]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/dcache.c
fs/dcache: Fix incorrect nr_dentry_unused accounting in shrink_dcache_sb()
[linux.git] / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/memblock.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76
77 EXPORT_SYMBOL(rename_lock);
78
79 static struct kmem_cache *dentry_cache __read_mostly;
80
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94
95 static unsigned int d_hash_shift __read_mostly;
96
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101         return dentry_hashtable + (hash >> d_hash_shift);
102 }
103
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108                                         unsigned int hash)
109 {
110         hash += (unsigned long) parent / L1_CACHE_BYTES;
111         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117         .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139         int i;
140         long sum = 0;
141         for_each_possible_cpu(i)
142                 sum += per_cpu(nr_dentry, i);
143         return sum < 0 ? 0 : sum;
144 }
145
146 static long get_nr_dentry_unused(void)
147 {
148         int i;
149         long sum = 0;
150         for_each_possible_cpu(i)
151                 sum += per_cpu(nr_dentry_unused, i);
152         return sum < 0 ? 0 : sum;
153 }
154
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156                    size_t *lenp, loff_t *ppos)
157 {
158         dentry_stat.nr_dentry = get_nr_dentry();
159         dentry_stat.nr_unused = get_nr_dentry_unused();
160         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182         unsigned long a,b,mask;
183
184         for (;;) {
185                 a = read_word_at_a_time(cs);
186                 b = load_unaligned_zeropad(ct);
187                 if (tcount < sizeof(unsigned long))
188                         break;
189                 if (unlikely(a != b))
190                         return 1;
191                 cs += sizeof(unsigned long);
192                 ct += sizeof(unsigned long);
193                 tcount -= sizeof(unsigned long);
194                 if (!tcount)
195                         return 0;
196         }
197         mask = bytemask_from_count(tcount);
198         return unlikely(!!((a ^ b) & mask));
199 }
200
201 #else
202
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205         do {
206                 if (*cs != *ct)
207                         return 1;
208                 cs++;
209                 ct++;
210                 tcount--;
211         } while (tcount);
212         return 0;
213 }
214
215 #endif
216
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219         /*
220          * Be careful about RCU walk racing with rename:
221          * use 'READ_ONCE' to fetch the name pointer.
222          *
223          * NOTE! Even if a rename will mean that the length
224          * was not loaded atomically, we don't care. The
225          * RCU walk will check the sequence count eventually,
226          * and catch it. And we won't overrun the buffer,
227          * because we're reading the name pointer atomically,
228          * and a dentry name is guaranteed to be properly
229          * terminated with a NUL byte.
230          *
231          * End result: even if 'len' is wrong, we'll exit
232          * early because the data cannot match (there can
233          * be no NUL in the ct/tcount data)
234          */
235         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236
237         return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241         union {
242                 atomic_t count;
243                 struct rcu_head head;
244         } u;
245         unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250         return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257         kmem_cache_free(dentry_cache, dentry); 
258 }
259
260 static void __d_free_external(struct rcu_head *head)
261 {
262         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263         kfree(external_name(dentry));
264         kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static inline int dname_external(const struct dentry *dentry)
268 {
269         return dentry->d_name.name != dentry->d_iname;
270 }
271
272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273 {
274         spin_lock(&dentry->d_lock);
275         if (unlikely(dname_external(dentry))) {
276                 struct external_name *p = external_name(dentry);
277                 atomic_inc(&p->u.count);
278                 spin_unlock(&dentry->d_lock);
279                 name->name = p->name;
280         } else {
281                 memcpy(name->inline_name, dentry->d_iname,
282                        dentry->d_name.len + 1);
283                 spin_unlock(&dentry->d_lock);
284                 name->name = name->inline_name;
285         }
286 }
287 EXPORT_SYMBOL(take_dentry_name_snapshot);
288
289 void release_dentry_name_snapshot(struct name_snapshot *name)
290 {
291         if (unlikely(name->name != name->inline_name)) {
292                 struct external_name *p;
293                 p = container_of(name->name, struct external_name, name[0]);
294                 if (unlikely(atomic_dec_and_test(&p->u.count)))
295                         kfree_rcu(p, u.head);
296         }
297 }
298 EXPORT_SYMBOL(release_dentry_name_snapshot);
299
300 static inline void __d_set_inode_and_type(struct dentry *dentry,
301                                           struct inode *inode,
302                                           unsigned type_flags)
303 {
304         unsigned flags;
305
306         dentry->d_inode = inode;
307         flags = READ_ONCE(dentry->d_flags);
308         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
309         flags |= type_flags;
310         WRITE_ONCE(dentry->d_flags, flags);
311 }
312
313 static inline void __d_clear_type_and_inode(struct dentry *dentry)
314 {
315         unsigned flags = READ_ONCE(dentry->d_flags);
316
317         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318         WRITE_ONCE(dentry->d_flags, flags);
319         dentry->d_inode = NULL;
320 }
321
322 static void dentry_free(struct dentry *dentry)
323 {
324         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
325         if (unlikely(dname_external(dentry))) {
326                 struct external_name *p = external_name(dentry);
327                 if (likely(atomic_dec_and_test(&p->u.count))) {
328                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
329                         return;
330                 }
331         }
332         /* if dentry was never visible to RCU, immediate free is OK */
333         if (!(dentry->d_flags & DCACHE_RCUACCESS))
334                 __d_free(&dentry->d_u.d_rcu);
335         else
336                 call_rcu(&dentry->d_u.d_rcu, __d_free);
337 }
338
339 /*
340  * Release the dentry's inode, using the filesystem
341  * d_iput() operation if defined.
342  */
343 static void dentry_unlink_inode(struct dentry * dentry)
344         __releases(dentry->d_lock)
345         __releases(dentry->d_inode->i_lock)
346 {
347         struct inode *inode = dentry->d_inode;
348
349         raw_write_seqcount_begin(&dentry->d_seq);
350         __d_clear_type_and_inode(dentry);
351         hlist_del_init(&dentry->d_u.d_alias);
352         raw_write_seqcount_end(&dentry->d_seq);
353         spin_unlock(&dentry->d_lock);
354         spin_unlock(&inode->i_lock);
355         if (!inode->i_nlink)
356                 fsnotify_inoderemove(inode);
357         if (dentry->d_op && dentry->d_op->d_iput)
358                 dentry->d_op->d_iput(dentry, inode);
359         else
360                 iput(inode);
361 }
362
363 /*
364  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
365  * is in use - which includes both the "real" per-superblock
366  * LRU list _and_ the DCACHE_SHRINK_LIST use.
367  *
368  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
369  * on the shrink list (ie not on the superblock LRU list).
370  *
371  * The per-cpu "nr_dentry_unused" counters are updated with
372  * the DCACHE_LRU_LIST bit.
373  *
374  * These helper functions make sure we always follow the
375  * rules. d_lock must be held by the caller.
376  */
377 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
378 static void d_lru_add(struct dentry *dentry)
379 {
380         D_FLAG_VERIFY(dentry, 0);
381         dentry->d_flags |= DCACHE_LRU_LIST;
382         this_cpu_inc(nr_dentry_unused);
383         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
384 }
385
386 static void d_lru_del(struct dentry *dentry)
387 {
388         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
389         dentry->d_flags &= ~DCACHE_LRU_LIST;
390         this_cpu_dec(nr_dentry_unused);
391         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
392 }
393
394 static void d_shrink_del(struct dentry *dentry)
395 {
396         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
397         list_del_init(&dentry->d_lru);
398         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
399         this_cpu_dec(nr_dentry_unused);
400 }
401
402 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
403 {
404         D_FLAG_VERIFY(dentry, 0);
405         list_add(&dentry->d_lru, list);
406         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
407         this_cpu_inc(nr_dentry_unused);
408 }
409
410 /*
411  * These can only be called under the global LRU lock, ie during the
412  * callback for freeing the LRU list. "isolate" removes it from the
413  * LRU lists entirely, while shrink_move moves it to the indicated
414  * private list.
415  */
416 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
417 {
418         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
419         dentry->d_flags &= ~DCACHE_LRU_LIST;
420         this_cpu_dec(nr_dentry_unused);
421         list_lru_isolate(lru, &dentry->d_lru);
422 }
423
424 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
425                               struct list_head *list)
426 {
427         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
428         dentry->d_flags |= DCACHE_SHRINK_LIST;
429         list_lru_isolate_move(lru, &dentry->d_lru, list);
430 }
431
432 /**
433  * d_drop - drop a dentry
434  * @dentry: dentry to drop
435  *
436  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
437  * be found through a VFS lookup any more. Note that this is different from
438  * deleting the dentry - d_delete will try to mark the dentry negative if
439  * possible, giving a successful _negative_ lookup, while d_drop will
440  * just make the cache lookup fail.
441  *
442  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
443  * reason (NFS timeouts or autofs deletes).
444  *
445  * __d_drop requires dentry->d_lock
446  * ___d_drop doesn't mark dentry as "unhashed"
447  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
448  */
449 static void ___d_drop(struct dentry *dentry)
450 {
451         struct hlist_bl_head *b;
452         /*
453          * Hashed dentries are normally on the dentry hashtable,
454          * with the exception of those newly allocated by
455          * d_obtain_root, which are always IS_ROOT:
456          */
457         if (unlikely(IS_ROOT(dentry)))
458                 b = &dentry->d_sb->s_roots;
459         else
460                 b = d_hash(dentry->d_name.hash);
461
462         hlist_bl_lock(b);
463         __hlist_bl_del(&dentry->d_hash);
464         hlist_bl_unlock(b);
465 }
466
467 void __d_drop(struct dentry *dentry)
468 {
469         if (!d_unhashed(dentry)) {
470                 ___d_drop(dentry);
471                 dentry->d_hash.pprev = NULL;
472                 write_seqcount_invalidate(&dentry->d_seq);
473         }
474 }
475 EXPORT_SYMBOL(__d_drop);
476
477 void d_drop(struct dentry *dentry)
478 {
479         spin_lock(&dentry->d_lock);
480         __d_drop(dentry);
481         spin_unlock(&dentry->d_lock);
482 }
483 EXPORT_SYMBOL(d_drop);
484
485 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
486 {
487         struct dentry *next;
488         /*
489          * Inform d_walk() and shrink_dentry_list() that we are no longer
490          * attached to the dentry tree
491          */
492         dentry->d_flags |= DCACHE_DENTRY_KILLED;
493         if (unlikely(list_empty(&dentry->d_child)))
494                 return;
495         __list_del_entry(&dentry->d_child);
496         /*
497          * Cursors can move around the list of children.  While we'd been
498          * a normal list member, it didn't matter - ->d_child.next would've
499          * been updated.  However, from now on it won't be and for the
500          * things like d_walk() it might end up with a nasty surprise.
501          * Normally d_walk() doesn't care about cursors moving around -
502          * ->d_lock on parent prevents that and since a cursor has no children
503          * of its own, we get through it without ever unlocking the parent.
504          * There is one exception, though - if we ascend from a child that
505          * gets killed as soon as we unlock it, the next sibling is found
506          * using the value left in its ->d_child.next.  And if _that_
507          * pointed to a cursor, and cursor got moved (e.g. by lseek())
508          * before d_walk() regains parent->d_lock, we'll end up skipping
509          * everything the cursor had been moved past.
510          *
511          * Solution: make sure that the pointer left behind in ->d_child.next
512          * points to something that won't be moving around.  I.e. skip the
513          * cursors.
514          */
515         while (dentry->d_child.next != &parent->d_subdirs) {
516                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
517                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
518                         break;
519                 dentry->d_child.next = next->d_child.next;
520         }
521 }
522
523 static void __dentry_kill(struct dentry *dentry)
524 {
525         struct dentry *parent = NULL;
526         bool can_free = true;
527         if (!IS_ROOT(dentry))
528                 parent = dentry->d_parent;
529
530         /*
531          * The dentry is now unrecoverably dead to the world.
