]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/dax.c
dax: make cache flushing protected by entry lock
[linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/iomap.h>
35 #include "internal.h"
36
37 /* We choose 4096 entries - same as per-zone page wait tables */
38 #define DAX_WAIT_TABLE_BITS 12
39 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
40
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
42
43 static int __init init_dax_wait_table(void)
44 {
45         int i;
46
47         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48                 init_waitqueue_head(wait_table + i);
49         return 0;
50 }
51 fs_initcall(init_dax_wait_table);
52
53 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
54 {
55         struct request_queue *q = bdev->bd_queue;
56         long rc = -EIO;
57
58         dax->addr = ERR_PTR(-EIO);
59         if (blk_queue_enter(q, true) != 0)
60                 return rc;
61
62         rc = bdev_direct_access(bdev, dax);
63         if (rc < 0) {
64                 dax->addr = ERR_PTR(rc);
65                 blk_queue_exit(q);
66                 return rc;
67         }
68         return rc;
69 }
70
71 static void dax_unmap_atomic(struct block_device *bdev,
72                 const struct blk_dax_ctl *dax)
73 {
74         if (IS_ERR(dax->addr))
75                 return;
76         blk_queue_exit(bdev->bd_queue);
77 }
78
79 static int dax_is_pmd_entry(void *entry)
80 {
81         return (unsigned long)entry & RADIX_DAX_PMD;
82 }
83
84 static int dax_is_pte_entry(void *entry)
85 {
86         return !((unsigned long)entry & RADIX_DAX_PMD);
87 }
88
89 static int dax_is_zero_entry(void *entry)
90 {
91         return (unsigned long)entry & RADIX_DAX_HZP;
92 }
93
94 static int dax_is_empty_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_EMPTY;
97 }
98
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101         struct page *page = alloc_pages(GFP_KERNEL, 0);
102         struct blk_dax_ctl dax = {
103                 .size = PAGE_SIZE,
104                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105         };
106         long rc;
107
108         if (!page)
109                 return ERR_PTR(-ENOMEM);
110
111         rc = dax_map_atomic(bdev, &dax);
112         if (rc < 0)
113                 return ERR_PTR(rc);
114         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115         dax_unmap_atomic(bdev, &dax);
116         return page;
117 }
118
119 /*
120  * DAX radix tree locking
121  */
122 struct exceptional_entry_key {
123         struct address_space *mapping;
124         pgoff_t entry_start;
125 };
126
127 struct wait_exceptional_entry_queue {
128         wait_queue_t wait;
129         struct exceptional_entry_key key;
130 };
131
132 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
133                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
134 {
135         unsigned long hash;
136
137         /*
138          * If 'entry' is a PMD, align the 'index' that we use for the wait
139          * queue to the start of that PMD.  This ensures that all offsets in
140          * the range covered by the PMD map to the same bit lock.
141          */
142         if (dax_is_pmd_entry(entry))
143                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
144
145         key->mapping = mapping;
146         key->entry_start = index;
147
148         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
149         return wait_table + hash;
150 }
151
152 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
153                                        int sync, void *keyp)
154 {
155         struct exceptional_entry_key *key = keyp;
156         struct wait_exceptional_entry_queue *ewait =
157                 container_of(wait, struct wait_exceptional_entry_queue, wait);
158
159         if (key->mapping != ewait->key.mapping ||
160             key->entry_start != ewait->key.entry_start)
161                 return 0;
162         return autoremove_wake_function(wait, mode, sync, NULL);
163 }
164
165 /*
166  * Check whether the given slot is locked. The function must be called with
167  * mapping->tree_lock held
168  */
169 static inline int slot_locked(struct address_space *mapping, void **slot)
170 {
171         unsigned long entry = (unsigned long)
172                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
173         return entry & RADIX_DAX_ENTRY_LOCK;
174 }
175
176 /*
177  * Mark the given slot is locked. The function must be called with
178  * mapping->tree_lock held
179  */
180 static inline void *lock_slot(struct address_space *mapping, void **slot)
181 {
182         unsigned long entry = (unsigned long)
183                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
184
185         entry |= RADIX_DAX_ENTRY_LOCK;
186         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
187         return (void *)entry;
188 }
189
190 /*
191  * Mark the given slot is unlocked. The function must be called with
192  * mapping->tree_lock held
193  */
194 static inline void *unlock_slot(struct address_space *mapping, void **slot)
195 {
196         unsigned long entry = (unsigned long)
197                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
198
199         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
200         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
201         return (void *)entry;
202 }
203
204 /*
205  * Lookup entry in radix tree, wait for it to become unlocked if it is
206  * exceptional entry and return it. The caller must call
207  * put_unlocked_mapping_entry() when he decided not to lock the entry or
208  * put_locked_mapping_entry() when he locked the entry and now wants to
209  * unlock it.
210  *
211  * The function must be called with mapping->tree_lock held.
