]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/dax.c
filesystem-dax: Set page->index
[linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
51 static int __init init_dax_wait_table(void)
52 {
53         int i;
54
55         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56                 init_waitqueue_head(wait_table + i);
57         return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78         return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84                         (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89         if ((unsigned long)entry & RADIX_DAX_PMD)
90                 return PMD_SHIFT - PAGE_SHIFT;
91         return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101         return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111         return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118         struct address_space *mapping;
119         pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123         wait_queue_entry_t wait;
124         struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130         unsigned long hash;
131
132         /*
133          * If 'entry' is a PMD, align the 'index' that we use for the wait
134          * queue to the start of that PMD.  This ensures that all offsets in
135          * the range covered by the PMD map to the same bit lock.
136          */
137         if (dax_is_pmd_entry(entry))
138                 index &= ~PG_PMD_COLOUR;
139
140         key->mapping = mapping;
141         key->entry_start = index;
142
143         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144         return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148                                        int sync, void *keyp)
149 {
150         struct exceptional_entry_key *key = keyp;
151         struct wait_exceptional_entry_queue *ewait =
152                 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154         if (key->mapping != ewait->key.mapping ||
155             key->entry_start != ewait->key.entry_start)
156                 return 0;
157         return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166                 pgoff_t index, void *entry, bool wake_all)
167 {
168         struct exceptional_entry_key key;
169         wait_queue_head_t *wq;
170
171         wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173         /*
174          * Checking for locked entry and prepare_to_wait_exclusive() happens
175          * under the i_pages lock, ditto for entry handling in our callers.
176          * So at this point all tasks that could have seen our entry locked
177          * must be in the waitqueue and the following check will see them.
178          */
179         if (waitqueue_active(wq))
180                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189         unsigned long entry = (unsigned long)
190                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191         return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199         unsigned long entry = (unsigned long)
200                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202         entry |= RADIX_DAX_ENTRY_LOCK;
203         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204         return (void *)entry;
205 }
206
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212         unsigned long entry = (unsigned long)
213                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217         return (void *)entry;
218 }
219
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *get_unlocked_mapping_entry(struct address_space *mapping,
230                                         pgoff_t index, void ***slotp)
231 {
232         void *entry, **slot;
233         struct wait_exceptional_entry_queue ewait;
234         wait_queue_head_t *wq;
235
236         init_wait(&ewait.wait);
237         ewait.wait.func = wake_exceptional_entry_func;
238
239         for (;;) {
240                 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
241                                           &slot);
242                 if (!entry ||
243                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
244                     !slot_locked(mapping, slot)) {
245                         if (slotp)
246                                 *slotp = slot;
247                         return entry;
248                 }
249
250                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
251                 prepare_to_wait_exclusive(wq, &ewait.wait,
252                                           TASK_UNINTERRUPTIBLE);
253                 xa_unlock_irq(&mapping->i_pages);
254                 schedule();
255                 finish_wait(wq, &ewait.wait);
256                 xa_lock_irq(&mapping->i_pages);
257         }
258 }
259
260 static void dax_unlock_mapping_entry(struct address_space *mapping,
261                                      pgoff_t index)
262 {
263         void *entry, **slot;
264
265         xa_lock_irq(&mapping->i_pages);
266         entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
267         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
268                          !slot_locked(mapping, slot))) {
269                 xa_unlock_irq(&mapping->i_pages);
270                 return;
271         }
272         unlock_slot(mapping, slot);
273         xa_unlock_irq(&mapping->i_pages);
274         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
275 }
276
277 static void put_locked_mapping_entry(struct address_space *mapping,
278                 pgoff_t index)
279 {
280         dax_unlock_mapping_entry(mapping, index);
281 }
282
283 /*
284  * Called when we are done with radix tree entry we looked up via
285  * get_unlocked_mapping_entry() and which we didn't lock in the end.
286  */
287 static void put_unlocked_mapping_entry(struct address_space *mapping,
288                                        pgoff_t index, void *entry)
289 {
290         if (!entry)
291                 return;
292
293         /* We have to wake up next waiter for the radix tree entry lock */
294         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
295 }
296
297 static unsigned long dax_entry_size(void *entry)
298 {
299         if (dax_is_zero_entry(entry))
300                 return 0;
301         else if (dax_is_empty_entry(entry))
302                 return 0;
303         else if (dax_is_pmd_entry(entry))
304                 return PMD_SIZE;
305         else
306                 return PAGE_SIZE;
307 }
308
309 static unsigned long dax_radix_end_pfn(void *entry)
310 {
311         return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
312 }
313
314 /*
315  * Iterate through all mapped pfns represented by an entry, i.e. skip
316  * 'empty' and 'zero' entries.
317  */
318 #define for_each_mapped_pfn(entry, pfn) \
319         for (pfn = dax_radix_pfn(entry); \
320                         pfn < dax_radix_end_pfn(entry); pfn++)
321
322 /*
323  * TODO: for reflink+dax we need a way to associate a single page with
324  * multiple address_space instances at different linear_page_index()
325  * offsets.
326  */
327 static void dax_associate_entry(void *entry, struct address_space *mapping,
328                 struct vm_area_struct *vma, unsigned long address)
329 {
330         unsigned long size = dax_entry_size(entry), pfn, index;
331         int i = 0;
332
333         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
334                 return;
335
336         index = linear_page_index(vma, address & ~(size - 1));
337         for_each_mapped_pfn(entry, pfn) {
338                 struct page *page = pfn_to_page(pfn);
339
340                 WARN_ON_ONCE(page->mapping);
341                 page->mapping = mapping;
342                 page->index = index + i++;
343         }
344 }
345
346 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
347                 bool trunc)
348 {
349         unsigned long pfn;
350
351         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
352                 return;
353
354         for_each_mapped_pfn(entry, pfn) {
355                 struct page *page = pfn_to_page(pfn);
356
357                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
358                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
359                 page->mapping = NULL;
360                 page->index = 0;
361         }
362 }
363
364 static struct page *dax_busy_page(void *entry)
365 {
366         unsigned long pfn;
367
368         for_each_mapped_pfn(entry, pfn) {
369                 struct page *page = pfn_to_page(pfn);
370
371                 if (page_ref_count(page) > 1)
372                         return page;
373         }
374         return NULL;
375 }
376
377 /*
378  * Find radix tree entry at given index. If it points to an exceptional entry,
379  * return it with the radix tree entry locked. If the radix tree doesn't
380  * contain given index, create an empty exceptional entry for the index and
381  * return with it locked.
