]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/dax.c
c576f6181dc8958951669fd6f91d2d18177874c7
[linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
46
47 static int __init init_dax_wait_table(void)
48 {
49         int i;
50
51         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
52                 init_waitqueue_head(wait_table + i);
53         return 0;
54 }
55 fs_initcall(init_dax_wait_table);
56
57 /*
58  * We use lowest available bit in exceptional entry for locking, one bit for
59  * the entry size (PMD) and two more to tell us if the entry is a zero page or
60  * an empty entry that is just used for locking.  In total four special bits.
61  *
62  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
63  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
64  * block allocation.
65  */
66 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
67 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
68 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
69 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
70 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
71
72 static unsigned long dax_radix_sector(void *entry)
73 {
74         return (unsigned long)entry >> RADIX_DAX_SHIFT;
75 }
76
77 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
78 {
79         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
80                         ((unsigned long)sector << RADIX_DAX_SHIFT) |
81                         RADIX_DAX_ENTRY_LOCK);
82 }
83
84 static unsigned int dax_radix_order(void *entry)
85 {
86         if ((unsigned long)entry & RADIX_DAX_PMD)
87                 return PMD_SHIFT - PAGE_SHIFT;
88         return 0;
89 }
90
91 static int dax_is_pmd_entry(void *entry)
92 {
93         return (unsigned long)entry & RADIX_DAX_PMD;
94 }
95
96 static int dax_is_pte_entry(void *entry)
97 {
98         return !((unsigned long)entry & RADIX_DAX_PMD);
99 }
100
101 static int dax_is_zero_entry(void *entry)
102 {
103         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
104 }
105
106 static int dax_is_empty_entry(void *entry)
107 {
108         return (unsigned long)entry & RADIX_DAX_EMPTY;
109 }
110
111 /*
112  * DAX radix tree locking
113  */
114 struct exceptional_entry_key {
115         struct address_space *mapping;
116         pgoff_t entry_start;
117 };
118
119 struct wait_exceptional_entry_queue {
120         wait_queue_entry_t wait;
121         struct exceptional_entry_key key;
122 };
123
124 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
125                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
126 {
127         unsigned long hash;
128
129         /*
130          * If 'entry' is a PMD, align the 'index' that we use for the wait
131          * queue to the start of that PMD.  This ensures that all offsets in
132          * the range covered by the PMD map to the same bit lock.
133          */
134         if (dax_is_pmd_entry(entry))
135                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
136
137         key->mapping = mapping;
138         key->entry_start = index;
139
140         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
141         return wait_table + hash;
142 }
143
144 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
145                                        int sync, void *keyp)
146 {
147         struct exceptional_entry_key *key = keyp;
148         struct wait_exceptional_entry_queue *ewait =
149                 container_of(wait, struct wait_exceptional_entry_queue, wait);
150
151         if (key->mapping != ewait->key.mapping ||
152             key->entry_start != ewait->key.entry_start)
153                 return 0;
154         return autoremove_wake_function(wait, mode, sync, NULL);
155 }
156
157 /*
158  * We do not necessarily hold the mapping->tree_lock when we call this
159  * function so it is possible that 'entry' is no longer a valid item in the
160  * radix tree.  This is okay because all we really need to do is to find the
161  * correct waitqueue where tasks might be waiting for that old 'entry' and
162  * wake them.
163  */
164 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
165                 pgoff_t index, void *entry, bool wake_all)
166 {
167         struct exceptional_entry_key key;
168         wait_queue_head_t *wq;
169
170         wq = dax_entry_waitqueue(mapping, index, entry, &key);
171
172         /*
173          * Checking for locked entry and prepare_to_wait_exclusive() happens
174          * under mapping->tree_lock, ditto for entry handling in our callers.
175          * So at this point all tasks that could have seen our entry locked
176          * must be in the waitqueue and the following check will see them.
177          */
178         if (waitqueue_active(wq))
179                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
180 }
181
182 /*
183  * Check whether the given slot is locked. The function must be called with
184  * mapping->tree_lock held
185  */
186 static inline int slot_locked(struct address_space *mapping, void **slot)
187 {
188         unsigned long entry = (unsigned long)
189                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
190         return entry & RADIX_DAX_ENTRY_LOCK;
191 }
192
193 /*
194  * Mark the given slot is locked. The function must be called with
195  * mapping->tree_lock held
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199         unsigned long entry = (unsigned long)
200                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
201
202         entry |= RADIX_DAX_ENTRY_LOCK;
203         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
204         return (void *)entry;
205 }
206
207 /*
208  * Mark the given slot is unlocked. The function must be called with
209  * mapping->tree_lock held
210  */
211 static inline void *unlock_slot(struct address_space *mapping, void **slot)
212 {
213         unsigned long entry = (unsigned long)
214                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
215
216         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
217         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
218         return (void *)entry;
219 }
220
221 /*
222  * Lookup entry in radix tree, wait for it to become unlocked if it is
223  * exceptional entry and return it. The caller must call
224  * put_unlocked_mapping_entry() when he decided not to lock the entry or
225  * put_locked_mapping_entry() when he locked the entry and now wants to
226  * unlock it.
227  *
228  * The function must be called with mapping->tree_lock held.