212  */
213 static void *get_unlocked_mapping_entry(struct address_space *mapping,
214                                         pgoff_t index, void ***slotp)
215 {
216         void *entry, **slot;
217         struct wait_exceptional_entry_queue ewait;
218         wait_queue_head_t *wq;
219
220         init_wait(&ewait.wait);
221         ewait.wait.func = wake_exceptional_entry_func;
222
223         for (;;) {
224                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
225                                           &slot);
226                 if (!entry || !radix_tree_exceptional_entry(entry) ||
227                     !slot_locked(mapping, slot)) {
228                         if (slotp)
229                                 *slotp = slot;
230                         return entry;
231                 }
232
233                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
234                 prepare_to_wait_exclusive(wq, &ewait.wait,
235                                           TASK_UNINTERRUPTIBLE);
236                 spin_unlock_irq(&mapping->tree_lock);
237                 schedule();
238                 finish_wait(wq, &ewait.wait);
239                 spin_lock_irq(&mapping->tree_lock);
240         }
241 }
242
243 static void dax_unlock_mapping_entry(struct address_space *mapping,
244                                      pgoff_t index)
245 {
246         void *entry, **slot;
247
248         spin_lock_irq(&mapping->tree_lock);
249         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
250         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
251                          !slot_locked(mapping, slot))) {
252                 spin_unlock_irq(&mapping->tree_lock);
253                 return;
254         }
255         unlock_slot(mapping, slot);
256         spin_unlock_irq(&mapping->tree_lock);
257         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
258 }
259
260 static void put_locked_mapping_entry(struct address_space *mapping,
261                                      pgoff_t index, void *entry)
262 {
263         if (!radix_tree_exceptional_entry(entry)) {
264                 unlock_page(entry);
265                 put_page(entry);
266         } else {
267                 dax_unlock_mapping_entry(mapping, index);
268         }
269 }
270
271 /*
272  * Called when we are done with radix tree entry we looked up via
273  * get_unlocked_mapping_entry() and which we didn't lock in the end.
274  */
275 static void put_unlocked_mapping_entry(struct address_space *mapping,
276                                        pgoff_t index, void *entry)
277 {
278         if (!radix_tree_exceptional_entry(entry))
279                 return;
280
281         /* We have to wake up next waiter for the radix tree entry lock */
282         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
283 }
284
285 /*
286  * Find radix tree entry at given index. If it points to a page, return with
287  * the page locked. If it points to the exceptional entry, return with the
288  * radix tree entry locked. If the radix tree doesn't contain given index,
289  * create empty exceptional entry for the index and return with it locked.
290  *
291  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
292  * either return that locked entry or will return an error.  This error will
293  * happen if there are any 4k entries (either zero pages or DAX entries)
294  * within the 2MiB range that we are requesting.
295  *
296  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
297  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
298  * insertion will fail if it finds any 4k entries already in the tree, and a
299  * 4k insertion will cause an existing 2MiB entry to be unmapped and
300  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
301  * well as 2MiB empty entries.
302  *
303  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
304  * real storage backing them.  We will leave these real 2MiB DAX entries in
305  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
306  *
307  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
308  * persistent memory the benefit is doubtful. We can add that later if we can
309  * show it helps.
310  */
311 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
312                 unsigned long size_flag)
313 {
314         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
315         void *entry, **slot;
316
317 restart:
318         spin_lock_irq(&mapping->tree_lock);
319         entry = get_unlocked_mapping_entry(mapping, index, &slot);
320
321         if (entry) {
322                 if (size_flag & RADIX_DAX_PMD) {
323                         if (!radix_tree_exceptional_entry(entry) ||
324                             dax_is_pte_entry(entry)) {
325                                 put_unlocked_mapping_entry(mapping, index,
326                                                 entry);
327                                 entry = ERR_PTR(-EEXIST);
328                                 goto out_unlock;
329                         }
330                 } else { /* trying to grab a PTE entry */
331                         if (radix_tree_exceptional_entry(entry) &&
332                             dax_is_pmd_entry(entry) &&
333                             (dax_is_zero_entry(entry) ||
334                              dax_is_empty_entry(entry))) {
335                                 pmd_downgrade = true;
336                         }
337                 }
338         }
339
340         /* No entry for given index? Make sure radix tree is big enough. */
341         if (!entry || pmd_downgrade) {
342                 int err;
343
344                 if (pmd_downgrade) {
345                         /*
346                          * Make sure 'entry' remains valid while we drop
347                          * mapping->tree_lock.
348                          */
349                         entry = lock_slot(mapping, slot);
350                 }
351
352                 spin_unlock_irq(&mapping->tree_lock);
353                 /*
354                  * Besides huge zero pages the only other thing that gets
355                  * downgraded are empty entries which don't need to be
356                  * unmapped.