382  *
383  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
384  * either return that locked entry or will return an error.  This error will
385  * happen if there are any 4k entries within the 2MiB range that we are
386  * requesting.
387  *
388  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
389  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
390  * insertion will fail if it finds any 4k entries already in the tree, and a
391  * 4k insertion will cause an existing 2MiB entry to be unmapped and
392  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
393  * well as 2MiB empty entries.
394  *
395  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
396  * real storage backing them.  We will leave these real 2MiB DAX entries in
397  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
398  *
399  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
400  * persistent memory the benefit is doubtful. We can add that later if we can
401  * show it helps.
402  */
403 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
404                 unsigned long size_flag)
405 {
406         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
407         void *entry, **slot;
408
409 restart:
410         xa_lock_irq(&mapping->i_pages);
411         entry = get_unlocked_mapping_entry(mapping, index, &slot);
412
413         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
414                 entry = ERR_PTR(-EIO);
415                 goto out_unlock;
416         }
417
418         if (entry) {
419                 if (size_flag & RADIX_DAX_PMD) {
420                         if (dax_is_pte_entry(entry)) {
421                                 put_unlocked_mapping_entry(mapping, index,
422                                                 entry);
423                                 entry = ERR_PTR(-EEXIST);
424                                 goto out_unlock;
425                         }
426                 } else { /* trying to grab a PTE entry */
427                         if (dax_is_pmd_entry(entry) &&
428                             (dax_is_zero_entry(entry) ||
429                              dax_is_empty_entry(entry))) {
430                                 pmd_downgrade = true;
431                         }
432                 }
433         }
434
435         /* No entry for given index? Make sure radix tree is big enough. */
436         if (!entry || pmd_downgrade) {
437                 int err;
438
439                 if (pmd_downgrade) {
440                         /*
441                          * Make sure 'entry' remains valid while we drop
442                          * the i_pages lock.
443                          */
444                         entry = lock_slot(mapping, slot);
445                 }
446
447                 xa_unlock_irq(&mapping->i_pages);
448                 /*
449                  * Besides huge zero pages the only other thing that gets
450                  * downgraded are empty entries which don't need to be
451                  * unmapped.
452                  */
453                 if (pmd_downgrade && dax_is_zero_entry(entry))
454                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
455                                                         PG_PMD_NR, false);
456
457                 err = radix_tree_preload(
458                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
459                 if (err) {
460                         if (pmd_downgrade)
461                                 put_locked_mapping_entry(mapping, index);
462                         return ERR_PTR(err);
463                 }
464                 xa_lock_irq(&mapping->i_pages);
465
466                 if (!entry) {
467                         /*
468                          * We needed to drop the i_pages lock while calling
469                          * radix_tree_preload() and we didn't have an entry to
470                          * lock.  See if another thread inserted an entry at
471                          * our index during this time.
472                          */
473                         entry = __radix_tree_lookup(&mapping->i_pages, index,
474                                         NULL, &slot);
475                         if (entry) {
476                                 radix_tree_preload_end();
477                                 xa_unlock_irq(&mapping->i_pages);
478                                 goto restart;
479                         }
480                 }
481
482                 if (pmd_downgrade) {
483                         dax_disassociate_entry(entry, mapping, false);
484                         radix_tree_delete(&mapping->i_pages, index);
485                         mapping->nrexceptional--;
486                         dax_wake_mapping_entry_waiter(mapping, index, entry,
487                                         true);
488                 }
489
490                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
491
492                 err = __radix_tree_insert(&mapping->i_pages, index,
493                                 dax_radix_order(entry), entry);
494                 radix_tree_preload_end();
495                 if (err) {
496                         xa_unlock_irq(&mapping->i_pages);
497                         /*
498                          * Our insertion of a DAX entry failed, most likely
499                          * because we were inserting a PMD entry and it
500                          * collided with a PTE sized entry at a different
501                          * index in the PMD range.  We haven't inserted
502                          * anything into the radix tree and have no waiters to
503                          * wake.
504                          */
505                         return ERR_PTR(err);
506                 }
507                 /* Good, we have inserted empty locked entry into the tree. */
508                 mapping->nrexceptional++;
509                 xa_unlock_irq(&mapping->i_pages);
510                 return entry;
511         }
512         entry = lock_slot(mapping, slot);
513  out_unlock:
514         xa_unlock_irq(&mapping->i_pages);
515         return entry;
516 }
517
518 /**
519  * dax_layout_busy_page - find first pinned page in @mapping
520  * @mapping: address space to scan for a page with ref count > 1
521  *
522  * DAX requires ZONE_DEVICE mapped pages. These pages are never
523  * 'onlined' to the page allocator so they are considered idle when
524  * page->count == 1. A filesystem uses this interface to determine if
525  * any page in the mapping is busy, i.e. for DMA, or other
526  * get_user_pages() usages.
527  *
528  * It is expected that the filesystem is holding locks to block the
529  * establishment of new mappings in this address_space. I.e. it expects
530  * to be able to run unmap_mapping_range() and subsequently not race
531  * mapping_mapped() becoming true.
532  */
533 struct page *dax_layout_busy_page(struct address_space *mapping)
534 {
535         pgoff_t indices[PAGEVEC_SIZE];
536         struct page *page = NULL;
537         struct pagevec pvec;
538         pgoff_t index, end;
539         unsigned i;
540
541         /*
542          * In the 'limited' case get_user_pages() for dax is disabled.
