block_start = block_end;
2273                 bh = bh->b_this_page;
2274         } while (bh != head);
2275
2276         return ret;
2277 }
2278 EXPORT_SYMBOL(block_is_partially_uptodate);
2279
2280 /*
2281  * Generic "read page" function for block devices that have the normal
2282  * get_block functionality. This is most of the block device filesystems.
2283  * Reads the page asynchronously --- the unlock_buffer() and
2284  * set/clear_buffer_uptodate() functions propagate buffer state into the
2285  * page struct once IO has completed.
2286  */
2287 int block_read_full_page(struct page *page, get_block_t *get_block)
2288 {
2289         struct inode *inode = page->mapping->host;
2290         sector_t iblock, lblock;
2291         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2292         unsigned int blocksize, bbits;
2293         int nr, i;
2294         int fully_mapped = 1;
2295
2296         head = create_page_buffers(page, inode, 0);
2297         blocksize = head->b_size;
2298         bbits = block_size_bits(blocksize);
2299
2300         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2301         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2302         bh = head;
2303         nr = 0;
2304         i = 0;
2305
2306         do {
2307                 if (buffer_uptodate(bh))
2308                         continue;
2309
2310                 if (!buffer_mapped(bh)) {
2311                         int err = 0;
2312
2313                         fully_mapped = 0;
2314                         if (iblock < lblock) {
2315                                 WARN_ON(bh->b_size != blocksize);
2316                                 err = get_block(inode, iblock, bh, 0);
2317                                 if (err)
2318                                         SetPageError(page);
2319                         }
2320                         if (!buffer_mapped(bh)) {
2321                                 zero_user(page, i * blocksize, blocksize);
2322                                 if (!err)
2323                                         set_buffer_uptodate(bh);
2324                                 continue;
2325                         }
2326                         /*
2327                          * get_block() might have updated the buffer
2328                          * synchronously
2329                          */
2330                         if (buffer_uptodate(bh))
2331                                 continue;
2332                 }
2333                 arr[nr++] = bh;
2334         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2335
2336         if (fully_mapped)
2337                 SetPageMappedToDisk(page);
2338
2339         if (!nr) {
2340                 /*
2341                  * All buffers are uptodate - we can set the page uptodate
2342                  * as well. But not if get_block() returned an error.
2343                  */
2344                 if (!PageError(page))
2345                         SetPageUptodate(page);
2346                 unlock_page(page);
2347                 return 0;
2348         }
2349
2350         /* Stage two: lock the buffers */
2351         for (i = 0; i < nr; i++) {
2352                 bh = arr[i];
2353                 lock_buffer(bh);
2354                 mark_buffer_async_read(bh);
2355         }
2356
2357         /*
2358          * Stage 3: start the IO.  Check for uptodateness
2359          * inside the buffer lock in case another process reading
2360          * the underlying blockdev brought it uptodate (the sct fix).
2361          */
2362         for (i = 0; i < nr; i++) {
2363                 bh = arr[i];
2364                 if (buffer_uptodate(bh))
2365                         end_buffer_async_read(bh, 1);
2366                 else
2367                         submit_bh(REQ_OP_READ, 0, bh);
2368         }
2369         return 0;
2370 }
2371 EXPORT_SYMBOL(block_read_full_page);
2372
2373 /* utility function for filesystems that need to do work on expanding
2374  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2375  * deal with the hole.  
2376  */
2377 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2378 {
2379         struct address_space *mapping = inode->i_mapping;
2380         struct page *page;
2381         void *fsdata;
2382         int err;
2383
2384         err = inode_newsize_ok(inode, size);
2385         if (err)
2386                 goto out;
2387
2388         err = pagecache_write_begin(NULL, mapping, size, 0,
2389                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2390         if (err)
2391                 goto out;
2392
2393         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2394         BUG_ON(err > 0);
2395
2396 out:
2397         return err;
2398 }
2399 EXPORT_SYMBOL(generic_cont_expand_simple);
2400
2401 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2402                             loff_t pos, loff_t *bytes)
2403 {
2404         struct inode *inode = mapping->host;
2405         unsigned int blocksize = i_blocksize(inode);
2406         struct page *page;
2407         void *fsdata;
2408         pgoff_t index, curidx;
2409         loff_t curpos;
2410         unsigned zerofrom, offset, len;
2411         int err = 0;
2412
2413         index = pos >> PAGE_SHIFT;
2414         offset = pos & ~PAGE_MASK;
2415
2416         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2417                 zerofrom = curpos & ~PAGE_MASK;
2418                 if (zerofrom & (blocksize-1)) {
2419                         *bytes |= (blocksize-1);
2420                         (*bytes)++;
2421                 }
2422                 len = PAGE_SIZE - zerofrom;
2423
2424                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2425                                             &page, &fsdata);
2426                 if (err)
2427                         goto out;
2428                 zero_user(page, zerofrom, len);
2429                 err = pagecache_write_end(file, mapping, curpos, len, len,
2430                                                 page, fsdata);
2431                 if (err < 0)
2432                         goto out;
2433                 BUG_ON(err != len);
2434                 err = 0;
2435
2436                 balance_dirty_pages_ratelimited(mapping);
2437
2438                 if (unlikely(fatal_signal_pending(current))) {
2439                         err = -EINTR;
2440                         goto out;
2441                 }
2442         }
2443
2444         /* page covers the boundary, find the boundary offset */
2445         if (index == curidx) {
2446                 zerofrom = curpos & ~PAGE_MASK;
2447                 /* if we will expand the thing last block will be filled */
2448                 if (offset <= zerofrom) {
2449                         goto out;
2450                 }
2451                 if (zerofrom & (blocksize-1)) {
2452                         *bytes |= (blocksize-1);
2453                         (*bytes)++;
2454                 }
2455                 len = offset - zerofrom;
2456
2457                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2458                                             &page, &fsdata);
2459                 if (err)
2460                         goto out;
2461                 zero_user(page, zerofrom, len);
2462                 err = pagecache_write_end(file, mapping, curpos, len, len,
2463                                                 page, fsdata);
2464                 if (err < 0)
2465                         goto out;
2466                 BUG_ON(err != len);
2467                 err = 0;
2468         }
2469 out:
2470         return err;
2471 }
2472
2473 /*
2474  * For moronic filesystems that do not allow holes in file.