357                  */
358                 if (pmd_downgrade && dax_is_zero_entry(entry))
359                         unmap_mapping_range(mapping,
360                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
361
362                 err = radix_tree_preload(
363                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
364                 if (err) {
365                         if (pmd_downgrade)
366                                 put_locked_mapping_entry(mapping, index, entry);
367                         return ERR_PTR(err);
368                 }
369                 spin_lock_irq(&mapping->tree_lock);
370
371                 if (pmd_downgrade) {
372                         radix_tree_delete(&mapping->page_tree, index);
373                         mapping->nrexceptional--;
374                         dax_wake_mapping_entry_waiter(mapping, index, entry,
375                                         true);
376                 }
377
378                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
379
380                 err = __radix_tree_insert(&mapping->page_tree, index,
381                                 dax_radix_order(entry), entry);
382                 radix_tree_preload_end();
383                 if (err) {
384                         spin_unlock_irq(&mapping->tree_lock);
385                         /*
386                          * Someone already created the entry?  This is a
387                          * normal failure when inserting PMDs in a range
388                          * that already contains PTEs.  In that case we want
389                          * to return -EEXIST immediately.
390                          */
391                         if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
392                                 goto restart;
393                         /*
394                          * Our insertion of a DAX PMD entry failed, most
395                          * likely because it collided with a PTE sized entry
396                          * at a different index in the PMD range.  We haven't
397                          * inserted anything into the radix tree and have no
398                          * waiters to wake.
399                          */
400                         return ERR_PTR(err);
401                 }
402                 /* Good, we have inserted empty locked entry into the tree. */
403                 mapping->nrexceptional++;
404                 spin_unlock_irq(&mapping->tree_lock);
405                 return entry;
406         }
407         /* Normal page in radix tree? */
408         if (!radix_tree_exceptional_entry(entry)) {
409                 struct page *page = entry;
410
411                 get_page(page);
412                 spin_unlock_irq(&mapping->tree_lock);
413                 lock_page(page);
414                 /* Page got truncated? Retry... */
415                 if (unlikely(page->mapping != mapping)) {
416                         unlock_page(page);
417                         put_page(page);
418                         goto restart;
419                 }
420                 return page;
421         }
422         entry = lock_slot(mapping, slot);
423  out_unlock:
424         spin_unlock_irq(&mapping->tree_lock);
425         return entry;
426 }
427
428 /*
429  * We do not necessarily hold the mapping->tree_lock when we call this
430  * function so it is possible that 'entry' is no longer a valid item in the
431  * radix tree.  This is okay because all we really need to do is to find the
432  * correct waitqueue where tasks might be waiting for that old 'entry' and
433  * wake them.
434  */
435 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
436                 pgoff_t index, void *entry, bool wake_all)
437 {
438         struct exceptional_entry_key key;
439         wait_queue_head_t *wq;
440
441         wq = dax_entry_waitqueue(mapping, index, entry, &key);
442
443         /*
444          * Checking for locked entry and prepare_to_wait_exclusive() happens
445          * under mapping->tree_lock, ditto for entry handling in our callers.
446          * So at this point all tasks that could have seen our entry locked
447          * must be in the waitqueue and the following check will see them.
448          */
449         if (waitqueue_active(wq))
450                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
451 }
452
453 /*
454  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
455  * entry to get unlocked before deleting it.
456  */
457 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
458 {
459         void *entry;
460
461         spin_lock_irq(&mapping->tree_lock);
462         entry = get_unlocked_mapping_entry(mapping, index, NULL);
463         /*
464          * This gets called from truncate / punch_hole path. As such, the caller
465          * must hold locks protecting against concurrent modifications of the
466          * radix tree (usually fs-private i_mmap_sem for writing). Since the
467          * caller has seen exceptional entry for this index, we better find it
468          * at that index as well...
469          */
470         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
471                 spin_unlock_irq(&mapping->tree_lock);
472                 return 0;
473         }
474         radix_tree_delete(&mapping->page_tree, index);
475         mapping->nrexceptional--;
476         spin_unlock_irq(&mapping->tree_lock);
477         dax_wake_mapping_entry_waiter(mapping, index, entry, true);
478
479         return 1;
480 }
481
482 /*
483  * The user has performed a load from a hole in the file.  Allocating
484  * a new page in the file would cause excessive storage usage for
485  * workloads with sparse files.  We allocate a page cache page instead.
486  * We'll kick it out of the page cache if it's ever written to,
487  * otherwise it will simply fall out of the page cache under memory
488  * pressure without ever having been dirtied.