229  */
230 static void *get_unlocked_mapping_entry(struct address_space *mapping,
231                                         pgoff_t index, void ***slotp)
232 {
233         void *entry, **slot;
234         struct wait_exceptional_entry_queue ewait;
235         wait_queue_head_t *wq;
236
237         init_wait(&ewait.wait);
238         ewait.wait.func = wake_exceptional_entry_func;
239
240         for (;;) {
241                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
242                                           &slot);
243                 if (!entry ||
244                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
245                     !slot_locked(mapping, slot)) {
246                         if (slotp)
247                                 *slotp = slot;
248                         return entry;
249                 }
250
251                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
252                 prepare_to_wait_exclusive(wq, &ewait.wait,
253                                           TASK_UNINTERRUPTIBLE);
254                 spin_unlock_irq(&mapping->tree_lock);
255                 schedule();
256                 finish_wait(wq, &ewait.wait);
257                 spin_lock_irq(&mapping->tree_lock);
258         }
259 }
260
261 static void dax_unlock_mapping_entry(struct address_space *mapping,
262                                      pgoff_t index)
263 {
264         void *entry, **slot;
265
266         spin_lock_irq(&mapping->tree_lock);
267         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
268         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
269                          !slot_locked(mapping, slot))) {
270                 spin_unlock_irq(&mapping->tree_lock);
271                 return;
272         }
273         unlock_slot(mapping, slot);
274         spin_unlock_irq(&mapping->tree_lock);
275         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
276 }
277
278 static void put_locked_mapping_entry(struct address_space *mapping,
279                 pgoff_t index)
280 {
281         dax_unlock_mapping_entry(mapping, index);
282 }
283
284 /*
285  * Called when we are done with radix tree entry we looked up via
286  * get_unlocked_mapping_entry() and which we didn't lock in the end.
287  */
288 static void put_unlocked_mapping_entry(struct address_space *mapping,
289                                        pgoff_t index, void *entry)
290 {
291         if (!entry)
292                 return;
293
294         /* We have to wake up next waiter for the radix tree entry lock */
295         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
296 }
297
298 /*
299  * Find radix tree entry at given index. If it points to an exceptional entry,
300  * return it with the radix tree entry locked. If the radix tree doesn't
301  * contain given index, create an empty exceptional entry for the index and
302  * return with it locked.
303  *
304  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
305  * either return that locked entry or will return an error.  This error will
306  * happen if there are any 4k entries within the 2MiB range that we are
307  * requesting.
308  *
309  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
310  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
311  * insertion will fail if it finds any 4k entries already in the tree, and a
312  * 4k insertion will cause an existing 2MiB entry to be unmapped and
313  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
314  * well as 2MiB empty entries.
315  *
316  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
317  * real storage backing them.  We will leave these real 2MiB DAX entries in
318  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
319  *
320  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
321  * persistent memory the benefit is doubtful. We can add that later if we can
322  * show it helps.
323  */
324 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
325                 unsigned long size_flag)
326 {
327         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
328         void *entry, **slot;
329
330 restart:
331         spin_lock_irq(&mapping->tree_lock);
332         entry = get_unlocked_mapping_entry(mapping, index, &slot);
333
334         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
335                 entry = ERR_PTR(-EIO);
336                 goto out_unlock;
337         }
338
339         if (entry) {
340                 if (size_flag & RADIX_DAX_PMD) {
341                         if (dax_is_pte_entry(entry)) {
342                                 put_unlocked_mapping_entry(mapping, index,
343                                                 entry);
344                                 entry = ERR_PTR(-EEXIST);
345                                 goto out_unlock;
346                         }
347                 } else { /* trying to grab a PTE entry */
348                         if (dax_is_pmd_entry(entry) &&
349                             (dax_is_zero_entry(entry) ||
350                              dax_is_empty_entry(entry))) {
351                                 pmd_downgrade = true;
352                         }
353                 }
354         }
355
356         /* No entry for given index? Make sure radix tree is big enough. */
357         if (!entry || pmd_downgrade) {
358                 int err;
359
360                 if (pmd_downgrade) {
361                         /*
362                          * Make sure 'entry' remains valid while we drop
363                          * mapping->tree_lock.
364                          */
365                         entry = lock_slot(mapping, slot);
366                 }
367
368                 spin_unlock_irq(&mapping->tree_lock);
369                 /*
370                  * Besides huge zero pages the only other thing that gets
371                  * downgraded are empty entries which don't need to be
372                  * unmapped.
373                  */
374                 if (pmd_downgrade && dax_is_zero_entry(entry))
375                         unmap_mapping_range(mapping,
376                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
377
378                 err = radix_tree_preload(
379                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
380                 if (err) {
381                         if (pmd_downgrade)
382                                 put_locked_mapping_entry(mapping, index);
383                         return ERR_PTR(err);
384                 }
385                 spin_lock_irq(&mapping->tree_lock);
386
387                 if (!entry) {
388                         /*
389                          * We needed to drop the page_tree lock while calling
390                          * radix_tree_preload() and we didn't have an entry to
391                          * lock.  See if another thread inserted an entry at
392                          * our index during this time.