2475  * We may have to extend the file.
2476  */
2477 int cont_write_begin(struct file *file, struct address_space *mapping,
2478                         loff_t pos, unsigned len, unsigned flags,
2479                         struct page **pagep, void **fsdata,
2480                         get_block_t *get_block, loff_t *bytes)
2481 {
2482         struct inode *inode = mapping->host;
2483         unsigned int blocksize = i_blocksize(inode);
2484         unsigned int zerofrom;
2485         int err;
2486
2487         err = cont_expand_zero(file, mapping, pos, bytes);
2488         if (err)
2489                 return err;
2490
2491         zerofrom = *bytes & ~PAGE_MASK;
2492         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2493                 *bytes |= (blocksize-1);
2494                 (*bytes)++;
2495         }
2496
2497         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2498 }
2499 EXPORT_SYMBOL(cont_write_begin);
2500
2501 int block_commit_write(struct page *page, unsigned from, unsigned to)
2502 {
2503         struct inode *inode = page->mapping->host;
2504         __block_commit_write(inode,page,from,to);
2505         return 0;
2506 }
2507 EXPORT_SYMBOL(block_commit_write);
2508
2509 /*
2510  * block_page_mkwrite() is not allowed to change the file size as it gets
2511  * called from a page fault handler when a page is first dirtied. Hence we must
2512  * be careful to check for EOF conditions here. We set the page up correctly
2513  * for a written page which means we get ENOSPC checking when writing into
2514  * holes and correct delalloc and unwritten extent mapping on filesystems that
2515  * support these features.
2516  *
2517  * We are not allowed to take the i_mutex here so we have to play games to
2518  * protect against truncate races as the page could now be beyond EOF.  Because
2519  * truncate writes the inode size before removing pages, once we have the
2520  * page lock we can determine safely if the page is beyond EOF. If it is not
2521  * beyond EOF, then the page is guaranteed safe against truncation until we
2522  * unlock the page.
2523  *
2524  * Direct callers of this function should protect against filesystem freezing
2525  * using sb_start_pagefault() - sb_end_pagefault() functions.
2526  */
2527 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2528                          get_block_t get_block)
2529 {
2530         struct page *page = vmf->page;
2531         struct inode *inode = file_inode(vma->vm_file);
2532         unsigned long end;
2533         loff_t size;
2534         int ret;
2535
2536         lock_page(page);
2537         size = i_size_read(inode);
2538         if ((page->mapping != inode->i_mapping) ||
2539             (page_offset(page) > size)) {
2540                 /* We overload EFAULT to mean page got truncated */
2541                 ret = -EFAULT;
2542                 goto out_unlock;
2543         }
2544
2545         /* page is wholly or partially inside EOF */
2546         if (((page->index + 1) << PAGE_SHIFT) > size)
2547                 end = size & ~PAGE_MASK;
2548         else
2549                 end = PAGE_SIZE;
2550
2551         ret = __block_write_begin(page, 0, end, get_block);
2552         if (!ret)
2553                 ret = block_commit_write(page, 0, end);
2554
2555         if (unlikely(ret < 0))
2556                 goto out_unlock;
2557         set_page_dirty(page);
2558         wait_for_stable_page(page);
2559         return 0;
2560 out_unlock:
2561         unlock_page(page);
2562         return ret;
2563 }
2564 EXPORT_SYMBOL(block_page_mkwrite);
2565
2566 /*
2567  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2568  * immediately, while under the page lock.  So it needs a special end_io
2569  * handler which does not touch the bh after unlocking it.
2570  */
2571 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2572 {
2573         __end_buffer_read_notouch(bh, uptodate);
2574 }
2575
2576 /*
2577  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2578  * the page (converting it to circular linked list and taking care of page
2579  * dirty races).