532          */
533         lockref_mark_dead(&dentry->d_lockref);
534
535         /*
536          * inform the fs via d_prune that this dentry is about to be
537          * unhashed and destroyed.
538          */
539         if (dentry->d_flags & DCACHE_OP_PRUNE)
540                 dentry->d_op->d_prune(dentry);
541
542         if (dentry->d_flags & DCACHE_LRU_LIST) {
543                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
544                         d_lru_del(dentry);
545         }
546         /* if it was on the hash then remove it */
547         __d_drop(dentry);
548         dentry_unlist(dentry, parent);
549         if (parent)
550                 spin_unlock(&parent->d_lock);
551         if (dentry->d_inode)
552                 dentry_unlink_inode(dentry);
553         else
554                 spin_unlock(&dentry->d_lock);
555         this_cpu_dec(nr_dentry);
556         if (dentry->d_op && dentry->d_op->d_release)
557                 dentry->d_op->d_release(dentry);
558
559         spin_lock(&dentry->d_lock);
560         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
561                 dentry->d_flags |= DCACHE_MAY_FREE;
562                 can_free = false;
563         }
564         spin_unlock(&dentry->d_lock);
565         if (likely(can_free))
566                 dentry_free(dentry);
567         cond_resched();
568 }
569
570 static struct dentry *__lock_parent(struct dentry *dentry)
571 {
572         struct dentry *parent;
573         rcu_read_lock();
574         spin_unlock(&dentry->d_lock);
575 again:
576         parent = READ_ONCE(dentry->d_parent);
577         spin_lock(&parent->d_lock);
578         /*
579          * We can't blindly lock dentry until we are sure
580          * that we won't violate the locking order.
581          * Any changes of dentry->d_parent must have
582          * been done with parent->d_lock held, so
583          * spin_lock() above is enough of a barrier
584          * for checking if it's still our child.
585          */
586         if (unlikely(parent != dentry->d_parent)) {
587                 spin_unlock(&parent->d_lock);
588                 goto again;
589         }
590         rcu_read_unlock();
591         if (parent != dentry)
592                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
593         else
594                 parent = NULL;
595         return parent;
596 }
597
598 static inline struct dentry *lock_parent(struct dentry *dentry)
599 {
600         struct dentry *parent = dentry->d_parent;
601         if (IS_ROOT(dentry))
602                 return NULL;
603         if (likely(spin_trylock(&parent->d_lock)))
604                 return parent;
605         return __lock_parent(dentry);
606 }
607
608 static inline bool retain_dentry(struct dentry *dentry)
609 {
610         WARN_ON(d_in_lookup(dentry));
611
612         /* Unreachable? Get rid of it */
613         if (unlikely(d_unhashed(dentry)))
614                 return false;
615
616         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
617                 return false;
618
619         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
620                 if (dentry->d_op->d_delete(dentry))
621                         return false;
622         }
623         /* retain; LRU fodder */
624         dentry->d_lockref.count--;
625         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
626                 d_lru_add(dentry);
627         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
628                 dentry->d_flags |= DCACHE_REFERENCED;
629         return true;
630 }
631
632 /*
633  * Finish off a dentry we've decided to kill.
634  * dentry->d_lock must be held, returns with it unlocked.
635  * Returns dentry requiring refcount drop, or NULL if we're done.
636  */
637 static struct dentry *dentry_kill(struct dentry *dentry)
638         __releases(dentry->d_lock)
639 {
640         struct inode *inode = dentry->d_inode;
641         struct dentry *parent = NULL;
642
643         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
644                 goto slow_positive;
645
646         if (!IS_ROOT(dentry)) {
647                 parent = dentry->d_parent;
648                 if (unlikely(!spin_trylock(&parent->d_lock))) {
649                         parent = __lock_parent(dentry);
650                         if (likely(inode || !dentry->d_inode))
651                                 goto got_locks;
652                         /* negative that became positive */
653                         if (parent)
654                                 spin_unlock(&parent->d_lock);
655                         inode = dentry->d_inode;
656                         goto slow_positive;
657                 }
658         }
659         __dentry_kill(dentry);
660         return parent;
661
662 slow_positive:
663         spin_unlock(&dentry->d_lock);
664         spin_lock(&inode->i_lock);
665         spin_lock(&dentry->d_lock);
666         parent = lock_parent(dentry);
667 got_locks:
668         if (unlikely(dentry->d_lockref.count != 1)) {
669                 dentry->d_lockref.count--;
670         } else if (likely(!retain_dentry(dentry))) {
671                 __dentry_kill(dentry);
672                 return parent;
673         }
674         /* we are keeping it, after all */
675         if (inode)
676                 spin_unlock(&inode->i_lock);
677         if (parent)
678                 spin_unlock(&parent->d_lock);
679         spin_unlock(&dentry->d_lock);
680         return NULL;
681 }
682
683 /*
684  * Try to do a lockless dput(), and return whether that was successful.
685  *
686  * If unsuccessful, we return false, having already taken the dentry lock.
687  *
688  * The caller needs to hold the RCU read lock, so that the dentry is
689  * guaranteed to stay around even if the refcount goes down to zero!
690  */
691 static inline bool fast_dput(struct dentry *dentry)
692 {
693         int ret;
694         unsigned int d_flags;
695
696         /*
697          * If we have a d_op->d_delete() operation, we sould not
698          * let the dentry count go to zero, so use "put_or_lock".
699          */
700         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
701                 return lockref_put_or_lock(&dentry->d_lockref);
702
703         /*
704          * .. otherwise, we can try to just decrement the
705          * lockref optimistically.
706          */
707         ret = lockref_put_return(&dentry->d_lockref);
708
709         /*
710          * If the lockref_put_return() failed due to the lock being held
711          * by somebody else, the fast path has failed. We will need to
712          * get the lock, and then check the count again.
713          */
714         if (unlikely(ret < 0)) {
715                 spin_lock(&dentry->d_lock);
716                 if (dentry->d_lockref.count > 1) {
717                         dentry->d_lockref.count--;
718                         spin_unlock(&dentry->d_lock);
719                         return true;
720                 }
721                 return false;
722         }
723
724         /*
725          * If we weren't the last ref, we're done.
726          */
727         if (ret)
728                 return true;
729
730         /*
731          * Careful, careful. The reference count went down
732          * to zero, but we don't hold the dentry lock, so
733          * somebody else could get it again, and do another
734          * dput(), and we need to not race with that.
735          *
736          * However, there is a very special and common case
737          * where we don't care, because there is nothing to
738          * do: the dentry is still hashed, it does not have
739          * a 'delete' op, and it's referenced and already on
740          * the LRU list.
741          *
742          * NOTE! Since we aren't locked, these values are
743          * not "stable". However, it is sufficient that at
744          * some point after we dropped the reference the
745          * dentry was hashed and the flags had the proper
746          * value. Other dentry users may have re-gotten
747          * a reference to the dentry and change that, but
748          * our work is done - we can leave the dentry
749          * around with a zero refcount.
750          */
751         smp_rmb();
752         d_flags = READ_ONCE(dentry->d_flags);
753         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
754
755         /* Nothing to do? Dropping the reference was all we needed? */
756         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
757                 return true;
758
759         /*
760          * Not the fast normal case? Get the lock. We've already decremented
761          * the refcount, but we'll need to re-check the situation after
762          * getting the lock.
763          */
764         spin_lock(&dentry->d_lock);
765
766         /*
767          * Did somebody else grab a reference to it in the meantime, and
768          * we're no longer the last user after all? Alternatively, somebody
769          * else could have killed it and marked it dead. Either way, we
770          * don't need to do anything else.
771          */
772         if (dentry->d_lockref.count) {
773                 spin_unlock(&dentry->d_lock);
774                 return true;
775         }
776
777         /*
778          * Re-get the reference we optimistically dropped. We hold the
779          * lock, and we just tested that it was zero, so we can just
780          * set it to 1.
781          */
782         dentry->d_lockref.count = 1;
783         return false;
784 }
785
786
787 /* 
788  * This is dput
789  *
790  * This is complicated by the fact that we do not want to put
791  * dentries that are no longer on any hash chain on the unused
792  * list: we'd much rather just get rid of them immediately.
793  *
794  * However, that implies that we have to traverse the dentry
795  * tree upwards to the parents which might _also_ now be
796  * scheduled for deletion (it may have been only waiting for
797  * its last child to go away).
798  *
799  * This tail recursion is done by hand as we don't want to depend
800  * on the compiler to always get this right (gcc generally doesn't).
801  * Real recursion would eat up our stack space.
802  */
803
804 /*
805  * dput - release a dentry
806  * @dentry: dentry to release 
807  *
808  * Release a dentry. This will drop the usage count and if appropriate
809  * call the dentry unlink method as well as removing it from the queues and
810  * releasing its resources. If the parent dentries were scheduled for release
811  * they too may now get deleted.
812  */
813 void dput(struct dentry *dentry)
814 {
815         while (dentry) {
816                 might_sleep();
817
818                 rcu_read_lock();
819                 if (likely(fast_dput(dentry))) {
820                         rcu_read_unlock();
821                         return;
822                 }
823
824                 /* Slow case: now with the dentry lock held */
825                 rcu_read_unlock();
826
827                 if (likely(retain_dentry(dentry))) {
828                         spin_unlock(&dentry->d_lock);
829                         return;
830                 }
831
832                 dentry = dentry_kill(dentry);
833         }
834 }
835 EXPORT_SYMBOL(dput);
836
837
838 /* This must be called with d_lock held */
839 static inline void __dget_dlock(struct dentry *dentry)
840 {
841         dentry->d_lockref.count++;
842 }
843
844 static inline void __dget(struct dentry *dentry)
845 {
846         lockref_get(&dentry->d_lockref);
847 }
848
849 struct dentry *dget_parent(struct dentry *dentry)
850 {
851         int gotref;
852         struct dentry *ret;
853
854         /*
855          * Do optimistic parent lookup without any
856          * locking.
857          */
858         rcu_read_lock();
859         ret = READ_ONCE(dentry->d_parent);
860         gotref = lockref_get_not_zero(&ret->d_lockref);
861         rcu_read_unlock();
862         if (likely(gotref)) {
863                 if (likely(ret == READ_ONCE(dentry->d_parent)))
864                         return ret;
865                 dput(ret);
866         }
867
868 repeat:
869         /*
870          * Don't need rcu_dereference because we re-check it was correct under
871          * the lock.
872          */
873         rcu_read_lock();
874         ret = dentry->d_parent;
875         spin_lock(&ret->d_lock);
876         if (unlikely(ret != dentry->d_parent)) {
877                 spin_unlock(&ret->d_lock);
878                 rcu_read_unlock();
879                 goto repeat;
880         }
881         rcu_read_unlock();
882         BUG_ON(!ret->d_lockref.count);
883         ret->d_lockref.count++;
884         spin_unlock(&ret->d_lock);
885         return ret;
886 }
887 EXPORT_SYMBOL(dget_parent);
888
889 static struct dentry * __d_find_any_alias(struct inode *inode)
890 {
891         struct dentry *alias;
892
893         if (hlist_empty(&inode->i_dentry))
894                 return NULL;
895         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
896         __dget(alias);
897         return alias;
898 }
899
900 /**
901  * d_find_any_alias - find any alias for a given inode
902  * @inode: inode to find an alias for
903  *
904  * If any aliases exist for the given inode, take and return a
905  * reference for one of them.  If no aliases exist, return %NULL.
906  */
907 struct dentry *d_find_any_alias(struct inode *inode)
908 {
909         struct dentry *de;
910
911         spin_lock(&inode->i_lock);
912         de = __d_find_any_alias(inode);
913         spin_unlock(&inode->i_lock);
914         return de;
915 }
916 EXPORT_SYMBOL(d_find_any_alias);
917
918 /**
919  * d_find_alias - grab a hashed alias of inode
920  * @inode: inode in question
921  *
922  * If inode has a hashed alias, or is a directory and has any alias,
923  * acquire the reference to alias and return it. Otherwise return NULL.
