]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/ecryptfs/crypto.c
35b409bda84195cb26ab194aa39852cd71a2a25a
[linux.git] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42                              struct page *dst_page, struct page *src_page,
43                              int offset, int size, unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46                              struct page *dst_page, struct page *src_page,
47                              int offset, int size, unsigned char *iv);
48
49 /**
50  * ecryptfs_to_hex
51  * @dst: Buffer to take hex character representation of contents of
52  *       src; must be at least of size (src_size * 2)
53  * @src: Buffer to be converted to a hex string respresentation
54  * @src_size: number of bytes to convert
55  */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58         int x;
59
60         for (x = 0; x < src_size; x++)
61                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63
64 /**
65  * ecryptfs_from_hex
66  * @dst: Buffer to take the bytes from src hex; must be at least of
67  *       size (src_size / 2)
68  * @src: Buffer to be converted from a hex string respresentation to raw value
69  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70  */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73         int x;
74         char tmp[3] = { 0, };
75
76         for (x = 0; x < dst_size; x++) {
77                 tmp[0] = src[x * 2];
78                 tmp[1] = src[x * 2 + 1];
79                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80         }
81 }
82
83 /**
84  * ecryptfs_calculate_md5 - calculates the md5 of @src
85  * @dst: Pointer to 16 bytes of allocated memory
86  * @crypt_stat: Pointer to crypt_stat struct for the current inode
87  * @src: Data to be md5'd
88  * @len: Length of @src
89  *
90  * Uses the allocated crypto context that crypt_stat references to
91  * generate the MD5 sum of the contents of src.
92  */
93 static int ecryptfs_calculate_md5(char *dst,
94                                   struct ecryptfs_crypt_stat *crypt_stat,
95                                   char *src, int len)
96 {
97         struct scatterlist sg;
98         struct hash_desc desc = {
99                 .tfm = crypt_stat->hash_tfm,
100                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
101         };
102         int rc = 0;
103
104         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105         sg_init_one(&sg, (u8 *)src, len);
106         if (!desc.tfm) {
107                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108                                              CRYPTO_ALG_ASYNC);
109                 if (IS_ERR(desc.tfm)) {
110                         rc = PTR_ERR(desc.tfm);
111                         ecryptfs_printk(KERN_ERR, "Error attempting to "
112                                         "allocate crypto context; rc = [%d]\n",
113                                         rc);
114                         goto out;
115                 }
116                 crypt_stat->hash_tfm = desc.tfm;
117         }
118         rc = crypto_hash_init(&desc);
119         if (rc) {
120                 printk(KERN_ERR
121                        "%s: Error initializing crypto hash; rc = [%d]\n",
122                        __func__, rc);
123                 goto out;
124         }
125         rc = crypto_hash_update(&desc, &sg, len);
126         if (rc) {
127                 printk(KERN_ERR
128                        "%s: Error updating crypto hash; rc = [%d]\n",
129                        __func__, rc);
130                 goto out;
131         }
132         rc = crypto_hash_final(&desc, dst);
133         if (rc) {
134                 printk(KERN_ERR
135                        "%s: Error finalizing crypto hash; rc = [%d]\n",
136                        __func__, rc);
137                 goto out;
138         }
139 out:
140         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
141         return rc;
142 }
143
144 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
145                                                   char *cipher_name,
146                                                   char *chaining_modifier)
147 {
148         int cipher_name_len = strlen(cipher_name);
149         int chaining_modifier_len = strlen(chaining_modifier);
150         int algified_name_len;
151         int rc;
152
153         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
154         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
155         if (!(*algified_name)) {
156                 rc = -ENOMEM;
157                 goto out;
158         }
159         snprintf((*algified_name), algified_name_len, "%s(%s)",
160                  chaining_modifier, cipher_name);
161         rc = 0;
162 out:
163         return rc;
164 }
165
166 /**
167  * ecryptfs_derive_iv
168  * @iv: destination for the derived iv vale
169  * @crypt_stat: Pointer to crypt_stat struct for the current inode
170  * @offset: Offset of the extent whose IV we are to derive
171  *
172  * Generate the initialization vector from the given root IV and page
173  * offset.
174  *
175  * Returns zero on success; non-zero on error.
176  */
177 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
178                        loff_t offset)
179 {
180         int rc = 0;
181         char dst[MD5_DIGEST_SIZE];
182         char src[ECRYPTFS_MAX_IV_BYTES + 16];
183
184         if (unlikely(ecryptfs_verbosity > 0)) {
185                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
186                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
187         }
188         /* TODO: It is probably secure to just cast the least
189          * significant bits of the root IV into an unsigned long and
190          * add the offset to that rather than go through all this
191          * hashing business. -Halcrow */
192         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
193         memset((src + crypt_stat->iv_bytes), 0, 16);
194         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
195         if (unlikely(ecryptfs_verbosity > 0)) {
196                 ecryptfs_printk(KERN_DEBUG, "source:\n");
197                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
198         }
199         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
200                                     (crypt_stat->iv_bytes + 16));
201         if (rc) {
202                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
203                                 "MD5 while generating IV for a page\n");
204                 goto out;
205         }
206         memcpy(iv, dst, crypt_stat->iv_bytes);
207         if (unlikely(ecryptfs_verbosity > 0)) {
208                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
209                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
210         }
211 out:
212         return rc;
213 }
214
215 /**
216  * ecryptfs_init_crypt_stat
217  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218  *
219  * Initialize the crypt_stat structure.
220  */
221 void
222 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
223 {
224         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
225         INIT_LIST_HEAD(&crypt_stat->keysig_list);
226         mutex_init(&crypt_stat->keysig_list_mutex);
227         mutex_init(&crypt_stat->cs_mutex);
228         mutex_init(&crypt_stat->cs_tfm_mutex);
229         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
230         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
231 }
232
233 /**
234  * ecryptfs_destroy_crypt_stat
235  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
236  *
237  * Releases all memory associated with a crypt_stat struct.
238  */
239 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
240 {
241         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
242
243         if (crypt_stat->tfm)
244                 crypto_free_ablkcipher(crypt_stat->tfm);
245         if (crypt_stat->hash_tfm)
246                 crypto_free_hash(crypt_stat->hash_tfm);
247         list_for_each_entry_safe(key_sig, key_sig_tmp,
248                                  &crypt_stat->keysig_list, crypt_stat_list) {
249                 list_del(&key_sig->crypt_stat_list);
250                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
251         }
252         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
253 }
254
255 void ecryptfs_destroy_mount_crypt_stat(
256         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
257 {
258         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
259
260         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
261                 return;
262         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
263         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
264                                  &mount_crypt_stat->global_auth_tok_list,
265                                  mount_crypt_stat_list) {
266                 list_del(&auth_tok->mount_crypt_stat_list);
267                 if (auth_tok->global_auth_tok_key
268                     && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
269                         key_put(auth_tok->global_auth_tok_key);
270                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
271         }
272         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
273         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
274 }
275
276 /**
277  * virt_to_scatterlist
278  * @addr: Virtual address
279  * @size: Size of data; should be an even multiple of the block size
280  * @sg: Pointer to scatterlist array; set to NULL to obtain only
281  *      the number of scatterlist structs required in array
282  * @sg_size: Max array size
283  *
284  * Fills in a scatterlist array with page references for a passed
285  * virtual address.