489  */
490 static int dax_load_hole(struct address_space *mapping, void *entry,
491                          struct vm_fault *vmf)
492 {
493         struct page *page;
494
495         /* Hole page already exists? Return it...  */
496         if (!radix_tree_exceptional_entry(entry)) {
497                 vmf->page = entry;
498                 return VM_FAULT_LOCKED;
499         }
500
501         /* This will replace locked radix tree entry with a hole page */
502         page = find_or_create_page(mapping, vmf->pgoff,
503                                    vmf->gfp_mask | __GFP_ZERO);
504         if (!page)
505                 return VM_FAULT_OOM;
506         vmf->page = page;
507         return VM_FAULT_LOCKED;
508 }
509
510 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
511                 struct page *to, unsigned long vaddr)
512 {
513         struct blk_dax_ctl dax = {
514                 .sector = sector,
515                 .size = size,
516         };
517         void *vto;
518
519         if (dax_map_atomic(bdev, &dax) < 0)
520                 return PTR_ERR(dax.addr);
521         vto = kmap_atomic(to);
522         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
523         kunmap_atomic(vto);
524         dax_unmap_atomic(bdev, &dax);
525         return 0;
526 }
527
528 /*
529  * By this point grab_mapping_entry() has ensured that we have a locked entry
530  * of the appropriate size so we don't have to worry about downgrading PMDs to
531  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
532  * already in the tree, we will skip the insertion and just dirty the PMD as
533  * appropriate.
534  */
535 static void *dax_insert_mapping_entry(struct address_space *mapping,
536                                       struct vm_fault *vmf,
537                                       void *entry, sector_t sector,
538                                       unsigned long flags)
539 {
540         struct radix_tree_root *page_tree = &mapping->page_tree;
541         int error = 0;
542         bool hole_fill = false;
543         void *new_entry;
544         pgoff_t index = vmf->pgoff;
545
546         if (vmf->flags & FAULT_FLAG_WRITE)
547                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
548
549         /* Replacing hole page with block mapping? */
550         if (!radix_tree_exceptional_entry(entry)) {
551                 hole_fill = true;
552                 /*
553                  * Unmap the page now before we remove it from page cache below.
554                  * The page is locked so it cannot be faulted in again.
555                  */
556                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
557                                     PAGE_SIZE, 0);
558                 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
559                 if (error)
560                         return ERR_PTR(error);
561         } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
562                 /* replacing huge zero page with PMD block mapping */
563                 unmap_mapping_range(mapping,
564                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
565         }
566
567         spin_lock_irq(&mapping->tree_lock);
568         new_entry = dax_radix_locked_entry(sector, flags);
569
570         if (hole_fill) {
571                 __delete_from_page_cache(entry, NULL);
572                 /* Drop pagecache reference */
573                 put_page(entry);
574                 error = __radix_tree_insert(page_tree, index,
575                                 dax_radix_order(new_entry), new_entry);
576                 if (error) {
577                         new_entry = ERR_PTR(error);
578                         goto unlock;
579                 }
580                 mapping->nrexceptional++;
581         } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
582                 /*
583                  * Only swap our new entry into the radix tree if the current
584                  * entry is a zero page or an empty entry.  If a normal PTE or
585                  * PMD entry is already in the tree, we leave it alone.  This
586                  * means that if we are trying to insert a PTE and the
587                  * existing entry is a PMD, we will just leave the PMD in the
588                  * tree and dirty it if necessary.
589                  */
590                 struct radix_tree_node *node;
591                 void **slot;
592                 void *ret;
593
594                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
595                 WARN_ON_ONCE(ret != entry);
596                 __radix_tree_replace(page_tree, node, slot,
597                                      new_entry, NULL, NULL);
598         }
599         if (vmf->flags & FAULT_FLAG_WRITE)
600                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
601  unlock:
602         spin_unlock_irq(&mapping->tree_lock);
603         if (hole_fill) {
604                 radix_tree_preload_end();
605                 /*
606                  * We don't need hole page anymore, it has been replaced with
607                  * locked radix tree entry now.
608                  */
609                 if (mapping->a_ops->freepage)
610                         mapping->a_ops->freepage(entry);
611                 unlock_page(entry);
612                 put_page(entry);
613         }
614         return new_entry;
615 }
616
617 static int dax_writeback_one(struct block_device *bdev,
618                 struct address_space *mapping, pgoff_t index, void *entry)
619 {
620         struct radix_tree_root *page_tree = &mapping->page_tree;
621         struct blk_dax_ctl dax;
622         void *entry2, **slot;
623         int ret = 0;
624
625         /*
626          * A page got tagged dirty in DAX mapping? Something is seriously
627          * wrong.
628          */
629         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
630                 return -EIO;
631
632         spin_lock_irq(&mapping->tree_lock);
633         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
634         /* Entry got punched out / reallocated? */
635         if (!entry2 || !radix_tree_exceptional_entry(entry2))
636                 goto put_unlocked;
637         /*
638          * Entry got reallocated elsewhere? No need to writeback. We have to
639          * compare sectors as we must not bail out due to difference in lockbit
640          * or entry type.
641          */
642         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
643                 goto put_unlocked;
644         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
645                                 dax_is_zero_entry(entry))) {
646                 ret = -EIO;
647                 goto put_unlocked;
648         }
649
650         /* Another fsync thread may have already written back this entry */
651         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
652                 goto put_unlocked;
653         /* Lock the entry to serialize with page faults */
654         entry = lock_slot(mapping, slot);
655         /*
656          * We can clear the tag now but we have to be careful so that concurrent
657          * dax_writeback_one() calls for the same index cannot finish before we
658          * actually flush the caches. This is achieved as the calls will look
659          * at the entry only under tree_lock and once they do that they will
660          * see the entry locked and wait for it to unlock.