2580  */
2581 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2582 {
2583         struct buffer_head *bh;
2584
2585         BUG_ON(!PageLocked(page));
2586
2587         spin_lock(&page->mapping->private_lock);
2588         bh = head;
2589         do {
2590                 if (PageDirty(page))
2591                         set_buffer_dirty(bh);
2592                 if (!bh->b_this_page)
2593                         bh->b_this_page = head;
2594                 bh = bh->b_this_page;
2595         } while (bh != head);
2596         attach_page_buffers(page, head);
2597         spin_unlock(&page->mapping->private_lock);
2598 }
2599
2600 /*
2601  * On entry, the page is fully not uptodate.
2602  * On exit the page is fully uptodate in the areas outside (from,to)
2603  * The filesystem needs to handle block truncation upon failure.
2604  */
2605 int nobh_write_begin(struct address_space *mapping,
2606                         loff_t pos, unsigned len, unsigned flags,
2607                         struct page **pagep, void **fsdata,
2608                         get_block_t *get_block)
2609 {
2610         struct inode *inode = mapping->host;
2611         const unsigned blkbits = inode->i_blkbits;
2612         const unsigned blocksize = 1 << blkbits;
2613         struct buffer_head *head, *bh;
2614         struct page *page;
2615         pgoff_t index;
2616         unsigned from, to;
2617         unsigned block_in_page;
2618         unsigned block_start, block_end;
2619         sector_t block_in_file;
2620         int nr_reads = 0;
2621         int ret = 0;
2622         int is_mapped_to_disk = 1;
2623
2624         index = pos >> PAGE_SHIFT;
2625         from = pos & (PAGE_SIZE - 1);
2626         to = from + len;
2627
2628         page = grab_cache_page_write_begin(mapping, index, flags);
2629         if (!page)
2630                 return -ENOMEM;
2631         *pagep = page;
2632         *fsdata = NULL;
2633
2634         if (page_has_buffers(page)) {
2635                 ret = __block_write_begin(page, pos, len, get_block);
2636                 if (unlikely(ret))
2637                         goto out_release;
2638                 return ret;
2639         }
2640
2641         if (PageMappedToDisk(page))
2642                 return 0;
2643
2644         /*
2645          * Allocate buffers so that we can keep track of state, and potentially
2646          * attach them to the page if an error occurs. In the common case of
2647          * no error, they will just be freed again without ever being attached
2648          * to the page (which is all OK, because we're under the page lock).
2649          *
2650          * Be careful: the buffer linked list is a NULL terminated one, rather
2651          * than the circular one we're used to.
2652          */
2653         head = alloc_page_buffers(page, blocksize, 0);
2654         if (!head) {
2655                 ret = -ENOMEM;
2656                 goto out_release;
2657         }
2658
2659         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2660
2661         /*
2662          * We loop across all blocks in the page, whether or not they are
2663          * part of the affected region.  This is so we can discover if the
2664          * page is fully mapped-to-disk.
2665          */
2666         for (block_start = 0, block_in_page = 0, bh = head;
2667                   block_start < PAGE_SIZE;
2668                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2669                 int create;
2670
2671                 block_end = block_start + blocksize;
2672                 bh->b_state = 0;
2673                 create = 1;
2674                 if (block_start >= to)
2675                         create = 0;
2676                 ret = get_block(inode, block_in_file + block_in_page,
2677                                         bh, create);
2678                 if (ret)
2679                         goto failed;
2680                 if (!buffer_mapped(bh))
2681                         is_mapped_to_disk = 0;
2682                 if (buffer_new(bh))
2683                         clean_bdev_bh_alias(bh);
2684                 if (PageUptodate(page)) {
2685                         set_buffer_uptodate(bh);
2686                         continue;
2687                 }
2688                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2689                         zero_user_segments(page, block_start, from,
2690                                                         to, block_end);
2691                         continue;
2692                 }
2693                 if (buffer_uptodate(bh))
2694                         continue;       /* reiserfs does this */
2695                 if (block_start < from || block_end > to) {
2696                         lock_buffer(bh);
2697                         bh->b_end_io = end_buffer_read_nobh;
2698                         submit_bh(REQ_OP_READ, 0, bh);
2699                         nr_reads++;
2700                 }
2701         }
2702
2703         if (nr_reads) {
2704                 /*
2705                  * The page is locked, so these buffers are protected from
2706                  * any VM or truncate activity.  Hence we don't need to care
2707                  * for the buffer_head refcounts.
2708                  */
2709                 for (bh = head; bh; bh = bh->b_this_page) {
2710                         wait_on_buffer(bh);
2711                         if (!buffer_uptodate(bh))
2712                                 ret = -EIO;
2713                 }
2714                 if (ret)
2715                         goto failed;
2716         }
2717
2718         if (is_mapped_to_disk)
2719                 SetPageMappedToDisk(page);
2720
2721         *fsdata = head; /* to be released by nobh_write_end */
2722
2723         return 0;
2724
2725 failed:
2726         BUG_ON(!ret);
2727         /*
2728          * Error recovery is a bit difficult. We need to zero out blocks that
2729          * were newly allocated, and dirty them to ensure they get written out.
2730          * Buffers need to be attached to the page at this point, otherwise
2731          * the handling of potential IO errors during writeout would be hard
2732          * (could try doing synchronous writeout, but what if that fails too?)