286  *
287  * Returns the number of scatterlist structs in array used
288  */
289 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
290                         int sg_size)
291 {
292         int i = 0;
293         struct page *pg;
294         int offset;
295         int remainder_of_page;
296
297         sg_init_table(sg, sg_size);
298
299         while (size > 0 && i < sg_size) {
300                 pg = virt_to_page(addr);
301                 offset = offset_in_page(addr);
302                 sg_set_page(&sg[i], pg, 0, offset);
303                 remainder_of_page = PAGE_CACHE_SIZE - offset;
304                 if (size >= remainder_of_page) {
305                         sg[i].length = remainder_of_page;
306                         addr += remainder_of_page;
307                         size -= remainder_of_page;
308                 } else {
309                         sg[i].length = size;
310                         addr += size;
311                         size = 0;
312                 }
313                 i++;
314         }
315         if (size > 0)
316                 return -ENOMEM;
317         return i;
318 }
319
320 struct extent_crypt_result {
321         struct completion completion;
322         int rc;
323 };
324
325 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
326 {
327         struct extent_crypt_result *ecr = req->data;
328
329         if (rc == -EINPROGRESS)
330                 return;
331
332         ecr->rc = rc;
333         complete(&ecr->completion);
334 }
335
336 /**
337  * encrypt_scatterlist
338  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
339  * @dest_sg: Destination of encrypted data
340  * @src_sg: Data to be encrypted
341  * @size: Length of data to be encrypted
342  * @iv: iv to use during encryption
343  *
344  * Returns the number of bytes encrypted; negative value on error
345  */
346 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
347                                struct scatterlist *dest_sg,
348                                struct scatterlist *src_sg, int size,
349                                unsigned char *iv)
350 {
351         struct ablkcipher_request *req = NULL;
352         struct extent_crypt_result ecr;
353         int rc = 0;
354
355         BUG_ON(!crypt_stat || !crypt_stat->tfm
356                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
357         if (unlikely(ecryptfs_verbosity > 0)) {
358                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
359                                 crypt_stat->key_size);
360                 ecryptfs_dump_hex(crypt_stat->key,
361                                   crypt_stat->key_size);
362         }
363
364         init_completion(&ecr.completion);
365
366         mutex_lock(&crypt_stat->cs_tfm_mutex);
367         req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
368         if (!req) {
369                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
370                 rc = -ENOMEM;
371                 goto out;
372         }
373
374         ablkcipher_request_set_callback(req,
375                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
376                         extent_crypt_complete, &ecr);
377         /* Consider doing this once, when the file is opened */
378         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
379                 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
380                                               crypt_stat->key_size);
381                 if (rc) {
382                         ecryptfs_printk(KERN_ERR,
383                                         "Error setting key; rc = [%d]\n",
384                                         rc);
385                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
386                         rc = -EINVAL;
387                         goto out;
388                 }
389                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
390         }
391         mutex_unlock(&crypt_stat->cs_tfm_mutex);
392         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
393         ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
394         rc = crypto_ablkcipher_encrypt(req);
395         if (rc == -EINPROGRESS || rc == -EBUSY) {
396                 struct extent_crypt_result *ecr = req->base.data;
397
398                 wait_for_completion(&ecr->completion);
399                 rc = ecr->rc;
400                 INIT_COMPLETION(ecr->completion);
401         }
402 out:
403         ablkcipher_request_free(req);
404         return rc;
405 }
406
407 /**
408  * lower_offset_for_page
409  *
410  * Convert an eCryptfs page index into a lower byte offset
411  */
412 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
413                                     struct page *page)
414 {
415         return ecryptfs_lower_header_size(crypt_stat) +
416                (page->index << PAGE_CACHE_SHIFT);
417 }
418
419 /**
420  * ecryptfs_encrypt_extent
421  * @enc_extent_page: Allocated page into which to encrypt the data in
422  *                   @page
423  * @crypt_stat: crypt_stat containing cryptographic context for the
424  *              encryption operation
425  * @page: Page containing plaintext data extent to encrypt
426  * @extent_offset: Page extent offset for use in generating IV
427  *
428  * Encrypts one extent of data.
429  *
430  * Return zero on success; non-zero otherwise
431  */
432 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
433                                    struct ecryptfs_crypt_stat *crypt_stat,
434                                    struct page *page,
435                                    unsigned long extent_offset)
436 {
437         loff_t extent_base;
438         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
439         int rc;
440
441         extent_base = (((loff_t)page->index)
442                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
443         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
444                                 (extent_base + extent_offset));
445         if (rc) {
446                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
447                         "extent [0x%.16llx]; rc = [%d]\n",
448                         (unsigned long long)(extent_base + extent_offset), rc);
449                 goto out;
450         }
451         rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, page,
452                                         extent_offset * crypt_stat->extent_size,
453                                         crypt_stat->extent_size, extent_iv);
454         if (rc < 0) {
455                 printk(KERN_ERR "%s: Error attempting to encrypt page with "
456                        "page->index = [%ld], extent_offset = [%ld]; "
457                        "rc = [%d]\n", __func__, page->index, extent_offset,
458                        rc);
459                 goto out;
460         }
461         rc = 0;
462 out:
463         return rc;
464 }
465
466 /**
467  * ecryptfs_encrypt_page
468  * @page: Page mapped from the eCryptfs inode for the file; contains
469  *        decrypted content that needs to be encrypted (to a temporary
470  *        page; not in place) and written out to the lower file
471  *
472  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
473  * that eCryptfs pages may straddle the lower pages -- for instance,
474  * if the file was created on a machine with an 8K page size
475  * (resulting in an 8K header), and then the file is copied onto a
476  * host with a 32K page size, then when reading page 0 of the eCryptfs
477  * file, 24K of page 0 of the lower file will be read and decrypted,
478  * and then 8K of page 1 of the lower file will be read and decrypted.
479  *
480  * Returns zero on success; negative on error
481  */
482 int ecryptfs_encrypt_page(struct page *page)
483 {
484         struct inode *ecryptfs_inode;
485         struct ecryptfs_crypt_stat *crypt_stat;
486         char *enc_extent_virt;
487         struct page *enc_extent_page = NULL;
488         loff_t extent_offset;
489         loff_t lower_offset;
490         int rc = 0;
491
492         ecryptfs_inode = page->mapping->host;
493         crypt_stat =
494                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
495         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
496         enc_extent_page = alloc_page(GFP_USER);
497         if (!enc_extent_page) {
498                 rc = -ENOMEM;
499                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
500                                 "encrypted extent\n");
501                 goto out;
502         }
503
504         for (extent_offset = 0;
505              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
506              extent_offset++) {
507                 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
508                                              extent_offset);
509                 if (rc) {
510                         printk(KERN_ERR "%s: Error encrypting extent; "
511                                "rc = [%d]\n", __func__, rc);
512                         goto out;
513                 }
514         }
515
516         lower_offset = lower_offset_for_page(crypt_stat, page);
517         enc_extent_virt = kmap(enc_extent_page);
518         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
519                                   PAGE_CACHE_SIZE);
520         kunmap(enc_extent_page);
521         if (rc < 0) {
522                 ecryptfs_printk(KERN_ERR,
523                         "Error attempting to write lower page; rc = [%d]\n",
524                         rc);
525                 goto out;
526         }
527         rc = 0;
528 out:
529         if (enc_extent_page) {
530                 __free_page(enc_extent_page);
531         }
532         return rc;
533 }
534
535 static int ecryptfs_decrypt_extent(struct page *page,
536                                    struct ecryptfs_crypt_stat *crypt_stat,
537                                    struct page *enc_extent_page,
538                                    unsigned long extent_offset)
539 {
540         loff_t extent_base;
541         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
542         int rc;
543
544         extent_base = (((loff_t)page->index)
545                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
546         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
547                                 (extent_base + extent_offset));
548         if (rc) {
549                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
550                         "extent [0x%.16llx]; rc = [%d]\n",
551                         (unsigned long long)(extent_base + extent_offset), rc);
552                 goto out;
553         }
554         rc = ecryptfs_decrypt_page_offset(crypt_stat, page, enc_extent_page,
555                                         extent_offset * crypt_stat->extent_size,
556                                         crypt_stat->extent_size, extent_iv);
557         if (rc < 0) {
558                 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
559                        "page->index = [%ld], extent_offset = [%ld]; "
560                        "rc = [%d]\n", __func__, page->index, extent_offset,
561                        rc);
562                 goto out;
563         }
564         rc = 0;
565 out:
566         return rc;
567 }
568
569 /**
570  * ecryptfs_decrypt_page
571  * @page: Page mapped from the eCryptfs inode for the file; data read
572  *        and decrypted from the lower file will be written into this
573  *        page
574  *
575  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
576  * that eCryptfs pages may straddle the lower pages -- for instance,
577  * if the file was created on a machine with an 8K page size
578  * (resulting in an 8K header), and then the file is copied onto a
579  * host with a 32K page size, then when reading page 0 of the eCryptfs
580  * file, 24K of page 0 of the lower file will be read and decrypted,
581  * and then 8K of page 1 of the lower file will be read and decrypted.