543          */
544         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
545                 return NULL;
546
547         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
548                 return NULL;
549
550         pagevec_init(&pvec);
551         index = 0;
552         end = -1;
553
554         /*
555          * If we race get_user_pages_fast() here either we'll see the
556          * elevated page count in the pagevec_lookup and wait, or
557          * get_user_pages_fast() will see that the page it took a reference
558          * against is no longer mapped in the page tables and bail to the
559          * get_user_pages() slow path.  The slow path is protected by
560          * pte_lock() and pmd_lock(). New references are not taken without
561          * holding those locks, and unmap_mapping_range() will not zero the
562          * pte or pmd without holding the respective lock, so we are
563          * guaranteed to either see new references or prevent new
564          * references from being established.
565          */
566         unmap_mapping_range(mapping, 0, 0, 1);
567
568         while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
569                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
570                                 indices)) {
571                 for (i = 0; i < pagevec_count(&pvec); i++) {
572                         struct page *pvec_ent = pvec.pages[i];
573                         void *entry;
574
575                         index = indices[i];
576                         if (index >= end)
577                                 break;
578
579                         if (!radix_tree_exceptional_entry(pvec_ent))
580                                 continue;
581
582                         xa_lock_irq(&mapping->i_pages);
583                         entry = get_unlocked_mapping_entry(mapping, index, NULL);
584                         if (entry)
585                                 page = dax_busy_page(entry);
586                         put_unlocked_mapping_entry(mapping, index, entry);
587                         xa_unlock_irq(&mapping->i_pages);
588                         if (page)
589                                 break;
590                 }
591                 pagevec_remove_exceptionals(&pvec);
592                 pagevec_release(&pvec);
593                 index++;
594
595                 if (page)
596                         break;
597         }
598         return page;
599 }
600 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
601
602 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
603                                           pgoff_t index, bool trunc)
604 {
605         int ret = 0;
606         void *entry;
607         struct radix_tree_root *pages = &mapping->i_pages;
608
609         xa_lock_irq(pages);
610         entry = get_unlocked_mapping_entry(mapping, index, NULL);
611         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
612                 goto out;
613         if (!trunc &&
614             (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
615              radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
616                 goto out;
617         dax_disassociate_entry(entry, mapping, trunc);
618         radix_tree_delete(pages, index);
619         mapping->nrexceptional--;
620         ret = 1;
621 out:
622         put_unlocked_mapping_entry(mapping, index, entry);
623         xa_unlock_irq(pages);
624         return ret;
625 }
626 /*
627  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
628  * entry to get unlocked before deleting it.
629  */
630 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
631 {
632         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
633
634         /*
635          * This gets called from truncate / punch_hole path. As such, the caller
636          * must hold locks protecting against concurrent modifications of the
637          * radix tree (usually fs-private i_mmap_sem for writing). Since the
638          * caller has seen exceptional entry for this index, we better find it
639          * at that index as well...
640          */
641         WARN_ON_ONCE(!ret);
642         return ret;
643 }
644
645 /*
646  * Invalidate exceptional DAX entry if it is clean.
647  */
648 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
649                                       pgoff_t index)
650 {
651         return __dax_invalidate_mapping_entry(mapping, index, false);
652 }
653
654 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
655                 sector_t sector, size_t size, struct page *to,
656                 unsigned long vaddr)
657 {
658         void *vto, *kaddr;
659         pgoff_t pgoff;
660         pfn_t pfn;
661         long rc;
662         int id;
663
664         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
665         if (rc)
666                 return rc;
667
668         id = dax_read_lock();
669         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
670         if (rc < 0) {
671                 dax_read_unlock(id);
672                 return rc;
673         }
674         vto = kmap_atomic(to);
675         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
676         kunmap_atomic(vto);
677         dax_read_unlock(id);
678         return 0;
679 }
680
681 /*
682  * By this point grab_mapping_entry() has ensured that we have a locked entry
683  * of the appropriate size so we don't have to worry about downgrading PMDs to
684  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
685  * already in the tree, we will skip the insertion and just dirty the PMD as
686  * appropriate.
687  */
688 static void *dax_insert_mapping_entry(struct address_space *mapping,
689                                       struct vm_fault *vmf,
690                                       void *entry, pfn_t pfn_t,
691                                       unsigned long flags, bool dirty)
692 {
693         struct radix_tree_root *pages = &mapping->i_pages;
694         unsigned long pfn = pfn_t_to_pfn(pfn_t);
695         pgoff_t index = vmf->pgoff;
696         void *new_entry;
697
698         if (dirty)
699                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700
701         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
702                 /* we are replacing a zero page with block mapping */
703                 if (dax_is_pmd_entry(entry))
704                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
705                                                         PG_PMD_NR, false);
706                 else /* pte entry */
707                         unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
708         }
709
710         xa_lock_irq(pages);
711         new_entry = dax_radix_locked_entry(pfn, flags);
712         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
713                 dax_disassociate_entry(entry, mapping, false);
714                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
715         }
716
717         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
718                 /*
719                  * Only swap our new entry into the radix tree if the current
720                  * entry is a zero page or an empty entry.  If a normal PTE or
721                  * PMD entry is already in the tree, we leave it alone.  This
722                  * means that if we are trying to insert a PTE and the
723                  * existing entry is a PMD, we will just leave the PMD in the
724                  * tree and dirty it if necessary.