2733          */
2734         attach_nobh_buffers(page, head);
2735         page_zero_new_buffers(page, from, to);
2736
2737 out_release:
2738         unlock_page(page);
2739         put_page(page);
2740         *pagep = NULL;
2741
2742         return ret;
2743 }
2744 EXPORT_SYMBOL(nobh_write_begin);
2745
2746 int nobh_write_end(struct file *file, struct address_space *mapping,
2747                         loff_t pos, unsigned len, unsigned copied,
2748                         struct page *page, void *fsdata)
2749 {
2750         struct inode *inode = page->mapping->host;
2751         struct buffer_head *head = fsdata;
2752         struct buffer_head *bh;
2753         BUG_ON(fsdata != NULL && page_has_buffers(page));
2754
2755         if (unlikely(copied < len) && head)
2756                 attach_nobh_buffers(page, head);
2757         if (page_has_buffers(page))
2758                 return generic_write_end(file, mapping, pos, len,
2759                                         copied, page, fsdata);
2760
2761         SetPageUptodate(page);
2762         set_page_dirty(page);
2763         if (pos+copied > inode->i_size) {
2764                 i_size_write(inode, pos+copied);
2765                 mark_inode_dirty(inode);
2766         }
2767
2768         unlock_page(page);
2769         put_page(page);
2770
2771         while (head) {
2772                 bh = head;
2773                 head = head->b_this_page;
2774                 free_buffer_head(bh);
2775         }
2776
2777         return copied;
2778 }
2779 EXPORT_SYMBOL(nobh_write_end);
2780
2781 /*
2782  * nobh_writepage() - based on block_full_write_page() except
2783  * that it tries to operate without attaching bufferheads to
2784  * the page.
2785  */
2786 int nobh_writepage(struct page *page, get_block_t *get_block,
2787                         struct writeback_control *wbc)
2788 {
2789         struct inode * const inode = page->mapping->host;
2790         loff_t i_size = i_size_read(inode);
2791         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2792         unsigned offset;
2793         int ret;
2794
2795         /* Is the page fully inside i_size? */
2796         if (page->index < end_index)
2797                 goto out;
2798
2799         /* Is the page fully outside i_size? (truncate in progress) */
2800         offset = i_size & (PAGE_SIZE-1);
2801         if (page->index >= end_index+1 || !offset) {
2802                 /*
2803                  * The page may have dirty, unmapped buffers.  For example,
2804                  * they may have been added in ext3_writepage().  Make them
2805                  * freeable here, so the page does not leak.
2806                  */
2807 #if 0
2808                 /* Not really sure about this  - do we need this ? */
2809                 if (page->mapping->a_ops->invalidatepage)
2810                         page->mapping->a_ops->invalidatepage(page, offset);
2811 #endif
2812                 unlock_page(page);
2813                 return 0; /* don't care */
2814         }
2815
2816         /*
2817          * The page straddles i_size.  It must be zeroed out on each and every
2818          * writepage invocation because it may be mmapped.  "A file is mapped
2819          * in multiples of the page size.  For a file that is not a multiple of
2820          * the  page size, the remaining memory is zeroed when mapped, and
2821          * writes to that region are not written out to the file."
2822          */
2823         zero_user_segment(page, offset, PAGE_SIZE);
2824 out:
2825         ret = mpage_writepage(page, get_block, wbc);
2826         if (ret == -EAGAIN)
2827                 ret = __block_write_full_page(inode, page, get_block, wbc,
2828                                               end_buffer_async_write);
2829         return ret;
2830 }
2831 EXPORT_SYMBOL(nobh_writepage);
2832
2833 int nobh_truncate_page(struct address_space *mapping,
2834                         loff_t from, get_block_t *get_block)
2835 {
2836         pgoff_t index = from >> PAGE_SHIFT;
2837         unsigned offset = from & (PAGE_SIZE-1);
2838         unsigned blocksize;
2839         sector_t iblock;
2840         unsigned length, pos;
2841         struct inode *inode = mapping->host;
2842         struct page *page;
2843         struct buffer_head map_bh;
2844         int err;
2845
2846         blocksize = i_blocksize(inode);
2847         length = offset & (blocksize - 1);
2848
2849         /* Block boundary? Nothing to do */
2850         if (!length)
2851                 return 0;
2852
2853         length = blocksize - length;
2854         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2855
2856         page = grab_cache_page(mapping, index);
2857         err = -ENOMEM;
2858         if (!page)
2859                 goto out;
2860
2861         if (page_has_buffers(page)) {
2862 has_buffers:
2863                 unlock_page(page);
2864                 put_page(page);
2865                 return block_truncate_page(mapping, from, get_block);
2866         }
2867
2868         /* Find the buffer that contains "offset" */
2869         pos = blocksize;
2870         while (offset >= pos) {
2871                 iblock++;
2872                 pos += blocksize;
2873         }
2874
2875         map_bh.b_size = blocksize;
2876         map_bh.b_state = 0;
2877         err = get_block(inode, iblock, &map_bh, 0);