582  *
583  * Returns zero on success; negative on error
584  */
585 int ecryptfs_decrypt_page(struct page *page)
586 {
587         struct inode *ecryptfs_inode;
588         struct ecryptfs_crypt_stat *crypt_stat;
589         char *page_virt;
590         unsigned long extent_offset;
591         loff_t lower_offset;
592         int rc = 0;
593
594         ecryptfs_inode = page->mapping->host;
595         crypt_stat =
596                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
597         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
598
599         lower_offset = lower_offset_for_page(crypt_stat, page);
600         page_virt = kmap(page);
601         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
602                                  ecryptfs_inode);
603         kunmap(page);
604         if (rc < 0) {
605                 ecryptfs_printk(KERN_ERR,
606                         "Error attempting to read lower page; rc = [%d]\n",
607                         rc);
608                 goto out;
609         }
610
611         for (extent_offset = 0;
612              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
613              extent_offset++) {
614                 rc = ecryptfs_decrypt_extent(page, crypt_stat, page,
615                                              extent_offset);
616                 if (rc) {
617                         printk(KERN_ERR "%s: Error encrypting extent; "
618                                "rc = [%d]\n", __func__, rc);
619                         goto out;
620                 }
621         }
622 out:
623         return rc;
624 }
625
626 /**
627  * decrypt_scatterlist
628  * @crypt_stat: Cryptographic context
629  * @dest_sg: The destination scatterlist to decrypt into
630  * @src_sg: The source scatterlist to decrypt from
631  * @size: The number of bytes to decrypt
632  * @iv: The initialization vector to use for the decryption
633  *
634  * Returns the number of bytes decrypted; negative value on error
635  */
636 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
637                                struct scatterlist *dest_sg,
638                                struct scatterlist *src_sg, int size,
639                                unsigned char *iv)
640 {
641         struct ablkcipher_request *req = NULL;
642         struct extent_crypt_result ecr;
643         int rc = 0;
644
645         BUG_ON(!crypt_stat || !crypt_stat->tfm
646                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
647         if (unlikely(ecryptfs_verbosity > 0)) {
648                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
649                                 crypt_stat->key_size);
650                 ecryptfs_dump_hex(crypt_stat->key,
651                                   crypt_stat->key_size);
652         }
653
654         init_completion(&ecr.completion);
655
656         mutex_lock(&crypt_stat->cs_tfm_mutex);
657         req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
658         if (!req) {
659                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
660                 rc = -ENOMEM;
661                 goto out;
662         }
663
664         ablkcipher_request_set_callback(req,
665                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
666                         extent_crypt_complete, &ecr);
667         /* Consider doing this once, when the file is opened */
668         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
669                 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
670                                               crypt_stat->key_size);
671                 if (rc) {
672                         ecryptfs_printk(KERN_ERR,
673                                         "Error setting key; rc = [%d]\n",
674                                         rc);
675                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
676                         rc = -EINVAL;
677                         goto out;
678                 }
679                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
680         }
681         mutex_unlock(&crypt_stat->cs_tfm_mutex);
682         ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
683         ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
684         rc = crypto_ablkcipher_decrypt(req);
685         if (rc == -EINPROGRESS || rc == -EBUSY) {
686                 struct extent_crypt_result *ecr = req->base.data;
687
688                 wait_for_completion(&ecr->completion);
689                 rc = ecr->rc;
690                 INIT_COMPLETION(ecr->completion);
691         }
692 out:
693         ablkcipher_request_free(req);
694         return rc;
695
696 }
697
698 /**
699  * ecryptfs_encrypt_page_offset
700  * @crypt_stat: The cryptographic context
701  * @dst_page: The page to encrypt into
702  * @src_page: The page to encrypt from
703  * @offset: The byte offset into the dst_page and src_page
704  * @size: The number of bytes to encrypt
705  * @iv: The initialization vector to use for the encryption
706  *
707  * Returns the number of bytes encrypted
708  */
709 static int
710 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
711                              struct page *dst_page, struct page *src_page,
712                              int offset, int size, unsigned char *iv)
713 {
714         struct scatterlist src_sg, dst_sg;
715
716         sg_init_table(&src_sg, 1);
717         sg_init_table(&dst_sg, 1);
718
719         sg_set_page(&src_sg, src_page, size, offset);
720         sg_set_page(&dst_sg, dst_page, size, offset);
721         return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
722 }
723
724 /**
725  * ecryptfs_decrypt_page_offset
726  * @crypt_stat: The cryptographic context
727  * @dst_page: The page to decrypt into
728  * @src_page: The page to decrypt from
729  * @offset: The byte offset into the dst_page and src_page
730  * @size: The number of bytes to decrypt
731  * @iv: The initialization vector to use for the decryption
732  *
733  * Returns the number of bytes decrypted
734  */
735 static int
736 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
737                              struct page *dst_page, struct page *src_page,
738                              int offset, int size, unsigned char *iv)
739 {
740         struct scatterlist src_sg, dst_sg;
741
742         sg_init_table(&src_sg, 1);
743         sg_set_page(&src_sg, src_page, size, offset);
744
745         sg_init_table(&dst_sg, 1);
746         sg_set_page(&dst_sg, dst_page, size, offset);
747
748         return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
749 }
750
751 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
752
753 /**
754  * ecryptfs_init_crypt_ctx
755  * @crypt_stat: Uninitialized crypt stats structure
756  *
757  * Initialize the crypto context.
758  *
759  * TODO: Performance: Keep a cache of initialized cipher contexts;
760  * only init if needed
761  */
762 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
763 {
764         char *full_alg_name;
765         int rc = -EINVAL;
766
767         if (!crypt_stat->cipher) {
768                 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
769                 goto out;
770         }
771         ecryptfs_printk(KERN_DEBUG,
772                         "Initializing cipher [%s]; strlen = [%d]; "
773                         "key_size_bits = [%zd]\n",
774                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
775                         crypt_stat->key_size << 3);
776         if (crypt_stat->tfm) {
777                 rc = 0;
778                 goto out;
779         }
780         mutex_lock(&crypt_stat->cs_tfm_mutex);
781         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
782                                                     crypt_stat->cipher, "cbc");
783         if (rc)
784                 goto out_unlock;
785         crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
786         kfree(full_alg_name);
787         if (IS_ERR(crypt_stat->tfm)) {
788                 rc = PTR_ERR(crypt_stat->tfm);
789                 crypt_stat->tfm = NULL;
790                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
791                                 "Error initializing cipher [%s]\n",
792                                 crypt_stat->cipher);
793                 goto out_unlock;
794         }
795         crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
796         rc = 0;
797 out_unlock:
798         mutex_unlock(&crypt_stat->cs_tfm_mutex);
799 out:
800         return rc;
801 }
802
803 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
804 {
805         int extent_size_tmp;
806
807         crypt_stat->extent_mask = 0xFFFFFFFF;
808         crypt_stat->extent_shift = 0;
809         if (crypt_stat->extent_size == 0)
810                 return;
811         extent_size_tmp = crypt_stat->extent_size;
812         while ((extent_size_tmp & 0x01) == 0) {
813                 extent_size_tmp >>= 1;
814                 crypt_stat->extent_mask <<= 1;
815                 crypt_stat->extent_shift++;
816         }
817 }
818
819 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
820 {
821         /* Default values; may be overwritten as we are parsing the
822          * packets. */
823         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
824         set_extent_mask_and_shift(crypt_stat);
825         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
826         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
827                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
828         else {
829                 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
830                         crypt_stat->metadata_size =
831                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
832                 else
833                         crypt_stat->metadata_size = PAGE_CACHE_SIZE;
834         }
835 }
836
837 /**
838  * ecryptfs_compute_root_iv
839  * @crypt_stats
840  *
841  * On error, sets the root IV to all 0's.
842  */
843 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
844 {
845         int rc = 0;
846         char dst[MD5_DIGEST_SIZE];
847
848         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
849         BUG_ON(crypt_stat->iv_bytes <= 0);
850         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
851                 rc = -EINVAL;
852                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
853                                 "cannot generate root IV\n");
854                 goto out;
855         }
856         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
857                                     crypt_stat->key_size);
858         if (rc) {
859                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
860                                 "MD5 while generating root IV\n");
861                 goto out;
862         }
863         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
864 out:
865         if (rc) {
866                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
867                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
868         }
869         return rc;
870 }
871
872 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
873 {
874         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
875         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
876         ecryptfs_compute_root_iv(crypt_stat);
877         if (unlikely(ecryptfs_verbosity > 0)) {
878                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
879                 ecryptfs_dump_hex(crypt_stat->key,
880                                   crypt_stat->key_size);
881         }
882 }
883
884 /**
885  * ecryptfs_copy_mount_wide_flags_to_inode_flags
886  * @crypt_stat: The inode's cryptographic context
887  * @mount_crypt_stat: The mount point's cryptographic context
888  *
889  * This function propagates the mount-wide flags to individual inode
890  * flags.
