]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/dax.c
Merge tag 'for-linus-4.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
47
48 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
49
50 static int __init init_dax_wait_table(void)
51 {
52         int i;
53
54         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
55                 init_waitqueue_head(wait_table + i);
56         return 0;
57 }
58 fs_initcall(init_dax_wait_table);
59
60 /*
61  * We use lowest available bit in exceptional entry for locking, one bit for
62  * the entry size (PMD) and two more to tell us if the entry is a zero page or
63  * an empty entry that is just used for locking.  In total four special bits.
64  *
65  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
67  * block allocation.
68  */
69 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
74
75 static unsigned long dax_radix_sector(void *entry)
76 {
77         return (unsigned long)entry >> RADIX_DAX_SHIFT;
78 }
79
80 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
81 {
82         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
83                         ((unsigned long)sector << RADIX_DAX_SHIFT) |
84                         RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89         if ((unsigned long)entry & RADIX_DAX_PMD)
90                 return PMD_SHIFT - PAGE_SHIFT;
91         return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101         return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111         return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118         struct address_space *mapping;
119         pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123         wait_queue_entry_t wait;
124         struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130         unsigned long hash;
131
132         /*
133          * If 'entry' is a PMD, align the 'index' that we use for the wait
134          * queue to the start of that PMD.  This ensures that all offsets in
135          * the range covered by the PMD map to the same bit lock.
136          */
137         if (dax_is_pmd_entry(entry))
138                 index &= ~PG_PMD_COLOUR;
139
140         key->mapping = mapping;
141         key->entry_start = index;
142
143         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144         return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148                                        int sync, void *keyp)
149 {
150         struct exceptional_entry_key *key = keyp;
151         struct wait_exceptional_entry_queue *ewait =
152                 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154         if (key->mapping != ewait->key.mapping ||
155             key->entry_start != ewait->key.entry_start)
156                 return 0;
157         return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161  * We do not necessarily hold the mapping->tree_lock when we call this
162  * function so it is possible that 'entry' is no longer a valid item in the
163  * radix tree.  This is okay because all we really need to do is to find the
164  * correct waitqueue where tasks might be waiting for that old 'entry' and
165  * wake them.
166  */
167 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
168                 pgoff_t index, void *entry, bool wake_all)
169 {
170         struct exceptional_entry_key key;
171         wait_queue_head_t *wq;
172
173         wq = dax_entry_waitqueue(mapping, index, entry, &key);
174
175         /*
176          * Checking for locked entry and prepare_to_wait_exclusive() happens
177          * under mapping->tree_lock, ditto for entry handling in our callers.
178          * So at this point all tasks that could have seen our entry locked
179          * must be in the waitqueue and the following check will see them.
180          */
181         if (waitqueue_active(wq))
182                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
183 }
184
185 /*
186  * Check whether the given slot is locked. The function must be called with
187  * mapping->tree_lock held
188  */
189 static inline int slot_locked(struct address_space *mapping, void **slot)
190 {
191         unsigned long entry = (unsigned long)
192                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
193         return entry & RADIX_DAX_ENTRY_LOCK;
194 }
195
196 /*
197  * Mark the given slot is locked. The function must be called with
198  * mapping->tree_lock held
199  */
200 static inline void *lock_slot(struct address_space *mapping, void **slot)
201 {
202         unsigned long entry = (unsigned long)
203                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
204
205         entry |= RADIX_DAX_ENTRY_LOCK;
206         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
207         return (void *)entry;
208 }
209
210 /*
211  * Mark the given slot is unlocked. The function must be called with
212  * mapping->tree_lock held
213  */
214 static inline void *unlock_slot(struct address_space *mapping, void **slot)
215 {
216         unsigned long entry = (unsigned long)
217                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
218
219         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
220         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
221         return (void *)entry;
222 }
223
224 /*
225  * Lookup entry in radix tree, wait for it to become unlocked if it is
226  * exceptional entry and return it. The caller must call
227  * put_unlocked_mapping_entry() when he decided not to lock the entry or
228  * put_locked_mapping_entry() when he locked the entry and now wants to
229  * unlock it.
230  *
231  * The function must be called with mapping->tree_lock held.
232  */
233 static void *get_unlocked_mapping_entry(struct address_space *mapping,
234                                         pgoff_t index, void ***slotp)
235 {
236         void *entry, **slot;
237         struct wait_exceptional_entry_queue ewait;
238         wait_queue_head_t *wq;
239
240         init_wait(&ewait.wait);
241         ewait.wait.func = wake_exceptional_entry_func;
242
243         for (;;) {
244                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
245                                           &slot);
246                 if (!entry ||
247                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
248                     !slot_locked(mapping, slot)) {
249                         if (slotp)
250                                 *slotp = slot;
251                         return entry;
252                 }
253
254                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
255                 prepare_to_wait_exclusive(wq, &ewait.wait,
256                                           TASK_UNINTERRUPTIBLE);
257                 spin_unlock_irq(&mapping->tree_lock);
258                 schedule();
259                 finish_wait(wq, &ewait.wait);
260                 spin_lock_irq(&mapping->tree_lock);
261         }
262 }
263
264 static void dax_unlock_mapping_entry(struct address_space *mapping,
265                                      pgoff_t index)
266 {
267         void *entry, **slot;
268
269         spin_lock_irq(&mapping->tree_lock);
270         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
271         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
272                          !slot_locked(mapping, slot))) {
273                 spin_unlock_irq(&mapping->tree_lock);
274                 return;
275         }
276         unlock_slot(mapping, slot);
277         spin_unlock_irq(&mapping->tree_lock);
278         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
279 }
280
281 static void put_locked_mapping_entry(struct address_space *mapping,
282                 pgoff_t index)
283 {
284         dax_unlock_mapping_entry(mapping, index);
285 }
286
287 /*
288  * Called when we are done with radix tree entry we looked up via
289  * get_unlocked_mapping_entry() and which we didn't lock in the end.
