]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/dax.c
dax: protect PTE modification on WP fault by radix tree entry lock
[linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/iomap.h>
35 #include "internal.h"
36
37 /* We choose 4096 entries - same as per-zone page wait tables */
38 #define DAX_WAIT_TABLE_BITS 12
39 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
40
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
42
43 static int __init init_dax_wait_table(void)
44 {
45         int i;
46
47         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48                 init_waitqueue_head(wait_table + i);
49         return 0;
50 }
51 fs_initcall(init_dax_wait_table);
52
53 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
54 {
55         struct request_queue *q = bdev->bd_queue;
56         long rc = -EIO;
57
58         dax->addr = ERR_PTR(-EIO);
59         if (blk_queue_enter(q, true) != 0)
60                 return rc;
61
62         rc = bdev_direct_access(bdev, dax);
63         if (rc < 0) {
64                 dax->addr = ERR_PTR(rc);
65                 blk_queue_exit(q);
66                 return rc;
67         }
68         return rc;
69 }
70
71 static void dax_unmap_atomic(struct block_device *bdev,
72                 const struct blk_dax_ctl *dax)
73 {
74         if (IS_ERR(dax->addr))
75                 return;
76         blk_queue_exit(bdev->bd_queue);
77 }
78
79 static int dax_is_pmd_entry(void *entry)
80 {
81         return (unsigned long)entry & RADIX_DAX_PMD;
82 }
83
84 static int dax_is_pte_entry(void *entry)
85 {
86         return !((unsigned long)entry & RADIX_DAX_PMD);
87 }
88
89 static int dax_is_zero_entry(void *entry)
90 {
91         return (unsigned long)entry & RADIX_DAX_HZP;
92 }
93
94 static int dax_is_empty_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_EMPTY;
97 }
98
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101         struct page *page = alloc_pages(GFP_KERNEL, 0);
102         struct blk_dax_ctl dax = {
103                 .size = PAGE_SIZE,
104                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105         };
106         long rc;
107
108         if (!page)
109                 return ERR_PTR(-ENOMEM);
110
111         rc = dax_map_atomic(bdev, &dax);
112         if (rc < 0)
113                 return ERR_PTR(rc);
114         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115         dax_unmap_atomic(bdev, &dax);
116         return page;
117 }
118
119 /*
120  * DAX radix tree locking
121  */
122 struct exceptional_entry_key {
123         struct address_space *mapping;
124         pgoff_t entry_start;
125 };
126
127 struct wait_exceptional_entry_queue {
128         wait_queue_t wait;
129         struct exceptional_entry_key key;
130 };
131
132 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
133                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
134 {
135         unsigned long hash;
136
137         /*
138          * If 'entry' is a PMD, align the 'index' that we use for the wait
139          * queue to the start of that PMD.  This ensures that all offsets in
140          * the range covered by the PMD map to the same bit lock.
141          */
142         if (dax_is_pmd_entry(entry))
143                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
144
145         key->mapping = mapping;
146         key->entry_start = index;
147
148         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
149         return wait_table + hash;
150 }
151
152 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
153                                        int sync, void *keyp)
154 {
155         struct exceptional_entry_key *key = keyp;
156         struct wait_exceptional_entry_queue *ewait =
157                 container_of(wait, struct wait_exceptional_entry_queue, wait);
158
159         if (key->mapping != ewait->key.mapping ||
160             key->entry_start != ewait->key.entry_start)
161                 return 0;
162         return autoremove_wake_function(wait, mode, sync, NULL);
163 }
164
165 /*
166  * Check whether the given slot is locked. The function must be called with
167  * mapping->tree_lock held
168  */
169 static inline int slot_locked(struct address_space *mapping, void **slot)
170 {
171         unsigned long entry = (unsigned long)
172                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
173         return entry & RADIX_DAX_ENTRY_LOCK;
174 }
175
176 /*
177  * Mark the given slot is locked. The function must be called with
178  * mapping->tree_lock held
179  */
180 static inline void *lock_slot(struct address_space *mapping, void **slot)
181 {
182         unsigned long entry = (unsigned long)
183                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
184
185         entry |= RADIX_DAX_ENTRY_LOCK;
186         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
187         return (void *)entry;
188 }
189
190 /*
191  * Mark the given slot is unlocked. The function must be called with
192  * mapping->tree_lock held
193  */
194 static inline void *unlock_slot(struct address_space *mapping, void **slot)
195 {
196         unsigned long entry = (unsigned long)
197                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
198
199         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
200         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
201         return (void *)entry;
202 }
203
204 /*
205  * Lookup entry in radix tree, wait for it to become unlocked if it is
206  * exceptional entry and return it. The caller must call
207  * put_unlocked_mapping_entry() when he decided not to lock the entry or
208  * put_locked_mapping_entry() when he locked the entry and now wants to
209  * unlock it.
210  *
211  * The function must be called with mapping->tree_lock held.