891  */
892 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
893         struct ecryptfs_crypt_stat *crypt_stat,
894         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
895 {
896         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
897                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
898         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
899                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
900         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
901                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
902                 if (mount_crypt_stat->flags
903                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
904                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
905                 else if (mount_crypt_stat->flags
906                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
907                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
908         }
909 }
910
911 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
912         struct ecryptfs_crypt_stat *crypt_stat,
913         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
914 {
915         struct ecryptfs_global_auth_tok *global_auth_tok;
916         int rc = 0;
917
918         mutex_lock(&crypt_stat->keysig_list_mutex);
919         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
920
921         list_for_each_entry(global_auth_tok,
922                             &mount_crypt_stat->global_auth_tok_list,
923                             mount_crypt_stat_list) {
924                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
925                         continue;
926                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
927                 if (rc) {
928                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
929                         goto out;
930                 }
931         }
932
933 out:
934         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
935         mutex_unlock(&crypt_stat->keysig_list_mutex);
936         return rc;
937 }
938
939 /**
940  * ecryptfs_set_default_crypt_stat_vals
941  * @crypt_stat: The inode's cryptographic context
942  * @mount_crypt_stat: The mount point's cryptographic context
943  *
944  * Default values in the event that policy does not override them.
945  */
946 static void ecryptfs_set_default_crypt_stat_vals(
947         struct ecryptfs_crypt_stat *crypt_stat,
948         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
949 {
950         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
951                                                       mount_crypt_stat);
952         ecryptfs_set_default_sizes(crypt_stat);
953         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
954         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
955         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
956         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
957         crypt_stat->mount_crypt_stat = mount_crypt_stat;
958 }
959
960 /**
961  * ecryptfs_new_file_context
962  * @ecryptfs_inode: The eCryptfs inode
963  *
964  * If the crypto context for the file has not yet been established,
965  * this is where we do that.  Establishing a new crypto context
966  * involves the following decisions:
967  *  - What cipher to use?
968  *  - What set of authentication tokens to use?
969  * Here we just worry about getting enough information into the
970  * authentication tokens so that we know that they are available.
971  * We associate the available authentication tokens with the new file
972  * via the set of signatures in the crypt_stat struct.  Later, when
973  * the headers are actually written out, we may again defer to
974  * userspace to perform the encryption of the session key; for the
975  * foreseeable future, this will be the case with public key packets.
976  *
977  * Returns zero on success; non-zero otherwise
978  */
979 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
980 {
981         struct ecryptfs_crypt_stat *crypt_stat =
982             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
983         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
984             &ecryptfs_superblock_to_private(
985                     ecryptfs_inode->i_sb)->mount_crypt_stat;
986         int cipher_name_len;
987         int rc = 0;
988
989         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
990         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
991         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
992                                                       mount_crypt_stat);
993         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
994                                                          mount_crypt_stat);
995         if (rc) {
996                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
997                        "to the inode key sigs; rc = [%d]\n", rc);
998                 goto out;
999         }
1000         cipher_name_len =
1001                 strlen(mount_crypt_stat->global_default_cipher_name);
1002         memcpy(crypt_stat->cipher,
1003                mount_crypt_stat->global_default_cipher_name,
1004                cipher_name_len);
1005         crypt_stat->cipher[cipher_name_len] = '\0';
1006         crypt_stat->key_size =
1007                 mount_crypt_stat->global_default_cipher_key_size;
1008         ecryptfs_generate_new_key(crypt_stat);
1009         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1010         if (rc)
1011                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1012                                 "context for cipher [%s]: rc = [%d]\n",
1013                                 crypt_stat->cipher, rc);
1014 out:
1015         return rc;
1016 }
1017
1018 /**
1019  * ecryptfs_validate_marker - check for the ecryptfs marker
1020  * @data: The data block in which to check
1021  *
1022  * Returns zero if marker found; -EINVAL if not found
1023  */
1024 static int ecryptfs_validate_marker(char *data)
1025 {
1026         u32 m_1, m_2;
1027
1028         m_1 = get_unaligned_be32(data);
1029         m_2 = get_unaligned_be32(data + 4);
1030         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1031                 return 0;
1032         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1033                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1034                         MAGIC_ECRYPTFS_MARKER);
1035         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1036                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1037         return -EINVAL;
1038 }
1039
1040 struct ecryptfs_flag_map_elem {
1041         u32 file_flag;
1042         u32 local_flag;
1043 };
1044
1045 /* Add support for additional flags by adding elements here. */
1046 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1047         {0x00000001, ECRYPTFS_ENABLE_HMAC},
1048         {0x00000002, ECRYPTFS_ENCRYPTED},
1049         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1050         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1051 };
1052
1053 /**
1054  * ecryptfs_process_flags
1055  * @crypt_stat: The cryptographic context
1056  * @page_virt: Source data to be parsed
1057  * @bytes_read: Updated with the number of bytes read
1058  *
1059  * Returns zero on success; non-zero if the flag set is invalid
1060  */
1061 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1062                                   char *page_virt, int *bytes_read)
1063 {
1064         int rc = 0;
1065         int i;
1066         u32 flags;
1067
1068         flags = get_unaligned_be32(page_virt);
1069         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1070                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1071                 if (flags & ecryptfs_flag_map[i].file_flag) {
1072                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1073                 } else
1074                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1075         /* Version is in top 8 bits of the 32-bit flag vector */
1076         crypt_stat->file_version = ((flags >> 24) & 0xFF);
1077         (*bytes_read) = 4;
1078         return rc;
1079 }
1080
1081 /**
1082  * write_ecryptfs_marker
1083  * @page_virt: The pointer to in a page to begin writing the marker
1084  * @written: Number of bytes written
1085  *
1086  * Marker = 0x3c81b7f5
1087  */
1088 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1089 {
1090         u32 m_1, m_2;
1091
1092         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1093         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1094         put_unaligned_be32(m_1, page_virt);
1095         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1096         put_unaligned_be32(m_2, page_virt);
1097         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1098 }
1099
1100 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1101                                      struct ecryptfs_crypt_stat *crypt_stat,
1102                                      size_t *written)
1103 {
1104         u32 flags = 0;
1105         int i;
1106
1107         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1108                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1109                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1110                         flags |= ecryptfs_flag_map[i].file_flag;
1111         /* Version is in top 8 bits of the 32-bit flag vector */
1112         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1113         put_unaligned_be32(flags, page_virt);
1114         (*written) = 4;
1115 }
1116
1117 struct ecryptfs_cipher_code_str_map_elem {
1118         char cipher_str[16];
1119         u8 cipher_code;
1120 };
1121
1122 /* Add support for additional ciphers by adding elements here. The
1123  * cipher_code is whatever OpenPGP applicatoins use to identify the
1124  * ciphers. List in order of probability. */
1125 static struct ecryptfs_cipher_code_str_map_elem
1126 ecryptfs_cipher_code_str_map[] = {
1127         {"aes",RFC2440_CIPHER_AES_128 },
1128         {"blowfish", RFC2440_CIPHER_BLOWFISH},
1129         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1130         {"cast5", RFC2440_CIPHER_CAST_5},
1131         {"twofish", RFC2440_CIPHER_TWOFISH},
1132         {"cast6", RFC2440_CIPHER_CAST_6},
1133         {"aes", RFC2440_CIPHER_AES_192},
1134         {"aes", RFC2440_CIPHER_AES_256}
1135 };
1136
1137 /**
1138  * ecryptfs_code_for_cipher_string
1139  * @cipher_name: The string alias for the cipher
1140  * @key_bytes: Length of key in bytes; used for AES code selection
1141  *
1142  * Returns zero on no match, or the cipher code on match
1143  */
1144 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1145 {
1146         int i;
1147         u8 code = 0;
1148         struct ecryptfs_cipher_code_str_map_elem *map =
1149                 ecryptfs_cipher_code_str_map;
1150
1151         if (strcmp(cipher_name, "aes") == 0) {
1152                 switch (key_bytes) {
1153                 case 16:
1154                         code = RFC2440_CIPHER_AES_128;
1155                         break;
1156                 case 24:
1157                         code = RFC2440_CIPHER_AES_192;
1158                         break;
1159                 case 32:
1160                         code = RFC2440_CIPHER_AES_256;
1161                 }
1162         } else {
1163                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1164                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1165                                 code = map[i].cipher_code;
1166                                 break;
1167                         }
1168         }
1169         return code;
1170 }
1171
1172 /**
1173  * ecryptfs_cipher_code_to_string
1174  * @str: Destination to write out the cipher name
1175  * @cipher_code: The code to convert to cipher name string
1176  *
1177  * Returns zero on success
1178  */
1179 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1180 {
1181         int rc = 0;
1182         int i;
1183
1184         str[0] = '\0';
1185         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1186                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1187                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1188         if (str[0] == '\0') {
1189                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1190                                 "[%d]\n", cipher_code);
1191                 rc = -EINVAL;
1192         }
1193         return rc;
1194 }
1195
1196 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1197 {
1198         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1199         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1200         int rc;
1201
1202         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1203                                  inode);
1204         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1205                 return rc >= 0 ? -EINVAL : rc;
1206         rc = ecryptfs_validate_marker(marker);
1207         if (!rc)
1208                 ecryptfs_i_size_init(file_size, inode);
1209         return rc;
1210 }
1211
1212 void
1213 ecryptfs_write_header_metadata(char *virt,
1214                                struct ecryptfs_crypt_stat *crypt_stat,
1215                                size_t *written)
1216 {
1217         u32 header_extent_size;
1218         u16 num_header_extents_at_front;
1219
1220         header_extent_size = (u32)crypt_stat->extent_size;
1221         num_header_extents_at_front =
1222                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1223         put_unaligned_be32(header_extent_size, virt);
1224         virt += 4;
1225         put_unaligned_be16(num_header_extents_at_front, virt);
1226         (*written) = 6;
1227 }
1228
1229 struct kmem_cache *ecryptfs_header_cache;
1230
1231 /**
1232  * ecryptfs_write_headers_virt
1233  * @page_virt: The virtual address to write the headers to
1234  * @max: The size of memory allocated at page_virt
1235  * @size: Set to the number of bytes written by this function
1236  * @crypt_stat: The cryptographic context
1237  * @ecryptfs_dentry: The eCryptfs dentry
1238  *
1239  * Format version: 1
1240  *
1241  *   Header Extent:
1242  *     Octets 0-7:        Unencrypted file size (big-endian)
1243  *     Octets 8-15:       eCryptfs special marker
1244  *     Octets 16-19:      Flags
1245  *      Octet 16:         File format version number (between 0 and 255)
1246  *      Octets 17-18:     Reserved
1247  *      Octet 19:         Bit 1 (lsb): Reserved
1248  *                        Bit 2: Encrypted?
