]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/dax.c
Merge branch 'pm-cpufreq'
[linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/iomap.h>
35 #include "internal.h"
36
37 /* We choose 4096 entries - same as per-zone page wait tables */
38 #define DAX_WAIT_TABLE_BITS 12
39 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
40
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
42
43 static int __init init_dax_wait_table(void)
44 {
45         int i;
46
47         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48                 init_waitqueue_head(wait_table + i);
49         return 0;
50 }
51 fs_initcall(init_dax_wait_table);
52
53 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
54 {
55         struct request_queue *q = bdev->bd_queue;
56         long rc = -EIO;
57
58         dax->addr = ERR_PTR(-EIO);
59         if (blk_queue_enter(q, true) != 0)
60                 return rc;
61
62         rc = bdev_direct_access(bdev, dax);
63         if (rc < 0) {
64                 dax->addr = ERR_PTR(rc);
65                 blk_queue_exit(q);
66                 return rc;
67         }
68         return rc;
69 }
70
71 static void dax_unmap_atomic(struct block_device *bdev,
72                 const struct blk_dax_ctl *dax)
73 {
74         if (IS_ERR(dax->addr))
75                 return;
76         blk_queue_exit(bdev->bd_queue);
77 }
78
79 static int dax_is_pmd_entry(void *entry)
80 {
81         return (unsigned long)entry & RADIX_DAX_PMD;
82 }
83
84 static int dax_is_pte_entry(void *entry)
85 {
86         return !((unsigned long)entry & RADIX_DAX_PMD);
87 }
88
89 static int dax_is_zero_entry(void *entry)
90 {
91         return (unsigned long)entry & RADIX_DAX_HZP;
92 }
93
94 static int dax_is_empty_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_EMPTY;
97 }
98
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101         struct page *page = alloc_pages(GFP_KERNEL, 0);
102         struct blk_dax_ctl dax = {
103                 .size = PAGE_SIZE,
104                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105         };
106         long rc;
107
108         if (!page)
109                 return ERR_PTR(-ENOMEM);
110
111         rc = dax_map_atomic(bdev, &dax);
112         if (rc < 0)
113                 return ERR_PTR(rc);
114         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115         dax_unmap_atomic(bdev, &dax);
116         return page;
117 }
118
119 /*
120  * DAX radix tree locking
121  */
122 struct exceptional_entry_key {
123         struct address_space *mapping;
124         pgoff_t entry_start;
125 };
126
127 struct wait_exceptional_entry_queue {
128         wait_queue_t wait;
129         struct exceptional_entry_key key;
130 };
131
132 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
133                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
134 {
135         unsigned long hash;
136
137         /*
138          * If 'entry' is a PMD, align the 'index' that we use for the wait
139          * queue to the start of that PMD.  This ensures that all offsets in
140          * the range covered by the PMD map to the same bit lock.
141          */
142         if (dax_is_pmd_entry(entry))
143                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
144
145         key->mapping = mapping;
146         key->entry_start = index;
147
148         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
149         return wait_table + hash;
150 }
151
152 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
153                                        int sync, void *keyp)
154 {
155         struct exceptional_entry_key *key = keyp;
156         struct wait_exceptional_entry_queue *ewait =
157                 container_of(wait, struct wait_exceptional_entry_queue, wait);
158
159         if (key->mapping != ewait->key.mapping ||
160             key->entry_start != ewait->key.entry_start)
161                 return 0;
162         return autoremove_wake_function(wait, mode, sync, NULL);
163 }
164
165 /*
166  * Check whether the given slot is locked. The function must be called with
167  * mapping->tree_lock held
168  */
169 static inline int slot_locked(struct address_space *mapping, void **slot)
170 {
171         unsigned long entry = (unsigned long)
172                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
173         return entry & RADIX_DAX_ENTRY_LOCK;
174 }
175
176 /*
177  * Mark the given slot is locked. The function must be called with
178  * mapping->tree_lock held
179  */
180 static inline void *lock_slot(struct address_space *mapping, void **slot)
181 {
182         unsigned long entry = (unsigned long)
183                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
184
185         entry |= RADIX_DAX_ENTRY_LOCK;
186         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
187         return (void *)entry;
188 }
189
190 /*
191  * Mark the given slot is unlocked. The function must be called with
192  * mapping->tree_lock held
193  */
194 static inline void *unlock_slot(struct address_space *mapping, void **slot)
195 {
196         unsigned long entry = (unsigned long)
197                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
198
199         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
200         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
201         return (void *)entry;
202 }
203
204 /*
205  * Lookup entry in radix tree, wait for it to become unlocked if it is
206  * exceptional entry and return it. The caller must call
207  * put_unlocked_mapping_entry() when he decided not to lock the entry or
208  * put_locked_mapping_entry() when he locked the entry and now wants to
209  * unlock it.
210  *
211  * The function must be called with mapping->tree_lock held.