924  * Notice that if inode is a directory there can be only one alias and
925  * it can be unhashed only if it has no children, or if it is the root
926  * of a filesystem, or if the directory was renamed and d_revalidate
927  * was the first vfs operation to notice.
928  *
929  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
930  * any other hashed alias over that one.
931  */
932 static struct dentry *__d_find_alias(struct inode *inode)
933 {
934         struct dentry *alias;
935
936         if (S_ISDIR(inode->i_mode))
937                 return __d_find_any_alias(inode);
938
939         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
940                 spin_lock(&alias->d_lock);
941                 if (!d_unhashed(alias)) {
942                         __dget_dlock(alias);
943                         spin_unlock(&alias->d_lock);
944                         return alias;
945                 }
946                 spin_unlock(&alias->d_lock);
947         }
948         return NULL;
949 }
950
951 struct dentry *d_find_alias(struct inode *inode)
952 {
953         struct dentry *de = NULL;
954
955         if (!hlist_empty(&inode->i_dentry)) {
956                 spin_lock(&inode->i_lock);
957                 de = __d_find_alias(inode);
958                 spin_unlock(&inode->i_lock);
959         }
960         return de;
961 }
962 EXPORT_SYMBOL(d_find_alias);
963
964 /*
965  *      Try to kill dentries associated with this inode.
966  * WARNING: you must own a reference to inode.
967  */
968 void d_prune_aliases(struct inode *inode)
969 {
970         struct dentry *dentry;
971 restart:
972         spin_lock(&inode->i_lock);
973         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
974                 spin_lock(&dentry->d_lock);
975                 if (!dentry->d_lockref.count) {
976                         struct dentry *parent = lock_parent(dentry);
977                         if (likely(!dentry->d_lockref.count)) {
978                                 __dentry_kill(dentry);
979                                 dput(parent);
980                                 goto restart;
981                         }
982                         if (parent)
983                                 spin_unlock(&parent->d_lock);
984                 }
985                 spin_unlock(&dentry->d_lock);
986         }
987         spin_unlock(&inode->i_lock);
988 }
989 EXPORT_SYMBOL(d_prune_aliases);
990
991 /*
992  * Lock a dentry from shrink list.
993  * Called under rcu_read_lock() and dentry->d_lock; the former
994  * guarantees that nothing we access will be freed under us.
995  * Note that dentry is *not* protected from concurrent dentry_kill(),
996  * d_delete(), etc.
997  *
998  * Return false if dentry has been disrupted or grabbed, leaving
999  * the caller to kick it off-list.  Otherwise, return true and have
1000  * that dentry's inode and parent both locked.
1001  */
1002 static bool shrink_lock_dentry(struct dentry *dentry)
1003 {
1004         struct inode *inode;
1005         struct dentry *parent;
1006
1007         if (dentry->d_lockref.count)
1008                 return false;
1009
1010         inode = dentry->d_inode;
1011         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1012                 spin_unlock(&dentry->d_lock);
1013                 spin_lock(&inode->i_lock);
1014                 spin_lock(&dentry->d_lock);
1015                 if (unlikely(dentry->d_lockref.count))
1016                         goto out;
1017                 /* changed inode means that somebody had grabbed it */
1018                 if (unlikely(inode != dentry->d_inode))
1019                         goto out;
1020         }
1021
1022         parent = dentry->d_parent;
1023         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1024                 return true;
1025
1026         spin_unlock(&dentry->d_lock);
1027         spin_lock(&parent->d_lock);
1028         if (unlikely(parent != dentry->d_parent)) {
1029                 spin_unlock(&parent->d_lock);
1030                 spin_lock(&dentry->d_lock);
1031                 goto out;
1032         }
1033         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1034         if (likely(!dentry->d_lockref.count))
1035                 return true;
1036         spin_unlock(&parent->d_lock);
1037 out:
1038         if (inode)
1039                 spin_unlock(&inode->i_lock);
1040         return false;
1041 }
1042
1043 static void shrink_dentry_list(struct list_head *list)
1044 {
1045         while (!list_empty(list)) {
1046                 struct dentry *dentry, *parent;
1047
1048                 dentry = list_entry(list->prev, struct dentry, d_lru);
1049                 spin_lock(&dentry->d_lock);
1050                 rcu_read_lock();
1051                 if (!shrink_lock_dentry(dentry)) {
1052                         bool can_free = false;
1053                         rcu_read_unlock();
1054                         d_shrink_del(dentry);
1055                         if (dentry->d_lockref.count < 0)
1056                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1057                         spin_unlock(&dentry->d_lock);
1058                         if (can_free)
1059                                 dentry_free(dentry);
1060                         continue;
1061                 }
1062                 rcu_read_unlock();
1063                 d_shrink_del(dentry);
1064                 parent = dentry->d_parent;
1065                 __dentry_kill(dentry);
1066                 if (parent == dentry)
1067                         continue;
1068                 /*
1069                  * We need to prune ancestors too. This is necessary to prevent
1070                  * quadratic behavior of shrink_dcache_parent(), but is also
1071                  * expected to be beneficial in reducing dentry cache
1072                  * fragmentation.
1073                  */
1074                 dentry = parent;
1075                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1076                         dentry = dentry_kill(dentry);
1077         }
1078 }
1079
1080 static enum lru_status dentry_lru_isolate(struct list_head *item,
1081                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1082 {
1083         struct list_head *freeable = arg;
1084         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1085
1086
1087         /*
1088          * we are inverting the lru lock/dentry->d_lock here,
1089          * so use a trylock. If we fail to get the lock, just skip
1090          * it
1091          */
1092         if (!spin_trylock(&dentry->d_lock))
1093                 return LRU_SKIP;
1094
1095         /*
1096          * Referenced dentries are still in use. If they have active
1097          * counts, just remove them from the LRU. Otherwise give them
1098          * another pass through the LRU.
1099          */
1100         if (dentry->d_lockref.count) {
1101                 d_lru_isolate(lru, dentry);
1102                 spin_unlock(&dentry->d_lock);
1103                 return LRU_REMOVED;
1104         }
1105
1106         if (dentry->d_flags & DCACHE_REFERENCED) {
1107                 dentry->d_flags &= ~DCACHE_REFERENCED;
1108                 spin_unlock(&dentry->d_lock);
1109
1110                 /*
1111                  * The list move itself will be made by the common LRU code. At
1112                  * this point, we've dropped the dentry->d_lock but keep the
1113                  * lru lock. This is safe to do, since every list movement is
1114                  * protected by the lru lock even if both locks are held.
1115                  *
1116                  * This is guaranteed by the fact that all LRU management
1117                  * functions are intermediated by the LRU API calls like
1118                  * list_lru_add and list_lru_del. List movement in this file
1119                  * only ever occur through this functions or through callbacks
1120                  * like this one, that are called from the LRU API.
1121                  *
1122                  * The only exceptions to this are functions like
1123                  * shrink_dentry_list, and code that first checks for the
1124                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1125                  * operating only with stack provided lists after they are
1126                  * properly isolated from the main list.  It is thus, always a
1127                  * local access.
1128                  */
1129                 return LRU_ROTATE;
1130         }
1131
1132         d_lru_shrink_move(lru, dentry, freeable);
1133         spin_unlock(&dentry->d_lock);
1134
1135         return LRU_REMOVED;
1136 }
1137
1138 /**
1139  * prune_dcache_sb - shrink the dcache
1140  * @sb: superblock
1141  * @sc: shrink control, passed to list_lru_shrink_walk()
1142  *
1143  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1144  * is done when we need more memory and called from the superblock shrinker
1145  * function.
1146  *
1147  * This function may fail to free any resources if all the dentries are in
1148  * use.
1149  */
1150 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1151 {
1152         LIST_HEAD(dispose);
1153         long freed;
1154
1155         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1156                                      dentry_lru_isolate, &dispose);
1157         shrink_dentry_list(&dispose);
1158         return freed;
1159 }
1160
1161 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1162                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1163 {
1164         struct list_head *freeable = arg;
1165         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1166
1167         /*
1168          * we are inverting the lru lock/dentry->d_lock here,
1169          * so use a trylock. If we fail to get the lock, just skip
1170          * it
1171          */
1172         if (!spin_trylock(&dentry->d_lock))
1173                 return LRU_SKIP;
1174
1175         d_lru_shrink_move(lru, dentry, freeable);
1176         spin_unlock(&dentry->d_lock);
1177
1178         return LRU_REMOVED;
1179 }
1180
1181
1182 /**
1183  * shrink_dcache_sb - shrink dcache for a superblock
1184  * @sb: superblock
1185  *
1186  * Shrink the dcache for the specified super block. This is used to free
1187  * the dcache before unmounting a file system.
1188  */
1189 void shrink_dcache_sb(struct super_block *sb)
1190 {
1191         do {
1192                 LIST_HEAD(dispose);
1193
1194                 list_lru_walk(&sb->s_dentry_lru,
1195                         dentry_lru_isolate_shrink, &dispose, 1024);
1196                 shrink_dentry_list(&dispose);
1197         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1198 }
1199 EXPORT_SYMBOL(shrink_dcache_sb);
1200
1201 /**
1202  * enum d_walk_ret - action to talke during tree walk
1203  * @D_WALK_CONTINUE:    contrinue walk
1204  * @D_WALK_QUIT:        quit walk
1205  * @D_WALK_NORETRY:     quit when retry is needed
1206  * @D_WALK_SKIP:        skip this dentry and its children
1207  */
1208 enum d_walk_ret {
1209         D_WALK_CONTINUE,
1210         D_WALK_QUIT,
1211         D_WALK_NORETRY,
1212         D_WALK_SKIP,
1213 };
1214
1215 /**
1216  * d_walk - walk the dentry tree
1217  * @parent:     start of walk
1218  * @data:       data passed to @enter() and @finish()
1219  * @enter:      callback when first entering the dentry
1220  *
1221  * The @enter() callbacks are called with d_lock held.
1222  */
1223 static void d_walk(struct dentry *parent, void *data,
1224                    enum d_walk_ret (*enter)(void *, struct dentry *))
1225 {
1226         struct dentry *this_parent;
1227         struct list_head *next;
1228         unsigned seq = 0;
1229         enum d_walk_ret ret;
1230         bool retry = true;
1231
1232 again:
1233         read_seqbegin_or_lock(&rename_lock, &seq);
1234         this_parent = parent;
1235         spin_lock(&this_parent->d_lock);
1236
1237         ret = enter(data, this_parent);
1238         switch (ret) {
1239         case D_WALK_CONTINUE:
1240                 break;
1241         case D_WALK_QUIT:
1242         case D_WALK_SKIP:
1243                 goto out_unlock;
1244         case D_WALK_NORETRY:
1245                 retry = false;
1246                 break;
1247         }
1248 repeat:
1249         next = this_parent->d_subdirs.next;
1250 resume:
1251         while (next != &this_parent->d_subdirs) {
1252                 struct list_head *tmp = next;
1253                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1254                 next = tmp->next;
1255
1256                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1257                         continue;
1258
1259                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1260
1261                 ret = enter(data, dentry);
1262                 switch (ret) {
1263                 case D_WALK_CONTINUE:
1264                         break;
1265                 case D_WALK_QUIT:
1266                         spin_unlock(&dentry->d_lock);
1267                         goto out_unlock;
1268                 case D_WALK_NORETRY:
1269                         retry = false;
1270                         break;
1271                 case D_WALK_SKIP:
1272                         spin_unlock(&dentry->d_lock);
1273                         continue;
1274                 }
1275
1276                 if (!list_empty(&dentry->d_subdirs)) {
1277                         spin_unlock(&this_parent->d_lock);
1278                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1279                         this_parent = dentry;
1280                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1281                         goto repeat;
1282                 }
1283                 spin_unlock(&dentry->d_lock);
1284         }
1285         /*
1286          * All done at this level ... ascend and resume the search.