393                          */
394                         entry = __radix_tree_lookup(&mapping->page_tree, index,
395                                         NULL, &slot);
396                         if (entry) {
397                                 radix_tree_preload_end();
398                                 spin_unlock_irq(&mapping->tree_lock);
399                                 goto restart;
400                         }
401                 }
402
403                 if (pmd_downgrade) {
404                         radix_tree_delete(&mapping->page_tree, index);
405                         mapping->nrexceptional--;
406                         dax_wake_mapping_entry_waiter(mapping, index, entry,
407                                         true);
408                 }
409
410                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
411
412                 err = __radix_tree_insert(&mapping->page_tree, index,
413                                 dax_radix_order(entry), entry);
414                 radix_tree_preload_end();
415                 if (err) {
416                         spin_unlock_irq(&mapping->tree_lock);
417                         /*
418                          * Our insertion of a DAX entry failed, most likely
419                          * because we were inserting a PMD entry and it
420                          * collided with a PTE sized entry at a different
421                          * index in the PMD range.  We haven't inserted
422                          * anything into the radix tree and have no waiters to
423                          * wake.
424                          */
425                         return ERR_PTR(err);
426                 }
427                 /* Good, we have inserted empty locked entry into the tree. */
428                 mapping->nrexceptional++;
429                 spin_unlock_irq(&mapping->tree_lock);
430                 return entry;
431         }
432         entry = lock_slot(mapping, slot);
433  out_unlock:
434         spin_unlock_irq(&mapping->tree_lock);
435         return entry;
436 }
437
438 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
439                                           pgoff_t index, bool trunc)
440 {
441         int ret = 0;
442         void *entry;
443         struct radix_tree_root *page_tree = &mapping->page_tree;
444
445         spin_lock_irq(&mapping->tree_lock);
446         entry = get_unlocked_mapping_entry(mapping, index, NULL);
447         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
448                 goto out;
449         if (!trunc &&
450             (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
451              radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
452                 goto out;
453         radix_tree_delete(page_tree, index);
454         mapping->nrexceptional--;
455         ret = 1;
456 out:
457         put_unlocked_mapping_entry(mapping, index, entry);
458         spin_unlock_irq(&mapping->tree_lock);
459         return ret;
460 }
461 /*
462  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
463  * entry to get unlocked before deleting it.
464  */
465 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
466 {
467         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
468
469         /*
470          * This gets called from truncate / punch_hole path. As such, the caller
471          * must hold locks protecting against concurrent modifications of the
472          * radix tree (usually fs-private i_mmap_sem for writing). Since the
473          * caller has seen exceptional entry for this index, we better find it
474          * at that index as well...
475          */
476         WARN_ON_ONCE(!ret);
477         return ret;
478 }
479
480 /*
481  * Invalidate exceptional DAX entry if it is clean.
482  */
483 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
484                                       pgoff_t index)
485 {
486         return __dax_invalidate_mapping_entry(mapping, index, false);
487 }
488
489 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
490                 sector_t sector, size_t size, struct page *to,
491                 unsigned long vaddr)
492 {
493         void *vto, *kaddr;
494         pgoff_t pgoff;
495         pfn_t pfn;
496         long rc;
497         int id;
498
499         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
500         if (rc)
501                 return rc;
502
503         id = dax_read_lock();
504         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
505         if (rc < 0) {
506                 dax_read_unlock(id);
507                 return rc;
508         }
509         vto = kmap_atomic(to);
510         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
511         kunmap_atomic(vto);
512         dax_read_unlock(id);
513         return 0;
514 }
515
516 /*
517  * By this point grab_mapping_entry() has ensured that we have a locked entry
518  * of the appropriate size so we don't have to worry about downgrading PMDs to
519  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
520  * already in the tree, we will skip the insertion and just dirty the PMD as
521  * appropriate.
522  */
523 static void *dax_insert_mapping_entry(struct address_space *mapping,
524                                       struct vm_fault *vmf,
525                                       void *entry, sector_t sector,
526                                       unsigned long flags)
527 {
528         struct radix_tree_root *page_tree = &mapping->page_tree;
529         void *new_entry;
530         pgoff_t index = vmf->pgoff;
531
532         if (vmf->flags & FAULT_FLAG_WRITE)
533                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
534
535         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
536                 /* we are replacing a zero page with block mapping */
537                 if (dax_is_pmd_entry(entry))
538                         unmap_mapping_range(mapping,
539                                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
540                                         PMD_SIZE, 0);
541                 else /* pte entry */
542                         unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
543                                         PAGE_SIZE, 0);
544         }
545
546         spin_lock_irq(&mapping->tree_lock);
547         new_entry = dax_radix_locked_entry(sector, flags);
548
549         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
550                 /*
551                  * Only swap our new entry into the radix tree if the current
552                  * entry is a zero page or an empty entry.  If a normal PTE or
553                  * PMD entry is already in the tree, we leave it alone.  This
554                  * means that if we are trying to insert a PTE and the
555                  * existing entry is a PMD, we will just leave the PMD in the
556                  * tree and dirty it if necessary.
557                  */
558                 struct radix_tree_node *node;
559                 void **slot;
560                 void *ret;
561
562                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
563                 WARN_ON_ONCE(ret != entry);
564                 __radix_tree_replace(page_tree, node, slot,
565                                      new_entry, NULL, NULL);
566                 entry = new_entry;
567         }
568
569         if (vmf->flags & FAULT_FLAG_WRITE)
570                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
571
572         spin_unlock_irq(&mapping->tree_lock);
573         return entry;
574 }
575
576 static inline unsigned long
577 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
578 {
579         unsigned long address;
580
581         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
582         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
583         return address;
584 }
585
586 /* Walk all mappings of a given index of a file and writeprotect them */
587 static void dax_mapping_entry_mkclean(struct address_space *mapping,
588                                       pgoff_t index, unsigned long pfn)
589 {
590         struct vm_area_struct *vma;
591         pte_t pte, *ptep = NULL;
592         pmd_t *pmdp = NULL;
593         spinlock_t *ptl;
594
595         i_mmap_lock_read(mapping);
596         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
597                 unsigned long address, start, end;
598
599                 cond_resched();
600
601                 if (!(vma->vm_flags & VM_SHARED))
602                         continue;
603
604                 address = pgoff_address(index, vma);
605
606                 /*
607                  * Note because we provide start/end to follow_pte_pmd it will
608                  * call mmu_notifier_invalidate_range_start() on our behalf
609                  * before taking any lock.