212  */
213 static void *get_unlocked_mapping_entry(struct address_space *mapping,
214                                         pgoff_t index, void ***slotp)
215 {
216         void *entry, **slot;
217         struct wait_exceptional_entry_queue ewait;
218         wait_queue_head_t *wq;
219
220         init_wait(&ewait.wait);
221         ewait.wait.func = wake_exceptional_entry_func;
222
223         for (;;) {
224                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
225                                           &slot);
226                 if (!entry || !radix_tree_exceptional_entry(entry) ||
227                     !slot_locked(mapping, slot)) {
228                         if (slotp)
229                                 *slotp = slot;
230                         return entry;
231                 }
232
233                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
234                 prepare_to_wait_exclusive(wq, &ewait.wait,
235                                           TASK_UNINTERRUPTIBLE);
236                 spin_unlock_irq(&mapping->tree_lock);
237                 schedule();
238                 finish_wait(wq, &ewait.wait);
239                 spin_lock_irq(&mapping->tree_lock);
240         }
241 }
242
243 static void put_locked_mapping_entry(struct address_space *mapping,
244                                      pgoff_t index, void *entry)
245 {
246         if (!radix_tree_exceptional_entry(entry)) {
247                 unlock_page(entry);
248                 put_page(entry);
249         } else {
250                 dax_unlock_mapping_entry(mapping, index);
251         }
252 }
253
254 /*
255  * Called when we are done with radix tree entry we looked up via
256  * get_unlocked_mapping_entry() and which we didn't lock in the end.
257  */
258 static void put_unlocked_mapping_entry(struct address_space *mapping,
259                                        pgoff_t index, void *entry)
260 {
261         if (!radix_tree_exceptional_entry(entry))
262                 return;
263
264         /* We have to wake up next waiter for the radix tree entry lock */
265         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
266 }
267
268 /*
269  * Find radix tree entry at given index. If it points to a page, return with
270  * the page locked. If it points to the exceptional entry, return with the
271  * radix tree entry locked. If the radix tree doesn't contain given index,
272  * create empty exceptional entry for the index and return with it locked.
273  *
274  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
275  * either return that locked entry or will return an error.  This error will
276  * happen if there are any 4k entries (either zero pages or DAX entries)
277  * within the 2MiB range that we are requesting.
278  *
279  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
280  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
281  * insertion will fail if it finds any 4k entries already in the tree, and a
282  * 4k insertion will cause an existing 2MiB entry to be unmapped and
283  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
284  * well as 2MiB empty entries.
285  *
286  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
287  * real storage backing them.  We will leave these real 2MiB DAX entries in
288  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
289  *
290  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
291  * persistent memory the benefit is doubtful. We can add that later if we can
292  * show it helps.
293  */
294 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
295                 unsigned long size_flag)
296 {
297         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
298         void *entry, **slot;
299
300 restart:
301         spin_lock_irq(&mapping->tree_lock);
302         entry = get_unlocked_mapping_entry(mapping, index, &slot);
303
304         if (entry) {
305                 if (size_flag & RADIX_DAX_PMD) {
306                         if (!radix_tree_exceptional_entry(entry) ||
307                             dax_is_pte_entry(entry)) {
308                                 put_unlocked_mapping_entry(mapping, index,
309                                                 entry);
310                                 entry = ERR_PTR(-EEXIST);
311                                 goto out_unlock;
312                         }
313                 } else { /* trying to grab a PTE entry */
314                         if (radix_tree_exceptional_entry(entry) &&
315                             dax_is_pmd_entry(entry) &&
316                             (dax_is_zero_entry(entry) ||
317                              dax_is_empty_entry(entry))) {
318                                 pmd_downgrade = true;
319                         }
320                 }
321         }
322
323         /* No entry for given index? Make sure radix tree is big enough. */
324         if (!entry || pmd_downgrade) {
325                 int err;
326
327                 if (pmd_downgrade) {
328                         /*
329                          * Make sure 'entry' remains valid while we drop
330                          * mapping->tree_lock.
331                          */
332                         entry = lock_slot(mapping, slot);
333                 }
334
335                 spin_unlock_irq(&mapping->tree_lock);
336                 /*
337                  * Besides huge zero pages the only other thing that gets
338                  * downgraded are empty entries which don't need to be
339                  * unmapped.