290  */
291 static void put_unlocked_mapping_entry(struct address_space *mapping,
292                                        pgoff_t index, void *entry)
293 {
294         if (!entry)
295                 return;
296
297         /* We have to wake up next waiter for the radix tree entry lock */
298         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
299 }
300
301 /*
302  * Find radix tree entry at given index. If it points to an exceptional entry,
303  * return it with the radix tree entry locked. If the radix tree doesn't
304  * contain given index, create an empty exceptional entry for the index and
305  * return with it locked.
306  *
307  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308  * either return that locked entry or will return an error.  This error will
309  * happen if there are any 4k entries within the 2MiB range that we are
310  * requesting.
311  *
312  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
314  * insertion will fail if it finds any 4k entries already in the tree, and a
315  * 4k insertion will cause an existing 2MiB entry to be unmapped and
316  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
317  * well as 2MiB empty entries.
318  *
319  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320  * real storage backing them.  We will leave these real 2MiB DAX entries in
321  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
322  *
323  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324  * persistent memory the benefit is doubtful. We can add that later if we can
325  * show it helps.
326  */
327 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
328                 unsigned long size_flag)
329 {
330         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
331         void *entry, **slot;
332
333 restart:
334         spin_lock_irq(&mapping->tree_lock);
335         entry = get_unlocked_mapping_entry(mapping, index, &slot);
336
337         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
338                 entry = ERR_PTR(-EIO);
339                 goto out_unlock;
340         }
341
342         if (entry) {
343                 if (size_flag & RADIX_DAX_PMD) {
344                         if (dax_is_pte_entry(entry)) {
345                                 put_unlocked_mapping_entry(mapping, index,
346                                                 entry);
347                                 entry = ERR_PTR(-EEXIST);
348                                 goto out_unlock;
349                         }
350                 } else { /* trying to grab a PTE entry */
351                         if (dax_is_pmd_entry(entry) &&
352                             (dax_is_zero_entry(entry) ||
353                              dax_is_empty_entry(entry))) {
354                                 pmd_downgrade = true;
355                         }
356                 }
357         }
358
359         /* No entry for given index? Make sure radix tree is big enough. */
360         if (!entry || pmd_downgrade) {
361                 int err;
362
363                 if (pmd_downgrade) {
364                         /*
365                          * Make sure 'entry' remains valid while we drop
366                          * mapping->tree_lock.
367                          */
368                         entry = lock_slot(mapping, slot);
369                 }
370
371                 spin_unlock_irq(&mapping->tree_lock);
372                 /*
373                  * Besides huge zero pages the only other thing that gets
374                  * downgraded are empty entries which don't need to be
375                  * unmapped.
376                  */
377                 if (pmd_downgrade && dax_is_zero_entry(entry))
378                         unmap_mapping_range(mapping,
379                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
380
381                 err = radix_tree_preload(
382                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
383                 if (err) {
384                         if (pmd_downgrade)
385                                 put_locked_mapping_entry(mapping, index);
386                         return ERR_PTR(err);
387                 }
388                 spin_lock_irq(&mapping->tree_lock);
389
390                 if (!entry) {
391                         /*
392                          * We needed to drop the page_tree lock while calling
393                          * radix_tree_preload() and we didn't have an entry to
394                          * lock.  See if another thread inserted an entry at
395                          * our index during this time.
396                          */
397                         entry = __radix_tree_lookup(&mapping->page_tree, index,
398                                         NULL, &slot);
399                         if (entry) {
400                                 radix_tree_preload_end();
401                                 spin_unlock_irq(&mapping->tree_lock);
402                                 goto restart;
403                         }
404                 }
405
406                 if (pmd_downgrade) {
407                         radix_tree_delete(&mapping->page_tree, index);
408                         mapping->nrexceptional--;
409                         dax_wake_mapping_entry_waiter(mapping, index, entry,
410                                         true);
411                 }
412
413                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
414
415                 err = __radix_tree_insert(&mapping->page_tree, index,
416                                 dax_radix_order(entry), entry);
417                 radix_tree_preload_end();
418                 if (err) {
419                         spin_unlock_irq(&mapping->tree_lock);
420                         /*
421                          * Our insertion of a DAX entry failed, most likely
422                          * because we were inserting a PMD entry and it
423                          * collided with a PTE sized entry at a different
424                          * index in the PMD range.  We haven't inserted
425                          * anything into the radix tree and have no waiters to
426                          * wake.