212  */
213 static void *get_unlocked_mapping_entry(struct address_space *mapping,
214                                         pgoff_t index, void ***slotp)
215 {
216         void *entry, **slot;
217         struct wait_exceptional_entry_queue ewait;
218         wait_queue_head_t *wq;
219
220         init_wait(&ewait.wait);
221         ewait.wait.func = wake_exceptional_entry_func;
222
223         for (;;) {
224                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
225                                           &slot);
226                 if (!entry || !radix_tree_exceptional_entry(entry) ||
227                     !slot_locked(mapping, slot)) {
228                         if (slotp)
229                                 *slotp = slot;
230                         return entry;
231                 }
232
233                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
234                 prepare_to_wait_exclusive(wq, &ewait.wait,
235                                           TASK_UNINTERRUPTIBLE);
236                 spin_unlock_irq(&mapping->tree_lock);
237                 schedule();
238                 finish_wait(wq, &ewait.wait);
239                 spin_lock_irq(&mapping->tree_lock);
240         }
241 }
242
243 static void dax_unlock_mapping_entry(struct address_space *mapping,
244                                      pgoff_t index)
245 {
246         void *entry, **slot;
247
248         spin_lock_irq(&mapping->tree_lock);
249         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
250         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
251                          !slot_locked(mapping, slot))) {
252                 spin_unlock_irq(&mapping->tree_lock);
253                 return;
254         }
255         unlock_slot(mapping, slot);
256         spin_unlock_irq(&mapping->tree_lock);
257         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
258 }
259
260 static void put_locked_mapping_entry(struct address_space *mapping,
261                                      pgoff_t index, void *entry)
262 {
263         if (!radix_tree_exceptional_entry(entry)) {
264                 unlock_page(entry);
265                 put_page(entry);
266         } else {
267                 dax_unlock_mapping_entry(mapping, index);
268         }
269 }
270
271 /*
272  * Called when we are done with radix tree entry we looked up via
273  * get_unlocked_mapping_entry() and which we didn't lock in the end.
274  */
275 static void put_unlocked_mapping_entry(struct address_space *mapping,
276                                        pgoff_t index, void *entry)
277 {
278         if (!radix_tree_exceptional_entry(entry))
279                 return;
280
281         /* We have to wake up next waiter for the radix tree entry lock */
282         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
283 }
284
285 /*
286  * Find radix tree entry at given index. If it points to a page, return with
287  * the page locked. If it points to the exceptional entry, return with the
288  * radix tree entry locked. If the radix tree doesn't contain given index,
289  * create empty exceptional entry for the index and return with it locked.
290  *
291  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
292  * either return that locked entry or will return an error.  This error will
293  * happen if there are any 4k entries (either zero pages or DAX entries)
294  * within the 2MiB range that we are requesting.
295  *
296  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
297  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
298  * insertion will fail if it finds any 4k entries already in the tree, and a
299  * 4k insertion will cause an existing 2MiB entry to be unmapped and
300  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
301  * well as 2MiB empty entries.
302  *
303  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
304  * real storage backing them.  We will leave these real 2MiB DAX entries in
305  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
306  *
307  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
308  * persistent memory the benefit is doubtful. We can add that later if we can
309  * show it helps.
310  */
311 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
312                 unsigned long size_flag)
313 {
314         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
315         void *entry, **slot;
316
317 restart:
318         spin_lock_irq(&mapping->tree_lock);
319         entry = get_unlocked_mapping_entry(mapping, index, &slot);
320
321         if (entry) {
322                 if (size_flag & RADIX_DAX_PMD) {
323                         if (!radix_tree_exceptional_entry(entry) ||
324                             dax_is_pte_entry(entry)) {
325                                 put_unlocked_mapping_entry(mapping, index,
326                                                 entry);
327                                 entry = ERR_PTR(-EEXIST);
328                                 goto out_unlock;
329                         }
330                 } else { /* trying to grab a PTE entry */
331                         if (radix_tree_exceptional_entry(entry) &&
332                             dax_is_pmd_entry(entry) &&
333                             (dax_is_zero_entry(entry) ||
334                              dax_is_empty_entry(entry))) {
335                                 pmd_downgrade = true;
336                         }
337                 }
338         }
339
340         /* No entry for given index? Make sure radix tree is big enough. */
341         if (!entry || pmd_downgrade) {
342                 int err;
343
344                 if (pmd_downgrade) {
345                         /*
346                          * Make sure 'entry' remains valid while we drop
347                          * mapping->tree_lock.
348                          */
349                         entry = lock_slot(mapping, slot);
350                 }
351
352                 spin_unlock_irq(&mapping->tree_lock);
353                 /*
354                  * Besides huge zero pages the only other thing that gets
355                  * downgraded are empty entries which don't need to be
356                  * unmapped.