1287          */
1288         rcu_read_lock();
1289 ascend:
1290         if (this_parent != parent) {
1291                 struct dentry *child = this_parent;
1292                 this_parent = child->d_parent;
1293
1294                 spin_unlock(&child->d_lock);
1295                 spin_lock(&this_parent->d_lock);
1296
1297                 /* might go back up the wrong parent if we have had a rename. */
1298                 if (need_seqretry(&rename_lock, seq))
1299                         goto rename_retry;
1300                 /* go into the first sibling still alive */
1301                 do {
1302                         next = child->d_child.next;
1303                         if (next == &this_parent->d_subdirs)
1304                                 goto ascend;
1305                         child = list_entry(next, struct dentry, d_child);
1306                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1307                 rcu_read_unlock();
1308                 goto resume;
1309         }
1310         if (need_seqretry(&rename_lock, seq))
1311                 goto rename_retry;
1312         rcu_read_unlock();
1313
1314 out_unlock:
1315         spin_unlock(&this_parent->d_lock);
1316         done_seqretry(&rename_lock, seq);
1317         return;
1318
1319 rename_retry:
1320         spin_unlock(&this_parent->d_lock);
1321         rcu_read_unlock();
1322         BUG_ON(seq & 1);
1323         if (!retry)
1324                 return;
1325         seq = 1;
1326         goto again;
1327 }
1328
1329 struct check_mount {
1330         struct vfsmount *mnt;
1331         unsigned int mounted;
1332 };
1333
1334 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1335 {
1336         struct check_mount *info = data;
1337         struct path path = { .mnt = info->mnt, .dentry = dentry };
1338
1339         if (likely(!d_mountpoint(dentry)))
1340                 return D_WALK_CONTINUE;
1341         if (__path_is_mountpoint(&path)) {
1342                 info->mounted = 1;
1343                 return D_WALK_QUIT;
1344         }
1345         return D_WALK_CONTINUE;
1346 }
1347
1348 /**
1349  * path_has_submounts - check for mounts over a dentry in the
1350  *                      current namespace.
1351  * @parent: path to check.
1352  *
1353  * Return true if the parent or its subdirectories contain
1354  * a mount point in the current namespace.
1355  */
1356 int path_has_submounts(const struct path *parent)
1357 {
1358         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1359
1360         read_seqlock_excl(&mount_lock);
1361         d_walk(parent->dentry, &data, path_check_mount);
1362         read_sequnlock_excl(&mount_lock);
1363
1364         return data.mounted;
1365 }
1366 EXPORT_SYMBOL(path_has_submounts);
1367
1368 /*
1369  * Called by mount code to set a mountpoint and check if the mountpoint is
1370  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1371  * subtree can become unreachable).
1372  *
1373  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1374  * this reason take rename_lock and d_lock on dentry and ancestors.
1375  */
1376 int d_set_mounted(struct dentry *dentry)
1377 {
1378         struct dentry *p;
1379         int ret = -ENOENT;
1380         write_seqlock(&rename_lock);
1381         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1382                 /* Need exclusion wrt. d_invalidate() */
1383                 spin_lock(&p->d_lock);
1384                 if (unlikely(d_unhashed(p))) {
1385                         spin_unlock(&p->d_lock);
1386                         goto out;
1387                 }
1388                 spin_unlock(&p->d_lock);
1389         }
1390         spin_lock(&dentry->d_lock);
1391         if (!d_unlinked(dentry)) {
1392                 ret = -EBUSY;
1393                 if (!d_mountpoint(dentry)) {
1394                         dentry->d_flags |= DCACHE_MOUNTED;
1395                         ret = 0;
1396                 }
1397         }
1398         spin_unlock(&dentry->d_lock);
1399 out:
1400         write_sequnlock(&rename_lock);
1401         return ret;
1402 }
1403
1404 /*
1405  * Search the dentry child list of the specified parent,
1406  * and move any unused dentries to the end of the unused
1407  * list for prune_dcache(). We descend to the next level
1408  * whenever the d_subdirs list is non-empty and continue
1409  * searching.
1410  *
1411  * It returns zero iff there are no unused children,
1412  * otherwise  it returns the number of children moved to
1413  * the end of the unused list. This may not be the total
1414  * number of unused children, because select_parent can
1415  * drop the lock and return early due to latency
1416  * constraints.
1417  */
1418
1419 struct select_data {
1420         struct dentry *start;
1421         struct list_head dispose;
1422         int found;
1423 };
1424
1425 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1426 {
1427         struct select_data *data = _data;
1428         enum d_walk_ret ret = D_WALK_CONTINUE;
1429
1430         if (data->start == dentry)
1431                 goto out;
1432
1433         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1434                 data->found++;
1435         } else {
1436                 if (dentry->d_flags & DCACHE_LRU_LIST)
1437                         d_lru_del(dentry);
1438                 if (!dentry->d_lockref.count) {
1439                         d_shrink_add(dentry, &data->dispose);
1440                         data->found++;
1441                 }
1442         }
1443         /*
1444          * We can return to the caller if we have found some (this
1445          * ensures forward progress). We'll be coming back to find
1446          * the rest.
1447          */
1448         if (!list_empty(&data->dispose))
1449                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1450 out:
1451         return ret;
1452 }
1453
1454 /**
1455  * shrink_dcache_parent - prune dcache
1456  * @parent: parent of entries to prune
1457  *
1458  * Prune the dcache to remove unused children of the parent dentry.
1459  */
1460 void shrink_dcache_parent(struct dentry *parent)
1461 {
1462         for (;;) {
1463                 struct select_data data;
1464
1465                 INIT_LIST_HEAD(&data.dispose);
1466                 data.start = parent;
1467                 data.found = 0;
1468
1469                 d_walk(parent, &data, select_collect);
1470
1471                 if (!list_empty(&data.dispose)) {
1472                         shrink_dentry_list(&data.dispose);
1473                         continue;
1474                 }
1475
1476                 cond_resched();
1477                 if (!data.found)
1478                         break;
1479         }
1480 }
1481 EXPORT_SYMBOL(shrink_dcache_parent);
1482
1483 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1484 {
1485         /* it has busy descendents; complain about those instead */
1486         if (!list_empty(&dentry->d_subdirs))
1487                 return D_WALK_CONTINUE;
1488
1489         /* root with refcount 1 is fine */
1490         if (dentry == _data && dentry->d_lockref.count == 1)
1491                 return D_WALK_CONTINUE;
1492
1493         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1494                         " still in use (%d) [unmount of %s %s]\n",
1495                        dentry,
1496                        dentry->d_inode ?
1497                        dentry->d_inode->i_ino : 0UL,
1498                        dentry,
1499                        dentry->d_lockref.count,
1500                        dentry->d_sb->s_type->name,
1501                        dentry->d_sb->s_id);
1502         WARN_ON(1);
1503         return D_WALK_CONTINUE;
1504 }
1505
1506 static void do_one_tree(struct dentry *dentry)
1507 {
1508         shrink_dcache_parent(dentry);
1509         d_walk(dentry, dentry, umount_check);
1510         d_drop(dentry);
1511         dput(dentry);
1512 }
1513
1514 /*
1515  * destroy the dentries attached to a superblock on unmounting
1516  */
1517 void shrink_dcache_for_umount(struct super_block *sb)
1518 {
1519         struct dentry *dentry;
1520
1521         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1522
1523         dentry = sb->s_root;
1524         sb->s_root = NULL;
1525         do_one_tree(dentry);
1526
1527         while (!hlist_bl_empty(&sb->s_roots)) {
1528                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1529                 do_one_tree(dentry);
1530         }
1531 }
1532
1533 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1534 {
1535         struct dentry **victim = _data;
1536         if (d_mountpoint(dentry)) {
1537                 __dget_dlock(dentry);
1538                 *victim = dentry;
1539                 return D_WALK_QUIT;
1540         }
1541         return D_WALK_CONTINUE;
1542 }
1543
1544 /**
1545  * d_invalidate - detach submounts, prune dcache, and drop
1546  * @dentry: dentry to invalidate (aka detach, prune and drop)
1547  */
1548 void d_invalidate(struct dentry *dentry)
1549 {
1550         bool had_submounts = false;
1551         spin_lock(&dentry->d_lock);
1552         if (d_unhashed(dentry)) {
1553                 spin_unlock(&dentry->d_lock);
1554                 return;
1555         }
1556         __d_drop(dentry);
1557         spin_unlock(&dentry->d_lock);
1558
1559         /* Negative dentries can be dropped without further checks */
1560         if (!dentry->d_inode)
1561                 return;
1562
1563         shrink_dcache_parent(dentry);
1564         for (;;) {
1565                 struct dentry *victim = NULL;
1566                 d_walk(dentry, &victim, find_submount);
1567                 if (!victim) {
1568                         if (had_submounts)
1569                                 shrink_dcache_parent(dentry);
1570                         return;
1571                 }
1572                 had_submounts = true;
1573                 detach_mounts(victim);
1574                 dput(victim);
1575         }
1576 }
1577 EXPORT_SYMBOL(d_invalidate);
1578
1579 /**
1580  * __d_alloc    -       allocate a dcache entry
1581  * @sb: filesystem it will belong to
1582  * @name: qstr of the name
1583  *
1584  * Allocates a dentry. It returns %NULL if there is insufficient memory
1585  * available. On a success the dentry is returned. The name passed in is
1586  * copied and the copy passed in may be reused after this call.
1587  */
1588  
1589 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1590 {
1591         struct dentry *dentry;
1592         char *dname;
1593         int err;
1594
1595         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1596         if (!dentry)
1597                 return NULL;
1598
1599         /*
1600          * We guarantee that the inline name is always NUL-terminated.
1601          * This way the memcpy() done by the name switching in rename
1602          * will still always have a NUL at the end, even if we might
1603          * be overwriting an internal NUL character
1604          */
1605         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1606         if (unlikely(!name)) {
1607                 name = &slash_name;
1608                 dname = dentry->d_iname;
1609         } else if (name->len > DNAME_INLINE_LEN-1) {
1610                 size_t size = offsetof(struct external_name, name[1]);
1611                 struct external_name *p = kmalloc(size + name->len,
1612                                                   GFP_KERNEL_ACCOUNT |
1613                                                   __GFP_RECLAIMABLE);
1614                 if (!p) {
1615                         kmem_cache_free(dentry_cache, dentry); 
1616                         return NULL;
1617                 }
1618                 atomic_set(&p->u.count, 1);
1619                 dname = p->name;
1620         } else  {
1621                 dname = dentry->d_iname;
1622         }       
1623
1624         dentry->d_name.len = name->len;
1625         dentry->d_name.hash = name->hash;
1626         memcpy(dname, name->name, name->len);
1627         dname[name->len] = 0;
1628
1629         /* Make sure we always see the terminating NUL character */
1630         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1631
1632         dentry->d_lockref.count = 1;
1633         dentry->d_flags = 0;
1634         spin_lock_init(&dentry->d_lock);
1635         seqcount_init(&dentry->d_seq);
1636         dentry->d_inode = NULL;
1637         dentry->d_parent = dentry;
1638         dentry->d_sb = sb;
1639         dentry->d_op = NULL;
1640         dentry->d_fsdata = NULL;
1641         INIT_HLIST_BL_NODE(&dentry->d_hash);
1642         INIT_LIST_HEAD(&dentry->d_lru);
1643         INIT_LIST_HEAD(&dentry->d_subdirs);
1644         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1645         INIT_LIST_HEAD(&dentry->d_child);
1646         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1647
1648         if (dentry->d_op && dentry->d_op->d_init) {
1649                 err = dentry->d_op->d_init(dentry);
1650                 if (err) {
1651                         if (dname_external(dentry))
1652                                 kfree(external_name(dentry));
1653                         kmem_cache_free(dentry_cache, dentry);
1654                         return NULL;
1655                 }
1656         }
1657
1658         this_cpu_inc(nr_dentry);
1659
1660         return dentry;
1661 }
1662
1663 /**
1664  * d_alloc      -       allocate a dcache entry
1665  * @parent: parent of entry to allocate
1666  * @name: qstr of the name
1667  *
1668  * Allocates a dentry. It returns %NULL if there is insufficient memory
1669  * available. On a success the dentry is returned. The name passed in is
1670  * copied and the copy passed in may be reused after this call.