427                          */
428                         return ERR_PTR(err);
429                 }
430                 /* Good, we have inserted empty locked entry into the tree. */
431                 mapping->nrexceptional++;
432                 spin_unlock_irq(&mapping->tree_lock);
433                 return entry;
434         }
435         entry = lock_slot(mapping, slot);
436  out_unlock:
437         spin_unlock_irq(&mapping->tree_lock);
438         return entry;
439 }
440
441 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
442                                           pgoff_t index, bool trunc)
443 {
444         int ret = 0;
445         void *entry;
446         struct radix_tree_root *page_tree = &mapping->page_tree;
447
448         spin_lock_irq(&mapping->tree_lock);
449         entry = get_unlocked_mapping_entry(mapping, index, NULL);
450         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
451                 goto out;
452         if (!trunc &&
453             (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
454              radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
455                 goto out;
456         radix_tree_delete(page_tree, index);
457         mapping->nrexceptional--;
458         ret = 1;
459 out:
460         put_unlocked_mapping_entry(mapping, index, entry);
461         spin_unlock_irq(&mapping->tree_lock);
462         return ret;
463 }
464 /*
465  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466  * entry to get unlocked before deleting it.
467  */
468 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
471
472         /*
473          * This gets called from truncate / punch_hole path. As such, the caller
474          * must hold locks protecting against concurrent modifications of the
475          * radix tree (usually fs-private i_mmap_sem for writing). Since the
476          * caller has seen exceptional entry for this index, we better find it
477          * at that index as well...
478          */
479         WARN_ON_ONCE(!ret);
480         return ret;
481 }
482
483 /*
484  * Invalidate exceptional DAX entry if it is clean.
485  */
486 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
487                                       pgoff_t index)
488 {
489         return __dax_invalidate_mapping_entry(mapping, index, false);
490 }
491
492 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
493                 sector_t sector, size_t size, struct page *to,
494                 unsigned long vaddr)
495 {
496         void *vto, *kaddr;
497         pgoff_t pgoff;
498         pfn_t pfn;
499         long rc;
500         int id;
501
502         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
503         if (rc)
504                 return rc;
505
506         id = dax_read_lock();
507         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
508         if (rc < 0) {
509                 dax_read_unlock(id);
510                 return rc;
511         }
512         vto = kmap_atomic(to);
513         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
514         kunmap_atomic(vto);
515         dax_read_unlock(id);
516         return 0;
517 }
518
519 /*
520  * By this point grab_mapping_entry() has ensured that we have a locked entry
521  * of the appropriate size so we don't have to worry about downgrading PMDs to
522  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
523  * already in the tree, we will skip the insertion and just dirty the PMD as
524  * appropriate.
525  */
526 static void *dax_insert_mapping_entry(struct address_space *mapping,
527                                       struct vm_fault *vmf,
528                                       void *entry, sector_t sector,
529                                       unsigned long flags)
530 {
531         struct radix_tree_root *page_tree = &mapping->page_tree;
532         void *new_entry;
533         pgoff_t index = vmf->pgoff;
534
535         if (vmf->flags & FAULT_FLAG_WRITE)
536                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
537
538         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
539                 /* we are replacing a zero page with block mapping */
540                 if (dax_is_pmd_entry(entry))
541                         unmap_mapping_range(mapping,
542                                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
543                                         PMD_SIZE, 0);
544                 else /* pte entry */
545                         unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
546                                         PAGE_SIZE, 0);
547         }
548
549         spin_lock_irq(&mapping->tree_lock);
550         new_entry = dax_radix_locked_entry(sector, flags);
551
552         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
553                 /*
554                  * Only swap our new entry into the radix tree if the current
555                  * entry is a zero page or an empty entry.  If a normal PTE or
556                  * PMD entry is already in the tree, we leave it alone.  This
557                  * means that if we are trying to insert a PTE and the
558                  * existing entry is a PMD, we will just leave the PMD in the
559                  * tree and dirty it if necessary.
560                  */
561                 struct radix_tree_node *node;
562                 void **slot;
563                 void *ret;
564
565                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
566                 WARN_ON_ONCE(ret != entry);
567                 __radix_tree_replace(page_tree, node, slot,
568                                      new_entry, NULL);
569                 entry = new_entry;
570         }
571
572         if (vmf->flags & FAULT_FLAG_WRITE)
573                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
574
575         spin_unlock_irq(&mapping->tree_lock);
576         return entry;
577 }
578
579 static inline unsigned long
580 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
581 {
582         unsigned long address;
583
584         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
585         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
586         return address;
587 }
588
589 /* Walk all mappings of a given index of a file and writeprotect them */
590 static void dax_mapping_entry_mkclean(struct address_space *mapping,
591                                       pgoff_t index, unsigned long pfn)
592 {
593         struct vm_area_struct *vma;
594         pte_t pte, *ptep = NULL;
595         pmd_t *pmdp = NULL;
596         spinlock_t *ptl;
597
598         i_mmap_lock_read(mapping);
599         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
600                 unsigned long address, start, end;
601
602                 cond_resched();
603
604                 if (!(vma->vm_flags & VM_SHARED))
605                         continue;
606
607                 address = pgoff_address(index, vma);
608
609                 /*
610                  * Note because we provide start/end to follow_pte_pmd it will
611                  * call mmu_notifier_invalidate_range_start() on our behalf
612                  * before taking any lock.