1249  *                        Bits 3-8: Reserved
1250  *     Octets 20-23:      Header extent size (big-endian)
1251  *     Octets 24-25:      Number of header extents at front of file
1252  *                        (big-endian)
1253  *     Octet  26:         Begin RFC 2440 authentication token packet set
1254  *   Data Extent 0:
1255  *     Lower data (CBC encrypted)
1256  *   Data Extent 1:
1257  *     Lower data (CBC encrypted)
1258  *   ...
1259  *
1260  * Returns zero on success
1261  */
1262 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1263                                        size_t *size,
1264                                        struct ecryptfs_crypt_stat *crypt_stat,
1265                                        struct dentry *ecryptfs_dentry)
1266 {
1267         int rc;
1268         size_t written;
1269         size_t offset;
1270
1271         offset = ECRYPTFS_FILE_SIZE_BYTES;
1272         write_ecryptfs_marker((page_virt + offset), &written);
1273         offset += written;
1274         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1275                                         &written);
1276         offset += written;
1277         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1278                                        &written);
1279         offset += written;
1280         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1281                                               ecryptfs_dentry, &written,
1282                                               max - offset);
1283         if (rc)
1284                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1285                                 "set; rc = [%d]\n", rc);
1286         if (size) {
1287                 offset += written;
1288                 *size = offset;
1289         }
1290         return rc;
1291 }
1292
1293 static int
1294 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1295                                     char *virt, size_t virt_len)
1296 {
1297         int rc;
1298
1299         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1300                                   0, virt_len);
1301         if (rc < 0)
1302                 printk(KERN_ERR "%s: Error attempting to write header "
1303                        "information to lower file; rc = [%d]\n", __func__, rc);
1304         else
1305                 rc = 0;
1306         return rc;
1307 }
1308
1309 static int
1310 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1311                                  char *page_virt, size_t size)
1312 {
1313         int rc;
1314
1315         rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1316                                size, 0);
1317         return rc;
1318 }
1319
1320 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1321                                                unsigned int order)
1322 {
1323         struct page *page;
1324
1325         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1326         if (page)
1327                 return (unsigned long) page_address(page);
1328         return 0;
1329 }
1330
1331 /**
1332  * ecryptfs_write_metadata
1333  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1334  * @ecryptfs_inode: The newly created eCryptfs inode
1335  *
1336  * Write the file headers out.  This will likely involve a userspace
1337  * callout, in which the session key is encrypted with one or more
1338  * public keys and/or the passphrase necessary to do the encryption is
1339  * retrieved via a prompt.  Exactly what happens at this point should
1340  * be policy-dependent.
1341  *
1342  * Returns zero on success; non-zero on error
1343  */
1344 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1345                             struct inode *ecryptfs_inode)
1346 {
1347         struct ecryptfs_crypt_stat *crypt_stat =
1348                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1349         unsigned int order;
1350         char *virt;
1351         size_t virt_len;
1352         size_t size = 0;
1353         int rc = 0;
1354
1355         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1356                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1357                         printk(KERN_ERR "Key is invalid; bailing out\n");
1358                         rc = -EINVAL;
1359                         goto out;
1360                 }
1361         } else {
1362                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1363                        __func__);
1364                 rc = -EINVAL;
1365                 goto out;
1366         }
1367         virt_len = crypt_stat->metadata_size;
1368         order = get_order(virt_len);
1369         /* Released in this function */
1370         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1371         if (!virt) {
1372                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1373                 rc = -ENOMEM;
1374                 goto out;
1375         }
1376         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1377         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1378                                          ecryptfs_dentry);
1379         if (unlikely(rc)) {
1380                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1381                        __func__, rc);
1382                 goto out_free;
1383         }
1384         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1385                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1386                                                       size);
1387         else
1388                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1389                                                          virt_len);
1390         if (rc) {
1391                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1392                        "rc = [%d]\n", __func__, rc);
1393                 goto out_free;
1394         }
1395 out_free:
1396         free_pages((unsigned long)virt, order);
1397 out:
1398         return rc;
1399 }
1400
1401 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1402 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1403 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1404                                  char *virt, int *bytes_read,
1405                                  int validate_header_size)
1406 {
1407         int rc = 0;
1408         u32 header_extent_size;
1409         u16 num_header_extents_at_front;
1410
1411         header_extent_size = get_unaligned_be32(virt);
1412         virt += sizeof(__be32);
1413         num_header_extents_at_front = get_unaligned_be16(virt);
1414         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1415                                      * (size_t)header_extent_size));
1416         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1417         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1418             && (crypt_stat->metadata_size
1419                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1420                 rc = -EINVAL;
1421                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1422                        crypt_stat->metadata_size);
1423         }
1424         return rc;
1425 }
1426
1427 /**
1428  * set_default_header_data
1429  * @crypt_stat: The cryptographic context
1430  *
1431  * For version 0 file format; this function is only for backwards
1432  * compatibility for files created with the prior versions of
1433  * eCryptfs.
1434  */
1435 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1436 {
1437         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1438 }
1439
1440 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1441 {
1442         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1443         struct ecryptfs_crypt_stat *crypt_stat;
1444         u64 file_size;
1445
1446         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1447         mount_crypt_stat =
1448                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1449         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1450                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1451                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1452                         file_size += crypt_stat->metadata_size;
1453         } else
1454                 file_size = get_unaligned_be64(page_virt);
1455         i_size_write(inode, (loff_t)file_size);
1456         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1457 }
1458
1459 /**
1460  * ecryptfs_read_headers_virt
1461  * @page_virt: The virtual address into which to read the headers
1462  * @crypt_stat: The cryptographic context
1463  * @ecryptfs_dentry: The eCryptfs dentry
1464  * @validate_header_size: Whether to validate the header size while reading
1465  *
1466  * Read/parse the header data. The header format is detailed in the
1467  * comment block for the ecryptfs_write_headers_virt() function.