2878         if (err)
2879                 goto unlock;
2880         /* unmapped? It's a hole - nothing to do */
2881         if (!buffer_mapped(&map_bh))
2882                 goto unlock;
2883
2884         /* Ok, it's mapped. Make sure it's up-to-date */
2885         if (!PageUptodate(page)) {
2886                 err = mapping->a_ops->readpage(NULL, page);
2887                 if (err) {
2888                         put_page(page);
2889                         goto out;
2890                 }
2891                 lock_page(page);
2892                 if (!PageUptodate(page)) {
2893                         err = -EIO;
2894                         goto unlock;
2895                 }
2896                 if (page_has_buffers(page))
2897                         goto has_buffers;
2898         }
2899         zero_user(page, offset, length);
2900         set_page_dirty(page);
2901         err = 0;
2902
2903 unlock:
2904         unlock_page(page);
2905         put_page(page);
2906 out:
2907         return err;
2908 }
2909 EXPORT_SYMBOL(nobh_truncate_page);
2910
2911 int block_truncate_page(struct address_space *mapping,
2912                         loff_t from, get_block_t *get_block)
2913 {
2914         pgoff_t index = from >> PAGE_SHIFT;
2915         unsigned offset = from & (PAGE_SIZE-1);
2916         unsigned blocksize;
2917         sector_t iblock;
2918         unsigned length, pos;
2919         struct inode *inode = mapping->host;
2920         struct page *page;
2921         struct buffer_head *bh;
2922         int err;
2923
2924         blocksize = i_blocksize(inode);
2925         length = offset & (blocksize - 1);
2926
2927         /* Block boundary? Nothing to do */
2928         if (!length)
2929                 return 0;
2930
2931         length = blocksize - length;
2932         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2933         
2934         page = grab_cache_page(mapping, index);
2935         err = -ENOMEM;
2936         if (!page)
2937                 goto out;
2938
2939         if (!page_has_buffers(page))
2940                 create_empty_buffers(page, blocksize, 0);
2941
2942         /* Find the buffer that contains "offset" */
2943         bh = page_buffers(page);
2944         pos = blocksize;
2945         while (offset >= pos) {
2946                 bh = bh->b_this_page;
2947                 iblock++;
2948                 pos += blocksize;
2949         }
2950
2951         err = 0;
2952         if (!buffer_mapped(bh)) {
2953                 WARN_ON(bh->b_size != blocksize);
2954                 err = get_block(inode, iblock, bh, 0);
2955                 if (err)
2956                         goto unlock;
2957                 /* unmapped? It's a hole - nothing to do */
2958                 if (!buffer_mapped(bh))
2959                         goto unlock;
2960         }
2961
2962         /* Ok, it's mapped. Make sure it's up-to-date */
2963         if (PageUptodate(page))
2964                 set_buffer_uptodate(bh);
2965
2966         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2967                 err = -EIO;
2968                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2969                 wait_on_buffer(bh);
2970                 /* Uhhuh. Read error. Complain and punt. */
2971                 if (!buffer_uptodate(bh))
2972                         goto unlock;
2973         }
2974
2975         zero_user(page, offset, length);
2976         mark_buffer_dirty(bh);
2977         err = 0;
2978
2979 unlock:
2980         unlock_page(page);
2981         put_page(page);
2982 out:
2983         return err;
2984 }
2985 EXPORT_SYMBOL(block_truncate_page);
2986
2987 /*
2988  * The generic ->writepage function for buffer-backed address_spaces
2989  */
2990 int block_write_full_page(struct page *page, get_block_t *get_block,
2991                         struct writeback_control *wbc)
2992 {
2993         struct inode * const inode = page->mapping->host;
2994         loff_t i_size = i_size_read(inode);
2995         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2996         unsigned offset;
2997
2998         /* Is the page fully inside i_size? */
2999         if (page->index < end_index)
3000                 return __block_write_full_page(inode, page, get_block, wbc,
3001                                                end_buffer_async_write);
3002
3003         /* Is the page fully outside i_size? (truncate in progress) */
3004         offset = i_size & (PAGE_SIZE-1);
3005         if (page->index >= end_index+1 || !offset) {
3006                 /*
3007                  * The page may have dirty, unmapped buffers.  For example,
3008                  * they may have been added in ext3_writepage().  Make them
3009                  * freeable here, so the page does not leak.
3010                  */
3011                 do_invalidatepage(page, 0, PAGE_SIZE);
3012                 unlock_page(page);
3013                 return 0; /* don't care */
3014         }
3015
3016         /*
3017          * The page straddles i_size.  It must be zeroed out on each and every
3018          * writepage invocation because it may be mmapped.  "A file is mapped
3019          * in multiples of the page size.  For a file that is not a multiple of
3020          * the  page size, the remaining memory is zeroed when mapped, and
3021          * writes to that region are not written out to the file."