725                  */
726                 struct radix_tree_node *node;
727                 void **slot;
728                 void *ret;
729
730                 ret = __radix_tree_lookup(pages, index, &node, &slot);
731                 WARN_ON_ONCE(ret != entry);
732                 __radix_tree_replace(pages, node, slot,
733                                      new_entry, NULL);
734                 entry = new_entry;
735         }
736
737         if (dirty)
738                 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
739
740         xa_unlock_irq(pages);
741         return entry;
742 }
743
744 static inline unsigned long
745 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
746 {
747         unsigned long address;
748
749         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
750         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
751         return address;
752 }
753
754 /* Walk all mappings of a given index of a file and writeprotect them */
755 static void dax_mapping_entry_mkclean(struct address_space *mapping,
756                                       pgoff_t index, unsigned long pfn)
757 {
758         struct vm_area_struct *vma;
759         pte_t pte, *ptep = NULL;
760         pmd_t *pmdp = NULL;
761         spinlock_t *ptl;
762
763         i_mmap_lock_read(mapping);
764         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
765                 unsigned long address, start, end;
766
767                 cond_resched();
768
769                 if (!(vma->vm_flags & VM_SHARED))
770                         continue;
771
772                 address = pgoff_address(index, vma);
773
774                 /*
775                  * Note because we provide start/end to follow_pte_pmd it will
776                  * call mmu_notifier_invalidate_range_start() on our behalf
777                  * before taking any lock.
778                  */
779                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
780                         continue;
781
782                 /*
783                  * No need to call mmu_notifier_invalidate_range() as we are
784                  * downgrading page table protection not changing it to point
785                  * to a new page.
786                  *
787                  * See Documentation/vm/mmu_notifier.rst
788                  */
789                 if (pmdp) {
790 #ifdef CONFIG_FS_DAX_PMD
791                         pmd_t pmd;
792
793                         if (pfn != pmd_pfn(*pmdp))
794                                 goto unlock_pmd;
795                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
796                                 goto unlock_pmd;
797
798                         flush_cache_page(vma, address, pfn);
799                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
800                         pmd = pmd_wrprotect(pmd);
801                         pmd = pmd_mkclean(pmd);
802                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
803 unlock_pmd:
804 #endif
805                         spin_unlock(ptl);
806                 } else {
807                         if (pfn != pte_pfn(*ptep))
808                                 goto unlock_pte;
809                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
810                                 goto unlock_pte;
811
812                         flush_cache_page(vma, address, pfn);
813                         pte = ptep_clear_flush(vma, address, ptep);
814                         pte = pte_wrprotect(pte);
815                         pte = pte_mkclean(pte);
816                         set_pte_at(vma->vm_mm, address, ptep, pte);
817 unlock_pte:
818                         pte_unmap_unlock(ptep, ptl);
819                 }
820
821                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
822         }
823         i_mmap_unlock_read(mapping);
824 }
825
826 static int dax_writeback_one(struct dax_device *dax_dev,
827                 struct address_space *mapping, pgoff_t index, void *entry)
828 {
829         struct radix_tree_root *pages = &mapping->i_pages;
830         void *entry2, **slot;
831         unsigned long pfn;
832         long ret = 0;
833         size_t size;
834
835         /*
836          * A page got tagged dirty in DAX mapping? Something is seriously
837          * wrong.
838          */
839         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
840                 return -EIO;
841
842         xa_lock_irq(pages);
843         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
844         /* Entry got punched out / reallocated? */
845         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
846                 goto put_unlocked;
847         /*
848          * Entry got reallocated elsewhere? No need to writeback. We have to
849          * compare pfns as we must not bail out due to difference in lockbit
850          * or entry type.
851          */
852         if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
853                 goto put_unlocked;
854         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
855                                 dax_is_zero_entry(entry))) {
856                 ret = -EIO;
857                 goto put_unlocked;
858         }
859
860         /* Another fsync thread may have already written back this entry */
861         if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
862                 goto put_unlocked;
863         /* Lock the entry to serialize with page faults */
864         entry = lock_slot(mapping, slot);
865         /*
866          * We can clear the tag now but we have to be careful so that concurrent
867          * dax_writeback_one() calls for the same index cannot finish before we
868          * actually flush the caches. This is achieved as the calls will look
869          * at the entry only under the i_pages lock and once they do that
870          * they will see the entry locked and wait for it to unlock.
871          */
872         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
873         xa_unlock_irq(pages);
874
875         /*
876          * Even if dax_writeback_mapping_range() was given a wbc->range_start
877          * in the middle of a PMD, the 'index' we are given will be aligned to
878          * the start index of the PMD, as will the pfn we pull from 'entry'.
879          * This allows us to flush for PMD_SIZE and not have to worry about
880          * partial PMD writebacks.
881          */
882         pfn = dax_radix_pfn(entry);
883         size = PAGE_SIZE << dax_radix_order(entry);
884
885         dax_mapping_entry_mkclean(mapping, index, pfn);
886         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
887         /*
888          * After we have flushed the cache, we can clear the dirty tag. There
889          * cannot be new dirty data in the pfn after the flush has completed as
890          * the pfn mappings are writeprotected and fault waits for mapping
891          * entry lock.
892          */
893         xa_lock_irq(pages);
894         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
895         xa_unlock_irq(pages);
896         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
897         put_locked_mapping_entry(mapping, index);
898         return ret;
899
900  put_unlocked:
901         put_unlocked_mapping_entry(mapping, index, entry2);
902         xa_unlock_irq(pages);
903         return ret;
904 }
905
906 /*
907  * Flush the mapping to the persistent domain within the byte range of [start,
908  * end]. This is required by data integrity operations to ensure file data is
909  * on persistent storage prior to completion of the operation.