1468  *
1469  * Returns zero on success
1470  */
1471 static int ecryptfs_read_headers_virt(char *page_virt,
1472                                       struct ecryptfs_crypt_stat *crypt_stat,
1473                                       struct dentry *ecryptfs_dentry,
1474                                       int validate_header_size)
1475 {
1476         int rc = 0;
1477         int offset;
1478         int bytes_read;
1479
1480         ecryptfs_set_default_sizes(crypt_stat);
1481         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1482                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1483         offset = ECRYPTFS_FILE_SIZE_BYTES;
1484         rc = ecryptfs_validate_marker(page_virt + offset);
1485         if (rc)
1486                 goto out;
1487         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1488                 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1489         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1490         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1491                                     &bytes_read);
1492         if (rc) {
1493                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1494                 goto out;
1495         }
1496         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1497                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1498                                 "file version [%d] is supported by this "
1499                                 "version of eCryptfs\n",
1500                                 crypt_stat->file_version,
1501                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1502                 rc = -EINVAL;
1503                 goto out;
1504         }
1505         offset += bytes_read;
1506         if (crypt_stat->file_version >= 1) {
1507                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1508                                            &bytes_read, validate_header_size);
1509                 if (rc) {
1510                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1511                                         "metadata; rc = [%d]\n", rc);
1512                 }
1513                 offset += bytes_read;
1514         } else
1515                 set_default_header_data(crypt_stat);
1516         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1517                                        ecryptfs_dentry);
1518 out:
1519         return rc;
1520 }
1521
1522 /**
1523  * ecryptfs_read_xattr_region
1524  * @page_virt: The vitual address into which to read the xattr data
1525  * @ecryptfs_inode: The eCryptfs inode
1526  *
1527  * Attempts to read the crypto metadata from the extended attribute
1528  * region of the lower file.
1529  *
1530  * Returns zero on success; non-zero on error
1531  */
1532 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1533 {
1534         struct dentry *lower_dentry =
1535                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1536         ssize_t size;
1537         int rc = 0;
1538
1539         size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1540                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1541         if (size < 0) {
1542                 if (unlikely(ecryptfs_verbosity > 0))
1543                         printk(KERN_INFO "Error attempting to read the [%s] "
1544                                "xattr from the lower file; return value = "
1545                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1546                 rc = -EINVAL;
1547                 goto out;
1548         }
1549 out:
1550         return rc;
1551 }
1552
1553 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1554                                             struct inode *inode)
1555 {
1556         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1557         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1558         int rc;
1559
1560         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1561                                      ECRYPTFS_XATTR_NAME, file_size,
1562                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1563         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1564                 return rc >= 0 ? -EINVAL : rc;
1565         rc = ecryptfs_validate_marker(marker);
1566         if (!rc)
1567                 ecryptfs_i_size_init(file_size, inode);
1568         return rc;
1569 }
1570
1571 /**
1572  * ecryptfs_read_metadata
1573  *
1574  * Common entry point for reading file metadata. From here, we could
1575  * retrieve the header information from the header region of the file,
1576  * the xattr region of the file, or some other repostory that is
1577  * stored separately from the file itself. The current implementation
1578  * supports retrieving the metadata information from the file contents
1579  * and from the xattr region.
1580  *
1581  * Returns zero if valid headers found and parsed; non-zero otherwise
1582  */
1583 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1584 {
1585         int rc;
1586         char *page_virt;
1587         struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1588         struct ecryptfs_crypt_stat *crypt_stat =
1589             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1590         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1591                 &ecryptfs_superblock_to_private(
1592                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1593
1594         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1595                                                       mount_crypt_stat);
1596         /* Read the first page from the underlying file */
1597         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1598         if (!page_virt) {
1599                 rc = -ENOMEM;
1600                 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1601                        __func__);
1602                 goto out;
1603         }
1604         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1605                                  ecryptfs_inode);
1606         if (rc >= 0)
1607                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1608                                                 ecryptfs_dentry,
1609                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1610         if (rc) {
1611                 /* metadata is not in the file header, so try xattrs */
1612                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1613                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1614                 if (rc) {
1615                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1616                                "file header region or xattr region, inode %lu\n",
1617                                 ecryptfs_inode->i_ino);
1618                         rc = -EINVAL;
1619                         goto out;
1620                 }
1621                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1622                                                 ecryptfs_dentry,
1623                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1624                 if (rc) {
1625                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1626                                "file xattr region either, inode %lu\n",
1627                                 ecryptfs_inode->i_ino);
1628                         rc = -EINVAL;
1629                 }
1630                 if (crypt_stat->mount_crypt_stat->flags
1631                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1632                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1633                 } else {
1634                         printk(KERN_WARNING "Attempt to access file with "
1635                                "crypto metadata only in the extended attribute "
1636                                "region, but eCryptfs was mounted without "
1637                                "xattr support enabled. eCryptfs will not treat "
1638                                "this like an encrypted file, inode %lu\n",
1639                                 ecryptfs_inode->i_ino);
1640                         rc = -EINVAL;
1641                 }
1642         }
1643 out:
1644         if (page_virt) {
1645                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1646                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1647         }
1648         return rc;
1649 }
1650
1651 /**
1652  * ecryptfs_encrypt_filename - encrypt filename
1653  *
1654  * CBC-encrypts the filename. We do not want to encrypt the same
1655  * filename with the same key and IV, which may happen with hard
1656  * links, so we prepend random bits to each filename.
1657  *
1658  * Returns zero on success; non-zero otherwise
1659  */
1660 static int
1661 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1662                           struct ecryptfs_crypt_stat *crypt_stat,
1663                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1664 {
1665         int rc = 0;
1666
1667         filename->encrypted_filename = NULL;
1668         filename->encrypted_filename_size = 0;
1669         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1670             || (mount_crypt_stat && (mount_crypt_stat->flags
1671                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1672                 size_t packet_size;
1673                 size_t remaining_bytes;
1674
1675                 rc = ecryptfs_write_tag_70_packet(
1676                         NULL, NULL,
1677                         &filename->encrypted_filename_size,
1678                         mount_crypt_stat, NULL,
1679                         filename->filename_size);
1680                 if (rc) {
1681                         printk(KERN_ERR "%s: Error attempting to get packet "
1682                                "size for tag 72; rc = [%d]\n", __func__,
1683                                rc);
1684                         filename->encrypted_filename_size = 0;
1685                         goto out;
1686                 }
1687                 filename->encrypted_filename =
1688                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1689                 if (!filename->encrypted_filename) {
1690                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1691                                "to kmalloc [%zd] bytes\n", __func__,
1692                                filename->encrypted_filename_size);
1693                         rc = -ENOMEM;
1694                         goto out;
1695                 }
1696                 remaining_bytes = filename->encrypted_filename_size;
1697                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1698                                                   &remaining_bytes,
1699                                                   &packet_size,
1700                                                   mount_crypt_stat,
1701                                                   filename->filename,
1702                                                   filename->filename_size);
1703                 if (rc) {
1704                         printk(KERN_ERR "%s: Error attempting to generate "
1705                                "tag 70 packet; rc = [%d]\n", __func__,
1706                                rc);
1707                         kfree(filename->encrypted_filename);
1708                         filename->encrypted_filename = NULL;
1709                         filename->encrypted_filename_size = 0;
1710                         goto out;
1711                 }
1712                 filename->encrypted_filename_size = packet_size;
1713         } else {
1714                 printk(KERN_ERR "%s: No support for requested filename "
1715                        "encryption method in this release\n", __func__);
1716                 rc = -EOPNOTSUPP;
1717                 goto out;
1718         }
1719 out:
1720         return rc;
1721 }
1722
1723 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1724                                   const char *name, size_t name_size)
1725 {
1726         int rc = 0;
1727
1728         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1729         if (!(*copied_name)) {
1730                 rc = -ENOMEM;
1731                 goto out;
1732         }
1733         memcpy((void *)(*copied_name), (void *)name, name_size);
1734         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1735                                                  * in printing out the
1736                                                  * string in debug
1737                                                  * messages */
1738         (*copied_name_size) = name_size;
1739 out:
1740         return rc;
1741 }
1742
1743 /**
1744  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1745  * @key_tfm: Crypto context for key material, set by this function
1746  * @cipher_name: Name of the cipher
1747  * @key_size: Size of the key in bytes
1748  *
1749  * Returns zero on success. Any crypto_tfm structs allocated here
1750  * should be released by other functions, such as on a superblock put
1751  * event, regardless of whether this function succeeds for fails.