613                  */
614                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
615                         continue;
616
617                 /*
618                  * No need to call mmu_notifier_invalidate_range() as we are
619                  * downgrading page table protection not changing it to point
620                  * to a new page.
621                  *
622                  * See Documentation/vm/mmu_notifier.txt
623                  */
624                 if (pmdp) {
625 #ifdef CONFIG_FS_DAX_PMD
626                         pmd_t pmd;
627
628                         if (pfn != pmd_pfn(*pmdp))
629                                 goto unlock_pmd;
630                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
631                                 goto unlock_pmd;
632
633                         flush_cache_page(vma, address, pfn);
634                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
635                         pmd = pmd_wrprotect(pmd);
636                         pmd = pmd_mkclean(pmd);
637                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
638 unlock_pmd:
639                         spin_unlock(ptl);
640 #endif
641                 } else {
642                         if (pfn != pte_pfn(*ptep))
643                                 goto unlock_pte;
644                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
645                                 goto unlock_pte;
646
647                         flush_cache_page(vma, address, pfn);
648                         pte = ptep_clear_flush(vma, address, ptep);
649                         pte = pte_wrprotect(pte);
650                         pte = pte_mkclean(pte);
651                         set_pte_at(vma->vm_mm, address, ptep, pte);
652 unlock_pte:
653                         pte_unmap_unlock(ptep, ptl);
654                 }
655
656                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
657         }
658         i_mmap_unlock_read(mapping);
659 }
660
661 static int dax_writeback_one(struct block_device *bdev,
662                 struct dax_device *dax_dev, struct address_space *mapping,
663                 pgoff_t index, void *entry)
664 {
665         struct radix_tree_root *page_tree = &mapping->page_tree;
666         void *entry2, **slot, *kaddr;
667         long ret = 0, id;
668         sector_t sector;
669         pgoff_t pgoff;
670         size_t size;
671         pfn_t pfn;
672
673         /*
674          * A page got tagged dirty in DAX mapping? Something is seriously
675          * wrong.
676          */
677         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
678                 return -EIO;
679
680         spin_lock_irq(&mapping->tree_lock);
681         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
682         /* Entry got punched out / reallocated? */
683         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
684                 goto put_unlocked;
685         /*
686          * Entry got reallocated elsewhere? No need to writeback. We have to
687          * compare sectors as we must not bail out due to difference in lockbit
688          * or entry type.
689          */
690         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
691                 goto put_unlocked;
692         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
693                                 dax_is_zero_entry(entry))) {
694                 ret = -EIO;
695                 goto put_unlocked;
696         }
697
698         /* Another fsync thread may have already written back this entry */
699         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
700                 goto put_unlocked;
701         /* Lock the entry to serialize with page faults */
702         entry = lock_slot(mapping, slot);
703         /*
704          * We can clear the tag now but we have to be careful so that concurrent
705          * dax_writeback_one() calls for the same index cannot finish before we
706          * actually flush the caches. This is achieved as the calls will look
707          * at the entry only under tree_lock and once they do that they will
708          * see the entry locked and wait for it to unlock.
709          */
710         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
711         spin_unlock_irq(&mapping->tree_lock);
712
713         /*
714          * Even if dax_writeback_mapping_range() was given a wbc->range_start
715          * in the middle of a PMD, the 'index' we are given will be aligned to
716          * the start index of the PMD, as will the sector we pull from
717          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
718          * worry about partial PMD writebacks.
719          */
720         sector = dax_radix_sector(entry);
721         size = PAGE_SIZE << dax_radix_order(entry);
722
723         id = dax_read_lock();
724         ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
725         if (ret)
726                 goto dax_unlock;
727
728         /*
729          * dax_direct_access() may sleep, so cannot hold tree_lock over
730          * its invocation.
731          */
732         ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
733         if (ret < 0)
734                 goto dax_unlock;
735
736         if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
737                 ret = -EIO;
738                 goto dax_unlock;
739         }
740
741         dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
742         dax_flush(dax_dev, kaddr, size);
743         /*
744          * After we have flushed the cache, we can clear the dirty tag. There
745          * cannot be new dirty data in the pfn after the flush has completed as
746          * the pfn mappings are writeprotected and fault waits for mapping
747          * entry lock.
748          */
749         spin_lock_irq(&mapping->tree_lock);
750         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
751         spin_unlock_irq(&mapping->tree_lock);
752         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
753  dax_unlock:
754         dax_read_unlock(id);
755         put_locked_mapping_entry(mapping, index);
756         return ret;
757
758  put_unlocked:
759         put_unlocked_mapping_entry(mapping, index, entry2);
760         spin_unlock_irq(&mapping->tree_lock);
761         return ret;
762 }
763
764 /*
765  * Flush the mapping to the persistent domain within the byte range of [start,
766  * end]. This is required by data integrity operations to ensure file data is
767  * on persistent storage prior to completion of the operation.