340                  */
341                 if (pmd_downgrade && dax_is_zero_entry(entry))
342                         unmap_mapping_range(mapping,
343                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
344
345                 err = radix_tree_preload(
346                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
347                 if (err) {
348                         if (pmd_downgrade)
349                                 put_locked_mapping_entry(mapping, index, entry);
350                         return ERR_PTR(err);
351                 }
352                 spin_lock_irq(&mapping->tree_lock);
353
354                 if (pmd_downgrade) {
355                         radix_tree_delete(&mapping->page_tree, index);
356                         mapping->nrexceptional--;
357                         dax_wake_mapping_entry_waiter(mapping, index, entry,
358                                         true);
359                 }
360
361                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
362
363                 err = __radix_tree_insert(&mapping->page_tree, index,
364                                 dax_radix_order(entry), entry);
365                 radix_tree_preload_end();
366                 if (err) {
367                         spin_unlock_irq(&mapping->tree_lock);
368                         /*
369                          * Someone already created the entry?  This is a
370                          * normal failure when inserting PMDs in a range
371                          * that already contains PTEs.  In that case we want
372                          * to return -EEXIST immediately.
373                          */
374                         if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
375                                 goto restart;
376                         /*
377                          * Our insertion of a DAX PMD entry failed, most
378                          * likely because it collided with a PTE sized entry
379                          * at a different index in the PMD range.  We haven't
380                          * inserted anything into the radix tree and have no
381                          * waiters to wake.
382                          */
383                         return ERR_PTR(err);
384                 }
385                 /* Good, we have inserted empty locked entry into the tree. */
386                 mapping->nrexceptional++;
387                 spin_unlock_irq(&mapping->tree_lock);
388                 return entry;
389         }
390         /* Normal page in radix tree? */
391         if (!radix_tree_exceptional_entry(entry)) {
392                 struct page *page = entry;
393
394                 get_page(page);
395                 spin_unlock_irq(&mapping->tree_lock);
396                 lock_page(page);
397                 /* Page got truncated? Retry... */
398                 if (unlikely(page->mapping != mapping)) {
399                         unlock_page(page);
400                         put_page(page);
401                         goto restart;
402                 }
403                 return page;
404         }
405         entry = lock_slot(mapping, slot);
406  out_unlock:
407         spin_unlock_irq(&mapping->tree_lock);
408         return entry;
409 }
410
411 /*
412  * We do not necessarily hold the mapping->tree_lock when we call this
413  * function so it is possible that 'entry' is no longer a valid item in the
414  * radix tree.  This is okay because all we really need to do is to find the
415  * correct waitqueue where tasks might be waiting for that old 'entry' and
416  * wake them.
417  */
418 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
419                 pgoff_t index, void *entry, bool wake_all)
420 {
421         struct exceptional_entry_key key;
422         wait_queue_head_t *wq;
423
424         wq = dax_entry_waitqueue(mapping, index, entry, &key);
425
426         /*
427          * Checking for locked entry and prepare_to_wait_exclusive() happens
428          * under mapping->tree_lock, ditto for entry handling in our callers.
429          * So at this point all tasks that could have seen our entry locked
430          * must be in the waitqueue and the following check will see them.
431          */
432         if (waitqueue_active(wq))
433                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
434 }
435
436 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
437 {
438         void *entry, **slot;
439
440         spin_lock_irq(&mapping->tree_lock);
441         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
442         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
443                          !slot_locked(mapping, slot))) {
444                 spin_unlock_irq(&mapping->tree_lock);
445                 return;
446         }
447         unlock_slot(mapping, slot);
448         spin_unlock_irq(&mapping->tree_lock);
449         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
450 }
451
452 /*
453  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
454  * entry to get unlocked before deleting it.
455  */
456 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
457 {
458         void *entry;
459
460         spin_lock_irq(&mapping->tree_lock);
461         entry = get_unlocked_mapping_entry(mapping, index, NULL);
462         /*
463          * This gets called from truncate / punch_hole path. As such, the caller
464          * must hold locks protecting against concurrent modifications of the
465          * radix tree (usually fs-private i_mmap_sem for writing). Since the
466          * caller has seen exceptional entry for this index, we better find it
467          * at that index as well...
468          */
469         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
470                 spin_unlock_irq(&mapping->tree_lock);
471                 return 0;
472         }
473         radix_tree_delete(&mapping->page_tree, index);
474         mapping->nrexceptional--;
475         spin_unlock_irq(&mapping->tree_lock);
476         dax_wake_mapping_entry_waiter(mapping, index, entry, true);
477
478         return 1;
479 }
480
481 /*
482  * The user has performed a load from a hole in the file.  Allocating
483  * a new page in the file would cause excessive storage usage for
484  * workloads with sparse files.  We allocate a page cache page instead.
485  * We'll kick it out of the page cache if it's ever written to,
486  * otherwise it will simply fall out of the page cache under memory
487  * pressure without ever having been dirtied.