610                  */
611                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
612                         continue;
613
614                 if (pmdp) {
615 #ifdef CONFIG_FS_DAX_PMD
616                         pmd_t pmd;
617
618                         if (pfn != pmd_pfn(*pmdp))
619                                 goto unlock_pmd;
620                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
621                                 goto unlock_pmd;
622
623                         flush_cache_page(vma, address, pfn);
624                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
625                         pmd = pmd_wrprotect(pmd);
626                         pmd = pmd_mkclean(pmd);
627                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
628                         mmu_notifier_invalidate_range(vma->vm_mm, start, end);
629 unlock_pmd:
630                         spin_unlock(ptl);
631 #endif
632                 } else {
633                         if (pfn != pte_pfn(*ptep))
634                                 goto unlock_pte;
635                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
636                                 goto unlock_pte;
637
638                         flush_cache_page(vma, address, pfn);
639                         pte = ptep_clear_flush(vma, address, ptep);
640                         pte = pte_wrprotect(pte);
641                         pte = pte_mkclean(pte);
642                         set_pte_at(vma->vm_mm, address, ptep, pte);
643                         mmu_notifier_invalidate_range(vma->vm_mm, start, end);
644 unlock_pte:
645                         pte_unmap_unlock(ptep, ptl);
646                 }
647
648                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
649         }
650         i_mmap_unlock_read(mapping);
651 }
652
653 static int dax_writeback_one(struct block_device *bdev,
654                 struct dax_device *dax_dev, struct address_space *mapping,
655                 pgoff_t index, void *entry)
656 {
657         struct radix_tree_root *page_tree = &mapping->page_tree;
658         void *entry2, **slot, *kaddr;
659         long ret = 0, id;
660         sector_t sector;
661         pgoff_t pgoff;
662         size_t size;
663         pfn_t pfn;
664
665         /*
666          * A page got tagged dirty in DAX mapping? Something is seriously
667          * wrong.
668          */
669         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
670                 return -EIO;
671
672         spin_lock_irq(&mapping->tree_lock);
673         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
674         /* Entry got punched out / reallocated? */
675         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
676                 goto put_unlocked;
677         /*
678          * Entry got reallocated elsewhere? No need to writeback. We have to
679          * compare sectors as we must not bail out due to difference in lockbit
680          * or entry type.
681          */
682         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
683                 goto put_unlocked;
684         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
685                                 dax_is_zero_entry(entry))) {
686                 ret = -EIO;
687                 goto put_unlocked;
688         }
689
690         /* Another fsync thread may have already written back this entry */
691         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
692                 goto put_unlocked;
693         /* Lock the entry to serialize with page faults */
694         entry = lock_slot(mapping, slot);
695         /*
696          * We can clear the tag now but we have to be careful so that concurrent
697          * dax_writeback_one() calls for the same index cannot finish before we
698          * actually flush the caches. This is achieved as the calls will look
699          * at the entry only under tree_lock and once they do that they will
700          * see the entry locked and wait for it to unlock.
701          */
702         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
703         spin_unlock_irq(&mapping->tree_lock);
704
705         /*
706          * Even if dax_writeback_mapping_range() was given a wbc->range_start
707          * in the middle of a PMD, the 'index' we are given will be aligned to
708          * the start index of the PMD, as will the sector we pull from
709          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
710          * worry about partial PMD writebacks.
711          */
712         sector = dax_radix_sector(entry);
713         size = PAGE_SIZE << dax_radix_order(entry);
714
715         id = dax_read_lock();
716         ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
717         if (ret)
718                 goto dax_unlock;
719
720         /*
721          * dax_direct_access() may sleep, so cannot hold tree_lock over
722          * its invocation.
723          */
724         ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
725         if (ret < 0)
726                 goto dax_unlock;
727
728         if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
729                 ret = -EIO;
730                 goto dax_unlock;
731         }
732
733         dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
734         dax_flush(dax_dev, pgoff, kaddr, size);
735         /*
736          * After we have flushed the cache, we can clear the dirty tag. There
737          * cannot be new dirty data in the pfn after the flush has completed as
738          * the pfn mappings are writeprotected and fault waits for mapping
739          * entry lock.
740          */
741         spin_lock_irq(&mapping->tree_lock);
742         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
743         spin_unlock_irq(&mapping->tree_lock);
744         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
745  dax_unlock:
746         dax_read_unlock(id);
747         put_locked_mapping_entry(mapping, index);
748         return ret;
749
750  put_unlocked:
751         put_unlocked_mapping_entry(mapping, index, entry2);
752         spin_unlock_irq(&mapping->tree_lock);
753         return ret;
754 }
755
756 /*
757  * Flush the mapping to the persistent domain within the byte range of [start,
758  * end]. This is required by data integrity operations to ensure file data is
759  * on persistent storage prior to completion of the operation.