768  */
769 int dax_writeback_mapping_range(struct address_space *mapping,
770                 struct block_device *bdev, struct writeback_control *wbc)
771 {
772         struct inode *inode = mapping->host;
773         pgoff_t start_index, end_index;
774         pgoff_t indices[PAGEVEC_SIZE];
775         struct dax_device *dax_dev;
776         struct pagevec pvec;
777         bool done = false;
778         int i, ret = 0;
779
780         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
781                 return -EIO;
782
783         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
784                 return 0;
785
786         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
787         if (!dax_dev)
788                 return -EIO;
789
790         start_index = wbc->range_start >> PAGE_SHIFT;
791         end_index = wbc->range_end >> PAGE_SHIFT;
792
793         trace_dax_writeback_range(inode, start_index, end_index);
794
795         tag_pages_for_writeback(mapping, start_index, end_index);
796
797         pagevec_init(&pvec);
798         while (!done) {
799                 pvec.nr = find_get_entries_tag(mapping, start_index,
800                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
801                                 pvec.pages, indices);
802
803                 if (pvec.nr == 0)
804                         break;
805
806                 for (i = 0; i < pvec.nr; i++) {
807                         if (indices[i] > end_index) {
808                                 done = true;
809                                 break;
810                         }
811
812                         ret = dax_writeback_one(bdev, dax_dev, mapping,
813                                         indices[i], pvec.pages[i]);
814                         if (ret < 0) {
815                                 mapping_set_error(mapping, ret);
816                                 goto out;
817                         }
818                 }
819                 start_index = indices[pvec.nr - 1] + 1;
820         }
821 out:
822         put_dax(dax_dev);
823         trace_dax_writeback_range_done(inode, start_index, end_index);
824         return (ret < 0 ? ret : 0);
825 }
826 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
827
828 static int dax_insert_mapping(struct address_space *mapping,
829                 struct block_device *bdev, struct dax_device *dax_dev,
830                 sector_t sector, size_t size, void *entry,
831                 struct vm_area_struct *vma, struct vm_fault *vmf)
832 {
833         unsigned long vaddr = vmf->address;
834         void *ret, *kaddr;
835         pgoff_t pgoff;
836         int id, rc;
837         pfn_t pfn;
838
839         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
840         if (rc)
841                 return rc;
842
843         id = dax_read_lock();
844         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
845         if (rc < 0) {
846                 dax_read_unlock(id);
847                 return rc;
848         }
849         dax_read_unlock(id);
850
851         ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
852         if (IS_ERR(ret))
853                 return PTR_ERR(ret);
854
855         trace_dax_insert_mapping(mapping->host, vmf, ret);
856         if (vmf->flags & FAULT_FLAG_WRITE)
857                 return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
858         else
859                 return vm_insert_mixed(vma, vaddr, pfn);
860 }
861
862 /*
863  * The user has performed a load from a hole in the file.  Allocating a new
864  * page in the file would cause excessive storage usage for workloads with
865  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
866  * If this page is ever written to we will re-fault and change the mapping to
867  * point to real DAX storage instead.
868  */
869 static int dax_load_hole(struct address_space *mapping, void *entry,
870                          struct vm_fault *vmf)
871 {
872         struct inode *inode = mapping->host;
873         unsigned long vaddr = vmf->address;
874         int ret = VM_FAULT_NOPAGE;
875         struct page *zero_page;
876         void *entry2;
877
878         zero_page = ZERO_PAGE(0);
879         if (unlikely(!zero_page)) {
880                 ret = VM_FAULT_OOM;
881                 goto out;
882         }
883
884         entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
885                         RADIX_DAX_ZERO_PAGE);
886         if (IS_ERR(entry2)) {
887                 ret = VM_FAULT_SIGBUS;
888                 goto out;
889         }
890
891         vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
892 out:
893         trace_dax_load_hole(inode, vmf, ret);
894         return ret;
895 }
896
897 static bool dax_range_is_aligned(struct block_device *bdev,
898                                  unsigned int offset, unsigned int length)
899 {
900         unsigned short sector_size = bdev_logical_block_size(bdev);
901
902         if (!IS_ALIGNED(offset, sector_size))
903                 return false;
904         if (!IS_ALIGNED(length, sector_size))
905                 return false;
906
907         return true;
908 }
909
910 int __dax_zero_page_range(struct block_device *bdev,
911                 struct dax_device *dax_dev, sector_t sector,
912                 unsigned int offset, unsigned int size)
913 {
914         if (dax_range_is_aligned(bdev, offset, size)) {
915                 sector_t start_sector = sector + (offset >> 9);
916
917                 return blkdev_issue_zeroout(bdev, start_sector,
918                                 size >> 9, GFP_NOFS, 0);
919         } else {
920                 pgoff_t pgoff;
921                 long rc, id;
922                 void *kaddr;
923                 pfn_t pfn;
924
925                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
926                 if (rc)
927                         return rc;
928
929                 id = dax_read_lock();
930                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
931                                 &pfn);
932                 if (rc < 0) {
933                         dax_read_unlock(id);
934                         return rc;
935                 }
936                 memset(kaddr + offset, 0, size);
937                 dax_flush(dax_dev, kaddr + offset, size);
938                 dax_read_unlock(id);
939         }
940         return 0;
941 }
942 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
943
944 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
945 {
946         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
947 }
948
949 static loff_t
950 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
951                 struct iomap *iomap)
952 {
953         struct block_device *bdev = iomap->bdev;
954         struct dax_device *dax_dev = iomap->dax_dev;
955         struct iov_iter *iter = data;
956         loff_t end = pos + length, done = 0;
957         ssize_t ret = 0;
958         int id;
959
960         if (iov_iter_rw(iter) == READ) {
961                 end = min(end, i_size_read(inode));
962                 if (pos >= end)
963                         return 0;
964
965                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
966                         return iov_iter_zero(min(length, end - pos), iter);
967         }
968
969         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
970                 return -EIO;
971
972         /*
973          * Write can allocate block for an area which has a hole page mapped
974          * into page tables. We have to tear down these mappings so that data
975          * written by write(2) is visible in mmap.