1671  */
1672 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1673 {
1674         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1675         if (!dentry)
1676                 return NULL;
1677         dentry->d_flags |= DCACHE_RCUACCESS;
1678         spin_lock(&parent->d_lock);
1679         /*
1680          * don't need child lock because it is not subject
1681          * to concurrency here
1682          */
1683         __dget_dlock(parent);
1684         dentry->d_parent = parent;
1685         list_add(&dentry->d_child, &parent->d_subdirs);
1686         spin_unlock(&parent->d_lock);
1687
1688         return dentry;
1689 }
1690 EXPORT_SYMBOL(d_alloc);
1691
1692 struct dentry *d_alloc_anon(struct super_block *sb)
1693 {
1694         return __d_alloc(sb, NULL);
1695 }
1696 EXPORT_SYMBOL(d_alloc_anon);
1697
1698 struct dentry *d_alloc_cursor(struct dentry * parent)
1699 {
1700         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1701         if (dentry) {
1702                 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1703                 dentry->d_parent = dget(parent);
1704         }
1705         return dentry;
1706 }
1707
1708 /**
1709  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1710  * @sb: the superblock
1711  * @name: qstr of the name
1712  *
1713  * For a filesystem that just pins its dentries in memory and never
1714  * performs lookups at all, return an unhashed IS_ROOT dentry.
1715  */
1716 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1717 {
1718         return __d_alloc(sb, name);
1719 }
1720 EXPORT_SYMBOL(d_alloc_pseudo);
1721
1722 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1723 {
1724         struct qstr q;
1725
1726         q.name = name;
1727         q.hash_len = hashlen_string(parent, name);
1728         return d_alloc(parent, &q);
1729 }
1730 EXPORT_SYMBOL(d_alloc_name);
1731
1732 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1733 {
1734         WARN_ON_ONCE(dentry->d_op);
1735         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1736                                 DCACHE_OP_COMPARE       |
1737                                 DCACHE_OP_REVALIDATE    |
1738                                 DCACHE_OP_WEAK_REVALIDATE       |
1739                                 DCACHE_OP_DELETE        |
1740                                 DCACHE_OP_REAL));
1741         dentry->d_op = op;
1742         if (!op)
1743                 return;
1744         if (op->d_hash)
1745                 dentry->d_flags |= DCACHE_OP_HASH;
1746         if (op->d_compare)
1747                 dentry->d_flags |= DCACHE_OP_COMPARE;
1748         if (op->d_revalidate)
1749                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1750         if (op->d_weak_revalidate)
1751                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1752         if (op->d_delete)
1753                 dentry->d_flags |= DCACHE_OP_DELETE;
1754         if (op->d_prune)
1755                 dentry->d_flags |= DCACHE_OP_PRUNE;
1756         if (op->d_real)
1757                 dentry->d_flags |= DCACHE_OP_REAL;
1758
1759 }
1760 EXPORT_SYMBOL(d_set_d_op);
1761
1762
1763 /*
1764  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1765  * @dentry - The dentry to mark
1766  *
1767  * Mark a dentry as falling through to the lower layer (as set with
1768  * d_pin_lower()).  This flag may be recorded on the medium.
1769  */
1770 void d_set_fallthru(struct dentry *dentry)
1771 {
1772         spin_lock(&dentry->d_lock);
1773         dentry->d_flags |= DCACHE_FALLTHRU;
1774         spin_unlock(&dentry->d_lock);
1775 }
1776 EXPORT_SYMBOL(d_set_fallthru);
1777
1778 static unsigned d_flags_for_inode(struct inode *inode)
1779 {
1780         unsigned add_flags = DCACHE_REGULAR_TYPE;
1781
1782         if (!inode)
1783                 return DCACHE_MISS_TYPE;
1784
1785         if (S_ISDIR(inode->i_mode)) {
1786                 add_flags = DCACHE_DIRECTORY_TYPE;
1787                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1788                         if (unlikely(!inode->i_op->lookup))
1789                                 add_flags = DCACHE_AUTODIR_TYPE;
1790                         else
1791                                 inode->i_opflags |= IOP_LOOKUP;
1792                 }
1793                 goto type_determined;
1794         }
1795
1796         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1797                 if (unlikely(inode->i_op->get_link)) {
1798                         add_flags = DCACHE_SYMLINK_TYPE;
1799                         goto type_determined;
1800                 }
1801                 inode->i_opflags |= IOP_NOFOLLOW;
1802         }
1803
1804         if (unlikely(!S_ISREG(inode->i_mode)))
1805                 add_flags = DCACHE_SPECIAL_TYPE;
1806
1807 type_determined:
1808         if (unlikely(IS_AUTOMOUNT(inode)))
1809                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1810         return add_flags;
1811 }
1812
1813 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1814 {
1815         unsigned add_flags = d_flags_for_inode(inode);
1816         WARN_ON(d_in_lookup(dentry));
1817
1818         spin_lock(&dentry->d_lock);
1819         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1820         raw_write_seqcount_begin(&dentry->d_seq);
1821         __d_set_inode_and_type(dentry, inode, add_flags);
1822         raw_write_seqcount_end(&dentry->d_seq);
1823         fsnotify_update_flags(dentry);
1824         spin_unlock(&dentry->d_lock);
1825 }
1826
1827 /**
1828  * d_instantiate - fill in inode information for a dentry
1829  * @entry: dentry to complete
1830  * @inode: inode to attach to this dentry
1831  *
1832  * Fill in inode information in the entry.
1833  *
1834  * This turns negative dentries into productive full members
1835  * of society.
1836  *
1837  * NOTE! This assumes that the inode count has been incremented
1838  * (or otherwise set) by the caller to indicate that it is now
1839  * in use by the dcache.
1840  */
1841  
1842 void d_instantiate(struct dentry *entry, struct inode * inode)
1843 {
1844         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1845         if (inode) {
1846                 security_d_instantiate(entry, inode);
1847                 spin_lock(&inode->i_lock);
1848                 __d_instantiate(entry, inode);
1849                 spin_unlock(&inode->i_lock);
1850         }
1851 }
1852 EXPORT_SYMBOL(d_instantiate);
1853
1854 /*
1855  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1856  * with lockdep-related part of unlock_new_inode() done before
1857  * anything else.  Use that instead of open-coding d_instantiate()/
1858  * unlock_new_inode() combinations.
1859  */
1860 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1861 {
1862         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1863         BUG_ON(!inode);
1864         lockdep_annotate_inode_mutex_key(inode);
1865         security_d_instantiate(entry, inode);
1866         spin_lock(&inode->i_lock);
1867         __d_instantiate(entry, inode);
1868         WARN_ON(!(inode->i_state & I_NEW));
1869         inode->i_state &= ~I_NEW & ~I_CREATING;
1870         smp_mb();
1871         wake_up_bit(&inode->i_state, __I_NEW);
1872         spin_unlock(&inode->i_lock);
1873 }
1874 EXPORT_SYMBOL(d_instantiate_new);
1875
1876 struct dentry *d_make_root(struct inode *root_inode)
1877 {
1878         struct dentry *res = NULL;
1879
1880         if (root_inode) {
1881                 res = d_alloc_anon(root_inode->i_sb);
1882                 if (res) {
1883                         res->d_flags |= DCACHE_RCUACCESS;
1884                         d_instantiate(res, root_inode);
1885                 } else {
1886                         iput(root_inode);
1887                 }
1888         }
1889         return res;
1890 }
1891 EXPORT_SYMBOL(d_make_root);
1892
1893 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1894                                            struct inode *inode,
1895                                            bool disconnected)
1896 {
1897         struct dentry *res;
1898         unsigned add_flags;
1899
1900         security_d_instantiate(dentry, inode);
1901         spin_lock(&inode->i_lock);
1902         res = __d_find_any_alias(inode);
1903         if (res) {
1904                 spin_unlock(&inode->i_lock);
1905                 dput(dentry);
1906                 goto out_iput;
1907         }
1908
1909         /* attach a disconnected dentry */
1910         add_flags = d_flags_for_inode(inode);
1911
1912         if (disconnected)
1913                 add_flags |= DCACHE_DISCONNECTED;
1914
1915         spin_lock(&dentry->d_lock);
1916         __d_set_inode_and_type(dentry, inode, add_flags);
1917         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1918         if (!disconnected) {
1919                 hlist_bl_lock(&dentry->d_sb->s_roots);
1920                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1921                 hlist_bl_unlock(&dentry->d_sb->s_roots);
1922         }
1923         spin_unlock(&dentry->d_lock);
1924         spin_unlock(&inode->i_lock);
1925
1926         return dentry;
1927
1928  out_iput:
1929         iput(inode);
1930         return res;
1931 }
1932
1933 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1934 {
1935         return __d_instantiate_anon(dentry, inode, true);
1936 }
1937 EXPORT_SYMBOL(d_instantiate_anon);
1938
1939 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1940 {
1941         struct dentry *tmp;
1942         struct dentry *res;
1943
1944         if (!inode)
1945                 return ERR_PTR(-ESTALE);
1946         if (IS_ERR(inode))
1947                 return ERR_CAST(inode);
1948
1949         res = d_find_any_alias(inode);
1950         if (res)
1951                 goto out_iput;
1952
1953         tmp = d_alloc_anon(inode->i_sb);
1954         if (!tmp) {
1955                 res = ERR_PTR(-ENOMEM);
1956                 goto out_iput;
1957         }
1958
1959         return __d_instantiate_anon(tmp, inode, disconnected);
1960
1961 out_iput:
1962         iput(inode);
1963         return res;
1964 }
1965
1966 /**
1967  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1968  * @inode: inode to allocate the dentry for
1969  *
1970  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1971  * similar open by handle operations.  The returned dentry may be anonymous,
1972  * or may have a full name (if the inode was already in the cache).
1973  *
1974  * When called on a directory inode, we must ensure that the inode only ever
1975  * has one dentry.  If a dentry is found, that is returned instead of
1976  * allocating a new one.
1977  *
1978  * On successful return, the reference to the inode has been transferred
1979  * to the dentry.  In case of an error the reference on the inode is released.
1980  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1981  * be passed in and the error will be propagated to the return value,
1982  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1983  */
1984 struct dentry *d_obtain_alias(struct inode *inode)
1985 {
1986         return __d_obtain_alias(inode, true);
1987 }
1988 EXPORT_SYMBOL(d_obtain_alias);
1989
1990 /**
1991  * d_obtain_root - find or allocate a dentry for a given inode
1992  * @inode: inode to allocate the dentry for
1993  *
1994  * Obtain an IS_ROOT dentry for the root of a filesystem.
1995  *
1996  * We must ensure that directory inodes only ever have one dentry.  If a
1997  * dentry is found, that is returned instead of allocating a new one.
1998  *
1999  * On successful return, the reference to the inode has been transferred
2000  * to the dentry.  In case of an error the reference on the inode is
2001  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2002  * error will be propagate to the return value, with a %NULL @inode
2003  * replaced by ERR_PTR(-ESTALE).
2004  */
2005 struct dentry *d_obtain_root(struct inode *inode)
2006 {
2007         return __d_obtain_alias(inode, false);
2008 }
2009 EXPORT_SYMBOL(d_obtain_root);
2010
2011 /**
2012  * d_add_ci - lookup or allocate new dentry with case-exact name
2013  * @inode:  the inode case-insensitive lookup has found
2014  * @dentry: the negative dentry that was passed to the parent's lookup func
2015  * @name:   the case-exact name to be associated with the returned dentry
2016  *
2017  * This is to avoid filling the dcache with case-insensitive names to the
2018  * same inode, only the actual correct case is stored in the dcache for
2019  * case-insensitive filesystems.