910  */
911 int dax_writeback_mapping_range(struct address_space *mapping,
912                 struct block_device *bdev, struct writeback_control *wbc)
913 {
914         struct inode *inode = mapping->host;
915         pgoff_t start_index, end_index;
916         pgoff_t indices[PAGEVEC_SIZE];
917         struct dax_device *dax_dev;
918         struct pagevec pvec;
919         bool done = false;
920         int i, ret = 0;
921
922         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
923                 return -EIO;
924
925         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
926                 return 0;
927
928         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
929         if (!dax_dev)
930                 return -EIO;
931
932         start_index = wbc->range_start >> PAGE_SHIFT;
933         end_index = wbc->range_end >> PAGE_SHIFT;
934
935         trace_dax_writeback_range(inode, start_index, end_index);
936
937         tag_pages_for_writeback(mapping, start_index, end_index);
938
939         pagevec_init(&pvec);
940         while (!done) {
941                 pvec.nr = find_get_entries_tag(mapping, start_index,
942                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
943                                 pvec.pages, indices);
944
945                 if (pvec.nr == 0)
946                         break;
947
948                 for (i = 0; i < pvec.nr; i++) {
949                         if (indices[i] > end_index) {
950                                 done = true;
951                                 break;
952                         }
953
954                         ret = dax_writeback_one(dax_dev, mapping, indices[i],
955                                         pvec.pages[i]);
956                         if (ret < 0) {
957                                 mapping_set_error(mapping, ret);
958                                 goto out;
959                         }
960                 }
961                 start_index = indices[pvec.nr - 1] + 1;
962         }
963 out:
964         put_dax(dax_dev);
965         trace_dax_writeback_range_done(inode, start_index, end_index);
966         return (ret < 0 ? ret : 0);
967 }
968 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
969
970 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
971 {
972         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
973 }
974
975 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
976                          pfn_t *pfnp)
977 {
978         const sector_t sector = dax_iomap_sector(iomap, pos);
979         pgoff_t pgoff;
980         void *kaddr;
981         int id, rc;
982         long length;
983
984         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
985         if (rc)
986                 return rc;
987         id = dax_read_lock();
988         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
989                                    &kaddr, pfnp);
990         if (length < 0) {
991                 rc = length;
992                 goto out;
993         }
994         rc = -EINVAL;
995         if (PFN_PHYS(length) < size)
996                 goto out;
997         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
998                 goto out;
999         /* For larger pages we need devmap */
1000         if (length > 1 && !pfn_t_devmap(*pfnp))
1001                 goto out;
1002         rc = 0;
1003 out:
1004         dax_read_unlock(id);
1005         return rc;
1006 }
1007
1008 /*
1009  * The user has performed a load from a hole in the file.  Allocating a new
1010  * page in the file would cause excessive storage usage for workloads with
1011  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1012  * If this page is ever written to we will re-fault and change the mapping to
1013  * point to real DAX storage instead.
1014  */
1015 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1016                          struct vm_fault *vmf)
1017 {
1018         struct inode *inode = mapping->host;
1019         unsigned long vaddr = vmf->address;
1020         vm_fault_t ret = VM_FAULT_NOPAGE;
1021         struct page *zero_page;
1022         pfn_t pfn;
1023
1024         zero_page = ZERO_PAGE(0);
1025         if (unlikely(!zero_page)) {
1026                 ret = VM_FAULT_OOM;
1027                 goto out;
1028         }
1029
1030         pfn = page_to_pfn_t(zero_page);
1031         dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1032                         false);
1033         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1034 out:
1035         trace_dax_load_hole(inode, vmf, ret);
1036         return ret;
1037 }
1038
1039 static bool dax_range_is_aligned(struct block_device *bdev,
1040                                  unsigned int offset, unsigned int length)
1041 {
1042         unsigned short sector_size = bdev_logical_block_size(bdev);
1043
1044         if (!IS_ALIGNED(offset, sector_size))
1045                 return false;
1046         if (!IS_ALIGNED(length, sector_size))
1047                 return false;
1048
1049         return true;
1050 }
1051
1052 int __dax_zero_page_range(struct block_device *bdev,
1053                 struct dax_device *dax_dev, sector_t sector,
1054                 unsigned int offset, unsigned int size)
1055 {
1056         if (dax_range_is_aligned(bdev, offset, size)) {
1057                 sector_t start_sector = sector + (offset >> 9);
1058
1059                 return blkdev_issue_zeroout(bdev, start_sector,
1060                                 size >> 9, GFP_NOFS, 0);
1061         } else {
1062                 pgoff_t pgoff;
1063                 long rc, id;
1064                 void *kaddr;
1065                 pfn_t pfn;
1066
1067                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1068                 if (rc)
1069                         return rc;
1070
1071                 id = dax_read_lock();
1072                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
1073                                 &pfn);
1074                 if (rc < 0) {
1075                         dax_read_unlock(id);
1076                         return rc;
1077                 }
1078                 memset(kaddr + offset, 0, size);
1079                 dax_flush(dax_dev, kaddr + offset, size);
1080                 dax_read_unlock(id);
1081         }
1082         return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1085
1086 static loff_t
1087 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1088                 struct iomap *iomap)
1089 {
1090         struct block_device *bdev = iomap->bdev;
1091         struct dax_device *dax_dev = iomap->dax_dev;
1092         struct iov_iter *iter = data;
1093         loff_t end = pos + length, done = 0;
1094         ssize_t ret = 0;
1095         size_t xfer;
1096         int id;
1097
1098         if (iov_iter_rw(iter) == READ) {
1099                 end = min(end, i_size_read(inode));
1100                 if (pos >= end)
1101                         return 0;
1102
1103                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1104                         return iov_iter_zero(min(length, end - pos), iter);
1105         }
1106
1107         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1108                 return -EIO;
1109
1110         /*
1111          * Write can allocate block for an area which has a hole page mapped
1112          * into page tables. We have to tear down these mappings so that data
1113          * written by write(2) is visible in mmap.
1114          */
1115         if (iomap->flags & IOMAP_F_NEW) {
1116                 invalidate_inode_pages2_range(inode->i_mapping,
1117                                               pos >> PAGE_SHIFT,
1118                                               (end - 1) >> PAGE_SHIFT);
1119         }
1120
1121         id = dax_read_lock();
1122         while (pos < end) {
1123                 unsigned offset = pos & (PAGE_SIZE - 1);
1124                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1125                 const sector_t sector = dax_iomap_sector(iomap, pos);
1126                 ssize_t map_len;
1127                 pgoff_t pgoff;
1128                 void *kaddr;
1129                 pfn_t pfn;
1130
1131                 if (fatal_signal_pending(current)) {
1132                         ret = -EINTR;
1133                         break;
1134                 }
1135
1136                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1137                 if (ret)
1138                         break;
1139
1140                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1141                                 &kaddr, &pfn);
1142                 if (map_len < 0) {
1143                         ret = map_len;
1144                         break;
1145                 }
1146
1147                 map_len = PFN_PHYS(map_len);
1148                 kaddr += offset;
1149                 map_len -= offset;
1150                 if (map_len > end - pos)
1151                         map_len = end - pos;
1152
1153                 /*
1154                  * The userspace address for the memory copy has already been
1155                  * validated via access_ok() in either vfs_read() or
1156                  * vfs_write(), depending on which operation we are doing.