976          */
977         if (iomap->flags & IOMAP_F_NEW) {
978                 invalidate_inode_pages2_range(inode->i_mapping,
979                                               pos >> PAGE_SHIFT,
980                                               (end - 1) >> PAGE_SHIFT);
981         }
982
983         id = dax_read_lock();
984         while (pos < end) {
985                 unsigned offset = pos & (PAGE_SIZE - 1);
986                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
987                 const sector_t sector = dax_iomap_sector(iomap, pos);
988                 ssize_t map_len;
989                 pgoff_t pgoff;
990                 void *kaddr;
991                 pfn_t pfn;
992
993                 if (fatal_signal_pending(current)) {
994                         ret = -EINTR;
995                         break;
996                 }
997
998                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
999                 if (ret)
1000                         break;
1001
1002                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1003                                 &kaddr, &pfn);
1004                 if (map_len < 0) {
1005                         ret = map_len;
1006                         break;
1007                 }
1008
1009                 map_len = PFN_PHYS(map_len);
1010                 kaddr += offset;
1011                 map_len -= offset;
1012                 if (map_len > end - pos)
1013                         map_len = end - pos;
1014
1015                 /*
1016                  * The userspace address for the memory copy has already been
1017                  * validated via access_ok() in either vfs_read() or
1018                  * vfs_write(), depending on which operation we are doing.
1019                  */
1020                 if (iov_iter_rw(iter) == WRITE)
1021                         map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1022                                         map_len, iter);
1023                 else
1024                         map_len = copy_to_iter(kaddr, map_len, iter);
1025                 if (map_len <= 0) {
1026                         ret = map_len ? map_len : -EFAULT;
1027                         break;
1028                 }
1029
1030                 pos += map_len;
1031                 length -= map_len;
1032                 done += map_len;
1033         }
1034         dax_read_unlock(id);
1035
1036         return done ? done : ret;
1037 }
1038
1039 /**
1040  * dax_iomap_rw - Perform I/O to a DAX file
1041  * @iocb:       The control block for this I/O
1042  * @iter:       The addresses to do I/O from or to
1043  * @ops:        iomap ops passed from the file system
1044  *
1045  * This function performs read and write operations to directly mapped
1046  * persistent memory.  The callers needs to take care of read/write exclusion
1047  * and evicting any page cache pages in the region under I/O.
1048  */
1049 ssize_t
1050 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1051                 const struct iomap_ops *ops)
1052 {
1053         struct address_space *mapping = iocb->ki_filp->f_mapping;
1054         struct inode *inode = mapping->host;
1055         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1056         unsigned flags = 0;
1057
1058         if (iov_iter_rw(iter) == WRITE) {
1059                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1060                 flags |= IOMAP_WRITE;
1061         } else {
1062                 lockdep_assert_held(&inode->i_rwsem);
1063         }
1064
1065         while (iov_iter_count(iter)) {
1066                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1067                                 iter, dax_iomap_actor);
1068                 if (ret <= 0)
1069                         break;
1070                 pos += ret;
1071                 done += ret;
1072         }
1073
1074         iocb->ki_pos += done;
1075         return done ? done : ret;
1076 }
1077 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1078
1079 static int dax_fault_return(int error)
1080 {
1081         if (error == 0)
1082                 return VM_FAULT_NOPAGE;
1083         if (error == -ENOMEM)
1084                 return VM_FAULT_OOM;
1085         return VM_FAULT_SIGBUS;
1086 }
1087
1088 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1089                                const struct iomap_ops *ops)
1090 {
1091         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1092         struct inode *inode = mapping->host;
1093         unsigned long vaddr = vmf->address;
1094         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1095         sector_t sector;
1096         struct iomap iomap = { 0 };
1097         unsigned flags = IOMAP_FAULT;
1098         int error, major = 0;
1099         int vmf_ret = 0;
1100         void *entry;
1101
1102         trace_dax_pte_fault(inode, vmf, vmf_ret);
1103         /*
1104          * Check whether offset isn't beyond end of file now. Caller is supposed
1105          * to hold locks serializing us with truncate / punch hole so this is
1106          * a reliable test.
1107          */
1108         if (pos >= i_size_read(inode)) {
1109                 vmf_ret = VM_FAULT_SIGBUS;
1110                 goto out;
1111         }
1112
1113         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1114                 flags |= IOMAP_WRITE;
1115
1116         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1117         if (IS_ERR(entry)) {
1118                 vmf_ret = dax_fault_return(PTR_ERR(entry));
1119                 goto out;
1120         }
1121
1122         /*
1123          * It is possible, particularly with mixed reads & writes to private
1124          * mappings, that we have raced with a PMD fault that overlaps with
1125          * the PTE we need to set up.  If so just return and the fault will be
1126          * retried.