661          */
662         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
663         spin_unlock_irq(&mapping->tree_lock);
664
665         /*
666          * Even if dax_writeback_mapping_range() was given a wbc->range_start
667          * in the middle of a PMD, the 'index' we are given will be aligned to
668          * the start index of the PMD, as will the sector we pull from
669          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
670          * worry about partial PMD writebacks.
671          */
672         dax.sector = dax_radix_sector(entry);
673         dax.size = PAGE_SIZE << dax_radix_order(entry);
674
675         /*
676          * We cannot hold tree_lock while calling dax_map_atomic() because it
677          * eventually calls cond_resched().
678          */
679         ret = dax_map_atomic(bdev, &dax);
680         if (ret < 0) {
681                 put_locked_mapping_entry(mapping, index, entry);
682                 return ret;
683         }
684
685         if (WARN_ON_ONCE(ret < dax.size)) {
686                 ret = -EIO;
687                 goto unmap;
688         }
689
690         wb_cache_pmem(dax.addr, dax.size);
691  unmap:
692         dax_unmap_atomic(bdev, &dax);
693         put_locked_mapping_entry(mapping, index, entry);
694         return ret;
695
696  put_unlocked:
697         put_unlocked_mapping_entry(mapping, index, entry2);
698         spin_unlock_irq(&mapping->tree_lock);
699         return ret;
700 }
701
702 /*
703  * Flush the mapping to the persistent domain within the byte range of [start,
704  * end]. This is required by data integrity operations to ensure file data is
705  * on persistent storage prior to completion of the operation.
706  */
707 int dax_writeback_mapping_range(struct address_space *mapping,
708                 struct block_device *bdev, struct writeback_control *wbc)
709 {
710         struct inode *inode = mapping->host;
711         pgoff_t start_index, end_index;
712         pgoff_t indices[PAGEVEC_SIZE];
713         struct pagevec pvec;
714         bool done = false;
715         int i, ret = 0;
716
717         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
718                 return -EIO;
719
720         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
721                 return 0;
722
723         start_index = wbc->range_start >> PAGE_SHIFT;
724         end_index = wbc->range_end >> PAGE_SHIFT;
725
726         tag_pages_for_writeback(mapping, start_index, end_index);
727
728         pagevec_init(&pvec, 0);
729         while (!done) {
730                 pvec.nr = find_get_entries_tag(mapping, start_index,
731                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
732                                 pvec.pages, indices);
733
734                 if (pvec.nr == 0)
735                         break;
736
737                 for (i = 0; i < pvec.nr; i++) {
738                         if (indices[i] > end_index) {
739                                 done = true;
740                                 break;
741                         }
742
743                         ret = dax_writeback_one(bdev, mapping, indices[i],
744                                         pvec.pages[i]);
745                         if (ret < 0)
746                                 return ret;
747                 }
748         }
749         return 0;
750 }
751 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
752
753 static int dax_insert_mapping(struct address_space *mapping,
754                 struct block_device *bdev, sector_t sector, size_t size,
755                 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
756 {
757         unsigned long vaddr = vmf->address;
758         struct blk_dax_ctl dax = {
759                 .sector = sector,
760                 .size = size,
761         };
762         void *ret;
763         void *entry = *entryp;
764
765         if (dax_map_atomic(bdev, &dax) < 0)
766                 return PTR_ERR(dax.addr);
767         dax_unmap_atomic(bdev, &dax);
768
769         ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
770         if (IS_ERR(ret))
771                 return PTR_ERR(ret);
772         *entryp = ret;
773
774         return vm_insert_mixed(vma, vaddr, dax.pfn);
775 }
776
777 /**
778  * dax_pfn_mkwrite - handle first write to DAX page
779  * @vma: The virtual memory area where the fault occurred
780  * @vmf: The description of the fault
781  */
782 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
783 {
784         struct file *file = vma->vm_file;
785         struct address_space *mapping = file->f_mapping;
786         void *entry;
787         pgoff_t index = vmf->pgoff;
788
789         spin_lock_irq(&mapping->tree_lock);
790         entry = get_unlocked_mapping_entry(mapping, index, NULL);
791         if (!entry || !radix_tree_exceptional_entry(entry))
792                 goto out;
793         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
794         put_unlocked_mapping_entry(mapping, index, entry);
795 out:
796         spin_unlock_irq(&mapping->tree_lock);
797         return VM_FAULT_NOPAGE;
798 }
799 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
800
801 static bool dax_range_is_aligned(struct block_device *bdev,
802                                  unsigned int offset, unsigned int length)
803 {
804         unsigned short sector_size = bdev_logical_block_size(bdev);
805
806         if (!IS_ALIGNED(offset, sector_size))
807                 return false;
808         if (!IS_ALIGNED(length, sector_size))
809                 return false;
810
811         return true;
812 }
813
814 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