1157                  */
1158                 if (iov_iter_rw(iter) == WRITE)
1159                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1160                                         map_len, iter);
1161                 else
1162                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1163                                         map_len, iter);
1164
1165                 pos += xfer;
1166                 length -= xfer;
1167                 done += xfer;
1168
1169                 if (xfer == 0)
1170                         ret = -EFAULT;
1171                 if (xfer < map_len)
1172                         break;
1173         }
1174         dax_read_unlock(id);
1175
1176         return done ? done : ret;
1177 }
1178
1179 /**
1180  * dax_iomap_rw - Perform I/O to a DAX file
1181  * @iocb:       The control block for this I/O
1182  * @iter:       The addresses to do I/O from or to
1183  * @ops:        iomap ops passed from the file system
1184  *
1185  * This function performs read and write operations to directly mapped
1186  * persistent memory.  The callers needs to take care of read/write exclusion
1187  * and evicting any page cache pages in the region under I/O.
1188  */
1189 ssize_t
1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1191                 const struct iomap_ops *ops)
1192 {
1193         struct address_space *mapping = iocb->ki_filp->f_mapping;
1194         struct inode *inode = mapping->host;
1195         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1196         unsigned flags = 0;
1197
1198         if (iov_iter_rw(iter) == WRITE) {
1199                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1200                 flags |= IOMAP_WRITE;
1201         } else {
1202                 lockdep_assert_held(&inode->i_rwsem);
1203         }
1204
1205         while (iov_iter_count(iter)) {
1206                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1207                                 iter, dax_iomap_actor);
1208                 if (ret <= 0)
1209                         break;
1210                 pos += ret;
1211                 done += ret;
1212         }
1213
1214         iocb->ki_pos += done;
1215         return done ? done : ret;
1216 }
1217 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1218
1219 static vm_fault_t dax_fault_return(int error)
1220 {
1221         if (error == 0)
1222                 return VM_FAULT_NOPAGE;
1223         if (error == -ENOMEM)
1224                 return VM_FAULT_OOM;
1225         return VM_FAULT_SIGBUS;
1226 }
1227
1228 /*
1229  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1230  * flushed on write-faults (non-cow), but not read-faults.
1231  */
1232 static bool dax_fault_is_synchronous(unsigned long flags,
1233                 struct vm_area_struct *vma, struct iomap *iomap)
1234 {
1235         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1236                 && (iomap->flags & IOMAP_F_DIRTY);
1237 }
1238
1239 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1240                                int *iomap_errp, const struct iomap_ops *ops)
1241 {
1242         struct vm_area_struct *vma = vmf->vma;
1243         struct address_space *mapping = vma->vm_file->f_mapping;
1244         struct inode *inode = mapping->host;
1245         unsigned long vaddr = vmf->address;
1246         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1247         struct iomap iomap = { 0 };
1248         unsigned flags = IOMAP_FAULT;
1249         int error, major = 0;
1250         bool write = vmf->flags & FAULT_FLAG_WRITE;
1251         bool sync;
1252         vm_fault_t ret = 0;
1253         void *entry;
1254         pfn_t pfn;
1255
1256         trace_dax_pte_fault(inode, vmf, ret);
1257         /*
1258          * Check whether offset isn't beyond end of file now. Caller is supposed
1259          * to hold locks serializing us with truncate / punch hole so this is
1260          * a reliable test.
1261          */
1262         if (pos >= i_size_read(inode)) {
1263                 ret = VM_FAULT_SIGBUS;
1264                 goto out;
1265         }
1266
1267         if (write && !vmf->cow_page)
1268                 flags |= IOMAP_WRITE;
1269
1270         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1271         if (IS_ERR(entry)) {
1272                 ret = dax_fault_return(PTR_ERR(entry));
1273                 goto out;
1274         }
1275
1276         /*
1277          * It is possible, particularly with mixed reads & writes to private
1278          * mappings, that we have raced with a PMD fault that overlaps with
1279          * the PTE we need to set up.  If so just return and the fault will be
1280          * retried.
1281          */
1282         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1283                 ret = VM_FAULT_NOPAGE;
1284                 goto unlock_entry;
1285         }
1286
1287         /*
1288          * Note that we don't bother to use iomap_apply here: DAX required
1289          * the file system block size to be equal the page size, which means
1290          * that we never have to deal with more than a single extent here.
1291          */
1292         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1293         if (iomap_errp)
1294                 *iomap_errp = error;
1295         if (error) {
1296                 ret = dax_fault_return(error);
1297                 goto unlock_entry;
1298         }
1299         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1300                 error = -EIO;   /* fs corruption? */
1301                 goto error_finish_iomap;
1302         }
1303
1304         if (vmf->cow_page) {
1305                 sector_t sector = dax_iomap_sector(&iomap, pos);
1306
1307                 switch (iomap.type) {
1308                 case IOMAP_HOLE:
1309                 case IOMAP_UNWRITTEN:
1310                         clear_user_highpage(vmf->cow_page, vaddr);
1311                         break;
1312                 case IOMAP_MAPPED:
1313                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1314                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1315                         break;
1316                 default:
1317                         WARN_ON_ONCE(1);
1318                         error = -EIO;
1319                         break;
1320                 }
1321
1322                 if (error)
1323                         goto error_finish_iomap;
1324
1325                 __SetPageUptodate(vmf->cow_page);
1326                 ret = finish_fault(vmf);
1327                 if (!ret)
1328                         ret = VM_FAULT_DONE_COW;
1329                 goto finish_iomap;
1330         }
1331
1332         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1333
1334         switch (iomap.type) {
1335         case IOMAP_MAPPED:
1336                 if (iomap.flags & IOMAP_F_NEW) {
1337                         count_vm_event(PGMAJFAULT);
1338                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1339                         major = VM_FAULT_MAJOR;
1340                 }
1341                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1342                 if (error < 0)
1343                         goto error_finish_iomap;
1344
1345                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1346                                                  0, write && !sync);
1347
1348                 /*
1349                  * If we are doing synchronous page fault and inode needs fsync,
1350                  * we can insert PTE into page tables only after that happens.