1127          */
1128         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1129                 vmf_ret = VM_FAULT_NOPAGE;
1130                 goto unlock_entry;
1131         }
1132
1133         /*
1134          * Note that we don't bother to use iomap_apply here: DAX required
1135          * the file system block size to be equal the page size, which means
1136          * that we never have to deal with more than a single extent here.
1137          */
1138         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1139         if (error) {
1140                 vmf_ret = dax_fault_return(error);
1141                 goto unlock_entry;
1142         }
1143         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1144                 error = -EIO;   /* fs corruption? */
1145                 goto error_finish_iomap;
1146         }
1147
1148         sector = dax_iomap_sector(&iomap, pos);
1149
1150         if (vmf->cow_page) {
1151                 switch (iomap.type) {
1152                 case IOMAP_HOLE:
1153                 case IOMAP_UNWRITTEN:
1154                         clear_user_highpage(vmf->cow_page, vaddr);
1155                         break;
1156                 case IOMAP_MAPPED:
1157                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1158                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1159                         break;
1160                 default:
1161                         WARN_ON_ONCE(1);
1162                         error = -EIO;
1163                         break;
1164                 }
1165
1166                 if (error)
1167                         goto error_finish_iomap;
1168
1169                 __SetPageUptodate(vmf->cow_page);
1170                 vmf_ret = finish_fault(vmf);
1171                 if (!vmf_ret)
1172                         vmf_ret = VM_FAULT_DONE_COW;
1173                 goto finish_iomap;
1174         }
1175
1176         switch (iomap.type) {
1177         case IOMAP_MAPPED:
1178                 if (iomap.flags & IOMAP_F_NEW) {
1179                         count_vm_event(PGMAJFAULT);
1180                         count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1181                         major = VM_FAULT_MAJOR;
1182                 }
1183                 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1184                                 sector, PAGE_SIZE, entry, vmf->vma, vmf);
1185                 /* -EBUSY is fine, somebody else faulted on the same PTE */
1186                 if (error == -EBUSY)
1187                         error = 0;
1188                 break;
1189         case IOMAP_UNWRITTEN:
1190         case IOMAP_HOLE:
1191                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1192                         vmf_ret = dax_load_hole(mapping, entry, vmf);
1193                         goto finish_iomap;
1194                 }
1195                 /*FALLTHRU*/
1196         default:
1197                 WARN_ON_ONCE(1);
1198                 error = -EIO;
1199                 break;
1200         }
1201
1202  error_finish_iomap:
1203         vmf_ret = dax_fault_return(error) | major;
1204  finish_iomap:
1205         if (ops->iomap_end) {
1206                 int copied = PAGE_SIZE;
1207
1208                 if (vmf_ret & VM_FAULT_ERROR)
1209                         copied = 0;
1210                 /*
1211                  * The fault is done by now and there's no way back (other
1212                  * thread may be already happily using PTE we have installed).
1213                  * Just ignore error from ->iomap_end since we cannot do much
1214                  * with it.
1215                  */
1216                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1217         }
1218  unlock_entry:
1219         put_locked_mapping_entry(mapping, vmf->pgoff);
1220  out:
1221         trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1222         return vmf_ret;
1223 }
1224
1225 #ifdef CONFIG_FS_DAX_PMD
1226 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1227                 loff_t pos, void *entry)
1228 {
1229         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1230         const sector_t sector = dax_iomap_sector(iomap, pos);
1231         struct dax_device *dax_dev = iomap->dax_dev;
1232         struct block_device *bdev = iomap->bdev;
1233         struct inode *inode = mapping->host;
1234         const size_t size = PMD_SIZE;
1235         void *ret = NULL, *kaddr;
1236         long length = 0;
1237         pgoff_t pgoff;
1238         pfn_t pfn = {};
1239         int id;
1240
1241         if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1242                 goto fallback;
1243
1244         id = dax_read_lock();
1245         length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1246         if (length < 0)
1247                 goto unlock_fallback;
1248         length = PFN_PHYS(length);
1249
1250         if (length < size)
1251                 goto unlock_fallback;
1252         if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1253                 goto unlock_fallback;
1254         if (!pfn_t_devmap(pfn))
1255                 goto unlock_fallback;
1256         dax_read_unlock(id);
1257
1258         ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
1259                         RADIX_DAX_PMD);
1260         if (IS_ERR(ret))
1261                 goto fallback;
1262
1263         trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1264         return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1265                         pfn, vmf->flags & FAULT_FLAG_WRITE);
1266
1267 unlock_fallback:
1268         dax_read_unlock(id);
1269 fallback:
1270         trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1271         return VM_FAULT_FALLBACK;
1272 }
1273
1274 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1275                 void *entry)
1276 {
1277         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1278         unsigned long pmd_addr = vmf->address & PMD_MASK;
1279         struct inode *inode = mapping->host;
1280         struct page *zero_page;
1281         void *ret = NULL;
1282         spinlock_t *ptl;
1283         pmd_t pmd_entry;
1284
1285         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1286
1287         if (unlikely(!zero_page))
1288                 goto fallback;
1289
1290         ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1291                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
1292         if (IS_ERR(ret))
1293                 goto fallback;
1294
1295         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1296         if (!pmd_none(*(vmf->pmd))) {
1297                 spin_unlock(ptl);
1298                 goto fallback;
1299         }
1300
1301         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1302         pmd_entry = pmd_mkhuge(pmd_entry);
1303         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1304         spin_unlock(ptl);
1305         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1306         return VM_FAULT_NOPAGE;
1307
1308 fallback:
1309         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1310         return VM_FAULT_FALLBACK;
1311 }
1312
1313 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1314                                const struct iomap_ops *ops)
1315 {
1316         struct vm_area_struct *vma = vmf->vma;
1317         struct address_space *mapping = vma->vm_file->f_mapping;
1318         unsigned long pmd_addr = vmf->address & PMD_MASK;
1319         bool write = vmf->flags & FAULT_FLAG_WRITE;
1320         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1321         struct inode *inode = mapping->host;
1322         int result = VM_FAULT_FALLBACK;
1323         struct iomap iomap = { 0 };
1324         pgoff_t max_pgoff, pgoff;
1325         void *entry;
1326         loff_t pos;
1327         int error;
1328
1329         /*
1330          * Check whether offset isn't beyond end of file now. Caller is
1331          * supposed to hold locks serializing us with truncate / punch hole so
1332          * this is a reliable test.