488  */
489 static int dax_load_hole(struct address_space *mapping, void *entry,
490                          struct vm_fault *vmf)
491 {
492         struct page *page;
493
494         /* Hole page already exists? Return it...  */
495         if (!radix_tree_exceptional_entry(entry)) {
496                 vmf->page = entry;
497                 return VM_FAULT_LOCKED;
498         }
499
500         /* This will replace locked radix tree entry with a hole page */
501         page = find_or_create_page(mapping, vmf->pgoff,
502                                    vmf->gfp_mask | __GFP_ZERO);
503         if (!page) {
504                 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
505                 return VM_FAULT_OOM;
506         }
507         vmf->page = page;
508         return VM_FAULT_LOCKED;
509 }
510
511 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
512                 struct page *to, unsigned long vaddr)
513 {
514         struct blk_dax_ctl dax = {
515                 .sector = sector,
516                 .size = size,
517         };
518         void *vto;
519
520         if (dax_map_atomic(bdev, &dax) < 0)
521                 return PTR_ERR(dax.addr);
522         vto = kmap_atomic(to);
523         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
524         kunmap_atomic(vto);
525         dax_unmap_atomic(bdev, &dax);
526         return 0;
527 }
528
529 /*
530  * By this point grab_mapping_entry() has ensured that we have a locked entry
531  * of the appropriate size so we don't have to worry about downgrading PMDs to
532  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
533  * already in the tree, we will skip the insertion and just dirty the PMD as
534  * appropriate.
535  */
536 static void *dax_insert_mapping_entry(struct address_space *mapping,
537                                       struct vm_fault *vmf,
538                                       void *entry, sector_t sector,
539                                       unsigned long flags)
540 {
541         struct radix_tree_root *page_tree = &mapping->page_tree;
542         int error = 0;
543         bool hole_fill = false;
544         void *new_entry;
545         pgoff_t index = vmf->pgoff;
546
547         if (vmf->flags & FAULT_FLAG_WRITE)
548                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
549
550         /* Replacing hole page with block mapping? */
551         if (!radix_tree_exceptional_entry(entry)) {
552                 hole_fill = true;
553                 /*
554                  * Unmap the page now before we remove it from page cache below.
555                  * The page is locked so it cannot be faulted in again.
556                  */
557                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
558                                     PAGE_SIZE, 0);
559                 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
560                 if (error)
561                         return ERR_PTR(error);
562         } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
563                 /* replacing huge zero page with PMD block mapping */
564                 unmap_mapping_range(mapping,
565                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
566         }
567
568         spin_lock_irq(&mapping->tree_lock);
569         new_entry = dax_radix_locked_entry(sector, flags);
570
571         if (hole_fill) {
572                 __delete_from_page_cache(entry, NULL);
573                 /* Drop pagecache reference */
574                 put_page(entry);
575                 error = __radix_tree_insert(page_tree, index,
576                                 dax_radix_order(new_entry), new_entry);
577                 if (error) {
578                         new_entry = ERR_PTR(error);
579                         goto unlock;
580                 }
581                 mapping->nrexceptional++;
582         } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
583                 /*
584                  * Only swap our new entry into the radix tree if the current
585                  * entry is a zero page or an empty entry.  If a normal PTE or
586                  * PMD entry is already in the tree, we leave it alone.  This
587                  * means that if we are trying to insert a PTE and the
588                  * existing entry is a PMD, we will just leave the PMD in the
589                  * tree and dirty it if necessary.
590                  */
591                 struct radix_tree_node *node;
592                 void **slot;
593                 void *ret;
594
595                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
596                 WARN_ON_ONCE(ret != entry);
597                 __radix_tree_replace(page_tree, node, slot,
598                                      new_entry, NULL, NULL);
599         }
600         if (vmf->flags & FAULT_FLAG_WRITE)
601                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
602  unlock:
603         spin_unlock_irq(&mapping->tree_lock);
604         if (hole_fill) {
605                 radix_tree_preload_end();
606                 /*
607                  * We don't need hole page anymore, it has been replaced with
608                  * locked radix tree entry now.
609                  */
610                 if (mapping->a_ops->freepage)
611                         mapping->a_ops->freepage(entry);
612                 unlock_page(entry);
613                 put_page(entry);
614         }
615         return new_entry;
616 }
617
618 static int dax_writeback_one(struct block_device *bdev,
619                 struct address_space *mapping, pgoff_t index, void *entry)
620 {
621         struct radix_tree_root *page_tree = &mapping->page_tree;
622         struct radix_tree_node *node;
623         struct blk_dax_ctl dax;
624         void **slot;
625         int ret = 0;
626
627         spin_lock_irq(&mapping->tree_lock);
628         /*
629          * Regular page slots are stabilized by the page lock even
630          * without the tree itself locked.  These unlocked entries
631          * need verification under the tree lock.
632          */
633         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
634                 goto unlock;
635         if (*slot != entry)
636                 goto unlock;
637
638         /* another fsync thread may have already written back this entry */
639         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
640                 goto unlock;
641
642         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
643                                 dax_is_zero_entry(entry))) {
644                 ret = -EIO;
645                 goto unlock;
646         }
647
648         /*
649          * Even if dax_writeback_mapping_range() was given a wbc->range_start
650          * in the middle of a PMD, the 'index' we are given will be aligned to
651          * the start index of the PMD, as will the sector we pull from
652          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
653          * worry about partial PMD writebacks.