2020  *
2021  * For a case-insensitive lookup match and if the the case-exact dentry
2022  * already exists in in the dcache, use it and return it.
2023  *
2024  * If no entry exists with the exact case name, allocate new dentry with
2025  * the exact case, and return the spliced entry.
2026  */
2027 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2028                         struct qstr *name)
2029 {
2030         struct dentry *found, *res;
2031
2032         /*
2033          * First check if a dentry matching the name already exists,
2034          * if not go ahead and create it now.
2035          */
2036         found = d_hash_and_lookup(dentry->d_parent, name);
2037         if (found) {
2038                 iput(inode);
2039                 return found;
2040         }
2041         if (d_in_lookup(dentry)) {
2042                 found = d_alloc_parallel(dentry->d_parent, name,
2043                                         dentry->d_wait);
2044                 if (IS_ERR(found) || !d_in_lookup(found)) {
2045                         iput(inode);
2046                         return found;
2047                 }
2048         } else {
2049                 found = d_alloc(dentry->d_parent, name);
2050                 if (!found) {
2051                         iput(inode);
2052                         return ERR_PTR(-ENOMEM);
2053                 } 
2054         }
2055         res = d_splice_alias(inode, found);
2056         if (res) {
2057                 dput(found);
2058                 return res;
2059         }
2060         return found;
2061 }
2062 EXPORT_SYMBOL(d_add_ci);
2063
2064
2065 static inline bool d_same_name(const struct dentry *dentry,
2066                                 const struct dentry *parent,
2067                                 const struct qstr *name)
2068 {
2069         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2070                 if (dentry->d_name.len != name->len)
2071                         return false;
2072                 return dentry_cmp(dentry, name->name, name->len) == 0;
2073         }
2074         return parent->d_op->d_compare(dentry,
2075                                        dentry->d_name.len, dentry->d_name.name,
2076                                        name) == 0;
2077 }
2078
2079 /**
2080  * __d_lookup_rcu - search for a dentry (racy, store-free)
2081  * @parent: parent dentry
2082  * @name: qstr of name we wish to find
2083  * @seqp: returns d_seq value at the point where the dentry was found
2084  * Returns: dentry, or NULL
2085  *
2086  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2087  * resolution (store-free path walking) design described in
2088  * Documentation/filesystems/path-lookup.txt.
2089  *
2090  * This is not to be used outside core vfs.
2091  *
2092  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2093  * held, and rcu_read_lock held. The returned dentry must not be stored into
2094  * without taking d_lock and checking d_seq sequence count against @seq
2095  * returned here.
2096  *
2097  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2098  * function.
2099  *
2100  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2101  * the returned dentry, so long as its parent's seqlock is checked after the
2102  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2103  * is formed, giving integrity down the path walk.
2104  *
2105  * NOTE! The caller *has* to check the resulting dentry against the sequence
2106  * number we've returned before using any of the resulting dentry state!
2107  */
2108 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2109                                 const struct qstr *name,
2110                                 unsigned *seqp)
2111 {
2112         u64 hashlen = name->hash_len;
2113         const unsigned char *str = name->name;
2114         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2115         struct hlist_bl_node *node;
2116         struct dentry *dentry;
2117
2118         /*
2119          * Note: There is significant duplication with __d_lookup_rcu which is
2120          * required to prevent single threaded performance regressions
2121          * especially on architectures where smp_rmb (in seqcounts) are costly.
2122          * Keep the two functions in sync.
2123          */
2124
2125         /*
2126          * The hash list is protected using RCU.
2127          *
2128          * Carefully use d_seq when comparing a candidate dentry, to avoid
2129          * races with d_move().
2130          *
2131          * It is possible that concurrent renames can mess up our list
2132          * walk here and result in missing our dentry, resulting in the
2133          * false-negative result. d_lookup() protects against concurrent
2134          * renames using rename_lock seqlock.
2135          *
2136          * See Documentation/filesystems/path-lookup.txt for more details.
2137          */
2138         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2139                 unsigned seq;
2140
2141 seqretry:
2142                 /*
2143                  * The dentry sequence count protects us from concurrent
2144                  * renames, and thus protects parent and name fields.
2145                  *
2146                  * The caller must perform a seqcount check in order
2147                  * to do anything useful with the returned dentry.
2148                  *
2149                  * NOTE! We do a "raw" seqcount_begin here. That means that
2150                  * we don't wait for the sequence count to stabilize if it
2151                  * is in the middle of a sequence change. If we do the slow
2152                  * dentry compare, we will do seqretries until it is stable,
2153                  * and if we end up with a successful lookup, we actually
2154                  * want to exit RCU lookup anyway.
2155                  *
2156                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2157                  * we are still guaranteed NUL-termination of ->d_name.name.
2158                  */
2159                 seq = raw_seqcount_begin(&dentry->d_seq);
2160                 if (dentry->d_parent != parent)
2161                         continue;
2162                 if (d_unhashed(dentry))
2163                         continue;
2164
2165                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2166                         int tlen;
2167                         const char *tname;
2168                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2169                                 continue;
2170                         tlen = dentry->d_name.len;
2171                         tname = dentry->d_name.name;
2172                         /* we want a consistent (name,len) pair */
2173                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2174                                 cpu_relax();
2175                                 goto seqretry;
2176                         }
2177                         if (parent->d_op->d_compare(dentry,
2178                                                     tlen, tname, name) != 0)
2179                                 continue;
2180                 } else {
2181                         if (dentry->d_name.hash_len != hashlen)
2182                                 continue;
2183                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2184                                 continue;
2185                 }
2186                 *seqp = seq;
2187                 return dentry;
2188         }
2189         return NULL;
2190 }
2191
2192 /**
2193  * d_lookup - search for a dentry
2194  * @parent: parent dentry
2195  * @name: qstr of name we wish to find
2196  * Returns: dentry, or NULL
2197  *
2198  * d_lookup searches the children of the parent dentry for the name in
2199  * question. If the dentry is found its reference count is incremented and the
2200  * dentry is returned. The caller must use dput to free the entry when it has
2201  * finished using it. %NULL is returned if the dentry does not exist.
2202  */
2203 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2204 {
2205         struct dentry *dentry;
2206         unsigned seq;
2207
2208         do {
2209                 seq = read_seqbegin(&rename_lock);
2210                 dentry = __d_lookup(parent, name);
2211                 if (dentry)
2212                         break;
2213         } while (read_seqretry(&rename_lock, seq));
2214         return dentry;
2215 }
2216 EXPORT_SYMBOL(d_lookup);
2217
2218 /**
2219  * __d_lookup - search for a dentry (racy)
2220  * @parent: parent dentry
2221  * @name: qstr of name we wish to find
2222  * Returns: dentry, or NULL
2223  *
2224  * __d_lookup is like d_lookup, however it may (rarely) return a
2225  * false-negative result due to unrelated rename activity.
2226  *
2227  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2228  * however it must be used carefully, eg. with a following d_lookup in
2229  * the case of failure.
2230  *
2231  * __d_lookup callers must be commented.
2232  */
2233 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2234 {
2235         unsigned int hash = name->hash;
2236         struct hlist_bl_head *b = d_hash(hash);
2237         struct hlist_bl_node *node;
2238         struct dentry *found = NULL;
2239         struct dentry *dentry;
2240
2241         /*
2242          * Note: There is significant duplication with __d_lookup_rcu which is
2243          * required to prevent single threaded performance regressions
2244          * especially on architectures where smp_rmb (in seqcounts) are costly.
2245          * Keep the two functions in sync.
2246          */
2247
2248         /*
2249          * The hash list is protected using RCU.
2250          *
2251          * Take d_lock when comparing a candidate dentry, to avoid races
2252          * with d_move().
2253          *
2254          * It is possible that concurrent renames can mess up our list
2255          * walk here and result in missing our dentry, resulting in the
2256          * false-negative result. d_lookup() protects against concurrent
2257          * renames using rename_lock seqlock.
2258          *
2259          * See Documentation/filesystems/path-lookup.txt for more details.
2260          */
2261         rcu_read_lock();
2262         
2263         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2264
2265                 if (dentry->d_name.hash != hash)
2266                         continue;
2267
2268                 spin_lock(&dentry->d_lock);
2269                 if (dentry->d_parent != parent)
2270                         goto next;
2271                 if (d_unhashed(dentry))
2272                         goto next;
2273
2274                 if (!d_same_name(dentry, parent, name))
2275                         goto next;
2276
2277                 dentry->d_lockref.count++;
2278                 found = dentry;
2279                 spin_unlock(&dentry->d_lock);
2280                 break;
2281 next:
2282                 spin_unlock(&dentry->d_lock);
2283         }
2284         rcu_read_unlock();
2285
2286         return found;
2287 }
2288
2289 /**
2290  * d_hash_and_lookup - hash the qstr then search for a dentry
2291  * @dir: Directory to search in
2292  * @name: qstr of name we wish to find
2293  *
2294  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2295  */
2296 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2297 {
2298         /*
2299          * Check for a fs-specific hash function. Note that we must
2300          * calculate the standard hash first, as the d_op->d_hash()
2301          * routine may choose to leave the hash value unchanged.
2302          */
2303         name->hash = full_name_hash(dir, name->name, name->len);
2304         if (dir->d_flags & DCACHE_OP_HASH) {
2305                 int err = dir->d_op->d_hash(dir, name);
2306                 if (unlikely(err < 0))
2307                         return ERR_PTR(err);
2308         }
2309         return d_lookup(dir, name);
2310 }
2311 EXPORT_SYMBOL(d_hash_and_lookup);
2312
2313 /*
2314  * When a file is deleted, we have two options:
2315  * - turn this dentry into a negative dentry
2316  * - unhash this dentry and free it.
2317  *
2318  * Usually, we want to just turn this into
2319  * a negative dentry, but if anybody else is
2320  * currently using the dentry or the inode
2321  * we can't do that and we fall back on removing
2322  * it from the hash queues and waiting for
2323  * it to be deleted later when it has no users
2324  */
2325  
2326 /**
2327  * d_delete - delete a dentry
2328  * @dentry: The dentry to delete
2329  *
2330  * Turn the dentry into a negative dentry if possible, otherwise
2331  * remove it from the hash queues so it can be deleted later
2332  */
2333  
2334 void d_delete(struct dentry * dentry)
2335 {
2336         struct inode *inode = dentry->d_inode;
2337         int isdir = d_is_dir(dentry);
2338
2339         spin_lock(&inode->i_lock);
2340         spin_lock(&dentry->d_lock);
2341         /*
2342          * Are we the only user?
2343          */
2344         if (dentry->d_lockref.count == 1) {
2345                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2346                 dentry_unlink_inode(dentry);
2347         } else {
2348                 __d_drop(dentry);
2349                 spin_unlock(&dentry->d_lock);
2350                 spin_unlock(&inode->i_lock);
2351         }
2352         fsnotify_nameremove(dentry, isdir);
2353 }
2354 EXPORT_SYMBOL(d_delete);
2355
2356 static void __d_rehash(struct dentry *entry)
2357 {
2358         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2359
2360         hlist_bl_lock(b);
2361         hlist_bl_add_head_rcu(&entry->d_hash, b);
2362         hlist_bl_unlock(b);
2363 }
2364
2365 /**
2366  * d_rehash     - add an entry back to the hash
2367  * @entry: dentry to add to the hash
2368  *
2369  * Adds a dentry to the hash according to its name.