815                 unsigned int offset, unsigned int length)
816 {
817         struct blk_dax_ctl dax = {
818                 .sector         = sector,
819                 .size           = PAGE_SIZE,
820         };
821
822         if (dax_range_is_aligned(bdev, offset, length)) {
823                 sector_t start_sector = dax.sector + (offset >> 9);
824
825                 return blkdev_issue_zeroout(bdev, start_sector,
826                                 length >> 9, GFP_NOFS, true);
827         } else {
828                 if (dax_map_atomic(bdev, &dax) < 0)
829                         return PTR_ERR(dax.addr);
830                 clear_pmem(dax.addr + offset, length);
831                 dax_unmap_atomic(bdev, &dax);
832         }
833         return 0;
834 }
835 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
836
837 #ifdef CONFIG_FS_IOMAP
838 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
839 {
840         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
841 }
842
843 static loff_t
844 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
845                 struct iomap *iomap)
846 {
847         struct iov_iter *iter = data;
848         loff_t end = pos + length, done = 0;
849         ssize_t ret = 0;
850
851         if (iov_iter_rw(iter) == READ) {
852                 end = min(end, i_size_read(inode));
853                 if (pos >= end)
854                         return 0;
855
856                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
857                         return iov_iter_zero(min(length, end - pos), iter);
858         }
859
860         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
861                 return -EIO;
862
863         while (pos < end) {
864                 unsigned offset = pos & (PAGE_SIZE - 1);
865                 struct blk_dax_ctl dax = { 0 };
866                 ssize_t map_len;
867
868                 dax.sector = dax_iomap_sector(iomap, pos);
869                 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
870                 map_len = dax_map_atomic(iomap->bdev, &dax);
871                 if (map_len < 0) {
872                         ret = map_len;
873                         break;
874                 }
875
876                 dax.addr += offset;
877                 map_len -= offset;
878                 if (map_len > end - pos)
879                         map_len = end - pos;
880
881                 if (iov_iter_rw(iter) == WRITE)
882                         map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
883                 else
884                         map_len = copy_to_iter(dax.addr, map_len, iter);
885                 dax_unmap_atomic(iomap->bdev, &dax);
886                 if (map_len <= 0) {
887                         ret = map_len ? map_len : -EFAULT;
888                         break;
889                 }
890
891                 pos += map_len;
892                 length -= map_len;
893                 done += map_len;
894         }
895
896         return done ? done : ret;
897 }
898
899 /**
900  * dax_iomap_rw - Perform I/O to a DAX file
901  * @iocb:       The control block for this I/O
902  * @iter:       The addresses to do I/O from or to
903  * @ops:        iomap ops passed from the file system
904  *
905  * This function performs read and write operations to directly mapped
906  * persistent memory.  The callers needs to take care of read/write exclusion
907  * and evicting any page cache pages in the region under I/O.
908  */
909 ssize_t
910 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
911                 struct iomap_ops *ops)
912 {
913         struct address_space *mapping = iocb->ki_filp->f_mapping;
914         struct inode *inode = mapping->host;
915         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
916         unsigned flags = 0;
917
918         if (iov_iter_rw(iter) == WRITE)
919                 flags |= IOMAP_WRITE;
920
921         /*
922          * Yes, even DAX files can have page cache attached to them:  A zeroed
923          * page is inserted into the pagecache when we have to serve a write
924          * fault on a hole.  It should never be dirtied and can simply be
925          * dropped from the pagecache once we get real data for the page.
926          *
927          * XXX: This is racy against mmap, and there's nothing we can do about
928          * it. We'll eventually need to shift this down even further so that
929          * we can check if we allocated blocks over a hole first.
930          */
931         if (mapping->nrpages) {
932                 ret = invalidate_inode_pages2_range(mapping,
933                                 pos >> PAGE_SHIFT,
934                                 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
935                 WARN_ON_ONCE(ret);
936         }
937
938         while (iov_iter_count(iter)) {
939                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
940                                 iter, dax_iomap_actor);
941                 if (ret <= 0)
942                         break;
943                 pos += ret;
944                 done += ret;
945         }
946
947         iocb->ki_pos += done;
948         return done ? done : ret;
949 }
950 EXPORT_SYMBOL_GPL(dax_iomap_rw);
951
952 /**
953  * dax_iomap_fault - handle a page fault on a DAX file
954  * @vma: The virtual memory area where the fault occurred
955  * @vmf: The description of the fault
956  * @ops: iomap ops passed from the file system
957  *
958  * When a page fault occurs, filesystems may call this helper in their fault
959  * or mkwrite handler for DAX files. Assumes the caller has done all the
960  * necessary locking for the page fault to proceed successfully.