357                  */
358                 if (pmd_downgrade && dax_is_zero_entry(entry))
359                         unmap_mapping_range(mapping,
360                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
361
362                 err = radix_tree_preload(
363                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
364                 if (err) {
365                         if (pmd_downgrade)
366                                 put_locked_mapping_entry(mapping, index, entry);
367                         return ERR_PTR(err);
368                 }
369                 spin_lock_irq(&mapping->tree_lock);
370
371                 if (pmd_downgrade) {
372                         radix_tree_delete(&mapping->page_tree, index);
373                         mapping->nrexceptional--;
374                         dax_wake_mapping_entry_waiter(mapping, index, entry,
375                                         true);
376                 }
377
378                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
379
380                 err = __radix_tree_insert(&mapping->page_tree, index,
381                                 dax_radix_order(entry), entry);
382                 radix_tree_preload_end();
383                 if (err) {
384                         spin_unlock_irq(&mapping->tree_lock);
385                         /*
386                          * Someone already created the entry?  This is a
387                          * normal failure when inserting PMDs in a range
388                          * that already contains PTEs.  In that case we want
389                          * to return -EEXIST immediately.
390                          */
391                         if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
392                                 goto restart;
393                         /*
394                          * Our insertion of a DAX PMD entry failed, most
395                          * likely because it collided with a PTE sized entry
396                          * at a different index in the PMD range.  We haven't
397                          * inserted anything into the radix tree and have no
398                          * waiters to wake.
399                          */
400                         return ERR_PTR(err);
401                 }
402                 /* Good, we have inserted empty locked entry into the tree. */
403                 mapping->nrexceptional++;
404                 spin_unlock_irq(&mapping->tree_lock);
405                 return entry;
406         }
407         /* Normal page in radix tree? */
408         if (!radix_tree_exceptional_entry(entry)) {
409                 struct page *page = entry;
410
411                 get_page(page);
412                 spin_unlock_irq(&mapping->tree_lock);
413                 lock_page(page);
414                 /* Page got truncated? Retry... */
415                 if (unlikely(page->mapping != mapping)) {
416                         unlock_page(page);
417                         put_page(page);
418                         goto restart;
419                 }
420                 return page;
421         }
422         entry = lock_slot(mapping, slot);
423  out_unlock:
424         spin_unlock_irq(&mapping->tree_lock);
425         return entry;
426 }
427
428 /*
429  * We do not necessarily hold the mapping->tree_lock when we call this
430  * function so it is possible that 'entry' is no longer a valid item in the
431  * radix tree.  This is okay because all we really need to do is to find the
432  * correct waitqueue where tasks might be waiting for that old 'entry' and
433  * wake them.
434  */
435 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
436                 pgoff_t index, void *entry, bool wake_all)
437 {
438         struct exceptional_entry_key key;
439         wait_queue_head_t *wq;
440
441         wq = dax_entry_waitqueue(mapping, index, entry, &key);
442
443         /*
444          * Checking for locked entry and prepare_to_wait_exclusive() happens
445          * under mapping->tree_lock, ditto for entry handling in our callers.
446          * So at this point all tasks that could have seen our entry locked
447          * must be in the waitqueue and the following check will see them.
448          */
449         if (waitqueue_active(wq))
450                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
451 }
452
453 /*
454  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
455  * entry to get unlocked before deleting it.
456  */
457 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
458 {
459         void *entry;
460
461         spin_lock_irq(&mapping->tree_lock);
462         entry = get_unlocked_mapping_entry(mapping, index, NULL);
463         /*
464          * This gets called from truncate / punch_hole path. As such, the caller
465          * must hold locks protecting against concurrent modifications of the
466          * radix tree (usually fs-private i_mmap_sem for writing). Since the
467          * caller has seen exceptional entry for this index, we better find it
468          * at that index as well...
469          */
470         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
471                 spin_unlock_irq(&mapping->tree_lock);
472                 return 0;
473         }
474         radix_tree_delete(&mapping->page_tree, index);
475         mapping->nrexceptional--;
476         spin_unlock_irq(&mapping->tree_lock);
477         dax_wake_mapping_entry_waiter(mapping, index, entry, true);
478
479         return 1;
480 }
481
482 /*
483  * The user has performed a load from a hole in the file.  Allocating
484  * a new page in the file would cause excessive storage usage for
485  * workloads with sparse files.  We allocate a page cache page instead.
486  * We'll kick it out of the page cache if it's ever written to,
487  * otherwise it will simply fall out of the page cache under memory
488  * pressure without ever having been dirtied.
489  */
490 static int dax_load_hole(struct address_space *mapping, void *entry,
491                          struct vm_fault *vmf)
492 {
493         struct page *page;
494
495         /* Hole page already exists? Return it...  */
496         if (!radix_tree_exceptional_entry(entry)) {
497                 vmf->page = entry;
498                 return VM_FAULT_LOCKED;
499         }
500
501         /* This will replace locked radix tree entry with a hole page */
502         page = find_or_create_page(mapping, vmf->pgoff,
503                                    vmf->gfp_mask | __GFP_ZERO);
504         if (!page)
505                 return VM_FAULT_OOM;
506         vmf->page = page;
507         return VM_FAULT_LOCKED;
508 }
509
510 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
511                 struct page *to, unsigned long vaddr)
512 {
513         struct blk_dax_ctl dax = {
514                 .sector = sector,
515                 .size = size,
516         };
517         void *vto;
518
519         if (dax_map_atomic(bdev, &dax) < 0)
520                 return PTR_ERR(dax.addr);
521         vto = kmap_atomic(to);
522         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
523         kunmap_atomic(vto);
524         dax_unmap_atomic(bdev, &dax);
525         return 0;
526 }
527
528 /*
529  * By this point grab_mapping_entry() has ensured that we have a locked entry
530  * of the appropriate size so we don't have to worry about downgrading PMDs to
531  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
532  * already in the tree, we will skip the insertion and just dirty the PMD as
533  * appropriate.