654          */
655         dax.sector = dax_radix_sector(entry);
656         dax.size = PAGE_SIZE << dax_radix_order(entry);
657         spin_unlock_irq(&mapping->tree_lock);
658
659         /*
660          * We cannot hold tree_lock while calling dax_map_atomic() because it
661          * eventually calls cond_resched().
662          */
663         ret = dax_map_atomic(bdev, &dax);
664         if (ret < 0)
665                 return ret;
666
667         if (WARN_ON_ONCE(ret < dax.size)) {
668                 ret = -EIO;
669                 goto unmap;
670         }
671
672         wb_cache_pmem(dax.addr, dax.size);
673
674         spin_lock_irq(&mapping->tree_lock);
675         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
676         spin_unlock_irq(&mapping->tree_lock);
677  unmap:
678         dax_unmap_atomic(bdev, &dax);
679         return ret;
680
681  unlock:
682         spin_unlock_irq(&mapping->tree_lock);
683         return ret;
684 }
685
686 /*
687  * Flush the mapping to the persistent domain within the byte range of [start,
688  * end]. This is required by data integrity operations to ensure file data is
689  * on persistent storage prior to completion of the operation.
690  */
691 int dax_writeback_mapping_range(struct address_space *mapping,
692                 struct block_device *bdev, struct writeback_control *wbc)
693 {
694         struct inode *inode = mapping->host;
695         pgoff_t start_index, end_index;
696         pgoff_t indices[PAGEVEC_SIZE];
697         struct pagevec pvec;
698         bool done = false;
699         int i, ret = 0;
700
701         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
702                 return -EIO;
703
704         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
705                 return 0;
706
707         start_index = wbc->range_start >> PAGE_SHIFT;
708         end_index = wbc->range_end >> PAGE_SHIFT;
709
710         tag_pages_for_writeback(mapping, start_index, end_index);
711
712         pagevec_init(&pvec, 0);
713         while (!done) {
714                 pvec.nr = find_get_entries_tag(mapping, start_index,
715                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
716                                 pvec.pages, indices);
717
718                 if (pvec.nr == 0)
719                         break;
720
721                 for (i = 0; i < pvec.nr; i++) {
722                         if (indices[i] > end_index) {
723                                 done = true;
724                                 break;
725                         }
726
727                         ret = dax_writeback_one(bdev, mapping, indices[i],
728                                         pvec.pages[i]);
729                         if (ret < 0)
730                                 return ret;
731                 }
732         }
733         return 0;
734 }
735 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
736
737 static int dax_insert_mapping(struct address_space *mapping,
738                 struct block_device *bdev, sector_t sector, size_t size,
739                 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
740 {
741         unsigned long vaddr = (unsigned long)vmf->virtual_address;
742         struct blk_dax_ctl dax = {
743                 .sector = sector,
744                 .size = size,
745         };
746         void *ret;
747         void *entry = *entryp;
748
749         if (dax_map_atomic(bdev, &dax) < 0)
750                 return PTR_ERR(dax.addr);
751         dax_unmap_atomic(bdev, &dax);
752
753         ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
754         if (IS_ERR(ret))
755                 return PTR_ERR(ret);
756         *entryp = ret;
757
758         return vm_insert_mixed(vma, vaddr, dax.pfn);
759 }
760
761 /**
762  * dax_pfn_mkwrite - handle first write to DAX page
763  * @vma: The virtual memory area where the fault occurred
764  * @vmf: The description of the fault
765  */
766 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
767 {
768         struct file *file = vma->vm_file;
769         struct address_space *mapping = file->f_mapping;
770         void *entry;
771         pgoff_t index = vmf->pgoff;
772
773         spin_lock_irq(&mapping->tree_lock);
774         entry = get_unlocked_mapping_entry(mapping, index, NULL);
775         if (!entry || !radix_tree_exceptional_entry(entry))
776                 goto out;
777         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
778         put_unlocked_mapping_entry(mapping, index, entry);
779 out:
780         spin_unlock_irq(&mapping->tree_lock);
781         return VM_FAULT_NOPAGE;
782 }
783 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
784
785 static bool dax_range_is_aligned(struct block_device *bdev,
786                                  unsigned int offset, unsigned int length)
787 {
788         unsigned short sector_size = bdev_logical_block_size(bdev);
789
790         if (!IS_ALIGNED(offset, sector_size))
791                 return false;
792         if (!IS_ALIGNED(length, sector_size))
793                 return false;
794
795         return true;
796 }
797
798 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
799                 unsigned int offset, unsigned int length)
800 {
801         struct blk_dax_ctl dax = {
802                 .sector         = sector,
803                 .size           = PAGE_SIZE,
804         };
805
806         if (dax_range_is_aligned(bdev, offset, length)) {
807                 sector_t start_sector = dax.sector + (offset >> 9);
808
809                 return blkdev_issue_zeroout(bdev, start_sector,
810                                 length >> 9, GFP_NOFS, true);
811         } else {
812                 if (dax_map_atomic(bdev, &dax) < 0)
813                         return PTR_ERR(dax.addr);
814                 clear_pmem(dax.addr + offset, length);