760  */
761 int dax_writeback_mapping_range(struct address_space *mapping,
762                 struct block_device *bdev, struct writeback_control *wbc)
763 {
764         struct inode *inode = mapping->host;
765         pgoff_t start_index, end_index;
766         pgoff_t indices[PAGEVEC_SIZE];
767         struct dax_device *dax_dev;
768         struct pagevec pvec;
769         bool done = false;
770         int i, ret = 0;
771
772         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
773                 return -EIO;
774
775         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
776                 return 0;
777
778         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
779         if (!dax_dev)
780                 return -EIO;
781
782         start_index = wbc->range_start >> PAGE_SHIFT;
783         end_index = wbc->range_end >> PAGE_SHIFT;
784
785         trace_dax_writeback_range(inode, start_index, end_index);
786
787         tag_pages_for_writeback(mapping, start_index, end_index);
788
789         pagevec_init(&pvec, 0);
790         while (!done) {
791                 pvec.nr = find_get_entries_tag(mapping, start_index,
792                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
793                                 pvec.pages, indices);
794
795                 if (pvec.nr == 0)
796                         break;
797
798                 for (i = 0; i < pvec.nr; i++) {
799                         if (indices[i] > end_index) {
800                                 done = true;
801                                 break;
802                         }
803
804                         ret = dax_writeback_one(bdev, dax_dev, mapping,
805                                         indices[i], pvec.pages[i]);
806                         if (ret < 0) {
807                                 mapping_set_error(mapping, ret);
808                                 goto out;
809                         }
810                 }
811                 start_index = indices[pvec.nr - 1] + 1;
812         }
813 out:
814         put_dax(dax_dev);
815         trace_dax_writeback_range_done(inode, start_index, end_index);
816         return (ret < 0 ? ret : 0);
817 }
818 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
819
820 static int dax_insert_mapping(struct address_space *mapping,
821                 struct block_device *bdev, struct dax_device *dax_dev,
822                 sector_t sector, size_t size, void *entry,
823                 struct vm_area_struct *vma, struct vm_fault *vmf)
824 {
825         unsigned long vaddr = vmf->address;
826         void *ret, *kaddr;
827         pgoff_t pgoff;
828         int id, rc;
829         pfn_t pfn;
830
831         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
832         if (rc)
833                 return rc;
834
835         id = dax_read_lock();
836         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
837         if (rc < 0) {
838                 dax_read_unlock(id);
839                 return rc;
840         }
841         dax_read_unlock(id);
842
843         ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
844         if (IS_ERR(ret))
845                 return PTR_ERR(ret);
846
847         trace_dax_insert_mapping(mapping->host, vmf, ret);
848         if (vmf->flags & FAULT_FLAG_WRITE)
849                 return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
850         else
851                 return vm_insert_mixed(vma, vaddr, pfn);
852 }
853
854 /*
855  * The user has performed a load from a hole in the file.  Allocating a new
856  * page in the file would cause excessive storage usage for workloads with
857  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
858  * If this page is ever written to we will re-fault and change the mapping to
859  * point to real DAX storage instead.
860  */
861 static int dax_load_hole(struct address_space *mapping, void *entry,
862                          struct vm_fault *vmf)
863 {
864         struct inode *inode = mapping->host;
865         unsigned long vaddr = vmf->address;
866         int ret = VM_FAULT_NOPAGE;
867         struct page *zero_page;
868         void *entry2;
869
870         zero_page = ZERO_PAGE(0);
871         if (unlikely(!zero_page)) {
872                 ret = VM_FAULT_OOM;
873                 goto out;
874         }
875
876         entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
877                         RADIX_DAX_ZERO_PAGE);
878         if (IS_ERR(entry2)) {
879                 ret = VM_FAULT_SIGBUS;
880                 goto out;
881         }
882
883         vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
884 out:
885         trace_dax_load_hole(inode, vmf, ret);
886         return ret;
887 }
888
889 static bool dax_range_is_aligned(struct block_device *bdev,
890                                  unsigned int offset, unsigned int length)
891 {
892         unsigned short sector_size = bdev_logical_block_size(bdev);
893
894         if (!IS_ALIGNED(offset, sector_size))
895                 return false;
896         if (!IS_ALIGNED(length, sector_size))
897                 return false;
898
899         return true;
900 }
901
902 int __dax_zero_page_range(struct block_device *bdev,
903                 struct dax_device *dax_dev, sector_t sector,
904                 unsigned int offset, unsigned int size)
905 {
906         if (dax_range_is_aligned(bdev, offset, size)) {
907                 sector_t start_sector = sector + (offset >> 9);
908
909                 return blkdev_issue_zeroout(bdev, start_sector,
910                                 size >> 9, GFP_NOFS, 0);
911         } else {
912                 pgoff_t pgoff;
913                 long rc, id;
914                 void *kaddr;
915                 pfn_t pfn;
916
917                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
918                 if (rc)
919                         return rc;
920
921                 id = dax_read_lock();
922                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
923                                 &pfn);
924                 if (rc < 0) {
925                         dax_read_unlock(id);
926                         return rc;
927                 }
928                 memset(kaddr + offset, 0, size);
929                 dax_flush(dax_dev, pgoff, kaddr + offset, size);
930                 dax_read_unlock(id);
931         }
932         return 0;
933 }
934 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
935
936 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
937 {
938         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
939 }
940
941 static loff_t
942 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
943                 struct iomap *iomap)
944 {
945         struct block_device *bdev = iomap->bdev;
946         struct dax_device *dax_dev = iomap->dax_dev;
947         struct iov_iter *iter = data;
948         loff_t end = pos + length, done = 0;
949         ssize_t ret = 0;
950         int id;
951
952         if (iov_iter_rw(iter) == READ) {
953                 end = min(end, i_size_read(inode));
954                 if (pos >= end)
955                         return 0;
956
957                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
958                         return iov_iter_zero(min(length, end - pos), iter);
959         }
960
961         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
962                 return -EIO;
963
964         /*
965          * Write can allocate block for an area which has a hole page mapped
966          * into page tables. We have to tear down these mappings so that data
967          * written by write(2) is visible in mmap.