1351                  * Skip insertion for now and return the pfn so that caller can
1352                  * insert it after fsync is done.
1353                  */
1354                 if (sync) {
1355                         if (WARN_ON_ONCE(!pfnp)) {
1356                                 error = -EIO;
1357                                 goto error_finish_iomap;
1358                         }
1359                         *pfnp = pfn;
1360                         ret = VM_FAULT_NEEDDSYNC | major;
1361                         goto finish_iomap;
1362                 }
1363                 trace_dax_insert_mapping(inode, vmf, entry);
1364                 if (write)
1365                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1366                 else
1367                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1368
1369                 goto finish_iomap;
1370         case IOMAP_UNWRITTEN:
1371         case IOMAP_HOLE:
1372                 if (!write) {
1373                         ret = dax_load_hole(mapping, entry, vmf);
1374                         goto finish_iomap;
1375                 }
1376                 /*FALLTHRU*/
1377         default:
1378                 WARN_ON_ONCE(1);
1379                 error = -EIO;
1380                 break;
1381         }
1382
1383  error_finish_iomap:
1384         ret = dax_fault_return(error);
1385  finish_iomap:
1386         if (ops->iomap_end) {
1387                 int copied = PAGE_SIZE;
1388
1389                 if (ret & VM_FAULT_ERROR)
1390                         copied = 0;
1391                 /*
1392                  * The fault is done by now and there's no way back (other
1393                  * thread may be already happily using PTE we have installed).
1394                  * Just ignore error from ->iomap_end since we cannot do much
1395                  * with it.
1396                  */
1397                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1398         }
1399  unlock_entry:
1400         put_locked_mapping_entry(mapping, vmf->pgoff);
1401  out:
1402         trace_dax_pte_fault_done(inode, vmf, ret);
1403         return ret | major;
1404 }
1405
1406 #ifdef CONFIG_FS_DAX_PMD
1407 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1408                 void *entry)
1409 {
1410         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1411         unsigned long pmd_addr = vmf->address & PMD_MASK;
1412         struct inode *inode = mapping->host;
1413         struct page *zero_page;
1414         void *ret = NULL;
1415         spinlock_t *ptl;
1416         pmd_t pmd_entry;
1417         pfn_t pfn;
1418
1419         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1420
1421         if (unlikely(!zero_page))
1422                 goto fallback;
1423
1424         pfn = page_to_pfn_t(zero_page);
1425         ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1426                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1427
1428         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1429         if (!pmd_none(*(vmf->pmd))) {
1430                 spin_unlock(ptl);
1431                 goto fallback;
1432         }
1433
1434         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1435         pmd_entry = pmd_mkhuge(pmd_entry);
1436         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1437         spin_unlock(ptl);
1438         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1439         return VM_FAULT_NOPAGE;
1440
1441 fallback:
1442         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1443         return VM_FAULT_FALLBACK;
1444 }
1445
1446 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1447                                const struct iomap_ops *ops)
1448 {
1449         struct vm_area_struct *vma = vmf->vma;
1450         struct address_space *mapping = vma->vm_file->f_mapping;
1451         unsigned long pmd_addr = vmf->address & PMD_MASK;
1452         bool write = vmf->flags & FAULT_FLAG_WRITE;
1453         bool sync;
1454         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1455         struct inode *inode = mapping->host;
1456         vm_fault_t result = VM_FAULT_FALLBACK;
1457         struct iomap iomap = { 0 };
1458         pgoff_t max_pgoff, pgoff;
1459         void *entry;
1460         loff_t pos;
1461         int error;
1462         pfn_t pfn;
1463
1464         /*
1465          * Check whether offset isn't beyond end of file now. Caller is
1466          * supposed to hold locks serializing us with truncate / punch hole so
1467          * this is a reliable test.
1468          */
1469         pgoff = linear_page_index(vma, pmd_addr);
1470         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1471
1472         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1473
1474         /*
1475          * Make sure that the faulting address's PMD offset (color) matches
1476          * the PMD offset from the start of the file.  This is necessary so
1477          * that a PMD range in the page table overlaps exactly with a PMD
1478          * range in the radix tree.
1479          */
1480         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1481             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1482                 goto fallback;
1483
1484         /* Fall back to PTEs if we're going to COW */
1485         if (write && !(vma->vm_flags & VM_SHARED))
1486                 goto fallback;
1487
1488         /* If the PMD would extend outside the VMA */
1489         if (pmd_addr < vma->vm_start)
1490                 goto fallback;
1491         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1492                 goto fallback;
1493
1494         if (pgoff >= max_pgoff) {
1495                 result = VM_FAULT_SIGBUS;
1496                 goto out;
1497         }
1498
1499         /* If the PMD would extend beyond the file size */
1500         if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1501                 goto fallback;
1502
1503         /*
1504          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1505          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1506          * is already in the tree, for instance), it will return -EEXIST and
1507          * we just fall back to 4k entries.
1508          */
1509         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1510         if (IS_ERR(entry))
1511                 goto fallback;
1512
1513         /*
1514          * It is possible, particularly with mixed reads & writes to private
1515          * mappings, that we have raced with a PTE fault that overlaps with
1516          * the PMD we need to set up.  If so just return and the fault will be
1517          * retried.