1752  */
1753 static int
1754 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1755                             char *cipher_name, size_t *key_size)
1756 {
1757         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1758         char *full_alg_name = NULL;
1759         int rc;
1760
1761         *key_tfm = NULL;
1762         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1763                 rc = -EINVAL;
1764                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1765                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1766                 goto out;
1767         }
1768         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1769                                                     "ecb");
1770         if (rc)
1771                 goto out;
1772         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1773         if (IS_ERR(*key_tfm)) {
1774                 rc = PTR_ERR(*key_tfm);
1775                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1776                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1777                 goto out;
1778         }
1779         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1780         if (*key_size == 0) {
1781                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1782
1783                 *key_size = alg->max_keysize;
1784         }
1785         get_random_bytes(dummy_key, *key_size);
1786         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1787         if (rc) {
1788                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1789                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1790                        rc);
1791                 rc = -EINVAL;
1792                 goto out;
1793         }
1794 out:
1795         kfree(full_alg_name);
1796         return rc;
1797 }
1798
1799 struct kmem_cache *ecryptfs_key_tfm_cache;
1800 static struct list_head key_tfm_list;
1801 struct mutex key_tfm_list_mutex;
1802
1803 int __init ecryptfs_init_crypto(void)
1804 {
1805         mutex_init(&key_tfm_list_mutex);
1806         INIT_LIST_HEAD(&key_tfm_list);
1807         return 0;
1808 }
1809
1810 /**
1811  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1812  *
1813  * Called only at module unload time
1814  */
1815 int ecryptfs_destroy_crypto(void)
1816 {
1817         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1818
1819         mutex_lock(&key_tfm_list_mutex);
1820         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1821                                  key_tfm_list) {
1822                 list_del(&key_tfm->key_tfm_list);
1823                 if (key_tfm->key_tfm)
1824                         crypto_free_blkcipher(key_tfm->key_tfm);
1825                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1826         }
1827         mutex_unlock(&key_tfm_list_mutex);
1828         return 0;
1829 }
1830
1831 int
1832 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1833                          size_t key_size)
1834 {
1835         struct ecryptfs_key_tfm *tmp_tfm;
1836         int rc = 0;
1837
1838         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1839
1840         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1841         if (key_tfm != NULL)
1842                 (*key_tfm) = tmp_tfm;
1843         if (!tmp_tfm) {
1844                 rc = -ENOMEM;
1845                 printk(KERN_ERR "Error attempting to allocate from "
1846                        "ecryptfs_key_tfm_cache\n");
1847                 goto out;
1848         }
1849         mutex_init(&tmp_tfm->key_tfm_mutex);
1850         strncpy(tmp_tfm->cipher_name, cipher_name,
1851                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1852         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1853         tmp_tfm->key_size = key_size;
1854         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1855                                          tmp_tfm->cipher_name,
1856                                          &tmp_tfm->key_size);
1857         if (rc) {
1858                 printk(KERN_ERR "Error attempting to initialize key TFM "
1859                        "cipher with name = [%s]; rc = [%d]\n",
1860                        tmp_tfm->cipher_name, rc);
1861                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1862                 if (key_tfm != NULL)
1863                         (*key_tfm) = NULL;
1864                 goto out;
1865         }
1866         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1867 out:
1868         return rc;
1869 }
1870
1871 /**
1872  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1873  * @cipher_name: the name of the cipher to search for
1874  * @key_tfm: set to corresponding tfm if found
1875  *
1876  * Searches for cached key_tfm matching @cipher_name
1877  * Must be called with &key_tfm_list_mutex held
1878  * Returns 1 if found, with @key_tfm set
1879  * Returns 0 if not found, with @key_tfm set to NULL
1880  */
1881 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1882 {
1883         struct ecryptfs_key_tfm *tmp_key_tfm;
1884
1885         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1886
1887         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1888                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1889                         if (key_tfm)
1890                                 (*key_tfm) = tmp_key_tfm;
1891                         return 1;
1892                 }
1893         }
1894         if (key_tfm)
1895                 (*key_tfm) = NULL;
1896         return 0;
1897 }
1898
1899 /**
1900  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1901  *
1902  * @tfm: set to cached tfm found, or new tfm created
1903  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1904  * @cipher_name: the name of the cipher to search for and/or add
1905  *
1906  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1907  * Searches for cached item first, and creates new if not found.
1908  * Returns 0 on success, non-zero if adding new cipher failed
1909  */
1910 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1911                                                struct mutex **tfm_mutex,
1912                                                char *cipher_name)
1913 {
1914         struct ecryptfs_key_tfm *key_tfm;
1915         int rc = 0;
1916
1917         (*tfm) = NULL;
1918         (*tfm_mutex) = NULL;
1919
1920         mutex_lock(&key_tfm_list_mutex);
1921         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1922                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1923                 if (rc) {
1924                         printk(KERN_ERR "Error adding new key_tfm to list; "
1925                                         "rc = [%d]\n", rc);
1926                         goto out;
1927                 }
1928         }
1929         (*tfm) = key_tfm->key_tfm;
1930         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1931 out:
1932         mutex_unlock(&key_tfm_list_mutex);
1933         return rc;
1934 }
1935
1936 /* 64 characters forming a 6-bit target field */
1937 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1938                                                  "EFGHIJKLMNOPQRST"
1939                                                  "UVWXYZabcdefghij"
1940                                                  "klmnopqrstuvwxyz");
1941
1942 /* We could either offset on every reverse map or just pad some 0x00's
1943  * at the front here */
1944 static const unsigned char filename_rev_map[256] = {
1945         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1946         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1947         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1948         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1949         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1950         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1951         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1952         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1953         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1954         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1955         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1956         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1957         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1958         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1959         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1960         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1961 };
1962
1963 /**
1964  * ecryptfs_encode_for_filename
1965  * @dst: Destination location for encoded filename
1966  * @dst_size: Size of the encoded filename in bytes
1967  * @src: Source location for the filename to encode
1968  * @src_size: Size of the source in bytes
1969  */
1970 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1971                                   unsigned char *src, size_t src_size)
1972 {
1973         size_t num_blocks;
1974         size_t block_num = 0;
1975         size_t dst_offset = 0;
1976         unsigned char last_block[3];
1977
1978         if (src_size == 0) {
1979                 (*dst_size) = 0;
1980                 goto out;
1981         }
1982         num_blocks = (src_size / 3);
1983         if ((src_size % 3) == 0) {
1984                 memcpy(last_block, (&src[src_size - 3]), 3);
1985         } else {
1986                 num_blocks++;
1987                 last_block[2] = 0x00;
1988                 switch (src_size % 3) {
1989                 case 1:
1990                         last_block[0] = src[src_size - 1];
1991                         last_block[1] = 0x00;
1992                         break;
1993                 case 2:
1994                         last_block[0] = src[src_size - 2];
1995                         last_block[1] = src[src_size - 1];
1996                 }
1997         }
1998         (*dst_size) = (num_blocks * 4);
1999         if (!dst)
2000                 goto out;
2001         while (block_num < num_blocks) {
2002                 unsigned char *src_block;
2003                 unsigned char dst_block[4];
2004
2005                 if (block_num == (num_blocks - 1))
2006                         src_block = last_block;
2007                 else
2008                         src_block = &src[block_num * 3];
2009                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2010                 dst_block[1] = (((src_block[0] << 4) & 0x30)
2011                                 | ((src_block[1] >> 4) & 0x0F));
2012                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2013                                 | ((src_block[2] >> 6) & 0x03));
2014                 dst_block[3] = (src_block[2] & 0x3F);
2015                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2016                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2017                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2018                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2019                 block_num++;
2020         }
2021 out:
2022         return;
2023 }
2024
2025 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
2026 {
2027         /* Not exact; conservatively long. Every block of 4
2028          * encoded characters decodes into a block of 3
2029          * decoded characters. This segment of code provides
2030          * the caller with the maximum amount of allocated
2031          * space that @dst will need to point to in a
2032          * subsequent call. */
2033         return ((encoded_size + 1) * 3) / 4;
2034 }
2035
2036 /**
2037  * ecryptfs_decode_from_filename
2038  * @dst: If NULL, this function only sets @dst_size and returns. If
2039  *       non-NULL, this function decodes the encoded octets in @src
2040  *       into the memory that @dst points to.
2041  * @dst_size: Set to the size of the decoded string.
2042  * @src: The encoded set of octets to decode.
2043  * @src_size: The size of the encoded set of octets to decode.