815                 dax_unmap_atomic(bdev, &dax);
816         }
817         return 0;
818 }
819 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
820
821 #ifdef CONFIG_FS_IOMAP
822 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
823 {
824         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
825 }
826
827 static loff_t
828 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
829                 struct iomap *iomap)
830 {
831         struct iov_iter *iter = data;
832         loff_t end = pos + length, done = 0;
833         ssize_t ret = 0;
834
835         if (iov_iter_rw(iter) == READ) {
836                 end = min(end, i_size_read(inode));
837                 if (pos >= end)
838                         return 0;
839
840                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
841                         return iov_iter_zero(min(length, end - pos), iter);
842         }
843
844         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
845                 return -EIO;
846
847         while (pos < end) {
848                 unsigned offset = pos & (PAGE_SIZE - 1);
849                 struct blk_dax_ctl dax = { 0 };
850                 ssize_t map_len;
851
852                 dax.sector = dax_iomap_sector(iomap, pos);
853                 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
854                 map_len = dax_map_atomic(iomap->bdev, &dax);
855                 if (map_len < 0) {
856                         ret = map_len;
857                         break;
858                 }
859
860                 dax.addr += offset;
861                 map_len -= offset;
862                 if (map_len > end - pos)
863                         map_len = end - pos;
864
865                 if (iov_iter_rw(iter) == WRITE)
866                         map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
867                 else
868                         map_len = copy_to_iter(dax.addr, map_len, iter);
869                 dax_unmap_atomic(iomap->bdev, &dax);
870                 if (map_len <= 0) {
871                         ret = map_len ? map_len : -EFAULT;
872                         break;
873                 }
874
875                 pos += map_len;
876                 length -= map_len;
877                 done += map_len;
878         }
879
880         return done ? done : ret;
881 }
882
883 /**
884  * dax_iomap_rw - Perform I/O to a DAX file
885  * @iocb:       The control block for this I/O
886  * @iter:       The addresses to do I/O from or to
887  * @ops:        iomap ops passed from the file system
888  *
889  * This function performs read and write operations to directly mapped
890  * persistent memory.  The callers needs to take care of read/write exclusion
891  * and evicting any page cache pages in the region under I/O.
892  */
893 ssize_t
894 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
895                 struct iomap_ops *ops)
896 {
897         struct address_space *mapping = iocb->ki_filp->f_mapping;
898         struct inode *inode = mapping->host;
899         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
900         unsigned flags = 0;
901
902         if (iov_iter_rw(iter) == WRITE)
903                 flags |= IOMAP_WRITE;
904
905         /*
906          * Yes, even DAX files can have page cache attached to them:  A zeroed
907          * page is inserted into the pagecache when we have to serve a write
908          * fault on a hole.  It should never be dirtied and can simply be
909          * dropped from the pagecache once we get real data for the page.
910          *
911          * XXX: This is racy against mmap, and there's nothing we can do about
912          * it. We'll eventually need to shift this down even further so that
913          * we can check if we allocated blocks over a hole first.
914          */
915         if (mapping->nrpages) {
916                 ret = invalidate_inode_pages2_range(mapping,
917                                 pos >> PAGE_SHIFT,
918                                 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
919                 WARN_ON_ONCE(ret);
920         }
921
922         while (iov_iter_count(iter)) {
923                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
924                                 iter, dax_iomap_actor);
925                 if (ret <= 0)
926                         break;
927                 pos += ret;
928                 done += ret;
929         }
930
931         iocb->ki_pos += done;
932         return done ? done : ret;
933 }
934 EXPORT_SYMBOL_GPL(dax_iomap_rw);
935
936 /**
937  * dax_iomap_fault - handle a page fault on a DAX file
938  * @vma: The virtual memory area where the fault occurred
939  * @vmf: The description of the fault
940  * @ops: iomap ops passed from the file system
941  *
942  * When a page fault occurs, filesystems may call this helper in their fault
943  * or mkwrite handler for DAX files. Assumes the caller has done all the
944  * necessary locking for the page fault to proceed successfully.
945  */
946 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
947                         struct iomap_ops *ops)
948 {
949         struct address_space *mapping = vma->vm_file->f_mapping;
950         struct inode *inode = mapping->host;
951         unsigned long vaddr = (unsigned long)vmf->virtual_address;
952         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
953         sector_t sector;
954         struct iomap iomap = { 0 };
955         unsigned flags = IOMAP_FAULT;
956         int error, major = 0;
957         int locked_status = 0;
958         void *entry;
959
960         /*
961          * Check whether offset isn't beyond end of file now. Caller is supposed
962          * to hold locks serializing us with truncate / punch hole so this is
963          * a reliable test.