3022          */
3023         zero_user_segment(page, offset, PAGE_SIZE);
3024         return __block_write_full_page(inode, page, get_block, wbc,
3025                                                         end_buffer_async_write);
3026 }
3027 EXPORT_SYMBOL(block_write_full_page);
3028
3029 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3030                             get_block_t *get_block)
3031 {
3032         struct buffer_head tmp;
3033         struct inode *inode = mapping->host;
3034         tmp.b_state = 0;
3035         tmp.b_blocknr = 0;
3036         tmp.b_size = i_blocksize(inode);
3037         get_block(inode, block, &tmp, 0);
3038         return tmp.b_blocknr;
3039 }
3040 EXPORT_SYMBOL(generic_block_bmap);
3041
3042 static void end_bio_bh_io_sync(struct bio *bio)
3043 {
3044         struct buffer_head *bh = bio->bi_private;
3045
3046         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3047                 set_bit(BH_Quiet, &bh->b_state);
3048
3049         bh->b_end_io(bh, !bio->bi_error);
3050         bio_put(bio);
3051 }
3052
3053 /*
3054  * This allows us to do IO even on the odd last sectors
3055  * of a device, even if the block size is some multiple
3056  * of the physical sector size.
3057  *
3058  * We'll just truncate the bio to the size of the device,
3059  * and clear the end of the buffer head manually.
3060  *
3061  * Truly out-of-range accesses will turn into actual IO
3062  * errors, this only handles the "we need to be able to
3063  * do IO at the final sector" case.
3064  */
3065 void guard_bio_eod(int op, struct bio *bio)
3066 {
3067         sector_t maxsector;
3068         struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3069         unsigned truncated_bytes;
3070
3071         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3072         if (!maxsector)
3073                 return;
3074
3075         /*
3076          * If the *whole* IO is past the end of the device,
3077          * let it through, and the IO layer will turn it into
3078          * an EIO.
3079          */
3080         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3081                 return;
3082
3083         maxsector -= bio->bi_iter.bi_sector;
3084         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3085                 return;
3086
3087         /* Uhhuh. We've got a bio that straddles the device size! */
3088         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3089
3090         /* Truncate the bio.. */
3091         bio->bi_iter.bi_size -= truncated_bytes;
3092         bvec->bv_len -= truncated_bytes;
3093
3094         /* ..and clear the end of the buffer for reads */
3095         if (op == REQ_OP_READ) {
3096                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3097                                 truncated_bytes);
3098         }
3099 }
3100
3101 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3102                          struct writeback_control *wbc)
3103 {
3104         struct bio *bio;
3105
3106         BUG_ON(!buffer_locked(bh));
3107         BUG_ON(!buffer_mapped(bh));
3108         BUG_ON(!bh->b_end_io);
3109         BUG_ON(buffer_delay(bh));
3110         BUG_ON(buffer_unwritten(bh));
3111
3112         /*
3113          * Only clear out a write error when rewriting
3114          */
3115         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3116                 clear_buffer_write_io_error(bh);
3117
3118         /*
3119          * from here on down, it's all bio -- do the initial mapping,
3120          * submit_bio -> generic_make_request may further map this bio around
3121          */
3122         bio = bio_alloc(GFP_NOIO, 1);
3123
3124         if (wbc) {
3125                 wbc_init_bio(wbc, bio);
3126                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3127         }
3128
3129         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3130         bio->bi_bdev = bh->b_bdev;
3131
3132         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3133         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3134
3135         bio->bi_end_io = end_bio_bh_io_sync;
3136         bio->bi_private = bh;
3137
3138         /* Take care of bh's that straddle the end of the device */
3139         guard_bio_eod(op, bio);
3140
3141         if (buffer_meta(bh))
3142                 op_flags |= REQ_META;
3143         if (buffer_prio(bh))
3144                 op_flags |= REQ_PRIO;
3145         bio_set_op_attrs(bio, op, op_flags);
3146
3147         submit_bio(bio);
3148         return 0;
3149 }
3150
3151 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3152 {
3153         return submit_bh_wbc(op, op_flags, bh, NULL);
3154 }
3155 EXPORT_SYMBOL(submit_bh);
3156
3157 /**
3158  * ll_rw_block: low-level access to block devices (DEPRECATED)
3159  * @op: whether to %READ or %WRITE
3160  * @op_flags: req_flag_bits
3161  * @nr: number of &struct buffer_heads in the array
3162  * @bhs: array of pointers to &struct buffer_head
3163  *
3164  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3165  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3166  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3167  * %REQ_RAHEAD.
3168  *
3169  * This function drops any buffer that it cannot get a lock on (with the
3170  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3171  * request, and any buffer that appears to be up-to-date when doing read
3172  * request.  Further it marks as clean buffers that are processed for
3173  * writing (the buffer cache won't assume that they are actually clean
3174  * until the buffer gets unlocked).
3175  *
3176  * ll_rw_block sets b_end_io to simple completion handler that marks
3177  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3178  * any waiters. 
3179  *
3180  * All of the buffers must be for the same device, and must also be a
3181  * multiple of the current approved size for the device.