534  */
535 static void *dax_insert_mapping_entry(struct address_space *mapping,
536                                       struct vm_fault *vmf,
537                                       void *entry, sector_t sector,
538                                       unsigned long flags)
539 {
540         struct radix_tree_root *page_tree = &mapping->page_tree;
541         int error = 0;
542         bool hole_fill = false;
543         void *new_entry;
544         pgoff_t index = vmf->pgoff;
545
546         if (vmf->flags & FAULT_FLAG_WRITE)
547                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
548
549         /* Replacing hole page with block mapping? */
550         if (!radix_tree_exceptional_entry(entry)) {
551                 hole_fill = true;
552                 /*
553                  * Unmap the page now before we remove it from page cache below.
554                  * The page is locked so it cannot be faulted in again.
555                  */
556                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
557                                     PAGE_SIZE, 0);
558                 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
559                 if (error)
560                         return ERR_PTR(error);
561         } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
562                 /* replacing huge zero page with PMD block mapping */
563                 unmap_mapping_range(mapping,
564                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
565         }
566
567         spin_lock_irq(&mapping->tree_lock);
568         new_entry = dax_radix_locked_entry(sector, flags);
569
570         if (hole_fill) {
571                 __delete_from_page_cache(entry, NULL);
572                 /* Drop pagecache reference */
573                 put_page(entry);
574                 error = __radix_tree_insert(page_tree, index,
575                                 dax_radix_order(new_entry), new_entry);
576                 if (error) {
577                         new_entry = ERR_PTR(error);
578                         goto unlock;
579                 }
580                 mapping->nrexceptional++;
581         } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
582                 /*
583                  * Only swap our new entry into the radix tree if the current
584                  * entry is a zero page or an empty entry.  If a normal PTE or
585                  * PMD entry is already in the tree, we leave it alone.  This
586                  * means that if we are trying to insert a PTE and the
587                  * existing entry is a PMD, we will just leave the PMD in the
588                  * tree and dirty it if necessary.
589                  */
590                 struct radix_tree_node *node;
591                 void **slot;
592                 void *ret;
593
594                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
595                 WARN_ON_ONCE(ret != entry);
596                 __radix_tree_replace(page_tree, node, slot,
597                                      new_entry, NULL, NULL);
598         }
599         if (vmf->flags & FAULT_FLAG_WRITE)
600                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
601  unlock:
602         spin_unlock_irq(&mapping->tree_lock);
603         if (hole_fill) {
604                 radix_tree_preload_end();
605                 /*
606                  * We don't need hole page anymore, it has been replaced with
607                  * locked radix tree entry now.
608                  */
609                 if (mapping->a_ops->freepage)
610                         mapping->a_ops->freepage(entry);
611                 unlock_page(entry);
612                 put_page(entry);
613         }
614         return new_entry;
615 }
616
617 static int dax_writeback_one(struct block_device *bdev,
618                 struct address_space *mapping, pgoff_t index, void *entry)
619 {
620         struct radix_tree_root *page_tree = &mapping->page_tree;
621         struct blk_dax_ctl dax;
622         void *entry2, **slot;
623         int ret = 0;
624
625         /*
626          * A page got tagged dirty in DAX mapping? Something is seriously
627          * wrong.
628          */
629         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
630                 return -EIO;
631
632         spin_lock_irq(&mapping->tree_lock);
633         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
634         /* Entry got punched out / reallocated? */
635         if (!entry2 || !radix_tree_exceptional_entry(entry2))
636                 goto put_unlocked;
637         /*
638          * Entry got reallocated elsewhere? No need to writeback. We have to
639          * compare sectors as we must not bail out due to difference in lockbit
640          * or entry type.
641          */
642         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
643                 goto put_unlocked;
644         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
645                                 dax_is_zero_entry(entry))) {
646                 ret = -EIO;
647                 goto put_unlocked;
648         }
649
650         /* Another fsync thread may have already written back this entry */
651         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
652                 goto put_unlocked;
653         /* Lock the entry to serialize with page faults */
654         entry = lock_slot(mapping, slot);
655         /*
656          * We can clear the tag now but we have to be careful so that concurrent
657          * dax_writeback_one() calls for the same index cannot finish before we
658          * actually flush the caches. This is achieved as the calls will look
659          * at the entry only under tree_lock and once they do that they will
660          * see the entry locked and wait for it to unlock.