1333          */
1334         pgoff = linear_page_index(vma, pmd_addr);
1335         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1336
1337         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1338
1339         /*
1340          * Make sure that the faulting address's PMD offset (color) matches
1341          * the PMD offset from the start of the file.  This is necessary so
1342          * that a PMD range in the page table overlaps exactly with a PMD
1343          * range in the radix tree.
1344          */
1345         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1346             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1347                 goto fallback;
1348
1349         /* Fall back to PTEs if we're going to COW */
1350         if (write && !(vma->vm_flags & VM_SHARED))
1351                 goto fallback;
1352
1353         /* If the PMD would extend outside the VMA */
1354         if (pmd_addr < vma->vm_start)
1355                 goto fallback;
1356         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1357                 goto fallback;
1358
1359         if (pgoff > max_pgoff) {
1360                 result = VM_FAULT_SIGBUS;
1361                 goto out;
1362         }
1363
1364         /* If the PMD would extend beyond the file size */
1365         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1366                 goto fallback;
1367
1368         /*
1369          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1370          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1371          * is already in the tree, for instance), it will return -EEXIST and
1372          * we just fall back to 4k entries.
1373          */
1374         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1375         if (IS_ERR(entry))
1376                 goto fallback;
1377
1378         /*
1379          * It is possible, particularly with mixed reads & writes to private
1380          * mappings, that we have raced with a PTE fault that overlaps with
1381          * the PMD we need to set up.  If so just return and the fault will be
1382          * retried.
1383          */
1384         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1385                         !pmd_devmap(*vmf->pmd)) {
1386                 result = 0;
1387                 goto unlock_entry;
1388         }
1389
1390         /*
1391          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1392          * setting up a mapping, so really we're using iomap_begin() as a way
1393          * to look up our filesystem block.
1394          */
1395         pos = (loff_t)pgoff << PAGE_SHIFT;
1396         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1397         if (error)
1398                 goto unlock_entry;
1399
1400         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1401                 goto finish_iomap;
1402
1403         switch (iomap.type) {
1404         case IOMAP_MAPPED:
1405                 result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
1406                 break;
1407         case IOMAP_UNWRITTEN:
1408         case IOMAP_HOLE:
1409                 if (WARN_ON_ONCE(write))
1410                         break;
1411                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1412                 break;
1413         default:
1414                 WARN_ON_ONCE(1);
1415                 break;
1416         }
1417
1418  finish_iomap:
1419         if (ops->iomap_end) {
1420                 int copied = PMD_SIZE;
1421
1422                 if (result == VM_FAULT_FALLBACK)
1423                         copied = 0;
1424                 /*
1425                  * The fault is done by now and there's no way back (other
1426                  * thread may be already happily using PMD we have installed).
1427                  * Just ignore error from ->iomap_end since we cannot do much
1428                  * with it.
1429                  */
1430                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1431                                 &iomap);
1432         }
1433  unlock_entry:
1434         put_locked_mapping_entry(mapping, pgoff);
1435  fallback:
1436         if (result == VM_FAULT_FALLBACK) {
1437                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1438                 count_vm_event(THP_FAULT_FALLBACK);
1439         }
1440 out:
1441         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1442         return result;
1443 }
1444 #else
1445 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1446                                const struct iomap_ops *ops)
1447 {
1448         return VM_FAULT_FALLBACK;
1449 }
1450 #endif /* CONFIG_FS_DAX_PMD */
1451
1452 /**
1453  * dax_iomap_fault - handle a page fault on a DAX file
1454  * @vmf: The description of the fault
1455  * @ops: iomap ops passed from the file system
1456  *
1457  * When a page fault occurs, filesystems may call this helper in
1458  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1459  * has done all the necessary locking for page fault to proceed
1460  * successfully.
1461  */
1462 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1463                     const struct iomap_ops *ops)
1464 {
1465         switch (pe_size) {
1466         case PE_SIZE_PTE:
1467                 return dax_iomap_pte_fault(vmf, ops);
1468         case PE_SIZE_PMD:
1469                 return dax_iomap_pmd_fault(vmf, ops);
1470         default:
1471                 return VM_FAULT_FALLBACK;
1472         }
1473 }
1474 EXPORT_SYMBOL_GPL(dax_iomap_fault);