3182  */
3183 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3184 {
3185         int i;
3186
3187         for (i = 0; i < nr; i++) {
3188                 struct buffer_head *bh = bhs[i];
3189
3190                 if (!trylock_buffer(bh))
3191                         continue;
3192                 if (op == WRITE) {
3193                         if (test_clear_buffer_dirty(bh)) {
3194                                 bh->b_end_io = end_buffer_write_sync;
3195                                 get_bh(bh);
3196                                 submit_bh(op, op_flags, bh);
3197                                 continue;
3198                         }
3199                 } else {
3200                         if (!buffer_uptodate(bh)) {
3201                                 bh->b_end_io = end_buffer_read_sync;
3202                                 get_bh(bh);
3203                                 submit_bh(op, op_flags, bh);
3204                                 continue;
3205                         }
3206                 }
3207                 unlock_buffer(bh);
3208         }
3209 }
3210 EXPORT_SYMBOL(ll_rw_block);
3211
3212 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3213 {
3214         lock_buffer(bh);
3215         if (!test_clear_buffer_dirty(bh)) {
3216                 unlock_buffer(bh);
3217                 return;
3218         }
3219         bh->b_end_io = end_buffer_write_sync;
3220         get_bh(bh);
3221         submit_bh(REQ_OP_WRITE, op_flags, bh);
3222 }
3223 EXPORT_SYMBOL(write_dirty_buffer);
3224
3225 /*
3226  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3227  * and then start new I/O and then wait upon it.  The caller must have a ref on
3228  * the buffer_head.
3229  */
3230 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3231 {
3232         int ret = 0;
3233
3234         WARN_ON(atomic_read(&bh->b_count) < 1);
3235         lock_buffer(bh);
3236         if (test_clear_buffer_dirty(bh)) {
3237                 get_bh(bh);
3238                 bh->b_end_io = end_buffer_write_sync;
3239                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3240                 wait_on_buffer(bh);
3241                 if (!ret && !buffer_uptodate(bh))
3242                         ret = -EIO;
3243         } else {
3244                 unlock_buffer(bh);
3245         }
3246         return ret;
3247 }
3248 EXPORT_SYMBOL(__sync_dirty_buffer);
3249
3250 int sync_dirty_buffer(struct buffer_head *bh)
3251 {
3252         return __sync_dirty_buffer(bh, REQ_SYNC);
3253 }
3254 EXPORT_SYMBOL(sync_dirty_buffer);
3255
3256 /*
3257  * try_to_free_buffers() checks if all the buffers on this particular page
3258  * are unused, and releases them if so.
3259  *
3260  * Exclusion against try_to_free_buffers may be obtained by either
3261  * locking the page or by holding its mapping's private_lock.
3262  *
3263  * If the page is dirty but all the buffers are clean then we need to
3264  * be sure to mark the page clean as well.  This is because the page
3265  * may be against a block device, and a later reattachment of buffers
3266  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3267  * filesystem data on the same device.
3268  *
3269  * The same applies to regular filesystem pages: if all the buffers are
3270  * clean then we set the page clean and proceed.  To do that, we require
3271  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3272  * private_lock.
3273  *
3274  * try_to_free_buffers() is non-blocking.
3275  */
3276 static inline int buffer_busy(struct buffer_head *bh)
3277 {
3278         return atomic_read(&bh->b_count) |
3279                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3280 }
3281
3282 static int
3283 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3284 {
3285         struct buffer_head *head = page_buffers(page);
3286         struct buffer_head *bh;
3287
3288         bh = head;
3289         do {
3290                 if (buffer_busy(bh))
3291                         goto failed;
3292                 bh = bh->b_this_page;
3293         } while (bh != head);
3294
3295         do {
3296                 struct buffer_head *next = bh->b_this_page;
3297
3298                 if (bh->b_assoc_map)
3299                         __remove_assoc_queue(bh);
3300                 bh = next;
3301         } while (bh != head);
3302         *buffers_to_free = head;
3303         __clear_page_buffers(page);
3304         return 1;
3305 failed:
3306         return 0;
3307 }
3308
3309 int try_to_free_buffers(struct page *page)
3310 {
3311         struct address_space * const mapping = page->mapping;
3312         struct buffer_head *buffers_to_free = NULL;
3313         int ret = 0;
3314
3315         BUG_ON(!PageLocked(page));
3316         if (PageWriteback(page))
3317                 return 0;
3318
3319         if (mapping == NULL) {          /* can this still happen? */
3320                 ret = drop_buffers(page, &buffers_to_free);
3321                 goto out;
3322         }
3323
3324         spin_lock(&mapping->private_lock);
3325         ret = drop_buffers(page, &buffers_to_free);
3326
3327         /*
3328          * If the filesystem writes its buffers by hand (eg ext3)
3329          * then we can have clean buffers against a dirty page.  We
3330          * clean the page here; otherwise the VM will never notice
3331          * that the filesystem did any IO at all.
3332          *
3333          * Also, during truncate, discard_buffer will have marked all
3334          * the page's buffers clean.  We discover that here and clean
3335          * the page also.
3336          *
3337          * private_lock must be held over this entire operation in order
3338          * to synchronise against __set_page_dirty_buffers and prevent the
3339          * dirty bit from being lost.
3340          */
3341         if (ret)
3342                 cancel_dirty_page(page);
3343         spin_unlock(&mapping->private_lock);
3344 out:
3345         if (buffers_to_free) {
3346                 struct buffer_head *bh = buffers_to_free;
3347
3348                 do {
3349                         struct buffer_head *next = bh->b_this_page;
3350                         free_buffer_head(bh);
3351                         bh = next;
3352                 } while (bh != buffers_to_free);
3353         }
3354         return ret;
3355 }
3356 EXPORT_SYMBOL(try_to_free_buffers);
3357
3358 /*
3359  * There are no bdflush tunables left.  But distributions are
3360  * still running obsolete flush daemons, so we terminate them here.