961  */
962 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
963                         struct iomap_ops *ops)
964 {
965         struct address_space *mapping = vma->vm_file->f_mapping;
966         struct inode *inode = mapping->host;
967         unsigned long vaddr = vmf->address;
968         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
969         sector_t sector;
970         struct iomap iomap = { 0 };
971         unsigned flags = IOMAP_FAULT;
972         int error, major = 0;
973         int vmf_ret = 0;
974         void *entry;
975
976         /*
977          * Check whether offset isn't beyond end of file now. Caller is supposed
978          * to hold locks serializing us with truncate / punch hole so this is
979          * a reliable test.
980          */
981         if (pos >= i_size_read(inode))
982                 return VM_FAULT_SIGBUS;
983
984         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
985         if (IS_ERR(entry)) {
986                 error = PTR_ERR(entry);
987                 goto out;
988         }
989
990         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
991                 flags |= IOMAP_WRITE;
992
993         /*
994          * Note that we don't bother to use iomap_apply here: DAX required
995          * the file system block size to be equal the page size, which means
996          * that we never have to deal with more than a single extent here.
997          */
998         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
999         if (error)
1000                 goto unlock_entry;
1001         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1002                 error = -EIO;           /* fs corruption? */
1003                 goto finish_iomap;
1004         }
1005
1006         sector = dax_iomap_sector(&iomap, pos);
1007
1008         if (vmf->cow_page) {
1009                 switch (iomap.type) {
1010                 case IOMAP_HOLE:
1011                 case IOMAP_UNWRITTEN:
1012                         clear_user_highpage(vmf->cow_page, vaddr);
1013                         break;
1014                 case IOMAP_MAPPED:
1015                         error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1016                                         vmf->cow_page, vaddr);
1017                         break;
1018                 default:
1019                         WARN_ON_ONCE(1);
1020                         error = -EIO;
1021                         break;
1022                 }
1023
1024                 if (error)
1025                         goto finish_iomap;
1026
1027                 __SetPageUptodate(vmf->cow_page);
1028                 vmf_ret = finish_fault(vmf);
1029                 if (!vmf_ret)
1030                         vmf_ret = VM_FAULT_DONE_COW;
1031                 goto finish_iomap;
1032         }
1033
1034         switch (iomap.type) {
1035         case IOMAP_MAPPED:
1036                 if (iomap.flags & IOMAP_F_NEW) {
1037                         count_vm_event(PGMAJFAULT);
1038                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1039                         major = VM_FAULT_MAJOR;
1040                 }
1041                 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1042                                 PAGE_SIZE, &entry, vma, vmf);
1043                 break;
1044         case IOMAP_UNWRITTEN:
1045         case IOMAP_HOLE:
1046                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1047                         vmf_ret = dax_load_hole(mapping, entry, vmf);
1048                         break;
1049                 }
1050                 /*FALLTHRU*/
1051         default:
1052                 WARN_ON_ONCE(1);
1053                 error = -EIO;
1054                 break;
1055         }
1056
1057  finish_iomap:
1058         if (ops->iomap_end) {
1059                 if (error || (vmf_ret & VM_FAULT_ERROR)) {
1060                         /* keep previous error */
1061                         ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1062                                         &iomap);
1063                 } else {
1064                         error = ops->iomap_end(inode, pos, PAGE_SIZE,
1065                                         PAGE_SIZE, flags, &iomap);
1066                 }
1067         }
1068  unlock_entry:
1069         if (vmf_ret != VM_FAULT_LOCKED || error)
1070                 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1071  out:
1072         if (error == -ENOMEM)
1073                 return VM_FAULT_OOM | major;
1074         /* -EBUSY is fine, somebody else faulted on the same PTE */
1075         if (error < 0 && error != -EBUSY)
1076                 return VM_FAULT_SIGBUS | major;
1077         if (vmf_ret) {
1078                 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1079                 return vmf_ret;
1080         }
1081         return VM_FAULT_NOPAGE | major;
1082 }
1083 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1084
1085 #ifdef CONFIG_FS_DAX_PMD
1086 /*
1087  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1088  * more often than one might expect in the below functions.