968          */
969         if (iomap->flags & IOMAP_F_NEW) {
970                 invalidate_inode_pages2_range(inode->i_mapping,
971                                               pos >> PAGE_SHIFT,
972                                               (end - 1) >> PAGE_SHIFT);
973         }
974
975         id = dax_read_lock();
976         while (pos < end) {
977                 unsigned offset = pos & (PAGE_SIZE - 1);
978                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
979                 const sector_t sector = dax_iomap_sector(iomap, pos);
980                 ssize_t map_len;
981                 pgoff_t pgoff;
982                 void *kaddr;
983                 pfn_t pfn;
984
985                 if (fatal_signal_pending(current)) {
986                         ret = -EINTR;
987                         break;
988                 }
989
990                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
991                 if (ret)
992                         break;
993
994                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
995                                 &kaddr, &pfn);
996                 if (map_len < 0) {
997                         ret = map_len;
998                         break;
999                 }
1000
1001                 map_len = PFN_PHYS(map_len);
1002                 kaddr += offset;
1003                 map_len -= offset;
1004                 if (map_len > end - pos)
1005                         map_len = end - pos;
1006
1007                 if (iov_iter_rw(iter) == WRITE)
1008                         map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1009                                         map_len, iter);
1010                 else
1011                         map_len = copy_to_iter(kaddr, map_len, iter);
1012                 if (map_len <= 0) {
1013                         ret = map_len ? map_len : -EFAULT;
1014                         break;
1015                 }
1016
1017                 pos += map_len;
1018                 length -= map_len;
1019                 done += map_len;
1020         }
1021         dax_read_unlock(id);
1022
1023         return done ? done : ret;
1024 }
1025
1026 /**
1027  * dax_iomap_rw - Perform I/O to a DAX file
1028  * @iocb:       The control block for this I/O
1029  * @iter:       The addresses to do I/O from or to
1030  * @ops:        iomap ops passed from the file system
1031  *
1032  * This function performs read and write operations to directly mapped
1033  * persistent memory.  The callers needs to take care of read/write exclusion
1034  * and evicting any page cache pages in the region under I/O.
1035  */
1036 ssize_t
1037 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1038                 const struct iomap_ops *ops)
1039 {
1040         struct address_space *mapping = iocb->ki_filp->f_mapping;
1041         struct inode *inode = mapping->host;
1042         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1043         unsigned flags = 0;
1044
1045         if (iov_iter_rw(iter) == WRITE) {
1046                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1047                 flags |= IOMAP_WRITE;
1048         } else {
1049                 lockdep_assert_held(&inode->i_rwsem);
1050         }
1051
1052         while (iov_iter_count(iter)) {
1053                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1054                                 iter, dax_iomap_actor);
1055                 if (ret <= 0)
1056                         break;
1057                 pos += ret;
1058                 done += ret;
1059         }
1060
1061         iocb->ki_pos += done;
1062         return done ? done : ret;
1063 }
1064 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1065
1066 static int dax_fault_return(int error)
1067 {
1068         if (error == 0)
1069                 return VM_FAULT_NOPAGE;
1070         if (error == -ENOMEM)
1071                 return VM_FAULT_OOM;
1072         return VM_FAULT_SIGBUS;
1073 }
1074
1075 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1076                                const struct iomap_ops *ops)
1077 {
1078         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1079         struct inode *inode = mapping->host;
1080         unsigned long vaddr = vmf->address;
1081         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1082         sector_t sector;
1083         struct iomap iomap = { 0 };
1084         unsigned flags = IOMAP_FAULT;
1085         int error, major = 0;
1086         int vmf_ret = 0;
1087         void *entry;
1088
1089         trace_dax_pte_fault(inode, vmf, vmf_ret);
1090         /*
1091          * Check whether offset isn't beyond end of file now. Caller is supposed
1092          * to hold locks serializing us with truncate / punch hole so this is
1093          * a reliable test.
1094          */
1095         if (pos >= i_size_read(inode)) {
1096                 vmf_ret = VM_FAULT_SIGBUS;
1097                 goto out;
1098         }
1099
1100         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1101                 flags |= IOMAP_WRITE;
1102
1103         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1104         if (IS_ERR(entry)) {
1105                 vmf_ret = dax_fault_return(PTR_ERR(entry));
1106                 goto out;
1107         }
1108
1109         /*
1110          * It is possible, particularly with mixed reads & writes to private
1111          * mappings, that we have raced with a PMD fault that overlaps with
1112          * the PTE we need to set up.  If so just return and the fault will be
1113          * retried.