2044  */
2045 static void
2046 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2047                               const unsigned char *src, size_t src_size)
2048 {
2049         u8 current_bit_offset = 0;
2050         size_t src_byte_offset = 0;
2051         size_t dst_byte_offset = 0;
2052
2053         if (dst == NULL) {
2054                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
2055                 goto out;
2056         }
2057         while (src_byte_offset < src_size) {
2058                 unsigned char src_byte =
2059                                 filename_rev_map[(int)src[src_byte_offset]];
2060
2061                 switch (current_bit_offset) {
2062                 case 0:
2063                         dst[dst_byte_offset] = (src_byte << 2);
2064                         current_bit_offset = 6;
2065                         break;
2066                 case 6:
2067                         dst[dst_byte_offset++] |= (src_byte >> 4);
2068                         dst[dst_byte_offset] = ((src_byte & 0xF)
2069                                                  << 4);
2070                         current_bit_offset = 4;
2071                         break;
2072                 case 4:
2073                         dst[dst_byte_offset++] |= (src_byte >> 2);
2074                         dst[dst_byte_offset] = (src_byte << 6);
2075                         current_bit_offset = 2;
2076                         break;
2077                 case 2:
2078                         dst[dst_byte_offset++] |= (src_byte);
2079                         dst[dst_byte_offset] = 0;
2080                         current_bit_offset = 0;
2081                         break;
2082                 }
2083                 src_byte_offset++;
2084         }
2085         (*dst_size) = dst_byte_offset;
2086 out:
2087         return;
2088 }
2089
2090 /**
2091  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2092  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2093  * @name: The plaintext name
2094  * @length: The length of the plaintext
2095  * @encoded_name: The encypted name
2096  *
2097  * Encrypts and encodes a filename into something that constitutes a
2098  * valid filename for a filesystem, with printable characters.
2099  *
2100  * We assume that we have a properly initialized crypto context,
2101  * pointed to by crypt_stat->tfm.
2102  *
2103  * Returns zero on success; non-zero on otherwise
2104  */
2105 int ecryptfs_encrypt_and_encode_filename(
2106         char **encoded_name,
2107         size_t *encoded_name_size,
2108         struct ecryptfs_crypt_stat *crypt_stat,
2109         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2110         const char *name, size_t name_size)
2111 {
2112         size_t encoded_name_no_prefix_size;
2113         int rc = 0;
2114
2115         (*encoded_name) = NULL;
2116         (*encoded_name_size) = 0;
2117         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2118             || (mount_crypt_stat && (mount_crypt_stat->flags
2119                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2120                 struct ecryptfs_filename *filename;
2121
2122                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2123                 if (!filename) {
2124                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2125                                "to kzalloc [%zd] bytes\n", __func__,
2126                                sizeof(*filename));
2127                         rc = -ENOMEM;
2128                         goto out;
2129                 }
2130                 filename->filename = (char *)name;
2131                 filename->filename_size = name_size;
2132                 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2133                                                mount_crypt_stat);
2134                 if (rc) {
2135                         printk(KERN_ERR "%s: Error attempting to encrypt "
2136                                "filename; rc = [%d]\n", __func__, rc);
2137                         kfree(filename);
2138                         goto out;
2139                 }
2140                 ecryptfs_encode_for_filename(
2141                         NULL, &encoded_name_no_prefix_size,
2142                         filename->encrypted_filename,
2143                         filename->encrypted_filename_size);
2144                 if ((crypt_stat && (crypt_stat->flags
2145                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2146                     || (mount_crypt_stat
2147                         && (mount_crypt_stat->flags
2148                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2149                         (*encoded_name_size) =
2150                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2151                                  + encoded_name_no_prefix_size);
2152                 else
2153                         (*encoded_name_size) =
2154                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2155                                  + encoded_name_no_prefix_size);
2156                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2157                 if (!(*encoded_name)) {
2158                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2159                                "to kzalloc [%zd] bytes\n", __func__,
2160                                (*encoded_name_size));
2161                         rc = -ENOMEM;
2162                         kfree(filename->encrypted_filename);
2163                         kfree(filename);
2164                         goto out;
2165                 }
2166                 if ((crypt_stat && (crypt_stat->flags
2167                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2168                     || (mount_crypt_stat
2169                         && (mount_crypt_stat->flags
2170                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2171                         memcpy((*encoded_name),
2172                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2173                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2174                         ecryptfs_encode_for_filename(
2175                             ((*encoded_name)
2176                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2177                             &encoded_name_no_prefix_size,
2178                             filename->encrypted_filename,
2179                             filename->encrypted_filename_size);
2180                         (*encoded_name_size) =
2181                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2182                                  + encoded_name_no_prefix_size);
2183                         (*encoded_name)[(*encoded_name_size)] = '\0';
2184                 } else {
2185                         rc = -EOPNOTSUPP;
2186                 }
2187                 if (rc) {
2188                         printk(KERN_ERR "%s: Error attempting to encode "
2189                                "encrypted filename; rc = [%d]\n", __func__,
2190                                rc);
2191                         kfree((*encoded_name));
2192                         (*encoded_name) = NULL;
2193                         (*encoded_name_size) = 0;
2194                 }
2195                 kfree(filename->encrypted_filename);
2196                 kfree(filename);
2197         } else {
2198                 rc = ecryptfs_copy_filename(encoded_name,
2199                                             encoded_name_size,
2200                                             name, name_size);
2201         }
2202 out:
2203         return rc;
2204 }
2205
2206 /**
2207  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2208  * @plaintext_name: The plaintext name
2209  * @plaintext_name_size: The plaintext name size
2210  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2211  * @name: The filename in cipher text
2212  * @name_size: The cipher text name size
2213  *
2214  * Decrypts and decodes the filename.
2215  *
2216  * Returns zero on error; non-zero otherwise
2217  */
2218 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2219                                          size_t *plaintext_name_size,
2220                                          struct dentry *ecryptfs_dir_dentry,
2221                                          const char *name, size_t name_size)
2222 {
2223         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2224                 &ecryptfs_superblock_to_private(
2225                         ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2226         char *decoded_name;
2227         size_t decoded_name_size;
2228         size_t packet_size;
2229         int rc = 0;
2230
2231         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2232             && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2233             && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2234             && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2235                         ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2236                 const char *orig_name = name;
2237                 size_t orig_name_size = name_size;
2238
2239                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2240                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2241                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2242                                               name, name_size);
2243                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2244                 if (!decoded_name) {
2245                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2246                                "to kmalloc [%zd] bytes\n", __func__,
2247                                decoded_name_size);
2248                         rc = -ENOMEM;
2249                         goto out;
2250                 }
2251                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2252                                               name, name_size);
2253                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2254                                                   plaintext_name_size,
2255                                                   &packet_size,
2256                                                   mount_crypt_stat,
2257                                                   decoded_name,
2258                                                   decoded_name_size);
2259                 if (rc) {
2260                         printk(KERN_INFO "%s: Could not parse tag 70 packet "
2261                                "from filename; copying through filename "
2262                                "as-is\n", __func__);
2263                         rc = ecryptfs_copy_filename(plaintext_name,
2264                                                     plaintext_name_size,
2265                                                     orig_name, orig_name_size);
2266                         goto out_free;
2267                 }
2268         } else {
2269                 rc = ecryptfs_copy_filename(plaintext_name,
2270                                             plaintext_name_size,
2271                                             name, name_size);
2272                 goto out;
2273         }
2274 out_free:
2275         kfree(decoded_name);
2276 out:
2277         return rc;
2278 }
2279
2280 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2281
2282 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2283                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2284 {
2285         struct blkcipher_desc desc;
2286         struct mutex *tfm_mutex;
2287         size_t cipher_blocksize;
2288         int rc;
2289
2290         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2291                 (*namelen) = lower_namelen;
2292                 return 0;
2293         }
2294
2295         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2296                         mount_crypt_stat->global_default_fn_cipher_name);
2297         if (unlikely(rc)) {
2298                 (*namelen) = 0;
2299                 return rc;
2300         }
2301
2302         mutex_lock(tfm_mutex);
2303         cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2304         mutex_unlock(tfm_mutex);
2305
2306         /* Return an exact amount for the common cases */
2307         if (lower_namelen == NAME_MAX
2308             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2309                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2310                 return 0;
2311         }
2312
2313         /* Return a safe estimate for the uncommon cases */
2314         (*namelen) = lower_namelen;
2315         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2316         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2317         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2318         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2319         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2320         /* Worst case is that the filename is padded nearly a full block size */
2321         (*namelen) -= cipher_blocksize - 1;
2322
2323         if ((*namelen) < 0)
2324                 (*namelen) = 0;
2325
2326         return 0;
2327 }