964          */
965         if (pos >= i_size_read(inode))
966                 return VM_FAULT_SIGBUS;
967
968         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
969         if (IS_ERR(entry)) {
970                 error = PTR_ERR(entry);
971                 goto out;
972         }
973
974         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
975                 flags |= IOMAP_WRITE;
976
977         /*
978          * Note that we don't bother to use iomap_apply here: DAX required
979          * the file system block size to be equal the page size, which means
980          * that we never have to deal with more than a single extent here.
981          */
982         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
983         if (error)
984                 goto unlock_entry;
985         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
986                 error = -EIO;           /* fs corruption? */
987                 goto finish_iomap;
988         }
989
990         sector = dax_iomap_sector(&iomap, pos);
991
992         if (vmf->cow_page) {
993                 switch (iomap.type) {
994                 case IOMAP_HOLE:
995                 case IOMAP_UNWRITTEN:
996                         clear_user_highpage(vmf->cow_page, vaddr);
997                         break;
998                 case IOMAP_MAPPED:
999                         error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1000                                         vmf->cow_page, vaddr);
1001                         break;
1002                 default:
1003                         WARN_ON_ONCE(1);
1004                         error = -EIO;
1005                         break;
1006                 }
1007
1008                 if (error)
1009                         goto finish_iomap;
1010                 if (!radix_tree_exceptional_entry(entry)) {
1011                         vmf->page = entry;
1012                         locked_status = VM_FAULT_LOCKED;
1013                 } else {
1014                         vmf->entry = entry;
1015                         locked_status = VM_FAULT_DAX_LOCKED;
1016                 }
1017                 goto finish_iomap;
1018         }
1019
1020         switch (iomap.type) {
1021         case IOMAP_MAPPED:
1022                 if (iomap.flags & IOMAP_F_NEW) {
1023                         count_vm_event(PGMAJFAULT);
1024                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1025                         major = VM_FAULT_MAJOR;
1026                 }
1027                 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1028                                 PAGE_SIZE, &entry, vma, vmf);
1029                 break;
1030         case IOMAP_UNWRITTEN:
1031         case IOMAP_HOLE:
1032                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1033                         locked_status = dax_load_hole(mapping, entry, vmf);
1034                         break;
1035                 }
1036                 /*FALLTHRU*/
1037         default:
1038                 WARN_ON_ONCE(1);
1039                 error = -EIO;
1040                 break;
1041         }
1042
1043  finish_iomap:
1044         if (ops->iomap_end) {
1045                 if (error) {
1046                         /* keep previous error */
1047                         ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1048                                         &iomap);
1049                 } else {
1050                         error = ops->iomap_end(inode, pos, PAGE_SIZE,
1051                                         PAGE_SIZE, flags, &iomap);
1052                 }
1053         }
1054  unlock_entry:
1055         if (!locked_status || error)
1056                 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1057  out:
1058         if (error == -ENOMEM)
1059                 return VM_FAULT_OOM | major;
1060         /* -EBUSY is fine, somebody else faulted on the same PTE */
1061         if (error < 0 && error != -EBUSY)
1062                 return VM_FAULT_SIGBUS | major;
1063         if (locked_status) {
1064                 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1065                 return locked_status;
1066         }
1067         return VM_FAULT_NOPAGE | major;
1068 }
1069 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1070
1071 #ifdef CONFIG_FS_DAX_PMD
1072 /*
1073  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1074  * more often than one might expect in the below functions.