1114          */
1115         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1116                 vmf_ret = VM_FAULT_NOPAGE;
1117                 goto unlock_entry;
1118         }
1119
1120         /*
1121          * Note that we don't bother to use iomap_apply here: DAX required
1122          * the file system block size to be equal the page size, which means
1123          * that we never have to deal with more than a single extent here.
1124          */
1125         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1126         if (error) {
1127                 vmf_ret = dax_fault_return(error);
1128                 goto unlock_entry;
1129         }
1130         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1131                 error = -EIO;   /* fs corruption? */
1132                 goto error_finish_iomap;
1133         }
1134
1135         sector = dax_iomap_sector(&iomap, pos);
1136
1137         if (vmf->cow_page) {
1138                 switch (iomap.type) {
1139                 case IOMAP_HOLE:
1140                 case IOMAP_UNWRITTEN:
1141                         clear_user_highpage(vmf->cow_page, vaddr);
1142                         break;
1143                 case IOMAP_MAPPED:
1144                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1145                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1146                         break;
1147                 default:
1148                         WARN_ON_ONCE(1);
1149                         error = -EIO;
1150                         break;
1151                 }
1152
1153                 if (error)
1154                         goto error_finish_iomap;
1155
1156                 __SetPageUptodate(vmf->cow_page);
1157                 vmf_ret = finish_fault(vmf);
1158                 if (!vmf_ret)
1159                         vmf_ret = VM_FAULT_DONE_COW;
1160                 goto finish_iomap;
1161         }
1162
1163         switch (iomap.type) {
1164         case IOMAP_MAPPED:
1165                 if (iomap.flags & IOMAP_F_NEW) {
1166                         count_vm_event(PGMAJFAULT);
1167                         count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1168                         major = VM_FAULT_MAJOR;
1169                 }
1170                 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1171                                 sector, PAGE_SIZE, entry, vmf->vma, vmf);
1172                 /* -EBUSY is fine, somebody else faulted on the same PTE */
1173                 if (error == -EBUSY)
1174                         error = 0;
1175                 break;
1176         case IOMAP_UNWRITTEN:
1177         case IOMAP_HOLE:
1178                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1179                         vmf_ret = dax_load_hole(mapping, entry, vmf);
1180                         goto finish_iomap;
1181                 }
1182                 /*FALLTHRU*/
1183         default:
1184                 WARN_ON_ONCE(1);
1185                 error = -EIO;
1186                 break;
1187         }
1188
1189  error_finish_iomap:
1190         vmf_ret = dax_fault_return(error) | major;
1191  finish_iomap:
1192         if (ops->iomap_end) {
1193                 int copied = PAGE_SIZE;
1194
1195                 if (vmf_ret & VM_FAULT_ERROR)
1196                         copied = 0;
1197                 /*
1198                  * The fault is done by now and there's no way back (other
1199                  * thread may be already happily using PTE we have installed).
1200                  * Just ignore error from ->iomap_end since we cannot do much
1201                  * with it.
1202                  */
1203                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1204         }
1205  unlock_entry:
1206         put_locked_mapping_entry(mapping, vmf->pgoff);
1207  out:
1208         trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1209         return vmf_ret;
1210 }
1211
1212 #ifdef CONFIG_FS_DAX_PMD
1213 /*
1214  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1215  * more often than one might expect in the below functions.
1216  */
1217 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1218
1219 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1220                 loff_t pos, void *entry)
1221 {
1222         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1223         const sector_t sector = dax_iomap_sector(iomap, pos);
1224         struct dax_device *dax_dev = iomap->dax_dev;
1225         struct block_device *bdev = iomap->bdev;
1226         struct inode *inode = mapping->host;
1227         const size_t size = PMD_SIZE;
1228         void *ret = NULL, *kaddr;
1229         long length = 0;
1230         pgoff_t pgoff;
1231         pfn_t pfn;
1232         int id;
1233
1234         if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1235                 goto fallback;
1236
1237         id = dax_read_lock();
1238         length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1239         if (length < 0)
1240                 goto unlock_fallback;
1241         length = PFN_PHYS(length);
1242
1243         if (length < size)
1244                 goto unlock_fallback;
1245         if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1246                 goto unlock_fallback;
1247         if (!pfn_t_devmap(pfn))
1248                 goto unlock_fallback;
1249         dax_read_unlock(id);
1250
1251         ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
1252                         RADIX_DAX_PMD);
1253         if (IS_ERR(ret))
1254                 goto fallback;
1255
1256         trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1257         return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1258                         pfn, vmf->flags & FAULT_FLAG_WRITE);
1259
1260 unlock_fallback:
1261         dax_read_unlock(id);
1262 fallback:
1263         trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1264         return VM_FAULT_FALLBACK;
1265 }
1266
1267 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1268                 void *entry)
1269 {
1270         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1271         unsigned long pmd_addr = vmf->address & PMD_MASK;
1272         struct inode *inode = mapping->host;
1273         struct page *zero_page;
1274         void *ret = NULL;
1275         spinlock_t *ptl;
1276         pmd_t pmd_entry;
1277
1278         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1279
1280         if (unlikely(!zero_page))
1281                 goto fallback;
1282
1283         ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1284                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
1285         if (IS_ERR(ret))
1286                 goto fallback;
1287
1288         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1289         if (!pmd_none(*(vmf->pmd))) {
1290                 spin_unlock(ptl);
1291                 goto fallback;
1292         }
1293
1294         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1295         pmd_entry = pmd_mkhuge(pmd_entry);
1296         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1297         spin_unlock(ptl);
1298         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1299         return VM_FAULT_NOPAGE;
1300
1301 fallback:
1302         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1303         return VM_FAULT_FALLBACK;
1304 }
1305
1306 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1307                                const struct iomap_ops *ops)
1308 {
1309         struct vm_area_struct *vma = vmf->vma;
1310         struct address_space *mapping = vma->vm_file->f_mapping;
1311         unsigned long pmd_addr = vmf->address & PMD_MASK;
1312         bool write = vmf->flags & FAULT_FLAG_WRITE;
1313         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1314         struct inode *inode = mapping->host;
1315         int result = VM_FAULT_FALLBACK;
1316         struct iomap iomap = { 0 };
1317         pgoff_t max_pgoff, pgoff;
1318         void *entry;
1319         loff_t pos;
1320         int error;
1321
1322         /*
1323          * Check whether offset isn't beyond end of file now. Caller is
1324          * supposed to hold locks serializing us with truncate / punch hole so
1325          * this is a reliable test.