1089  */
1090 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1091
1092 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1093                 struct vm_fault *vmf, unsigned long address,
1094                 struct iomap *iomap, loff_t pos, bool write, void **entryp)
1095 {
1096         struct address_space *mapping = vma->vm_file->f_mapping;
1097         struct block_device *bdev = iomap->bdev;
1098         struct blk_dax_ctl dax = {
1099                 .sector = dax_iomap_sector(iomap, pos),
1100                 .size = PMD_SIZE,
1101         };
1102         long length = dax_map_atomic(bdev, &dax);
1103         void *ret;
1104
1105         if (length < 0) /* dax_map_atomic() failed */
1106                 return VM_FAULT_FALLBACK;
1107         if (length < PMD_SIZE)
1108                 goto unmap_fallback;
1109         if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1110                 goto unmap_fallback;
1111         if (!pfn_t_devmap(dax.pfn))
1112                 goto unmap_fallback;
1113
1114         dax_unmap_atomic(bdev, &dax);
1115
1116         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1117                         RADIX_DAX_PMD);
1118         if (IS_ERR(ret))
1119                 return VM_FAULT_FALLBACK;
1120         *entryp = ret;
1121
1122         return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1123
1124  unmap_fallback:
1125         dax_unmap_atomic(bdev, &dax);
1126         return VM_FAULT_FALLBACK;
1127 }
1128
1129 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1130                 struct vm_fault *vmf, unsigned long address,
1131                 struct iomap *iomap, void **entryp)
1132 {
1133         struct address_space *mapping = vma->vm_file->f_mapping;
1134         unsigned long pmd_addr = address & PMD_MASK;
1135         struct page *zero_page;
1136         spinlock_t *ptl;
1137         pmd_t pmd_entry;
1138         void *ret;
1139
1140         zero_page = mm_get_huge_zero_page(vma->vm_mm);
1141
1142         if (unlikely(!zero_page))
1143                 return VM_FAULT_FALLBACK;
1144
1145         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1146                         RADIX_DAX_PMD | RADIX_DAX_HZP);
1147         if (IS_ERR(ret))
1148                 return VM_FAULT_FALLBACK;
1149         *entryp = ret;
1150
1151         ptl = pmd_lock(vma->vm_mm, pmd);
1152         if (!pmd_none(*pmd)) {
1153                 spin_unlock(ptl);
1154                 return VM_FAULT_FALLBACK;
1155         }
1156
1157         pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1158         pmd_entry = pmd_mkhuge(pmd_entry);
1159         set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1160         spin_unlock(ptl);
1161         return VM_FAULT_NOPAGE;
1162 }
1163
1164 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1165                 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1166 {
1167         struct address_space *mapping = vma->vm_file->f_mapping;
1168         unsigned long pmd_addr = address & PMD_MASK;
1169         bool write = flags & FAULT_FLAG_WRITE;
1170         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1171         struct inode *inode = mapping->host;
1172         int result = VM_FAULT_FALLBACK;
1173         struct iomap iomap = { 0 };
1174         pgoff_t max_pgoff, pgoff;
1175         struct vm_fault vmf;
1176         void *entry;
1177         loff_t pos;
1178         int error;
1179
1180         /* Fall back to PTEs if we're going to COW */
1181         if (write && !(vma->vm_flags & VM_SHARED))
1182                 goto fallback;
1183
1184         /* If the PMD would extend outside the VMA */
1185         if (pmd_addr < vma->vm_start)
1186                 goto fallback;
1187         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1188                 goto fallback;
1189
1190         /*
1191          * Check whether offset isn't beyond end of file now. Caller is
1192          * supposed to hold locks serializing us with truncate / punch hole so
1193          * this is a reliable test.
1194          */
1195         pgoff = linear_page_index(vma, pmd_addr);
1196         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1197
1198         if (pgoff > max_pgoff)
1199                 return VM_FAULT_SIGBUS;
1200
1201         /* If the PMD would extend beyond the file size */
1202         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1203                 goto fallback;
1204
1205         /*
1206          * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1207          * PMD or a HZP entry.  If it can't (because a 4k page is already in
1208          * the tree, for instance), it will return -EEXIST and we just fall
1209          * back to 4k entries.
1210          */
1211         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1212         if (IS_ERR(entry))
1213                 goto fallback;
1214
1215         /*
1216          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1217          * setting up a mapping, so really we're using iomap_begin() as a way
1218          * to look up our filesystem block.
1219          */
1220         pos = (loff_t)pgoff << PAGE_SHIFT;
1221         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1222         if (error)
1223                 goto unlock_entry;
1224         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1225                 goto finish_iomap;
1226
1227         vmf.pgoff = pgoff;
1228         vmf.flags = flags;
1229         vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1230
1231         switch (iomap.type) {
1232         case IOMAP_MAPPED:
1233                 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1234                                 &iomap, pos, write, &entry);
1235                 break;
1236         case IOMAP_UNWRITTEN:
1237         case IOMAP_HOLE:
1238                 if (WARN_ON_ONCE(write))
1239                         goto finish_iomap;
1240                 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1241                                 &entry);
1242                 break;
1243         default:
1244                 WARN_ON_ONCE(1);
1245                 break;
1246         }
1247
1248  finish_iomap:
1249         if (ops->iomap_end) {
1250                 if (result == VM_FAULT_FALLBACK) {
1251                         ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1252                                         &iomap);
1253                 } else {
1254                         error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1255                                         iomap_flags, &iomap);
1256                         if (error)
1257                                 result = VM_FAULT_FALLBACK;
1258                 }
1259         }
1260  unlock_entry:
1261         put_locked_mapping_entry(mapping, pgoff, entry);
1262  fallback:
1263         if (result == VM_FAULT_FALLBACK) {
1264                 split_huge_pmd(vma, pmd, address);
1265                 count_vm_event(THP_FAULT_FALLBACK);
1266         }
1267         return result;
1268 }
1269 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1270 #endif /* CONFIG_FS_DAX_PMD */
1271 #endif /* CONFIG_FS_IOMAP */