661          */
662         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
663         spin_unlock_irq(&mapping->tree_lock);
664
665         /*
666          * Even if dax_writeback_mapping_range() was given a wbc->range_start
667          * in the middle of a PMD, the 'index' we are given will be aligned to
668          * the start index of the PMD, as will the sector we pull from
669          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
670          * worry about partial PMD writebacks.
671          */
672         dax.sector = dax_radix_sector(entry);
673         dax.size = PAGE_SIZE << dax_radix_order(entry);
674
675         /*
676          * We cannot hold tree_lock while calling dax_map_atomic() because it
677          * eventually calls cond_resched().
678          */
679         ret = dax_map_atomic(bdev, &dax);
680         if (ret < 0) {
681                 put_locked_mapping_entry(mapping, index, entry);
682                 return ret;
683         }
684
685         if (WARN_ON_ONCE(ret < dax.size)) {
686                 ret = -EIO;
687                 goto unmap;
688         }
689
690         wb_cache_pmem(dax.addr, dax.size);
691  unmap:
692         dax_unmap_atomic(bdev, &dax);
693         put_locked_mapping_entry(mapping, index, entry);
694         return ret;
695
696  put_unlocked:
697         put_unlocked_mapping_entry(mapping, index, entry2);
698         spin_unlock_irq(&mapping->tree_lock);
699         return ret;
700 }
701
702 /*
703  * Flush the mapping to the persistent domain within the byte range of [start,
704  * end]. This is required by data integrity operations to ensure file data is
705  * on persistent storage prior to completion of the operation.
706  */
707 int dax_writeback_mapping_range(struct address_space *mapping,
708                 struct block_device *bdev, struct writeback_control *wbc)
709 {
710         struct inode *inode = mapping->host;
711         pgoff_t start_index, end_index;
712         pgoff_t indices[PAGEVEC_SIZE];
713         struct pagevec pvec;
714         bool done = false;
715         int i, ret = 0;
716
717         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
718                 return -EIO;
719
720         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
721                 return 0;
722
723         start_index = wbc->range_start >> PAGE_SHIFT;
724         end_index = wbc->range_end >> PAGE_SHIFT;
725
726         tag_pages_for_writeback(mapping, start_index, end_index);
727
728         pagevec_init(&pvec, 0);
729         while (!done) {
730                 pvec.nr = find_get_entries_tag(mapping, start_index,
731                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
732                                 pvec.pages, indices);
733
734                 if (pvec.nr == 0)
735                         break;
736
737                 for (i = 0; i < pvec.nr; i++) {
738                         if (indices[i] > end_index) {
739                                 done = true;
740                                 break;
741                         }
742
743                         ret = dax_writeback_one(bdev, mapping, indices[i],
744                                         pvec.pages[i]);
745                         if (ret < 0)
746                                 return ret;
747                 }
748         }
749         return 0;
750 }
751 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
752
753 static int dax_insert_mapping(struct address_space *mapping,
754                 struct block_device *bdev, sector_t sector, size_t size,
755                 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
756 {
757         unsigned long vaddr = vmf->address;
758         struct blk_dax_ctl dax = {
759                 .sector = sector,
760                 .size = size,
761         };
762         void *ret;
763         void *entry = *entryp;
764
765         if (dax_map_atomic(bdev, &dax) < 0)
766                 return PTR_ERR(dax.addr);
767         dax_unmap_atomic(bdev, &dax);
768
769         ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
770         if (IS_ERR(ret))
771                 return PTR_ERR(ret);
772         *entryp = ret;
773
774         return vm_insert_mixed(vma, vaddr, dax.pfn);
775 }
776
777 /**
778  * dax_pfn_mkwrite - handle first write to DAX page
779  * @vma: The virtual memory area where the fault occurred
780  * @vmf: The description of the fault
781  */
782 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
783 {
784         struct file *file = vma->vm_file;
785         struct address_space *mapping = file->f_mapping;
786         void *entry, **slot;
787         pgoff_t index = vmf->pgoff;
788
789         spin_lock_irq(&mapping->tree_lock);
790         entry = get_unlocked_mapping_entry(mapping, index, &slot);
791         if (!entry || !radix_tree_exceptional_entry(entry)) {
792                 if (entry)
793                         put_unlocked_mapping_entry(mapping, index, entry);
794                 spin_unlock_irq(&mapping->tree_lock);
795                 return VM_FAULT_NOPAGE;
796         }
797         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
798         entry = lock_slot(mapping, slot);
799         spin_unlock_irq(&mapping->tree_lock);
800         /*
801          * If we race with somebody updating the PTE and finish_mkwrite_fault()
802          * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
803          * the fault in either case.