2370  */
2371  
2372 void d_rehash(struct dentry * entry)
2373 {
2374         spin_lock(&entry->d_lock);
2375         __d_rehash(entry);
2376         spin_unlock(&entry->d_lock);
2377 }
2378 EXPORT_SYMBOL(d_rehash);
2379
2380 static inline unsigned start_dir_add(struct inode *dir)
2381 {
2382
2383         for (;;) {
2384                 unsigned n = dir->i_dir_seq;
2385                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2386                         return n;
2387                 cpu_relax();
2388         }
2389 }
2390
2391 static inline void end_dir_add(struct inode *dir, unsigned n)
2392 {
2393         smp_store_release(&dir->i_dir_seq, n + 2);
2394 }
2395
2396 static void d_wait_lookup(struct dentry *dentry)
2397 {
2398         if (d_in_lookup(dentry)) {
2399                 DECLARE_WAITQUEUE(wait, current);
2400                 add_wait_queue(dentry->d_wait, &wait);
2401                 do {
2402                         set_current_state(TASK_UNINTERRUPTIBLE);
2403                         spin_unlock(&dentry->d_lock);
2404                         schedule();
2405                         spin_lock(&dentry->d_lock);
2406                 } while (d_in_lookup(dentry));
2407         }
2408 }
2409
2410 struct dentry *d_alloc_parallel(struct dentry *parent,
2411                                 const struct qstr *name,
2412                                 wait_queue_head_t *wq)
2413 {
2414         unsigned int hash = name->hash;
2415         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2416         struct hlist_bl_node *node;
2417         struct dentry *new = d_alloc(parent, name);
2418         struct dentry *dentry;
2419         unsigned seq, r_seq, d_seq;
2420
2421         if (unlikely(!new))
2422                 return ERR_PTR(-ENOMEM);
2423
2424 retry:
2425         rcu_read_lock();
2426         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2427         r_seq = read_seqbegin(&rename_lock);
2428         dentry = __d_lookup_rcu(parent, name, &d_seq);
2429         if (unlikely(dentry)) {
2430                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2431                         rcu_read_unlock();
2432                         goto retry;
2433                 }
2434                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2435                         rcu_read_unlock();
2436                         dput(dentry);
2437                         goto retry;
2438                 }
2439                 rcu_read_unlock();
2440                 dput(new);
2441                 return dentry;
2442         }
2443         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2444                 rcu_read_unlock();
2445                 goto retry;
2446         }
2447
2448         if (unlikely(seq & 1)) {
2449                 rcu_read_unlock();
2450                 goto retry;
2451         }
2452
2453         hlist_bl_lock(b);
2454         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2455                 hlist_bl_unlock(b);
2456                 rcu_read_unlock();
2457                 goto retry;
2458         }
2459         /*
2460          * No changes for the parent since the beginning of d_lookup().
2461          * Since all removals from the chain happen with hlist_bl_lock(),
2462          * any potential in-lookup matches are going to stay here until
2463          * we unlock the chain.  All fields are stable in everything
2464          * we encounter.
2465          */
2466         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2467                 if (dentry->d_name.hash != hash)
2468                         continue;
2469                 if (dentry->d_parent != parent)
2470                         continue;
2471                 if (!d_same_name(dentry, parent, name))
2472                         continue;
2473                 hlist_bl_unlock(b);
2474                 /* now we can try to grab a reference */
2475                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2476                         rcu_read_unlock();
2477                         goto retry;
2478                 }
2479
2480                 rcu_read_unlock();
2481                 /*
2482                  * somebody is likely to be still doing lookup for it;
2483                  * wait for them to finish
2484                  */
2485                 spin_lock(&dentry->d_lock);
2486                 d_wait_lookup(dentry);
2487                 /*
2488                  * it's not in-lookup anymore; in principle we should repeat
2489                  * everything from dcache lookup, but it's likely to be what
2490                  * d_lookup() would've found anyway.  If it is, just return it;
2491                  * otherwise we really have to repeat the whole thing.
2492                  */
2493                 if (unlikely(dentry->d_name.hash != hash))
2494                         goto mismatch;
2495                 if (unlikely(dentry->d_parent != parent))
2496                         goto mismatch;
2497                 if (unlikely(d_unhashed(dentry)))
2498                         goto mismatch;
2499                 if (unlikely(!d_same_name(dentry, parent, name)))
2500                         goto mismatch;
2501                 /* OK, it *is* a hashed match; return it */
2502                 spin_unlock(&dentry->d_lock);
2503                 dput(new);
2504                 return dentry;
2505         }
2506         rcu_read_unlock();
2507         /* we can't take ->d_lock here; it's OK, though. */
2508         new->d_flags |= DCACHE_PAR_LOOKUP;
2509         new->d_wait = wq;
2510         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2511         hlist_bl_unlock(b);
2512         return new;
2513 mismatch:
2514         spin_unlock(&dentry->d_lock);
2515         dput(dentry);
2516         goto retry;
2517 }
2518 EXPORT_SYMBOL(d_alloc_parallel);
2519
2520 void __d_lookup_done(struct dentry *dentry)
2521 {
2522         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2523                                                  dentry->d_name.hash);
2524         hlist_bl_lock(b);
2525         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2526         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2527         wake_up_all(dentry->d_wait);
2528         dentry->d_wait = NULL;
2529         hlist_bl_unlock(b);
2530         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2531         INIT_LIST_HEAD(&dentry->d_lru);
2532 }
2533 EXPORT_SYMBOL(__d_lookup_done);
2534
2535 /* inode->i_lock held if inode is non-NULL */
2536
2537 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2538 {
2539         struct inode *dir = NULL;
2540         unsigned n;
2541         spin_lock(&dentry->d_lock);
2542         if (unlikely(d_in_lookup(dentry))) {
2543                 dir = dentry->d_parent->d_inode;
2544                 n = start_dir_add(dir);
2545                 __d_lookup_done(dentry);
2546         }
2547         if (inode) {
2548                 unsigned add_flags = d_flags_for_inode(inode);
2549                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2550                 raw_write_seqcount_begin(&dentry->d_seq);
2551                 __d_set_inode_and_type(dentry, inode, add_flags);
2552                 raw_write_seqcount_end(&dentry->d_seq);
2553                 fsnotify_update_flags(dentry);
2554         }
2555         __d_rehash(dentry);
2556         if (dir)
2557                 end_dir_add(dir, n);
2558         spin_unlock(&dentry->d_lock);
2559         if (inode)
2560                 spin_unlock(&inode->i_lock);
2561 }
2562
2563 /**
2564  * d_add - add dentry to hash queues
2565  * @entry: dentry to add
2566  * @inode: The inode to attach to this dentry
2567  *
2568  * This adds the entry to the hash queues and initializes @inode.
2569  * The entry was actually filled in earlier during d_alloc().
2570  */
2571
2572 void d_add(struct dentry *entry, struct inode *inode)
2573 {
2574         if (inode) {
2575                 security_d_instantiate(entry, inode);
2576                 spin_lock(&inode->i_lock);
2577         }
2578         __d_add(entry, inode);
2579 }
2580 EXPORT_SYMBOL(d_add);
2581
2582 /**
2583  * d_exact_alias - find and hash an exact unhashed alias
2584  * @entry: dentry to add
2585  * @inode: The inode to go with this dentry
2586  *
2587  * If an unhashed dentry with the same name/parent and desired
2588  * inode already exists, hash and return it.  Otherwise, return
2589  * NULL.
2590  *
2591  * Parent directory should be locked.
2592  */
2593 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2594 {
2595         struct dentry *alias;
2596         unsigned int hash = entry->d_name.hash;
2597
2598         spin_lock(&inode->i_lock);
2599         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2600                 /*
2601                  * Don't need alias->d_lock here, because aliases with
2602                  * d_parent == entry->d_parent are not subject to name or
2603                  * parent changes, because the parent inode i_mutex is held.
2604                  */
2605                 if (alias->d_name.hash != hash)
2606                         continue;
2607                 if (alias->d_parent != entry->d_parent)
2608                         continue;
2609                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2610                         continue;
2611                 spin_lock(&alias->d_lock);
2612                 if (!d_unhashed(alias)) {
2613                         spin_unlock(&alias->d_lock);
2614                         alias = NULL;
2615                 } else {
2616                         __dget_dlock(alias);
2617                         __d_rehash(alias);
2618                         spin_unlock(&alias->d_lock);
2619                 }
2620                 spin_unlock(&inode->i_lock);
2621                 return alias;
2622         }
2623         spin_unlock(&inode->i_lock);
2624         return NULL;
2625 }
2626 EXPORT_SYMBOL(d_exact_alias);
2627
2628 static void swap_names(struct dentry *dentry, struct dentry *target)
2629 {
2630         if (unlikely(dname_external(target))) {
2631                 if (unlikely(dname_external(dentry))) {
2632                         /*
2633                          * Both external: swap the pointers
2634                          */
2635                         swap(target->d_name.name, dentry->d_name.name);
2636                 } else {
2637                         /*
2638                          * dentry:internal, target:external.  Steal target's
2639                          * storage and make target internal.
2640                          */
2641                         memcpy(target->d_iname, dentry->d_name.name,
2642                                         dentry->d_name.len + 1);
2643                         dentry->d_name.name = target->d_name.name;
2644                         target->d_name.name = target->d_iname;
2645                 }
2646         } else {
2647                 if (unlikely(dname_external(dentry))) {
2648                         /*
2649                          * dentry:external, target:internal.  Give dentry's
2650                          * storage to target and make dentry internal
2651                          */
2652                         memcpy(dentry->d_iname, target->d_name.name,
2653                                         target->d_name.len + 1);
2654                         target->d_name.name = dentry->d_name.name;
2655                         dentry->d_name.name = dentry->d_iname;
2656                 } else {
2657                         /*
2658                          * Both are internal.
2659                          */
2660                         unsigned int i;
2661                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2662                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2663                                 swap(((long *) &dentry->d_iname)[i],
2664                                      ((long *) &target->d_iname)[i]);
2665                         }
2666                 }
2667         }
2668         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2669 }
2670
2671 static void copy_name(struct dentry *dentry, struct dentry *target)
2672 {
2673         struct external_name *old_name = NULL;
2674         if (unlikely(dname_external(dentry)))
2675                 old_name = external_name(dentry);
2676         if (unlikely(dname_external(target))) {
2677                 atomic_inc(&external_name(target)->u.count);
2678                 dentry->d_name = target->d_name;
2679         } else {
2680                 memcpy(dentry->d_iname, target->d_name.name,
2681                                 target->d_name.len + 1);
2682                 dentry->d_name.name = dentry->d_iname;
2683                 dentry->d_name.hash_len = target->d_name.hash_len;
2684         }
2685         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2686                 kfree_rcu(old_name, u.head);
2687 }
2688
2689 /*
2690  * __d_move - move a dentry
2691  * @dentry: entry to move
2692  * @target: new dentry
2693  * @exchange: exchange the two dentries
2694  *
2695  * Update the dcache to reflect the move of a file name. Negative
2696  * dcache entries should not be moved in this way. Caller must hold
2697  * rename_lock, the i_mutex of the source and target directories,
2698  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2699  */
2700 static void __d_move(struct dentry *dentry, struct dentry *target,
2701                      bool exchange)
2702 {
2703         struct dentry *old_parent, *p;
2704         struct inode *dir = NULL;
2705         unsigned n;
2706
2707         WARN_ON(!dentry->d_inode);
2708         if (WARN_ON(dentry == target))
2709                 return;
2710
2711         BUG_ON(d_ancestor(target, dentry));
2712         old_parent = dentry->d_parent;
2713         p = d_ancestor(old_parent, target);
2714         if (IS_ROOT(dentry)) {
2715                 BUG_ON(p);
2716                 spin_lock(&target->d_parent->d_lock);
2717         } else if (!p) {
2718                 /* target is not a descendent of dentry->d_parent */
2719                 spin_lock(&target->d_parent->d_lock);
2720                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2721         } else {
2722                 BUG_ON(p == dentry);
2723                 spin_lock(&old_parent->d_lock);
2724                 if (p != target)
2725                         spin_lock_nested(&target->d_parent->d_lock,
2726                                         DENTRY_D_LOCK_NESTED);
2727         }
2728         spin_lock_nested(&dentry->d_lock, 2);
2729         spin_lock_nested(&target->d_lock, 3);
2730
2731         if (unlikely(d_in_lookup(target))) {
2732                 dir = target->d_parent->d_inode;
2733                 n = start_dir_add(dir);
2734                 __d_lookup_done(target);
2735         }
2736
2737         write_seqcount_begin(&dentry->d_seq);
2738         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2739
2740         /* unhash both */
2741         if (!d_unhashed(dentry))
2742                 ___d_drop(dentry);
2743         if (!d_unhashed(target))
2744                 ___d_drop(target);
2745
2746         /* ... and switch them in the tree */
2747         dentry->d_parent = target->d_parent;
2748         if (!exchange) {
2749                 copy_name(dentry, target);
2750                 target->d_hash.pprev = NULL;
2751                 dentry->d_parent->d_lockref.count++;
2752                 if (dentry == old_parent)
2753                         dentry->d_flags |= DCACHE_RCUACCESS;
2754                 else
2755                         WARN_ON(!--old_parent->d_lockref.count);
2756         } else {
2757                 target->d_parent = old_parent;
2758                 swap_names(dentry, target);
2759                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2760                 __d_rehash(target);
2761                 fsnotify_update_flags(target);
2762         }
2763         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2764         __d_rehash(dentry);
2765         fsnotify_update_flags(dentry);
2766
2767         write_seqcount_end(&target->d_seq);
2768         write_seqcount_end(&dentry->d_seq);
2769
2770         if (dir)
2771                 end_dir_add(dir, n);
2772
2773         if (dentry->d_parent != old_parent)
2774                 spin_unlock(&dentry->d_parent->d_lock);
2775         if (dentry != old_parent)
2776                 spin_unlock(&old_parent->d_lock);
2777         spin_unlock(&target->d_lock);
2778         spin_unlock(&dentry->d_lock);
2779 }
2780
2781 /*
2782  * d_move - move a dentry
2783  * @dentry: entry to move
2784  * @target: new dentry
2785  *
2786  * Update the dcache to reflect the move of a file name. Negative
2787  * dcache entries should not be moved in this way. See the locking
2788  * requirements for __d_move.