1326          */
1327         pgoff = linear_page_index(vma, pmd_addr);
1328         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1329
1330         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1331
1332         /*
1333          * Make sure that the faulting address's PMD offset (color) matches
1334          * the PMD offset from the start of the file.  This is necessary so
1335          * that a PMD range in the page table overlaps exactly with a PMD
1336          * range in the radix tree.
1337          */
1338         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1339             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1340                 goto fallback;
1341
1342         /* Fall back to PTEs if we're going to COW */
1343         if (write && !(vma->vm_flags & VM_SHARED))
1344                 goto fallback;
1345
1346         /* If the PMD would extend outside the VMA */
1347         if (pmd_addr < vma->vm_start)
1348                 goto fallback;
1349         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1350                 goto fallback;
1351
1352         if (pgoff > max_pgoff) {
1353                 result = VM_FAULT_SIGBUS;
1354                 goto out;
1355         }
1356
1357         /* If the PMD would extend beyond the file size */
1358         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1359                 goto fallback;
1360
1361         /*
1362          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1363          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1364          * is already in the tree, for instance), it will return -EEXIST and
1365          * we just fall back to 4k entries.
1366          */
1367         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1368         if (IS_ERR(entry))
1369                 goto fallback;
1370
1371         /*
1372          * It is possible, particularly with mixed reads & writes to private
1373          * mappings, that we have raced with a PTE fault that overlaps with
1374          * the PMD we need to set up.  If so just return and the fault will be
1375          * retried.
1376          */
1377         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1378                         !pmd_devmap(*vmf->pmd)) {
1379                 result = 0;
1380                 goto unlock_entry;
1381         }
1382
1383         /*
1384          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1385          * setting up a mapping, so really we're using iomap_begin() as a way
1386          * to look up our filesystem block.
1387          */
1388         pos = (loff_t)pgoff << PAGE_SHIFT;
1389         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1390         if (error)
1391                 goto unlock_entry;
1392
1393         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1394                 goto finish_iomap;
1395
1396         switch (iomap.type) {
1397         case IOMAP_MAPPED:
1398                 result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
1399                 break;
1400         case IOMAP_UNWRITTEN:
1401         case IOMAP_HOLE:
1402                 if (WARN_ON_ONCE(write))
1403                         break;
1404                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1405                 break;
1406         default:
1407                 WARN_ON_ONCE(1);
1408                 break;
1409         }
1410
1411  finish_iomap:
1412         if (ops->iomap_end) {
1413                 int copied = PMD_SIZE;
1414
1415                 if (result == VM_FAULT_FALLBACK)
1416                         copied = 0;
1417                 /*
1418                  * The fault is done by now and there's no way back (other
1419                  * thread may be already happily using PMD we have installed).
1420                  * Just ignore error from ->iomap_end since we cannot do much
1421                  * with it.
1422                  */
1423                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1424                                 &iomap);
1425         }
1426  unlock_entry:
1427         put_locked_mapping_entry(mapping, pgoff);
1428  fallback:
1429         if (result == VM_FAULT_FALLBACK) {
1430                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1431                 count_vm_event(THP_FAULT_FALLBACK);
1432         }
1433 out:
1434         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1435         return result;
1436 }
1437 #else
1438 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1439                                const struct iomap_ops *ops)
1440 {
1441         return VM_FAULT_FALLBACK;
1442 }
1443 #endif /* CONFIG_FS_DAX_PMD */
1444
1445 /**
1446  * dax_iomap_fault - handle a page fault on a DAX file
1447  * @vmf: The description of the fault
1448  * @ops: iomap ops passed from the file system
1449  *
1450  * When a page fault occurs, filesystems may call this helper in
1451  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1452  * has done all the necessary locking for page fault to proceed
1453  * successfully.
1454  */
1455 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1456                     const struct iomap_ops *ops)
1457 {
1458         switch (pe_size) {
1459         case PE_SIZE_PTE:
1460                 return dax_iomap_pte_fault(vmf, ops);
1461         case PE_SIZE_PMD:
1462                 return dax_iomap_pmd_fault(vmf, ops);
1463         default:
1464                 return VM_FAULT_FALLBACK;
1465         }
1466 }
1467 EXPORT_SYMBOL_GPL(dax_iomap_fault);