804          */
805         finish_mkwrite_fault(vmf);
806         put_locked_mapping_entry(mapping, index, entry);
807         return VM_FAULT_NOPAGE;
808 }
809 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
810
811 static bool dax_range_is_aligned(struct block_device *bdev,
812                                  unsigned int offset, unsigned int length)
813 {
814         unsigned short sector_size = bdev_logical_block_size(bdev);
815
816         if (!IS_ALIGNED(offset, sector_size))
817                 return false;
818         if (!IS_ALIGNED(length, sector_size))
819                 return false;
820
821         return true;
822 }
823
824 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
825                 unsigned int offset, unsigned int length)
826 {
827         struct blk_dax_ctl dax = {
828                 .sector         = sector,
829                 .size           = PAGE_SIZE,
830         };
831
832         if (dax_range_is_aligned(bdev, offset, length)) {
833                 sector_t start_sector = dax.sector + (offset >> 9);
834
835                 return blkdev_issue_zeroout(bdev, start_sector,
836                                 length >> 9, GFP_NOFS, true);
837         } else {
838                 if (dax_map_atomic(bdev, &dax) < 0)
839                         return PTR_ERR(dax.addr);
840                 clear_pmem(dax.addr + offset, length);
841                 dax_unmap_atomic(bdev, &dax);
842         }
843         return 0;
844 }
845 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
846
847 #ifdef CONFIG_FS_IOMAP
848 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
849 {
850         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
851 }
852
853 static loff_t
854 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
855                 struct iomap *iomap)
856 {
857         struct iov_iter *iter = data;
858         loff_t end = pos + length, done = 0;
859         ssize_t ret = 0;
860
861         if (iov_iter_rw(iter) == READ) {
862                 end = min(end, i_size_read(inode));
863                 if (pos >= end)
864                         return 0;
865
866                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
867                         return iov_iter_zero(min(length, end - pos), iter);
868         }
869
870         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
871                 return -EIO;
872
873         while (pos < end) {
874                 unsigned offset = pos & (PAGE_SIZE - 1);
875                 struct blk_dax_ctl dax = { 0 };
876                 ssize_t map_len;
877
878                 dax.sector = dax_iomap_sector(iomap, pos);
879                 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
880                 map_len = dax_map_atomic(iomap->bdev, &dax);
881                 if (map_len < 0) {
882                         ret = map_len;
883                         break;
884                 }
885
886                 dax.addr += offset;
887                 map_len -= offset;
888                 if (map_len > end - pos)
889                         map_len = end - pos;
890
891                 if (iov_iter_rw(iter) == WRITE)
892                         map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
893                 else
894                         map_len = copy_to_iter(dax.addr, map_len, iter);
895                 dax_unmap_atomic(iomap->bdev, &dax);
896                 if (map_len <= 0) {
897                         ret = map_len ? map_len : -EFAULT;
898                         break;
899                 }
900
901                 pos += map_len;
902                 length -= map_len;
903                 done += map_len;
904         }
905
906         return done ? done : ret;
907 }
908
909 /**
910  * dax_iomap_rw - Perform I/O to a DAX file
911  * @iocb:       The control block for this I/O
912  * @iter:       The addresses to do I/O from or to
913  * @ops:        iomap ops passed from the file system
914  *
915  * This function performs read and write operations to directly mapped
916  * persistent memory.  The callers needs to take care of read/write exclusion
917  * and evicting any page cache pages in the region under I/O.
918  */
919 ssize_t
920 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
921                 struct iomap_ops *ops)
922 {
923         struct address_space *mapping = iocb->ki_filp->f_mapping;
924         struct inode *inode = mapping->host;
925         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
926         unsigned flags = 0;
927
928         if (iov_iter_rw(iter) == WRITE)
929                 flags |= IOMAP_WRITE;
930
931         /*
932          * Yes, even DAX files can have page cache attached to them:  A zeroed
933          * page is inserted into the pagecache when we have to serve a write
934          * fault on a hole.  It should never be dirtied and can simply be
935          * dropped from the pagecache once we get real data for the page.
936          *
937          * XXX: This is racy against mmap, and there's nothing we can do about
938          * it. We'll eventually need to shift this down even further so that
939          * we can check if we allocated blocks over a hole first.
940          */
941         if (mapping->nrpages) {
942                 ret = invalidate_inode_pages2_range(mapping,
943                                 pos >> PAGE_SHIFT,
944                                 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
945                 WARN_ON_ONCE(ret);
946         }
947
948         while (iov_iter_count(iter)) {
949                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
950                                 iter, dax_iomap_actor);
951                 if (ret <= 0)
952                         break;
953                 pos += ret;
954                 done += ret;
955         }
956
957         iocb->ki_pos += done;
958         return done ? done : ret;
959 }
960 EXPORT_SYMBOL_GPL(dax_iomap_rw);
961
962 /**
963  * dax_iomap_fault - handle a page fault on a DAX file
964  * @vma: The virtual memory area where the fault occurred
965  * @vmf: The description of the fault
966  * @ops: iomap ops passed from the file system
967  *
968  * When a page fault occurs, filesystems may call this helper in their fault
969  * or mkwrite handler for DAX files. Assumes the caller has done all the
970  * necessary locking for the page fault to proceed successfully.