2789  */
2790 void d_move(struct dentry *dentry, struct dentry *target)
2791 {
2792         write_seqlock(&rename_lock);
2793         __d_move(dentry, target, false);
2794         write_sequnlock(&rename_lock);
2795 }
2796 EXPORT_SYMBOL(d_move);
2797
2798 /*
2799  * d_exchange - exchange two dentries
2800  * @dentry1: first dentry
2801  * @dentry2: second dentry
2802  */
2803 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2804 {
2805         write_seqlock(&rename_lock);
2806
2807         WARN_ON(!dentry1->d_inode);
2808         WARN_ON(!dentry2->d_inode);
2809         WARN_ON(IS_ROOT(dentry1));
2810         WARN_ON(IS_ROOT(dentry2));
2811
2812         __d_move(dentry1, dentry2, true);
2813
2814         write_sequnlock(&rename_lock);
2815 }
2816
2817 /**
2818  * d_ancestor - search for an ancestor
2819  * @p1: ancestor dentry
2820  * @p2: child dentry
2821  *
2822  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2823  * an ancestor of p2, else NULL.
2824  */
2825 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2826 {
2827         struct dentry *p;
2828
2829         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2830                 if (p->d_parent == p1)
2831                         return p;
2832         }
2833         return NULL;
2834 }
2835
2836 /*
2837  * This helper attempts to cope with remotely renamed directories
2838  *
2839  * It assumes that the caller is already holding
2840  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2841  *
2842  * Note: If ever the locking in lock_rename() changes, then please
2843  * remember to update this too...
2844  */
2845 static int __d_unalias(struct inode *inode,
2846                 struct dentry *dentry, struct dentry *alias)
2847 {
2848         struct mutex *m1 = NULL;
2849         struct rw_semaphore *m2 = NULL;
2850         int ret = -ESTALE;
2851
2852         /* If alias and dentry share a parent, then no extra locks required */
2853         if (alias->d_parent == dentry->d_parent)
2854                 goto out_unalias;
2855
2856         /* See lock_rename() */
2857         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2858                 goto out_err;
2859         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2860         if (!inode_trylock_shared(alias->d_parent->d_inode))
2861                 goto out_err;
2862         m2 = &alias->d_parent->d_inode->i_rwsem;
2863 out_unalias:
2864         __d_move(alias, dentry, false);
2865         ret = 0;
2866 out_err:
2867         if (m2)
2868                 up_read(m2);
2869         if (m1)
2870                 mutex_unlock(m1);
2871         return ret;
2872 }
2873
2874 /**
2875  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2876  * @inode:  the inode which may have a disconnected dentry
2877  * @dentry: a negative dentry which we want to point to the inode.
2878  *
2879  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2880  * place of the given dentry and return it, else simply d_add the inode
2881  * to the dentry and return NULL.
2882  *
2883  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2884  * we should error out: directories can't have multiple aliases.
2885  *
2886  * This is needed in the lookup routine of any filesystem that is exportable
2887  * (via knfsd) so that we can build dcache paths to directories effectively.
2888  *
2889  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2890  * is returned.  This matches the expected return value of ->lookup.
2891  *
2892  * Cluster filesystems may call this function with a negative, hashed dentry.
2893  * In that case, we know that the inode will be a regular file, and also this
2894  * will only occur during atomic_open. So we need to check for the dentry
2895  * being already hashed only in the final case.
2896  */
2897 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2898 {
2899         if (IS_ERR(inode))
2900                 return ERR_CAST(inode);
2901
2902         BUG_ON(!d_unhashed(dentry));
2903
2904         if (!inode)
2905                 goto out;
2906
2907         security_d_instantiate(dentry, inode);
2908         spin_lock(&inode->i_lock);
2909         if (S_ISDIR(inode->i_mode)) {
2910                 struct dentry *new = __d_find_any_alias(inode);
2911                 if (unlikely(new)) {
2912                         /* The reference to new ensures it remains an alias */
2913                         spin_unlock(&inode->i_lock);
2914                         write_seqlock(&rename_lock);
2915                         if (unlikely(d_ancestor(new, dentry))) {
2916                                 write_sequnlock(&rename_lock);
2917                                 dput(new);
2918                                 new = ERR_PTR(-ELOOP);
2919                                 pr_warn_ratelimited(
2920                                         "VFS: Lookup of '%s' in %s %s"
2921                                         " would have caused loop\n",
2922                                         dentry->d_name.name,
2923                                         inode->i_sb->s_type->name,
2924                                         inode->i_sb->s_id);
2925                         } else if (!IS_ROOT(new)) {
2926                                 struct dentry *old_parent = dget(new->d_parent);
2927                                 int err = __d_unalias(inode, dentry, new);
2928                                 write_sequnlock(&rename_lock);
2929                                 if (err) {
2930                                         dput(new);
2931                                         new = ERR_PTR(err);
2932                                 }
2933                                 dput(old_parent);
2934                         } else {
2935                                 __d_move(new, dentry, false);
2936                                 write_sequnlock(&rename_lock);
2937                         }
2938                         iput(inode);
2939                         return new;
2940                 }
2941         }
2942 out:
2943         __d_add(dentry, inode);
2944         return NULL;
2945 }
2946 EXPORT_SYMBOL(d_splice_alias);
2947
2948 /*
2949  * Test whether new_dentry is a subdirectory of old_dentry.
2950  *
2951  * Trivially implemented using the dcache structure
2952  */
2953
2954 /**
2955  * is_subdir - is new dentry a subdirectory of old_dentry
2956  * @new_dentry: new dentry
2957  * @old_dentry: old dentry
2958  *
2959  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2960  * Returns false otherwise.
2961  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2962  */
2963   
2964 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2965 {
2966         bool result;
2967         unsigned seq;
2968
2969         if (new_dentry == old_dentry)
2970                 return true;
2971
2972         do {
2973                 /* for restarting inner loop in case of seq retry */
2974                 seq = read_seqbegin(&rename_lock);
2975                 /*
2976                  * Need rcu_readlock to protect against the d_parent trashing
2977                  * due to d_move
2978                  */
2979                 rcu_read_lock();
2980                 if (d_ancestor(old_dentry, new_dentry))
2981                         result = true;
2982                 else
2983                         result = false;
2984                 rcu_read_unlock();
2985         } while (read_seqretry(&rename_lock, seq));
2986
2987         return result;
2988 }
2989 EXPORT_SYMBOL(is_subdir);
2990
2991 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
2992 {
2993         struct dentry *root = data;
2994         if (dentry != root) {
2995                 if (d_unhashed(dentry) || !dentry->d_inode)
2996                         return D_WALK_SKIP;
2997
2998                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2999                         dentry->d_flags |= DCACHE_GENOCIDE;
3000                         dentry->d_lockref.count--;
3001                 }
3002         }
3003         return D_WALK_CONTINUE;
3004 }
3005
3006 void d_genocide(struct dentry *parent)
3007 {
3008         d_walk(parent, parent, d_genocide_kill);
3009 }
3010
3011 EXPORT_SYMBOL(d_genocide);
3012
3013 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3014 {
3015         inode_dec_link_count(inode);
3016         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3017                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3018                 !d_unlinked(dentry));
3019         spin_lock(&dentry->d_parent->d_lock);
3020         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3021         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3022                                 (unsigned long long)inode->i_ino);
3023         spin_unlock(&dentry->d_lock);
3024         spin_unlock(&dentry->d_parent->d_lock);
3025         d_instantiate(dentry, inode);
3026 }
3027 EXPORT_SYMBOL(d_tmpfile);
3028
3029 static __initdata unsigned long dhash_entries;
3030 static int __init set_dhash_entries(char *str)
3031 {
3032         if (!str)
3033                 return 0;
3034         dhash_entries = simple_strtoul(str, &str, 0);
3035         return 1;
3036 }
3037 __setup("dhash_entries=", set_dhash_entries);
3038
3039 static void __init dcache_init_early(void)
3040 {
3041         /* If hashes are distributed across NUMA nodes, defer
3042          * hash allocation until vmalloc space is available.
3043          */
3044         if (hashdist)
3045                 return;
3046
3047         dentry_hashtable =
3048                 alloc_large_system_hash("Dentry cache",
3049                                         sizeof(struct hlist_bl_head),
3050                                         dhash_entries,
3051                                         13,
3052                                         HASH_EARLY | HASH_ZERO,
3053                                         &d_hash_shift,
3054                                         NULL,
3055                                         0,
3056                                         0);
3057         d_hash_shift = 32 - d_hash_shift;
3058 }
3059
3060 static void __init dcache_init(void)
3061 {
3062         /*
3063          * A constructor could be added for stable state like the lists,
3064          * but it is probably not worth it because of the cache nature
3065          * of the dcache.
3066          */
3067         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3068                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3069                 d_iname);
3070
3071         /* Hash may have been set up in dcache_init_early */
3072         if (!hashdist)
3073                 return;
3074
3075         dentry_hashtable =
3076                 alloc_large_system_hash("Dentry cache",
3077                                         sizeof(struct hlist_bl_head),
3078                                         dhash_entries,
3079                                         13,
3080                                         HASH_ZERO,
3081                                         &d_hash_shift,
3082                                         NULL,
3083                                         0,
3084                                         0);
3085         d_hash_shift = 32 - d_hash_shift;
3086 }
3087
3088 /* SLAB cache for __getname() consumers */
3089 struct kmem_cache *names_cachep __read_mostly;
3090 EXPORT_SYMBOL(names_cachep);
3091
3092 void __init vfs_caches_init_early(void)
3093 {
3094         int i;
3095
3096         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3097                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3098
3099         dcache_init_early();
3100         inode_init_early();
3101 }
3102
3103 void __init vfs_caches_init(void)
3104 {
3105         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3106                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3107
3108         dcache_init();
3109         inode_init();
3110         files_init();
3111         files_maxfiles_init();
3112         mnt_init();
3113         bdev_cache_init();
3114         chrdev_init();
3115 }