3361  *
3362  * Use of bdflush() is deprecated and will be removed in a future kernel.
3363  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3364  */
3365 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3366 {
3367         static int msg_count;
3368
3369         if (!capable(CAP_SYS_ADMIN))
3370                 return -EPERM;
3371
3372         if (msg_count < 5) {
3373                 msg_count++;
3374                 printk(KERN_INFO
3375                         "warning: process `%s' used the obsolete bdflush"
3376                         " system call\n", current->comm);
3377                 printk(KERN_INFO "Fix your initscripts?\n");
3378         }
3379
3380         if (func == 1)
3381                 do_exit(0);
3382         return 0;
3383 }
3384
3385 /*
3386  * Buffer-head allocation
3387  */
3388 static struct kmem_cache *bh_cachep __read_mostly;
3389
3390 /*
3391  * Once the number of bh's in the machine exceeds this level, we start
3392  * stripping them in writeback.
3393  */
3394 static unsigned long max_buffer_heads;
3395
3396 int buffer_heads_over_limit;
3397
3398 struct bh_accounting {
3399         int nr;                 /* Number of live bh's */
3400         int ratelimit;          /* Limit cacheline bouncing */
3401 };
3402
3403 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3404
3405 static void recalc_bh_state(void)
3406 {
3407         int i;
3408         int tot = 0;
3409
3410         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3411                 return;
3412         __this_cpu_write(bh_accounting.ratelimit, 0);
3413         for_each_online_cpu(i)
3414                 tot += per_cpu(bh_accounting, i).nr;
3415         buffer_heads_over_limit = (tot > max_buffer_heads);
3416 }
3417
3418 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3419 {
3420         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3421         if (ret) {
3422                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3423                 preempt_disable();
3424                 __this_cpu_inc(bh_accounting.nr);
3425                 recalc_bh_state();
3426                 preempt_enable();
3427         }
3428         return ret;
3429 }
3430 EXPORT_SYMBOL(alloc_buffer_head);
3431
3432 void free_buffer_head(struct buffer_head *bh)
3433 {
3434         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3435         kmem_cache_free(bh_cachep, bh);
3436         preempt_disable();
3437         __this_cpu_dec(bh_accounting.nr);
3438         recalc_bh_state();
3439         preempt_enable();
3440 }
3441 EXPORT_SYMBOL(free_buffer_head);
3442
3443 static int buffer_exit_cpu_dead(unsigned int cpu)
3444 {
3445         int i;
3446         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3447
3448         for (i = 0; i < BH_LRU_SIZE; i++) {
3449                 brelse(b->bhs[i]);
3450                 b->bhs[i] = NULL;
3451         }
3452         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3453         per_cpu(bh_accounting, cpu).nr = 0;
3454         return 0;
3455 }
3456
3457 /**
3458  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3459  * @bh: struct buffer_head
3460  *
3461  * Return true if the buffer is up-to-date and false,
3462  * with the buffer locked, if not.
3463  */
3464 int bh_uptodate_or_lock(struct buffer_head *bh)
3465 {
3466         if (!buffer_uptodate(bh)) {
3467                 lock_buffer(bh);
3468                 if (!buffer_uptodate(bh))
3469                         return 0;
3470                 unlock_buffer(bh);
3471         }
3472         return 1;
3473 }
3474 EXPORT_SYMBOL(bh_uptodate_or_lock);
3475
3476 /**
3477  * bh_submit_read - Submit a locked buffer for reading
3478  * @bh: struct buffer_head
3479  *
3480  * Returns zero on success and -EIO on error.
3481  */
3482 int bh_submit_read(struct buffer_head *bh)
3483 {
3484         BUG_ON(!buffer_locked(bh));
3485
3486         if (buffer_uptodate(bh)) {
3487                 unlock_buffer(bh);
3488                 return 0;
3489         }
3490
3491         get_bh(bh);
3492         bh->b_end_io = end_buffer_read_sync;
3493         submit_bh(REQ_OP_READ, 0, bh);
3494         wait_on_buffer(bh);
3495         if (buffer_uptodate(bh))
3496                 return 0;
3497         return -EIO;
3498 }
3499 EXPORT_SYMBOL(bh_submit_read);
3500
3501 void __init buffer_init(void)
3502 {
3503         unsigned long nrpages;
3504         int ret;
3505
3506         bh_cachep = kmem_cache_create("buffer_head",
3507                         sizeof(struct buffer_head), 0,
3508                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3509                                 SLAB_MEM_SPREAD),
3510                                 NULL);
3511
3512         /*
3513          * Limit the bh occupancy to 10% of ZONE_NORMAL
3514          */
3515         nrpages = (nr_free_buffer_pages() * 10) / 100;
3516         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3517         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3518                                         NULL, buffer_exit_cpu_dead);
3519         WARN_ON(ret < 0);
3520 }