1518          */
1519         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1520                         !pmd_devmap(*vmf->pmd)) {
1521                 result = 0;
1522                 goto unlock_entry;
1523         }
1524
1525         /*
1526          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1527          * setting up a mapping, so really we're using iomap_begin() as a way
1528          * to look up our filesystem block.
1529          */
1530         pos = (loff_t)pgoff << PAGE_SHIFT;
1531         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1532         if (error)
1533                 goto unlock_entry;
1534
1535         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1536                 goto finish_iomap;
1537
1538         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1539
1540         switch (iomap.type) {
1541         case IOMAP_MAPPED:
1542                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1543                 if (error < 0)
1544                         goto finish_iomap;
1545
1546                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1547                                                 RADIX_DAX_PMD, write && !sync);
1548
1549                 /*
1550                  * If we are doing synchronous page fault and inode needs fsync,
1551                  * we can insert PMD into page tables only after that happens.
1552                  * Skip insertion for now and return the pfn so that caller can
1553                  * insert it after fsync is done.
1554                  */
1555                 if (sync) {
1556                         if (WARN_ON_ONCE(!pfnp))
1557                                 goto finish_iomap;
1558                         *pfnp = pfn;
1559                         result = VM_FAULT_NEEDDSYNC;
1560                         goto finish_iomap;
1561                 }
1562
1563                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1564                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1565                                             write);
1566                 break;
1567         case IOMAP_UNWRITTEN:
1568         case IOMAP_HOLE:
1569                 if (WARN_ON_ONCE(write))
1570                         break;
1571                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1572                 break;
1573         default:
1574                 WARN_ON_ONCE(1);
1575                 break;
1576         }
1577
1578  finish_iomap:
1579         if (ops->iomap_end) {
1580                 int copied = PMD_SIZE;
1581
1582                 if (result == VM_FAULT_FALLBACK)
1583                         copied = 0;
1584                 /*
1585                  * The fault is done by now and there's no way back (other
1586                  * thread may be already happily using PMD we have installed).
1587                  * Just ignore error from ->iomap_end since we cannot do much
1588                  * with it.
1589                  */
1590                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1591                                 &iomap);
1592         }
1593  unlock_entry:
1594         put_locked_mapping_entry(mapping, pgoff);
1595  fallback:
1596         if (result == VM_FAULT_FALLBACK) {
1597                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1598                 count_vm_event(THP_FAULT_FALLBACK);
1599         }
1600 out:
1601         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1602         return result;
1603 }
1604 #else
1605 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1606                                const struct iomap_ops *ops)
1607 {
1608         return VM_FAULT_FALLBACK;
1609 }
1610 #endif /* CONFIG_FS_DAX_PMD */
1611
1612 /**
1613  * dax_iomap_fault - handle a page fault on a DAX file
1614  * @vmf: The description of the fault
1615  * @pe_size: Size of the page to fault in
1616  * @pfnp: PFN to insert for synchronous faults if fsync is required
1617  * @iomap_errp: Storage for detailed error code in case of error
1618  * @ops: Iomap ops passed from the file system
1619  *
1620  * When a page fault occurs, filesystems may call this helper in
1621  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1622  * has done all the necessary locking for page fault to proceed
1623  * successfully.
1624  */
1625 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1626                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1627 {
1628         switch (pe_size) {
1629         case PE_SIZE_PTE:
1630                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1631         case PE_SIZE_PMD:
1632                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1633         default:
1634                 return VM_FAULT_FALLBACK;
1635         }
1636 }
1637 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1638
1639 /**
1640  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1641  * @vmf: The description of the fault
1642  * @pe_size: Size of entry to be inserted
1643  * @pfn: PFN to insert
1644  *
1645  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1646  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1647  * as well.
1648  */
1649 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1650                                   enum page_entry_size pe_size,
1651                                   pfn_t pfn)
1652 {
1653         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1654         void *entry, **slot;
1655         pgoff_t index = vmf->pgoff;
1656         vm_fault_t ret;
1657
1658         xa_lock_irq(&mapping->i_pages);
1659         entry = get_unlocked_mapping_entry(mapping, index, &slot);
1660         /* Did we race with someone splitting entry or so? */
1661         if (!entry ||
1662             (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1663             (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1664                 put_unlocked_mapping_entry(mapping, index, entry);
1665                 xa_unlock_irq(&mapping->i_pages);
1666                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1667                                                       VM_FAULT_NOPAGE);
1668                 return VM_FAULT_NOPAGE;
1669         }
1670         radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1671         entry = lock_slot(mapping, slot);
1672         xa_unlock_irq(&mapping->i_pages);
1673         switch (pe_size) {
1674         case PE_SIZE_PTE:
1675                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1676                 break;
1677 #ifdef CONFIG_FS_DAX_PMD
1678         case PE_SIZE_PMD:
1679                 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1680                         pfn, true);
1681                 break;
1682 #endif
1683         default:
1684                 ret = VM_FAULT_FALLBACK;
1685         }
1686         put_locked_mapping_entry(mapping, index);
1687         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1688         return ret;
1689 }
1690
1691 /**
1692  * dax_finish_sync_fault - finish synchronous page fault
1693  * @vmf: The description of the fault
1694  * @pe_size: Size of entry to be inserted
1695  * @pfn: PFN to insert
1696  *
1697  * This function ensures that the file range touched by the page fault is
1698  * stored persistently on the media and handles inserting of appropriate page
1699  * table entry.
1700  */
1701 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1702                 enum page_entry_size pe_size, pfn_t pfn)
1703 {
1704         int err;
1705         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1706         size_t len = 0;
1707
1708         if (pe_size == PE_SIZE_PTE)
1709                 len = PAGE_SIZE;
1710         else if (pe_size == PE_SIZE_PMD)
1711                 len = PMD_SIZE;
1712         else
1713                 WARN_ON_ONCE(1);
1714         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1715         if (err)
1716                 return VM_FAULT_SIGBUS;
1717         return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1718 }
1719 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);