971  */
972 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
973                         struct iomap_ops *ops)
974 {
975         struct address_space *mapping = vma->vm_file->f_mapping;
976         struct inode *inode = mapping->host;
977         unsigned long vaddr = vmf->address;
978         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
979         sector_t sector;
980         struct iomap iomap = { 0 };
981         unsigned flags = IOMAP_FAULT;
982         int error, major = 0;
983         int vmf_ret = 0;
984         void *entry;
985
986         /*
987          * Check whether offset isn't beyond end of file now. Caller is supposed
988          * to hold locks serializing us with truncate / punch hole so this is
989          * a reliable test.
990          */
991         if (pos >= i_size_read(inode))
992                 return VM_FAULT_SIGBUS;
993
994         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
995         if (IS_ERR(entry)) {
996                 error = PTR_ERR(entry);
997                 goto out;
998         }
999
1000         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1001                 flags |= IOMAP_WRITE;
1002
1003         /*
1004          * Note that we don't bother to use iomap_apply here: DAX required
1005          * the file system block size to be equal the page size, which means
1006          * that we never have to deal with more than a single extent here.
1007          */
1008         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1009         if (error)
1010                 goto unlock_entry;
1011         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1012                 error = -EIO;           /* fs corruption? */
1013                 goto finish_iomap;
1014         }
1015
1016         sector = dax_iomap_sector(&iomap, pos);
1017
1018         if (vmf->cow_page) {
1019                 switch (iomap.type) {
1020                 case IOMAP_HOLE:
1021                 case IOMAP_UNWRITTEN:
1022                         clear_user_highpage(vmf->cow_page, vaddr);
1023                         break;
1024                 case IOMAP_MAPPED:
1025                         error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1026                                         vmf->cow_page, vaddr);
1027                         break;
1028                 default:
1029                         WARN_ON_ONCE(1);
1030                         error = -EIO;
1031                         break;
1032                 }
1033
1034                 if (error)
1035                         goto finish_iomap;
1036
1037                 __SetPageUptodate(vmf->cow_page);
1038                 vmf_ret = finish_fault(vmf);
1039                 if (!vmf_ret)
1040                         vmf_ret = VM_FAULT_DONE_COW;
1041                 goto finish_iomap;
1042         }
1043
1044         switch (iomap.type) {
1045         case IOMAP_MAPPED:
1046                 if (iomap.flags & IOMAP_F_NEW) {
1047                         count_vm_event(PGMAJFAULT);
1048                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1049                         major = VM_FAULT_MAJOR;
1050                 }
1051                 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1052                                 PAGE_SIZE, &entry, vma, vmf);
1053                 break;
1054         case IOMAP_UNWRITTEN:
1055         case IOMAP_HOLE:
1056                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1057                         vmf_ret = dax_load_hole(mapping, entry, vmf);
1058                         break;
1059                 }
1060                 /*FALLTHRU*/
1061         default:
1062                 WARN_ON_ONCE(1);
1063                 error = -EIO;
1064                 break;
1065         }
1066
1067  finish_iomap:
1068         if (ops->iomap_end) {
1069                 if (error || (vmf_ret & VM_FAULT_ERROR)) {
1070                         /* keep previous error */
1071                         ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1072                                         &iomap);
1073                 } else {
1074                         error = ops->iomap_end(inode, pos, PAGE_SIZE,
1075                                         PAGE_SIZE, flags, &iomap);
1076                 }
1077         }
1078  unlock_entry:
1079         if (vmf_ret != VM_FAULT_LOCKED || error)
1080                 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1081  out:
1082         if (error == -ENOMEM)
1083                 return VM_FAULT_OOM | major;
1084         /* -EBUSY is fine, somebody else faulted on the same PTE */
1085         if (error < 0 && error != -EBUSY)
1086                 return VM_FAULT_SIGBUS | major;
1087         if (vmf_ret) {
1088                 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1089                 return vmf_ret;
1090         }
1091         return VM_FAULT_NOPAGE | major;
1092 }
1093 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1094
1095 #ifdef CONFIG_FS_DAX_PMD
1096 /*
1097  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1098  * more often than one might expect in the below functions.