1075  */
1076 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1077
1078 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1079                 struct vm_fault *vmf, unsigned long address,
1080                 struct iomap *iomap, loff_t pos, bool write, void **entryp)
1081 {
1082         struct address_space *mapping = vma->vm_file->f_mapping;
1083         struct block_device *bdev = iomap->bdev;
1084         struct blk_dax_ctl dax = {
1085                 .sector = dax_iomap_sector(iomap, pos),
1086                 .size = PMD_SIZE,
1087         };
1088         long length = dax_map_atomic(bdev, &dax);
1089         void *ret;
1090
1091         if (length < 0) /* dax_map_atomic() failed */
1092                 return VM_FAULT_FALLBACK;
1093         if (length < PMD_SIZE)
1094                 goto unmap_fallback;
1095         if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1096                 goto unmap_fallback;
1097         if (!pfn_t_devmap(dax.pfn))
1098                 goto unmap_fallback;
1099
1100         dax_unmap_atomic(bdev, &dax);
1101
1102         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1103                         RADIX_DAX_PMD);
1104         if (IS_ERR(ret))
1105                 return VM_FAULT_FALLBACK;
1106         *entryp = ret;
1107
1108         return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1109
1110  unmap_fallback:
1111         dax_unmap_atomic(bdev, &dax);
1112         return VM_FAULT_FALLBACK;
1113 }
1114
1115 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1116                 struct vm_fault *vmf, unsigned long address,
1117                 struct iomap *iomap, void **entryp)
1118 {
1119         struct address_space *mapping = vma->vm_file->f_mapping;
1120         unsigned long pmd_addr = address & PMD_MASK;
1121         struct page *zero_page;
1122         spinlock_t *ptl;
1123         pmd_t pmd_entry;
1124         void *ret;
1125
1126         zero_page = mm_get_huge_zero_page(vma->vm_mm);
1127
1128         if (unlikely(!zero_page))
1129                 return VM_FAULT_FALLBACK;
1130
1131         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1132                         RADIX_DAX_PMD | RADIX_DAX_HZP);
1133         if (IS_ERR(ret))
1134                 return VM_FAULT_FALLBACK;
1135         *entryp = ret;
1136
1137         ptl = pmd_lock(vma->vm_mm, pmd);
1138         if (!pmd_none(*pmd)) {
1139                 spin_unlock(ptl);
1140                 return VM_FAULT_FALLBACK;
1141         }
1142
1143         pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1144         pmd_entry = pmd_mkhuge(pmd_entry);
1145         set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1146         spin_unlock(ptl);
1147         return VM_FAULT_NOPAGE;
1148 }
1149
1150 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1151                 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1152 {
1153         struct address_space *mapping = vma->vm_file->f_mapping;
1154         unsigned long pmd_addr = address & PMD_MASK;
1155         bool write = flags & FAULT_FLAG_WRITE;
1156         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1157         struct inode *inode = mapping->host;
1158         int result = VM_FAULT_FALLBACK;
1159         struct iomap iomap = { 0 };
1160         pgoff_t max_pgoff, pgoff;
1161         struct vm_fault vmf;
1162         void *entry;
1163         loff_t pos;
1164         int error;
1165
1166         /* Fall back to PTEs if we're going to COW */
1167         if (write && !(vma->vm_flags & VM_SHARED))
1168                 goto fallback;
1169
1170         /* If the PMD would extend outside the VMA */
1171         if (pmd_addr < vma->vm_start)
1172                 goto fallback;
1173         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1174                 goto fallback;
1175
1176         /*
1177          * Check whether offset isn't beyond end of file now. Caller is
1178          * supposed to hold locks serializing us with truncate / punch hole so
1179          * this is a reliable test.
1180          */
1181         pgoff = linear_page_index(vma, pmd_addr);
1182         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1183
1184         if (pgoff > max_pgoff)
1185                 return VM_FAULT_SIGBUS;
1186
1187         /* If the PMD would extend beyond the file size */
1188         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1189                 goto fallback;
1190
1191         /*
1192          * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1193          * PMD or a HZP entry.  If it can't (because a 4k page is already in
1194          * the tree, for instance), it will return -EEXIST and we just fall
1195          * back to 4k entries.
1196          */
1197         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1198         if (IS_ERR(entry))
1199                 goto fallback;
1200
1201         /*
1202          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1203          * setting up a mapping, so really we're using iomap_begin() as a way
1204          * to look up our filesystem block.
1205          */
1206         pos = (loff_t)pgoff << PAGE_SHIFT;
1207         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1208         if (error)
1209                 goto unlock_entry;
1210         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1211                 goto finish_iomap;
1212
1213         vmf.pgoff = pgoff;
1214         vmf.flags = flags;
1215         vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1216
1217         switch (iomap.type) {
1218         case IOMAP_MAPPED:
1219                 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1220                                 &iomap, pos, write, &entry);
1221                 break;
1222         case IOMAP_UNWRITTEN:
1223         case IOMAP_HOLE:
1224                 if (WARN_ON_ONCE(write))
1225                         goto finish_iomap;
1226                 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1227                                 &entry);
1228                 break;
1229         default:
1230                 WARN_ON_ONCE(1);
1231                 break;
1232         }
1233
1234  finish_iomap:
1235         if (ops->iomap_end) {
1236                 if (result == VM_FAULT_FALLBACK) {
1237                         ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1238                                         &iomap);
1239                 } else {
1240                         error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1241                                         iomap_flags, &iomap);
1242                         if (error)
1243                                 result = VM_FAULT_FALLBACK;
1244                 }
1245         }
1246  unlock_entry:
1247         put_locked_mapping_entry(mapping, pgoff, entry);
1248  fallback:
1249         if (result == VM_FAULT_FALLBACK) {
1250                 split_huge_pmd(vma, pmd, address);
1251                 count_vm_event(THP_FAULT_FALLBACK);
1252         }
1253         return result;
1254 }
1255 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1256 #endif /* CONFIG_FS_DAX_PMD */
1257 #endif /* CONFIG_FS_IOMAP */