1099  */
1100 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1101
1102 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1103                 struct vm_fault *vmf, unsigned long address,
1104                 struct iomap *iomap, loff_t pos, bool write, void **entryp)
1105 {
1106         struct address_space *mapping = vma->vm_file->f_mapping;
1107         struct block_device *bdev = iomap->bdev;
1108         struct blk_dax_ctl dax = {
1109                 .sector = dax_iomap_sector(iomap, pos),
1110                 .size = PMD_SIZE,
1111         };
1112         long length = dax_map_atomic(bdev, &dax);
1113         void *ret;
1114
1115         if (length < 0) /* dax_map_atomic() failed */
1116                 return VM_FAULT_FALLBACK;
1117         if (length < PMD_SIZE)
1118                 goto unmap_fallback;
1119         if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1120                 goto unmap_fallback;
1121         if (!pfn_t_devmap(dax.pfn))
1122                 goto unmap_fallback;
1123
1124         dax_unmap_atomic(bdev, &dax);
1125
1126         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1127                         RADIX_DAX_PMD);
1128         if (IS_ERR(ret))
1129                 return VM_FAULT_FALLBACK;
1130         *entryp = ret;
1131
1132         return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1133
1134  unmap_fallback:
1135         dax_unmap_atomic(bdev, &dax);
1136         return VM_FAULT_FALLBACK;
1137 }
1138
1139 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1140                 struct vm_fault *vmf, unsigned long address,
1141                 struct iomap *iomap, void **entryp)
1142 {
1143         struct address_space *mapping = vma->vm_file->f_mapping;
1144         unsigned long pmd_addr = address & PMD_MASK;
1145         struct page *zero_page;
1146         spinlock_t *ptl;
1147         pmd_t pmd_entry;
1148         void *ret;
1149
1150         zero_page = mm_get_huge_zero_page(vma->vm_mm);
1151
1152         if (unlikely(!zero_page))
1153                 return VM_FAULT_FALLBACK;
1154
1155         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1156                         RADIX_DAX_PMD | RADIX_DAX_HZP);
1157         if (IS_ERR(ret))
1158                 return VM_FAULT_FALLBACK;
1159         *entryp = ret;
1160
1161         ptl = pmd_lock(vma->vm_mm, pmd);
1162         if (!pmd_none(*pmd)) {
1163                 spin_unlock(ptl);
1164                 return VM_FAULT_FALLBACK;
1165         }
1166
1167         pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1168         pmd_entry = pmd_mkhuge(pmd_entry);
1169         set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1170         spin_unlock(ptl);
1171         return VM_FAULT_NOPAGE;
1172 }
1173
1174 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1175                 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1176 {
1177         struct address_space *mapping = vma->vm_file->f_mapping;
1178         unsigned long pmd_addr = address & PMD_MASK;
1179         bool write = flags & FAULT_FLAG_WRITE;
1180         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1181         struct inode *inode = mapping->host;
1182         int result = VM_FAULT_FALLBACK;
1183         struct iomap iomap = { 0 };
1184         pgoff_t max_pgoff, pgoff;
1185         struct vm_fault vmf;
1186         void *entry;
1187         loff_t pos;
1188         int error;
1189
1190         /* Fall back to PTEs if we're going to COW */
1191         if (write && !(vma->vm_flags & VM_SHARED))
1192                 goto fallback;
1193
1194         /* If the PMD would extend outside the VMA */
1195         if (pmd_addr < vma->vm_start)
1196                 goto fallback;
1197         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1198                 goto fallback;
1199
1200         /*
1201          * Check whether offset isn't beyond end of file now. Caller is
1202          * supposed to hold locks serializing us with truncate / punch hole so
1203          * this is a reliable test.
1204          */
1205         pgoff = linear_page_index(vma, pmd_addr);
1206         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1207
1208         if (pgoff > max_pgoff)
1209                 return VM_FAULT_SIGBUS;
1210
1211         /* If the PMD would extend beyond the file size */
1212         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1213                 goto fallback;
1214
1215         /*
1216          * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1217          * PMD or a HZP entry.  If it can't (because a 4k page is already in
1218          * the tree, for instance), it will return -EEXIST and we just fall
1219          * back to 4k entries.
1220          */
1221         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1222         if (IS_ERR(entry))
1223                 goto fallback;
1224
1225         /*
1226          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1227          * setting up a mapping, so really we're using iomap_begin() as a way
1228          * to look up our filesystem block.
1229          */
1230         pos = (loff_t)pgoff << PAGE_SHIFT;
1231         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1232         if (error)
1233                 goto unlock_entry;
1234         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1235                 goto finish_iomap;
1236
1237         vmf.pgoff = pgoff;
1238         vmf.flags = flags;
1239         vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1240
1241         switch (iomap.type) {
1242         case IOMAP_MAPPED:
1243                 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1244                                 &iomap, pos, write, &entry);
1245                 break;
1246         case IOMAP_UNWRITTEN:
1247         case IOMAP_HOLE:
1248                 if (WARN_ON_ONCE(write))
1249                         goto finish_iomap;
1250                 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1251                                 &entry);
1252                 break;
1253         default:
1254                 WARN_ON_ONCE(1);
1255                 break;
1256         }
1257
1258  finish_iomap:
1259         if (ops->iomap_end) {
1260                 if (result == VM_FAULT_FALLBACK) {
1261                         ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1262                                         &iomap);
1263                 } else {
1264                         error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1265                                         iomap_flags, &iomap);
1266                         if (error)
1267                                 result = VM_FAULT_FALLBACK;
1268                 }
1269         }
1270  unlock_entry:
1271         put_locked_mapping_entry(mapping, pgoff, entry);
1272  fallback:
1273         if (result == VM_FAULT_FALLBACK) {
1274                 split_huge_pmd(vma, pmd, address);
1275                 count_vm_event(THP_FAULT_FALLBACK);
1276         }
1277         return result;
1278 }
1279 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1280 #endif /* CONFIG_FS_DAX_PMD */
1281 #endif /* CONFIG_FS_IOMAP */